JOURNAL OF ALGORITHMS 14, 449-465 (1993)

Greedy Packet Scheduling on Shortest Paths*
YisHAY MaNsouR?

IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, New York 10598
AND

Boaz PaTT-SHAMIR?

Laboratory for Computer Science, MIT, Cambridge, Massachusetts 02139
Received July 25, 1991; revised April 1992

We investigate the simple class of greedy scheduling algorithms, that is, algo-
rithms that always forward a packet if they can. Assuming that only one packet can
be delivered over a link in a single step and that the routes traversed by a set of
packets are distance optimal (“shortest paths™™), we prove that the time required to
complete transmission of a packet in the set is bounded by its route length plus the
number of other packets in the set. This bound holds for any greedy algorithm,
even in the case of different starting times and different route lengths. The bound
also generalizes, in the natural way, to the case in which w packets may cross a link
simultaneously. Furthermore, the result holds in the asynchronous model, using
the same proof technique. The generality of our result is demonstrated by a few
applications. We present a simple protocol, for which we derive a general bound
on the throughput with any greedy scheduling. Another protocol for the dynamic
case is presented, whose packet delivery time is bounded by the length of the route
of the packet plus the number of packets in the network in the time it is sent.
T 1993 Academic Press, Inc.

1. INTRODUCTION

The performance of a routing protocol is evaluated by various measures,
such as global network throughput, maximum packet delivery time, storage

*A preliminary version of this paper appears in the “Proceedings of 10th Annual ACM
Symposium on Principles of Distributed Computing.”

"Part of the research was done while the author was at Aiken Computation Laboratory,
Harvard University, and supported in part by ONR under Contract NO0O{}14-85-K-0445,

tSupporled in part by DARPA under Contract N00014-87-K-0825.

449

0196-6774 /93 $5.00
Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

450 MANSOUR AND PATT-SHAMIR

requirement etc. Conceptually, we may break the task of routing a set of
packets across a communication network into two subproblems, which we
refer to as path selection and queuing policy. The path selection deter-
mines the routes that packets traverse, while the queuing policy deter-
mines which of the packets currently in the queue at a node to forward
over the link.

Specifically, the path selection problem is defined as follows. Given the
network topology and the locations of the sources and the destinations of
a set of packets, select the transmission paths. The selection may be made
at the destination, as in circuit switching networks [4], or while the packet
progresses in the network, as is common in packet switching networks [5].

The need for a queuing policy emerges from the following physical
restriction of the network. The width of the links is bounded, i.e., only w
packets can progress over a link at a time, where w is some positive
integer. However, it is conceivable that more than w packets wish to
traverse the same link simultaneously. The task of a queuing policy is to
schedule the pending packets over the link. In practice, queuing policies
exhibit assorted combinations of FIFO, fixed priorities, some sort of
congestion control, etc. (see [1, 7]). In most cases the queuing policy is
greedy; that is, a packet is delayed only if w other packets currently
progress over the link.

The isolation of path selection and queuing policy allows us to study the
effects and relations between them. In this paper we bound the delivery
time for the case in which the paths are shortest and the schedule is
greedy. We stress that our results do not depend on the separation
between the two subtasks.

Most of the related previous work concentrated on routing in a syn-
chronous model and assumed that w = 1. The abstraction of routing
protocols, as presented here, was first studied by Leighton, Maggs, and
Rao [3]. In this abstraction, there is a fixed set of k packets, and a route is
assigned to each packet. The packets traverse the assigned routes. We
study the time required for delivering a packet, where the time for a
packet to traverse any link is at most one time unit.

Leighton et al. [3] proved that there exists a schedule that delivers all
packets in O(d + ¢) time, where d is the maximal path length and ¢ is an
upper bound on the number of routes that share a single edge. Unfortu-
nately, the proof is non-constructive, and no polynomial time algorithm to
compute this optimal schedule is known. They also provide two random-
ized distributed protocols for the problem. The first applies to arbitrary
sets of paths and requires O{(c + d log|V]) time. The second protocol
applies to the case of [Heveled paths (where the paths can be partitioned
to / levels) and completes the packet delivery in O(c + [+ log|V]) time.
The latter protocol requires all packets to start at the same time.

PACKET SCHEDULING ON SHORTEST PATHS 451

Cidon et al. [2] conjectured that in the synchronous model, if the path
selection algorithm produces shortest paths, then any greedy queuing
policy delivers all k packets within d + k — 1 time units, assuming w = 1.
Previously, only special cases of this general conjecture were proved. In
their classical work on randomized routing on a hypercube, Valiant and
Brebner [8] show, as one of the steps in the proof, that any greedy
scheduling of & packets on a line of 4 processors requires no more than
d + k — 1 time units. Cidon et al. proved their conjecture in the special
case of leveled paths and showed that this bound holds for arbitrary
shortest paths when coupled with a specific greedy queuing policy, de-
noted by Min-Went (the queuing policy at the nodes is to first forward
packets that traversed the least distance so far).

Rivera-Vega et al. [6] considered the related problem of “file redistribu-
tion scheduling.” They investigated various computational aspects of the
problem. In one of their results they prove that scheduling k packets over
shortest paths of length d, using fixed-priority policy, takes at most
d + k — 1 time units. The result holds in the general case in which start
times may be different, and the time bound for a packet does not depend
on the length of other paths.

In [2] it is also shown that if an arbitrary set of routes is allowed, then
many natural routing strategies (e.g., priority, FIFO, Min-Went) may
require (n'?) time, when d and k are ©(n). This result suggests yet
another motivation for considering shortest paths.

In this work we settle the conjecture posed in [2] in the affirmative.
Specifically, we consider the general scenario in which k packets traverse
shortest paths and the queuing policy is any greedy queuing policy. We
show that any such schedule is guaranteed to deliver packet p; in no more
than d, + [(k — 1)/w| time units, where d; is the number of links p,
traverses, and w is the number of packets that can traverse a link
simultaneously. Our proof technique extends to the asynchronous case,
yielding the same bound.

Our result is obtained for the most general case, where the routes may
have different lengths and the packets are allowed to start traversing the
network at arbitrary time. This generality enables us to derive a few
interesting applications in the dynamic model, in which the total number
of packets is not bounded and packets are continuously generated and
delivered. Specifically, we consider the throughput of the network. Let n
be the number of nodes in the network, and assume that each node has an
arbitrarily large number of packets to send. We present a simple conges-
tion control protocol that guarantees, for any greedy queuing policy, even
in the asynchronous model, that every O(n) time units {}(nw) packets are
delivered. The congestion control protocol resides in the source nodes,
and its task is to decide when the next packet will be sent. We also show

452 MANSOUR AND PATT-SHAMIR

that if one selects a greedy queuing policy in which a packet is never
delayed by packets generated after it was generated, then each packet p,
arrives at its destination within d; + n time units.

For simplicity of presentation, we first prove our results in the syn-
chronous setting, and later discuss the asynchronous case. In Section 2 we
define formally the problem in the synchronous model. In Section 3 we
state and prove our main result in the synchronous model. Applications of
the main result in a dynamic network are presented in Section 4. In
Section 5 we describe the problem in the asynchronous model and prove
our main result in this model. In Section 6 we make a few concluding
remarks and point to some open problems.

2. Tue SyncHrRoNOUS MODEL

In this section we define the routing problem and its relevant parame-
ters. We model the communication network as a directed graph G =
(V, E), where an edge (u, v) represents a unidirectional link from proces-
sor u to v. There is a collection of k¥ packets p;, and k associated simple
paths, referred to as routes, R, = (ué,...,vﬁ,), 1 <i < k. Packet p; is
transmitted along route R; whose length is d;,. We deal with shortest path
routes, i.e., d; is equal to the distance from the origin to the destination of
R;foralll <i <k.

In the synchronous communication model we assume the existence of a
global clock, characterized by the property that a packet sent at time ¢ is
received by time t + 1. Packet p; starts traversing its route at time ¢! and
is delivered at time .. The duration of packet p, is the time interval
[¢,¢!]in which p; is in transit. A schedule is a mapping S of a packet and
a time step to a node in the graph. Intuitively, the schedule describes the
location of any packet at all time steps. At a given time step, a packet may
either progress along its route or remain in the queue. Therefore, the
schedule must satisfy the following condition. For all 1 <i < k and time
steps ¢! <t < t!, either packet p; does not progress at time t, i.e., S(p;, t +
1) = S(p;, t), or p, progresses at time t; ie., (5(p;, 1), S(p,t + 1)) is an
edge in R,. The nodes S(p,,t}) = vy and S(p,, t)) = v, are the source
and the destination of p,, respectively.

Packets p; and p; are said to meet at time ¢ if S(p,, t) = S(p;, 1). In this
paper we consider only schedules that satisfy the link width condition. This
condition is that at most w packets may progress over the same link at a
single time step. We call the parameter w the width of the links.

Packet p; is said to delay packet p; at time ¢, if p; does not progress at
time ¢, and the next link in the route of p; is currently traversed by p;.

PACKET SCHEDULING ON SHORTEST PATHS 453

Formally, at time ¢, packet p, meets p; and progresses, and
(S(piity), S(p;, ty + 1)) is an edge in R;, the route of p,.

A greedy schedule is a schedule such that if there are g packets waiting
to be forwarded on some link, then min(g,w) of these packets are
forwarded. Formally, if p; does not progress at time ¢, then there exist w
packets that delay p; at time ¢,

In Section 5 we generalize the above definitions to the asynchronous
case.

3. GREEDY SCHEDULES FOR SHORTEST PATHS

In this section we consider greedy scheduling in the synchronous model
for shortest paths, i.e., where the length of each route is equal to the
distance from its origin to destination. Our result is summarized in the
following theorem.

THeorem 3.1. Let p,,...,p, be a set of packets whose routes are
R,,..., R,, respectively. Suppose each R, is a shortest path of length d,,
1 < i < k. Then in any greedy schedule each packet p, arrives at its destina-
tion within d; + |(k — 1)/w} time units, where w is the width of the links.

In the rest of the section we fix a greedy schedule §. Since we
concentrate on a packet p,, we consider only the time interval [¢/,¢!] in
which p, traverses R, (the interval is finite since trivially ¢/ </ + k -
max {d }.

The main idea of the proof is based on the concept of time path. To
illuminate this concept we suggest the following analogy. Picture a train
conductor, who boards a certain train early in the morning, on which he
gets his lunch at noon. (The trains are analogous to packets, and the
conductor’s tour is analogous to the time path.) Each train travels a known
route, and the conductor has the train schedule by which he can infer
which train delays the other at intersections. (Analogously, our analysis is
on a given fixed schedule, from which we can infer which packet delays
which.) The conductor wishes to inspect as many trains as possible.
Naturally, he can change trains only whenever his train meets another
train. However, he is not willing to give up his lunch, which is served on
the first train he has boarded. For this reason, the conductor carefully
plans his tour in advance. What we would like to show is that the
conductor can find a tour in which he is delayed by each train at most
once and returns to his original train on time. Clearly, the time that the
conductor travels is the same as the time of the lunch train, and therefore
we can limit our interest to bounding the travel time of the conductor.

The concept of time path is formalized as follows.

454 MANSOUR AND PATT-SHAMIR

Derinimion 3.2, Let ¢, < ¢, be time steps. A function 7 that maps a
time steps interval [¢.,¢.] to packets is a time path if S(z(t),t) =
S(r(r — 1), 1) for all time steps ¢, < ¢ < t,. The location of a time path 7
at time ¢, denoted L(r,t), is defined as S(7(¢), t). The trace of the 7 is
the sequence L(r,t,),...,L(r,t,), after deleting repetitions. The time
interval [¢,, t,] is the duration of .

From the definition of a time path it follows that the trace of a time
path is a path in the graph. Another simple observation is that mapping all
the time steps to the same packet is a time path.

Informally, the outline of the proof of Theorem 3.1 is as follows. Given
a specific packet p;, we define an initial time path (whose duration is
[}, ¢!], the time in which p; is in transit) that maps all time steps to p;.
Then we manipulate this time path in a way such that the length of its
trace remains invariant. We further show that a time path can be modified
until the resulting time path is delayed at most once by each packet and is
not delayed by its last packet. Thus, each time in which the final time path
is delayed, it is delayed by w different packets. This, in conjunction with
the fact that the trace of the final time path has the same length the
original route has, proves that the time for this packet is bounded by
d, + |tk — 1) /w)

We start with some additional definitions concerning time paths. For a
time path 7 and a time step ¢, we say that t is delayed at time ¢ if
L(r,t) = L(r,t + 1); 7 is delayed by a packet p, where p is one of the w
packets that delayed packet 7(t) at time ¢. The existence of w such
packets is guaranteed by the greedy nature of the schedule.

The following abstract operation is our tool for manipulating time paths.

DeriniTioN 3.3, Switch is a mapping from time paths to time paths.
Switch is applicable to a time path 7 if there exists a packet that delays
at some time ¢ and meets 7 at some time ¢’ > f. Suppose Switch is
applicable to 7. Let p be the first packet that delays 7 and later meets 7.
Let ¢z, be the first time p delays 7, and ¢, the first time after ¢, that p
meets 7 again. For all ¢, <t < t,, Switch(rX¢) is defined as follows.

D, fort, <t <t

Switch(7)(¢) = {

r(t), otherwise.

The packet p is called the detour packet, the time interval [¢,, ¢,) is called
the detour time, and ¢, is called the rank of 7.

Carrying on with the analogy to our train conductor, we say that the
Switch operation is a tool by which he can safely switch trains and be on
time for lunch, since whenever he switches trains he is guaranteed to

PACKET SCHEDULING ON SHORTEST PATHS 455

return to his previous tour. The conductor’s strategy in planning his tour is
as follows. His initial tour consists merely of the lunch train; he then
repeatedly applies Switch to his current tour, until Switch is not applicable
anymore. We will prove that this strategy always terminates.

The rest of this section is organized as follows. First, we prove that the
Switch operation preserves the source, destination, and duration of a time
path. Next, we show that Switch also preserves the shortest path property.
Finally, we show that Switch cannot be applied iteratively infinitely many
times on any time path.

Note that once we reach a time path to which Switch is not applicable,
we are guaranteed that this time path is delayed at most once by each
packet. The result follows, since the duration of a time path is bounded by
the length of its trace plus the number of times it is delayed.

In the following lemma we establish some immediate properties of time
paths and the Switch operation.

LemMma 34. Let 7 be a time path with duration [t_,1,). Assume that
Switch is applicable to r, and let t, be the rank of v. Denote v’ = Switch{r).
Then the following properties hold.

1. 7' is a time path with duration (t_,t,].

2. 7' is not delayed at time t,.

3. The source and the destination of the traces of v and 7' are identical;
ie, L{', ¢t)= L{r,¢t), and L', ¢t,) = L(r,¢,).

4. Suppose that p and 7(t,) meet at time t,. If p delays 7 at time
t, <t <t, then Switch is applicable to 7.

Proof. 1. Obviously, 7 is defined in the time interval [¢, r). Let [¢,, ¢,)
be the the detour time, and let p be the detour packet. By the definition
of Switch, r and 7' are identical in the two time intervals [z, f,) and
[t,,¢.), and /(1) = p for all ¢, < ¢ < ¢,. Hence S(7'(¢),t — 1) = L(7', ¢ —
1) for all time steps ¢, <t < t, except for t = ¢, or t = t,. Suppose now
that r(z, — 1) = p,,. Since p delays p, at time t,, we have that S(p,,t,)
= S(p, t,), which implies S(+'(¢, — 1),t,) = L(1', t,). Similarly, the condi-
tion holds for ¢ = ¢,.

2. Let p be the detour packet. By definition of Switch, 7'(¢,) = p.
Since Switch is applicable to 7, packet p delays 7 at time ¢, That is,
S(p,ty) = L7, 1) = L7, 1, + 1), and S(p,t,) # S(p,t, + 1). By part 1
above, 7' is a time path, and hence L{7', ¢, + 1) = S(7'(¢,), ¢, + 1). Since
7'(t,) = p, we have that L(+',r;) # L(+',t, + 1), which implies that 7’ is
not delayed at time ¢,

3. Consider the destination first. By the definition of Switch, 7'(z,) =
7(¢,), and hence L(7',t,) = L(1,¢,). As for the source, let ¢, denote the

456 MANSOUR AND PATT-SHAMIR

rank of 7, i.e., the first time in which 7' differs from . If ¢, > ¢, then
clearly L(7',t) = L(7,t,). Otherwise, the detour packet p delayed 7 at
time ¢,, and hence L(+',¢,) = S(p, 1)) = L(7,1)).

4, Immediate from the definition of Swirch applicability. O
Next, we show that Switch preserves the shortest path property.

LemMma 3.5, Suppose Switch is applicable to time path T, and let p be the
detour packet. If the trace of T is a shortest path and the route of p is a
shortest path, then the trace of Switch(r) is a shortest path.

Proof. Let [¢t,t,) be the detour time. Denote v = L(r,¢)) and u =
L(7,t,). Consider the following two path segments. The first is the
segment of the trace of 7 induced between ¢, and ¢,, and the second is the
segment of the route of p connecting ¢ and u (the fact that 7' is a time
path implies that S(p,t,) = v and S(p, ¢,) = u). Since both segments are
subpaths of shortest paths, they are the shortest paths between their
endpoints, and since they have the same endpoints, their lengths are
equal. Therefore, the length of the trace of Switch(r) is equal to the
length of the trace of 7. Having this fact, together with the fact that the
traces of 7 and Switch(r) share the same endpoints (Lemma 3.4, part 3),
and with the assumption that the trace of 7 is a shortest path, we conclude
that the trace induced by Switch(7) is a shortest path, too. O

Having proved the above lemmas for a single application of Switch to a
time path, we turn to deal with iterative applications of Switch.

DEerinITION 3.6. A sequence 7, 7,... Is a time path sequence if 7, is a
time path, and 7;,, = Switch(r)) for all j > 0.

The following lemma establishes the fact that between two applications
of Switch with rank r there must be a Switch operation with rank strictly
smaller than r.

Lemma 3.7. Let 7y, 7,,... be a time path sequence. Suppose that the
rank of 7, is r, and assume that the rank of 7, is also r, where i <j. Then
there exists i <1 < jsuch that the rank of T, is strictly smaller than r.

Proof. By the definition of Switch, the rank of a time path 7 must be
equal to some time step in which r is delayed. Assume, for contradiction,
that the rank of 7, for all i </ < j, are at least r. Note that if the rank of
7,4+, is at least r, and 7, is not delayed at time r, then rank of 7,,, is at
least r + 1.

By part 2 of Lemma 3.4, 7, is not delayed at time r. Hence the rank of
7, must be strictly greater than r for all 1 </ < j. This implies that for all
i<l <j, rft) =7, 1) for all t < r; ie., all these time paths have the

PACKET SCHEDULING ON SHORTEST PATHS 457

same initial segment. This, in particular, implies that 7; is not delayed at
time r, a contradiction to the assumption that the rank of 7; is r. D

We now prove the crucial property we need: Switch can be applied only
a finite number of times.

Lemma 3.8. Given a schedule of a finite set of finite paths, all time path
sequences are finite.

Proof. First, note that the total number of time paths for the given set
of paths is bounded (a trivial bound is k*“, where k is a bound on the
number of packets and d is a bound on the length of the routes). Suppose
now, for contradiction, that there exists an infinite time path sequence.
Then there must exist a cyclic time path sequence, i.e., time paths
TisTists-+»Tjre SUch that 7, =7, and 7,,, = Switch(r) for all j <i <
j +c. Let r be the minimal rank of the time paths in the cycle and
suppose that the rank of 7, is r. By the cyclicity, the rank of 7, . is also

r. Hence, by Lemma 3.7, there must be 0 </ < ¢, such that the rank of
T,.+; 18 strictly less than r, a contradiction to the minimality of ». O

We can finally prove our main result. Let us first restate it.

Thueorem 3.1. Let p,,...,p, be a set of packets whose routes are
Ry, ..., Ry, respectively. Suppose each R, is a shortest path of length d,,
1 <i < k. Then in any greedy schedule each packet p; arrives at its destina-
tion within d; + |(k — 1)/w] time units, where w is the width of the links.

Proof. Let p; be any packet. Suppose that p; is in transit on its route
in the time interval [t ¢,]. Consider the time path sequence 74, 7,,...
obtained by letting 7,(¢) = p, for all time steps ¢, < ¢ < ¢,, and letting
7.1 = Switch(z;). By Lemma 3.8, this sequence is finite. Let 7* be the last
time path in the sequence. The fact that Switch is not applicable to 7*
implies that no packet delays 7* twice. Since each delay of * is incurred
by w different packets, and adding the fact that p, does not delay 7* (by
part 4 of Lemma 3.4), we have that the total number of delays in 7* is at
most [(k — 1)/w], which implies that the duration of 7* is at most its
trace length plus |[(k — 1)/w]. From Lemma 3.5 it follows that the lengths
of the traces of all the time paths in the sequence are equal, and since
their duration is (by definition) unchanged, we conclude that p, arrives at
its destination in at most d; + [(k — 1)/w] time steps. O

As a final remark we point out that in the proof we do not make use of
the assumption that the routes are pre-determined. In fact, we only need
to assume that the paths that were actually traversed are shortest.

458 MANSOUR AND PATT-SHAMIR
4. AppPLICATIONS FOR DynaMic NETWORKS

Theorem 3.1 provides an interesting insight into the relationship be-
tween queuing policies and the path selection schemes. In this section we
give a few simple applications of the result in the dynamic model, in which
packets are continuously generated by the nodes.

4.1. Throughput of Networks

In order to measure throughput of a network we assume that the nodes
have an unbounded number of packets to send. The throughput of a
network, intuitively, is the rate at which packets are delivered. We apply
the result for the worst case delivery time of a single packet, obtaining
bounds on throughput.

We define a congestion control protocol, i.c., a protocol that resides in
the source nodes, whose task is to decide when to send the next packet.
Consider the following generic protocol. When a packet is received by its
destination node, an acknowledgment is sent back to the source. A new
packet is sent only after an acknowledgment for a previous packet is
received, in a way such that exactly w packets and acknowledgments are
in transit to and from each node at any point in time. We assume that the
packets and the acknowledgments traverse shortest paths.

Let n be the number of nodes in the network and assume that each
node has an arbitrarily large number of packets to send. We show that
every O(n) time units nw packets are delivered, so long as the queuing
policy is greedy.

The following lemma bounds the progress that is made in the network
using the above congestion control protocol.

LEmMMA 4.1. In any 3n consecutive time units, at least nw messages
(either regular packets or acknowledgments) are delivered.

Proof. As mentioned above, there are always nw messages in transit in
the network. Let ¢ be any point in time, and let m,,...,m,, be the
messages in transit at time ¢. If all these messages are delivered by time
t + 3n, we are done. Otherwise, let m’ be a message that is not delivered
by time ¢ + 3n, i.e.,, m' is delayed at least 2n times in the time interval
[t,t + 3n). Hence there are at least 2nw messages in transit in this time
interval, and therefore, at least nw messages are delivered (again, since in
every point in time there are only nw messages in transit). 3

Using the bound on the number of messages delivered, we derive a
bound on the number of “regular” packets delivered by the protocol,
which is the throughput of the network.

PACKET SCHEDULING ON SHORTEST PATHS 459

Tueorem 4.2. Consider the generic protocol, coupled with any greedy
queuing policy. Then in ©(n) consecutive time units, Q(nw) packets are
delivered.

Proof. By the nature of the protocol, the type of the message associ-
ated with a node alternates between “regular packet” and “acknowledg-
ment”’—when a packet is delivered an acknowledgment is sent, and when
an acknowledgment is received, a packet is sent. Hence, for every node,
the difference between the number of packets delivered and the number
of acknowledgments received, in any time interval, is at most w.

Consider a time interval of length 9n2. We show that in any such interval,
at least nw packets are delivered. By Lemma 4.1, at least 3nw messages
are delivered in any such time interval. If less than nw packets are
delivered, then, by the pigeonhole principle, there must exist a node for
which the number of received acknowledgments is greater than the num-
ber of delivered packets by at least w + 1, a contradiction. O

We remark that when the length of the time interval tends to infinity, a
simple extension of the argument above shows that the average number of
packets delivered per time unit is at least w /2.

Theorem 4.2 applies to any greedy queuing policy when coupled with
the above congestion contro! protocol. However, Theorem 4.2 does not
bound the delivery time of any single packet. Indeed, it might be the case
that some of the packets will never reach their destinations. Several
queuing policies overcome this undesirable behavior. For example, in the
FIFO queuing policy, a packet is delayed O(n?/w) time units in the worst
case. In Section 4.2 we show how, with the aid of a global clock, an
extremely simple protocol gives a O(n/w) bound on the number of delays
per packet.

4.2. Delivery Time

We define the delivery time of a packet to be the time since the packet
was generated until it is delivered. We also assume that there is a global
clock accessible by all nodes. In the following theorem, we present a
specific greedy queuing policy using a clock and such that the delivery time
of a packet does not depend on packets generated after it.

Tueorem 4.3. In a dynamic network with links of width w, if the
packets traverse shortest paths, then there is a queuing policy that delivers
any packet p within d, + l{,/w] time units, where d, is the length of the
route of p, and I, is the number of packets in the network when the p was
generated.

460 MANSOUR AND PATT-SHAMIR

Proof. Our strategy is to define a queuing policy in which a packet p
can be delayed only by packets in transit when p is generated, and to show
that the theorem holds for the resulting schedule. Specifically, we employ
a priority queuing policy, in which scheduling conflicts are resolved by a
global fixed priority ordering. Each packet is assigned a priority, and if a
scheduling conflict arises, then the packet with the higher priority is
forwarded (ties may be broken arbitrarily).

Formally, the priority is a mapping # of packets to integers. The
priority queuing policy is a greedy schedule that observes the rule that
packet p delays p’ only if they meet and #(p) < H#(p'). We call the set
E,={p: #(p) < H#(p)} the set of effective packets with respect to p,
and denote k, = IEPI.

Given a priority queuing policy, observe that from the point of view of a
packet p it seems as if only packets in E, exist, since other packets do not
influence its schedule. In particular, the schedule of the packets in E,
would not change even if all packets not in E, are removed from the
initial set of packets. Therefore, when analyzing the delivery time of p, we
may assign k = k.

Consider the priority queuing policy where the time in which a packet is
generated is assigned to be its priority. Since only packets that were in the
network when this packet was generated may delay it, the discussion above
implies the result. O

Combining the protocols described in Theorems 4.2 and 4.3, we obtain
the following immediate corollary.

CoROLLARY 4.4. In a dynamic network with w-width links, if the packets
traverse shortest paths, then there is a queuing policy such that

1. Each packet p is delivered within d, + n time units, where d , is the
length of the route of p.

2. In O(n) consecutive time units, Q(nw) packets are delivered.

5. SCHEDULES IN THE ASYNCHRONOUS SETTING

In this section we extend the proof of Theorem 3.1 to the asynchronous
model. In Section 5.1 we define formally the problem in the asynchronous
model. In Section 5.2 we state our result and prove it in this model. We
remark that the proof is essentially the same as in Section 3.

PACKET SCHEDULING ON SHORTEST PATHS 461

5.1. The Asynchronous Model

As in the synchronous model, we model the communication network as
a directed graph, where an edge (u,) represents a unidirectional link
from processor u to v. There is a collection of k packets p, and k
associated simple paths, referred to as routes, R, = (v}, .. LU) 1 <i<k.
Packet p, is transmitted along route R; whose length is d We deal with
shortest path routes, i.e., d; is equal to the distance from the origin to the
destination of R, forall 1 <i < k.

We denote the route of packet p, by R, = ¢}, ..., L(Q We associate with
each packet p; the time in which the send events s(,,...,sd -, and the
receive events ry, ... rd occur. Time s; is the time in which packet p; is
sent from node v}, and r/, | is the tlme in which p; is received in the other
end of the link, i.e., at node vj, . For any schedule, the time of the events
must satisfy rj <s; <rj,, for all 1 <i<k and 0 <j<d,. For the
purpose of tnme analy51s we assume that a packet is in transit over a link
at most one time unit, ie.,0 <r/,, —s/ <lforl <i<kand0<j<d,.

A key difficulty in the asynchronous model is formalizing the intuitive
notion of “previous time step” and “next time step,” which in the
synchronous model are simply ¢t — 1 and ¢ + 1, respectively. The limit
operator allows us to present an elegant formulation of these notions in a
continuous time system. The limit operator is used below in the definitions
of schedule and time paths.

The schedule, as in the synchronous case, is a mapping from time to
nodes. While a packet progresses over a link, the schedule maps it to the
sending node. Formally, the schedule mapping is defined in the continuous
interval [sy, 7,1 by S(p,;, 1) = v/, where j is such that r/ <t <rf,, is
satisfied. We may think of a schedule as right-continuous step function:

z“n/) S(p,t)y =5(p.t,).
t=1,

We fix, as in the synchronous case, the schedule and its related sequences
of events. Packet p; is said to progress at the time intervals [sj, rj,,,) for
0 <j < d,. The definition of meet remains unchanged: packet p; meets p;
at time ¢ if SCp;, 1) = S(p;, 1).

Recall that the link width condition is that for every link, at any point in
time, there are at most w packets in transit over the link. We say that
packet p, delays packet p, in the time interval (¢, ¢,), if during this time
interval packet p, progresses over some link (v, #), and p; is in node v,
waiting to be forwarded over (v, u). Formally, p; delays p, in the time
interval [¢y, ¢,) if there exist j and j' such that (v}, v/, ,) = (v, v,), and
(s, rf) N rf, sk) 2 (1, 1))

462 MANSOUR AND PATT-SHAMIR

A queue policy is greedy if in its associated schedules a packet does not
progress only if there exist w packets that delay it.

5.2. Asynchronous Time Paths

We are now ready to state and prove our main result in the asyn-
chronous case. First, we formalize the definition of time path in the
continuous fashion.

DermviTion 5.1, Let ¢, < ¢, be time points. A function 7 that maps the
time interval [, ¢,] to packets is a time path if for all times ¢, <t <1,

lim S(r(¢),1') = S(7(¢'),1").

<t

The definitions of location, trace, and duration of a time path remain
the same. We say that a packet p delays (resp., meets) a time path 7 at
time t if p delays (resp., meets) the packet 7(¢) at time ¢. The definition
of Switch requires no change under the revised definitions of a time path
and the notion of a packet delaying another. We repeat it for the sake of
completeness.

DeriNiTION 5.2, Switch is a mapping from time paths to time paths.
Switch is applicable to a time path r if there exists a packet that delays
at some time ¢, and it meets 7 at some time ¢’ > t. If Switch is applicable
to 7, let p be the first such packet, let ¢, be the first time p delays 7, and
let ¢, be the first time after ¢, that p meets 7 again. For ¢ &
[2,,], Switch(7X¢) is defined as follows:

' r, fort € [1,1))
Switch(7)(r) = 7(t), otherwise

The packet p is called the detour packet, the time interval [z, ¢,) is called
the detour time, and t is called the rank of 7.

Note that if the detour interval is [¢y, ¢,), then times ¢, and 7, are some
receive or send event, and hence, given a schedule, there are at most 2¥,d,
possible ranks.

The proof of the asynchronous case proceeds along the same lines of
the proof for the synchronous case. In what follows, for each claim we
indicate the corresponding one in Section 3. The differences are minor.

The lemma below is analogous to Lemma 3.4. The proof uses the same
arguments as in the proof of Lemma 3.4 and is therefore omitted.

PACKET SCHEDULING ON SHORTEST PATHS 463

LemMMmA 53, Ler 1 be a time path with duration [t t,]. Assume that
Switch is applicable to v, and let t, be the rank of 7. Denote ' = Switch(r).
Then the following properties hold.

1. 7' is a time path with duration [t_,1t,].
2. 7' is not delayed at time 1.
3. L(7,t) = L(7,t,), and L(7',t,) = L(1,1,).

4. Suppose that p and t(t,) meet at time t.. If p delays v at time
t, <t <t, then Switch is applicable to 7.

The lemma below is analogous to Lemma 3.5. Its proof is identical to
the proof of Lemma 3.5.

LemMa 5.4, Assume that Switch is applicable to time path T, and let p
be the detour packet. If the trace of 7 is a shortest path and the route of p is
a shortest path, then the trace of Switch(t) is a shortest path.

The definition of time path sequence remains unchanged: a sequence
Ty Ty -.. 1S a time path sequence if 7 is a time path, and 7, , = Switch(r))
for all j = 0.

The lemma below is analogous to Lemma 3.7. The proof is omitted.

Lemma 5.5. Let 74, 7,,... be a time path sequence. Suppose that the
rank of T, is r, and assume that the rank of 1, is also r, where i < j. Then
there exists i <1 < j such that the rank of T, is strictly smaller than r.

The lemma below is analogous to Lemma 3.8. We provide a slightly
different proof here.

LemmMa 5.6. Given a schedule of a finite set of finite routes, all time path
sequences are finite.

Proof. Unlike the synchronous case, here the number of possible time
paths is not bounded. However, the number of ranks is bounded by
2%%_.d,. Assume, for contradiction, that there exists an infinite time path
sequence. Consider the corresponding infinite sequence of ranks. Let r be
the smallest rank that appears infinitely often in the rank sequence. By
Lemma 5.5 there must exist a rank r’ < r that appears infinitely often as

well, a contradiction to the minimality of r. O

The theorem below, obviously, is the analog of Theorem 3.1. The proof
of Theorem 3.1 is a proof for Theorem 5.7 as is. We restate it here for the
sake of completeness.

THeOREM 5.7. Let p,,...,p, be a set of packets whose routes are
R, ..., R,, respectively. Suppose each R, is a shortest path of length d,,
| <i < k. Then in any greedy asynchronous schedule each packet p; arrives

464 MANSOUR AND PATT-SHAMIR

at its destination within d; + [(k — 1)/w| time units, where w is the width of
the links.

6. Discussion

In this paper we studied the performance of greedy queuing policies.
Our main result shows that any greedy policy guarantees a certain pipelin-
ing property, when the paths traversed by the packets are shortest paths.
We stress that the correct interpretation of this result is not a particular
protocol. Rather, it proves that in the case of unbounded queues at the
nodes, greedy policies cannot be “catastrophic.”

The assumption that the packets traverse shortest paths is crucial for
our proof. It would be interesting to extend the results beyond the shortest
paths assumption. A natural candidate would be a variant of ‘“‘nearly
shortest paths.” Unfortunately, in all the formulations that we considered,
the bounds that we achieved were not interesting.

Our result is tight in the sense that there are scenarios in which the
delivery time is exactly d + [(k — 1) /w]. However, since this bound does
not assume any other properties of the routing paths, it is conceivable that
a better bound can be obtained when additional information is assumed.
For example, suppose that all packets start at the same time. Then, for a
packet which is delayed, the configuration of the paths implies a smaller
number of delays in subsequent steps. This property may be captured
better by a potential function. Finding such a potential function seems to
be an interesting open problem.

Another interesting open problem is to find the corresponding bound
for the case of bounded queues, i.e., when a packet may be delayed at a
node due to lack of space in the node at the other endpoint.

REFERENCES

1. D. BErTSEKAS AND R. GALLAGER, “Data Networks,” Prentice—Hall, Englewood Cliffs,
NJ, 1987.

2. 1. Cibon, S. KutTteN, Y. MAnsour, anp D. PELEG, Greedy packet scheduling, in
“Proceedings, 4th International Workshop on Distributed Algorithms, Bari, Italy, Septem-
ber 1990.”

3. T. LeicHTON, B. MAGGs, AND S. Rao, Universal packet routing algorithm, in “29th
Annual Symposium on Foundations of Computer Science, White Plains, NY, October
1988,” pp. 256-269.

4. J. MarTiN, “SNA: IBM’s Networking Solution,” Prentice-Hall, Englewood Cliffs, NJ,
1982.

5.

6.

PACKET SCHEDULING ON SHORTEST PATHS 465

J. McQuiLLan, 1. RICHTER, anp E. Rosen, The new routing algorithm for the ARPANET,
1EEE Trans. Commun. 28, No. 5 (1980), 711-719.

P. I. RivEra-VEGA, R. VARADARAJAN, AND S. B. NavaTHE, Scheduling data redistribu-
tion in distributed databases, in ‘“‘Proceedings 6th Intl. Conf. on Data Engineering, Los
Angles, CA, Feb. 1990, pp. 166-173; also, Technical Report UF-CIS-TR-90-7, Computer
and Information Sciences Department, University of Florida.

. A. TanNensauM, “Computer Networks,” Prentice~Hall, Englewood Cliffs, NJ, 1981.
. L. G. Vauiant anp G. J. BreeNER, Universal schemes for parallel communication, in

“Proceedings, 13th Annual ACM Symposium on Theory of Computing, Milwaukee, WI,
May 1981, pp. 263-277.

