
Theoretical Computer Science 110 (1993) 99-129

Elsevier

99

Time-space tradeoffs for
set operations

Boaz Patt-Shamir and David Peleg*
Drpurtment o/ Applied Muthrmurics. The Weizmann Insfifufe, Rrhovot 76100, Israel

Communicated by E. Shamir

Received August 1990

Revised August 1991

Patt-Shamir, B. and D. Peleg, Time-space tradeoffs for set operations, Theoretical Computer

Science 110 (1993) 99-129.

This paper considers time-space tradeoffs for various set operations. Denoting the time requirement

of an algorithm by T and its space requirement by S, it is shown that TS=R(n’) for set comp-

lementation and TS=R(&‘) for set intersection, in the R-way branching program model. In the

more restricted model of comparison branching programs, the paper provides two additional types

of results. A tradeoff of TS=R(n’~““’). derived from Yao’s lower bound for element distinctness, is

shown for set disjointness, set union and set intersection [where E(n)=O((logn)~“*)]. A bound of

TS=Q(n’ ‘) is shown for deciding set equality and set inclusion. Finally, a classification of set

operations is presented, and it is shown that all problems of a large naturally arising class are as hard

as the problems bounded in this paper.

I. Introduction

The study of lower bounds is one of the main avenues taken in the quest for

understanding the complexity of computations. Much effort has been directed toward

the goal of proving nontrivial lower bounds on the resources required to compute

various functions. In its basic form, the question involves establishing a lower bound

on each resource separately. However, measuring a single resource (such as time or

space) does not always correctly capture the entire picture regarding the complexity of

the problems at hand. Consequently, some work was directed to considering two

resources simultaneously, most commonly time and space product, denoted by TX

Correspondence to: B. Patt-Shamir, Laboratory for Computer Science. MIT, 545 Technology Square,
Cambridge, MA 02139, USA.

*Supported in part by an Allon Fellowship, by a Bantrell Fellowship and by a Walter and Elise Haas
Career Development Award.

0304-3975;‘93,!$06.00 :c 1993 Elsevier Science Publishers B.V. All rights reserved

100 B. Part-Shamir, D. P&g

In 1966 Cobham [6] showed that any computational device with one read-only

input tape must satisfy TS = Cl(n*) in order to be able to recognize the set of perfect

squares (n is the length of the input number). Although working within the severe

limitation of tape input (and deriving his result from the crossing sequence argument),

Cobham pioneered a new combinatorial concept for the workspace required by

a nonoblivious program, that combined the traditional notion of “worktape” (which

can be viewed as data space) with “control space” (which can be viewed as the space

required for the instruction pointer). This concept was further abstracted and de-

veloped by Borodin et al. [S], where they show that any comparison-based “conserva-

tive” computational device requires TS = Q(n*) for sorting n inputs. The term conser-

vative means here that the inputs are considered to be indivisible elements, and the

branching of control is determined solely by the results of comparisons between pairs

of input values. The basic concepts and techniques employed in TS lower-bound

proofs were laid in that paper. Some other variants of the branching program model

were considered by Yao [9], in which a linear type of queries is allowed, and by

Karchmer [7], in which queries involving a comparison of more than two elements

are allowed.

A significant generalization of the model was introduced by Borodin and Cook [3],

where the R-way model is defined. In this model the Row of control may be effected by

the inputs in any possible way, so long as the input values are in the range [l. .R]. In

[3], it was proved that sorting in such a “general sequential” model requires

TS = R(n*/log n) for R 3 n*. The general scheme of the proof is the one used in [S]. The

bound for sorting was later increased (by improving one of the key lemmas of [3]) by

Reisch and Schnitger [S] to TS = Q(n* log log n/log n) for R >(n log n/log log n).

Recently, Beame [2] proved that finding the unique elements in a list of n values (i.e.,

the elements appearing exactly once in the input) requires TS=Q(n*), for R 2n. As

a corollary, he deduced that sorting requires TS=n(n*) for R >n.

Another area in which TS lower bounds are known in the R-way model is

computing algebraic functions. Yesha [l l] showed, basing his arguments on [3], that

over finite fields, computing the Fourier transform of n elements requires TS =Cl(n*),

and multiplying two n x n matrices requires TS =O(n3). Abrahamson [l] proved that

over a finite field of size R, the convolution of two n-vectors requires TS =R(n* log R),

and multiplying two n x n matrices requires T*S =Cl(n6 log R).

All the above results are based on the technique of [S], which seemed to yield

bounds not better than TS=R(nr), where n is the number of inputs, and Y is the

number of outputs. But in 1987, Borodin et al. [4] were able to establish a nontrivial

lower bound for a decision problem (r= 1) within the “reasonable” comparison

branching program model. Specifically, it is shown in [4] that deciding element

distinctness (i.e., deciding whether the input values are all distinct) requires

TS = R(n3/* a). This result was accomplished by defining a new measure for the

progress of a program, and applying again the general scheme of [S]. This bound was

improved by Yao [lo] to TS=Q(n* pE(n)), where a(n)= S/a, by using the same

arguments of [4], and very careful accounting.

In this paper we study the complexity of computational and decision problems

concerning several set operations. The input to these problems is typically one or two

sets of integers, although some of the bounds are derived for set operations of

arbitrary (fixed) arity. The problems involve either computing the result of some unary

or binary set operation, or deciding whether a certain property holds. Specifically, we

consider the following operations. Let A and B denote sets of integers with 1 A I= n,

/ BI = m, and assume M 3 111. Let COMPR denote the problem of computing (1, . . , R} \A

(where we assume that A c (1, . . , R}). Let IS, UN, SUB and XOR denote the problems of

computing the intersection A nB, the union A LIB, the difference A\B and the

symmetric difference A @ B, respectively. As for decision problems, let DIS, EQ and INC

denote the problems of deciding whether A and B are disjoint, equal, or whether

A contains B, respectively (for EQ assume /A I= IL? =n). We seek bounds on the

minimal product TS required by algorithms solving these problems.

Naturally, the model of computation is a central issue when discussing lower

bounds. As described above, much of the earlier results were derived for models of

a very restrictive type, such as tape input, or oblivious programs. The models adopted

in this paper are variants of the quite general branching program model, as introduced

by Cobham [6], described by Borodin et al. [S], and generalized by Borodin and

Cook [3]. This model is formally defined in Section 2.

Our results are based on techniques that were used previously to provide bounds

for two problems, namely element distinctness (ED) and unique elements (LJE). Follow-

ing [4, 10, 21, we derive three types of results for set operations. In Section 2 we define

the models of computation and agree upon some notational conventions. In Section

3 we follow [2] and prove two lower bounds in the general model of R-way branching

programs. It is shown that set complementation (coh4pR) admits TS = Q(n2), deducing

this bound for set subtraction (SUB) and symmetric difference (XOR) as direct corol-

laries. We also prove that set intersection (IS) admits TS = n(m&). Both bounds hold

for R=O(n). We then restrict our attention to comparison branching programs.

Section 4 gives a “near optimal” bound of TS = R(n2 -“(“‘), where 8(n) = S/6, for set

disjointness (DE), deducing this bound for set union (UN) and set intersection (IS) as

direct corollaries. These bounds are derived by generalizing the technique of [lo]. In

Section 5 we show, as a generalization of the proof in [4], that the time and space

required to decide whether two sets are equal, satisfy TS=R(n31”) in the comparison

branching program model. Let us remark that some of our results are stated also for

the average time, T.

Finally, in Section 6 we attempt to extend and unify the above results into a more

general statement holding for a wide class of set operations. We begin by providing

a classification of set operations by some natural properties. It is then shown that all

set problems from a large “natural” class are as hard as either set complementation or

set intersection (for computational problems), or as hard as set disjointness or set

equality (for decision problems). In Section 7 it is shown that all definable set

operations can be computed in time-space product O(n’) in the R-way model, and

that another “natural” class of set problems can be computed by a random-access

102 B. Part-Shamir, D. Peley

machine (RAM) algorithm that require O(S) space and O(nmlogn/S) time for all

logndS<m.

2. The model

2.1. Branching programs

We first describe the general model of branching programs [6, 5, 31. Branching

programs model algorithms by labelled directed multigraphs representing the flow of

control. Formally, we assume that the input and the output domains are known, and

a branching program is defined by a seven-tuple P=(X, V, E, vO, Q, A, O), where

0 X=(x1,..., x,,} is the set of input variables;

l V and E are the sets of nodes and edges of a directed multigraph;

l VIE V is the root node;

l Q: V-+X’ (for some integer i> 1) is a mapping associating a query concerning the

input variables with every node that has outgoing edges, in a way that will be

explained later;

l A is a mapping associating with every edge (v, u), a possible outcome (an answer) of

the query associated with its starting node, v. A associates all the possible outcomes

of Q(v) with edges outgoing from v, and every such outcome is associated with

exactly one of the outgoing edges;

l 0 is the output mapping associating with every edge a subset of the output domain.

Essentially, the nodes represent possible configurations of the computation (excluding

the input, unlike instantaneous descriptions of Turing machines), and the edge set

represents the transition function. The root node, vO, corresponds to the initial

configuration. Define an input instance to be an assignment of values from the input

domain to the input variables. Given such an input instance, its corresponding

computation is the path in the program that starts at the root, and consists of the edges

labelled by the answers to the queries associated with the nodes on its way. In

a correct program, every path followed by an input instance ends in a sink (a node

with no outgoing edges), whereby the computation halts. For a computation that

consists of the edges e, , . , e,, the output is defined by the output mapping 0 as the

union U f = i 0 (ei). When we are dealing with a decision problem, we may label some of

the sinks as accepting and the others as rejecting, which can be treated as identical

to “YES” or “NO” output, respectively, associated with the edges leading to these

sinks.

There are differences in the type of queries allowed in the different variants of the

branching program model, that effect the computational power and the generality of

the variants. In the comparison branching program model, the input domain is

assumed to be linearly ordered, and the queries are of the type “xi : Xj”, where xi and Xj

are input variables (formally, Q : V-+X2). The answer mapping, A, is defined formally

to be A : E+{ < , =, > >. The queries and the answers are interpreted in the obvious

Time-space tradeqfi,fi)r set operations 103

way. In this model, the output may consist of indices of the input variables and

constants. This model was employed in the proofs of lower bounds on sorting [S] and

element distinctness [4, lo].

The most general model is called the R-way model, introduced by Borodin and

Cook [3]. In this model the input domain, D, is of size R. The nodes are labelled by

variables (Q : V+X), and the edges are labelled by the R possible values the queried

variable may have (A : E-+D). Among the results in this model there are lower bounds

for sorting [3, 81, matrix multiplication and the discrete Fourier transform [l, 111,

and unique elements [2].

It should be emphasized that the only restriction on the way the graph is specified is

the one imposed by the answer mapping A, which is necessary to make the notion of

computation well-defined. There are no assumptions whatsoever concerning the way

the computation is realized. This feature is to be contrasted with the conventional

models of Turing machine, or RAM, which are defined in a structured fashion, with

a small repertoire of basic moves. This makes the branching program model (and

especially the R-way model) a very general one and, hence, adequate for proving

lower-bound results.

An important aspect of this model is its nonuniformity. Denote the number of

variables in an input instance I by 111. Branching programs have a fixed number of

input variables for a single program. We say that a problem 17 is computable by

a family {P,,} of branching programs if for every admissible input instance I, the

program P,,, outputs n(Z). Whenever we discuss the asymptotic complexity of

branching programs, it is to be understood with respect to such a family {P,,} of

programs that solve the problem in question. Note, in addition, that the actual input

length is 111 log R (assuming 1 D I = R). We denote I I I = n, and the latter quantity of the

bit-cost input length is denoted N = II log R.

In many senses, the model of R-way branching programs is “more powerful” than

the Turing machine model, due to its nonuniformity, random-access ability and the

non-structured way in which a program is specified. The only aspect in which this

model is weaker than Turing machines is the way the results of the computation are

output; producing an output value is an atomic step.

2.2. Basic properties

Let us now define the complexity measures relevant to branching programs, and

state some of their basic properties.

The running time of a branching program is defined to be the length of the longest

path from the root that some input follows. This is a unit-cost worst-case time

measure.

The workspace S of a branching program (called also its capacity) is defined to be

the logarithm (to base 2) of the number of all nodes reachable (by some input) from the

root. This definition is appropriate for lower-bound results, since regardless of the way

the space is utilized, it is necessary at least to be able to distinguish among the different

104 B. Part-Shamir, D. Peley

configurations. This definition captures the space required for storing intermediate

values, as well as the control space. See [S, 31 for a more detailed discussion and

justification of this definition. Note, for example, that branching programs do not

have an explicit notion of internal variables. If we want to simulate some variable that

can have k distinct values, then we can take k copies of the program, where each copy

corresponds to some possible value. This costs O(log k) additive space, which is the

minimal storage required to store the value of the variable by a logarithmic-cost space

measure for RAMS, or Turing machines.

A branching program whose underlying graph is a directed tree is called a tree

program, or a computation tree. Note that, for any problem and any input length n,

there exists an R-way tree program with running time T=n and capacity

S= O(n log R) and, hence, in the R-way model TS= 0(n2 log R) for all definable

problems.

We state some of the basic properties concerning the time and space requirements

of branching programs (see [S]). First note that the length of any path cannot exceed

the total number of nodes, which is 2’. Consequently, we have Property 1.

Property 1. Td2’.

We remark that all the problems discussed in this paper cannot be computed in

sublinear worst-case time, that is, T3n and, by Property 1, also S3log n.

A branching program with running time T is called levelled if its node set can be

partitioned into T disjoint subsets labelled 0, 1, . . . , T, in such a way that every edge

outgoing from a node in subset i is incoming into a node in subset i + 1. We now

consider the conversion of an arbitrary program P into a levelled one. This can be

done by combining T copies of P, and the capacity of the resulting program is

bounded by log(T. 2’)<2S, by Property 1. Therefore, we have Property 2.

Property 2. For every S-space, T-time branching program P there exists a levelled

program with identical output, running time T and O(S) space.

Property 2 is of special importance, since it allows us to consider only levelled

programs when we deal with the asymptotic complexities of branching programs.

Throughout the remainder of this paper we assume, without loss of generality, that all

branching programs considered are levelled.

Finally, consider an R-way branching program solving some problem. Let R’< R.

The deletion of all edges labelled by R’<r d R, followed by the deletion of all

unreachable nodes, can decrease only the running time and the capacity of the

problem. Hence, we have Property 3.

Property 3. For every T-time, S-space, R-way branching program and for all R’< R,

there exist a T’-time, S’-space, R’-way program solving the same problem for

D’ = { 1, , R’} that satisfies T’ < T and S’ < S.

Time-spucr rradeo~~ Jbr set operations 105

Note that by Property 3, any TS lower bound for R,-way branching programs

applies to all R-way branching programs satisfying R 3 R,,.

2.3. Notations

Since we are focusing on set problems, let us agre.: upon the following conventions

to hold throughout this paper. Denote by I7, a prf!blem I7 whose input consists of

a set of variables, X= {.K , , . . . , xn}, that take values from some linearly ordered

domain D, and, w.l.o.g., we generally assume D = (1, . . , RI. Given an input instance,

denote the set of values assigned to X by A. Since in this paper we are dealing with set

operations, when the set operation in question is k-ary. we partition the variable set

into k sets, X1, . . . , Xk, and the corresponding value-sets are denoted by AI, . . . , A,. If

the problem n is binary, we denote nnrn for input variable sets X = {?cr, . . . , x,} and

Y= {y,, . . . , y,), and the sets of values are denoted A and B. We always assume

IA1>1Bl, i.e., n>in.

Whenever we define an input instance to consist of sets, it is to be interpreted that

all the variables in a single variable set are assigned distinct values. The input instance

is said to consist of multisets or lists when the same value may be assigned to different

variables in a single variable set. For most set problems, one may consider versions in

which input instances consist of either sets or multisets, and likewise the output. We

comment here that most of our lower bounds (excluding union) are derived in the

weakest framework, i.e., the framework in which the input instance is guaranteed to

consist of sets, and the output is allowed to be a multiset. Therefore, the bounds hold

also in the stronger frameworks.

Let T be a path in a branching program. Denote by 171 the length of T, i.e., the

number of edges it contains. Denote by Q(r) the set of variables queried in T, and for an

input variable set X let X,=X n Q(r). When the identity of r is clear from the context,

we denote t = I T I and tx = IX, 1.

A notation often used in the sequel is (cI)~, denoting the number of ways to choose

b ordered elements out of a set of size a,

(a),=a.(a-l)...(a-b+l).

We use probabilistic language in forming our arguments. It is generally assumed that

all admissible input instances have equal probability, unless explicitly indicated otherwise.

Throughout, we omit floors and ceilings, for simplicity of presentation. All occur-

rences of “log” denote logarithm to base 2, and “In” is logarithm to base e.

3. Lower bounds in the R-way model

This section presents the general technique in which time-space tradeoffs are

derived for branching programs. This technique is applied in the general R-way model

to establish the bounds TS=Q(n*) for set complementation and TS=R(mn”*) for set

intersection.

106 B. Part-Shamir, D. P&g

3.1. A generic lemma

We open with a generic lemma that outlines the scheme of the lower-bound proofs

for computational problems. The basic idea, due to Borodin et al. [.5], is that if one can

show, for a given problem l7, that every shallow tree-program cannot output correctly

“too many” values, and that there are “many” values to be output by “many” of the

input instances, then the time-space product of any branching program solving I7 can

be bounded from below. This idea is used in [2,4, 7, 10, 111. We closely follow [2].

Lemma 3.1. Let Xl be a set problem with a given probability distribution over its domain
of instances. Suppose that for sujiciently large input length n there exist 0~ E, < 1,

/In, 6,>0 (all may depend on n), and a constant y < 1 (independent of n), such that the

following conditions hold:
(1) For any R-way tree branching program P of length t <fin and for all r >O, the

probability that P outputs r distinct correct values for IT is less than y’.

(2) The probability for an input instance picked at random (according to the given

distribution) to have at least 6, distinct output values is at least E,.
Then for n suficiently large, any R-way branching program solving IT, with capacity

S and time T3f3, satisfies S3(log (1/1/))p,J,/T-(log (l/c,)). Furthermore, iff~“>q for
some constant q>O, then ~S=fl(p,&), where T denotes the average running time

according to the given distribution.

Proof. Let P be a branching program solving f17, in time T and capacity S. Consider

P in stages of /?,, steps each. There are T//In such stages. For every input instance of

17, with 6, or more output values, there must be a stage in which more than

c?,,/(T//&,) = &f&,/T values are output. Denote r, = S,f3,/T. Regard the subprograms

rooted at each node in the start of a stage, truncated to length /In, as computation trees

(this may be done by duplicating the subprograms rooted at nodes with more than

one incoming edge). By assumption (l), the probability that a random input instance

will output r, values in such a subprogram is less than y’“. Since there are 2’ nodes,

and by assumption (2) there is a subset of the input instances with probability E, for

which P outputs at least rn values, P cannot solve I7, correctly unless 2’y*“3~,,, i.e.,

256nBn’T 3 c,,

which implies

s>(lOg &&log l/E
T

) n .

Note that both parenthesized quantities are nonnegative.

To see that the second assertion holds, we remark that the average case time

complexity r satisfies Ta e,T> qT= O(T). 0

Given Lemma 3.1, in order to obtain a lower bound for the time-space product it

suffices to show that the assumptions of the lemma hold for the problem in question.

Time-space tradeqffs,for set operations 107

3.2. Set complementation

We first turn to set complementation, formally defined as follows:

SET COMPLEMENTATION (COMPR)

Instance: A set of integers A c { 1, . , R}.

Output: {l,...,R}\A.

Recall that the input to COMP~ consists of the variables X= {x1, . . . , x,,}, whose

contents represent the elements of A.

Lemma 3.2. Let P be an R-way computation tree of height at most pn, where 0 < fl< 1 is

a constant, and R den for some constant c > 1. Let r30. Assume that all the input

instances of COMP~ have equal probability. Then the probability that a random input

instance qfco~~,R follows a path in P that outputs more than r distinct correct values is

bounded by y’, where y=(c- l)/(c-p).

Proof. Fix a computation path z in P. Recall that tx denotes the number of distinct

X-variables queried in r. Since 1 z.(</In, we have that t, < f&r. Denote a = R - tx and

b =n- tx. The total number of input instances that follow z (i.e., agree with the

outcomes of the queries in T) is (a)b, since there are t, variables whose values are

determined by the answers in r. Consider now only the first r distinct output values.

The number of input assignments that follow T and have correct output is (a-r)t,,
because the remaining b variables are not allowed to take the r values that are output

in r. Therefore, denoting by E the event that an input instance correctly outputs

r values, we have that

f+(E) =v
ah

-(a-r)! (a-b)!

a! (a-b-r)!

=(a-b-r+ l)(a-b-r+2)...(a-b)

(a-r+l)(a-r+2)...a .

This probability can now be bounded by

Theorem 3.3. Any T-time, S-space R-way branching program that solves COMP~ for
R >cn >n satis$es TS=n(n’), where all the input instances of COMP~ have equal
probability.

Proof. We assume that R =cn and, w.l.o.g., c> 1. As mentioned in Section 3.1, all we

need to show is that the conditions of Lemma 3.1 hold. Lemma 3.2 fulfills condition (1)

108 B. Parr-Shamir, D. Peley

with fl,, =pn for any constant 0 <p< 1, and y=(c- l)/(c-/?) < 1. As to condition (2),

we note that all input instances of COMP~ must output R -n distinct values and, thus,

we set 6, = R-n = (c - 1)~ and e, = 1. In addition, we remark that, since all branching

programs that solve COMP~ must query every variable at least once, their running time

T must satisfy T3 n>fin. The bound TS=0(n2) now follows from Lemma 3.1. 0

Consider the following problems:

SET SUBTRACTION (SUB)

Instance: Two sets of integers, A and B.

Output: A\ B.

SYMMETRIC DIFFERENCE ()iOR)

Instance: Two sets of integers, A and B.

Output: (AuB)\(AnB).

As a direct corollary of Theorem 3.3, we have the following.

Corollary 3.4. Any R-way branching program that solves XOR or SUB in time Tand space

S satisfies TS = CI(n2).

Proof. By the definitions of the problems, it is clear that COMP~ is the restriction of

XOR, or of SUB, to the case where A= { 1, . . . , R}. Therefore, either XOR or SUB solve

COMP~ by the trivial reduction. q

Note that the distribution implicitly assumed by Corollary 3.4 for the instances of

XOR and SUB is the one assumed for COMP~, i.e., the distribution giving equal probabil-

ity to all instances in which BG A, and zero probability to all other cases. Therefore,

the result for the average case does not follow directly from Theorem 3.3 (although it

can be obtained by mimicking the technique of Lemma 3.2).

3.3. Set intersection

The set intersection problem is formally defined as follows.

SET INTERSECTION (IS)

Instance: Two sets of integers, A and B.

Output: A n B.

We continue using the framework of Lemma 3.1. The following lemma provides us

with condition (1) of Lemma 3.1 for set intersection.

Lemma 3.5. Let 0 <r < m and c1 > 2, and let P be an R-way computation tree of height

T< &, where R 3 c1 n. Suppose that all the input instances of Is,,,,, have equal probabil-

ity. Then given a random input instance of Is,,, the probability that P outputs more than

r distinct correct values is bounded by (2/G)‘.

Time-space trade& for set operations 109

Proof. For a computation path T in P, denote by rr the number of values output in z.

Denote by k, the number of output values that appear in r as values of variables in X,,

by ky the number of output values that appear in T as values of variables in Y,, and by

k, the number of output values that appear in r as values of variables in both X, and

Y,. Clearly, r, > kx + ky - k,.

Let r30. Denote by E the event in which a random input instance follows a path

z that correctly outputs more than r distinct values (i.e., rr>r), and by E’ the event in

which a random input instance follows a path r with k, > r/2 (i.e., the outcomes of the

queries in the path suffice to ensure that more than half of its output values are

correct). With these notations,

Pr{E}=Pr{EnE’}+Pr{EniE’}. (1)

We bound the probability Pr {E n E’} by Pr {E’}, i.e., the probability that a random

input instance of IS,,, follows a path r with k, = k > r/2 internal X-Y equalities. Fix X,

and Y,, the sets of variables queried in z. The total number of possible assignments for

these variables is (R)rh(R)t,. To count the number of such assignments with exactly

k X-Y equalities, we choose values for all the tx variables of X,, choose the k variables

from Y, to be in the intersection with the values of the X, variables and choose their

values among the tx values and, finally, choose values for the ty- k remaining Y,-

variables among the R - tx remaining values. Thus, the number of such assignments is

(R)tx ; 0 (fxh(R - Lx)+l,

and, so, we have that

Pr(EnE’},<Pr{E’}

(R)rx :’ 0 (txh(R-txh-k =
(fGJR)ty

0 :’ (tX)k

’ (Rh

But tx + tr d T implies txty d T2/4; since k = k, > r/2, it follows that

Pr(EnE’}d - (;;J;2<($)r.

We now turn to bound the second summand in (1). That is, we wish to bound the

probability that more than r output values are correct in a path with less than r/2

internal equalities. For this, we use the fact that Pr {E n 1 E’} < Pr {E 11 E' j. Given

110 B. Part-Shamir, D. Peleg

that E’ is not the case in a path r, i.e., k,<r/2, we calculate the probability that

a random input instance follows r and outputs r correct values as follows. Let

a=n-tt,, the number of X-variables not queried in t, and let b = m - ty, the number of

Y-variables not queried in z. The total number of input instances that follow z is

Let us count the number of inputs for which the outputs are correct. There are tx

values of X,-variables that are determined by the queries. Let S=Y- kx, the number

of values output in T that do not appear in r as values of X-variables, and let t = r - ky,

the number of values output in T that do not appear in r as values of Y-variables. By

the definition of set intersection, s X-variables must take values from the values

output in 5. All the other a-s variables in X can take any of the remaining R - tx - s

values and, thus, the total number of input assignments for the X-variables is

(a),(R-tx-s),-,dn”(R-t,),-,.

The counting for the Y-variables is dual, when we substitute m for n, ty for tx, b for

a and t for s. So, we have

Pr(EIiE,)d
nS+‘(R-tx),_,(R-tY)b-l

(R-t,),(R-t,), ’

But R--tx-a+s=R-n+s and R--ty-b+t=R-m+t and, hence,

Pr{EliEEj)d
n”+l

(R-n+l)...(R-n+s).(R-m+l)...(R-m+t)

since k,<r/2 implies s+t=2r-kx-ky>r-k,3r/2 and cr>2, we have

Thus, we get

Combining (l)-(3) together we get, for sufficiently large n,

Pr{E}=Pr{EnE’}+Pr{En7E’}

(3)

The following lemma shows that IS satisfies condition (2) of Lemma 3.1 for R = O(n).

Time-space trade& ,for set operations 111

Lemma 3.6. Let R < czn for c2 > 1. Suppose that all the instances of IS,, have equal
probability, where all the variables take values from the input domain { 1, . . . , R}. Then

Pr{IAnBj>nm/2Rf31/(2cz-1).

Proof. The expected number of intersections is

E(IAnBI)= f Pr{y+A}=y.
i=l

Let a=Pr{JAnB(>nm/ZR]. The fact that jAnBl<lB1=m implies

E(IAnBI)<m+(l -c)E

and, hence,

Theorem 3.7. Any R-way branching progrum that solves IS,, in time T and capacity

S for R 3 cn > 5n satisjes TS =Q(mfi), when all instances of IS,, are considered to
have equal probability.

Proof. We establish the bound by applying Lemma 3.1. Assume R=cn for c> 5. Let

bn=n . “’ Then Lemma 3.5 provides us with condition (1) of Lemma 3.1, setting

7=2/Jc-1< 1. Lemma 3.6 ensures us that at least 1/(2c- 1) of the inputs have at

least mn/ZR = m/2c output values and, hence, we set 6, = m/2c and E, = 1/(2c - 1). It is

clear that the running time of any R-way program solving IS,, is at least n+m>/I,,.

Since c and E, are constants, we get from Lemma 3.1

TS=R(mJz),

when all instances of IS,, are equally likely. 0

Comment: The lower bounds for COMP~ and IS were proved for the case of set input

and multiset output. By the trivial reduction, the bounds hold when the input consists

of multisets.

4. Strong lower bounds in the comparison model

Consider the well-known element distinctness problem.

ELEMENT DISTINCTNESS (ED)

Instance: A list of integers.

Output: YES iff all input integers are distinct.

112 E. Putt-Shamir, D. P&g

In this section, we base upon known bounds for ED [4, lo] and derive bounds on the

time-space product for set operations. In the problems discussed so far, we allowed

the output to contain repetitions. If we would have insisted that the output must be

a set, then the element distinctness problem could be reduced to both COMP~ and IS (by

setting A={l,..., R} and counting the outputs) and, hence, both problems would

have admitted the ED lower bounds. Here we follow the technique of [lo], and derive

a “near optimal” bound of 0(mn ’ -5/fi) for deciding set disjointness, and deduce

that the bound holds for set union, set intersection and for the problem of deciding

whether two sets have at least k elements in common (where k is fixed). Set disjointness

and set union are formally defined as follows.

SET DISJOINTNESS (DIS)

Instance: Two sets of integers, A and B.

Output: YES iff A nB=@, A and B are disjoint.

SET UNION (UN)

Instance: Two sets of integers, A and B.

Output: Au B, when every input value appears exactly once.

Note that union is trivial (i.e., solvable in linear time and logarithmic space) if the

set-output constraint is not imposed. However, ED cannot be reduced directly to

union, because the instances of ED are multisets, whereas UN is defined for instances

that consist of sets.

In this section (and in Section 5) we restrict the discussion to comparison branching

programs. We often identify the input instance with the mapping associating each

input variable with its rank in the input set. There is no loss of generality, since in the

comparison branching program model, the computation is effected solely by the ranks

assigned to the input variables.

4.1. Adjacent pairs and the AC property

The general idea we follow in this section, due to Borodin et al. [4], is that in order

to solve the above problems correctly, any comparison branching program must

compare certain pairs of input values. We need the following definitions.

Definition4.1. Let z:(l)..., n}+(l)..., R} be a one-to-one mapping. A pair (i, j) is an

adjacent pair if x(i)<x(j) and there is no kE{ 1, . . , n} such that x(i)< x(k)< x(j).

A comparison of an adjacent pair is an adjacent comparison.

Note that the only way a comparison branching program can get any information

concerning the mutual ranking of an adjacent pair is by an adjacent comparison.

Definition 4.2. Let .f be a subset of the input instances of a comparison branching

program P. P is said to have the m-AC property (or P is an m-AC program) with respect

Timespure tradeoffi ,fiv set operutions 113

to .a if, for every input instance 1~9, P compares at least m adjacent pairs (m < n - 1,

where IZ is the number of the input variables). We call (n- l)-AC programs shortly AC

programs.

Definition 4.3. A permutation instunce is an instance with all input variables assigned

distinct values.

We often identify a permutation instance with its corresponding permutation.

We show that any program solving the problems in question has to have the AC

property with respect to the permutation instances.

The two previous proofs of lower bounds on the time-space tradeoff for ED in the

comparison branching program model [4, lo] share the same overall structure:

(1) Show, in a main lemma, a bound on the rate of progress of the program.

Progress is measured by the number of adjacent comparisons made so far.

(2) Conclude a lower bound for the time complexity as a function of the input

length and the capacity of any branching program having the AC property.

(3) Finally argue that any program solving ED must be an AC program with respect

to the YES instances. This is done in the following way. Suppose that P does not have

the AC property (with respect to the YES instances). That is, there exists a computa-

tion path 5 in P and a YES instance I = (.x1, . , x,) which follows 5, and a pair (iO,jO)

adjacent in I, such that P does not compare xi, with xj,. Then one can define a NO

instance I’ =(x’, , . . . , XL), where xi=.xi for all i#jO, and x&=xi,,. Clearly, the only

comparison effected by this change is xi, : xl,,, and since P, by the assumption, does not

test this pair, I’ follows the same path I follows and, hence, outputs the same answer,

proving that P does not solve ED.

Thus, these proofs can be viewed essentially as lower-bound proofs for programs

with the AC property, augmented by the fact that in order to answer the ED question,

a program must have the AC property with respect to the YES instances.

We apply the results for AC programs and derive a bound for set disjointness. We

make use of the corollary of the main lemma of [lo].

Let us first provide a glossary for the necessary notations. Let n be the number of

input variables, and let S be some fixed positive number. Denote

q(n)=h. F(n)=5y(n), y=nq’“‘,

k,,=log,%, uk”=25koyS, PkO = (4y)k” 16 -‘,

Corollary 4.4 (Yao [lo]). Let P be a comparison branching program of capacity

S > log n and running time no more than n/4. Then fix sufficiently large n, the probability

that more than ak, compurisons of adjacent pairs are made on a randomly chosen

permutation of { 1, . . . , n} is less than pk,.

114 B. Part-Shamir, D. Peley

Yao makes use of this corollary in a theorem that bounds the time-space product of

ED programs. As we are motivated by other problems, we generalize that theorem in

two aspects. First, we deal with any sufficiently large number of adjacent comparisons.

Second, we extend the result to the average case of YES instances.

Theorem 4.5. Let P be a comparison branching program of capacity S3log n, and

let r>ak,. Then the running time required to compare r adjacent pairs satisfies

e average case, where all permutation instances are considered to

Proof. We show that at least a half of the permutation instances require that much

time. Denote by K, the set of permutations for which P performs more than LQ,

adjacent comparisons, when the computation starts from node u (in the branching

program), and its length is no more than n/4= yko steps. Then, by Corollary 4.4,

IKUI dp,,,n!. Hence,

Now, since

and 2-‘<n-‘, we get

That is, at least half of the instances are not in UvsPKv, and every such instance

makes no more than ak,T/(n/4) adjacent comparisons, where T is the total running

time of P. Since we require P to execute at least r adjacent comparisons, it follows that

4ak,T/n > r for at least half of the permutation inputs and, therefore,

or, in other words,

because

Y2 5ko =ev ,G,(III 32 In n/4)/,&~ e~%(ln 32 + 1) G ,Sj,/&
0

Time-space tradeoffs for set operations 115

4.2. Set disjointness and corollaries

Consider now the set disjointness problem (DE.), as defined earlier. In order to

bound the average case complexity of YES instances for DE,,,, by the lower bound for

AC programs, we make the following definition.

Definition 4.6. Let (X, Y) be an arbitrary YES instance of DE,,,,, and let A and B be

their respective sets of values. Let Xi,, Xiz, . . . , Xi,,, be the complete ordering of A u B.

We call the set

(ldij<m+n(xil~A and xi,+,EB, or xi,EB and x~,+~EA]

the alternation set, and its size is the number of alternations.

Lemma 4.7. The average number of alternations of a YES instance Of DIS,, is O(m).

Proof. Let Zi be a random variable, having value 1 if i is in the alternation set and

0 otherwise, and let

m+n- I

Z= C Zi.
i=l

We assume, without loss of generality, that A u B = { 1, . , m + n); further, we assume

that all the YES instances satisfying 1 A I = n and /B I= m have equal probability. Then

m+n- 1

E(Z)= C E(Zi)
i=l

n m m n
= _. + _.

m+n m+n-1 m+n m+n-1

2nm

n+m

As n<m+n<2n, it follows that E(Z)=@(m). 0

Lemma 4.8. Let P be a comparison branching program that solves DE,,, and let

k <m+ n - 1. Then P has the k-AC property with respect to the YES instances with

k alternations.

Proof. Suppose that P does not have the k-AC property with respect to some YES

instance (X, Y) with k alternations. Then, without loss of generality, we may assume

that there exists an adjacent pair (i, j), such that P does not compare xi with yj. Define

a NO instance (X, Y’) by assigning yj=xi, and assigning to all other variables of Y’

the same values as in Y. By the adjacency of (i, j), all comparisons other than xi : yj are

not effected by this substitution and, therefore, (X, Y’) follows the same path that

(X, Y) follows, thus reaching the same answer, contradicting the hypothesis that

P solves DIS,,. q

116 B. Part-Shamir, D. P&g

We deduce bounds on the average case of a YES instance for DIS. Note that

Theorem 4.5 is restricted to the case of more than uk, adjacent comparisons. We use

the estimate ukO < Sn’@).

Theorem 4.9. Let P be a comparison branching program solving DIS,, in time T and

capacity S. Then the time-space product of the average case of the YES instances of DIS,,

with m auk, satisjes TS = Cl(mn’ -E(“)).

Proof. Since, by Lemma 4.7, there are O(m) alternations in the average and since the

YES instances of DIS are permutation instances, it follows from Theorem 4.5 that the

time-space product for any program solving DIS,, satisfies

TS=!2(m(m+n)‘-“(“))=R(mn’-“(“)). 0

Bounds on the problems of set union and set intersection can now be proven as

well.

Corollary 4.10. Any comparison branching program that solves UN,, in time T and

capacity S for m 3 ako, satisfies TS = Cl(mn’ -‘(“)).

Proof. We show that DIS reduces to UN by counting the outputs. More specifically,

given a branching program P that solves UN,,,,,, one can construct a program P’ that

solves DE,,, in the following way. Take m + n + 1 copies of P labelled 0, 1, . . , m + n.

For all 06 i < m + n and all r > 0, divert all edges in copy i with r output values to the

corresponding endpoint in copy i+r. Discard all the outputs. Mark all the sinks in

copy m + n as accepting, and all other sinks as rejecting. Let the root of P’ be the root

of copy 0. Denote by T’ and S’ the running time and the capacity of P’, respectively.

By the construction, T’ = T and S’ = S + log(m + n + 1) = O(S). Clearly, the input sets

are disjoint if and only if UN,, outputs exactly m + n values. Therefore, the existence of

P with TS = o(mn’ -‘(‘)) would contradict Theorem 4.9. 0

Corollary 4.11. Any comparison branching program that solves IS,,,,, in time T and space

S for m 2 ako, satisfies TS = R(mn’ -E(“)).

Proof. As in Corollary 4.10, we argue that any program for IS can be transformed into

a program that solves DIS. This is done in the following way. All edges associated with

output values (i.e., all the edges eEE such that O(e) ~8) are diverted to a rejecting

sink. All other sinks are labelled as accepting. The output values are discarded.

It is clear that IS have an output value on an input instance (X, Y) if and only if

DIS(x, Y)=NO. 0

Our last application of Theorem 4.9 concerns a somewhat different problem,

defined as follows.

Time-space trade@ for set operations 117

~-INTERSECTION (k - 1s)

Instance: Two sets of integers, A and B.

Output: YES iff 1 A n B I> k for some fixed constant k.

Corollary 4.12. Any comparison branching program solving k-q, in time T and capa-

city S satisfies TS = Q(n2 -&@)).

Proof. The assertion follows immediately from the fact that DIS reduces to k-Is: given

an instance (A, B) of DIS, augment both A and B by k- 1 new elements, getting an

instance (A’, B’). Clearly, DIS(A, B)= k-rs(A’, II’). III

5. A weaker lower bound for set equality

This section presents lower bounds for the time-space product required by any

comparison branching program that decides whether two given sets are equal. The

result is obtained by a straightforward adaptation of the proof of [4] for element

distinctness.

We begin with the formal definition of EQ.

SET EQUALITYCEQ)

Instance: Two sets of integers, A and B.

Output: YES iff A = B.

The bound, as before, stems from the fact that the only way a comparison branching

program can know whether certain pairs of variables are equal, is by comparing them

directly.

In the following proof, we assume that the probability distribution of the input

instances is defined as follows.

(a) The assignments to the X-variables are fixed.

(b) The value set of the Y-variables is the same value set assigned to the X-

variables, and all permutations assigning these ranks to the Y-variables are equally

likely.

Lemma 5.1. Let P be a comparison branching tree program qf height t < fi. Then for

all 0 <r < t the probability that a randomly chosen YES instance of EQ,, follows a path

in P with at least r distinct equality answers is less than (2t2/n)‘.

Proof. Fix a computation path 5 with at least r equality answers. We use t, Y, and ty
with the usual interpretation. The number of ways to assign to the Y,-variables ranks

is (t). The number of ways to do it meeting the constraint that at least r of the ranks

assigned to Y, express X-Y equalities is (i)(l,ll). Therefore, denoting by E the event

118

that a random input follows a

sufficiently large n,

B. Putt-Shamir, D. Peleg

path with at least r equality answers, we have, for

t n 0~ 1 Pr{E}= ’ z-’

0 tY t 0 ty...(ty-r+l)
=

r (n-t,)...(n-ty-r+l)

2ty r
<tr -

(1 n

4 >

<?, 0
n

Theorem 5.2. Every T-time, S-space comparison branching program that solves EQ,

satisjies TS = !2(n3’2).

Proof. The proof resembles that of Lemma 3.1. We first note that in order to answer

YES to the EQ, question, n distinct equalities must occur in the computation path of

a comparison branching program (or otherwise some NO instance could follow the

same path). Now, let fl,, < 612. Consider P in stages of & steps each. There are T//In

such stages. For every YES instance, there must be a stage with more than n&,/T

distinct equality answers. Denote 4 = n/$,/T. Regarding the subprograms rooted at the

nodes at the start of a stage as computation trees and, applying Lemma 5.1, we obtain

that the probability for a random input instance to follow a path in such a subpro-

gram with at least 4 equalities is less than (2P2/n)“. Since there are no more than 2’

nodes at the start of each stage, and since all YES instances of EQ, must get n distinct

equality answers, it must be the case that

2s (> 2p2 q>l
H 9

n

which implies

Consider the following problem.

SET INCLUSION (INC)

Instance: Two sets of integers, A and B.

Output: YES iff BG A, B is contained in A.

We have the following immediate corollary.

Time-space tradeoffs for set operations 119

Corollary 5.3. Let P be a comparison branching program with running time T and

capacity S. If P solves INC,, then TS=R(n312).

Proof. Follows from the fact that EQ reduces to INC: if IA I= jB(, then EQ(A, B) = YES

iff INC(A, B)=YES. 0

Note also that the time-space tradeoff for set union can be bounded using the

bound for EQ by such a direct reduction. The bound obtained this way is for the

instances of equal input sets, whereas the bound of Corollary 4.10 is for disjoint input

sets.

6. Classification of set operations

In this section we provide a general classification of set operations by defining

several interesting classes of set operations of arbitrary (fixed) arity. We then show

that computing operations of some of the “natural” classes is as hard as complementa-

tion or intersection (for computational problems), or as hard as deciding equality or

disjointness (for decision problems).

6.1. The classiJication

Assume the existence of a finite universal input and output domain D, with (DI = R.

Let f be a k-ary computational set operation.

Denote

I
Auja’}\{a) if aEA and a’$A,

A(:‘= Au{a}\{a’} if a’EA and a$A,

A, otherwise.

Definition 6.1.

l The operation f is conserving if for every A,, . . , Ak G D,

.f(A 1, ... 9 A~)G b Ai
i=l

l The operationf is anonymous if for every two elements a, a’ED,

f(A,, > A,X’=f(A1 I:‘, . . . , Al;‘).

l The operationfis a template operation if there exists a truthset Tf of words from

(0, l}” such that aef(Al, . . . , Ak) if and only if there exists a word w= bl . . . bkETf

for which

v1 di<k [agAi o hi= 11.

120 B. Part-Shamir, D. Peleg

l The operation f is accumulative if it is conserving and for all subsets D’s D,

f(A,nD’,..., A,nD’)=f(A,,...,A,)nD’.

l The operation ,f is basic if it is template and conserving.

l The operationfis trivial if there exists a projection set Js’ { 1, . . . , k} such that

f(A 1, ...) Ak)= u Ai.
ieJf

To gain some intuition for the above definitions, we make the following remarks.

(1) Comparison branching programs with no output of constants can compute

only conserving operations.

(2) In a certain sense, template operations comprise a natural class of operations.

We demonstrate the “naturality” of template set operations by redefining some

operations using their truthsets.

Unary operations. The only unary basic computational set operations are trivial:

the identity operation, Z(A)= A, has projection set J1= 1 and truthset T,= 1, and

the null operation, V(A)=@, has empty projection set and empty truthset. Set

Complementation is of course nonconserving, but it is a template operation, and

T COMP = {O).

Binary operations. Intersection, symmetric difference, subtraction, and union can

be defined by T,s={ll), TxoR={O1, lo}, Ts,,={lO} and TUN={O1, 10, ll}, respec-

tively. The projection operation, defined by nl(A, B)= A, is a trivial set operation with

projection set J,, = {l} and truthset T,, = { 10, 11).

Note, however, that the definition of a problem by its truthset does not restrict the

way the outcome is represented and, hence, it does not directly capture the difficulty of

computing set union as discussed in Section 4.

(3) Accumulative set operations can be computed “slice by slice” and, hence, they

admit a time-space tradeoff spectrum.

Motivated by the above concepts, we define a dual classification for decision

operations. Let g be a k-ary decision set operation.

Definition 6.2.

l The operation y is conserving if for every nonempty subset of the domain D’ G D

there exist Al, . . . , Ak z D’ such that

&I 1, ... , A,)=YES.

l The operation g is anonymous if for every two elements a, u’ED,

g(A ~,...,A~)=s(A~I~‘,...,A~I~‘).

l The operation g is a template operation if there exists a truthset T,= {wl, . , w,},

where Wj = bj, . . . bj, for 1 <j < t such that

g(Al,..., Ak)=YES o V’U~D jam in U~Ai o bj,=l)].
c (

Time-space tradmffs for set operutions 121

l The operation g is accumulative if for all subsets D1 , . , D, satisfying ur= 1 Di = D

and for all instances A 1, . , Ak G D

dA 1, ... > Ak)= i;, g(A,nDi,..., A,nDi).
i=l

l The operation g is trivial if there exists a project ,,n set J, G { 1, . . , k} such that

y(Al,..., Ak)=YES 0 A (A,=$).
ieJ,

Let us give some examples of decision problems and their appropriate classifica-

tion. The problems of deciding whether two sets are equal, disjoint, or whether the

first set contains the second can be described by the truthsets T,,=(OO, 1 l},

T,,, = (00, 01, 10) and TINC = (00, 10, 111, respectively. The problem xD, deciding

whether the input elements comprise the whole domain, can be defined as an template

operation with TX,= (01, 10, 1 l}. Note that x0 is not conserving.

The nature of the duality between the properties of decision and computational

problems is described by the following definition.

Definition 6.3. Letdbe a k-ary computational set operation. Its dual decision problem

f is defined by

,f(A,, A,)=YES o f(A, ,..., Ak)=O.

With this definition, the following lemma is immediate.

Lemma 4.4. Let ,f be a k-ary computational set operation. Then f is a template

(anonymous, accumulative) operation if and only if its dual decision operation f^ is

a template (anonymous, accumulative) operation. If f’is a template operation with truth-

set T, then Tr= (0, l}“\ Tf. In particular, f is trivial with projection set Jr ifand only

iff^is trivial with the same projection set.

We proceed with some additional examples. As mentioned above, set comp-

lementation is not conserving (COMP~ may be considered as the nonconserving version

of SUB, with the first operand fixed to be { 1, . , Rj). All operations defined so far in

this paper are anonymous. The following operation is not: xz(A)= A nZ, for some

fixed set Z satisfying @cZc D.

An interesting example of a nontemplate operation is the decision problem odd(A)

defined by odd(A)=YES iff IAl is odd.

The operation ;c~(A) is not a template operation either, as a consequence of the next

easy lemma.

Lemma 6.5. Let f be a template (computational or decision) set operation. Thenf is

anonymous.

122 B. Patt-Shamir, D. Peley

Proof. The assertion follows immediately from the fact that for all a, a’,

The following lemma characterizes the class of basic set operations.

Lemma 6.6. Let f be a k-ary conserving computational set operation. Then f is a tem-

plate operation (hence, basic) if and only ifit is both accumulative and anonymous.

Proof. Assume first that f is a template operation. By Lemma 6.5, f is anonymous. To

see that f is accumulative, let D’ c D, and let aED. We need to show that

a~j(A~nD’,..., A,nD’) o mf(A1 ,..., Ak)nD’.

There are two cases to consider. If a$D’ then, on one hand, a$f (A 1, . . . , Ak) n D’ and,

on the other hand, a$f(Ai CID’, , A,n D’), by the fact that f is conserving.

Suppose now that UED’. If aEf (A, n D’, . . , Ak n D’), then there exists some word

w=bI . . . bkeTf such that aEAinD’ iff bi=l for all l<i<k. Since LED’, we have

U~Ai o bi= 1 and, therefore, a~f(A,, . . . , A,)n D’. The argument can be reversed in

thecaseofagf(A,,..., A,)n D’ to show that necessarily a~f(A, n D’, . . , Ak n 0’).

For the other direction of the lemma, assume f is accumulative and anonymous.

Define the set T, in the following way. Let a’ be any fixed element in D. Denote by

P the set of all 2k k-tuples consisting of the singletons {a’} and empty sets, i.e.,

P= {{a}, 0)“. F or every such tuple p=(B1, . . . , B,)eP define w,=(bI bk) by

b,= 1 if Bi={a’},
I

i 0 if Bi=@,

for all 1 <id k. Now define

Tf={w,lp~P andf(p)={a’}}.

To see thatf is template with truthset T,, let (A,, . . , Ak) be any k-typle of subsets of D.

Denotep=(A,I$n{a’},...,A,/:’ n {u’}). Clearly, PEP. By the hypothesis f is anony-

mous and accumulative; hence, for all UE D, acf (A,, . . . , Ak) if and only if a’Ef (p), and

this is true iff W& Tr . 0

Corollary 6.7. Let g be a k-ary conserving decision set operation. Then g is basic if and
only ifg is accumulative and anonymous.

The following immediate lemma characterizes the template operations by their

truthsets. Let . denote concatenation of bit strings.

Lemma 6.8. Let f be a k-ary computational set operation. Then
(1) f is basic if and only ifit is a template operation with truthset T, such that Ok4 Tf

Time-space tradeoflsfor set operations 123

(2) f is trivial if and only ifit is basic with truthset T, and projection set Jf such that

T,= u (0, lli-‘. 1. (0, l}?
iEJf

Proof. Let us prove claim (1). Assume that f is conserving. Then f(& . . ,8) = 8 and,

hence, Ok$T,. Assume now Ok$TJ. We need to show that

By the definition of template operations, a~f(A~, . . , &) implies the existence of

awordw=b,... bkE Tf such that aE Ai o bi = 1 and, since w #Ok, there exists an index

1 <j<k such that aEAj; hence, aEuF=, Ai.
Claim (2) is immediate from the definitions. 0

Corollary 6.9. Let g be a k-ary decision set operation. Then
(1) g is basic if and only if it is a template operation with truthset T, such that Ok~T,.
(2) g is trivial ifand only ifit is basic with truthset Tg and projection set J9 such that

T,= n 10, 1)‘~‘.O.{O, l}k-i.
iEJg

Figure 1 summarizes graphically the classification of set operations. (It deals with

computational operations, the classification of decision operations being dual.)

Lemma 6.5 shows that the class of template operations is contained in the class of

anonymous operations. Complementation is the obvious template nonconserving

operation. The predicate odd(A) defined below demonstrates the strictness of the

inclusion. Define

if odd(A),

otherwise,

and

odd”(A) =
Camp(A) if odd(A),
D

otherwise.

Clearly, odd’ is anonymous, nontemplate and conserving, whereas odd” is anonymous,

nontemplate and nonconserving. The class of accumulative operations was defined as

a subclass of the conserving operations. Lemma 6.6 shows that the basic operations

can be defined equivalently as either the conserving template operations, or as the

accumulative anonymous operations and, further, that they are precisely the accumu-

lative template operations. In other words, it follows that there are no template

operations that are conserving but nonaccumulative, neither are there accumulative

operations that are anonymous but nontemplate. An example of an accumulative, yet

not template, operation is xz(A), as defined above. Lastly, an example of a conserving,

124 B. Patt-Shamir, D. Peleg

odd

TEMPLATE ACCUMULATIVE

BASIC

TRIVIAL

Fig. 1. Schematic classification of set operations. (The shaded areas represent empty subclasses).

nonaccumulative, nonanonymous operation is the following. Let 2 be a fixed,

nonempty subset of the domain (OcZcD).

if odd(A),

otherwise.

6.2. A time-space lower bound for nontrivial basic operations

We conclude this section by showing that all nontrivial basic set operations are

hard.

Theorem 6.10. Let f be a k-ary basic computational set operation. Then one of the

following holds:

(i) f is trivial.

(ii) COMP~ can be reduced tof:

(iii) IS can be reduced tof:

Proof. Without loss of generality, consider the first operand off: Denote the truthset

offby Tf. Let u=bZ... bkE(O, ljk-‘. There are the following cases to consider.

If 0. MET,, and 1. u$ Ts, then COMP~ can be reduced to fin the following way. Let

A be an instance of COMP~. Define the instance off by setting A1 = A, and letting

D

Ai= 0 i

if bi= 1,

if b,=O,

for 26ibk. Clearly,f(A,, Ak)=D\A=coMpR(A).

Time-space tradeoffs for set operations 125

Otherwise, it is the case that for any UE{O, l}k-’ we have that if O.UET’, then

1 . UE T,. If this is the case for all operands, then there are some “minimal” words in Tf,

in the sense that if a 1 bit of such a word is flipped, then the result is not in Tf. If T, can

be expressed by a collection of such minimal words {wi} f = 1, satisfying (1 Wi II= 1 for all

1 <i < 1, thenfis trivial (with projection set defined by the indices of the 1 bits in these

minimal words).

The remaining case is where there exists a minimal word w =bl . . . bk (in the above

sense), with /I w 11 > 1. Then set intersection is reducible tofby the following construc-

tion. Let i0 be the smallest index for which bio= 1, and let (A, B) be an instance of IS.

Define the instance for f by setting Aio= A, and for i#i,, defining

if bi=l,

if bi=O.

When Al, . . . , Ak are defined this way, we havef(A,, . . . , A,)=AnB. tl

An analogous proof shows that all basic nontrivial decision set operations are hard.

Theorem 6.11. Let g be a k-ary basic decision set operation. Then one of the following

holds:

(i) g is trivial.

(ii) DIS can be reduced to g.

(iii) EQ can be reduced to g.

Proof. First note that if k = 1, then g is trivial. So, assume k > 2. Denote the truthset of

g by T,, and let u= b3 . . . bkE{O, l}k-2. Without loss of generality, we consider the first

two operands of g.

If 01. uq! T, and 11 . UE T,, then EQ reduces to g: given an instance (A, B) of EQ, define

A,=A, A,=& and for i>2 define

if bi= 1,

if bi=O.

These definitions ensure us that g(Al, . . . , A,)=EQ(A, B).

Otherwise, if for all UE(O, l}k-2, ll.u~T~ implies that ol.u~T~, and this holds for

all pairs of operands, then it is the case that there are some “maximal” words in T,, in

the sense that flipping any of their 0 bits to 1 yields a word not in Tg. Let u = bI . . . bk be

such a maximal word with the minimum II w I/. If there is only one such maximal word,

then g is trivial, with projection set defined by the indices of the 0 bits in this word.

So, suppose the existence of some u = b; . . b;E T4 such that 11 u’ II = 1) u 11. Consider the

word u”= b;’ . . b; defined by b:! = 1 iff bi = 1 or b; = 1. By the maximality of U, it follows

126 B. Pact-Shamir, D. Peleg

that u”$T,. Now, let (A, B) be an instance of DIS. Define

[A if bi=l and bj=O,

Ai=
B if bi=O and b;=l,

B if bi=b:=l,

0 if bi=bi=O.

By the construction, g(AI, . . . , Ak)= DIS(A, B). 0

7. Upper bounds

This section contrasts the picture depicted by Sections 3-6 by presenting upper

bounds for the time-space product required by set operations. First we show that all

set operations can be computed in linear time and space in the R-way model and,

hence, the best lower bound one can hope to establish on the time-space product for

any set operation in this model is TS=CI(n*). We proceed with a scheme of RAM

algorithms that compute set problems in time-space product TS = 0(n2 log n) for the

natural class of accumulative operations.

7.1. Quadratic upper bound on arbitrary set operations

Theorem 7.1. Let f denote an arbitrary k-ary set operation. Let n be the total number of

input elements. Then f can be computed by an R-way program for R=O(n) with T=n
and S = 0 (n).

Proof. Assume first k = 1, and consider the following algorithm for computing f (A).
(1) Determine the contents of A.

(2) Output f(A).

Determining the contents of A is carried out in the following levelled way. Let

0 d i < 1 A 1 denote the level (i.e., step) number. All nodes in level i - 1 query the variable

Xi. The nodes at level i - 1 represent all possible sets consisting of i elements. The only

node at level 1 Al is a sink. The edges are defined in the obvious way. The number of

nodes required to determine A this way is

IAl
R co i

< 2R.
i=O

If k > 1, determine the contents of A2, . . . , Ak in the same fashion, and attach a copy

of the subprogram determining Aj+ 1 to every node at the last level determining Aj for

l<j<k.

The output is made in the last step, when the contents of AI, . . . , Ak is fully known.

The time required is

T=; IA,I=n,
i=l

Time-space trade& for set operations 127

and the capacity of the program is

s=o(log(2kR))=O(n). 0

We remark that the quadratic upper bound for an arbitrarily defined set operation

is achievable because in the R-way model, there is no requirement to specify basic

moves. This implies the absence of the log n factor (in this model, for example, sorting

can be computed in linear time.) Another point to be noted is that if n=o(R), then

applying the scheme above yields TS= O(n* log R).

However, since the main interest in upper bounds concerns uniform, structured

models (in which a program consists of a limited repertoire of basic moves, and one

program solves a problem for any input length), we must settle for another logn

factor, and only for “reasonable” functions.

7.2. Accumulative operutions and time-space tradeoffs

It is clear that accumulative operations can be computed using any storage amount

logR<S<RlogR,

by partitioning the domain D into blocks small enough to reside in the workspace,

and computing the results for each block successively. Hence, by Lemma 6.6 we have

that the following generic RAM algorithm applies to all basic set operations. The

algorithm depends on a parameter S for controlling the time-space tradeoff. Assume

that the domain is D = { 1, . . , R}, where R=O(IAII+~~+IAkI), and A,={a,,,...,

~,,~_,j for m= 1, . . . , k.

The algorithm uses a bit array B of size S x k, and a fixed truth set T,. We denote by

B[i] the string of bits B [il.. . B [i, k].

Forj=O to LR/Sl do:

1. For each set operand A,,, do:

Let l=a,, mod S+ 1.

ifjS<a,,<(j+l)S then B[I,m]=l else B[l,m]=O.

2. For 1 <ldS do:

if B [/]E T, then output jS + 1.

Clearly, the running time satisfies

T=O(Gn)=O(g),

and the capacity required is O(S).

128 B. Pact-Shamir, D. P&g

Remarks.

l The result applies only to basic operations since the anonymity offis required for

computing in a uniform model. In a nonuniform model, any accumulative opera-

tion can be computed in sublinear space with time-space product O(n’ log n).

l The above algorithm has the same asymptotic complexity for nonconserving

template operations, so long as R=O(n).
We now turn to the case when n = o(R). We present a generic RAM algorithm that

computes any basic operation in space O(S) and time

for all log n < S < n, where n is the total number of input elements and N is the total

length of the input. We continue using the bit array B as before, and we use another

pointer array C of size S, where each entry is capable of storing a value in the range

(1, ..,) S}.

For i=O to j-n/S] do:

Initialize all bits in B to 0.

Sort the input elements numbered Xis+ 1, . . . , Xci + ljs, storing their relative order

in C.

For every input element a do:

if aEC then mark the corresponding bit in B.
For 1 dl<S do:

if B[I]ET~ then output xis+c[l].

The question whether aeC in step 3 is answered by a binary search.

8. Conclusion

The key difficulty in computing a template set operation is the disorder in which the

elements may appear. Indeed, if the sets are given in any sorted way, then all the

template set operations could be computed trivially, i.e., in linear time and logarithmic

space.

The only binary operations for which we were able to establish a tight bound in

a general model are COMP~ and its derivatives, SUB and XOR. Nevertheless, we

conjecture that all nontrivial template binary set operations admit the bound

Z=Q(nm), where IAl=n and IBI=m.
Many interesting questions that concerns the classification of set operations are left

open. Extending the classification to “composite” operations is the next natural step.

Extending the scheme should be considered too. On the one hand, our classification

does not apply to multiset inputs and, on the other hand, it does not restrict the

output to be a set. Our partial results give rise to the question whether a “comprehens-

ive” classification can be defined in a way that corresponds to the (known and

Time-space trade@ for set operations 129

conjectured) complexity bounds. Lastly, it is interesting whether a “unifying” classi-

fication can be defined, deleting the distinction between computational and decision

problems.

As to the model of R-way branching programs, there still exists the problem of

establishing a lower bound for a decision problem (or, loosely speaking, bounding TS

away from R(M), where II is the number of inputs and r is the number of outputs).

References

[l] K. Abrahamson, Time-space tradeoffs for branching programs contrasted with those for straight-line

programs, in: Proc. 27th IEEE Synp. on Foundarions of Computer Science (1986) 402-409.
[2] P. Beame, A general sequential time-space tradeoff for finding unique elements, in: Proc. 21st ACM

Symp. on Theory qf Computing (1989) 197-203.
[S] A. Borodin and S. Cook, A time-space tradeoff for sorting on a general sequential model of

computation, SIAM J. Comput. 11 (1982) 287-297

[4] A. Borodin, F. Fich, F. Meyer auf der Heide, E. Upfal and A. Wigderson, A time-space tradeoff for
element distinctness, SIAM J. Comput. 16 (1987) 97-99.

[S] A. Borodin, M.J. Fischer, D.G. Kirkpatrick, N.A. Lynch and M. Tompa, A time-space tradeoff for

sorting on non-oblivious machines, J. Comput. System Sci. 22 (1981) 351-364.

[6] A. Cobham, The recognition problem for the set of perfect squares, in: Proc. 7rh IEEE Sq’mp. on
Switching and Automara Theory (1966) 78-87.

[7] M. Karchmer, Two time-space tradeoffs for element distinctness, Theoret. Comput. Sci. 47 (1986)
237-246.

[S] S. Reisch and G. Schnitger, Three applications of Kolmogorov complexity, in: Proc. 23rd IEEE Symp.
on Foundations qf Computer Science (1982) 45-52.

[9] A.C. Yao, On time-space tradeoff for sorting with linear queries, Theoret. Comput. Sci. 19 (1982)
203-218.

[lo] A.C. Yao, Near-optimal time-space tradeoff for element distinctness, in: Proc. 29th IEEE Symp. on
Foundations qf Computer Science (1988) 91-97.

[l l] Y. Yesha, Time-space tradeoffs for matrix multiplication and the discrete Fourier transform on any

general sequential random access computer, J. Compur. System Sci. 29 (1984) 183-197.

