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Abstract

Consider n anonymous nodes each initially supporting an opinion in {1, 2, . . . , k} and suppose
that they should all learn the opinion with the largest support. Per round, each node contacts a
random other node and exchanges B bits with it, where typically B is at most O(log n).

This basic distributed computing problem is called the plurality consensus problem (in the
gossip model) and it has received extensive attention. An efficient plurality protocol is one that
converges to the plurality consensus as fast as possible, and the standard assumption is that each
node has memory at most polylogarithmic in n. The best known time bound is due to Becchetti
et al. [SODA’15], reaching plurality consensus in O(k log n) rounds using log(k + 1) bits of local
memory, under some mild assumptions. As stated by Becchetti et al., achieving a poly-logarithmic
time complexity remained an open question.

Resolving this question, we present an algorithm that with high probability1 reaches plurality
consensus in O(log k log n) rounds, while having message and memory size of log k + O(1) bits.
This even holds under considerably more relaxed assumptions regarding the initial bias (towards
plurality) compared to those of prior work. The algorithm is based on a very simple and arguably
natural mechanism.

1As standard, with high probability (w.h.p.) indicates that an event has probability 1− 1/nc for a constant c ≥ 2.



1 Introduction and Related Work
Coordination problems in distributed systems require nodes to agree on a common action or value.
These problems are referred to as consensus, agreement, or voting and are among the most fundamen-
tal problems in distributed computing [Lyn96,Tsi84,TBA86]. In this paper, we consider the following
basic agreement problem, often called plurality consensus problem2 in the gossip model:

There are n nodes each supporting an opinion in {1, . . . , k}. Per round

each node contacts one random other node and exchanges B bits with it,

where typically B is at most O(log n). Eventually, all nodes should

hold the opinion with the largest initial support.

This problem, or close variants of it, come up in computer networks such as sensor networks [AAD+06]
and peer-to-peer networks [AFJ06], as well as in a wider range of settings that goes much beyond
the classical distributed computing settings: e.g., social networks [MS], biological systems [CKFL05,
SKJ+08,CCN12,BSDDS14], and chemical reaction networks [CDS+13,Dot14].

State of the Art: Gossip algorithms for plurality have received extensive attention, see e.g. [BCN+14,
BCN+15a,BCN+15b,AAE08,PVV09]. The key performance measures of the algorithms are: (1) time
complexity, and (2) space measured by the message size and memory size per node. In the standard
regime where message and memory sizes are at most poly(log n), the best known algorithm is due to
Becchetti et al. [BCN+15a], achieving a time complexity of O(k log n), under some mild assumptions,
while having log(k + 1) bit message/memory. A faster solution was known before, however at the
expense of a significantly larger message/memory size. Particularly, the general approach of Kempe
et al. [KDG03] can be used to obtain a plurality algorithm with O(log n) time-complexity but with
O(k log n) message/memory size. Also, a number of other fast algorithms are known but all limited
to very small k, e.g., k = 2 [AAE08, PVV09]. Given that each of the known solutions lacks in one of
the dimensions, Bechetti et al. [BCN+15a] state:

“A major open question for the plurality consensus problem is whether a plurality protocol exists
that converges in polylogarithmic time and uses only polylogarithmic local memory.”

Our Result: In this paper, we answer this question in the affirmative. We particularly present an
algorithm that has nearly optimal bounds in both dimensions:

Theorem 1.1. There is a gossip algorithm that solves plurality w.h.p. in O(log k · log n) rounds using
log k +O(1) bits of local memory, assuming that the initial bias p1 − p2 = Ω(

√
log n/n). Here p1 and

p2 are, respectively, the fractions of nodes holding the plurality and second largest opinions.

This initial bias assumption p1 − p2 = Ω(
√

log n/n) is due to the concentration considerations3,
and it is at least as relaxed as the assumptions in prior work. In fact under the stronger assumptions
of [BCN+15a] (to be stated later), our algorithm converges in O(log k log logn+ log n) rounds.

As we will see, the algorithm is based on a quite simple and intuitive mechanism and one can
even argue that dynamics with a similar flavor occur in nature. We also note that the result might
be viewed as somewhat surprising, given the indications in the prior work and especially when put in
contrast to what Becchetti et al. [BCN+15a] write in their conclusion:

“We believe that this distance [referring to the monochromatic distance, which can be as large as
Ω(k)] might represent a general lower bound on the convergence time of any plurality dynamics
which uses only log k +O(1) bits of local memory.”

2This problem has also been called proportionate agreement and in the special case of k = 2 majority agreement.
3Even when flipping n fair coins, there is a 1/n0.1 probability that the number of heads is outside n/2±Ω(

√
n logn),

which means a relative deviation of ±Ω(
√

logn/n). This is essentially why we need to assume p1 − p2 = Ω(
√

logn/n).
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A Remark—Measuring Memory Size: We note that because of the practical scenarios in which
gossip algorithms are applied, it is more standard to measure the memory size in terms of the number
of states rater than the number of bits. Here we briefly discuss the reasons. One justification for
considering the number of states is that many of these dynamics are often viewed as Finite-state
Automota, for which minimizing the number of states is a classical optimization objective (see, e.g.,
[Hop71, Yu05]). In addition, states of nodes have a clear physical interpretation in practical settings
such as in molecular programming: in particular, in chemical reaction networks, the encoding of the
state is not binary but rather (closer to) unary [CSWB09], and hence minimizing the number of the
states is a more sensible objective. Although these two ways of measuring are equivalent when talking
about exact bounds—as the number of states is simply exponential in the number of bits—they differ
when discussing relaxed notions of optimality. Particularly, a constant factor improvement in the bit
complexity, which might be regarded negligible, translates to a polynomial improvement in the number
of states, which would be considered significant.

In fact, when presenting our result, we start with a simpler algorithm with log k + O(log log k)
bit complexity, and then present a more complex one with bit complexity of log k + O(1). Our first
algorithm converges within O(log k · log n) rounds but uses log k + O(log log k) bits. Note that this
already gives an answer to the open problem raised by Bechetti et al. [BCN+15a], stated above. Yet,
even though the message size of this simple algorithm in terms of the number bits is optimal up to an
additive O(log log k) term, with respect to the number of states, its O(k log k) state complexity bound
is an O(log k) factor off from the trivial lower bound k. In our second algorithm, we improve this to
a state complexity of O(k), which is optimal up to a constant.

1.1 Our approach, in the context of the previous ones

Plurality protocols can be roughly divided into two main classes: what we call “reading” protocols
and what we call plurality amplification protocols (or amplification protocols, for short).

A natural approach for solving plurality, in fact perhaps the first approach that comes to the mind
from a standard algorithm design viewpoint, is to estimate the frequencies of the nodes of each opinion
and pick the most frequent one. In a more relaxed definition, in a reading style protocol, for each
opinion i, we would have at least one node v that learns some estimation for the frequency of this
opinion in the population. Kempe et al. [KDG03] provided a general approach for designing reading
type protocols for computing aggregate functions (e.g. sum or average). As noted by Becchetti et
al. [BCN+15a], adopting the approach of Kemp et al. to the plurality problem yields an O(log n) time
complexity but with O(k log n) message/memory size. Generally, it seems implausible that reading
style algorithms would lead to a plurality algorithm for the random gossip model with polylogarithmic
size messages and polylogarithmic time complexity4.

The second class of plurality amplification protocols do not try to estimate the initial distribution,
but rather attempt to modify this initial distribution into another distribution of the same plurality
opinion, but with a larger bias towards plurality. In other words, throughout the execution of an
amplification protocol, there is a shift from the initial distribution (with possibly very weak bias)
towards the target configuration (where we have consensus on plurality) by repetitively amplifying
the bias towards the plurality opinion via some positive feedback mechanism. The standard plurality
amplification protocols are based on simple majority rules. For example, Becchetti et al. [BCN+14]
consider an update rule where each node polls the opinion of three random nodes and adopts the
majority opinion among these. This algorithm uses only Θ(log k) bits of local memory, but unfortu-
nately has running time O(min{k log n, n1/3 · log2/3 n}). Other known time efficient algorithms exist
for small values of k, e.g., k = 2 [PVV09, DGM+11]. Recently, Becchetti et al. [BCN+15a] analyzed

4We note however that if the gossip model is relaxed to include non-random meetings, a rather simple “reading” style
algorithm would achieve this objective, see Appendix D.
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the well-known Undecided-State Dynamics, in which each decided node meeting a node of different
opinion becomes undecided (i.e., forgets its opinion) and every undecided node meeting a decided node
adopts its opinion. This protocol provides the current best bounds: they showed that the undecided-
state dynamics converges within O(k log n) rounds, using log(k + 1) bits of local memory, assuming5

k = O((n/ log n)1/6) and p1 − p2 = Ω(1/n1/6).

The high level idea of our algorithm: We want to create a dynamic with a ‘strong and fast
positive feedback ’ so that, roughly speaking, the opinions with larger support get amplified while those
with smaller support get attenuated. In more colloquial terms, we seek a (fast) ‘rich get richer ’ effect.
At the high level, our protocol consists of two main alternating steps: A selection step, which is
inspired by the classical Darwinian evolution, and a sequence of recovery steps. The selection process
imposes a constraint on the system that potentially may lead many nodes to lose their opinion and
become undecided. Specifically, a node survives the selection process only if it meets a node of its
own opinion. By that, we intentionally cut down the number of decided nodes significantly while
opinions with larger support survive through this process slightly better. Particularly, the plurality
opinion gets slightly less attenuation in comparison to the others, hence the proportion of the plurality
opinion to that of any other opinion grows. Since repetitive applications of selections would eventually
diminish the decided population, our system evolution incorporates some healing process between two
consecutive selections. In the healing phase, the fraction of undecided nodes shrinks back to (almost) 0
but the ratios between the number of nodes holding different opinions is roughly preserved. We repeat
through this cycle of selection and healing, thus continually amplifying the plurality, till reaching
plurality consensus. For further discussion on other rich get richer mechanisms, see Appendix A.

Other related work: The plurality problem bears some resemblance to problems studied in some
other settings: The restricted case of k = 2 has been extensively studied in the setting of population
protocols [AAD+06] and many “plurality amplification” type algorithms using small number of states
(e.g., 3 or 4) have been suggested [AAE08, DV12, MNRS14, AGV15]. This case of binary consensus
(k = 2) has been also studied in the voter model [DW83,HP01,WH04,Lig12]. The plurality problem
also resembles the heavy hitters problem in the streaming model, see e.g. [BICS10].

2 The Algorithm: Take 1
We next present a simpler variant of our algorithm, which reaches plurality in O(log k log n) rounds,
using messages of size log k+O(1) bits, but with per node memory size of log k+ log log k+O(1) bits.
Note that this result already answers the open question stated in the introduction.

2.1 The Algorithm Description

The algorithm is an extremely simple and clean dynamics, as follows: Let us call nodes holding one
of opinions {1, 2, . . . , k} decided while nodes holding no opinion are called undecided.

The algorithm works in phases, each having R = O(log k) rounds, as follows:

• Round 1 of each phase: - Relative Gap Amplification -

– a decided node keeps its opinion only if it contacts a node with the same opinion,

– undecided nodes remains undecided.

• Rounds 2 to R of each phase: - Healing -

– decided nodes keep their opinion,

– an undecided node v that contacts a decided node u adopts u’s opinion.

5They assume p1 ≥ (1 + α)p2 for some constant α and k ≤ O(n1/6). This implies p1 − p2 = Ω(p1) = Ω(1/n1/6).
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When Implementing this algorithm, each message has size log(k + 1) bits as it contains only one
opinion in {0, 1, . . . , k}, where 0 represents being undecided. As for the memory, the only additional
thing that a node needs to remember besides its opinion is the round number in the phase, i.e. modulo
R = O(log k), and that takes log log k +O(1) bits.

We next provide some intuition for why this dynamic converges to plurality within O(log n) phases
and then the next subsection presents the related formal analysis.

Basic notations: To keep track of the state of the system, we use a vector p = (p1, p2, . . . , pk) ∈ [0, 1]k

where each entry pi denotes the fraction of the nodes holding opinion i ∈ {1, 2, . . . , k}. Thus, the
fraction of undecided nodes is 1−

∑k
i=1 pi. Without loss of generality, in our analysis, we assume that

the opinions are renumbered such that initially p1 > p2 ≥ · · · ≥ pk.

Convergence intuition: A rough intuition for why the algorithm is designed this way and why it
converges to plurality consensus fast, based merely on expectations, is as follows: in the first round of
each phase, each node v keeps its opinion only if it contacted a node with the same opinion. Note that
this means, even if v contacted an undecided node, v forgets its opinion and becomes undecided. At
the end of this round, the fraction of nodes holding an opinion i changes from pi to p2

i , in expectation.
Thus, the ratio between the plurality opinion and an opinion i ∈ {2, . . . , k} goes up from p1

pi
to (p1pi )2.

This already is the desired ‘rich get richer’ effect, in terms of the ratios. However, as a side-effect of
this relative gap amplification, the fraction of decided nodes has dropped down significantly to about∑k

i=1 p
2
i , which can be as small as Θ(1/k). During rounds 2 to R of the phase, we fix this issue by

growing the fraction of decided nodes back to about 1. As we will show, during this healing period, the
ratio between different opinions remains essentially the same. Thus, looking over phases, we can say
that the ratio p1

pi
starts with at least 1 + 1/n and gets essentially squared in each phase. That means,

this ratio reaches 2 within O(log n) phases and from there to n in O(log log n) additional phases. Due
to the integralities, once the ratio passes n, it actually means that pi = 0. When this happens for all
the opinions i ∈ {2, . . . , k}, all of them have been filtered out and only the plurality opinion remains
alive6. From there, within additional O(log n/ log k) phases, the system reaches plurality consensus
where all nodes hold the plurality opinion.

A Remark—Interpretations of the Term Dynamics: When calling our algorithms “dynamics”,
we use this word as a general and relative rule of thumb for simplicity and succinctness, rather than
a precise and well-defined notion. In fact, there is no such precise definition and in the prior work,
the word dynamics has been used to refer to algorithms with a range of complexity: On one extreme,
there are simple update rules such as 3-majority or the undecided-state dynamics, and on the other
extreme, there are algorithms such as that of [BCN+15a, Section 4] which involves time-dependent
actions, assumes knowledge of global parameters of the network, and even relies on non-random
interactions. Our algorithms fall somewhere within this range. Particularly, they include basic time-
dependent behavior and use a minimal knowledge of parameters, but all interactions are random.
We believe that these algorithm are simple enough for implementation in most practical settings of
gossiping algorithms.

2.2 Analysis

We next provide the formal analysis, proving that:

Theorem 2.1. The above algorithm reaches plurality consensus w.h.p. within O(log k · log n) rounds,
assuming that the initial bias p1 − p2 ≥

√
C log n/n, for a sufficiently large constant C. Furthermore,

if initially p1/p2 ≥ 1 + δ for some constant δ > 0, then the convergence will happen in fact within
O(log k log logn+ log n) rounds, w.h.p.

6One case say this is virtually the same as ‘survival of the fittest ’ in Herbert Spencer’s terminology for describing
Darwin’s natural selection concept [Spe64]. In our setting, the largest opinion is effectively the fittest.
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Let bias = p1 − p2 be the difference between the fraction of the plurality opinion and the second
largest opinion. Finally, to keep track of the the ratio between the plurality opinion and the second
largest opinion, let us define

gap = min{ p1√
10 log n/n

,
p1

p2
} (1)

Note that when p2 ≤
√

10 log n/n, there is a large constant gap between p1 and each of the other
opinions as p1 ≥

√
C log n/n. Since once all other opinions are below

√
10 log n/n, we will not be able

to bound their deviations from expected by an (1− o(1)) factor, in such cases, we will try to base the
analysis mainly on the fast growth of p1, rather than the growth of p1/p2. The above definition of gap
allows us to unify the two statements.

The three main transitions of the dynamics: Our dynamics can be characterized by three
main transitions: The first transition occurs during the first O(log n) phases, by the end of which, the
relative gap between the plurality opinion and the second largest opinion exceeds a 2 factor. The second
transition occurs within O(log log n) additional phases, where all the non-plurality opinions become
extinct. At that point, we will have p1 ≥ 2/3 and

∑
i≥2 pi = 0. Finally, the last transition occurs

within O(log n/ log k) additional phases where all nodes hold the plurality opinion. The second and
third transitions are proven in Lemma 2.5 to Lemma 2.8, and their proofs are deferred to Appendix B.

We begin by showing that in every phase, three conditions hold: two of these are safety condi-
tions guaranteeing that the fraction of decided nodes is sufficiently large and that the initial bias is
maintained; the third condition is a progress condition that guarantees the growth of the gap.

Lemma 2.2. Consider a phase j and let us use p = (p1, p2, . . . , pk) to denote the vector of opinions
at the beginning of this phase and pnew to denote the same vector at the end of the phase. Assume
that

∑k
i=1 pi ≥ 2/3, bias ≥

√
C log n/n and p1 ≤ 2/3. Then, with high probability, we have:

(S1)
∑k

i=1 p
new
i ≥ 2/3,

(S2) biasnew = pnew1 − pnew2 ≥
√
C log n/n, and most importantly

(P) either pnew1 ≥ 2/3 or gapnew ≥ gap1.4 where gapnew is defined as in Eq. (1) with pnew1 , pnew2 .

Proof. We begin with (S1). We first claim that due to the gap-amplification step of phase j, the
fraction of decided nodes has been dropped down to Ω(1/k + log n/n), and then show that this drop
is recovered during the R = O(log k) rounds of the healing step. To see this, note that the expected
fraction of decided nodes at the end of the gap amplification round is

∑k
i=1 p

2
i . Since

∑k
i=1 pi ≥ 2/3,

we have
∑k

i=1 p
2
i ≥ k · ((

∑k
i=1 pi)/k)2 ≥ 4/(9k). In addition, since p1 ≥

√
log n/n, p2

1 = Ω(log n/n).

We thus get that
∑k

i=1 p
2
i = Ω(1/k + log n/n). We now claim that the Ω(1/k + log n/n) fraction of

decided nodes after the gap-amplification is increased to at least 2/3 over the R rounds of the healing
process. The argument is simple and similar to the usual process of gossiping a rumor. Particularly,
in every round r ∈ {2, . . . , R} of phase j, so long as the fraction of decided nodes is less than 2/3, this
fraction grows in expectation by a factor of at least 4/3 and hence, it will grow by factor of 6/5 with
high probability. We therefore get that within O(log k) rounds, the fraction of decided nodes

∑k
i=1 pi

reaches at least 2/3 as required. Thus, property (S1) holds.
Next, we prove Claim (P) and then, we reuse some of the arguments to establish (S2). For (P),

we distinguish between two cases depending on the magnitude of the second largest opinion p2.

Case (P.a), when p2 ≥
√

10 log n/n: After the first gap-amplification round, in expectation, there
are np2

1 nodes with opinion 1 and np2
2 nodes with opinion 2. We want to show that the ratio between

the actual numbers is very close to what we would have according to these expectations, i.e., (p1p1 )2, and

remains so throughout rounds 2 to R. Since we might start with a bias as small as bias = Θ(
√

log n/n),
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the deviations from expectations should be analyzed carefully. Throughout, we focus on the two leading
opinions of this phase and denote by the random variables xr and yr, the number of nodes in these
two opinions at round r ∈ {1, . . . , R} of this phase. By Chernoff, it holds that w.h.p.

x1 ∈ np2
1

(
1±

√
5 log n/n

p1

)
and y1 ∈ np2

2

(
1±

√
5 log n/n

p2

)
. (2)

We now use this to bound the ratio x1/y1:

x1

y1
≥
(
p1

p2

)2

·

(
1 +

3
√

5 log n/n

p2

)−2

≥
(
p1

p2

)2

(1 +
p1 − p2

p2
)−0.2 =

(
p1

p2

)1.8

, (3)

where the last inequality follows because at the start of the phase we have bias = p1−p2 ≥
√
C log n/n.

We next argue that throughout rounds r ∈ {2, . . . , R}, this ratio between the plurality opinion and
the second opinion remains almost the same, except for minimal deviations similar to above which
would be tolerable and still leave the gap amplified to at least (p1/p2)1.4.

First, we provide an initial intuition about the change in the number of decided nodes of each of
these opinions throughout rounds r ∈ {2, . . . , R} and the potential deviations. Let us use (the random
variable) qr to denote the fraction of undecided nodes at the end of round r. For each r, we expect
qrxr and qryr new nodes to adopt, respectively, the plurality opinion and the second largest opinion.
Thus, E[xr+1] = xr(1+qr) and E[yr+1] = yr(1+qr). Here, the expectation is based on the randomness
in round r + 1. If the random variables happen to be sharply around their expectations, the ratio
remains essentially preserved. We next argue that this is true even despite the possible deviations.

We break the argument into two parts: Let r∗ be the first round in which the fraction of undecided
nodes is below 1/2—i.e., r∗ is the minimum r satisfying that qr < 1/2. We first show in Claim 2.3
that the ratio remains essentially preserved by round r∗, and then we use a reasoning with a similar
flavor to argue in Claim 2.4 that a similar thing happens even for up to round R.

Claim 2.3. W.h.p., we have xr∗
yr∗
≥ (p1p2 )1.7.

Proof. For each round r ∈ {1, . . . , r∗}, Chernoff bound shows that the random variables of how many
nodes get added to each of the opinions can deviate from their expectations by at most ±(

√
5xrqr log n)

and (±
√

5yrqr log n). Here, we have used that xrqr ≥ x1/2 ≥ 5 log n and yrqr ≥ y1/2 ≥ 5 log n. Hence,
we can say w.h.p.,

xr+1

yr+1
≥ xr(1 + qr)−

√
5xrqr log n

yr(1 + qr) +
√

5yrqr log n
≥ xr
yr
·
(

1−
√

5qr log n/xr

1 +
√

5qr log n/yr

)
.

Let us define DEV(xr) =
√

5qr log n/xr and DEV(yr) =
√

5qr log n/yr. Then, we can write

xr∗

yr∗
≥ x1

y1

r∗∏
r=1

(
1− DEV(xr)

1 + DEV(yr)

)
.

Recall that we want to argue that despite the deviations of each round r ∈ {1, . . . , r∗}, the ratio remains
essentially preserved. For that, we need to analyze the deviation product in the above inequality.
Noting that since p1 and p2 are both at least Ω(

√
log n/n), we know that for each r, DEV(xr) and

DEV(yr) are both smaller than 0.1. This allows us to write

r∗∏
r=1

(
1− DEV(xr)

1 + DEV(yr)

)
≥ 4−2(

∑r∗
r=1 DEV(xr)+

∑r∗
r=1 DEV(yr))
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Thus, we need to upper bound the summations
∑

DEV(xr) and
∑

DEV(yr). For convenience in doing
this without repeating the argument, let us use z ∈ {x, y} and consider the zr for r ∈ {1, . . . , r∗}. We

next show that w.h.p.,
∑r∗

r DEV(zr) =
∑r∗

r=1

√
5qr log n/zr = O(

√
logn√
z1

). During rounds r ∈ {2, r∗}, in

each round we expect zr+1 to be zr(1+qr) ≥ 3zr/2. Since zrqr = Ω(log n), with high probability, we will
indeed have zr+1 ≥ 4zr/3. Hence, we have

∑r∗

r=1

√
5qr log n/zr ≤

∑r∗

r=1

√
5 log n/zr < O(

√
5 log n/z1)

where the last inequality holds because, during these rounds, the sum is a geometric series with a
constant decay factor. Now we can use the inequality established in the above paragraph to write:

xr∗

yr∗
≥ x1

y1

r∗∏
r=1

(
1− DEV(xr)

1 + DEV(yr)

)
≥ x1

y1
4−2(

∑r∗
r=1 DEV(xr)+

∑r∗
r=1 DEV(yr)) ≥ x1

y1
4−O(

√
logn/x1+

√
logn/y1)

≥ x1

y1
(1−O(

√
log n/x1 +

√
log n/y1)) ≥ (

p1

p2
)1.8(1−O(

√
log n/np2

1 +
√

log n/np2
2))

≥ (
p1

p2
)1.8(1 + (p1 − p2)/p2)−0.1 = (

p1

p2
)1.7

Claim 2.4. W.h.p., we have xR
yR
≥ (p1p2 )1.4.

The proofs of Claim 2.4, case (P.b), and property (S2) are deferred to Appendix B.

Lemma 2.5. After O(log n) phases from the start, we have gap ≥ 2. If initially we had p1 > (1+δ)p2

for some constant δ, then if fact within O(1) phases we would have gap ≥ 2.

Lemma 2.6. If at the start of a phase p1 ≥ 2
3 , then w.h.p. we have pnew1 ≥ 2

3 also at the end of it.

Lemma 2.7. After gap ≥ 2, within O(log log n) phases, w.h.p., we have p1 ≥ 2/3 and
∑

i≥2 pi = 0.

Lemma 2.8. After p1 ≥ 2/3 and
∑

i≥2 pi = 0, within O(log n/ log k) phases, w.h.p., p1 = 1.

3 The Algorithm: Take 2
In the algorithm presented in the previous section, each node has a memory size of log k+log log k+O(1)
bits, where log log k + O(1) bits of it are used solely to remember the round number, modulo R =
O(log k). Here, we explain how to remove this log log k overhead. Thus, we get a dynamics in which
each node has at most O(k) states—i.e., within constant factor of the trivially optimal—instead of
the O(k log k) states of the previous algorithm.

Intuitive Discussions: If we are to reduce the memory from log k+ log log k+O(1) to log k+O(1),
we cannot require each node to know both an opinion and the round number modulo R. Nodes not
knowing the time create the risk that nodes might not be “in sync” in regards to whether at a given
point of time, they should be performing gap amplification or healing. We try to minimize this effect
and keep the vast majority of the nodes essentially “in sync”.

Notice that when we allow memory size of log k + O(1), we have (in fact far more than) enough
space for keeping the time modulo R; we just cannot ask each node to keep both time and an opinion.
To overcome this, we simply split the responsibilities among the nodes: particularly, at the start, each
node tosses a fair random coin and decides to be a clock-node or a game-player, each with probability
1/2. Clock-nodes forget their initial opinion and instead keep the time (say modulo 4R, thus needing
at most log k+O(1) bits). On the other hand, the game-players will try to follow the approach of the
take 1 algorithm, using the help of the clock-nodes.

There are three subtleties this intuitive idea: First, note that now the game-players, who actually
play the main role in getting to plurality consensus, do not know the time and thus cannot perform
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Algorithm 1 The algorithm run at each game-player node v

In each round, node v does as follows (assuming u is the node that v contacted):
1: if u.isClock = true then
2: if phasev 6= end-game or (phasev = end-game and phaseu = 0) then
3: phasev ← phaseu;

4: else
5: switch phasev do
6: case 0: - Time Buffer 1-
7: sampled← false; forget← false;

8: case 1: - Gap Amplification (Sampling) -
9: if sampled = false and v.opinion 6= u.opinion then forget← true;

10: sampled← true;

11: case 2: - Time Buffer 2-
12: if forget = true then v.opinion← 0; forget← false;

13: case 3: - Healing -
14: if v.opinion = 0 then v.opinion← u.opinion;
15: sampled← false; forget← false;

16: case end-game: - End Game -
17: if v.opinion 6= 0 and v.opinion 6= u.opinion then v.opinion← 0;

18: if v.opinion = 0 then v.opinion← u.opinion;

the take 1 algorithm per se. Furthermore, they cannot really expect to receive the precise time from
the clock-nodes and remember it, as that would again require log k + log log k + O(1) memory bits.
We will make the clock nodes report the time only in (integer) factors of R = O(log k), and modulo
say 4R. That is, the reported phase number is always in {0, 1, 2, 3}. Reporting these numbers and
remembering them will thus require only O(1) bits. Second, now the game-players do not really know
the precise time, and thus they cannot update the phase numbers on their own. They will have to
instead rely completely on receiving phase-updates from clock-nodes. Third, we want that eventually
all the nodes to hold the plurality opinion, including the clock-nodes. Hence, each clock-node needs
to at some point forget it’s time-keeping responsibilities and try to learn the plurality opinion. This
has to be done in a judicious manner so that the system as a whole has enough time-keepers, so long
as they are needed. We next present the algorithm that deals with these challenges.

The Algorithm Description: The algorithm performed by the game-player nodes is described in
Algorithm 1 and the algorithm performed by the clock-nodes is presented in Algorithm 2.

We next provide some intuitive explanation for what these algorithms are doing. The algorithm
run the by game-player nodes can be viewed as interpolating between two algorithms: the dynamic
presented in the previous section, which we will call hereafter the Gap Amplification (GA) dynamic, and
the Undecided State (Undecided) dynamic7 as used in [BCN+15a]. We have the Undecided dynamic
for the time that the number of clock-nodes that are following their time-keeping responsibilities goes
down, and thus we cannot follow the GA dynamic. In reality, as long as p1 is far from 1, there will be a
large population of clock-nodes that are still performing their time-keeping responsibilities, and thus
the GA dynamic will be the dominant part of the system (formalizing this will take some care). Hence,
during that time, the system will enjoy the fast gap amplification behavior of GA. Once p1 gets close
to 1, the number of active clock-nodes drops and the game-players gradually move to the Undecided

dynamic. At this time, we no longer need the power of the GA dynamic; regardless of how game-player
nodes are split between the two dynamics, as we will show, the system evolves almost as good as the
Undecided dynamic and gets to plurality consensus fast.

Let us now discuss the GA dynamic, which is the core of the algorithm of the game-players, and

7We note that in fact any other protocol with a minimal plurality amplification behavior would suffice for this part;
we choose the Undecided dynamics just for convenience.
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Algorithm 2 The algorithm run at each clock-node v

In each round, node v does as follows (assuming u is the node that v contacted):
1: switch v.status do
2: case counting: - Time Keeping -
3: v.opinion← null;
4: v.time← v.time+ 1 mod 4R;
5: v.phase← dv.time/Re mod 4;
6: if u.isClock = false and u.opinion = 0 then v.consensus← false;

7: if u.isClock = true and u.consensus = false then v.consensus← false;

8: if v.time mod 4R = 0 then
9: if v.consensus = true then v.status← end-game;

10: v.consensus← true;

11: case end-game: - End Game -
12: v.time← null;
13: v.phase← end-game;
14: if u.isClock = false then v.opinion← u.opinion
15: else if u.status = 0 and u.consensus = false then
16: v.status← counting;
17: v.opinion← null;
18: v.time← u.time; v.phase← u.phase; v.consensus← u.consensus;

it is essentially a simulation of the take 1 algorithm. We have a few small changes, in comparison to
the take 1 algorithm, which are added to deal with the subtleties described above: Particularly, since
the game-player nodes will not be able to know the precise time, to mitigate the effects of asynchrony,
we extend the gap amplification to a full phase (instead of one round) and we also add some time
buffer between the gap amplification period and the healing period. Thus, now the execution of the
algorithm can be broken to intervals made of 4 consecutive phases, which we call a “long-phase”.
Particularly, a long-phase is made of 4 phases, the two main ones being gap amplification and healing
phases, interspersed with two (essentially) time buffer phases. Although the gap amplification period
is now one full phase, we still make each node act based on a single sample: that is, in the first round
in this phase that the game-player node v contacts another game-player u, node v decides whether
to keep its opinion or not, and it remains with this decision. If v decided to forget its opinion, then
it remembers this decision (via a Boolean variable called forget) and once v sees the next phase (by
meeting a clock-node of phase 2), it becomes undecided. With a slight informality, from now on, we
will refer to the dynamic described by phases {0, 1, 2, 3} as the GA (gap amplification) dynamic. A
game-player node goes out of the GA dynamic only if it meets a clock-node that has moved to the end-
game (to be explained while discussing the algorithm of the clock-nodes). Game-players that move
out of the GA dynamic go to the Undecided dynamic, as described the pseudocode in the end-game
switch case. However, each such game-player node might come back to the GA dynamic later on, if it
meets a clock-node that reports phase 0.

Let us now discuss the algorithm for the clock-nodes. As mentioned above, an important challenge
is for the clock-nodes to recognize that the game-players have reached consensus, so that they can
switch to adopt an opinion then. Since the GA dynamics might take O(log n log k) rounds to reach
plurality consensus, we cannot require the clock-nodes to keep the precise time until this period
has passed, as that would require Ω(log log n) memory bits. Instead, we make the clock-nodes use
the existence of undecided nodes as a signal to detect that the game-players still have not reached
consensus. Although this is not a perfect check, it will be good enough for our purposes, i.e., so long as
p1 is far from 1. Particularly, note that in the GA dynamic, so long as we are far from reaching consensus
(while p1 is far from 1), there will be a considerable fraction of undecided nodes (at some point during
at least one of the phases). We make the clock-nodes remain active—i.e., keeping time—as long as
they meet an undecided node directly or indirectly. Here, indirectly means by meeting a clock-node
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that is aware of the existence of undecided nodes. This information spreading essentially in the usual
gossip spreading style and via the boolean variable consensus, for which consensus = false indicates
that an undecided node still exists, i.e., an indication for that the system has not reached plurality
consensus yet. If during a long-phase, a clock-node receives no information about the existence of
undecided nodes, it neglects its time keeping task, by forgetting time, and attempts to move to the
end-game reporting phase (possibly temporarily). Here, the phase number it reports is a special symbol
“end-game”. Also, at this time, this clock-node that now has forgotten time adopts an opinion, always
remembering the opinion of the last game-player that it met. However, this clock-node that has
become “deactivated” from time-keeping by switching to the end-game mode might get reactivated
again: particularly, if this “deactivated” clock-node v meets an active clock-node u who is aware of
the existence of undecided nodes (has u.consensus = false), then v gets reactivated again, keeping
track of time, using the clock that it gets from u, and reporting the phase number in {0, 1, 2, 3}.

The analysis of the algorithm are deferred to Appendix C. We next provide some intuition for the
analysis, for the cases in which k ≥ n0.1. The analysis for the complementary case of k < n0.1 also
follows a similar outline, roughly speaking, but typically requires more care.

Analysis Intuition, for when k ≥ n0.1: Here the length of each phase is R = Θ(log k) = Θ(log n),
which allows us to say that some good events happen w.h.p. without needing to keep track of their
precise probability, e.g., this is sufficient time for information to spread to the whole system.

Specifically, the first analysis step is to establish that as long as p1 ≤ 1−Θ(log n/n), all clock-nodes
will continue to perform their time-keeping responsibilities. Thus, during this period, all game-player
nodes will be performing the GA dynamics without going to the end-game of the Undecided dynamics.
The (formally inductive) argument for why all clock-nodes will remain is roughly as follows: Consider
one long-phase (4 consecutive phases). Because game-player nodes are following the GA dynamic
and there are Ω(log n) non-plurality nodes, during phase 2 of this long-phase, there will be Θ(log n)
undecided nodes w.h.p. Thus, w.h.p., there will be clock-nodes that notice this undecided population.
This information about the existence of undecided nodes will spread among the clock-nodes following
essentially the pattern of a usual rumor spreading. Particularly, w.h.p. within O(log n) rounds all
clock-nodes will be aware of the existence of undecideds and thus, at the end of the long-phase, none
of the clock-nodes switches to the end-game mode. Given this, during this time of p1 ≤ 1−Θ(log n/n),
all game-players are acting according to the GA dynamic. This allows us to use the analysis of take 1,
modulo minor details, and argue that in O(log n) phases, w.h.p., we reach p1 ≥ 1−Θ(log n/n).

Once p1 reaches 1 − Θ(log n/n), some clock-nodes might start to switch to the end-game mode
and thus some game-player nodes might act based on the Undecided dynamic. However, now that
p1 is very close to 1, we do not need the power of GA. Here, even the Undecided dynamic would
be pushing us towards consensus on plurality quickly enough, and we can actually prove that the
system (which is an uncontrolled mix of GA and Undecided) does not behave worse than the worst
of them. Particularly, we can first see that w.h.p. the system remains in this regime of p1 very close
to 1, and then use this to establish that non-plurality opinions get filtered out within O(1) phases
and that plurality reaches totality among game-players within O(1) phases. By the end of that time,
all clock-nodes switch to the end-game, as they will not see undecided game-players anymore. Since
clock-nodes in the end-game adopt the opinion of the last game-player they have seen, within O(1)
phases, all nodes will hold the plurality opinion.
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putation in networks of passively mobile finite-state sensors. Distributed computing,
18(4):235–253, 2006.

[AAE08] Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for fast
robust approximate majority. Distributed Computing, 21(2):87–102, 2008.

[AFJ06] Dana Angluin, Michael J Fischer, and Hong Jiang. Stabilizing consensus in mobile net-
works. In Distributed Computing in Sensor Systems, pages 37–50. Springer, 2006.

[AGV15] Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and exact majority in population
protocols. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pages 47–56,
2015.

[BBV08] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical processes on
complex networks. Cambridge University Press, 2008.

[BCN+14] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, Riccardo Sil-
vestri, and Luca Trevisan. Simple dynamics for plurality consensus. In Proceedings of
the 26th ACM symposium on Parallelism in algorithms and architectures, pages 247–256.
ACM, 2014.

[BCN+15a] L Becchetti, A Clementi, E Natale, F Pasquale, and R Silvestri. Plurality consensus in
the gossip model. In Pro. of ACM-SIAM Symp. on Disc. Alg. (SODA), pages 371–390,
2015.

[BCN+15b] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and Luca Tre-
visan. Stabilizing consensus with many opinions. to appear at SODA’16, arXiv preprint
arXiv:1508.06782, 2015.

[BICS10] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J Strauss. Space-optimal
heavy hitters with strong error bounds. ACM Transactions on Database Systems (TODS),
35(4):26, 2010.

[BSDDS14] Ohad Ben-Shahar, Shlomi Dolev, Andrey Dolgin, and Michael Segal. Direction election
in flocking swarms. Ad Hoc Networks, 12:250–258, 2014.

[CCN12] Luca Cardelli and Attila Csikász-Nagy. The cell cycle switch computes approximate
majority. Scientific reports, 2, 2012.

[CDS+13] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Na-
ture nanotechnology, 8(10):755–762, 2013.

[CKFL05] Iain D Couzin, Jens Krause, Nigel R Franks, and Simon A Levin. Effective leadership
and decision-making in animal groups on the move. Nature, 433(7025):513–516, 2005.

[CSWB09] Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability
of chemical reaction networks. In Algorithmic Bioprocesses, pages 543–584. Springer,
2009.

11



[DGM+11] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald, and Chris-
tian Scheideler. Stabilizing consensus with the power of two choices. In Proceedings of
the twenty-third annual ACM symposium on Parallelism in algorithms and architectures,
pages 149–158. ACM, 2011.

[Dot14] David Doty. Timing in chemical reaction networks. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 772–784. SIAM, 2014.

[DV12] Moez Draief and Milan Vojnovic. Convergence speed of binary interval consensus. SIAM
Journal on Control and Optimization, 50(3):1087–1109, 2012.

[DW83] Peter Donnelly and Dominic Welsh. Finite particle systems and infection models. In
Mathematical Proceedings of the Cambridge Philosophical Society, volume 94, pages 167–
182. Cambridge Univ Press, 1983.

[HHMW10] Nils Lid Hjort, Chris Holmes, Peter Müller, and Stephen G Walker. Bayesian nonpara-
metrics, volume 28. Cambridge University Press, 2010.

[Hop71] John Hopcroft. An n log n algorithm for minimizing states in a finite automaton. Theory
of Machines and Computations, pages 189–196, 1971.

[HP01] Yehuda Hassin and David Peleg. Distributed probabilistic polling and applications to
proportionate agreement. Information and Computation, 171(2):248–268, 2001.

[KDG03] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In Proc. of the Symp. on Found. of Comp. Sci. (FOCS), pages 482–491, 2003.

[Lig12] Thomas Liggett. Interacting particle systems, volume 276. Springer Science & Business
Media, 2012.

[Lyn96] Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[MNRS14] George B Mertzios, Sotiris E Nikoletseas, Christoforos L Raptopoulos, and Paul G Spi-
rakis. Determining majority in networks with local interactions and very small local
memory. In Automata, Languages, and Programming, pages 871–882. Springer, 2014.

[MS] Elchanan Mossel and Grant Schoenebeck. Reaching consensus on social networks.

[PVV09] Etienne Perron, Dinkar Vasudevan, and Milan Vojnovic. Using three states for binary
consensus on complete graphs. In the Proc. of IEEE INFOCOM, pages 2527–2535, 2009.

[SKJ+08] David JT Sumpter, Jens Krause, Richard James, Iain D Couzin, and Ashley JW Ward.
Consensus decision making by fish. Current Biology, 18(22):1773–1777, 2008.

[Spe64] H. Spencer. The Principles of Biology. Number v. 1 in Spencer, Herbert: A system of
synthetic philosophy. Williams and Norgate, 1864.

[Spr78] DA Sprott. Urn models and their applicationan approach to modern discrete probability
theory. Technometrics, 20(4):501–501, 1978.

[TBA86] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous deterministic
and stochastic gradient optimization algorithms. IEEE transactions on automatic control,
31(9):803–812, 1986.

12



[Tsi84] John Nikolas Tsitsiklis. Problems in decentralized decision making and computation.
Technical report, DTIC Document, 1984.

[WH04] Fang Wu and Bernardo A Huberman. Social structure and opinion formation. arXiv
preprint cond-mat/0407252, 2004.

[Yu05] Sheng Yu. State complexity: Recent results and open problems. Fundamenta Informati-
cae, 64(1-4):471–480, 2005.

A A remark regarding other rich get richer mechanisms

The above plurality amplification might resemble the well known rich get richer effect, a recurrent
theme in the dynamics of many real life systems. Such phenomena are usually explained by the exis-
tence of some self-reinforcing mechanism which provides the system some sort of a positive feedback.
Examples include Polya’s urn [Spr78], the Dirichlet process, the Chinese restaurant [HHMW10] and
the preferential attachment processes [BBV08]. These processes usually share the following cascade:
starting from an empty population, in each step a new individual arrives and its destiny (e.g., which
opinion to hold) is determined by a random choice which has some bias towards the stronger trends
in the current system. Our plurality algorithm follows the general theme of rich-get-richer processes
but deviates from the aforementioned mechanisms in the sense that our population size is fixed and
the amplification is done within the “closed” system. We note that the interplay between selection
and healing presented in this paper, and the fast amplification provided by them, may be of broader
interest for the study of rich-get-richer mechanisms in “closed” systems.

B Missing Proofs of Section 2

Theorem B.1. (Simple Corollary of Chernoff Bound) Suppose X1, X2, . . . , X` ∈ [0, 1] are
independent random variables, and let X =

∑`
i=1Xi and µ = E[X]. If µ ≥ 5 log n, then w.h.p.

X ∈ µ±
√

5µ log n, and if µ < 5 log n, then w.h.p. X ≤ µ+ 5 log n.

Proof of Claim 2.4. Notice that even in these rounds, it is true that per round r, E[xr+1] = xr(1 + qr)
and E[yr+1] = yr(1 + qr). However, here xrqr and yrqr might drop below O(log n), which means every
time when we write the additive deviations, we should still add a possible O(log n) term. Particularly,
for each r ∈ {r∗ + 1, . . . , R} we can say w.h.p.,

xr+1

yr+1
≥ xr(1 + qr)− (

√
3xrqr log n+ 5 log n)

yr(1 + qr) + (
√

5yrqr log n+ 5 log n)
≥ xr
yr
·
(

1− (
√

5qr log n/xr + 5 log n/xr)

1 +
√

5qr log n/yr + 5 log n/yr

)
.

Let us define DEV(xr) =
√

5qr log n/xr + 5 log n/xr and DEV(yr) =
√

5qr log n/yr + 5 log n/yr, for
r ∈ {r∗ + 1, . . . , R} . Then, we can write

xR
yR
≥ xr∗

yr∗

R∏
r=r∗+1

(
1− DEV(xr)

1 + DEV(yr)

)
.

Noting that since p1 and p2 are both at least Ω(
√

log n/n), we know that for each r, DEV(xr) and
DEV(yr) are both smaller than 0.1. This allows us to write

R∏
r=r∗+1

(
1− DEV(xr)

1 + DEV(yr)

)
≥ 4−(

∑R
r=r∗+1 DEV(xr)+

∑R
r=r∗+1 DEV(xr))
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Thus, we need to upper bound the summations
∑

DEV(xr) and
∑

DEV(yr) in the above inequality.
Again, for convenience in doing this without repeating the argument, let us use z ∈ {x, y} and
consider the zr for r ∈ {r∗ + 1, . . . , R}. We next show that w.h.p.,

R∑
r=r∗+1

DEV(zr) =
R∑

r=r∗+1

√
5qr log n/zr + 5 log n/zr = O(

√
log n
√
zr∗

+
log k log n

zr∗
).

First, note that the zr values cannot decrease in the healing phase, and hence for each for
r′ ∈ {r∗, . . . , R}, we have zr′ ≥ zr∗ . Thus,

∑R
r=r∗(

√
5 log nqr/zr + 5 log n/zr) ≤

√
5 log n/zr∗ ·∑R

r=r∗+1(
√
qr) + 5R log n/zr∗ . We next bound the term

∑R
r=r∗+1(

√
qr). Note that in round r∗ + 1,

we expect the number of undecided nodes to change from n/2 to n/4 and with high probabil-
ity, it will be at most n/3. Similarly, so long as nqr ≥ Ω(log n), with high probability, we have
qr+1 ≤ 3qr/4. Thus, the summation

∑R
r=r∗+1(

√
qr) is also a summation of a geometric series, so

long as qr ≥ Ω(log n/n). For rounds in which qr ≤ O(log n/n), the summation of
√
qr is clearly

at most O(log2 n/n) = o(1). Therefore, we get that
∑R

r=r∗
√
qr ≤ 4qr∗ + o(1) ≤ 5. This means∑R

r=r∗+1(
√

5 log nqr/zr + 5 log n/zr) ≤ 10
√

log n/
√
zr∗ + 5R log n/zr∗ .

From the above, it thus follows that the
∑R

r=r∗+1 DEV(xr)+
∑R

r=r∗+1 DEV(xr) ≤ O(
√

logn√
xr∗

+ log k logn
xr∗

)+

O(
√

logn√
yr∗

+ log k logn
yr∗

). We know that w.h.p. xr∗ = Ω(np1) and yr∗ = Ω(np2
2/p1). The reason for this is

as follows: Note that at round r∗, the total fraction of decided nodes has dropped below 1/2, which
means, ignoring a 2-factor, xr∗ is the same as the fraction among decided nodes that have opinion 1.

Now, at the end of the gap amplification round, this fraction is w.h.p.
Θ(np21)

Θ(
∑

i=1knp2i )
≥ Θ(np21)

Θ(np1) ≥ Ω(p1).

Now, during the rounds r ∈ {1, . . . , r∗}, even in a coarse and pessimistic estimate, this fraction de-
viates by at most a constant factor, because of the deviation factor analysis that we provided above
for rounds r ∈ {1, . . . , r∗}. Hence, in round r∗, about Ω(p1) fraction of decided nodes have opinion 1,
which since at r∗ more than n/2 nodes are decided, means xr∗ = Ω(np1). A similar argument can be

used to show that yr∗ = Ω(n
p22∑
i=1kp2i

) = Ω(np2
2/(p

2
1 + p2)) = Ω(min{np2

2/p
2
1, np2)}).

For simplicity, let us now distinguish between two cases, regarding the value of p1/p2. First,
we consider the possibly sensitive regime when p1/p2 ∈ [1, 500]. In the complementary case, the
concentrations we need will be far more relaxed. For the case p1/p2 ∈ [1, 500], from above we get that

xR
yR

≥ xr∗

yr∗
·

R∏
r=r∗+1

(
1− DEV(xr)

1 + DEV(yr)

)
≥ xr∗

yr∗
· 4−(

∑R
r=r∗+1 DEV(xr)+

∑R
r=r∗+1 DEV(xr))

≥ xr∗

yr∗
· 4−O(

√
logn√
xr∗

+ log k logn
xr∗

+
√
logn√
yr∗

+ log k logn
yr∗

)

≥ xr∗

yr∗
· 4−O(

√
logn√
np1

+ log k logn
np1

+
√
logn√
np2

+ log k logn
np2

)

≥ xr∗

yr∗
· 4−O(

√
logn√
np2

+ log k logn
np2

) ≥ xr∗

yr∗
· 4
−O(

√
logn√
np22

)

≥ xr∗

yr∗
· (1−O(

√
log n√
np2

2

))

≥ (
p1

p2
)1.7(1 +

p1 − p2

p2
)−0.3 = (

p1

p2
)1.4

Now suppose that p1/p2 > 500. Here, it suffices to bound the deviations by a small constant. It
is easy to see that w.h.p. yR ≤ 5yr∗ +O(log2 n), because during these rounds, as discussed above, qr
decays exponentially with r. Thus, xR

yR
≥ xr∗

yR
≥ xr∗

5yr∗+O(log2 n)
≥ xr∗

yr∗
/(5 + o(1)) > (p1p2 )1.7/5.1 ≥ (p1p2 )1.4.

This completes the proof of (P3.a). Next, we consider the complementary case where p2 is small.
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Case (P.b), when p2 ≤
√

10 log n/n: Now we come back to the case that p2 = maxk
i=2 pi ≤√

10 log n/n. Note that in this case, the multiplicative factor deviations of the opinion 2 from its
expected values might be large. Recall the definition gap = min{ p1√

10 logn/n
,mink

i=2
p1
pi
}. Also, note

that by the above arguments, the ratio between p1
p2

will grow to at least gap1.4 because that would

happen even if we manually raise the initial p2 to
√

10 log n/n, thus allowing us to use the above
concentration arguments, and the whole process is clearly monotonic meaning that raising the initial
p2 cannot increase the ratio

pnew
1

pnew
2

. However, to show that gapnew increases to gap1.4, in this regime

of p2 ≤
√

10 log n/n, the minimizer in the definition of gap is the p1√
10 logn/n

term which means we

should show that p1 will grow accordingly.

Here, since p1 ≥
√
C log n/n, we have gap ≥

√
C logn/n√
10 logn/n

� 20. On the other hand, by repeating the

arguments given above, we know that pnew1 will be within at most a 1± o(1) factor of its expectation,

which is
p21∑k
i=1 p

2
i

=
p21

p21+
∑k

i=2 p
2
i

≥ p21
p21+pi∗

. Thus, the growth factor from p1 to pnew1 is at least (1 −

o(1)) p1
p21+p2

≥ 1−o(1)
p1+1/gap . If 1/gap ≤ 0.45p1, then pnew1 > 2/3. Otherwise, the growth is at least

1−o(1)
3.3/gap ≥ gap/4 ≥ gap1/2, which finishes the proof of case (P.b) and thus also property (P).

Property (S2): Finally, we use the above concentration arguments to prove property (S2), by showing
that w.h.p. biasnew ≥ p1 − p2. First suppose that p1

p2
< 10. Then, we know that pnew1 and pnew2 will be

within 1 + o(1) factors of their expectations (as analyzed above), which are, respectively,
p21∑k
j=1 p

2
j

and

p21∑k
j=1 p

2
j

. Thus,

pnew1 − pnew2 ≥ (1− o(1))
p2

1∑k
j=1 p

2
j

− p2
1∑k

j=1 p
2
j

= (1− o(1))(p1 − p2) · (p1 + p2)∑k
j=1 p

2
j

≥ (1− o(1))(p1 − p2) · (p1 + pi)

p1
∑k

j=1 pj
≥ (1− o(1))(p1 − p2) · (p1 + p2)

p1
≥ (1.1− o(1))(p1 − p2).

On the other hand, when p1
p2
> 10, we know the

pnew
1

pnew
2
≥ gapnew ≥ gap1.4 > 2.5gap. We also know that

w.h.p. p1 does not decrease in this case. This implies that bias = pnew1 − pnew2 also does not decrease,
thus proving property (S2).

Proof of Lemma 2.5. Initially, gap ≥ min{ p1√
10 logn/n

,mink
i=2

p1
pi
} ≥ min{3, p1p2 } > 1 + 1√

n
. Note that

once p1 ≥ 2/3, we also have gap ≥ 2. Define γ = gap − 1. In every phase that pnew1 ≥ 2/3 does not
happen, Lemma 2.2 gives gapnew ≥ gap1.4. This implies γnew ≥ (1 + γ)1.4 − 1 ≥ 6γ/5. Hence, after
O(log n) phases, γ becomes larger than 1 which means gap ≥ 2. If initially we had p1 > (1 + δ)p2,
then initially gap ≥ 1 + δ and thus it takes it only O(1) phases to reach gap ≥ 2.

Proof of Lemma 2.6. At the end of the gap amplification round, w.h.p., the fraction of decided nodes of
opinion 1 is (1−o(1))4/9 and the fraction of decided nodes of all other opinions is at most (1+o(1))1/9.

That is, w.h.p., the fraction among decided nodes that have opinion 1 is at least (1−o(1)) 4/9
4/9+1/9 > 3/4.

During each round r of the healing rounds, both the fraction of plurality nodes and the total fraction of
decided nodes are expected to grow by (1+qr), where qr is the fraction of undecided nodes at the start of
that round. Since the number of plurality opinion nodes and also the total number of decided nodes are
Ω(n), the actual growth in the two fractions will be within 1±o( 1

logn) factor of their expectations. Thus,

the fraction among the decided node that have opinion 1 remains preserved up to at most a 1±o( 1
logn)

factor. This means, even after all the O(log k) rounds of healing, the fraction among the decided nodes
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that have opinion 1 is at least (1− o(1/ log n))O(log k)3/4 = (1− o(1))3/4. On the other hand, at that
point the probability for a node to remain undecided is at most (1/3)O(log k) ≤ 0.01/k, which means
w.h.p., at least 0.99 fraction of nodes will be decided. Hence, w.h.p., at least 0.98×(1−o(1))3/4 > 2/3
fraction of nodes will have opinion 1.

Proof of Lemma 2.7. By Lemma 2.2, in each phase j, either we get p1 ≥ 2/3 or gapnew ≥ gap1.4.
Since we start with a gap ≥ 2, within O(log log n) phases, the latter condition cannot continue to hold
which means we would have p1 ≥ 2/3. At this point, by Lemma 2.6, it will always remain true that
p1 ≥ 2/3.

Then, for any other opinion i ∈ {2, . . . , k}, in each phase, the change satisfies the following in-

equality: E[pnewi ] =
p2i∑k
i=1 p

2
i

≥ p2i
4/9 = 2.25p2

i . Here, the expectation is based only on the randomness

of this phase. Hence, within O(log log n) phases, we expect pi to fall below 1/nc, for any desirable
constant c. By Markov’s inequality, this means at that point, we actually have pi = 0 w.h.p.

Proof of Lemma 2.8. Consider the first phase after we have p1 ≥ 2/3 and
∑

i≥2 pi = 0. First note
that by Lemma 2.6, w.h.p. p1 ≥ 2/3 from now on. Now, let q be the fraction of undecided nodes.
Notice that after the first round, q increases slightly to q′ where E[q′] = 1 − (1 − q)2 ≤ 2q. During
the next R − 1 = O(log k) rounds of this phase, a node remains undecided only if all nodes that it
contacted where undecided and that has probability at most (5/9)R−1 ≤ 1/(4k). Thus, E[qnew] ≤ q

2k .
This expectation relies only on the randomness of this phase. Thus, the expected value of q after
O(log n/ log k) phases is 1/nc—for any arbitrary c, by adjusting the constant in the number of phases.
Hence, by Markov’s inequality, the probability that q 6= 0, which would imply q ≥ 1/n, is at most
1/nc−1. That is, w.h.p., q = 0 and thus p1 = 1. Clearly, from that point onwards, it remains true that
p1 = 1.

Proof of Theorem 2.1. By Lemma 2.5, within O(log n) phases from the beginning of the execution,
gap ≥ 2. In fact if we initially have p1 ≥ (1 + δ)p2 for a constant δ, this part takes O(1) phases.
Then, after additional O(log log n) phases, by Lemma 2.5, we have p1 ≥ 2/3 and all other nodes are
undecided. Finally, by Lemma 2.8, w.h.p., within O(log n/ log k) phases, plurality achieves totality.

C Analysis of the Take 2 Algorithm, from Section 3

For simplicity, we divide the analysis into two cases, (C1) in which k ≥ n0.1, and (C2) where k < n0.1.
Case (C1) is simpler because the length of every phase R = Θ(log k) = Θ(log n), which allows us to say
that some “good” events happen with high probability, without needing to keep track of their exact
probability and how it affects the whole system’s evolution. In each of the cases (C1) and (C2), we
further distinguish between the case where p1 is large and close to 1 or small and away from 1 (to be
formalized). For the case where p1 is small, we will argue that in each long-phase there will be a time
with a large enough number of undecided nodes to be noticed by the clock population, which thus
keeps all or the vast majority of the clocks active. Because of this, we will be able to say that almost
all the game-player nodes remain in the GA dynamic, which thus allows us to show that the system
evolves with fast gap amplifications similar to what we saw in the analysis of the take 1 algorithm.
For the remaining case where p1 gets close to 1, we will not have the aformentioned abundance of
active clocks. However, since at that point p1 is already close to 1, we do not need the power/speed
of the GA dynamic and we will argue that regardless of how game-player nodes are split between the
two dynamics, even in the worst case, the system evolves almost as good as the Undecided dynamic
and gets to plurality consensus fast.

Throughout the analysis, we will refer to each span of 4R rounds as a long-phase, which is made
of 4 phases, each having R rounds. We also use p1, . . . , pk, q to denote the fraction of the game-player
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nodes that hold each of the k opinions and the fraction of undecided game-player nodes, respectively.
Here, the fractions are computed with respect to the game-player nodes only. Throughout, we refer to
the nodes that hold opinion 1 by plurality nodes and the remaining decided nodes as the non-plurality
decided nodes.

C.1 Analysis for k ≥ n0.1

As mentioned above, some of the arguments are easier in this case because the length of each phase
R is Θ(log k) = Θ(log n), which allows us to say that some good events happen with high proba-
bility without needing to track their exact probability. For instance, Θ(log n) rounds suffice for the
information regarding the existence of undecided nodes to spread from one clock-node to all, w.h.p.

The analysis is divided into two parts, with respect to the value of the fraction p1 of the plurality
opinion. Recall that this fraction is with respect to the game-player nodes. When p1 is sufficiently
small (to be made precise later), we will show that all clock-nodes remain active w.h.p., and hence we
can focus on analyzing the GA dynamics. In the complementary case, when p1 gets close to 1, we will
not be able to say that all the clock-nodes remain active, as they start switching to the end-game.
Fortunately, during this period, we also do not need the full power of the GA dynamics. We will see
that, despite the fact that some uncontrolled number of clock-nodes are in the end-game, within O(1)
phases all opinions other than the plurality disappear, and then within an additional O(1) additional
phase, all nodes have the plurality opinion, w.h.p.

C.1.1 Case k ≥ n0.1 and p1 ≤ O(1− log n/n)

We begin by showing that in this regime, w.h.p., the entire clock population remains active:

Lemma C.1. Suppose that k ≥ n0.1. Then, so long as p1 ≤ 1 − 20 logn
n , with high probability, all

clock-nodes remain in the time-counting state.

Proof. The proof in done in an inductive manner, over long-phases. The base case of the first long-
phase is trivial and thus we only focus on the inductive step. That is, assuming that at the beginning
of a long-phase all clocks are active, we show that w.h.p they all remain active even at the end of
the phase. Notice that clock-nodes become inactive—switching to the end-game mode—only at the
transitions from one long-phase to the next, i.e., when the round number is a multiple of 4R.

Generally, since in each round each game-player meets a clock-node with probability 1/2, we get
that with high probability, each game-player node meets a clock-node within the first 5 log n rounds
of each phase. Because of this, for instance, by the end of the phase 0, all game-player nodes have
activated their gap amplification, by setting sampled = false and forget = false. Similarly we know
that w.h.p., each game player node v will have one round in phase 1 in which v samples another game-
player node u. Note that (once transitioned to phase 2), node v keeps its opinion only if the sampled
node u has the same opinion as v. Hence, the number of the undecided nodes after 5 log n rounds of
phase 2 is, w.h.p., lower bounded by the number of nodes that hold the plurality opinion and did not
sample a plurality opinion node in their sampling round of the gap amplification phase. This is in
expectation n

2 p1(1−p1) ≥ 9 log n undecided nodes, which means with high probability we have at least
6 log n undecided nodes. Thus, in the round 5 log n+1 of phase 2, each clock-node meets an undecided
node with probability at least 6 logn

n , which means we expect 3 log n clocks to have notice the existence
of undecideds, and thus with high probability, there are at least log n clock-nodes that do so and set
their v.consensus = false. Now, in each of the next rounds, this v.consensus = false spreads among
the clock-nodes in a pattern similar to usual spreading of a gossip, and thus reaches all clocks with
high probability in O(log n) rounds. We just give a brief sketch for this spreading: in each round, the
fraction of the clock-nodes that have v.consensus = false increases by a constant factor, w.h.p, until
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it reaches about 1/2. From there on, the number of clock-nodes that have v.consensus = true drops
exponentially, and thus falls below 1 within O(log n) rounds. This is because, the probability that a
clock-node has met one of these false-consensus clocks after O(log n) rounds is at most 1/n10. Hence,
at the end of phase 3, w.h.p., all clock-nodes have v.consensus = false, which means they will all
remain active for (the beginning of) the next long-phase.

Equipped with the maintenance of the clock-nodes, the analysis now carries a similar line to that
of of the Take 1 algorithm. Here we just mention a few words about the possible differences:

Lemma C.2. Suppose that k ≥ n0.1. Then, so long as p1 ≤ 1 − 20 logn
n , with high probability, the

fraction of nodes of different opinions evolves as analyzed in the previous section, and thus particularly,
within O(log k log n) rounds, we have p1 ≥ 1− 20 logn

n .

Proof. (Sketch) First note that since w.h.p. all clock are active, w.h.p. every node meets at least one
clock-node within the first 5 log n rounds of each phase. Thus, each game-player node receives the
correct phase number in each phase, in fact within the first 1/10th rounds of the phase, w.h.p. This
implies that the system essentially simulates the setting where each node was also keeping the time
itself (as in the take 1 algorithm). The only change required to be taken into consideration is that in
gap-amplification and healing phases, each game player v has a probability of 1/2 to meet a clock-node
and if that happens, the opinion of v would not change in this round. However, it is easy to see that
this 2-factor change in the probabilities, which is independent of the node’s opinion, only slows down
the process by a constant factor and otherwise has no effect on the proof.

C.1.2 Case k ≥ n0.1 and p1 ≥ 1−O(log n/n)

We now turn to consider the case where p1 has become very close to 1. Here, we can no longer assume
that there are many active clock-nodes. For the analysis in this case, we will always consider both of
the dynamics and each time present bounds on the behavior of the overall system based on the worst
case behavior possible. In Lemma C.3, we show that this regime of p1 ≈ 1 is in fact an absorbing state
(in a certain sense, to be formalized) meaning that, w.h.p., the system will not exit this regime. Then
Lemma C.4 uses this fact to show that within O(1) long-phases, all opinions other than the plurality
get filtered out, and Lemma C.5 shows that then within O(1) additional long-phase, all nodes hold
the plurality opinion.

Lemma C.3. Suppose that at the start of a long-phase, we have
∑

i≥2 pi ≤ α log n/n and q ≤
β log2 n/n, for sufficiently large constants α and β (in comparison to the constant in R), and where
β � α. Then, w.h.p., in each of the rounds of this long-phase, we have

∑
i≥2 pi ≤ 2α log n/n and

q ≤ 2β log2 n/n. Moreover, w.h.p., we have
∑

i≥2 pi ≤ α log n/n and q ≤ β log2 n/n at the end of this
long-phase as well.

Proof. The proof is provided in two parts. We first use a somewhat coarse argument to show that
w.h.p. in all rounds, we will have

∑
i≥2 pi ≤ 5α log n/n and q ≤ 10β log2 n/n. We then provide a

slightly more fine-grained argument, which also uses the guarantee established by the coarse argument,
to show that at the end of the long-phase

∑
i≥2 pi ≤ α log n/n and q ≤ β log2 n/n.

Consider one long-phase, and each of the rounds during the first two phases (according to the
global time, which might be unknown to some nodes). The increase in

∑
i≥2 pi in this one round

comes from undecided nodes that met a node with opinion in {p2, . . . , pk}. The expected number of
such nodes in one round is nq

∑
i≥2 pi where q and pi are the values at the start of that particular

round. Thus, so long as we are still in the regime that
∑

i≥2 pi ≤ 5α log n/n and q ≤ 10β log2 n/n,

this expectation would be at most O(log3 /n). That means, with high probability, the number of
nodes that join {p2, . . . , pk} in this one round is at most O(1). On the other hand, the increase in the
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number of undecided nodes during these two phases comes from nodes that were acting based on the
end-game and met a node of a different opinion. Per round, the expected number of such nodes is at
most 2n

∑
i≥2 pi, where pi of that round is used. This is at most 2α log n/n, so long as we are in the

aforementioned regime of
∑

i≥2 pi ≤ 5α log n/n. Now by repeated application of this argument for the
2R rounds of the first two phases, we get that throughout these two phases, we always remain in the
regime of

∑
i≥2 pi ≤ α log n/n+O(R) ≤ 2α log n/n and q ≤ β log2 n/n+O(R)α log n/n ≤ 2β log2 n/n.

While the number of new nodes that join the non-plurality opinions during phase 2 and 3 behaves
(at most) similar to above, the increase in the undecided nodes in these rounds can come also from
nodes that were acting based on the gap amplification dynamic and met a node not holding the same
opinion in their sampling round in phase 1. The number of the nodes in the latter group is at most
n(1 − p1) where, in the worst case, p1 is the minimum value it can take during phase 2. Hence, the
total increase in q because of these undecided nodes is expected to be at most 2β log2 n/n+2α log n/n
and is thus at most 3β log2 n/n with high probability. Modulo this one-time addition of 3β log2 n/n
to q, again per each round of phases 2 and 3 the growth in

∑
i≥2 pi is at most O(1) per round and

the increase in q is at most 2n
∑

i≥2 pi (so long as we are still in the regime that
∑

i≥2 pi ≤ 5α log n/n

and q ≤ 10β log2 n/n). We can thus apply this argument for 2R rounds repeatedly and get that we
always remain in this regime of

∑
i≥2 pi ≤ 5α log n/n and q ≤ 10β log2 n/n.

Now that we have this coarse analysis that shows the dynamic to always remain in the aforemen-
tioned regime, we re-examine the dynamic in a more fine-grained way, with the goal of establishing
that by the end of the long-phase, with high probability, we actually have

∑
i≥2 pi ≤ α log n/n and

q ≤ β log2 n/n, i.e., the conditions at the start of the long-phase.
For a node v to hold a non-plurality opinion at the end of this long-phase, one of two things has

to happen: either v had an opinion in {p2, . . . , pk}, acted according to the gap amplification dynamic,
and sampled some node of the same opinion, or v became undecided at some point and then switched
to this non-plurality opinion. Note that potentially there could be a third case where the node followed
the Undecided dynamic and kept it’s non-plurality opinion but with high probability there is no such
node as with high probability, each node v has two consecutive rounds in which it meets a plurality
opinion node. Now per round, the expected number in the former case (following GA and keeping the
opinion) is at most n

∑
i p

2
i ≤ n(

∑
i pi)

2 and the expected number of the latter case (switching from
undecided to a non-plurality opinion) is at most nq

∑
i≥2 pi. Taking the largest possible values from

the regime that we established above, this is an expectation of at most O( log3 n
n ) per round. Hence,

the actual number is at most O(1), with high probability. Even summing up over all the 4R rounds,
the total would be at most O(R) ≤ α log n/n, thus establishing that at the end of the long-phase, we
have that

∑
i≥2 pi ≤ α log n/n.

On the other hand, for a node v to be undecided at the end of the long-phase v, one of two things
has to happen: either v was undecided at the end of phase 2 and it never met a decided node during
phase 3, or v at some point became decided but later on switched to undecided because of meeting
a node of an opposite opinion. W.h.p. there is no node in the first group because per round each
node meets a decided node with probability at least p1 and there are O(log n) rounds. On the other
hand, the expected number of nodes in the second group is at most n(

∑
i≥2 pi) per round, and thus

2n(
∑

i≥2 pi)+5 log n, w.h.p. Considering the established regime that
∑

i≥2 pi ≤ α log n/n, we get that

over the R rounds, this is at most 8Rα log n/n+ 20R log n/n ≤ β log2 n/n. That is, at the end of the
long-phase, we also have q ≤ β log2 n/n.

Lemma C.4. Starting from p1 ≥ 1− 20 log n/n, w.h.p., within O(1) phases, we have
∑

i≥2 pi = 0.

Proof. Consider the first time at the start of a long-phase such that p1 ≥ 1 − 20 log n/n. First note
that by Lemma C.3, w.h.p., during all rounds of the next O(1) phases, we have p1 ≥ 1−O(log2 n)/n.
Now a game-player node v can have a non-plurality opinion at the end of one long-phase only if, either
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it acted according to the gap amplification rule and it sampled a node of its own opinion, or it was
undecided at some point and met a node of non-plurality opinion. Thus, at the end of the long-phase

E[
∑

i≥2 p
new
i ] ≤

∑
i≥2 p

new
i · O(log2 n)

n . Hence, the expected number of such game-player nodes after
O(1) phases is less than 1/nc, for any desirably large constant c, which by Markov’s inequality means
with high probability

∑
i≥2 pi = 0.

Lemma C.5. Once
∑

i≥2 pi = 0, within O(1) long-phase, the plurality opinion obtains totality.

Proof. First, consider just one long-phase, after reaching
∑

i≥2 pi = 0. Note that since p1 ≥ 1 −
O(log2 n/n) at the end of phase 2, throughout phase 3, with high probability, each game-player node
will meet a node of the plurality opinion. Since there is no opposite opinion left, all game-player nodes
remain with the plurality opinion at the end.

Now consider the long-phases after the one long-phase discussed above. Note that the clock-nodes
will switch to end-game w.h.p at the end of the next long-phase, at the latest, as they would not detect
an undecided game-player node then. Once they switch, they take the opinion of the last game-player
node that they have met and that is the plurality opinion as we know. Hence, at that time, all nodes
hold the plurality opinion.

C.2 Analysis for k < n0.1

We now turn to consider the case where k is small. Since the length of each phase is Θ(log k), there
are two difficulties that may arise: (a) even if all clock-nodes are active, a node might not meet
any clock-node during the course of a phase, and (b) the information on the existence of undecided
nodes may not spread to all the clock-nodes and hence some clock-nodes would move to the end-
game prematurely. Again, we distinguish between two regimes of p1. In the small regime, we would
claim that a significant fraction 1 − O(1/k5) of the clock-nodes are active and then we show this to
be sufficient for the dynamics to have gap amplifications at nearly the same rate as in the Take 1
algorithm. We then consider the high regime of p1 and use arguments similar in nature to those of
the k ≥ n0.1 to show that p1 reaches 1 soon, even considering the worst that can happen per round,
in each of the gap amplification and undecided state dynamics.

C.2.1 Case k < n0.1 and p1 ≤ 1− 1/k5

Lemma C.6. W.h.p, in every long-phase, at least 1− 1/(100k8) fraction of the clocks are active.

Proof. We begin by showing that in phase 2 there are Ω(n/k5) undecided nodes. This is because, for
each node v not having the plurality opinion at the start of the long-phase, v will see at least one
active clock-node in each of phases 0 and 1, with probability at least 1− (1/2)R ≥ 1− 1/k10, and then
it will sample one node, which has the same opinion as v with probability at most O(1/k5), due to
the assumption p1 ≤ 1 − 1/k5. Therefore, node v will forget its opinion during the first O(1) rounds
of the phase 2 with probability at least Ω(1). This means, overall the at least n/k5 nodes that do not
hold the plurality opinion at the start of the long-phase, we expect at least Ω(n/k5) of them to be
undecided within O(1) rounds after the start of phase 2. Since n

k5
� log n, this means w.h.p., there

are at least Ω(n/k5) such undecided nodes. Now, at that time, each clock-node meets one of these
undecided nodes with probability at least Ω(1/k5). Thus, with high probability, within one round, at
least Ω(n/k5) clock-nodes are aware of the existence of the undecided nodes. Now, this information
spreads following the usual doubling-spreading of a gossip, among the clock-nodes: particularly, per
round, the fraction of clock-nodes having this information grows by a constant factor, until it reaches
1/2 which happens within O(log k) rounds. From there on, the probability that a clock-node does
not get informed about the existence of undecideds after 40(log k + 2) additional rounds is at most
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(3/4)40(log k+2) ≤ 1/(100k10). Note that this is even true about clock-nodes that have already switched
to the end-game in the past. Now, since k < n0.1 Chernoff bound again shows that the actual number
of the clock-nodes that do not receive this information is no more than n/(100k8). That is, at the end
of the long-phase, at most 1/(100k8) fraction of clock-nodes might switch to the end game.

Lifting the gap amplification analysis: We use the large mass of the active clock-nodes established
in Lemma C.6 to argue that the dynamic evolves per long-phase almost the same was as that of the
take 1 algorithm. That is, roughly speaking in each long-phase the ratio of the plurality opinion to
the largest other opinion gets squared. Thus, within O(log n log k) phases, we reach p1 > 1− 1/k5. At
that point, the analysis would follow a different track (as we describe later in Appendix C.2.2) and
will not rely on the existence/abundance of active clock-nodes, since the number of them might go
down rapidly as p1 approaches 1.

For simplicity, let us first talk about the gap amplification in the less sensitive cases where the
gap we already have p1

p2
≥ 1 + Ω(1/k2). We examine the complementary case later. Consider one

long-phase and call a node bad if it meets an end-game clock-node in any round of this long-phase or
if it does not see any clock-node during one of the 4 phases of this long-phase. Note that for each node,
the probability to be bad is at most 4R

100k5
+ 4(1/2)R ≤ O(1/k8). Hence, except for O( 1

k8
) fraction

of the p1 nodes, the rest follow the algorithm by taking steps in each of the phases of the algorithm.
This means, at the end of phase 2, we would have at least (1 − O(1/k8))np2

1 nodes in opinion 1,
and this even holds w.h.p. as np2

1 ≥ n0.8 (because p1 ≥ 1/k and k ≤ n0.1). On the other hand, a
1−O(1/k8) fraction of the nodes of opinion 2 take their steps in each of the phases of the algorithm,
and thus the number of nodes of opinion 2 that keep their opinion by the end of phase 2 is at most
(1−O(1/k8))np2

2+O(1/k)np2. There might be some further bad nodes that join opinion 2 because they
are performing the end-game, but note that a node can join opinion 2 only if either it was previously
in that opinion and it stayed there or it was undecided and it met a node of opinion 2. This means
the number of bad node that join opinion 2 by the end of phase 2 is at most np2O(1/k8) +O(log n).
Thus, even with these very coarse bounds, the total number of nodes in opinion 2 at the end of phase
2 is at most np2

2 + O(1/k8)np2 + O(log n). Hence, the ratio between the two opinions at this time

is at least
(1−O(1/k8))np21

np22+O(1/k8)np2+O(logn)
≥ (p1/p2) · min{(p1/p2)0.9, k2}. Here, the inequality holds because

p1 ≥ 1/k, k ≤ n0.1, and p1
p2
≥ 1 + Ω(1/k2). Note that this is essentially as good of a gap amplification

as we need. Now that the gap ratio has been amplified by the end of phase 2, we get to the healing
phase. The healing again works (essentially) as in take 1, except for a small difference because of bad
nodes: per round, the number of nodes of opinion 1 might grow by a 1−O(1/k8) factor less than the
growth in that of the nodes of opinion 2. However, this is a loss factor of 1 − O( log k

k8
) over all the

O(log k) rounds of the healing phase and thus, the ratio at the end of the long-phase remains at least
(p1/p2) min{(p1/p2)0.8, k}. That is, overall the long-phase provides a gap amplification as we want,
except that now the growth of the gap is capped to k. Note that limiting the growth of the gap by a k
factor can increase the number of the required phases by at most O(log n/ log k) phases, i.e., O(log n)
rounds, which gets absorbed in the asymptotic notations of our complexity.

Now we discuss the case when p1/p2 ∈ (1, 1+O(1/k2)), which requires a bit more care in analyzing
how the bad nodes can affect the gap amplification. We first analyze the ratio of the nodes of the
plurality opinion to that of the second largest opinion, at the end of phase 1, i.e., right before the time
that the gap amplification results are activated (by forgetting the opinions).

Consider the first round and let γ be the probability of a game-player node acting based on the
end-game (because of meeting an end-game clock-node). Notice that γ is the same for all nodes
(particularly it’s the same regardless of whether the node’s opinion), and that γ ≤ O(log k/k8), if fact
for any of the rounds of the long-phase. Now note that during this round, no node changes its opinion,
except for those bad nodes that are acting based on the end-game. We can easily see that, even in the
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end-game, at least in expectation, the ratio of the number of nodes of the plurality opinion to that
of the second largest opinion does not decrease (in one round). This is because, in the end-game, the
undecided nodes join each of the opinions with probabilities proportional to the number of the nodes
of those opinions, and on the other hand, the probability of a decided node becoming undecided is
smaller for plurality opinion nodes, compared to the non-plurality opinion nodes. However, we still
might have deviations from the expectations, which would end up shrinking the ratio between the two
largest opinions. This additive deviation is at most ±O(

√
nγ log n) for each of the opinions, as even

the whole number of nodes that act based on the end game is at most nγ. Hence, at the end of the
first two phases, the ratio between the two opinions is at least

np1 −O(
√
nγ log n)

np2 +O(
√
nγ log n)

≥
np1(1−O(

√
logn/n

k2
))

np2(1 +O(

√
logn/n

k2
))
≥ (

p1

p2
)(1−O(

√
log n/n

k2
)),

where the inequality holds because p1 ≥ 1/k, p1/p2 ∈ (1, 1 + O(1/k2)), and γ ≤ O(log k/k5). Noting
that during the first two phases, the only nodes that change their opinion are those that act based on
the end-game, we can repeat the above argument for the O(log k) rounds of the first two phases, and
conclude that at the end of the first two phases, the ratio between the two largest opinions is at least

(p1p2 )(1−O(

√
logn/n

k2
))O(log k) ≥ (p1p2 )(1−O(

log k
√

logn/n

k2
)).

Since p1 − p2 ≥ Ω(
√

log n/n), the above means during the first two phases, the ratio between the
two largest opinions does not get attenuated significantly. We now show that during phase 2 and by
the end of it, the ratio grows considerably, to at least (p1/p2)1.6.

Now during phase 2, during the main algorithm, decided nodes that their sample in phase 1 had a
different opinion (or was undecided) forget their opinion. However, there are two other effects, because
of bad nodes: (1) we again have a small-fraction of nodes that are acting based on the end-game, (2)
there is a group of bad nodes that although they are not following the end-game, they did not act
based on the main algorithm properly, i.e., either they did not sample a game-player or they do not
get to forget their opinion, even though they had sampled a node of a different opinion. We will be
able to bound the effect of the first group (end-game players), round by round, as we did in the above
paragraph. For the latter group, note that for a node v fall in this group, it should be true that, in at
least one of the first three phases, node v does not meet (either) any clock-node (or any game-player
node). The probability of this is at most O(1) · (1/2)R ≤ 1/k10.

Note that if we did not have the bad nodes, the (expected) ratio between the two largest opinions
would be (p1/p2)2. However, the actual ratio has some (small) influence from the bad nodes. Among
the bad nodes, the ratio is at least as large as the ratio that we had at the start of phase 2. This is
because, similar to the discussions above, the end-game nodes do not decrease the ratio (in expecta-
tion), and for the bad nodes of the second group, which do not get to forget their opinion, the ratio
is at most as if they did change their opinion. Furthermore, note that the probability of a node to
become a bad node of group 2 is an α = O(1/k8) but this event is independent of the node’s opinion.
Thus, we can conclude that, even considering the possible deviations, the ratios are at least

p2
1(1− α) + αp1 ± 10

√
np2

1 log n±O(
√
n log n/k2)

p2
2(1− α) + αp2 ± 10

√
np2

2 log n±O(
√
n log n/k2)

≥ min{(p1/p2)1.6, k(p1/p2)}.

The inequality holds because p1 − p2 ≥ Ω(
√

log n/n), p1 ≥ 1/k and α ≤ O(1/k8). Hence, at the end
of phase 2, we have the desired gap amplification in the ratios8.

8Note that again the amplification is capped to k factor, but as we saw before, this can increase the time complexity
by only an additive O(logn/ log k) phases, which is just O(logn) rounds
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Now during phase 3, the healing gets performed, which effectively shrinks the fraction of undecided
nodes to at most O(1/k). While doing this, the ratio of the multiplicative gap between the two largest
opinions remains essentially preserved, as analyzed in the take 1 algorithm. The only difference here
with regards to the analysis of the take 1 algorithm is that, here the healing process is initially about a
1/2 factor slower as at the start of the phase a node gets informed of this phase only with probability
1/2. However, this only affects when an undecided node becomes ready to adopt an opinion, and does
not affect the ratios between the two opinions, as still, each undecided node adopts the opinion of the
first decided node that it meets. Again, there is a small effect because of nodes that play according

to the end-game, but as analyzed above, this can shrink the ratios by at most a (1−O(
log k
√

logn/n

k2
))

factor, which given that p1 − p2 ≥ Ω(
√

log n/n, p1 ≥ 1/k and p2 ∈ (1, 1 + O(1/k2)), means the ratio
at the end of the long phase is at least min{(p1/p2)1.5, (k/2)(p1/p2)}. This shows the desired gap
amplification that happens during one phase, and gives that within O(log n log k) phases, p1 reaches
p1 ≥ 1− 1/k5.

C.2.2 Case k < n0.1 and p1 > 1− 1/k5

Here we show that once p1 gets very close to 1, particularly passing 1−1/k5, within O(log n/ log k) more
phases, we reach plurality consensus. In this part of the analysis, we will not rely on the existence (or
abundance) of active clock-nodes, as the number of the active clock-nodes might be (or become) very
small. The style of the arguments here is to a large extent similar to Appendix C.1.2. In Lemma C.7,
we show that w.h.p. the system will not leave this regime of p1 ≈ 1. Then Lemma C.8 uses this fact to
show that within O(log n/ log k) long-phases, all opinions other than the plurality get filtered out, and
Lemma C.9 shows that then within O(log n/ log k) additional long-phase, all nodes hold the plurality
opinion.

Lemma C.7. Suppose that at the start of a long-phase, we have
∑

i≥2 pi ≤ O(1/k5) and q ≤ O(1/k3).

Then, w.h.p., in each of the rounds of this long-phase, we have
∑

i≥2 pi ≤ O(1/k4) and q ≤ O(1/k2)

and at the end of this long-phase we have
∑

i≥2 pi ≤ O(1/k5) and q ≤ O(1/k3).

Proof. The proof is provided in two parts. We first use a somewhat coarse argument to show that
w.h.p. in all rounds, we will have

∑
i≥2 pi ≤ O(1/k4) and q ≤ O(1/k2). We then provide a slightly

more fine-grained argument, which also uses the guarantee established by the coarse argument, to
show that at the end of the long-phase

∑
i≥2 pi ≤ o(1/k5) and q ≤ o(1/k3).

Consider the global time, and each of the rounds during the first two phases. The increase in∑
i≥2 pi in this round comes from undecided nodes that met a node with opinion in {p2, . . . , pk}. The

expected number of such nodes in one round is nq
∑

i≥2 pi where q and pi are the values at the start

of that particular round. Thus, so long as we are still in the regime that
∑

i≥2 pi ≤ O(1/k4) and

q ≤ O(1/k2), this expectation would be at most O(n/k6). Since n ≥ k0.1, that means with high
probability the number of nodes that join {p2, . . . , pk} in this one round is at most O(n/k6). On
the other hand, the increase in the number of undecided nodes during these two phases comes from
nodes that were acting based on the end-game and met a decided node of a different opinion. Per
round, the expected number of such nodes is at most 2n

∑
i≥2 pi, where pi of that round is used. This

expectation is at most O(n/k4), so long as we are in the aforementioned regime, and thus with high
probability the actual number is also at most O(n/k4). By repeated application of this argument for
the 2R = O(log k) rounds of the first two phases, we get that throughout these two phases, always∑

i≥2 pi ≤ O(1/k5) +O(log k)/k6 ≤ O(1/k4) and q ≤ O(1/k3) +O(log k)/k4 ≤ O(1/k2).
The above neglects a minor detail, i.e., there might be nodes that their last phase update remained

stuck at 2 or 3, and they might join {p2, . . . , pk} or they might become undecided per round. However,
that would mean this node did not meet any clock-node during the phase 0 or 1 and since the total
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number of clock-nodes (active or in end-game) is about 1/2, the total number of such ‘bad’ nodes
is expected to be at most O(1/k8) and adding this to the above numbers, even per round, does not
change the asymptotic notations.

While the number of new nodes that join the non-plurality opinions during phase 2 and 3 behaves
(at most) similar to above, the increase in the undecided nodes in these rounds can come also from
nodes that were acting based on the gap amplification dynamic and met a node not holding the same
opinion in their sampling round in phase 1. The number of the nodes in the latter group is at most
n(1 − p1) where, in the worst case, p1 is the minimum value it can take during phase 2. Hence, the
total increase in q because of these undecided nodes is expected to be at most O(n/k2) and is thus at
most O(n/k2) with high probability. Modulo this one-time addition of O(1/k2) to q, again per each
round of phases 2 and 3 the growth in

∑
i≥2 pi is at most O(1/k6) per round and the increase in q is at

most O(1/k6) (so long as we are still in the regime that
∑

i≥2 pi ≤ O(1/k4) and q ≤ O(1/k2)). We can
thus apply this argument for 2R rounds repeatedly and get that we always remain in this regime of∑

i≥2 pi ≤ O(1/k4) and q ≤ O(1/k2). This finishes the coarse grained argument, for remaining within
this regime in all rounds of one long-phase.

Now that we have this coarse analysis that shows the dynamic to always remain in this regime, we
re-examine the dynamic in a more fine-grained way, with the goal of establishing that by the end of
the long-phase, with high probability, we actually have

∑
i≥2 pi ≤ o(1/k5) and q ≤ o(1/k3).

For a node v to hold a non-plurality opinion at the end of this long-phase, one of three things
has to happen: (1) either v had an opinion in {p2, . . . , pk}, acted according to the gap amplification
dynamic, and sampled some node of the same opinion, or (2) v became undecided at some point
and then switched to this non-plurality opinion, (3) there was a phase in which v did not see any
clock-node. Per round, the expected number in the first case is at most n

∑
i p

2
i ≤ n(

∑
i pi)

2, the
expected number of the second case is at most nq

∑
i≥2 pi, and the expected number of the third case

is at most n/k10. Taking the largest possible values from the regime that we established above, this is
an expectation of at most O(n/k6) per round in total. Hence, the actual number is at most O(n/k6),
w.h.p., as k ≤ n0.1. Summing up over all the 4R rounds, we get that at the the end of the long-phase,
we have

∑
i≥2 pi ≤ O(log k/k6) ≤ o(1/k5).

On the other hand, for a node v to be undecided at the end of the long-phase v, one of three things
has to happen: (1) either v was undecided at the end of phase 2 and it never met a decided node
during phase 3, or (2) v at some point became decided but later on switched to undecided because
of meeting a node of an opposite opinion, (3) there was a phase in which v did not meet any clock
node (active or in the end-game). The number of the nodes in the first and third groups is expected
to be at most O(n/k8), and thus also with high probability at most O(n/k8). The reason for the
first group is that per round each node meets a decided node with probability at least p1 and there
are R = Θ(log k) rounds in a phase. The reason for the third group is similar, per round each node
meets a clock with probability 1/2 and there are R = Θ(log k) rounds in a phase. On the other hand,
the expected number of nodes in the second group is at most n(

∑
i≥2 pi) per round. Considering the

established fact that we always have
∑

i≥2 pi = O(1/k4), this expectation is at most O(n/k4) and thus

the actual random number is also w.h.p. O(n/k4). We thus get that over the O(R) rounds, this is at
most O(n log k/k4) = o(n/k3). That is, w.h.p., at the end of the long-phase, q = o(1/k3).

Lemma C.8. After p1 ≥ 1− 1/k5, in O(log n/ log k) phases, w.h.p., we have
∑

i≥2 pi = 0.

Proof. Consider the first time at the start of a long-phase such that p1 ≥ 1 − 1/k5. Note that by
Lemma C.3, with high probability, during all rounds of the next O(log n/ log k) phases, we have
p1 ≥ 1 − O(1)/k2. Now a node v can have a non-plurality opinion at the end of one long-phase only
if, either it acted according to the gap amplification rule and it sampled a node of its own opinion,
or it was undecided at some point and met a node of non-plurality opinion, or it had this opinion
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at the start of the long-phase but never changed its opinion. Thus, at the end of the long-phase
E[
∑

i≥2 p
new
i ] ≤

∑
i≥2 p

new
i · O(1)

k2
. Hence, the expected number of such nodes after O(log n/ log k)

phases is less than 1/nc, for any desirable constant c, which by Markov’s inequality means w.h.p.
there is no such node. That is, after O(log n/ log k) phases, w.h.p.,

∑
i≥2 pi = 0.

Lemma C.9. After O(log n/ log k) phases from the time that p1 ≥ 1 − 1/k5 and
∑

i≥2 pi = 0, with
high probability, we have p1 = 1.

Proof. First, consider each long-phase, after reaching
∑

i≥2 pi = 0. Note that since p1 � 2/3 at the

end of phase 2, the probability that a node remains undecided throughout phase 3 is at most 1/k10.
Now, per long-phase, the number of undecided might grow at most by a 3 factor (during the phase
2 of the gap-amplification), but it will decrease then by a O(1/k10) factor in the consequent phase
3, regardless of what fraction of nodes act based on the undecided state dynamic and what fraction
follow the gap amplification. From this, we get that after O(log n/ log k), we expect to see at most 1/nc

undecided nodes for a desirably large c, which by Markov’s inequality means with high probability
there is no undecided node.

Furthermore, note that the clock-nodes will switch to end-game w.h.p at the end of the next long-
phase at the latest, as they would not detect an undecided node then. Regardless of when each of
them switches, once a clock-node switches, it takes the opinion of the (last) game-player node that
it has met. Clearly, at this time, that is the plurality opinion. Per long-phase each clock-node sees
a game-player node with probability at least 1 − 1/k10 which means with high probability, within
additional O(log n/ log k) long-phases, all nodes hold the plurality opinion.

D A Fast Plurality Algorithm for the Non-Random Gossip Model

We describe here an O(log n)-time algorithm with memory/message size O(log n), assuming k ≤
O(
√
n) and p1 − p2 ≥ Ω(

√
log n/n). However, this algorithm assumes a non-random gossip model:

that is, the contacts are not necessarily random in each round and a node v can contact one other
node u that either v contacted u before or u contacted v before, conditioned on that v remembers u’s
identifier (considering its memory limitation). We remark that this is not the standard gossip model.
Though, a similar model was assumed in [BCN+15a, Section 4] as well.

Plurality Estimation via Sampler Trees:

1. Elect a leader, in O(log n) rounds as follows: let every node pick a 4 logn-bit random ID. For
O(log n) rounds, each time each node v updates the maximum observed ID to be the maximum
of its current value and that of the node u that v contacted.

2. Pick k sampling roots as follows: starting from the leader, every time each sampling root holds
a sub-interval I ⊂ [1, k] and passes along about half of it to the first node that it meets that
is not a sampling root node, until we have |I| = 1. Particularly, when the sampling root meets
the first other node, it passes along [bk/2c + 1, k] to that node and keeps [1, bk/2c] for itself.
Next time that each of these sampling roots meets some new node, it passes along the higher
half of the responsibility interval and keeps the lower half for itself. If the sampling roots meets
someone which already has some responsibilities, no passing along happens. Within O(log n)
rounds, w.h.p. the responsibilities are spread so that there are exactly k counters. one for each
number i ∈ {1, 2, . . . , k}.

3. Each sampling root node i, for every i ∈ {1, . . . , k}, is responsible for opinion i whose statistics is
to be collected using a sampler tree rooted at this node: grow from each counter i a sampler tree
Ti of size S = n

2k essentially by repeating the same idea as above but where a subinterval [1, S] is
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being split, for each sampling root. Note that different intervals are spread for different sampling
roots simultaneously. Again, if a subinterval-holding node contacts one that is also holding a
subinterval, nothing happens. Within O(log n) rounds, w.h.p., we this process terminates and
each node holds at most one sub-interval. Let each node v remember the first node u that
contacted v passing a responsibility to it, as its parent in the corresponding sampler tree.

4. In the next communication round, make each node v in tree Ti meet a random other node u and
remember whether u holds opinion i or not.

5. Rewind the tape of the meetings in step 3 (i.e., the process of growing sampler trees), running it
in reverse-time order where each node contacts its parent in the appropriate round. In each tree
Ti, perform a converge-cast of the number of sampled nodes ni. By the end of O(log n) rounds,
for each i, the sampling root of the tree Ti knows ni.

6. Rebuild the sampler trees9 by growing from each sampling root i the sampler trees T̃i of size
Si = ni · k/4, by repeating the same idea as in step 3.

7. Repeat step 4 and 5. Let ñi be the number of nodes of opinion i sampled by the nodes of T̃i.

8. Each sampler root i computes the estimated fractions p̃i = ñi/Si.

9. Compute the i for which p̃i is maximum, using a standard spreading of maximum, similar to
step 1, in O(log n) rounds. This is the w.h.p. the plurality opinion.

Analysis:

Claim D.1. Within O(log n) rounds, w.h.p., the following holds:
(a) k sampling roots are computed in Step (2).
(b) k sampler trees are constructed in Step (4), and
(c) k sampler trees are constructed in Step (6).

Proof. Since the number of sampler roots is k, there are at most k � n/2 nodes that are holding a
sub-interval. Therefore, each node that holds an interval has probability of at least 1/2 to meet a free
node in a given round and the interval is bisected. Therefore, within O(log n) rounds, all splits have
been occurred and thus the k sampling roots have been elected.

Since in Claim (b) the total number of nodes that are supposed to participate in different sampler
trees is n/2, the same reasoning holds.

Finally, consider Claim (c). We show that w.h.p. the total number of nodes
∑

j Sj in different

sampler trees T̃j is at most n/2. In expectation, E(
∑

j Sj) = (k/4) ·
∑

j nj = n/4. Hence, w.h.p.,∑
j Sj ≤ n/2 as required and the remaining proof continues as for Claim (a).

Lemma D.2. Assuming that the initial bias is p1 − p2 = Ω(
√

log n/n), w.h.p., the root holds the
plurality opinion.

Proof. We show that w.h.p. p̃1 > p̃j for every j ∈ {2, . . . , k}, which proves the lemma.
Let us first consider the sensitive case where pj is not too far from p1, particularly where Spj ≥

10 log n. In the first sampling phase, the expected number of nodes in tree Ti that meet a node of
opinion i is Spi = n

2kpi. For the plurality opinion, this is np1/2k ≥ Ω(log n). Hence, n1 = Θ(np1/k),
w.h.p. As Spj ≥ 10 log n, we can similarly say nj = Θ(npj/k).

9This rebuilding is done in order to refine the estimations for opinions with large support (by increasing the number
of samples, which thus decreases the relative deviation).
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In the second sampling phase, the number of sampled nodes of opinion i as observed by the
sampling tree T̃i is ñi ∈ [Si · pi ±

√
5Sipi · log n]. Hence, we can write

p̃1 =
ñ1

S1
≤ p1 −

√
5p1 log n

S1
≤ p1 −Θ(

√
log n

n
) and p̃j =

ñj
Sj
≥ pj +

√
5pj log n

Sj
≥ pj + Θ(

√
log n

n
),

which given that p1 − p2 ≥ p1 − pj ≥ Ω(
√

log n/n), means p̃1 > p̃j .

Now we consider the complementary case where Spj ≤ 10 log n. Since Spj ≤ 10 log n, w.h.p.,
we have nj ≤ 15 log n. If nj = 0, we already done. Suppose nj ≥ 1. Then, E[ñj ] = njpjk/4 =

nj
5k2 logn

n ≥ 100 log n. Hence, w.h.p., ñj ≤ (1.05)E[ñj ] ≤ 1.05njpjk/4. That means, p̃j ≤ 1.05pj .

Since p1 = Ω(
√

log n/n), and Spj ≤ 10 log n, we get that p̃j < p̃1, thus completing the proof.
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