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Abstract

The computational power of different communication mod-

els is a fundamental question in the theory of dMributed com-

putation. For example, in the synchronous model messages

are assumed to be delivered within one time unit, whereas

in the asynchronous model message delays maybe arbitrary.

Another important parameter of the model is the assumptions

about the topology. In the dynamic topology model, links

are assumed to crash and recover dynamically, but their sta-

tus is known to the incident node processors. A meaningful

computation can be carried out if the topology stabilizes for

a sufficiently long period.

In this paper we show that the model of asynchronous,

dynamic-topology network is equivalent, up to polylogarith-
mic factors, to the synchronous, static (i.e., fixed-topology)
model. Specifically, we present a simulation methodology
of synchronous static protocols that can withstand arbitrary
link delays and changing topology at the expense of only
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polylogarithmic blowup in the running time, the number of

messages, and the space requirement, Previous methods

entailed a linear blowup in at least one of these resources.

The generality of our method is demonstrated by a series of

improvements for important applications, including Breadth

First Search, computing compact efficient routing tables, and

packet routing on asynchronous networks.

1 Introduction

Communication networks, although common, do not

share a robust mathematical model. There is a consid-

erable variety of parameters by which one may model

such networks. A crucial question, for example, is

what are the assumptions we make about the delivery

of the messages. In the synchronous model, we assume

that messages are delivered within one time unit, and

that processors have access to a clock by which they

can tell whether messages have arrived or not. By con-

trast, in the asynchronous model the message delays

are arbitrary. However, message delivery can be easily

verified in this model by explicit acknowledgements,

at the cost of high communication overhead.

Another important issue in modeling communicati-

on networks is reliability of the links. The simplest

model is the static nehvork model, based on the as-

sumption that links maintain operational status forever.

A slightly more realistic assumption is the dynamic

network model: links may crash and recover, and the

endpoints are constantly notified of the links’ status. A

meaningful computation is expected to be carried out

once the topology remains stable for sufficiently long

time. A simple solution to the problem of unknown

topology is using a reset procedure, that will restart

the computation whenever a topological change is de-

tected. The best reset procedures [1, 8], however, have
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high running time.

Clearly, a protocol which is designed to work on a

dynamic asynchronous network (dubbed hereafter “dy-

namic asynchronous protocol”), can run on a static

synchronous network without any complexity penalty

— the static synchronous model is just a special case

of the dynamic asynchronous model. In this paper

we show that, perhaps surprisingly, the converse also

nearly holds, namely, a synchronous, static protocol

can be simulated on an asynchronous dynamic network

with polylogarithmic blowup in the time, communica-

tion and space complexity. Before we state our results

more precisely, it is necessary to give a formal defini-

tion of the problem.

The models. The asynchronous model we consider

is the standard model of a point-to-point communica-

tion network. The network is described by an undi-

rected graph G = (V, E), [VI = n. The nodes of

the graph represent the processors of the network and

the edges represent bidirectional communication chan-

nels between the processors. All the processors have

distinct identities. There is no common memory, and

algorithms are event-driven (i.e., processors cannot ac-

cess a global clock in order to decide on their action).

Messages sent from a processor to its neighbor arrive

within some tinite but unpredictable time. Each mes-

sage contains O (log n) bits, so that a processor’s iden-

tifier can be accommodated in a message. We consider

only protocols in which all nodes are receiving at least

one message in the course of execution.

A synchronous network is a variation of the above

model in which all link delays are bounded. More

precisely, each processor keeps a local clock, whose

pulses must satisfy the following property. A message

sent from a processor v to its neighbor u at pulse p of

v must arrive at u before pulse p + 1 is generated by u.

In a static nework all links are operational at all

times. This allows us to do some offline pre-processing

of the communication graph, that may be used by the

actual problems which arrive online. In a dynamic

network [1], the set of operational links is a function

of time, i.e., links may crash and recover arbitrarily.

The nodes are assumed to how the status of their

incident links at all times. We assume that eventually,

the topology ceases to change, and the protocols should

produce results with respect to thejinul ropology.

The complexity measures are detined as follows.

The communication complexi~ of an algorithm n,

Comm(z), is the worst-case number of messages sent

during a run of the algorithm. The time complexity of

a synchronous algorithm m, T2me(r ), is the number of

pulses generated during the run. For an asynchronous

algorithm m, Z7me(T) is the largest number of time

units to complete a run, assuming that each message

incurs a delay of at most one time unit. The space

complexity, denoted Mem(r ), is the maximal amount

of space per link used at anode by the algorithm, mea-

sured in units of size O (log n). Another measure for

algorithms that will prove useful here is the congestion

of a link, which we define to be the maximal number of

messages that traverse that link in any run. The conges-

tion of a protocol Z, denoted Con(m), is the maximal

link congestion over all links. In the dynamic model,

we consider only the quiescence complexities, i.e., the

resource requirements after the last topological change.

On an abstract level, a dynamic synchronizer T is

an algorithm to transform a static synchronous proto-

col T into an equivalent asynchronous protocol T(m).

The efficiency of a synchronizer T is measured by the

increase in the communication, time and space com-

plexity of the result of the transformation defined as

follows.

Stretch .Om.(T) = m:x CTm~$))

Stretcht,~g(’I’) = m~x
Zlme(Y’(~))

Zime(7r)

Stretch . ..(T) = m:x ‘~e~$))

We refer to Stretch .O~~(’Y), Stretch,$~.(T) and

Stretch~.~ (T) as the communication stretch, time

stretch and space stretch of a synchronizer T, respec-

tively.

We occasionally use the “soft Oh” notation, that ab-

s~rbs polylogarithmic factors. More precisely, ~(n) =

O (g(n)) if there exist integers k, N such that for all
n ~ N, we have ~(n) < (log n)~ sg(n).

Previous results. The synchronizer methodology

was introduced by Awerbuch [3]. Synchronizers, and

various aspects or applications thereof, were studied in

[15, 4, 12, 25, 14, 17, 11, 23, 13]. The synchroniz-

ers fall into two categories, namely static and dynamic

synchronizers.
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Reference I Space I Comm. I Thne

-

Figure 1: Comparison of stretch factors of dynamic syn-

chronizers (6 (.) absorbs polylog factors).

Among the static synchronizers [3, 23], the best we

know of is the protocol introduced by Awerbuch and

Peleg [9], which has polylogarithmic time and commu-

nication stretch, but needs linear space at some nodes.

Another disadvantage of this synchronizer is that the

congestion of the protocol may be linear.

The dynamic synchronizers are typically based on

repeated computation when a topology change is de-

tected. An optimal-time dynamic synchronizer was

introduced by Awerbuch and Sipser in [11]. There, a

complete history is maintained at each node, and rele-

vant actions are undone when a topology change occur,

This method has constant time stretch, but high costs

in both communication and space (see Figure 1). In [1]

another method is used. There, it is shown how to adapt

a static protocol to run on a dynamic network, but this

simulation has a large time stretch. When combined

with the best static synchronizer, the reset protocol of

[1] yields a dynamic synchronizer, whose complexities

are given in Figure 1.

Our results. In this paper we give the first poly-

log time, space and communication simulation of syn-

chronous, static protocols on dynamic asynchronous

networks. As a byproduct, a better static synchronizer

is obtained, improving on the best known static syn-

chronizer in terms of congestion and maximum space

requirement per edge. Our result can also be interpreted

asthe best known “from-scratch” synchronizer scheme,

i.e., synchronizing when we are not allowed use pre-

computed structures. The results are not deterministic,

in that there exists apolynomially small probability that

the simulation fails. However, this randomization ori-

gins at a certain “cover-construction” algorithm used

as a subroutine, and there is hope that a determinis-

tic polylog distributed algorithm can replace it in the

future.

Specifically, we prove the following result for dy-

namic synchronization,

Theorem 1.1 There exists a randomized dynamic syn-

chronizer with polylogarithmic time, space, and commu-

nication stretch factors, and with probability of success

1 – o(l/n).

The following theorem states our result for static

synchronization.

Theorem 1.2 There exists a randomized static synchro-

nizer which does not use pre-computed structures, with

polylogariihmic time, space, and communication stretch

factors, and with probability of success 1 – 0(1/n).

Applications. In the following corollaries, we give a

partial list of some immediate applications of the (static

and dynamic) synchronizers of this paper. The results

are ordered from basic techniques to more specific ap-

plications.

Our most elementary improvement is in the basic

task of distributed Breadth First Search. The best

known distributed BFS algorithms [6,7,9,2] had Q(n)

stretch in at least one of the three relevant parameters

(communication, time, space), in both the static and the

dynamic cases. Here, we obtain a result for a general-

ized version of BFS, where any subset of the nodes may

be the originators (whereas in the “conventional” BFS

there is a single originator). Unlike the sequential case,

new difficulties arise in distributed multiple-originator

BFS, since we must synchronize potentially remote

sources.

Corollary 1.3 Distributed Breadth First Search (with sin-

gle or multiple originators) can be performed by a ran-

domized algorithm on an asynchronous (static or dynamic)

network wi~h E edges and ~nal diameter II using ~ (1)

space, in O (D) time and O (E) messages, with proba-

bility of success 1 – 0(1/n).

Sparse covers (see Section 2 for definition) proved to

be auseful tool in designing distributed algorithms (see,

for example [10]). It is known how to construct sparse

covers in the static synchronous model (e.g., the ran-

domized algorithm of [211, or the deterministic one of

[5]). However, all known asynchronous implementa-

tions required Q(n) overhead in either communication,
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time, or space. Using the synchronizer of this paper,

we obtain the following result.

Corollary 1.4 It is possible to construct sparse covers for

a dynamic asynchronous network with E edges and final

diameter D by a randomized algoriihm using 6 (1) space,

in ~ (~) time and 6 (E) messages, with probability of

success 1 – 0(1/n).

We demonstrate the applicability of Corollary 1.4

with the following result [22, 10].

Corollary 1.5 It is possible to compute routing tables in

a dynamic asynchronous network with E edges and final

diameter D by a randomized algoriihm using d (1) space,

in 6 (D) time and 6 (E) messages, such that with prob-

ability 1 – 0(1/n), the tables are poiylog size and the

stretch in the distances is polylogarithmic.

Scheduling packets to be transmitted over communi-

cation links is one of the basic issues in parallel process-

ing. Many packet routing schemes have been designed

and analyzed for the synchronous setting (see [20] for a

comprehensive survey). Using the result of this paper,

such synchronous schemes can be applied to the asyn-

chronous setting, with only polylogarithmic increase

in the size of the queues and the latency of the pack-

ets. For example, the randomized routing protocol of

Leighton, Maggs and Rao [19] delivers all packets with

O(log n) multiplicative time overhead, using O(log n)

size queues. Applying the new simulation to this pro-

tocol yields an asynchronous packet routing protocol

where the queue sizes and the latency of the packets

are only a polylog factor worse than optimal.

Corollary 1.6 Given any set of packets and their paths,

there exists a randomized asynchronous scheduler with

poiylogariihmic overhead in communication, time and

space, and probability of success 1 – 0(1/n).

Overview. The idea used here for adapting static pro-

tocols to dynamic networks is the local rollback. Essen-

tially, the local rollback rule is as follows. Each node

maintains a complete history of its execution. When-

ever a topological change is detected, the node “un-

does” all its actions, and informs its neighbors which

of the messages they received are obsolete. Upon re-

ceiving such a notice, the neighbors undo their “in-

fected” actions, and propagate the information. This

idea is well known [16], and was explicitly used in the

dynamic synchronizer of [11], by combining it with

a simple static synchronizer. The apparent drawback

of this approach, however, is that the size of storage

required per link is proportional to the total number

of messages that traverse that link in the synchronized

version.

‘l%e basic intuition for circumventing this problem

is that we can save greatly on the number of states that

should be stored, if we carefully distribute the message

traffic among the nodes, so that only few messages will

traverse each link. We shall use the “sparse covers”

data structure [10] to accomplish thh god. Thus, the

dynamic synchronizer problem is reduced to the prob-

lem of how to construct sparse covers “from scratch”

on an asynchronous network, while keeping the con-

gestion of all the links small. For the fast randomized

algorithm of Linial and Saks [21], it can be shown

that number of messages crossing each network link is

(with high probability) polylogarithmic, assuming that

the network is synchronous. In an asynchronous ex-

ecution, however, the number of messages crossing a

link could be Q(n).

This naturally suggests the use of synchronizers. In

order to save communication, we would like to use

the synchronizer of [9], which has polylogarithmic

overhead in time and communication. Unfortunately,

this synchronizer scheme (as well as its predecessors

[3, 23]), assumes the existence of some pre-computed

data-structure in the network. Specifically, [9] requires

sparse covers. This is the key difficulty in the algo-

rithm the synchronizer requires sparse covers, while

the cover construction requires a synchronous net-

work. ‘Ilis Gordian knot is cut by incorporating a

synchronous cover construction with the synchronizer

protocol in a mutually-recursive fashion. It turns out

that it is possible to invest a constant amount of work in

constructing some initial covers, and then let the syn-

chronizer and the cover-construction “bootstrap” each
other, advancing step by step to produce the desired

result, while incurring only polylog penalty.

A few other modifications of the synchronizer [9] are

required, stemming from the following properties of the

algorithm. First, some links have linear congestion, and

secondly, certain nodes have linear space requirement.

Our first step, described in Section 3, is to eliminate

these bottlenecks. These improvements, when incorpo-

rated with the asynchronous cover construction, yield
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anew synchronizer for a static asynchronous network,

without assuming the existence of any pre-computed

structure. All of its relevant complexity measures

(communication overhead, space overhead, time over-

head, congestion) are polylogarithmic, thereby proving

‘l%eorem 1.2.

Finally, we show how this construction can be made

to work on a dynamic asynchronous network. For the

synchronizer initialization part, we use the universal

rollback technique. For the actual execution of the

protocol, we use replication and reset on independent

parta of the network, as explained in Section 6.

Organization of this paper. Many important details

are omitted from this abstract due to the lack of space.

Rather, we try to give intuition as to what are the main

ideas of construction as follows.

In Section 2 we introduce several notational con-

ventions and basic concepts that are essential for the

exposition of the algorithm. In Section 3 we explain

how to modify the algorithm of [9] to avoid local space

and congestion bottlenecks. In Section 4 we show

how to efficiently construct sparse covers in an asyn-

chronous network, using a generalized version of the

synchronous cover-construction protocol of [21], and

the synchronizer of Section 3. In Section 5 we present

the universal local rollback technique, that transforms a

static protocol to a dynamic one. Finally, in Section 6,

we integrate the construction and dkcuss how to make

a given static synchronous protocol to run on adynamic

asynchronous network.

2 Preliminaries

In tils section we define some key concepts that we

use in the description of the algorithm. We also give

specifications of the tools we use in the construction.

Synchronizer problem. A synchronizer operates by

generating a sequence of local pulses at each processor

of the network, satisfying tbe following property.

Definition 2.1 Pulse p is said to be safely generated by

a processor u if it is generated after all the messages of

the algoriihm, sent to u by its neighbors during their pulse

p – 1, were received.

Given a synchronous algorithm m, and its (syn-

chronous) time complexity ~, the task of the synchro-

nizer protocol is to safely generate pulses O, ..., ~ in

the nodes participating at ~. Intuitively, the problem

lies in the fact that in case processor v dld not send

any message to its neighbor u at a certain pulse, u can-

not deduce this by simply waiting for a fixed period of

time, as link delays in the asynchronous network are

Unprdlctable.

Simple synchronization strategy. The following

synchronization scheme, tradhionally called a ‘[3], is a

naive scheme with high communication overhead. We

shall use this strategy in the new protocol, in a way

that will be explained in the sequel. Thea protocol is

defined by the following simple rule.

Algorithm 2.2 (a synchronizer)

Messages (possibly null messages) are sent from anode to

all its neighbors at all pulses. When a node has received

all messages of pulse p, it proceeds to pulse p + 1.

Note that in this strategy, each edge delivers one

message in each direction at every pulse, and hence its

communication stretch can be linear in the ruining time

of the algorithm. However, this strategy is optimal in

terms of its time and space overheads.

Data structures. Given an execution of a protocol,

detine the eazcution parent of a node as the first node

from which it received amessage. The execution parent

relation defines the exzcution forest in the natural way.

We will assume that the nodes maintain pointers to their

parent in the execution forest, i.e., the nodes mark the

link from which they get the first message. The cost

associated with this is only O(1) space per edge.

Another concept which we use is the graph-theoretic

notion of sparse covers. Let G = (V, E) be a

graph. The disiance between two vertices u, w in

G, denoted dist~(u, w), is the number of edges on

the shortest paths in G between u and w. (We nor-

mally omit the subscript G where no confusion arises.)

The j-neighborhood of a vertex v c V is defined as

~j(v) = {W\ dist(w, v) < j}.

For a set of vertices W ~ V, let Gw denote the
subgraph induced by W in G. A cluster is a pair

(W, w) where w is a vertex and W is a subset of nodes

containing w such that Gw is connected. The radius
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of the cluster, l?ad(W, w) is the maximum distance

from w to any other vertex in the cluster. The tree of

a cluster is the shortest path tree rooted at w, in which

the parent of node x is the neighbor of z of highest ZD

among those whose distance to w is minimum. For an

integer k, the k-kernel of a cluster (W, w) is the set of

nodes w whose k-neighborhood is entirely contained

in w.
Aset W= {(w,, W,),(W,,w,),.. .,(w,, wq)}

is called a cover of G if Ui Wi = V. The radius of the

cover, denoted Rad(W), is the maximum radius of all

of its clusters. The overlap at node v in the cover W,

is the number of clusters containing v; the maximum

overlap over all nodes, denoted deg(PV), is the degree

of w.
We now come to the definition of covers, which will

serve us as one of the basic data structures.

Definition 2.3

A cover W = {(w,, W,),..., (W,, w,)} is a k-cover

if every node is in the k-kernel of at least one of the clusters

of W. A k-cover isasparse k-cover if the maximum over-

lap at all nodes is O (log n). Complete sparse covers,

sometimes referred to as sparse covers, is a collection of

sparse 2i-covers for all O < i <6.

Reset protocol. Rese[ is a procedure that we use in

the algorithm as a subroutine. Intuitively, reset maybe

invoked at arty node, and its effect is to output a reslart

signal at all the nodes of the system in a consistent way.

More formally, the reset problem is defined as fol-

lows. It involves two actions named reset request and

reset signal. The task of the reset protocol is that af-

ter the topological changes stop, if one of the nodes

makes a reset request and no node makes infinitely

many requests, then (i) in finite time all the nodes in

the comected component of a requesting node receive

a reset signal, (ii) no node receives infinitely many reset

signals, and (iii) if e = (u, v) is a link in the final topol-

ogy, then the sequence of messages sent from u after
the last reset signal at u, is identical to the sequence of

messages received at v after the last reset signal at v.

The best known reset protocol on adynamic network

(e.g., [1, 8]) runs in time bounded by the length of

the longest simple path in the network, with constant

congestion and memory per link. Note that for ageneral

graph, the running time is O(n), but for a tree, the

runing time is in the order of the height of a tree.

3 A better static synchronizer

In this section, based on the protocol of [9], we describe

an improved synchronizer protocol for static networks,

using sparse covers (in the next section we will dis-

pense of this assumption). The communication and

time stretch, as in [9], are O(logs n) and 0(log3 n),

respectively. However, the space overhead of the syn-

chronizer is O (log3 n) per edge in the worst case, and

the congestion on the links is 0(log3 n), whereas in

the protocol of [9], the space overhead is O(n), and

Q(n) messages may traverse the same link.

In the description that follows, we assume that each

node u sends messages only in one pulse, denoted

pulse(u), and that the number of pulses is bounded

by D(G), the diameter of the graph. We shall explain

later the case for general protocols. Thus, the syn-

chronizer problem is reduced to deciding, at each node

u, when did it get all the messages sent to it from its

neighbors on pulses before pulse(u).

We begin with a brief intuitive description of the syn-

chronizer. The basic observation is that the next pulse

can be safely generated at node u if for all nodes W,

pulse(u) – pulse(v) < dist(u, v), and the crux of the

algorithm is how to disseminate this information effi-

ciently. More specifically, the rule is that pulse p + 1

is generated only when the node explicitly “knows”

that all nodes in some neighborhood have been ac-

knowledged for their pulse p messages. The size of the

neighborhood is a function of the pulse value. Note that

for neighborhoods larger than the set of adjacent nodes

this condition is more strict than the correctness require-

ment, thereby incurring a slowdown of the algorithm.

However, it is not necessary to verify whether the cor-

rectness condition holds in each pulse, thereby saving

in the number of messages. With a careful choice of

of the neighborhoods and information dispersal mecha-

nism, this strategy results in only polylogarithmic time

and communication overhead.

Let us first describe the way to communicate the
safety information. We use two distributed data

structures, namely the execution forest and sparse

covers. The idea is as follows. A node v

safely generates pulse p + 1 only after it gets a

GOXIE4D message from one of its ancestors, called

inspector(v). The node inspector, in turn, for-

wards a query to inspector(inspector( v)), called here-

after supervisor(v), informing it also whether it has
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any active subordinate. The supervisor gathers infor-

mation for a region in the graph of sufficiently large

radius, so that all the “close” nodes will be certified to

be “non-threatening”, i.e., they did not send any un-

acknowledged message at pulse p. The data structure

used by the algorithm for thk purpose is sparse covers,

which are assumed to be already existing in the net-

work. Since for each node there is a cluster in which its

entire 2i -neighborhood is contained, it is sufficient for

the supervisor nodes to collect the safety information

along the cluster trees.

We make things concrete in the following definition.

Definition 3.1 Let u be a node with pulse(u) = p <

D(G). The level of p is the number of trailing O’s in the

binary representation of p, i.e.,

{

ifp=(2j-1)”2~
l(p)= & ~p=o

9

The inspector level of pulse p is

The inspector node of u is the ancestor of u in the exe-

cution tree, whose pulse is the inspector level of pulse p.

The node u is said to be a subordinate of inspector(u).

The supervisor of u is the inspector of its inspector.

With these notations, we can describe the protocol

as follows (see Figure 2). Whenever a regula mes-

sage (i.e., a message which is not generated as a part

of the synchronization procedure) is received, it is ac-

kIIOW@@ with an ACKO message. whcXU3Ver a IKXk

receives all the ACKO messages, it forwards an ACK1

message to its inspector up on the execution tree. This

message also informs the inspector whether the node

sent any messages. When an inspector receives an

ACK1 message indicating that one of its subordinates

has sent a message at pulse p, the inspector sends a

Iwo message to all the centers of the 2t(p)+5 clusters in

which it is a member, indicating that it has threatening

subordinates, i.e., nodes that might affect generation of

pulses in the informed clusters.

After receiving all the ACK1 messages, the inspector

forwards an ACK2 message to its ins~tor, i.e., to the

supervisor of the node. When a supervisor has received

all the ACK2 messages, it sends DE-REG messages to all

the cluster-centers at distance 21(P)+5, thereby signaling

LJponreceipt of non-synchronizer message

send ACKO back

Upon receipt Of idl ACKO fOr puke p messages:

if no messages were sent

send tfe&AND(ACK1, dead) to inspector(v)

else send tree-AND(ACKl, alive) to inspector(v)

Upon receipt of tirst (M2KI, alive):

send REG(V) to the center of all 2@’J+4 clusters

Upon r-ipt Of all ACKI:

send treO-AND(ACK2) to inspector(v)

Upon receipt of all ACKZ:

send DE-REGto the center of all 2@)+4 clusters

Upon receipt of all oK(p’) where l(p’) = t(p)+ 1

send GO_AHEAD(p’) to subordinates of subordinates

Upon receipt Of GO_AHEAD(p):

send pulse p messages

Figure 2: synchronizer code for node w with pulse(v) = p

that none of its subordinates is still threatening. Once

the center of a cluster detects that all REG messages

were matched by DE-REG messages, it broadcasts OK

to all the requesting inspectors, thereby notifying them

that the cluster is “safe”. When the supervisor receives

OK messages from all the clusters in which it is member,

it sends GO_MI&lll messages to its sub-subordinates.

The correctness of the synchronizer at Figure 2 is

implied by the following lemma, whose proof is omit-

ted.

Lemma 3.2 Pulse p+ 1 is generated at a node only after

all pulse p messages from all the nodes at distance 2@’)+3

were acknowledged.

Before we can analyze the overhead complexity of

the synchronizer, we need to specify the way the infor-

mation is propagated on the execution forest and the

cluster trees. We use the following properties of the
definition of level.

Lemma 3.3 Let ~ <6 be a level number. Then
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1. I {P : @) = i} I = q2J-9.

2. I {p’ : l(p’) < i < inspector} I = 0(6).

Let us now specify the way the synchronizer mes-

sages are sent (see Figure 3). First, note that all ACK

messages are sent up the execution tree in order to

compute global AND of the leaves. The number of

messages is redueed by a simple combining rule: a

node forwards the appropriate ACK message only after

it received all the corresponding ACKS from% deseen-

dents. The number of ACKS traversing a single link

this way is proportional to the number of nodes above

the link which serve as inspectors of nodes below the

link, and this number is, by Lemma 3.3, O(log n). We

also need O (log n) additional memory for every link,

to mark the arrival of the various ACK messages of the

different pulses. This combining mle is denoted in

Figure 2 as “tree-AND”.

Next, consider the registration messages. The task

of the these messages is to let the nodes lmow whether

there are threatening nodes, by first registering the

nodes as threatening (the REGmessage), and then delet-

ing this registration (the DE-REG messages). Only when

there are no threatening nodes, the response to queries

changes. Thus, we actually compute a global OR of the

“threatening” status. Hence we can save on the number

of messages required by a different combining rule as

follows. When a REG message is sent, it is forwarded

along the branches of the cluster-tree, marking its trace

on the links with a (source, destination) pair, until it

hits a mark of a trace of another REG message with the

same destination — or until it reaches the destination.

when a DE-REG message is Sent, it follows the Wa@,

and unmarks it so long as the message origin is the only

source of this trace. In other words, upon reaching a

node, the trace just traversed is unmarkd, if no other

incoming marked trace remained, the message contin-

ues to the next node, else the procedure terminates. In

this way, the center is marked by some trace only if

there is some node that has sent a REG message and

did not send a DE-REG one. The queries, made by the

inspectors, are combined by the tree-AND rule above.

The OK and the GO-AHEAD messages are forwarded

by a simple broadcast over the cluster and execution

trees, respectively,

The number of messages that traverse a cluster-tree

link is, with this procedure, proportional to the number

Upon receipt of “tree-AND(m)” from link e:

mark (e, m)

if Ve [mark(e, m)]

send “tree-AND(m)” on execution-parent

Upon receipt of Iwo from link e:

mark (e, REG)

if =mark(parent, REG) send REG on cluster-parent

Upon receipt of DE-REG from e:

unmark(e, REG)

if Ve[=mark(e, REG)] send DE-REG on cluster-parent

Figure 3: Communication protocols for the synchronizer

of tree clusters in which it participates, times the num-

ber of pulses in which the cluster center participates in

the registration and de-registration process. By Defini-

tion 2.3, each node is a member in O(log n) clusters,

implying that the number of messages that traverse a

link is O(log n) per pulse. Lemma 3.3 states that the

number of pulses with a given level is O(log n), imply-

ing that the number of pulses in which a cluster-center

participates is O(log n), and therefore the congestion

of the cluster-tree links is O (logz n) overall. As before,

the combining rule requires to maintain for each link

the possible traces, which implies additional 0(log2 n)

space.

We summarize the result of this section in the fol-

lowing theorem.

Theorem 3.4 There exists a deterministic static synchro-

nizer with poiylogariihmic time, space, communication,

and congestion overhead.

We conclude this section by addressing the problem of

nodes which send messages in more than one pulse.

First, clearly if some node sends messages in many

pulses, then necessarily there are some links with high

congestion. The converse, however, does not neces-

sarily hold: even if all nodes send messages only in

“a few” pulses, it still may be the case that there are

some highly congested links. The difficulty stems from

the fact that the number of times a cluster center is in-

volved in the registration process cannot be bounded,

in general. The “bad” phenomenon oeeurs when many
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of the pulses are executed in a small-diameter region

of the graph, thereby incurring large congestion at the

links of the local cluster-trees. However, as we show

in the next section, the cover construction protocol of

[21] features the pleasing property that the congestion

at all links is at most polylogarithmic. This non-trivial

property is crucial when we come to make the protocol

dynamic, in Section 5.

4 Asynchronous construction of sparse

covers

In Section 3, we have seen an efficient synchronizer

protocol that uses a pre-computed structure, namely

sparse covers of the graph. For a given static network,

on which many computational tasks are carried out, a

pre-processing stage is a reasonable assumption that

pays off eventually, since all tasks use the same pre-

computed structure. In a dynamically changing net-

work, however, we cannot assume such pre-processing
— a transient period of topology changes may occur,

makiig all the pre-computed structures obsolete. A dy-

namic protocol must be able to withstand such changes,

and to adjust itself in reasonable time. As usual, our

interpretation for “reasonable” is “within a polyloga-

rithmic factor from optimal”. To achieve this goal, we

must have an asynchronous cover-construction proto-

col. Let us ignore for the moment the issue of a dynam-

ically changing network. As we shall see later, if we

can manage the protocol to deliver only few messages

through each link, we can sustain dynamic changes of

the topology with only a small penalty in space.

In this section, we present an asynchronous proto-

col that, for a given k, produces a sparse k-cover of the

network in d (k) time, and d (1) congestion and space

requirements per link. We remark that cover construc-

tion protocols that we know of are either sequential

[10], or synchronous [21]. To overcome this difficulty

we use a simple but powerful idea we combine a

synchronous protocol with the synchronizer described

earlier. This seems to be a circular approach: how can

the synchronizer work without the covers?

The solution we propose is to work in stages. Stage

i will be started when we have a sparse O (2i )-cover,

and will end with a sparse O (2i+ 1)-cover. Suppose we
are given a synchronous algorithm that constructs a 2i -

cover in T(2i ) time. Our strategy is to generate, in each

1 construct 32-cove~ apply a for T’(32) pulses

2forielto5+log~do { stage i }

3 forj * lto T~do { phase j }

4 generate next 2i pulses to construct 2i+5-cover

5 send tree-AND(j Q2i ) to root of 2i+5 cluster

6 wait until pulse (j o2i ) at all neighbor clusters

Figure 4 asynchronous bootstrap construction of covers

stage i, Z’(2i ) safe pulses so that the synchronous cover-

construction algorithm is able to deliver its promise.

Assuming that the stage begins with an O (2i)-cover,

the synchronizer protocol described in Section 3 can

safely generate 2i pulses: for this amount of pulses,

a node depends only on its 2; -neighborhood, which is

contained in the appropriate 2i -cluster. Consequently,

our solution is to divide each stage into T’(2i )/2i phases

(see Figure 4). During each phase, the pulses are gen-

erated by the synchronizer as described in the previous

section. To start the next phase, however, we need an

“inter-cluster coordination”, i.e., we need to know that

all neighboring clusters are not too far behind. We do

this by verif ying, for each cluster, that all neighboring

clusters have finished phase j in order to proceed to

phase j + 1. This can be viewed as coordinating the

phases of the clusters by the a synchronizer. We re-

peat this recursive construction sufficiently many times

so that we can generate safely the required number of

pulses. More precisely, if our ultimate goal is to gener-

ate ~ safe pulses, we will construct the 25+10g~-cover

required to generate safely ~ pulses.

As for the implementation, we recall that clusters are

neighbors only if they overlap. Hence, the a synchro-

nization protocol can be carried out simply by ensuring

that all the nodes within a cluster have reached the de-

sired pulse number. This can be done in the “tree-AND”

fashion (see Figure 3). When the cluster center con-

cludes that all active nodes in the cluster have reached

that pulse number, it broadcasts a RELEASE message

over the cluster tree.

We also need to enable the first stage to work, i.e., we

need to construct an initial 25-cover required to produce

the synchronizer to generate 2° = 1 safe pulse. We
will do this by generating T(32) safe pulses using the

a synchronizer (Algorithm 2.2).
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The scheme is given in Figure 4, and its correcmess

is implied by the correcmess of the underlying syn-

chronizer protocol, in conjunction with the following

lemma.

Lemma 4.1 By the beginning of phase j of stage i at

some node v, all nodes in distance at most 2i+5 from v

have already generated pulse j . 2i.

The complexity of the cover construction protocol

can be abstractly summarized as follows, assuming that

T(k) is linear in k. The time complexity is bounded

by

,Og ~ ZfzJtl logT

~ ~ d (T’(2i)) = ~ d (T(2i+’)) =
i=l j=l i=l

= d (T(T)) .

The space complexity remains unchanged, namely

O (log3 n). and the number of messages at a link in-

curred by the initialization (lime 1) and the peridlc

coordination (lines 5 and 6) is in the order of

T(T)

J
= T(32) + O(Iog~ . — .

However, to bound the total number of messages at

the Iiis, we must count the messages sent by the

synchronizer (line 4). For this, we turn to the spe-

cific cover-construction algorithm, viz. the random-

ized cover construction algorithm of Linial and Saks

[211. This algorithm proceeds as follows. Each node

u picks a random value R. = (ZD., r.) as follows.

The first component, ZDU, is picked uniformly from

[1..n’}, and the second component, TU, has values in

the range [1.. [log nl ] with truncated geometric distri-

bution, i.e., Pr[~ti = k] = 2-k for O < k < (log nl,
and Pr[~u = [log nl] = 2- [1% nl +1. Notice that wi~

high probability, the Ru’s are distinct, and we will iden-

tify a node u with its Rti. Intuitively, the role of ~“ is

to determine the distance to which ZDU will be broad-

cast. The goal is that each node will get a message

from the node with the highest ID that can reach it.

More formally, say that anode u with Ru = (ZDU, rti)

is dominated by a node v with R“ = (D., ~~) if

ZDv > ZDU, and T. > Tu . “he dgOrifim Pr-s

in [log ?21 pulses as follows. Whenever a message

(ID, T), which is dominated by one of the previous
messages is received, it is dkcarded. If (ZD, r) is

not dominated by any previous message, then its ori-

gin is marked if T is greater than the current pulse

number, it is re-broadcast to the neighbors. Note that

this procedure guarantees that each node u will get a

message containing max {ZZL : dist(u, V) < TV}. me

node which is the origin of this message is considered

to be the center of the cluster, and the cluster tree is the

paths along which the messages propagated. In [21]

it is shown that in O (logz n) pulses, this procedure

produces l-cover, with probability 1 – 0(1/n2), us-

ing O (log n) messages per link and O (log n) space

per node. Given O S i S 8, this procedure can

be extended to generate 2i-cover as follows. We let

rarange over the values {1 “ 2i,202i, . . .,logn 02i},

with Pr[Tu = m . 2~] = 2-i for O < m < [log nl,

~d Pr[ra = [log nl . 2’] = 2-f’0’”1+1. Thus we

have a protocol that produces k-covers with probabil-

ity 1 – 0(n2) in time T(k) = 0(klog2 n). Ap-

plying the bootstrap scheme of Figure 4 in a syn-

chronous network, this protocol yields k-sparse covers

fork = 2°,21 ,.. ., 210g’ with probability 1 – 0(1/n)

in O (r Iogz n) synchronous pulses, with maximal

link congestion 0(log2 n) messages, using 0(log2 n)

space at each node.

We ncxxi to show that this protocol for cover con-

struction, has low congestion and space requirement

when composed with the synchronizer described in

Section 3. For this, we have the following key lemma.

Lemma 4.2 The worst-case number of messages which

arrive at any node in the course of asynchronous construc-

tion of a k-cover is ~ (l), with probabilii 1 – 0(1/n).

Proof Sketch: Since the number of messages a node

gets in the synchronous construction is 0(log2 n), it

fOllOWS tht the INHTbX Of ACK messages CrOSSing

execution-tree links is O (log3 n). The problem is how

to bound the number of times a single cluster-center

is queried for threatening nodes. It suffices to prove

that given any set of nodes S with diameter d log n, the

number of pulses active in this set, and divisible by d,

is O (log3 n) w.h.p. We do this as follows.

Pick any x E S, and consider the ball llo of radius

T = d log n around z. Clearly, S s BO. Consider the
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messages whose. origins are inside S. These messages

are active in S only within the pulse range [0, ~], and

hence their contribution to number of active pulses in

S divisible by d is at most log n. Next, we turn our

attention to the number of message entering 130 from

outside. We shall prove that this quantity is small w.h.p.

Consider the set of balls {hi} centered at z, where

the radius of ~i is 2ir, for 1 ~ i ~ log n. We con-

centrate on the balls 132~(the same reasoning can be

applied for the balls B2~_ 1). Let Ci denote the ball

whose radius is 4ir, i,e., llzi. Notice that messages

traverse shortest paths, and hence, the messages which

originated in C~ \ Ci - 1 Illily hl~ Only O (log n) active

pulses in S which are divisible by d. Note also that

by the triangle inequality, we have that if the messages

sent by anode u g Ci are dominated by some node in

Ci_~, then no message from u will enter l?o.

For each 1 s i ~ log n, let Yi be a Bemouli random

variable detinedby Yi = 1 iff there exists u G Ci \C~- 1

such that u is not dominated by any node in Ci– 1.

Notice that ~‘s are mutually independent. Next, we

prove the following crucial property.

Claim 4.3 Let Ri = lCil/lCi_ll. Then

Pr[K = 1] < min{lnn . (Ri – 1),1}.

Proof Sketch: By definition, Pr[X = 1] is bounded

by ( ICil – \Ci_ ~I) times the probability that a fixed

point in Ci is not dominated by any point in Ci_ ~. The

probability that a given (ZDU, r.) pair is not dominated

can be bounded as follows. List R“ for all nodes v c

Ci- ~, sorted in deereasing order of Ills, and insert

R. in the position determined by Ill.. Let Xj be a

Bemouli random variable whose value is 1 iff Ru is not

dominated, given that ID. is ranked j in the list. Since

the ZDS are i.i.d., we have that Pr[Xj = 1] = l/j,

and that the probability of ZDU being ranked j in the

— Hence, the probability that Ru is notlist ‘s IC*-.llI+l “
dominated by any node in Ci- 1 is

lCi_~l+l ICI-ll+l ~
~ lnn

E ‘~= ~ j “ lCi.Yl + 1- Ici-ll ‘
j=l

and therefore

Pr[~ = 1] ~ (lCil–lC~-~l).& = (Ri-l)lnn.
1

9

Corollary 4.4 ~[~i Yi] ~ lnz n,

Proofi By the claim,

J3[~x] ~ lnn~min.
i i

Ri_ 171}.

Now, for all z ~ 1 ,min{z – 1,1} ~ lnx, and hence

~min{Ri -1,1}< ~lnRi = ln(~R)— s.
i i i

Fhlly, since Hi Ri ~ n, we get lil[~i(~)] ~ ln2 n,
asdesired. I

To complete the proof of Lemma 4.2, we apply the

Chemoff bound (Raghavan-Spenser varian~ [24], The-

orem 1) and obtain Pr[~i Yi ~ log3 n] < ~. Repeat-

ing the argument for the odd balls, we conclude that

with high probability, only 0(log3 n) of the Ci \ Ci _ ~

sets send messages that reach S, and since each such

set incurs only O (log n) pulses divisible by din S, we

are done. B

Lemma 4.2 completes the proof of Theorem 1.2.

5 Local rollback technique

In this section we explain the local roUback technique,

the technique that enables us to upgrade an arbitrary

static asynchronous protocol to a dynamic protocol.

The basic idea was used in [11] for synchronous pro-

tocols, and here we generalize the construction to the

general asynchronous model.

We begin with the well known notion of causality

chain [18].

Definition 5.1 Given an execution of an asynchronous

protocol (al, a2, a3, . . .), where ai is either a send or

receive action for all i ~ 1, we say that ai is causally

dependent on aj if one of the following holds.

1.

2.

3.

aj is a receive action, ai is a send action, both ai

and aj are taken at the same node, and i > j.

There exists e message such that aj is its send action

and ai is its receive action.

There exists k such that ai is causally dependent on

ak, and ak is causally dependent on Ui.

A sequence of actions (U~l, Ui,, . . .) is a causal chain if

for all j, Uij+, is causally dependent on ai,.
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Intuitively, one may think of the causal dependence

relation as the transitive closure of a directed graph,

where the nodes are actions, and the arcs connect ei-

ther a receive to later send actions occurring in the same

node, or message send to its delivery. Clearly, this de-

pendency graph is a DAG. Another important property,

for synchronous protocols, is the following.

Lemma 5.2 Then length of the Iogest causal chain of a

synchronous protocol is its time complexity.

It turns out that the length of the logest causal chain

plays an important role in the complexity of adjusting

to changing environment. For a given protocol m, let

La(m) denote the length of the longest causal chain in

any execution of 7r.

Theorem 5.3 Let m be a static asynchronous proto-

col with maximal congestion Con(m), time complexity

7Eme(n), longest causal chain of length tin(m), and

space per edge A4etn(ff). Then there exists a dynamic

version @of T such that

Comm(#) = O(Comm(7r))

Zbne(g5) = 7ime(7r) + fin(r)

A4ern(q5) = A4em(7r) + Con(7r)

The proof of the theorem consists of the local roll-

back algorithm. The essence of the technique is as fol-

lows. Throughout the execution of the algorithm, each

node maintains a complete journal of the local history,

i.e., an ordered list of all messages received and sent,

including origins and destinations, respectively.

When a topology change occurs, the protocol “tm-

does” all actions that are causally dependent on

this change. Specifically, both endpoints of the

crashed/recovered edge send messages to all the nodes

they sent messages before, saying “roll back my mes-

sages”. When anode receives such a message, it looks

through its journal, and resets itself to the state in which
the tirst obsolete message was received. In addition, it

looks in its journal to tind to which nodes did it send

messages that are now obsolete, and informs them. It

is easy to see that in this way all “infected” actions are

undone, and the computation can resume as if the Mltial

state was correct.

However, implementing the local rollback mecha-

nism in a straightforward way may have catastrophic

Figure 5: The Graph G..

consequences. Consider the case where after receiving

a rollback message, the node resets itself and resumes

operation (i.e., starts sending messages) immediately.

Then there is a schedule that may cause an exponential

blowup in the number of messages after the last topo-

logical change, as illustrated by the following scenario.

Consider the following series of schedules.

1. GO is a single edge (sO, t) that corresponds to a

single message delivery from .sOto to.

2. G.+l has four additional message deliveries (see

Figure 5). Messages are sent froms. to a. and

b., and are delivered at s.. ~ first from a. and

then from b..

Suppose that s. hitiates a rollback, and that the roll-

back messages are delivered to the source of s.. ~ in

reverse order, i.e., first from b., and then from a..

It is easy to verif y, by induction on n, that the number

of messages sent in (sO, t) is 2n.

The remedy for this flaw is ensuring that the nodes

resume regular processing only after all rollback mes-

sages have been delivered. For this we use “3 phase

rollback”, similar to the technique in [11], as follows.

The rollback messages are tagged with the accumu-

lated distance from the origin of the topology change.

When a node receives a rollback message, it resets its

journal accordingly, marks the source of the message,

and propagates the information further. A node sends

an acknowledgement rollback only if its journal is al-

ready in acorrect state, and after all the nodes to which a

rolloback message was sent have replied with acknowl-
edgement. This way, the rollback messages propagate

in a tree-like fashion, and the acknowledgements are

returned starting from the leaves. When anode receives

another rollback message, it either acknowledges it im-

mediately (if its origin is not closer than the previously

seen message) or it modifies its parent pointer to the

last message, and sends immediately an acknowledge-

ment to the previous parent (if the origin of the new
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message is closer than the previously seen message).

When the initiator receives all the ack’s, it broadcasts a

RELEASEmessage on the tree. When anode receives a

RELEASE message from the node marked as the parent

of the rollback, it broadcasts ltELEASE and goes back to

normal mode of operation, starting at the state specified

by its current journal.

The protocol outlined above has the important prop-

erty that after the last topological change, all rollback

messages are delivered before any node resumes nor-

mal operation, hence every message is undone at most

once, and the result follows.

6 Simulating an arbitrary protocol

In this section we describe how, given a static syn-

chronous protocol ~, can one construct an equivalent

version of r that can run on a dynamic asynchronous

network.

By Theorem 1.2, given a static synchronous proto-

col r whose time complexity is T, we can construct a

synchronizer in d (~) time, using only polylog space.

An important property of our construction was that

the congestion was low, and hence, as an immtilate

corollary of ‘Ikorem 5.3, we obtain dynamic ver-

sion of the synchronizer initialization stage (i.e., the

covers construction) with only polylogarithmic space

requirement. Moreover, since the underlying cover-

construction algorithm is synchronous, the length of

the longest causality chain of the initialization phase

can be shown to be ~ (~), by proving that the length

of the logest causal chain is independent of the actual

asynchronous schedule. Thus, superimposing the roll-

back mechanism over this construction, we obtain a

synchronizer that initializes itself in O (7) time, after

the last topological change. In other words, we have

the following.

Theorem 6.1 Itis possible to construct sparse covers of

~-neighborhoods in a dynamic asynchronous network, by

a randomized algoriihm with probabilii of success 1 –

0(1/n), using ~ (1) space per edge, in time ~ (r), and

communication stretch 6 (1).

Nevertheless, we are not quite done yet. We now

must confront the problem of topological change af-

ter the initialization stage is over, i.e., when the actual

algorithm ~ is already running. To our dismay, the roll-

back technique is not helpful now: r may have high

congestion (e.g., Q(n)), and there is nothing we can do

about it. We must therefore conclude that the rollback

technique is out of the question at tlis stage, if we are to

keep the space requirement low. The reset procedure

is not applicable directly either, since it might incur

O(n) time overhead. This problem, namely what to

do if a topological change occurs while m is running,

brings us to the last twist of the algorithm, which goes

as follows. The first rule to follow is that we run 7r in

parallel on each cluster of the ~-cover, restricted to the

subgraph induced by the cluster nodes. Output is pro-

duced only by nodes whose complete ~-neighborhood

is contained in the cluster (“kernel nodes”). Notice

that for each node there exists such a cluster, which

can be identified by the ZD of its center. Furthermore,

it is easy to see, by induction on T, that the output is

correct. Now, if a topological change occurs, reset is

applied to the affected clusters over the cluster frees.

By the assumption on the running time of the algorithu

the reset needs not be propagated to other clusters, and

since it is applied over the cluster trees, it will termi-

nate in time proportional to the height of these trees,

i.e., 0 (7). The correctness follows from the fact that

for each node there is its “home cluster”, and if this

cluster is not reset, then the node will produce correct

output.

Let us finally consider the complexity cost of this

idea. For the space, notice that the storage of each

node is replicated the number of clusters in which it is

member, i.e., O (1). The time to perform a reset on a ~-

cluster is additional ~ (~), and the message complexity

is increases ny a factor of O (1) messages per link. With

this, the proof of Theorem 1.1 is completed.
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