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Abstract

Theoretical study of optimization problems in wireless communication often deals with zero-dimensional tasks. For example,
the power control problem requires computing a power assignment guaranteeing that each transmitting station si is successfully
received at a single receiver point ri. This paper aims at addressing communication applications that require handling 2-
dimensional tasks (e.g., guaranteeing successful transmission in entire regions rather than in specific points). A natural approach
to such tasks is to discretize the 2-dimensional optimization domain, e.g., by sampling points within the domain. This approach,
however, might incur high time and memory requirements, and moreover, it cannot guarantee exact solutions.

Towards this goal, we establish the minimum principle for the SINR function with free-space path loss (i.e., when the
signal decays in proportion to the square of the distance between the transmitter and receiver). We then utilize it as a
discretization technique for solving two-dimensional problems in the SINR model. This approach is shown to be useful for
handling optimization problems over two dimensions (e.g., power control, energy minimization); in providing tight bounds on
the number of null-cells in the reception map; and in approximating geometrical and topological properties of the wireless
reception map (e.g., maximum inscribed sphere). Essentially, the minimum principle allows us to reduce the dimension of
the optimization domain without losing anything in the accuracy or quality of the solution. More specifically, when the 2-
dimensional optimization domain is bounded and free from any interfering station, the minimum principle implies that it is
sufficient to optimize over the boundary of the domain, as the “hardest” points to be satisfied reside on boundary and not in
the interior. We believe that the minimum principle, as well as the interplay between continuous and discrete analysis presented
in this paper, may pave the way to future study of algorithmic SINR in higher dimensions.
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I. INTRODUCTION

Background and motivation: This paper concerns the fundamental goal of developing useful discretization tools for
optimization problems in wireless networks. Specifically, we focus on a basic analytic tool known as the minimum principle.
We show that the SINR function satisfies the minimum principle assuming the free-space model [5] and demonstrate its
usefulness.

We study wireless communication in free space; this is simpler than the irregular environment of radio channels in a general
setting, which involves reflection and shadowing. We consider the Signal to Interference-plus-Noise Ratio (SINR) model,
where given a set of stations S = {s1, . . . , sn} in Rd concurrently transmitting with power assignment ψ, and environmental
noise N , a receiver at point p ∈ Rd successfully receives a message from station si if and only if SINR(si, p) ≥ β, where
SINR(si, p) = ψi·dist(si,p)

−α∑
j 6=i ψj ·dist(sj ,p)−α+N for constants α (the path-loss exponent) and β > 0 (the reception threshold), and

where dist() denotes Euclidean distance. Throughout, we assume α = 2, which is the path-loss exponent in free-space (cf.
[5]). The SINR model, as all other physical models for wireless networks, is continuous in space and characterized by a
bivariate polynomial of degree Θ(n).

In practical network optimization tasks, it is usually insufficient to achieve a desired property at a single target point (i.e.,
of zero dimension); rather, it is required that a certain (two-dimensional) region satisfies a desired property (e,g., successful
reception of transmission by a given station). The observation motivating our work is that optimization over two dimensional
space is rather complicated when dealing with high degree polynomials as arise by the SINR function. Previous theoretical
work in this area avoided this difficulty by focusing on zero dimensional optimization domains. For example, in the power
control problem, one is given n communication links 〈si, ri〉 and a target SINR threshold β and the goal is to compute
a feasible power assignment ψ with respect to β, that is, a power assignment that achieves SINR(si, ri) ≥ β for every
i ∈ {1, . . . , n} where all stations transmit according to ψ. Hence, every station si has to be received at a single point
ri. For a comprehensive review on the power control problem, see [3]. In this paper, we aimed at studying 2-dimensional
problems in the SINR model, namely, problems pertaining to entire regions rather than single points. The first natural



approach to such generalization is to discretize the 2-dimensional optimization domain, e.g., by sampling many points in
the given 2-dimensional region. This brute-force approach has two main shortcomings. From a quantitative point of view,
the resulting time complexity depends upon the area of the optimization domain and hence the size of the new program
might be very large. From a qualitative point of view, a-priori this approach is doomed to be an approximation scheme
and can never result in an exact solution (even in cases where exact solution can be obtained in polynomial time for the
0-dimensional case). The uncertainty for unsampled points can be decreased upon increasing the sampling resolution, but
it can never be completely avoided. In this paper, we establish the minimum principle of the SINR function in free-space
and demonstrate its power as a useful discretization technique. Generally, a function satisfies the minimum principle if its
minimum in any closed domain is attained at the domain’s boundary. The minimum principle (dually known as the maximum
principle) has been widely studied and it is one of the useful tools employed in studying partial differential equations [9],
most notably for elliptic, parabolic, and hyperbolic PDE’s. We show that the minimum principle of the SINR function
has several algorithmic applications. It is proved to be useful in optimization problems over two dimensions (e.g., power
control); in providing tight bounds on the number of null-cells; and in approximating geometrical and topological properties
of the wireless reception map (e.g., maximum inscribed sphere) faster than before. The power of the minimum principle is
that it reduces the dimension of the optimization domain without losing anything in the accuracy or quality of the solution.
More specifically, as long as the 2-dimensional optimization domain is bounded and free from any interfering station, the
minimum principle implies that it is sufficient to optimize over the boundary of the domain, as the “hardest” points to be
satisfied reside on the boundary of the domain and not on its interior. Clearly, optimization in one dimension is significantly
more tractable than optimization in two dimensions, which makes this property useful. The benefit of this approach is thus
two fold. First, the time complexity is no longer scaled with the area of the optimization region but rather with its perimeter.
Second, in certain cases, this approach can yield an exact solution. To get a sense of this effect, consider a reception testing
problem where one is given a wireless network, a target station si and a closed polygon P , defined by rational vertices
and free from interfering stations, i.e., P ∩ (S \ {si}) = ∅. The task is to decide if the entire area of P is receptive to the
transmission of the station si (i.e., SINR(si, p) ≥ β, for every p ∈ P). Without the minimum principle, the best one can
do is to sample sufficiently many points within P and to evaluate the SINR value at each such point. Since there is no
guarantee that the unsampled points are receptive, this scheme cannot decide in finite time if P is receptive. The minimum
principle allows us to do so. By exploiting properties of rational univariate polynomials, one can decide in polynomial time
if every edge σ of P is receptive or not. In particular, in contrast to the 2-dimensional input polygon P , the polygon edge σ
is a line-segment (of dimension 1), and thus testing reception on it is more tractable. The minimum principle then implies
that P is receptive iff every edge of it is receptive.

We hope that these new discretization tools will encourage the future study of two-dimensional optimization problems in
the SINR model. In particular, we believe that these tools should aid us in handling the generalization of the joint scheduling
and power control problem from zero dimension to 2 dimensions. The complexity of this problem (in zero dimension) in
the physical model, taking into account the geometry of the problem, is not fully understood. Nevertheless, many algorithms
and heuristics have been suggested for it, e.g., [2], [4], [11], [12], [15], [16], [6], [10].

From the topological point of view, the minimum principle also allows us to give a better topological characterization of
the wireless communication map. To model the reception regions, we use the convenient representation of an SINR diagram,
introduced in [1], which partitions the plane into n reception zones, one per station, and the complementary region where
no station can be heard. The topology and geometry of SINR diagrams was studied in [1] in the relatively simple setting of
uniform power, where all stations transmit with the same power level. SINR diagrams under the general non-uniform setting
(i.e., with arbitrary power assignments) were studied in [7]. The topological features of general SINR diagrams turned out to
be more complicated than in the uniform case. Several important properties of SINR diagrams were established in [7]. One of
the key results demonstrates that the reception regions in Rd+1 (i.e., one dimension higher than that in which the stations are
embedded) are hyperbolically convex. Hence, although the d-dimensional map might be highly fractured, drawing the map
in one dimension higher “heals” the zones, which become (hyperbolically) connected. So far, the challenge of establishing
useful properties that hold in the dimension where the network is embedded remains open. It was conjectured in [7] that
certain undesirable configurations are in fact excluded in (general) d-dimensional SINR diagrams. In particular, there is no
hole in a reception region that is free of interfering stations (i.e., every reception cell must contain at least one interfering
station). This property, termed “no-free-hole” (NFH) in [7], is defined as follows. A collection C of closed domains in Rd
obeys the NFH property w.r.t. a station set S if for every station-free domain C ∈ C, if all its boundary points hear si,
then all its (internal) points hear si as well. In [7], the NFH property was established only for 1-dimensional networks in
free-space (i.e., α = 2) and was conjectured to hold for any dimension.

By showing that the SINR function satisfies the minimum principle, the NFH conjecture is resolved for every dimension
d ≥ 1 and for SINR threshold β > 0. Consequently, every null-cell (“hole”) in a reception region must contain an interfering



station.
Contributions: The main technical contribution of this paper involves establishing the minimum principle for the SINR

function in free-space (i.e., for path-loss exponent α = 2). We then show its applicability as a discertization tool which
enables us to study standard two-dimensional problems in the SINR model. Extending the result to other α values remains
a challenging open problem.

Resolving the NFH conjecture: From the topological point of view, we improve our understanding of SINR map
compared to [7], by resolving the NFH conjecture raised therein. The minimum principle implies that although the reception
regions are not convex in general, they enjoy a certain type of convexity (or smoothness) in station-free regions. Our reasoning
involves a characterization of the “hard” network configurations for which establishing the minimum principle requires a
more subtle analysis. An essential step in our analysis is providing a closed and elegant form for the average energy of a
station on the boundary of a d-dimensional ball, which might be of independent interest.

We then present several applications of the minimum principle, briefly reviewed next.
Exact and approximate schemes of reception testing: The first application that illustrates the usefulness of our result, is

given by the setting of reception testing, see Sec. IV-A. The input for this problem is a wireless network, a closed domain
C and a target station s0. The closed domain is said to be receptive for the station s0 iff the domain is fully contained in the
reception region of s0. It is then required to decide if C is fully receptive. We provide two alternative reception schemes.
First, for the case where the input shape C is a polygon whose vertices are positioned on rational coordinates in the plane,
we provide an exact reception scheme that returns in polynomial time “yes” iff C is receptive for s0. Then, for the general
case of any closed domain C, present an approximate testing scheme testing procedure that by evaluating the SINR function
for the points on the boundary of C can make deductions regarding the reception quality of the entire domain C.

The polygonal power control problem: In Sec. IV-C we define the following problem, which is a 2-dimensional
generalization of the well-known power control problem. Given n stations s1, . . . , sn along with n polygons P1, . . . ,Pn,
a desired SINR threshold β, find transmission powers ψ such that the SINR value of any given reception point p ∈ Pi
with respect to station si is at least β when all stations transmit simultaneously according to ψ. We show that this problem
corresponds to a convex program and present a separation oracle that can be used as a black box by the Ellipsoid algorithm
for solving this problem. The same scheme applies also for the sum-power minimization problem or the min-max power
problems, in which it is also required to minimize the total (resp., maximum) transmission power [3].

Universal bound of the number of null-cells: In Sec. IV-D we consider the theoretical challenge of providing a tight
bound for the number of null-cells in the reception map for SINR threshold β > 1. Note that in the presence of ambient
noise there is only one unbounded null-cell (see Lemma 4.8), and hence the number of bounded null-cells equals the number
of null-cells minus one. In [7] it is shown, using Milnor-Thom Theorem, that there are O(n2d) null-cells for every dimension
d ≥ 1. In this paper, we tighten this into linear bound on the number of null-cells for every dimension (which is tight up to
constants). Our proof strategy combines a topological and continuous characterization of the system on the one hand, along
with a discrete analysis of the graph representation induced by the collection of null-cells.

Maximum inscribed sphere inside a reception region: Consider the following problem. Given an n-station network
and a target station si. Compute the maximum sphere around si that is fully contained in the reception region of si. We
then show that using the minimum principle and in particular the approximate reception scheme describe above, one can
compute an approximation for this problem in improved time compared to what could have been done using the standard
tools without the minimum principle.

Approximation of the number of null-cells: Finally, in Appendix IV-E, we provide an approximation scheme for the
number of null-cells in a given reception region. The motivation of such an approximation (in light of the universal tight
upper bound) arises in cases where the number of null-cells in the network is much smaller than the universal upper bound of
O(n). Without the minimum principle, there was no lower bound on the area of a null-cell in the map and hence sufficiently
small null-cells could not be detected. The minimum principle also implies a lower bound on the area of the null-cells (i.e.,
the null-cells cannot be arbitrarily small) and in addition, it implies that every null-cell contains an interfering station. These
observations lead to an efficient approximate null-cell detection scheme: every null-cell in the SINR map is detected and
every detected null-cell exists in an SINR map of slightly smaller SINR threshold. Some of the presented applications (e.g.,
polygonal power control, universal linear bound on the number of null cells) are technically nontrivial and call for new
tools. Others (e.g., computing the maximum inscribed sphere) are mostly built upon existing tools but may be of significant
practical interest.

II. PRELIMINARIES

Geometric notions: We consider the d-dimensional Euclidean space Rd (for d ∈ Z≥1). The distance between points p
and point q is denoted by dist(p, q) = ‖q−p‖. A ball of radius r centered at point p ∈ Rd is the set of all points at distance



at most r from p, denoted by Bd(p, r) = {q ∈ Rd | dist(p, q) ≤ r}. The basic notions of open, closed, bounded, compact
and connected sets of points are defined in the standard manner. The closure of P , denoted cl(P ), is the smallest closed set
containing P . The boundary of a point set P denoted by Φ(P ), is the intersection of the closure of P and the closure of its
complement, i.e., Φ(P ) = cl(P ) ∩ cl(P̄ ). A maximal connected subset P1 ⊆ P is a connected point set such that P1 ∪ {p}
is no longer connected for every p ∈ P \P1. A domain D in the Euclidean space is an open connected set. We use the term
zone to describe a point set with some “niceness” properties. Unless stated otherwise, a zone refers to the union of an open
connected set and some subset of its boundary. Let H̃ : Rd → R be a polynomial and let p ∈ Rd. Then H̃ is the characteristic
polynomial of a zone Z if p ∈ Z ⇔ H̃(p) ≤ 0. For a non-empty bounded zone Z 6= ∅ and an internal point p of Z, denote
the maximal and minimal radii of Z w.r.t. p by δ(p, Z) = sup{r > 0 | Z ⊇ B(p, r)} , ∆(p, Z) = inf{r > 0 | Z ⊆ B(p, r)}.

Wireless networks: We consider an n + 1 station wireless network A = 〈d, S, ψ,N , β, α〉, where d ∈ Z≥1 is the
dimension, S = {s0, s2, . . . , sn} is a set of transmitting radio stations embedded in the d-dimensional space, ψ is an
assignment of a positive real transmitting power ψi to each station si, N ≥ 0 is the background noise, β ≥ 0 is a constant
reception threshold (to be explained soon), and α ≥ 1 is the path-loss parameter. The network is assumed to contain at
least two stations, i.e., n ≥ 1. The energy of station si at point p 6= si is defined as EA(si, p) = ψi · dist(si, p)

−α. The
signal to interference & noise ratio (SINR) of si at point p is defined as

SINRA(si, p) =
EA(si, p)∑

sj∈(S\{si}) EA(si, p) + N
=

ψi · dist(si, p)
−α∑

j 6=i ψj · dist(sj , p)−α + N
. (1)

Observe that SINRA(si, p) is positive by definition. In certain contexts, it may be more convenient to consider the reciprocal
of the SINR function,

SINR−1
A (si, p) =

1

ψi

∑
j 6=i

ψj

(
dist(si, p)

dist(sj , p)

)α
+ N · dist(si, p)

α

 . (2)

When the network A is clear from the context, we may omit it and write simply E(si, p) and SINR(si, p). The fundamental
rule of the SINR model is that the transmission of station si is received correctly at point p /∈ S if and only if its
signal to noise ratio at p is not smaller than the reception threshold of the network, i.e., SINR(si, p) ≥ β. In this case,
we say that si is heard at p. We refer to the set of points that hear station si as the reception zone of si, defined as
Hi(A) = {p ∈ Rd − S | SINRA(si, p) ≥ β} ∪ {si} . This definition is necessary since SINR(si, ·) is undefined at points
in S and in particular at si itself. Note that Hi(A) is not necessarily connected. A maximal connected component within
a zone is referred to as a cell. In the same manner of we refer to the set of points that hear no station si ∈ S (due to
the background noise and interference) and the null zone H∅(A) = {p ∈ Rd − S | SINR(si, p) < β, ∀si ∈ S}. The null
zone is not necessarily connected. In general, H∅(A) is composed of τ∅(A) connected cells, H∅,j(A). An SINR diagram
H(A) = {Hi(A), 0 ≤ i ≤ n} ∪ {H∅(A)} is a “reception map” characterizing the reception zones of the stations. For
β > 1, this map partitions the plane into n+ 2 zones; a zone Hi(A) for each station si, 0 ≤ i ≤ n, and a null zone H∅(A)
where no transmissions are received successfully. The following important technical lemma from [1] will be useful in our
later arguments.

Lemma 2.1: [1] Let f : Rd → Rd be a mapping consisting of rotation, translation, and scaling by a factor of σ > 0.
Consider some network A = 〈d, S, ψ,N , β, α〉 and let f(A) = 〈d, f(S), ψ,N /σ2, β, α〉, where f(S) = {f(si) | si ∈ S}.
Then f preserves the signal to noise ratio, namely,
SINRA(si, p) = SINRf(A)(f(si), f(p)) for every station si and for all points p /∈ S.

The Minimum Principle (“No-Free-Hole”): A function f satisfies the minimum principle (a.k.a the weak minimum
principle) if the minimum of f in every open connected domain D ⊂ Rd is attained on the boundary Φ(D) of the domain,
i.e., f(p) ≥ min{f(p′) | p′ ∈ Φ(D)}, for every p ∈ D. If the minimum is attained only on the boundary, i.e., the above
inequality holds with a strict inequality, then the function satisfies the strong minimum principle. The strong and weak
maximum principles are defined analogously.

Main Technical Lemmas: The following technical lemma plays a key role in our analysis. Due to lack of space, missing
proofs are deferred to the full version.

Lemma 2.2: For all x ∈ (0, 1), y1, ..., yn ∈ (0, 1), and a1, ..., an, α ∈ R>0,

max

{
n∑
i=1

ai

(
x

yi

)α
,

n∑
i=1

ai

(
1− x
1− yi

)α }
≥

n∑
i=1

ai . (3)

where equality holds iff x = y1 = . . . = yn.



The following lemma is essential for is a generalization of Proposition 3.6 of [1] for wireless system with n+ 1 stations.
Consider a noise free wireless network A = 〈d = 2, S, ψ̄,N = 0, β ≥ 1, α〉, where S = {s0, s1..., sn}. Denote the origin
point by q = (0, 0), let pR = (1, 0), pL = (−1, 0) and define ρi = dist2(si, q), for every i = 0, ..., n.

Lemma 2.3: Let A be a noise-free network (N = 0) and let q /∈ S. Then

max{SINR−1
A (s0, pL) , SINR−1

A (s0, pR)} ≥ ∑n
i=1

ψi
ψ0
·
(
ρ0+1
ρi+1

)α/2
.

Proof: Let α′ = α/2. For ease of analysis, we consider the two dimensional case but it the proof naturally extends
to any d ≥ 2. in addition, for simplicity consider the network A′ = 〈S′ = {s ′0, ..., s ′n}, ψ̄,N = 0, β = 1, 2α′〉 obtained
from A by rotating each of the stations s0 (resp., s1, ..., sn) around the origin point q (maintaining its distance from q)
until it reaches the positive (resp., (negative) y-axis, i.e., the stations s ′0 (resp., s1, ..., s

′
n) are on the positive (resp., negative)

y-axis and preserve the distances of s0, ..., sn, respectively, from q. Note that SINRA(s0, q) = SINRA′(s
′
0, q). Formally,

the station s ′0 (resp., s ′i, i > 0) is located at the point (0,
√
ρ0) (resp., (0,−√ρi) for i ∈ {1, ..., n}), as illustrated in

Figure 1. Define the angle θi so that si = (
√
ρi cos θi,

√
ρi sin θi) for i = 0, ..., n. By the cosine theorem (applied to the

√
ρ1 =

√
ρ0

s2

s1

s′1

s′3

s′2

s′4

p1 p2

√
ρ3

√
ρ4

s4

q

s′0
s0

s3

Figure 1. Relocating stations. The interfering stations si 6= s0 are mapped to the negative y-axis while the target station s0 is mapped to the
positive y-axis. By that, an interfering station is never co-located with the target station, even when ρi = ρ0 (in the figure, ρ1 = ρ0).

triangle defined by the points (0, 0), (1, 0) and si), dist(si, pL)2 = ρi + 2
√
ρi cos θi + 1, and analogously dist(si, pR)2 =

ρi−2
√
ρi cos θi+1. Thus, for i ∈ {0, . . . , n}, dist(si, pL)2 +dist(si, pR)2 = 2(ρi+1). Let xi = dist(si,pL)2

2(ρi+1) for i = 0, ..., n.

Then, xi ∈ (0, 1), and 1 − xi = dist(si,pR)2

2(ρi+1) for i = 0, ..., n. Let ai = ψi
ψ0

(
ρ0+1
ρi+1

)α/2
, for i ∈ {1, . . . , n}. By Eq. (2),

SINR−1
A (s0, pL) =

∑n
i=1 ai

(
x0

xi

)α/2
and SINR−1

A (s0, pR) =
∑n
i=1 ai

(
1−x0

1−xi

)α/2
. Recall that the angles in the polar

coordinates of the corresponding stations s ′0, ..., s
′
n are θ′0 = ... = θ′n = π/2, hence dist(s′i, pj) =

√
ρi + 1 for j = 1, 2 and

therefore SINR−1
A′ (s

′
0, pL) = SINR−1

A′ (s
′
0, pR) =

∑n
i=1 ai. Applying Lemma 2.2 with x = x0, yi = xi for i = 1, ..., n, we

have that

max

{
n∑
i=1

ai

(
x0

xi

)α
,

n∑
i=1

ai

(
1− x0

1− xi

)α}
≥

n∑
i=1

ai

for all x0, ..., xn ∈ (0, 1). This, in turn, implies that

max
{

SINR−1
A (s0, pL),SINR−1

A (s0, pR)
}
≥ SINR−1

A′ (s
′
0, pL) = SINR−1

A′ (s
′
0, pR) =

n∑
i=1

ai ,

the lemma follows.

III. THE STRONG MINIMUM PRINCIPLE OF THE SINR FUNCTION

Throughout this section, we restrict attention to n+ 1 station networks A = 〈d, S, ψ,N, β, α = 2〉. The function SINRA
satisfies the strong minimum principle if for every compact domain D ⊂ Rd that is free from the stations of S, it holds that

SINRA(si, p) > min{SINRA(si, p
′) | p′ ∈ Φ(D)}, for every p ∈ D \ Φ(D) . (4)



Our main result is the following.
Theorem 3.1: For every network A = 〈d, S, ψ,N, β, α = 2〉 the function SINRA satisfies the strong minimum principle.

We first show that the strong minimum principle holds for the case where the domain D is a station-free d-dimensional ball
and then extend it for the general case.

Theorem 3.2: Every n+ 1 station network A = 〈d, S, ψ,N, β, α = 2〉 satisfies the strong minimum principle on a ball.
The following technical tool is found to be useful when studying SINR systems.

Tool: continuous average energy: Our analysis makes use of the notion of continuous average energy for a d-dimensional
ball Bd(q, r) [8]. For ease of illustration, consider the 2-dimensional case. In addition, assume (w.l.o.g. by Lemma 2.1) that
the ball center is q = (0, 0) and let B = B(q, r). The average energy of si experienced at the boundary Φ(B) is given by
ε(si,B) = 1

2π·r
∫
p∈Φ(B)

EA(si, p). In the full version, we generalize this to any d ≥ 2 and show:1

Lemma 3.3: ε(si,B) = ψi
|dist(si,q)2−r2| .

Denote the average signal to the average interference ratio on the ball’s boundary Φ(B) by

AVG(A, si) =
ε(si,B)∑

j 6=i ε(sj ,B) +N
. (5)

The setting and some useful claims: Throughout this section, we use the following conventions. Without loss of
generality, we focus on station s0 and show that the function SINRA(s0, p) satisfies the minimum principle. Consider a
point q ∈ R2 such that q is not equidistant from all of the stations2, a real r > 0 such that all stations are outside the
ball B(q, r). That is, there exists a station sj ∈ S such that dist(s0, q) 6= dist(sj , q); and si 6∈ B(q, r) for every si ∈ S.
Hereafter, to avoid cumbersome notation let B = B(q, r) and let ρi = dist2(si, q), for every i = 0, ..., n. By Lemma 2.1, let
us assume without loss of generality, that the radius of the ball B is r = 1 and its center q = (0, 0) and that s0 is located at
the positive y-axis (i.e., s0 = (0,

√
ρ0)). In the ensuing discussion we focus our attention on the four intersection points of

Φ(B) with the x and y axes, namely, pL = (−1, 0), pR = (1, 0), pD = (0,−1) and pU = (0, 1). Let the minimum value of
SINRA(si, p) on the boundary Φ(B) of the ball B be denoted by MIN(A, si), the corresponding dual parameter be denoted
by MAX−1(A, s0). That is, MIN(A, si) = min{SINRA(si, p) | p ∈ Φ(B)} and MAX−1(A, s0) = 1

MIN(A,s0) , and

MAX−1(A, s0, pL, pR) = max{SINR−1
A (s0, pL),SINR−1

A (s0, pR)} . (6)

The following claims are useful in our reasoning. (Throughout, missing proofs are deferred to the full version.)
Lemma 3.4: (1) MAX−1(A, s0) ≥ AVG−1(A, s0) with equality if and only if SINRA(s0, p) = AVG(A, s0) for every

p ∈ Φ(B). (2) MAX−1(A, s0) ≥ MAX−1(A, s0, pL, pR).
The following measure plays a key role in our analysis.

SUM =

n∑
i=1

ψi · (ρ0 + 1)

ψ0 · (ρi + 1)
+

N · (ρ0 + 1)

ψ0
. (7)

Our analysis takes special care in the case where all interfering stations are aligned on the line between s0 and the ball
center point q. As will be shown later, for such networks more delicate characterization (or bounds) can be obtained.

Definition: The network A is called y-collinear if all stations si are at the same distance from pL and pR (i.e., all stations
are aligned on the y-axis).

We proceed by providing a lower bound on MAX−1(A, s0, pL, pR) and an exact expression to AVG−1(A, s0) as a
function of the si − q distances ρ0, ..., ρn and the transmitting powers ψ0, ..., ψn.

Lemma 3.5: (1) If the network A is y-collinear then MAX−1(A, s0, pL, pR) = SUM. (2) In all other cases,
MAX−1(A, s0, pL, pR) > SUM.
(3) AVG−1(A, s0) =

∑n
i=1

ψi·(ρ0−1)
ψ0·(ρi−1) + N ·(ρ0−1)

ψ0
.

Sufficient conditions for the minimum principle on SINR: We now propose two sufficient conditions for establishing
the strong minimum principle of SINR on the ball.

1Extending this lemma from α = 2 to general α is the main barrier to extending the minimum principle to any α.
2this assumption is eliminated later



The ball center condition: Given an n+ 1 station network A = 〈d, S, ψ,N, β, α = 2〉, the SINRA function is said to
satisfy the ball center condition if for every station si ∈ S,

SINRA(si, q) > min{SINRA(si, p) | p ∈ Φ(B(q, r))} , (8)

for every station-free ball B(q, r) such that the ball center q is not equi-distant from all stations. We now show that the ball
center condition is sufficient for establishing Thm. 3.2.

Lemma 3.6: If the n + 1 station network A satisfies the ball center condition, then Thm. 3.2 holds, namely, the SINR
function satisfies the strong minimum principle for every ball.
We next provide the second sufficient condition.

The dual minimality condition: The SINRA function satisfies the dual minimality condition on the ball B if and only
if

SINR−1
A (s0, q) < max{MAX−1(A, s0, pL, pR),AVG−1(A, s0)}. (9)

The function SINRA satisfies the weak dual minimality condition on B if Eq. (9) holds with non-strict inequality.
Lemma 3.7: The dual minimality condition is sufficient for satisfying the ball center condition and hence also the strong

minimum principle for the ball.
By Lemma 3.6, we hereafter restrict attention to s0 ∈ S and the ball B, and show the following.

Lemma 3.8: The SINRA function satisfies the ball center condition, namely, SINRA(s0, q) > MIN(A, s0).
Proof overview: We first consider the noise-free case. One of the key insights, in this context, is that the expressions
SINRA(s0, q), AVG−1(A, s0) and SUM are all functions of the transmission powers ψ0, ..., ψn and the distances ρ0, ..., ρn.
Moreover, as will be shown, for the y-collinear case, MAX−1(A, s0, pL, pR) = SUM. To establish the principle, we partition
the station set S into three subsets according to their distance ρi from q compared to the distance ρ0. Let

Sclose = {si ∈ S | ρi < ρ0} , Seq = {si ∈ S | ρi = ρ0} and Sfar = {si ∈ S | ρi > ρ0}.
Let us now give some intuition by considering two extreme cases. For a network Afar all of whose stations are far
(S = Sfar), it holds that SINR−1

Afar (s0, q) > MAX−1(Afar, s0, pL, pR). On the other hand, for a network Aclose all of
whose stations are close (S = Sclose), SINR−1

Aclose(s0, q) < AVG−1(Aclose, s0). The general case is based on this intuition
but is more involved. We then turn to consider the general noisy case. To prove the weak version of the ball center condition,
we use an infinite family NF of a noise-free networks that “behave” similarly to the noisy network at the points of the ball
B. The reasoning is by contradiction. Assuming that the weak version of the ball center condition does not hold, implies
the existence of noise-free network in the family NF that violates the strong ball center condition (which was already
established for the noise-free case). Turning to the strong version of the ball center condition, the analysis considers two
cases of network configurations. The first case is of y-collinear networks. In this case, the analysis exploits the fact that
the 1-dimensional SINR function satisfies the minimum principle (note that the dimension of y-collinear networks is in fact
one). Finally, we consider the remaining case where the network is not y-collinear and yet Ineq. (9) holds with equality. The
reasoning for this case includes the following steps. We first claim that SINR−1

A (s0, q) = AVG−1(A, s0). This is shown
again by using the family NF . We complete the proof by showing that AVG−1(A, s0) > MAX−1(A, s0, pL, pR). To do
that, an auxiliary noise-free network which is also y-collinear is constructed. By using the tight bounds previously achieved
for y-collinear networks, the desired claim is established.

The structure of the proof of Lemma 3.8 is as follows. In Subsec. III-A, we establish the strong minimum principle for
the simplest case where there is no ambient noise. We then considers, in Subsec. III-B, the more general case where there
is an ambient N > 0.

A. The noise free case N = 0

In this section, we consider the simpler case where there is no ambient noise (i.e., N = 0) and show that the SINR
function satisfies the dual minimality condition and hence also the strong minimum principle.

Lemma 3.9: Let A0 = 〈d, S, ψ,N = 0, β, α = 2〉 be an n+ 1 station network with no ambient noise. Then, the SINRA0

function satisfies the dual minimality condition (and hence also satisfies the strong minimum principle).
Proof: Since N = 0, it follows that

SINR−1
A0

(s0, q) =

n∑
i=1

ψi · ρ0

ψ0 · ρi
. (10)

In addition, by Part 3 of Lemma 3.5

AVG−1(A0, s0) =

n∑
i=1

ψi · (ρ0 − 1)

ψ0 · (ρi − 1)
, (11)



and by Part (1,2) of Lemma 3.5,

MAX−1(A0, s0, pL, pR) ≥
n∑
i=1

ψi
ψ0
·
(
ρ0 + 1

ρi + 1

)
. (12)

We next partition the set of stations S into three subsets depending on their distance ρi from q compared to the distance
ρ0. Let

Sclose = {si | ρi < ρ0} , Seq = {si | ρi = ρ0} and Sfar = {si | ρi > ρ0}. (13)

Then,
ρ0

ρi
>
ρ0 − 1

ρi − 1
for every si ∈ Sclose, (14)

ρ0

ρi
<
ρ0 + 1

ρi + 1
for every si ∈ Sfar, . (15)

ρ0

ρi
=
ρ0 + 1

ρi + 1
=
ρ0 − 1

ρi − 1
for every si ∈ Seq. (16)

Note that the last equality holds since ρi > 1 for i = 0, ..., n (no station is in the ball B). By the definition of q, it holds
that S \ Seq 6= ∅. That is, not all stations are positioned at the same distance from the center q.

Let us give some intuition. First, let us rewrite the dual minimality condition for the SINRA function on the ball B more
explicitly, by replacing Eq. (9) with the following: either

SINR−1
A (s0, q) < MAX−1(A, s0, pL, pR), or (17)

SINR−1
A (s0, q) < AVG−1(A, s0). (18)

Next, let us consider two extreme cases. If all stations are far (S = Sfar), then the lemma readily follows by establishing
property (17). This is shown by combining inequalities (10), (12) and (15), which yields

SINR−1
A0

(s0, q) =

n∑
i=1

ψi · ρ0

ψ0 · ρi
<

n∑
i=1

ψi · (ρ0 + 1)

ψ0 · (ρi + 1)

≤ MAX−1(A0, s0, pL, pR).

In contrast, if all stations are close (S = Sclose), then
∑n
i=1

ψi·ρ0
ψ0·ρi >

∑n
i=1

ψi·(ρ0+1)
ψ0·(ρi+1) , so Inequality (12) cannot be applied.

Instead, in this case we prove the lemma by establishing property (18). Combining together inequalities (10), (14) and (11),
we have

SINR−1
A0

(s0, q) =

n∑
i=1

ψi · ρ0

ψ0 · ρi
<

n∑
i=1

ψi · (ρ0 − 1)

ψ0 · (ρi − 1)
= AVG−1(A0, s0) .

We now turn to discuss the more general case in which S may contain both far and close stations, i.e., Sclose 6= ∅ and
Sfar 6= ∅. Clearly, if Eq. (17) happens to hold, then the lemma follows as well. Hence, hereafter assume that

SINR−1
A0

(s0, q) ≥ MAX−1(A0, s0, pL, pR), (19)

(as will be shown later, this happens when the net interference effect of the far stations Sfar on the center q dominates the
effect of the close stations Sclose), and establish property (18). By Ineq. (10) and (12), Ineq. (19) can be rewritten as

ψi · ρ0

ψ0 · ρi
≥ ψi · (ρ0 + 1)

ψ0 · (ρi + 1)
.

Rearranging, we get
n∑
i=1

(
ψi
ψ0
· ρ0 − ρi
ρi(ρi + 1)

)
≥ 0 .

Partitioning the summation into summations on the close and far stations, and noting that ρ0 − ρi = |ρ0 − ρi| for every
si ∈ Sclose; ρ0 − ρi = 0 for every si ∈ Seq; and ρ0 − ρi = −|ρ0 − ρi|, for every si ∈ Sfar, we have that∑

si∈Sclose

∣∣∣∣ψiψ0
· ρ0 − ρi
ρi(ρi + 1)

∣∣∣∣− ∑
si∈Sfar

∣∣∣∣ψiψ0
· ρ0 − ρi
ρi(ρi + 1)

∣∣∣∣ ≥ 0, (20)



(Since for every station si ∈ Seq , ρ0− ρi = 0, these stations contribute zero to the summation, so only stations in Sfar and
Sclose need to be accounted for.) Note that since ρ0 > 1, it follows that ρ0+1

ρ0−1 > 0, so Ineq. (20) can be written as

ρ0 + 1

ρ0 − 1

 ∑
si∈Sclose

∣∣∣∣ψiψ0
· ρ0 − ρi
ρi(ρi + 1)

∣∣∣∣− ∑
si∈Sfar

∣∣∣∣ψiψ0
· ρ0 − ρi
ρi(ρi + 1)

∣∣∣∣
 ≥ 0. (21)

Moreover, for si ∈ Sclose, it holds that ρ0 > ρi > 1, implying that ρi+1
ρi−1 >

ρ0+1
ρ0−1 , hence∑

si∈Sclose

∣∣∣∣ψiψ0
· ρ0 − ρi
ρi(ρi − 1)

∣∣∣∣ > ρ0 + 1

ρ0 − 1
·
∑

si∈Sclose

∣∣∣∣ψiψ0
· ρ0 − ρi
ρi(ρi + 1)

∣∣∣∣ . (22)

Similarly, for si ∈ Sfar, ρi > ρ0, and hence ρi+1
ρi−1 <

ρ0+1
ρ0−1 , concluding that∑

si∈Sfar

∣∣∣∣ψiψ0
· ρ0 − ρi
ρi(ρi − 1)

∣∣∣∣ < ρ0 + 1

ρ0 − 1
·
∑

si∈Sfar

∣∣∣∣ψiψ0
· ρ0 − ρi
ρi(ρi + 1)

∣∣∣∣ . (23)

Combining the above three inequalities (21-23) we get that,∑
si∈Sclose

∣∣∣∣ψiψ0
· ρ0 − ρi
ρi(ρi − 1)

∣∣∣∣− ∑
si∈Sfar

∣∣∣∣ψiψ0
· ρ0 − ρi
ρi(ρi − 1)

∣∣∣∣ > 0. (24)

We now complete the proof by noting that

SINR−1
A0

(s0, q)−AVG(A0, s0) =

n∑
i=1

ψi · ρ0

ψ0 · ρi
−

n∑
i=1

ψi · (ρ0 − 1)

ψ0 · (ρi − 1)
=

n∑
i=1

(
ψi
ψ0
· ρi − ρ0

ρi(ρi − 1)

)
=

∑
si∈Sfar

∣∣∣∣ψiψ0
· ρ0 − ρi
ρi(ρi − 1)

∣∣∣∣− ∑
si∈Sclose

∣∣∣∣ψiψ0
· ρ0 − ρi
ρi(ρi − 1)

∣∣∣∣ < 0 ,

where the first equality holds by Ineq. (10) and Ineq. (11); the third equality holds, since ρi ≤ ρ0, for every si ∈ Sclose and
ρi > ρ0, for every si ∈ Sfar; and the last inequality holds by Ineq. (24). Lemma 3.9 follows by Lemma 3.7.

B. The noisy case N > 0

We now turn to consider the more general case where the network A has a positive noise N > 0. The reasoning for
this case is more involved and consists of the following stages. In Subsec. III-B1, we first prove that the SINRA function
satisfies the weak minimum principle. The following two subsections establish the strong minimum principle for the SINRA
function, where Subsec. III-B2 considers the extreme case of y-collinear networks where all the stations are aligned on
the y-axis. Finally, Subsec. III-B3 deals with the complementary case where not all stations of A are aligned on the line
between s0 and q (i.e., the y-axis).

1) The Weak Minimum Principle for the Noisy Case N > 0: We begin by establishing the weak version of the minimum
principle for the noisy setting. Specifically, we show that the SINRA function satisfies the dual minimality condition in the
weak sense, i.e., it satisfies Eq. (9) with non strict inequality.

Our proof technique makes use of an infinite sequence of networks A`, for ` ∈ R>1 that mimics the noisy network A at
the points of the ball B as ` gets sufficiently large.

Mimicking A by an infinite sequence of noise-free networks: Let NF = {A(`) | ` > 1} be an infinite family of
noise-free networks A(`). Each of these networks consists of n + 2 stations, namely, the n + 1 stations S of A plus an
additional station, s`, whose position and transmission power are parameterized by `. Intuitively, A(`) is obtained from A
by replacing the noise N with an additional station s` that plays a similar role to that of the noise at the points of the ball B
as ` tend to infinity. The “noise-simulating” station s` is located at the point (0, `) and its transmission power is ψ` = N ·`2,
hence the received signal strength of s` at point q equals that of the noise N . Formally, A(`) = 〈d, S`, ψ̄`,N = 0, β, α〉,
where S` = S ∪ {s`}, s` = (0, `), ψ̄` = (ψ0, ..., ψn, ψ`) and EA(`)(s`, q) = ψ` · dist(s`, q)

−2 = N .
Lemma 3.10: The following properties hold for every A` ∈ NF .

(P1) SINR−1
A(`)(s0, q) = SINR−1

A (s0, q);
(P2) lim`→∞AVG−1(A(`), s0) = AVG−1(A, s0);
(P3) lim`→∞MAX−1(A(`), s0, pL, pR) = MAX−1(A, s0, pL, pR); and
(P4) MAX−1(A(`), s0, pL, pR) < MAX−1(A, s0, pL, pR).



Proof: (P1) holds since EA(`)(s`, q) = N . Recall that for every p ∈ Φ(B), EA(s`, p) = N ·`2
dist(s`,p)2

and by the triangle

inequality, `− 1 ≤ dist(s`, p) ≤ `+ 1. Hence, N ·
(

`
`+1

)2

≤ EA(s`, p) ≤ N ·
(

`
`−1

)2

, and thus lim`→∞ EA(`)(s`, p) = N,

for every p ∈ Φ(B). Properties (P2) and (P3) follow. It remains to consider (P4). Since dist(s`, pi)
2 = `2 +1, for i ∈ {L,R},

the received signal strength of s` at point pi is EA(`)(s`, pi) = N · `2

`2+1 < N . Hence SINRA(`)(s0, pi) > SINRA(s0, pi)

or SINR−1
A(`)(s0, pi) < SINR−1

A (s0, pi) for i ∈ {L,D}. Property (P4) follows.
We are now ready to show that when N ≥ 0, the minimum principle holds in the weak sense (non strict inequality).

Lemma 3.11: Suppose that N ≥ 0. Then the SINRA satisfies the weak dual minimality condition, i.e.,
SINR−1

A (s0, q) ≤ max
{

MAX−1(A, s0, pL, pR),AVG−1(A, s0)
}
.

Proof: Suppose, towards contradiction, that

SINR−1
A (s0, q) > AVG−1(A, s0) and SINR−1

A (s0, q) > MAX−1(A, s0, pL, pR).

This implies, together with properties (P2) and (P3) of Lemma 3.10, that there exists a sufficiently large number `∗ such that
A(`∗) ∈ NF and SINR−1

A (s0, q) > AVG−1(A(`∗), s0) and SINR−1
A (s0, q) > MAX−1(A(`∗), s0, pL, pR). Combining

this with property (P1) of Lemma 3.10, we get that SINR−1
A(`∗)(s0, q) > AVG−1(A(`∗), s0) and SINR−1

A(`∗)(s0, q) >

MAX−1(A(`∗), s0, pL, pR). Since A(`∗) is a noise-free network, this is in contradiction with Lemma 3.9 (taking A0 =
A(`∗)). The claim follows.

2) The Strong Minimum Principle for Noisy Collinear Networks: In this subsection, we establish the strong minimum
principle for y-collinear networks where all stations are aligned on the y-axis. The analysis of this case exploits the weak
minimum principle for 1-dimension that was established in [7].

Fact 3.12 (Minimum principle in R1 [7]): In a 1-dimensional network, (i.e., all stations are aligned on a line), the SINR
function satisfies the minimum principle.
As explained in [7], Fact 3.12 immediately implies the following corollary (adapted to the current setting where the stations
of the 1-dimensional network are embedded on the y-axis instead on the x-axis).

Corollary 3.13 (Weak minimum principle in R1): Consider a network A where each si ∈ S is positioned on (0, yi). Let
q1 and q2 be two points on the y-axis, such that there is no station of S on the segment q1 q2. Then for every p ∈ q1 q2

SINRA(s0, p) ≥ MIN(A, s0, q1, q2) . (25)

We begin by showing that the minimum principle holds also in the strong sense for the 1-dimensional case.
Lemma 3.14 (Strong minimum principle in R1): For a network A and points as in Cor. 25, Eq. (25) holds with strict

inequality.
Proof: First, note that the SINR function restricted to any straight line segment p q is not constant. This holds as the

characteristic polynomial of the SINR function has finite and positive degree, hence its derivative cannot be zero over a seg-
ment. Assume, towards contradiction, that there is an internal point p ∈ q1 q2 such that SINRA(s0, p) = MIN(A, s0, q1, q2).
Without loss of generality, assume that SINRA(s0, q1) ≤ SINRA(s0, q2). We consider two cases.
Case (a): SINRA(s0, q1) < SINRA(s0, q2). Since the SINR function is not constant in the segment q1 p, there exists some
point w1 ∈ q1 p such that SINRA(s0, w1) 6= SINRA(s0, q1) and by Cor. 3.13, necessarily, SINRA(s0, w1) > SINRA(s0, q1).
Since p is an internal point in the segment w1 q2 but SINRA(s0, p) < SINRA(s0, w1),SINRA(s0, q2), we end with
contradiction to Cor. 3.13.
Case (b): SINRA(s0, q1) = SINRA(s0, q2). Since the SINR function is not constant in the segments q1 p and p q2,
there exists an internal point w1 (resp., w2) in the segment q1 p (resp., p q2) such that SINRA(s0, w1),SINRA(s0, w2) 6=
SINRA(s0, p) . Combining this with Cor. 3.13 for the points w1, w2 ∈ q1 q2, it holds that

SINRA(s0, w1),SINRA(s0, w2) > SINRA(s0, p) . (26)

Finally, by applying Cor. 3.13 for the segment w1 w2, since p ∈ w1 w2, it holds that SINRA(s0, p) > MIN(A, s0, w1, w2).
In contradiction by Eq. (26), the claim follows.

Lemma 3.15: Let A be a y-collinear network. Then, SINRA satisfies the strong minimum principle on B.
Proof: Recall that pD = (0,−1) and pU = (0, 1) are the two points on the intersection of y-axis and Φ(B), hence

MAX−1(A, s0) ≥ MAX−1(A, s0, pD, pU ). (27)

Since the segment pD pU ⊂ B and B is free from stations, by the strong minimum principle for R1 (Lemma 3.14), it
holds that SINR−1

A (s0, q) < MAX−1(A, s0, pD, pU ), by combining with Eq. (27), Lemma 3.8 follows. Thus by Lemma
3.6, Lemma 3.15 follows as well.



3) The Strong Minimum Principle for Noisy Non-Collinear Networks: In this section, we consider a non-collinear network
A in which not all its stations are aligned on the y-axis. We have shown before (in Lemma 3.11) that such a network satisfies
the weak dual minimality condition. If it also satisfies the strong dual minimality condition, then we are done by Lemma
3.7. Hence, it remains to consider the case where

SINR−1
A (s0, q) = max{MAX−1(A, s0, pL, pR),AVG−1(A, s0)}. (28)

Indeed, we believe that this can be realized by some networks. Yet, as will be shown now, the strong minimum principle
still holds. We show that the SINRA function satisfies the strong minimum principle even in this case.

We begin by showing that if Equality (28) holds then the SINR value at the center point q is equal to the average SINR
value on the ball’s boundary, i.e., SINR−1

A (s0, q) = AVG−1(A, s0). To prove this, Lemma 3.16 exploits properties (P1),
(P2) and (P4) of Lemma 3.10 to show in that in this special case, the dominating parameter is the average SINR−1 value
on the ball’s boundary, namely,

AVG−1(A, s0) ≥ MAX−1(A, s0, pL, pR). (29)

By Inequality (29) there are now only two cases to consider. The first case is where AVG−1(A, s0) = MAX−1(A, s0, pL, pR).
Lemma 3.17 shows that this case can be attained only for y-collinear networks. Hence it remains to consider only the
complementally case, where AVG−1(A, s0) > MAX−1(A, s0, pL, pR). Lemma 3.18, shows that under this setting, the
strong minimum principle is guaranteed to exists. We now describe the proof in details.

Lemma 3.16: If Eq. (28) holds, then Eq. (29) holds, i.e., SINR−1
A (s0, q) = AVG−1(A, s0).

Proof: To prove the claim, it is sufficient to show that if SINR−1
A (s0, q) > AVG−1(A, s0), then SINR−1

A (s0, q) <
MAX−1(A, s0, pL, pR). To show this, assume towards contradiction that (CON1): SINR−1

A (s0, q) > AVG−1(A, s0); and
(CON2): SINR−1

A (s0, q) ≥ MAX−1(A, s0, pL, pR). Let `∗ be a sufficiently large real number such that A(`∗) ∈ NF and

SINR−1
A (s0, q) > AVG−1(A(`∗), s0). (30)

(By Property (P2) of Lemma 3.10, it holds that lim`→∞AVG−1(A(`), s0) = AVG−1(A, s0), hence such a real number `∗

exists by the contradictory assumption (CON1).)
By the contradictory assumption (CON2), SINR−1

A (s0, q) ≥ MAX−1(A, s0, pL, pR). Combining with Property (P4) of
Lemma 3.10, we have

SINR−1
A (s0, q) > MAX−1(A(`∗), s0, pL, pR) . (31)

Finally, by Property (P1) of Lemma 3.10, it holds that SINR−1
A(`∗)(s0, q) = SINR−1

A (s0, q). Combining this with Eq. (30) and
(31), we have that SINR−1

A(`∗)(s0, q) > max{MAX−1(A(`∗), s0, pL, pR),AVG−1(A(`∗), s0)}. Since A(`∗) is a noise-free
network, we end with contradiction with Lemma 3.9. The claim follows.

Lemma 3.17: If A is a non-collinear network, satisfying Eq. (28), then
AVG−1(A, s0) > MAX−1(A, s0, pL, pR).

Proof: By Eq. (29) that was established in Lemma 3.16, it is sufficient to show that AVG−1(A, s0) 6=
MAX−1(A, s0, pL, pR).

Assume, towards contradiction that AVG−1(A, s0) = MAX−1(A, s0, pL, pR). Combining with Lemma 3.16, we have
that

SINR−1
A (s0, q) = AVG−1(A, s0) = MAX−1(A, s0, pL, pR). (32)

We next construct two networks A′ and A′′ with stations s′0 and s′′0 respectively, such that
(Q1) SINR−1

A (s0, q) = SINR−1
A′ (s

′
0, q) = SINR−1

A′′(s
′′
0 , q);

(Q2) AVG−1(A′′, s0) < AVG−1(A′, s′0) = AVG−1(A, s0);
(Q3) MAX−1(A′, s′0, pL, pR),MAX−1(A′′, s′′0 , pL, pR) < MAX−1(A, s0, pL, pR).
Note that the existence of such networks results in a contradiction. Specifically, by combining Eq. (32) with proper-
ties (Q1) and (Q2), we have that AVG−1(A′′, s′′0) < SINR−1

A′′(s
′′
0 , q), and by combining properties (Q1) and (Q3),

MAX−1(A′′, s′′0 , pL, pR) < SINR−1
A′′(s

′′
0 , q), in contradiction to the weak minimum principle of Lemma 3.11, which implies

Lemma 3.17.
It remains to describe the construction of the networks A′ and A′′. This first network A′ = 〈S′ = {s ′0, ..., s ′n}, ψ̄,N , β, α〉

is obtained from the original network A by rotating separately each of its stations s0 (resp., s1, ..., sn) around the origin point
q until it reaches the positive (resp., negative) y-axis and preserving the transmitting powers (similarly to the construction of
A′ in the proof of Lemma 2.3). That is, the station s0 (resp., s ′i) is located at (0,

√
ρ0) (resp., (0,−√ρi)) and its transmitting



Figure 2. Three wireless systems. (a) network A, in (b) A′ obtained from A and (c) A′′ obtained from A′.

power is ψi (for i ∈ {0, ..., n}), as illustrated in Figure 2. The stations s ′0, ..., s
′
n preserve their transmission powers as well

as their distances to the ball center q, hence

SINR−1
A (s0, q) = SINR−1

A′ (s
′
0, q) =

n∑
i=1

ψi · ρ0

ψ0 · ρi
+
N · ρ0

ψ0
(33)

implying property (Q1) for network A′. Since the average energy AVG−1(A, s0) is a function of the distances ρi, it also
holds that

AVG−1(A, s0) =

n∑
i=1

ψi · (ρ0 − 1)

ψ0 · (ρi − 1)
+
N(ρ0 − 1)

ψ0
= AVG−1(A′, s′0) , (34)

implying property (Q2) for network A′. Furthermore, since A′ is a y-collinear and A is not, by Parts 1 and 2 of Lemma
3.5 we have

MAX−1(A′, s′0, pL, pR) = SUM < MAX−1(A, s0, pL, pR) (35)

Hence A′ satisfies its desired properties. We now turn to construct the second network A′′, which can be obtained from A′
in the following manner. Fix a sufficiently small positive real ε ∈ (0, ρ0 − 1) and use A′ to construct an (n + 1)− station
network A′′ = 〈S′′ = {s ′′0 , s′1..., s ′n}, ψ̄′′ = (ψ′′0 , ψ1, ...., ψn),N , β, α〉 by substituting station s′0 with station s′′0 preserving
the energy at q (i.e., EA′′(s

′′
0 , p) = EA′(s

′
0, q)). The station s′′0 is still located on the positive y-axis but it is a bit closer

to q than s′0. That is, s′′i is located at (0,
√
ρ′′0), where ρ′′0 = ρ0 − ε, and its transmission power is ψ′′0 = ψ0(ρ0−ε)

ρ0
. Hence,

EA′′(s
′′
0 , q) =

ψ′′0
ρ0−ε = ψ0

ρ0
= EA′(s

′
0, q). Thus,

SINRA(s0, q) = SINRA′(s
′
0, q) = SINRA′′(s

′′
0 , q), (36)

implying property (Q1). Note that ρ′′0−1
ψ′′0

< ρ0−1
ψ0

, hence by part (3) of Lemma 3.5, for every ε ∈ (0, ρ− 1),

AVG−1(A′′, s′′0) =
ρ′′0 − 1

ψ′′0
·
(

n∑
i=1

ψi
ρi − 1

+N

)
<
ρ0 − 1

ψ0
·
(

n∑
i=1

ψi
ρi − 1

+N

)
= AVG−1(A′, s′0) , (37)

where the last equality follows by Eq. (34). This implies property (Q2). It remains to show that A′′ satisfies property
(Q3), namely, that MAX−1(A′′, s′′0 , pL, pR) < MAX−1(A, s0, pL, pR). Since, SINR−1

A′′(s
′′
0 , pi) is continuous in ε, it

holds that limε→0 SINR−1
A′′(s

′′
0 , pi) = SINR−1

A′ (s
′
0, pi), for i ∈ {L,R}. In addition, by Eq. (32) and properties (Q1) and

(Q3) for the network A′, MAX−1(A′, s′0, pL, pR) < SINR−1
A′ (s

′
0, pi), and by property (Q1), MAX−1(A′, s′0, pL, pR) <

SINR−1
A′′(s

′′
0 , pi). Since all these functions are continuous in ε, there exists a sufficiently small ε > 0 satisfying

MAX−1(A′′, s′′0 , pL, pR) < SINR−1
A′′(s

′′
0 , q). Combining this with property (Q1) and Eq. (32) SINR−1

A′′(s
′′
0 , q) =

SINR−1
A (s0, q) = MAX−1(A, s0, pL, pR) establishes property (Q3) for A′′. Lemma 3.17 follows.

We are now ready to establish the strong minimum principle for non-collinear networks.
Lemma 3.18: If A is a non-collinear network satisfying Eq. (28), then SINRA satisfies the strong minimum principle.

Proof: By Lemma 3.17, it holds that AVG−1(A, s0) 6= MAX−1(A, s0, pL, pR). By Part 1 of Lemma 3.4, we have that
AVG−1(A, s0) < MAX−1(A, s0). Hence, by Lemma 3.16, it holds that also SINRA(s0, q) < MAX−1(A, s0), as required
for Lemma 3.8. The claim follows by applying Lemma 3.6.

Overall, by combining Lemma 3.11, Lemma 3.15, and Thm. 3.18, Lemma 3.8 is established. Hence, Thm. 3.2 followed
by Lemma 3.6.



A note about general dimension d > 2: The proof of the strong minimum principle for the ball goes by induction on the
dimension d of the network. For the induction base consider d = 1. By Lemma 3.14, the property holds in this case. Next,
assume that this property holds for any d− 1 ≥ 1 and consider dimension d. Note that as long as MAX−1(A, s0, pL, pR) >
SUM is satisfied, the proof follows the exact same line as for non-collinear network. The only extreme case that it remains
to consider is where MAX−1(A, s0, pL, pR) = SUM. By Lemma 3.5(1), in R2, this happens iff the network is y-collinear.
Hence the only adaptation required for general dimension d > 2 is the extension of the definition of y-collinear networks
to higher dimensions. In particular, note that Lemma 3.5(1) holds iff the distances of all stations to the points pL and pR
(the intersection of the d-dimensional ball with the x-axis) are the same (i.e., dist(si, pL) = dist(si, pR) for every si ∈ S).
In the 2-dimensional case, this happens only when all stations are aligned on a line (i.e., y-collinear). Generally, in higher
dimension d > 2, this happens when all stations are aligned on a common d− 1 hyperplane, namely, one dimension lower
than the considered dimension d. By the induction assumption for d− 1, the strong minimum principle holds for any d− 1
dimensional ball, in particular it holds for the d−1 dimensional ball Bd−1 obtained by intersecting the given d-dimensional
ball Bd with the d− 1 hyperplane in which the stations are embedded. This in turn implies that the ball center q of the ball
Bd attains an SINR value strictly better than the minimum value of the points of Φ(Bd−1) ⊂ Bd, the induction step for d
follows. We next prove Thm. 3.1 for every domain D.

Proof of Thm. 3.1 for d ≥ 2: Let D ⊂ Rd be compact domain and assume the D∩S = ∅ to ensure that SINRA(si, p)
is continuous on D. Define min(D) = min{SINRA(s0, p) | p ∈ D \Φ(D)} and let p̌ ∈ D \Φ(D) be the point attaining the
minimum. We show that SINRA(s0, p̌) = min(D) > min{SINRA(s0, p) | p ∈ Φ(D)}. Assume toward contradiction that
SINRA(s0, p̌) ≤ min{SINRA(s0, p) | p ∈ Φ(D)}. Let B(p̌, r) ⊆ D be the ball centered at p̌. Since p̌ ∈ D, B(p̌, r) exists
for a sufficiently small radius r. By Thm. 3.2, there exists a point w ∈ Φ(B(p, r)) such that SINRA(s0, w) < SINRA(s0, p̌).
But w ∈ D, contradicting the minimality of p̌ in D.

The following corollary demonstrates that SINR diagrams enjoy the practical implications of the minimum principle,
namely, there are no free null-cells in a reception region. In addition, it characterizes the minimum points of the SINR
function.

Corollary 3.19: (1) [No-Free-Holes in Rd.] Let D ⊆ Rd be an compact domain of points such that Φ(D) ⊆ Hi(A) and
D is free from interfering stations (i.e., D ∩ (S \ {si}) = ∅ but si might be in D). Then D ⊆ Hi(A). (2) [Minimum points
of the SINR function.] The function SINRA(si, p) has no minimum points in Rd \ S.

IV. APPLICATIONS

Most of our applications are based on the characteristic polynomial of si’s reception region Hi(A). This polynomial is
hereafter referred to as the SINR polynomial. Throughout this section, assume a two-dimensional space (d = 2) where every
station sj ∈ S is located at point (aj , bj) in the plane. The SINR polynomial is given by

H̃i,A(x, y) = β

∑
j 6=i

ψj ·
∏
k 6=j

(
(ak − x)2 + (bk − y)2

)
+ N

∏
j

(
(aj − x)2 + (bj − y)2

) (38)

− ψi
∏
j 6=i

(
(aj − x)2 + (bj − y)2

)
.

Throughout, it is assumed that the stations are located on rational coordinates which results in a rational SINR polynomial.
In many of our applications, we are given a line-segment σ = [a, b] for rational points a, b and we consider the univariate
SINR polynomial H̃i,A,σ(x) obtained by the restriction of the SINR polynomial H̃i,A(x, y) of Eq. (38) on σ. In this section,
we describe a collection of tools that utilize the properties of univariate rational polynomials. The time complexities of all
algorithms described, are measured in terms of arithmetic operations.

Our algorithms are based on isolating the roots of the rational polynomial H̃i,A,σ(x).
Root isolation: Isolation of the real roots of a polynomial in a given segment σ is the process of finding open disjoint

intervals such that each interval contains exactly one real root and every real root is contained in each interval. Since the
polynomial H̃i,A,σ(x) has at most 2n roots, this isolation procedure results in a partition of σ into O(n) subsegments, each
containing at most one root. By computing the Sturm sequence [13] of H̃i,A,σ(x), one can show the following.

Lemma 4.1: A root isolation for the polynomial H̃i,A,σ(x) can be computed in O(n3 · log n) arithmetic operations.

A. Reception Testing and Segment Testing

For a given wireless system A = 〈d = 2, S, ψ,N, β, α = 2〉 and a target station si, a point p is receptive if SINRA(si, p) ≥
β. The shape C is receptive if every point p ∈ C is receptive, i.e., SINRA(si, p) ≥ β at every point p ∈ C, otherwise it is



non-receptive. In the setting of reception testing, one is given a wireless network A and a closed domain C that is free from
interfering stations, i.e., C ∩ (S \ {si}) = ∅. The task is to decide if C is receptive with respect to the station si. The key
observation here is that thanks to the minimum principle it is sufficient to test reception on the boundary of the curve in
order to deduce about all its internal points.

The Basic Tool - Segment Testing: An important ingredient in our applications is Procedure SegTest, which tests
reception on a line segment. It receives as input a line-segment σ = [a, b], a network A and a target station si, and outputs
“yes” only if σ ⊆ Hi(A). This is done by applying a root isolation procedure on H̃i,A,σ(x), i.e., the restriction of the
SINR polynomial of Eq. (38) on the segment σ. The output of the root isolation procedure is a partition of σ into O(n)
subsegments, each containing at most one root. To decide whether σ is receptive, or not, Procedure SegTest evaluates the
SINR function at the endpoints of each subsegment. The answer is positive if and only if all the endpoints have SINR value
at least β.

Lemma 4.2: Proc. SegTest outputs “yes” if and only if σ is receptive for si within O(n3 · log n) arithmetic operations.

B. Exact Reception Testing for Polygonal Regions

Let P be a polygon free from interfering stations with m vertices located at rational positions in R2. Note that without
the minimum principle, it is not possible to decide if the entire polygon is receptive, even when using an arbitrarily large
finite set of sampled points in P . Using the minimum principle, we now describe an exact algorithm for this problem.

Procedure PolygonRecepTest invokes Proc. SegTest for every segment σ ∈ P of P’s boundary and tests its receptiveness
for a reception to si. It returns “yes”, if and only if every edge segment of the polygon is receptive for si. The correctness
of Proc. PolygonRecepTest follows immediately by the No-Free-Hole property of Cor. 3.19. We have the following.

Theorem 4.3: Given a polygon P of m vertices, an n-station network A and target station si ∈ S, it can be verified in
(arithmetic) time O(m · n3 log n) if P is receptive or not with respect to si.
In the full-version, we also presrent an approximate testing scheme that tests the reception on any shape in time that is
propontial to the perimeter of the shape (rather than to its area). This scheme is later used for computing an approximation
for the maximum incribed reception sphere centered at a given station.

We next use the segment test procedure to provide an exact solution for the Polygonal Power Control problem.

C. The Polygonal Power Control Problem

In the feasibility variant of the power control problem, one is given n communication links 〈si, ri〉 and a target SINR
threshold β and the goal is to compute a feasible power assignment ψ with respect to β, that is, a power assignment that
achieves SINR(si, ri) ≥ β for every i ∈ {1, . . . , n} where all stations transmit according to ψ. In the optimization variant of
the problem, the parameter β is not given; rather, the goal is to compute the maximum SINR threshold β∗ for which there
exists a feasible power assignment ψ∗ with respect to β∗. Note that the optimization problem can be approximated up to
some desired ratio by using an algorithm for the feasibility problem in order to search for the best β via binary search. Note
that in the standard setting considered so far, every transmitting station si was required to be successfully received only at
a single reception point ri (i.e., of zero dimension). However, due to stability considerations, communication applications
usually require a successful transmission in a two-dimensional region rather than in a fixed number of points. In this section,
we focus on the feasibility variant and consider a 2-dimensional generalization of this problem.

In the Power Control for Polygons (PCPG) problem, one is given a network of n stations S = {s0, . . . , sn} in the
plane, a target SINR threshold β and a collection of n polygons P1, . . . ,Pn that are free from interfering stations (i.e.,
Pi ∩ (S \ {si}) = ∅ for every i). The goal is to find a power assignment vector ψ satisfying that SINR(si, p) ≥ β for every
p ∈ Pi and for every si ∈ S. This yields the following formulation.

Given β, S,N and polygons P1, . . . ,Pn, find powers ψ1, . . . , ψn > 0: (39)

SINR(si, p) =
ψi · dist(si, p)

−α∑
sj∈(S\{si}) ψj · dist(sj , p)−α + N

≥ β for every si ∈ S and p ∈ Pi .

In Sec. IV-C, we show that Program (39) is convex and in addition it can be solved via the Ellipsoid method despite the fact
that it contains infinitely many constraints. This holds since we are able to provide a polynomial separation oracle based
on Procedure SegTest discussed above. We show the following.

Theorem 4.4: Given a set of n stations S, target SINR threshold β and a set of n polygons P1, . . . ,Pn free of interfering
stations (i.e., Pi ∩ (S \ {si}) = ∅ for every i) and whose endpoints vertices located at rational coordinates, there exists a
polynomial time exact algorithm for PCPG when: (1) β < β∗ (where β∗ is the optimum SINR threshold of the network),
or (2) β = β∗ and the optimum power assignment is rational.

Note that without the minimum principle, the best one can do is to sample sufficiently many points inside each polygon
Pi and solve a linear program consisting of the corresponding SINR constraints. Not only does this approach require a



large preprocessing time that depends on the area of the polygons, the number of stations n and the fatness of the reception
regions (whose bounds are large), but moreover, it can never guarantee the successful transmission in the entire polygon
region, as there is no guarantee that the unsampled polygon points receive the transmission with the desired SINR threshold
of β, but rather with some β − ε, where ε ∈ (0, β) depends on the density of the sampled points within the polygon.

In contrast, using the no-free-hole property enables us to provide an exact solution for the PCPG problem for the case
where β < β∗ or when the optimum power assignment for the given β∗ is rational. We first establish convexity.

Observation 4.5: Program (39) is convex.
A combinatorial algorithm for exactly solving a convex program is possible only if it admits rational solutions [14]. A
nonlinear convex program is rational if, for any setting of its parameters to rational numbers such that it has a finite optimal
solution, it admits an optimal solution that is rational and can be written using polynomially many bits in the number of
bits needed to write all the parameters. Note that when taking β < β∗, there is a continuous non-empty region of feasible
powers and in particular there is rational solution. Hence, if the optimal power assignment for β∗ is rational, our algorithm
can compute it exactly.

We now show that this convex program can be solved exactly via the Ellipsoid method despite the fact that it contains
infinitely many constraints. This holds since we are able to provide a separation oracle. A separation oracle is polynomial
time algorithm that determines if a given candidate solution is feasible (i.e., it satisfies all linear constraints) or returns a
violated constraint if it is not feasible. The separation oracle in our context is based on Proc. SegTest of Sec. IV-A. It
is easy to see that Proc. SegTest can be modified to return a non-receptive point on σ if such exists. This non-receptive
point is then used to identify a violated constraint to be supplied to the Ellipsoid algorithm. We now formally describe
the separation oracle. Let ψ′ be a candidate solution (e.g., the center of the current ellipsoid in which the feasible set of
solutions reside). Define A′ = 〈d, S, ψ′,N , β, α〉. Apply SegTest(A′, si, σj) for every edge σj of the input polygon Pi and
every i ∈ {1, . . . , n}. If every such σj ∈ Pi is receptive for si, then ψ′ is a feasible power assignment. Else, let σj ∈ P`
be a non-receptive segment with respect to s` and let p ∈ σj be a non-receptive point (this point can be returned by Proc.
SegTest). Then, the violated constraint by ψ′ is SINRA′(s`, p) ≥ β. This completes the description of the separation oracle.

Note that the same scheme can be extended to the problem of sum-power minimization or the min-max power problems,
in which it is also required to minimize the total (resp., max) transmit power [3].

D. Universal Bound for the Number of Null-Cells

We now show that the minimum principle can be utilized for providing a tight linear bound on the number of null-cells,
improving over the O(n2d) bound of [8]. Note that the No-Free-Hole property implies that any null-cell in a reception of
station si contains some interfering station sj . This implies that there are O(n) null-cells in the reception zone of si and
since there are n stations, we have the following immediate corollary.

Corollary 4.6: For every β > 0 and for every dimension d ≥ 1, there are O(n2) null-cells for every n station network
A = 〈d, S, ψ,N , β, α = 2〉.
In this section, we show that for β > 1, there are in fact only O(n) null-cells, for every dimension d, and this bound is
tight.

Theorem 4.7: For β > 1 and N > 0, the null zone H∅(A) ⊆ Rd contains at most τ∅(A) = O(n) cells.
We begin by showing that as long as N > 0, there exists exactly one infinite null-cell and all other cells are bounded.

Lemma 4.8: There exists exactly one unbounded null-cell H∅,j(A).
Proof: Since N > 0, no station can be received in B = Rd \B(s0, r) for a sufficiently large r. We therefore have that

B is fully contained in the null zone H∅(A). Note that B is connected since for every two null points p, q ∈ B, there is a
curve connecting these points that is fully contained in B as well.

It remains to bound the number of bounded cells. We begin by considering the case of d = 2 and towards the end of this
section extend it to general d.

For every bounded null-cell Hj = H∅,j(A), denoted by Jj its outer Jordan curve (since a null-cell is closed, this is
well defined). Let J−j (resp., J+

j ) denote the region outside (resp., inside) Jj . The following observation is essential in our
analysis.

Observation 4.9: For every Jordan curve Jj , there exists a station sj′ ∈ S satisfying that Jj ⊂ Hj′(A).
Proof: By definition of Jj , some transmission is received at every point p ∈ Jj , i.e., for every p ∈ Jj there must exist

a station sp such that SINRA(sp, p) ≥ β. By the continuity of Jj and since β > 1, it must hold that sp1 = sp2 for every
p1, p2 ∈ Jj , since otherwise there must be a point p0 on Jj where the identity of the received transmitter switches from
some s to some other s′, which cannot happen for β > 1.

Note that it may be possible that s(Jj) /∈ J+
j . For an illustration of Obs. 4.9, see Fig. 3(a). Two Jordan curves J1 and

J2 are independent if J+
1 6⊆ J+

2 and J+
2 6⊆ J+

1 , otherwise they are dependent. Let J = {J1, . . . , J`} be the collection of



Jordan curves corresponding to the null-cells H∅(A) = {H∅,1(A), . . . ,H∅,`(A)}. The following observation plays a key
role in our analysis.

Observation 4.10: For every 1 ≤ j, j1, j2 ≤ `,
(1) If J+

j1
∩ J+

j2
6= ∅ then either Jj1 ⊂ Jj2 or Jj2 ⊂ Jj1 . (2) Jj ∩ S = ∅. (3) J+

j contains an interfering station s 6= s(Jj),
i.e., (S \ {s(Jj)}) ∩ J+

j 6= ∅ .
Proof: Claim (1) holds since two Jordan curves correspond to disconnected null-cells and hence they cannot intersect,

although they might touch. Hence, the only possible overlap relations between them are that either they are independent or
that one is contained in the other. Claim (2) follows immediately by the fact that Jj is the boundary of a null-cell. Finally,
claim (3) follows by Cor. 3.19.

The null-cells digraph: Our analysis is based on inducing a directed forest F = (J , A) on the set of Jordan curves, where
a directed edge ai1,i2 ∈ A connects Ji1 to Ji2 iff J+

i2
⊂ J+

i1
and there is no other curve Jk satisfying that Ji2 ⊂ Jk ⊂ Ji1 .

It is easy to verify that F is a directed forest, and each of its components is a tree Ti rooted at some J(Ti), with edges
directed downwards from the root, where J+

j ⊆ J+(Ti) for every curve Jj ∈ Ti. For an illustration, see Fig. 3. We may

(a) (b) 

𝐻∅,1 

𝐻∅,2 

Figure 3. (a) Illustration of a 3-station network with 2 null-cells, H∅,1 and H∅,2. For every Jordan curve Jj there is station sj that is continuously
received on that curve. The two Jordan curves are dependent, and their null-cells digraph corresponds to a single directed edge (J1, J2). (b)
Schematic illustration of null-cells tree Ti and the regions associated with the paths of the forest Fi.

refer to J ∈ Ti as either a vertex in the forest or a curve in the diagram. Let Ri = J+(Ti) be the region inside the Jordan
curve of the root of Ti and let Si be the set of stations restricted to the region Ri. (Note that Si does not necessarily equal
{s(J) | J ∈ V (Ti)}.) We then bound the number of vertices (i.e., null-cells) by showing that for every i, |Ti| ≤ c · |Si|
for some constant c ≥ 1, where |Ti| is the number of vertices in Ti. Since the sets Si are disjoint (as they reside in disjoint
regions Ri), this would establish the bound.

From now on, we focus on a specific tree Ti and denote by V highi the vertices with outdegree at least 2 in Ti and by V lowi

as the complementary set of vertices with outdegree at most 1. Within this set, let V leafi be the set of leaves (outdegree 0)
in Ti and let Vleaf =

⋃
i V

leaf
i . It is straightforward to verify that the forest F satisfies the following properties.

Observation 4.11: (1) If Jj ⊂ Ji then Ji is an ancestor of Jj in F . (2) Every two leaves Jk, Jk′ ∈ V leafi are independent.
Proof: Begin with (1). We prove it by the induction on the depth of Jj in its tree (i.e., the distance of Jj from the



root). For the base of the induction, Jj is the son of the root (i.e., depth 1). In this case, by the definition of an edge, the
root is the only curve that contains Jj and hence the root is Ji. Assume that claim holds for every Jj at depth ≤ k − 1
and consider a vertex Jj at depth k. Let Jj = {J ′ ∈ J | Jj ⊂ J ′} be the set of curves containing Jj . Since Jj ⊂ Ji,
Jj 6= ∅. Let J ′ ∈ Jj be the a curve satisfying that there exists no J ′′ ∈ Jj such that Jj ⊂ J ′′ ⊂ J ′. Since Jj is finite, such
J ′ is guaranteed to exist. By the definition of an edge, there must be a directed edge from J ′ to Jj . Hence, J ′ is at depth
k − 1 in the tree. We now claim that J ′ ⊆ Ji. Since both curves contain Jj , they are dependent so it remains to refute the
possibility that Ji ⊂ J ′. This holds as otherwise, we get that Jj ⊂ Ji ⊂ J ′ in contradiction to the definition of J ′. Hence,
J ′ ⊆ Ji and by the induction assumption for k − 1, there is a directed path from Ji to J ′. Overall, there is a directed path
from Ji to Jj the goes through the arc (J ′, Jj). The claim follows. Part (2) follows immediately by part (1).
By Obs. 4.11 and the NFH property of Cor. 3.19, we bound the total number of high degree vertices in the trees Ti by n.

Lemma 4.12:
∑
Ti∈F |V

high
i | ≤ n.

Proof: We first claim that the total number of leaves |Vleaf | in the forest F is at most n. By the minimum principle,
see Cor. 3.19, every Ji must contain an interfering station sj 6= s(Ji) inside J+

i . By Obs. 4.11(2), every two leaves Ji1 and
Ji2 are independent, hence J+

i1
∩J+

i2
= ∅, implying the claim. The lemma now follows by noting that |V highi | ≤ |V leafi | for

every Ti ∈ F .
Bounding the set V lowi : Let Fi be the forest induced by Ti \

(
V highi ∪ {J(Ti)}

)
. Then, Fi is a collection of up to

|V highi | + 2 vertex-disjoint paths. For every path P = [Ji1 , . . . , Jik ] in Fi, we define two sets of stations, Sunique(P ) and
Sinter(P ), and a multi-set Ssame(P ). Let

Sunique(P ) = {s(Jj) | Jj ∈ P and s(Jj) 6= s(Jk) for every Jk ∈ P \ {Jj}} \ {s(J1)}
be the set of stations that are received on exactly one Jordan curve vertex on P (excluding perhaps the station of the first
vertex). Let Ssame(P ) = {s(J) | J ∈ P \ {J1}} \ Sunique(P ) be a multi-set of stations that are received on at least two
Jordan curves on P . Since s(Ji′) is either in Sunique or in Ssame, for every Ji′ ∈ P \ {Ji1}, we have that

|P | = |Sunique(P )|+ |Ssame(P )|+ 1 . (40)

Finally, we associate two regions with P , namely, R(P ) = J+
i1

, R+(P ) = R(P ) \ J+
ik

. Then let Sinter(P ) = S ∩ R+(P )
be the set of stations restricted to the region R+(P ). For a schematic illustration see Fig. 3.

Observation 4.13: For every P, P ′ ∈ Fi, it holds that R+(P ) ∩R+(P ′) = ∅ and hence Sinter(P ) ∩ Sinter(P ′) = ∅.
Proof: Let P = [Jx1 , . . . , Jxz ] and P ′ = [Jy1 , . . . , Jyz′ ]. By choice, Jx1 6= Jy1 . If Jx1 and Jy1 are independent, then

the claim clearly follows. Otherwise, without loss of generality, assume that J+
y1 ⊂ J+

x1
. See Fig. 3. We now claim that

in such a case, for every vertex Jx′ on P , contains J+
y1 ⊂ J+

x′ . This holds by Obs. 4.11(1) and due to the fact that every
vertex Jx′ on P has outdegree one. Hence, by Obs. 4.11(1), J+

y1 is descendent of Jxz . The claim follows by noting that
R+(P ) ∩ J+

xz = ∅ but R+(P ′) ⊆ J+
y1 ⊂ J+

xz .
The following claims are crucial is this context.

Claim 4.14: For every directed path Ji1 − Ji2 in Ti (i.e., J+
i2
⊂ J+

i1
) such that s(Ji1) 6= s(Ji2):

(a) s(Ji2) ∈ J+
i1

. (b) ψ1 > ψ2 where ψz is the transmission energy of s(Jiz ) for z ∈ {1, 2}.
We next establish an important corollary of Cl. 4.14.

Corollary 4.15: Let J1, J2, J3 ∈ J be such that J+
3 ⊂ J+

2 ⊂ J+
1 , where s(J2) 6= s(J1) and s(J2) 6= s(J3). Then

s(J1) 6= s(J3).
The following claim relates the cardinalities of Sinter(P ) and Ssame(P ).

Claim 4.16: |Ssame(P )| ≤ 2|Sinter(P )|.
Proof: Let S′same be the unique set (without repetition) of the multi-set Ssame(P ). By Cor. 4.15, for every station

s ∈ S′same there is a unique subpath Ps ⊆ P such that s(J) = s for every vertex J ∈ Ps. These subpaths are disjoint. For
an arc ax,y define its region by Rx,y = J+

x \J+
y . By the definition of the arc, it follows that the regions of any two arcs ax,y

and ax′,y′ are disjoint, for x 6= x′, i.e., Rx,y ∩Rx′,y′ = ∅. We now show that there exists an interfering station s′ 6= s in the
region Rx,y for every s ∈ S′same and for every arc ax,y ∈ Ps. To see this, note that as s(Jx) = s(Jy) = s, by Cor. 3.19, it
holds that there must be an interfering station sx,y 6= s in the closed region Rx,y . Let S′ = {sx,y | ax,y ∈ Ps, s ∈ Ssame}.
Then S′ ⊆ Sinter(P ) and in addition, |Sinter(P )| ≥ |S′| =

∑
s∈S′same

(|V (Ps)| − 1) ≥ |Ssame(P )|/2, where the last
inequality follows as by definition, |Ps| ≥ 2 for every s ∈ S′same. The claim follows.
We now proceed with the second set Sunique(P ). Recall that s(J1) /∈ Sunique(P ) where J1 is the first vertex of P .

Claim 4.17: (a) Sunique(P ) is inside R(P ), and (b) Sunique(P1) ∩ Sunique(P2) = ∅ for every P1, P2.
We are now ready to complete the proof and show the following.

Claim 4.18:
∑
Ti∈F |V lowi | ≤ n.



Proof: For every P , let S+(P ) = Sinter(P ) ∪ Sunique(P ). Since the station set S+(P ) reside in R(P ), it holds that
for every P ∈ Fi and P ′ ∈ Fj , where i 6= j, S+(P ) and S+(P ′) are disjoint. In addition, for two paths P and P ′ that are
in the same forest Fi, we have that Sinter(P ) and Sinter(P

′) are disjoint by Cl. 4.16 and by Cl. 4.17, we also have that
Sunique(P ) and Sunique(P ′) are disjoint. From now on, we consider only paths P ∈ Fi of length at least 2. Note that there
are at most O(|Vleaf |) = O(n) paths of length 1, hence this would increase the bound by an additive factor of O(n). Let

P̃ = {P ⊆ Fi | |P | ≥ 2 for every Ti ⊆ F}

be the collection of paths considered. Define Vlow =
⋃
P∈P̃ V (P ), S1 =

∑
P∈P̃ |Sunique(P )| and S2 =

∑
P∈P̃ |Ssame(P )|.

By Eq. (40) and since every P ∈ P̃ is of length at least 2, it then holds that |Vlow| ≤ 2(|S1| + |S2|). We now consider
two cases. First, assume that S1 ≥ S2. Then, |Vlow| ≤ 4|S1|. Since Sunique(P1) ∩ Sunique(P2) = ∅, for every P, P ′ ∈ P̃
it holds that S1 =

∣∣⋃
P∈P̃ Sunique(P )

∣∣ ≤ n, hence the claim follows. Alternatively, if S2 > S1, then, |Vlow| ≤ 4|S2|.
By Cl. 4.16 and the disjointness of the Sinter(P ) sets, we have that S2 =

∑
P∈P̃ |Ssame(P )| ≤ 2

∑
P∈P̃ |Sinter(P )| =

2
∣∣⋃

P∈P̃ Sinter(P )
∣∣ ≤ 2n. The claim follows.

Thm. 4.7 for d = 2 follows by Lemma 4.12 and Lemma 4.18.
General d ≥ 2: To bound the number of null-cells for the general case of d ≥ 2, the following definitions are now

extended. For a null-cell, H∅,j , let Jj be its outer boundary (i.e., the notion of outer boundary replaces the terminology
of a Jordan curve used in d = 2). Note that for every point p ∈ H∅,j , the shortest path to the unique infinite null-cell
intersects with the outer boundary Jj . We now associate a d-dimensional region with every Jj that is free from null-cells.
Let s(Jj) be the station received on Jj (i.e., letting sj′ = s(Jj) then Jj ⊂ Hj′(A′)). By Obs. 4.9, this is well defined. Let
J+
j be the open area inside Jj obtained by filling the (possible) null-cells. Formally, define J+

j as the collection of all points
` ∈ p q \ {p, q} for every p, q ∈ Jj satisfying that the outer boundary of Jj ∪ p q is Jj . That is the open set J+

j is obtained
by filling null-cells while preserving the outer boundary of the shape. Analogously to the 2-dimensional case, we say that
two cells H1 = H∅,j1(A) and H2 = H∅,j2(A), with outer boundaries J1 and J2 respectively, are dependent if J+

1 ⊂ J+
2 or

vice-verse. We begin by establishing some topological properties on null-cells.
Claim 4.19: (1) Every null-cell H∅,j is an open connected subset in Rd, and (2) The dimension of Φ(H∅,j) is d− 1.

To apply the proof of the 2-dimensional case, it is then sufficient to establish Obs. 4.10(1) for general d. (Claims (2) and
(3) are extended naturally to d ≥ 2.)

Proof of Observation 4.10(1) for every dimension d ≥ 2: We first claim that J+
j is an open set for every Jj ∈ J .

I.e., it is required to show that for every p ∈ J+
j , there exists a sufficiently small d-dimensional ball B(p, ε) inside J+

j .
If p ∈ H∅,j(A), this holds by Cl. 4.19(1). So, it remains to consider the case where p+ ∈ J+

j \ H∅,j(A). Since the outer
boundary Jj is the limit of the non-reception points in H∅,j(A). Hence, we conclude that J+

j is an open set in Rd.
Assume, towards contradiction, that the claim assertion does not hold and consider two d-dimensional null-cells H∅,1 =

H∅,j1(A) and H∅,2 = H∅,j2(A) with a non-empty intersection of the interior regions, J+
1 ∩ J+

2 6= ∅ and yet J+
2 * J+

1 and
J+

1 * J+
2 . Denote

M = (J+
1 ∪ J1) ∩ (J+

2 ∪ J2).

Note that M is obtained by the intersection of two d-dimensional closed sets and since J+
1 ∩ J+

2 6= ∅, it is a d-dimensional
closed set as well. In particular, it holds that Φ(M) ⊆ J1 ∪ J2. Let p ∈ M be a non-reception point (e.g., by taking p to
be sufficiently close to the boundary Φ(M)). Without loss of generality, let p belongs to J+

1 and since p is a non-reception
point, it also holds that p ∈ H∅,1. Consider now another null point q ∈ H∅,1 \M . Since J1 *M , the point q can be given
by taking a sufficiently close internal point to the boundary J1 \ Φ(M). On the one hand, the null points p and q are in
the same connected subset H∅,1, but on the other hand, p is in a d-dimensional subset M whose boundary Φ(M) has no
intersection with H∅(A) (since every point on Φ(M) is in J1∪J2 and hence receptive) and in particular has no intersection
with H∅,1. Contradiction.

Once establishing Obs. 4.10, we can safely define a null-cells digraph for the collection of d-dimensional null-cells. The
proof reasonings on that graph are invariant to dimension.

E. Approximation of the number of null-cells for any β > 0

To this end, we use the following notation. Let Aβ′ be a network identical to A except its SINR threshold is β′ instead
of β. To avoid cumbersome notation, we focus on the station si and define τ(β′, i) as the number of null-cells (holes) in
the reception zone of si in the network Aβ′ , i.e., Hi(Aβ′). In this section, we present a scheme that given an approximation
parameter ε ∈ (0, 1) and a target station si, returns an approximation X(i, ε) satisfying that τ(β, i) ≤ X(i, ε) ≤ τ(βε, i)



where βε = ((1− ε)/(1 + ε))
α · β . For β > 1, it then holds that

τ∅(Aβ) ≤
n∑
i=1

X(i, ε) ≤ τ∅(Aβε),

where τ∅(A) is the total number of null-cells in the network A. The scheme of this section is focused on the setting where
β > 1. This is because, the crucial property (used in the previous section) that exactly one station is received on the
boundary of every reception cell is guaranteed only when β > 1. In contrast, when 0 < β ≤ 1, it might be the case that
different regions on the boundary of the null-cell are received by different stations and hence the minimum principle (e.g.,
the NFH property) cannot be directly applied. We note however that the presented scheme can also be applied for the case
of β ≤ 1 upon slightly modifying the definition of a null-cell and focusing on a given fixed station. Specifically, for a given
station si and any β > 0, our scheme can count the number of “holes” in si’s map where the holes in si’s map are the
connected regions is which si cannot be correctly received, i.e., the scheme approximates the number of connected regions
in Rd \ Hi(Aβ).

We begin by showing, using the minimum principle, that the number of null-cells (i.e., holes) in Hi(Aβ) is monotone
decreasing with β. Note that this property does not hold for the number of reception cells in Hi(Aβ). In particular, in the
extreme cases where β is either infinitely small or extremely large, Hi(Aβ) consists of one connected reception cell.

Lemma 4.20: Let 0 < β1 ≤ β2. Then τ(β1, i) ≥ τ(β2, i).
Proof: By the minimum principle, every null-cell in the map of si contains an interfering station sj ∈ S \ {si}, hence

there are at most n − 1 bounded null-cells plus one infinite null-cell in Hi(Aβ) for every β > 0. (This is tight for a
sufficiently small β). Let H1, . . . ,H` be the null-cells in Hi(Aβ2

) such that Hj contains the interfering station skj 6= si.
By the definition of null-cells, the interfering stations skj are distinct. We now show that for every 1 ≤ j ≤ `, there exists
a corresponding null-cell H ′j in Hi(Aβ1

) that contains skj . Let Φ(Hj) be the boundary of the null-cell Hj . By definition,
Φ(Hj) ⊆ Hi(Aβ2) and skj ∈ Hj . Since β1 ≤ β2, we get that Φ(Hj) ⊆ Hi(Aβ1) as well, and since sj ∈ Hj is a null point
in si’s reception region Hi(Aβ) for every β > 0, we get that there exists a null-cell H ′j in Hi(Aβ1) that contains skj . The
claim follows.
Note that without the minimum principle one encounters two main difficulties when approximating the number of null-cells.
First, since a priori the null-cell can be located anywhere in the map, one has to sample Ω(∆̃/(ε · δ̃)) points in the large circle
that contains Hi(Aβ) and evaluate the SINR function on each such point. In addition, this brute-force scheme cannot detect
all null-cells in the zone Hi(Aβ) as there might be infinitesimally small null-cells that are not captured by the sampling.
However, thanks to the minimum principle, and in particular the NFH property, every null-cell must contain an interfering
station and hence the interfering stations can be a useful starting point for detecting the null-cells in the map. In addition, as
shown next, the minimum principle also implies that the null-cells cannot be too small, hence there exists a fixed sampling
precision that guarantees the detection of every null-cell in Hi(Aβ). Let κ = min{dist(si, sj) | i > 1} denote the minimum
distance between any two stations in the network.

Claim 4.21: For every β > 0, the area of every null-cells is Ω(κ2 · β̂/(ψ · n)) where β̂ = min{β, 1/β}.
Let Ψmax = maxi ψi be the maximal transmission energy and δ̃ = κ/4

√
β ·Ψmax · n. In the full version, we present Alg.

ApproxHoles that approximates the number of null-cells in the reception region of station si and show the following.
Theorem 4.22: There exists an algorithm that given an approximation parameter ε ∈ (0, 1), a network Aβ and a target

station si, returns a number X(i, ε) such that τ(β, i) ≤ X(i, ε) ≤ τ(βε, i) by using O(n3/(δ̃ ·ε)+n·|Φ(Hi(A))|/(ε·δ̃)+∆̃·n)
arithmetic operations, where |Φ(Hi(A))| is the perimeter of Φ(Hi(A)).
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