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Abstract

We investigate the simple class of greedy scheduling

algorithms, that is, algorithms that always forward a

packet if they can. Assuming that the routes tra-

versed by a set of packets are distance optimal (“short-

est pat hs” ), we prove that the time required to com-

plete transmission of a packet in a the set is bounded

by its route length plus the number of other packets

in the set. This bound holds for any greedy algorithm,

even, in the case of different starting times and differ-

ent route lengths. Furthermore, the result holds in the

asynchronous model, using the same proof technique.

The generality of our result is demonstrated by a

variety of applications. We present a simple protocol,

for which we derive a general bound on the throughput

with any greedy scheduling. Another protocol for the

dynamic case is presented, whose packet delivery time

is bounded by the length of the route of the packet plus

the number of packets in the network in the time it is

sent.
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Introduction

performance of a routing protocol is evalu-

by various measures, such as global network

throughput, maximum packet delivery time, stor-

age requirement etc. Concept ually, we may break

the task of routing a set of packets across commu-

nication network into two subproblems, which we

refer to as path selection and queue policy. The

path selection determines the routes that packets

traverse, while the queue policy determines which

of the packets in the queue at a node to forward

over the link.

Specifically, the path selection problem is defined

as follows. Given the network topology, and the lo-

cations of the sources and the destinations of a set

of packets, select transmission paths. The selec-

tion may be made at the destination, as in circuit

swit thing networks [Mar82], or while the packet

progresses in the network, as is common in packet

switching net works [MRR80].

The need for a queue policy emerges from the fol-

lowing physical restriction of the network. The ca-

pacity of the links is bounded, i.e., only one packet

can progress over a link at a time. However, it is

conceivable that more than one packet wishes to

traverse the same link simultaneously. The taak of

a queue policy is to schedule the pending packets

over the link. In practice, queue policies exhibit as-

sorted combinations of FIFO, fixed priorities, some

sort of congestion control etc. (see [BG87, Tan81]).

In most cases the queue policy is greedy, that is, a
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packet is delayed only if another packet currently

progresses over the link.

The isolation of path selection and queue policy

allows us to study the effects and relations between

them. In this paper we bound the delivery time

for the case in which the paths are shortest and

the schedule is greedy. We stress that our results

do not depend on the separation between the two

subtaaks.

Most of the related previous work concentrated

on routing in a synchronous model. The abstrac-

tion of routing protocols, as presented here, was

first studied by Leighton, Maggs and Rao [LMR88].

In this abstraction, there is a fixed set of k packets,

and a route is assigned to each packet. The pack-

ets traverse the assigned routes. We study the time

required for delivering a packet, where the time for

a packet to traverse any link is at most one time

unit.

Leighton et al. [LMR88] proved that there ex-

ists a schedule that delivers all packets in O(d + c)

time, where d is the maximal path length and c

is an upper bound on the number of routes that

share a single edge. Unfortunately, the proof is non-

constructive, and no polynomial time algorithm to

compute this optimal schedule is known. They also

provide two randomized distributed protocols for

the problem. The first applies to arbitrary sets of

paths, and requires O(c + dlog IV!) time. The sec-

ond protocol applies to the case of 1-leveled paths

(where the paths can be partitioned to 1levels), and

completes the packet delivery in O(c + 1+ log IVI)

time. The latter protocol requires all packets to

start at the same time.

Cidon et al. [CKMP90] conjectured that in the

synchronous model, if the path selection algorithm

produces shortest paths, then any greedy queue

policy delivers all k packets within d + k – 1 time

units. Previously, only special cases of this general

conjecture were proved. In their classical work on

randomized routing- on a hypercube, Valiant and

Brebner ~B81] show, as one of the steps in the

proof, that any greedy scheduling of k packets on a

line of d processors requires no more than d + k – 1

time units. Cidon et al. proved their conjecture in

the special case of leveled paths, and showed that

this bound holds for arbitrary shortest paths when

coupled with a specific greedy queue policy, de-

noted by Min-Went (the queue policy at the nodes

is to first forward packets that traversed the least

distance so far).

In [CKMP90] it is also shown that if arbitrary

set of routes is allowed, then many natural routing

strategies (e.g., priority, FIFO, Min- Went) may re-

quire f2(n15, time, when d and k are O(n). This

result suggests yet another motivation for consid-

ering shortest paths.

Recently, and independently, RlverwVega et al.

[RVVN91] proved that scheduling packets on short-

est paths, using fixed priority to resolve conflicts

requires no more than d + k – 1 time units.

In this work we settle the conjecture posed in

[CKMP90] in the affirmative, Specifically, we con-

sider the general scenario in which k packets tra-

verse shortest paths, and the queue policy is any

greedy queue policy. We show that any such sched-

ule is guaranteed to deliver packet pi in no more

than di + k – 1 time units, where di is the number

of links pi traverses. Our proof technique extends

to the asynchronous case, yielding the same bound.

Our result is obtained for the most general case,

where the routes may have different lengths, and

the packets are allowed to start traversing the net-

work at any time. This generality enables us to

derive a few interesting applications.

1. We derive a simple protocol for the case where

the route lengths are distinct and the starting

times of all packets are identical. This protocol

is guaranteed to deliver all packets in max{di}

time units, which is clearly optimal.l

2. In the dynamic model, the total number of

packets is not bounded, and packets are cent in-

1A similar protocol appears in [RVVN91].
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3.

uously generated and delivered. We show that

if one selects a greedy queue policy in which

a packet is never delayed by packets generated

after it was generated, then each packet pi ar-

rives at its destination within cti + 1 time units,

where /is the number of packets in the network

when pi is generated.

The throughput of the network. Let n be the

number of nodes in the network, and assume

that each node has an arbitrarily large number

of packets to send. We present a simple conges-

tion control protocol that guarantees, for any

greedy queue policy, even in the asynchronous

model, that every C)(n) time units n packets

are delivered. The congestion control protocol

resides in the source nodes, and its task is to

decide when the next packet will be sent.

For simplicity of presentation, we prove our re-

sults in the synchronous setting, and discuss the

asynchronous case in the appendix. In Section 2

we define formally the problem in the synchronous

model. In Section 3 we state and prove our main

result in the synchronous model. Applications of

the main result, using fixed priority queue policy,

are presented in Section 4. In Section .5 we discuss

the throughput of a d ynamic network. In Appendix

A we describe the asynchronous model and sketch

how do the results carry through.

2 The synchronous model

In this section we define formally the routing prob-

lem and its relevant parameters. We model the

communication network as a directed graph G =

(~ E), where an edge (u, v) represents a unidi-

rectional link from processor u to v. There is a

collection of k packets pi and k associated sin~-

ple paths, referred to as routes, Ri = (vi, . . . . vi,),

1 < i < k. Packet pi is transmitted along route

Ri whose length is d;. We deal with shortest path

routes, i.e., di is equal to the distance from the ori-

gin to the destination of Ri for aJl 1< i < k.

In the synchronous communication model we as-

sume the existence of a global clock, characterized

by the property that a packet sent at time t is re-

ceived by time t+ 1. Packet pi starts traversing its

route at time t% and is delivered at time i:. The

duration of packet pi is the time interval [t:, tj]in

which pi is in transit. A schedule is a mapping S

of a packet and a time step to a node in the graph.

Intuitively, the schedule describes the location of

any packet at any time step. At a given time step,

a packet may either progress along its route, or re-

main in the queue. Therefore, the schedule must

satisfy the following condition. For all 1 < i < k

and time steps t$< t < t;,either packet pi does n,ot

make progress at time t, i.e., S(pi, t + 1) = S(pi, t),

or pi progresses at time t, i.e., (S(p~, t), S(pi, t + 1))

is an edge in Ri. The nodes S(pi, t: ) = v; and

S(pi, t~) = v;, are the source and the destination of

pi, respectively.

Packets pi and pj are said to meet at time t if

S(pi, t) = S’(pj, ~). In this paper we consider onI y

schedules that satisfy the link capacity condition.

Intuitively, this condition is that the schedule ma,y

not send two packets over the same link at a singlle

time step. Formally, a schedule satisfies the link

capacity condition if whenever packets pi and 19

meet at times t and t+ 1, then both pi and Pj do

not progress at time t.

Packet pi is said to delay packet pj in time to ifpj

does not progress at time tO and the next link in thle

route of pj is currently traversed by pi. Formall<y,

at time to packet pi meets pj and progresses, and

(S(pi, to), S(pi, to + 1)) is an edge in Rj, the route

Of Pj .

A greedy schedule is a schedule such that if there

are packets waiting to be forwarded on some link,

then one of these packets is forwarded. Formally, if

pj does not progress at time to, then there exists a

packet pi that delays pj at time to.

In Appendix A we generalize the definitions cjf

this sect ion to the asynchronous case.
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3 Greedy schedules for short-

est pat hs

In this section we consider greedy scheduling in the

synchronous model for shortest paths, i.e., where

the length of each route is equal to the distance

from its origin to destination. Our result is sum-

marized in the following theorem.

Theorem 3.1 Let PI, . . . ,p~ be a set of packets

whose routes are Rl, ..., Rk. Suppose each & is

a shortest path of length di, 1 ~ i < k. Then in any

greedy schedule each packet pi arrives at its destina-

tion within di + k – 1 time units.

In the rest of the section we fix a greedy schedule

S. Since we concentrate on a packet pi, we consider

only the time interval [t:, tj]in which pi traverses

~ (the interval is finite since trivially t! < t$+ k .

maxj {dj }).

The main idea of the proof is based on the con-

cept of time path. To illuminate this concept we

suggest the following analogy, Picture a train con-

ductor, who boards a certain train early in the

morning, on which he gets his lunch at noon. (The

trains are analogous to packets, and the conduc-

tor’s tour is analogous to the time path.) Each

train travels a known route, and the conductor

has the (fixed) train schedule by which he can in-

fer which train delays the other at intersections.

(Analogously, our analysis is on a given fixed sched-

ule, from which we can infer which packet delays

which.) The conductor wishes to inspect as many

trains as possible. Naturally, he can change trains

only whenever his train meets another train. How-

ever, he is not willing to give up his lunch, which

is served on the first train he boarded. For this

reason, the conductor carefully plans his tour in

advance. What we would like to show is that the

conductor can find a tour in which he is delayed by

each train at most once, and returns to his original

train on time. Clearly, the time that the conductor

travels is the same as the time of the lunch train,

and therefore we can limit our interest to bounding

the travel time of the conductor.

The concept of time path is formally defined as

follows.

Definition 3.2 Let t.< t. be time steps. A func-

tion ~ that maps a time steps interval [t$, te]to pack-

ets is a time paih if S(r(t), t) = S(r(t – l), t) for all

time steps t, < t s t..The location of a time path

r at time t,denoted L(7, i!), is defined as S(~(t), t).

The path induced by ~(~,t.), . . . . L(r, te) is the trace

of the r. The time interval [ts,G] is the duration of

T.

From the definition of a time path it follows that

the trace of a time path is a path in the graph.

Another simple observation is that mapping all the

time steps to the same packet is a time path.

Informally, the outline of the proof of Theorem

3.1 is as follows. Given a specific packet pi, we de-

fine an initial time path (whose duration is [t:, t:],

the time in which pi is in transit) that maps all time

steps to pi. Then we manipulate this time path in

a way such that the length of its trace remains in-

variant. We further show that a time path can be

modified until the resulting time path is delayed at

most once by each packet, and is not delayed by its

last packet. This, in conjunction with the fact that

the final time path has the same length the original

route has, proves that the time for this packet is

bounded by di + k – 1.

We start with some additional definitions con-

cerning time paths. For a time path T and a

time step t, we say that 7 is deiayed at time t if

L(T, t) = L(T, i! + 1); r is delayed by a packet p,

where p is the packet that delayed packet ~(t)at

time t.The existence of such a packet p is guaran-

teed by the greedy nature of the schedule.

The’ following abstract operation is our tool for

manipulating time paths.

Definition 3.3 Switch is a mapping from time

paths to time paths, Switch is applicable to a time

path r if there exists a packet that delays ~ at some

time t,and meets r at some time d > t. If Switch is
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applicable to ~, let p be the first such packet, let to be

the first time p delays ~, and let tl be the first time

after to that p meets r again. For all t~ < t < te,

Switch(r)(t) is defined as follows.

{
Switch(r)(t) = “

forto<t<t~

r(t), otherwise

The packet p is called the detour packet, the time

interval [to, tl) is called the detour time, and to is

called the rank of r.

Carrying on with the analogy to our train con-

ductor, we say that the Switch operation is a tool

by which he can safely switch trains and be on time

for lunch, since whenever he switches trains he is

guaranteed to return to his previous tour. The con-

ductor’s strategy in planning his tour is as follows.

His initial tour consists merely of the lunch train; he

then repeatedly applies Switch to his current tour,

until Switch is not applicable anymore. We’ll prove

that this strategy always terminates.

The rest of this section is organized as follows.

First, we prove that the Switch operation preserves

the source, destination, and duration of a time

path. Next, we show that Switch also preserves

the shortest path property. Finally, we show that

Switch cannot be applied iteratively infinitely many

times on any time path.

Note that once we reach a time path to which

Switch is not applicable, we are guaranteed that

this time path is delayed at most once by each

packet. The result follows, since the duration of

a time path is bounded by the length of its trace

plus the number of times it is delayed.

We first show that applying Switch to a time path

yields a time path.

Lemma 3.4 Let r be a time path with duration

[t,,te],and assume that Switch k applicable to r.

Then Switch(~) is a time path with duration [t,,t,].

Proof: Let d = Switck(~). Obviously, r’ is defined

in the time interval [t~, te].Let [to,tl)be the the

detour time, and let p be the detour packet. By the

definition of Switch, T and T1 are identical in the

two time intervals [t,,to)and [tl,te],and r’(t)= ,p

for all to~ t < tl.Hence S(#(t), t–1) = L(r’, t–1)

for all time steps t, < t < teexcept for t = toor

t = tl. Suppose now that r(to– 1) = po. Sinc,e

p delays p. at time to, we have that S(po, to) ❑ :

S(p, to), which implies S(r’(to - l), to) = L(~’, to).

Similarly, the condition holds for t= tl. ~

The following three lemmas are immediate from

the definition of Switch.

Lemma 3.5 Assume that Switch is applicable tc>

time path r, and let to be the rank of ~. Then

Switch(r) is not delayed at time to.

Proofi Let r’ = Switch(r) and let p be the detour

packet. By definition of Switch, r’(to) = p. Since

Switch is applicable to ~, packet p delays T at time

to. That is, S(p, to) = L(r, to) = L(r, to + 1), andl

S(p, to) # S(p, to + 1). By Lemma 3.4, # is a time

path, and hence L(T’, to-f-1) = S(r’(to), to + 1),

Since ~’(to) = p, we have that L(T’, to) # L(r’, to +

1), which implies that r’ is not delayed at time to,,

I

Lemma 3.6 Let T be a time path of duration [t$,t,],

and assume that Switch k applicable to r. Let

r’ = Switch(r). Then L(r’,t$) = .L(T,i!,),and

L(d, te)= qT, te).

Proof: Consider the destination first. By the def-

inition of Switch, #(te)= T(te),hence L(T’, te)=

L(r,t,).As for the source, let todenote the rank of

r, i.e., the first time in which T’ differs from ~. If

to > t, then clearly L(T’, t,)= L(T,t,).Otherwise,

the detour packet p delayed r at time t.,and hence

~(T’, ts) = S(p, t,) = ~(~,t,). #

Lemma 3.7 Let r be a time path of duration [t.,te],

and suppose that p and r(te)meet at time te. if p

delays ~ at time t,~ t < tethen Switch k applicable

to T

Proof: Immediate from the definition of Switch ap-

plicability. ~
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Next, we show that Switch preserves the shortest

path property. This follows from the fact that both

paths are shortest paths.

Lemma 3.8 Suppose Switch is applicable to time

path ~, and let p be the detour packet. If the trace

of T is a shortest path and the route of p is a shortest

path, then the trace of Switch(~) is a shortest path.

Proofi Let [t., tl ) be the detour time. Denote

v = L(T, to) and u = L(7, tl), Consider the fol-

lowing two path segments. The first is the segment

of the trace of r induced between toand t1,and the

second is the segment of the route of p connecting

v and u (the fact that # is a time path implies that

S(p, to)= v and S(p, t1)= u).Since both segments

are subpaths of shortest paths, they are are short-

est paths between their endpoints, and since they

have the same endpoints, their lengths are equal.

Therefore, the length of the trace of Switch(r) is

equal to the length of the trace of r. Having this

fact, together with the fact that the traces of r and

Switch(r) share the same endpoints (Lemma 3.6),

and with the assumption that the trace of T is a

shortest path, we conclude that the trace induced

by Switch(r) is a shortest path, too. n

Having proved the above lemmas for a single ap-

plication of Switch to a time path, we turn to deal

with iterative applications of Switch to a time path.

Definition 3.9 A sequence ro, rl . . . is a time path

sequence if To is a time path, and ~j+l = Switch(~j)

for all j ~ O.

The following lemma establishes the fact that

between two applications of Switch with rank r

there must be a Switch operation with rank strictly

smaller than r.

Lemma 3.10 Let To, ,rl, . . . be a time path se-

quence. Suppose that the rank of 7i is r, and assume

that the rank of ~ is also r, where i < j. Then there

exists i < / < j such that the rank of TJ is strictly

smaller than T.

Proofi Assume, by the way of contradiction, that

the rank of q, i <1< j, is at least r. By Lemma

3.5, Ti+l is not delayed at time r. By the definition

of Switch, the rank of a time path ~ must be equal

to some time step in which r is delayed. Hence

the rank of T-zmust be strictly greater than r for

all i < 1 < j. This implies that for all i < 1 <

1’ < j, rf(t)= Tit(t)for all t ~ r, i.e., all these

time paths have the same initial segment. This, in

particular, implies that ~j is not delayed at time r,

a contradiction to the assumption that the rank of

Tj k l’. ~

We now prove the crucial property we need:

Switch can be applied only a finite number of times.

Lemma 3.11 Given a schedule of a finite set of fi-

nite paths, all time path sequences are finite.

Proofi First, note that the total number of time

paths for the given set of paths is bounded (a triv-

ial bound is kD, where D = kd, where k is a bound

on the number of packets and d is a bound on the

length of the routes). Suppose now, by the way

of contradiction, that there exists an infinite time

path sequence. Then there must exist a cyclic time

path sequence, i.e., time paths rj, ~j+l, ..., ~.i+c

SUCh that rj = Tj+c, and ri+l = Switch(n) for all

j ~ i < j + c. Let r be the minimal rank of the

time paths in the cycle, and suppose that the rank

of rm is r. By the cyclicit y, the rank of ~m+c is also

r. Hence, by Lemma 3.10, there must be O <1< c,

such that the rank of ~~+r is strictly less than r, a

contradiction to the minimality of r. I

We can finally prove our main result. Let us first

restate it.

Theorem 3.1 Let pl, . . . . p~ be a set of packets

whose routes are RI ,..., Rk. Suppose each Ri is

a shortest path of length di, 1 ~ i s k. Then in any

~reedy schedule ●ach packet P; arrives at its destina-

tion within di + k – 1 time units.

Proofi Let pi be any packet. Suppose that pi is

in transit on its route in the time interval [t,,te].

Consider the time path sequence To, 71, . . . obtained

by letting To(t) = pi for all time steps t,< t < t.,

and letting Ti+l = Switch(~i). By Lemma 3.11, this

sequence is finite. Let r“ be the last time path in
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the sequence. The fact that Switch is not applica-

ble to ~“ implies that no packet delays r“ twice.

Hence, adding the fact that Pi does not delay T*

(by Lemma 3.7), we have that the total number of

delays in T* is at most k – 1, which implies that

the duration of ~“ is at most its trace length plus

k – 1. From Lemma 3.8 it follows that the lengths

of the traces of all the time paths in the sequence

are equal, and since their duration is (by defini-

tion) unchanged, we conclude that pi arrives at its

destination in at most di + k – 1 time steps. 1

As a final remark we stress the fact that in the

proof we do not make use of the assumption that

the routes are pre-determined. In fact, we only need

to assume that the paths that were actually tra-

versed are shortest.

4 Applications with fixed pri-

orit ies

Theorem 3.1 provides us with an interesting insight

into the relationship between queue policies and the

path selection schemes. In this section we give a

few simple applications of the result. We employ

the priority queue policy, in which scheduling con-

flicts are resolved by a globsJ fixed priority ordering.

Specifically, each packet is assigned a priority, and

if a conflict arises, then the packet with the higher

priority wins (ties may be broken arbitrarily). We

remark that the priorities for the queue policies pre-

sented in this section are local, in the sense that a

packet can compute its priority independently of

the other packets.

Formally, the priority is a mapping ?l of packets

to integers. The priority queue policy is the rule

that packet p delays p’ only if ‘H(P) > ?l(p’). We

call the set EP = {p’ : ‘H(p’) ~ H(p)} the set of

eflective packets with respect top, and denote kp =

lEpl.

Fix a priority queue policy. Observe that from

the point of view of a packet p itseems as if only

packets in Ep exist, since other packets do not influ-

ence its schedule. In particular, the schedule of the

packets in EP would not change even if all packets

not in EP are removed from the initial set of pack-

ets. Therefore, when analyzing the time for the

delivery of p, we may assign k = kP.

4.1 Distinct path lengths

We begin with the case where all route lengths are

distinct and all packets start at the same time. For

the queue policy in which the packet with the longer

path has the higher priority, we obtain the following

optimal result.

Theorem 4.1 Let Ro,.. ., & be a collection of

routes with lengths do, . . . . d~, respectively. Assume

that all routes are shortest. [f the lengths of the routes

are distinct, then there is a queue policy that ensures

that all packets are delivered within maxi {di} time

units.

Proof: Define a priority queue policy by ‘H(pi) =

di. Without loss of generality, assume that di >

di+l for O ~ i < m. Note that di ~ do + i. Since

packet pi can be delayed only by p., . . . . pi_ 1, ap-

plying Theorem 3.1 with kP, = i + 1 shows that

packet pi arrives within di + i ~ do = maxi {di }

time units. n

4.2 Dynamic model

In the dynamic model, we consider a network in

which packets are continuously generated. De-

note the time packet p is generated (and deliv-

ered, respect ively) by t: (resp., t?). The set of

packets in t~ansit at time t is defined as Mt =

{p: t! s t < t:}. Denote by 1P the number of pack-

ets in transit when p is sent, i.e., /P = Ilkft: 1. Defin-

ing a queue policy in which a packet p can be de-

layed only by packets in transit when p is generated,

we obtain the following result.

Theorem 4.2 In a dynamic network, if the packets

traverse shortest paths, then there is a queue policy
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that delivers any packet p within dP + 1P time units,

where dP is the length of the route of p.

Proof: Define ‘H(P) = –t;. I

5

In

as

Throughput of a network

this section we consider the dynamic setting,

described in Section 4.2. In order to measure

throughput of a network we assume that the nodes

have an unbounded number of packets to send. The

throughput of a network, intuitively, is the rate at

which packets are delivered. We apply the result

for the worst case delivery time of a single packet,

obtaining bounds on throughput.

We define a congestion control protocol, i.e., a

protocol that resides in the source nodes, whose

task is to decide when to send the next packet.

Consider the following generic protocol. When a

packet is received by its destination node, an ac-

knowledgement is sent back to the source. A packet

is sent only after an acknowledgement for the previ-

ous packet is received. We assume that the packets

and the acknowledgements traverse shortest paths.

Note that this protocol guarantees that in any point

at time, for each node there is at most one message

(either a packet or an acknowledgment) in transit.

Let n be the number of nodes in the network,

and assume that each node has an arbitrarily large

number of packets to send. We show that every

O(n) time units n packets are delivered, as long as

the queue policy is greedy.

The following lemma bounds the progress that

is made in the network using the above congestion

control protocol.

Lemma 5.1 In any 3n consecutive time units, at

least n messages (either regular packets or acknowl-

edgements) are delivered.

Proofi As mentioned above, there are always n

messages in transit in the network. Let t be any

point in time, and let ml,. ... mn be the the mes-

sages in transit at time t. If all messages are de-

livered by time t + 3n, we are done. Otherwise,

let m’ be a message that is not delivered by time

t + 3n, i.e., m’ is delayed at least 2n times in the

time interval [t, t + 3n]. Hence there are at least

2n messages in transit in this time interval, and

therefore, at least n messages are delivered (again,

since in every point in time there are n messages in

transit). I

Using the bound on the number of messages de-

livered, we derive a bound on the number of “regu-

lar” packets delivered by the protocol, which is the

throughput of the network.

Theorem 5.2 The generic protocol, coupled with

any greedy queue policy, in any Cl(n) consecutive time

units, at least n packets are delivered.

Proof: By the nature of the protocol, the type of

the message associated with a node alternates be-

tween “regular packet” and “acknowledgement” —

when a packet is delivered an acknowledgement is

sent, and when an acknowledgement is received, the

next packet is sent. Hence, for every node, the dif-

ference between the number of packets delivered

and the number of acknowledgements received, in

any time interval, is at most one.

Consider a time interval of length 9n. By Lemma

5.1, at least 3n messages are delivered in any such

time interval. If less than n packets are delivered,

then, by the pigeonhole argument, there must exist

a node for which the number of received acknowl-

edgements is greater than the number of delivered

packets by at least two, a contradiction. ~

Theorem 5.2 applies to any greedy queue pol-

icy when coupled with the above congestion control

protocol. We remark that for the FIFO queue pol-

icy, a packet is delivered within 0(n2 ) time units

in the worst case. Theorem 5.2 shows that the

throughput is much better: every O(n) time units

n packets are delivered (this may be viewed as an

O(n) average-case delivery time).
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A Schedules in the asyn-

chronous setting

In this appendix we discuss why the proof of The-

orem 3.1 applies to the asynchronous model. The

statement of the problem in this model differs from

the synchronous model only in the following point:

every packet sent over a link arrives in arbitrary

time. Formally, assume that the route of packet

pi isv~, . . ..v$.. We associate with each packet pi

the time in which the send events s~, . . . . sji_l and

the receive events rj, . . . . r$, occur. Time s; is the

time in which packet pi is sent from node v:, and

r~+l is the time in which pi is received in the other

end of the link, i.e., node v~+l. For any schedule,

the time of the events must satisfy rj S s~ < r~+l

for all 1 < i < k and O ~ j < (ii. For the pur-

pose of time analysis, we assume that the a packet

progresses over a link at most one time unit, i.e.,

O<r~+l– s~Slforl Siskand OSj <di.

Recall that the link capacity condition is that

at any point in time, there is at most one packet

progresses the link. Formally, if (v~, v~+l) =

(:j: , V;:+l ) for some j, j’ and i # i’, then either
{’ > r!s; ~ rj~+l or s), _ J+l”

A key difficulty in adapting the proof from Sec-

tion 3 to the asynchronous model is formalizing the

intuitive notion of “previous time step” and “next

time step”, which in the synchronous model are

simply t– 1 and t+ 1, respectively. The limit op-

erator allows us to present an elegant formulation

of these notions.

The schedule, as in the synchronous case, is a

mapping from time to nodes. While a packet pro-

gresses over a link, the schedule maps it to the send-

ing node. Formally, the schedule mapping is defined

in the continuous interval [s., rd, ] by S(pi, t) = v;,

where j is such that r; ~ t < r~+l is satisfied. We

may think of a schedule as right-continuous step

function:

/<r. S(p, t) = S(p, to)
t>to
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We fix, as in the synchronous case, the schedule

and its related sequences of events.

The definition of meet remains unchanged.

Packet pi is said to progress at the time intervals

[Sj,Tj+l) for O S j S di.

We say that packet pi delays packet pi: in the

time interval [to, tl ), if during this time interval

packet pi progresses over some link (v, u), and

pi, is in node v, waiting to be forwarded over

(v, u). Formally, pi delays pi~ in the time in-

terval [to, tl) if there exist j and j’ such that

(Vj, Vj+l) = (v;:, V;+l), to = m={rf’s~} “ =

‘in{r~+,sff} and’O <’l

A queue policy is greedy if a packet pi does not

progress only if there exists a packet pj that delays

it.

We now tucn to formrdize the definition of time

path in the continuous fashion.

Definition A.1 Let t,< tebe time points. A func-

tion T that maps the time interval [t., te]to packets

is a time path if for all times t~< to< te

/~yos(T(t), to) = s(7(to), to) .
t<t~

The definitions of location, trace and duration of

a time path remain the same.

The definition of Switch requires no change un-

der the revised definitions of a time path and the

notion of a packet delaying another. Note that if

the detour interval is [t.,tl),then times to and tl

are some receive or send event, and hence, given a

schedule, there are at most 2 xi di possible ranks.

In what follows, we restate the lemmas and dis-

cuss how their proofs can be transformed to apply

to the asynchronous model.

The lemma below is analogous to Lemma 3.4.

Lemma A.2 Let r be a time path with duration

[t,, t.], and assume that Switch is applicable to T.

Then Switch(r) is a time path with duration [t,,te].

Proof: Let # = Switch(r). Obviously, r’ is de-

fined in the time interval [t,,t,]. Let [to,t1) be

the detour time, and let p be the detour packet.

Clearly, limt+tO S(r(t), _to)= L(r, to) for all time
t<to

steps t.< t s t.satisfying t # to and t # tl.Sup-

pose now that limt+tO ~(t)= pO. Since p delays PO
t<to

at time to, we have that S(po, to) = S(p, to), which

implies limt+tO S(#(t), to) = L(r’, to). Similarly,
t<t~

the condition holds for t = tl. 9

The lemma below is analogous to Lemma 3.5.

Lemma A.3 Assume that Switch is applicable to

time path T, and let fO be the rank of r. Then

Switch(T) is not delayed at time to.

For Lemma A.3, we notice that if r is delayed at

time to,then it is delayed by some packet p at time

to through t’,and we substitute i!’ for to+ 1 in the

proof of Lemma 3.5.

The lemma below is analogous to Lemma 3.6.

Lemma A.4 Let T be a time path of duration

[t,,te].Assume that Switch is applicable to ~, and

let # = Switclr(~). Then L(T’, t.)= L(r,t.)and

L(r’,te)= L(T,te).

The lemma below is analogous to Lemma 3.7,

Lemma A.5 Let r be a time path of duration

[t.,te],and suppose that p and T(i!e) meet at time

te. If p delays r at time t E [t,,te)then Switch is

applicable to r.

The lemma below is analogous to Lemma 3.8.

Lemma A.6 Assume that Switch is applicable to

time path r, and let p be the detour packet. If the

trace of ~ is a shortest path and the route of p is a

shortest path, then the trace of Switch(r) is a shortest

path.

The definition of time path sequence remains un-

changed.

The lemma below is analogous to Lemma 3.10.

Lemma A.7 Let To, ,71,.. . be a time path se-

quence. Suppose that the rank of Ti is r, and assume
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that the rank of Tj is also r, where i < j. Then there

exists i < 1 < j such that the rank of TI is strictly

smaller than T.

The lemma below is analogous to Lemma 3.11.

We provide an alternative proof here.

Lemma A.8 Given a schedule of a finite set of finite

routes, all time path sequences are finite.

Sketch of proof: Unlike the synchronous case,

here the number of possible time paths is not

bounded. However, the number of ranks is bounded

by 2 ~~=1 di. Assume, by the way of contradic-

tion, that there exists an infinite time path se-

quence. Consider the corresponding infinite se-

quence of ranks. Let r be the smallest rank that

appears infinitely oft en in the rank sequence. By

Lemma A.7 there must exist a rank r! < r that ap-

pears infinitely often as well, a contradiction. i

The theorem below, obviously, is the analog of

Theorem 3.1.

Theorem A.9 Let pl, . . . . p~ be a set of packets

whose routes are RI, . . . . Rk. Suppose each Ri is a

shortest path of length di, 1 ~ i ~ k. Then in any

greedy schedule each packet pi arrives at its destina-

tion within di + k – 1 time units.

The proof of Theorem 3.1 is a proof for Theorem

A.9 as is.

175


