
Efficient Oracles and Routing Schemes for
Replacement Paths
Davide Bilò
Università di Sassari, Italy
davidebilo@uniss.it

Keerti Choudhary
Department of CSE, I.I.T. Kanpur, India
keerti@cse.iitk.ac.in

Luciano Gualà
Università di Roma “Tor Vergata”, Italy
guala@mat.uniroma2.it

Stefano Leucci
ETH Zürich, Switzerland
stefano.leucci@inf.ethz.ch

Merav Parter
CSAIL, MIT
meravparter@gmail.com

Guido Proietti
DISIM, Università dell’Aquila, Italy and
Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy
guido.proietti@univaq.it

Abstract
Real life graphs and networks are prone to failure of nodes (vertices) and links (edges). In
particular, for a pair of nodes s and t and a failing edge e in an n-vertex unweighted graph
G = (V (G), E(G)), the replacement path πG−e(s, t) is a shortest s− t path that avoids e. In this
paper we present several efficient constructions that, for every (s, t) ∈ S×T , where S, T ⊆ V (G),
and every e ∈ E(G), maintain the collection of all πG−e(s, t), either implicitly (i.e., through
compact data structures a.k.a. distance sensitivity oracles (DSO)), or explicitly (i.e., through
sparse subgraphs a.k.a. fault-tolerant preservers (FTP)). More precisely, we provide the following
results:
(1) DSO: For every S, T ⊆ V (G), we construct a DSO for maintaining S × T distances under

single edge (or vertex) faults. This DSO has size Õ(n
√
|S||T |) and query time of O(

√
|S||T |).

At the expense of having quasi-polynomial query time, the size of the oracle can be improved
to Õ(n|S| + |T |

√
|S|n), which is optimal for |T | = Ω(

√
n|S|). When |T | = Ω(n 3

4 |S| 14 ), the
construction can be further refined in order to get a polynomial query time. We also consider
the approximate additive setting, and show a family of DSOs that exhibits a tradeoff between
the additive stretch and the size of the oracle. Finally, for the meaningful single-source case,
the above result is complemented by a lower bound conditioned on the Set-Intersection
conjecture. This lower bound establishes a separation between the oracle and the subgraph
settings.

(2) FTP: We show the construction of a path-reporting DSO of size Õ(n4/3(|S||T |)1/3) reporting
πG−e(s, t) in O(|πG−e(s, t)| + (n|S||T |)1/3) time. Such a DSO can be transformed into a
FTP having the same size, and moreover it can be elaborated in order to make it optimal
(up to a poly-logarithmic factor) both in space and query time for the special case in which
T = V (G). Our FTP improves over previous constructions when |T | = O(

√
|S|n) (up to

inverse poly-logarithmic factors).
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13:2 Efficient Oracles and Routing Schemes for Replacement Paths

(3) Routing and Labeling Schemes: For the well-studied single-source setting, we present a novel
routing scheme, that allows to route messages on πG−e(s, t) by using edge labels and routing
tables of size Õ(

√
n), and a header message of poly-logarithmic size. We also present a

labeling scheme for the setting which is optimal in space up to constant factors.
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1 Introduction

1.1 Motivation

Shortest path in graphs is perhaps one of the most classical concepts in network algorithms.
As real life networks are prone to failures, much attention has been devoted, recently, for
studying replacement paths, namely, shortest paths that avoid failed edges or vertices.

A traditional objective in shortest path research is to reduce the size of the distance
representation. One common way to do so is to use sparse graph spanners, that is a spanning
subgraph of the original graph using possibly few edges while preserving some distance
information. In the context of fault tolerance, Peleg and Parter [24] introduced the notion of
FT-BFS trees, namely sparse subgraphs that contain a collection of all replacement paths from
a given source s that avoids a single edge or vertex in the graph. For an n-vertex unweighted
graph G = (V (G), E(G)), [24] showed a simple construction of FT-BFS subgraphs with
O(n3/2) edges. For the case of multiple sources S ⊆ V , they showed the construction of an
FT-BFS for each s ∈ S with O(n3/2

√
|S|) edges. Albeit being optimal in space, FT-BFS

structures H ⊆ G are lacking some useful properties such as fast reporting of s− t distances
in G− e = (V (G), E(G) \ {e}) or being able to route messages along the replacement paths.
For instance, to return the distance between the source vertex s and any other vertex t of
the graph, following a failure of e, the best one can do with FT-BFS structure is to run a
Dijkstra’s algorithm in H − e rather than G− e.

Our goal in this paper is to devise more structured representations of replacement paths
that have useful applications in communication networks.1 We present efficient constructions
of data structures that enjoy not only optimal space (like FT-BFS subgraphs) but also have
additional desired attributes, e.g., allowing fast extraction of distances; balanced information
spreading in the network; and routing on replacement paths using small routing tables.

In principle, storing the replacement paths in data structures might be more space efficient
than using a subgraph of the original network. Unfortunately, here this is not the case; by
using standard tools [11, 22, 1], one can show that the lower bound of Ω(n3/2

√
|S|) edges

for FT-BFS structures for S × V distances applies against any kind of replacement paths
representation, and not just subgraphs. Our starting point is:

There are bad n-vertex graph families, for which any representation allowing for the
return of all the S × V post-failure distances must have size Ω(n3/2

√
|S|) bits.

1 We focus on single edge failures and undirected graphs, although most of the results extend to single
vertex failures and directed graphs as well.

http://dx.doi.org/10.4230/LIPIcs.STACS.2018.13
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Unlike the sourcewise scenario that has been studied thoroughly in the subgraph setting,
almost nothing is known for the more general S × T case, i.e., where T is not necessarily V ,
but for the fault-free framework [20, 15]. We fill some of that gap here and provide tools
that go beyond the sourcewise setting.

1.2 Contribution
We provide a comprehensive study of several space aspects for replacement paths. We consider
three fundamental data structures for maintaining shortest paths: distance sensitivity oracles,
labeling schemes and compact routing schemes. Roughly speaking, distance sensitivity
oracle is a compact data structure that can also report distances fast; labeling scheme is a
more structured type of distance sensitivity oracles in which (hopefully) the same amount
of distance information is now spread evenly in the network and hence the memory load
per vertex is bounded; Finally a compact routing scheme is a distributed algorithm that
sends messages from s to t along some short path. The next hop is computed by using the
information at the message headers as well as the routing table stored at the current vertex.

Distance Sensitivity Oracles (DSO) and Labeling Schemes
For an n-vertex unweighted graph G = (V (G), E(G)), subsets S, T ⊆ V , an S × T DSO is
a compact data structure that answers efficiently queries of the form (s, t, e): Return the
distance between s ∈ S and t ∈ T when the edge e fails. Our main results are the following:

A polynomial time constructable S × T DSO of size Õ(n
√
|S||T |) and query time

O(
√
|S||T |). If quasi-polynomial query time is allowed, then the size of such oracle can be

improved to Õ(n|S|+ |T |
√
|S|n), which we will show to be optimal for |T | = Ω(

√
n|S|).

Moreover, when |T | = Ω(n 3
4 |S| 14 ), the construction can be further refined in order to get

a polynomial query time.
A polynomial time constructable family of approximate S×T DSOs, returning in constant
time a distance stretched by an additive term which decreases as soon as the size of the
oracle increases. In particular, for |S| = O(

√
n), we can obtain an oracle of size Õ(n3/2)

and additive distortion Õ(
√
n).

A path-reporting DSO of size Õ(n4/3(|S||T |)1/3) returning πG−e(s, t) in O(|πG−e(s, t)|+
(n|S||T |)1/3) time. Such a DSO can be transformed into an S × T fault-tolerant preserver
(FTP) (i.e., a subgraph of G maintaining all the S × T shortest paths after any edge
failure) having the same size. Thus, our FTP improves over the multi-source preserver
provided in [24] as soon as |T | = O(

√
|S|n) (up to inverse poly-logarithmic factors).

Finally, for the remarkable case in which T = V (G), it can be elaborated in order to
get a DSO having size Õ(n

√
n|S|) and reporting πG−e(s, t) in O(|πG−e(s, t)|) time; this

construction represents the oracle counterpart of the multi-source preserver provided in
[24], and thus it has not only optimal size (up to a poly-logarithmic factor), but it also
allows to retrieve a shortest path in optimal time.
Let ε ∈ (0, 1] be any fixed constant; we show that conditioned on the Set-Intersection
Conjecture [26], any {s} × V DSO with constant query time and additive distortion
d = O(n1−ε) must use Ω̃

(
n

3
2 ε
)
bits of memory.

Concerning the first result, our construction in fact gives a tradeoff between the query
time and the size of the oracle. Note that prior to our construction, for the single-source
setting, a trivial query time was O(n3/2) by running Dijkstra on the FT-BFS structure with
O(n3/2) edges. For the S × T setting, the trivial query time was O(

√
|S|n3/2), using the

FT-BFS construction of [24] for multiple sources S.

STACS 2018
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Concerning the lower bound for the single-source setting, it compares favorably with
the non-conditional lower-bounds given in [25]. Indeed, it improves the range of additive
distortions for which no linear-size {s}×V DSO can exist from d = O(logn) to d = O(n 1

3−ε),
for any constant ε > 0. Moreover, it shows that for any d = O(1), Ω̃(n 3

2 ) bits are needed by
any {s} × V DSO with constant query time. This is in contrast with the 4-additive FT-BFS
structure of size O(n 4

3 ) given in [25] thus establishing that designing a corresponding oracle
is harder than its FT-BFS counterpart. Notice also that for exact distances (i.e., d = 0)
this lower bound still allows for the existence of a (single-source) DSO having size O(n 3

2 )
and constant query time. We regard the problem of finding the best query time for an
optimal-size DSO as an interesting remaining open problem. Due to space limitations the
discussion of our lower bound, as well as the proof of several statements, will be provided in
the full version of the paper.

Single-Source Labeling Schemes. Labeling schemes are special type of a “balanced” dis-
tance oracle with the benefit of having the distance information evenly distributed between
all the nodes in the network. Here we obtain a space-optimal (up to constant factors) labeling
scheme for the meaningful single-source to all-destinations case. It consists of a label with
Õ(
√
n) bits for each node, which allows to compute |πG−e(s, t)|, by simply looking at the

label of t and of the end-vertices of the failing edge e.

Single-Source Routing Scheme
A routing scheme for a given source s is a distributed mechanism that, for the failure of any
edge e ∈ E, can deliver packets of information from s to any other node t of the network
along the corresponding replacement path. This is done by storing compact routing tables at
each node, by assigning labels to edges, and finally by adding a short header to the message
containing information about the target t and the failing edge e. Our key observation is that
every replacement path can be decomposed into two (fault-free) tree paths connected by an
edge, as shown in [21]. By combining the routing schemes for trees of Thorup and Zwick [29]
along with our labeling scheme, we can provide the following:

A scheme for routing packets from a source s along shortest paths with poly-logarithmic
headers and Õ(

√
n)-size routing tables and edge labels.

1.3 Additional Related Work
In this work, we mainly consider exact distances under faults. In the literature, many related
settings have been studied thoroughly as discussed next.

Single source approximate shortest paths avoiding any failed vertex. Baswana and
Khanna [3] showed that for the undirected unweighted graph G = (V,E), one can construct a
subgraph H with O(n logn/ε3) edges satisfying that dist(s, t,H−e) ≤ (1+ε) dist(s, t,G−e)
for every t ∈ V (G), e ∈ E(G). They also provide a DSO of the same size that can report
these distances or even the paths in optimal time. This was later extended to the weighted
case, for both the subgraph [7] and the oracle setting [8]. Multiple faults have been studied
in [9, 25] and structures with additive stretch have been studied in [23, 6].

Distance sensitivity oracles (for all pairs). In a seminal work, Demetrescu et al. [17]
showed that given a directed weighted graph G of size n, it is possible to construct in time
Õ(mn2) a DSO of size O(n2 logn) capable of answering distance queries in O(1) time in
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the presence of a single failed edge or vertex. The preprocessing time was then improved
to Õ(mn), with unchanged size and query time [5]. Grandoni and Williams [19] presented
the first DSO that achieves simultaneously subcubic preprocessing time and sublinear query
time for directed graphs with bounded integer edge weights. A dual failure fault tolerant
DSO of size O(n2 log3 n) and O(logn) query time was presented in [18]. The f faults case
was studied in [30, 13].

FT distance labels and compact routing schemes. Label-based fault-tolerant routing
schemes for graphs of bounded clique-width are presented in [16]. To route from s to t, the
source needs to specify the labels λ(s) and λ(t) and the set of failures F , and the scheme
efficiently calculates the shortest path between s and t that avoids F . For an n-vertex graph
of tree-width or clique-width k, the constructed labels are of size O(k2 log2 n). Turning to
general graphs, FT compact routing schemes were first considered in [14], for up to two edge
failures. Further work considered multiple failures [12] and (1 + ε) approximation [2].

Set intersection and distance oracles. The set intersection problem has several related
variants and has been widely used to provide conditional lower bounds on the space and
query time of distance oracles. The folklore conjecture for set intersection states that, given
n sets of cardinality polylogarithmic in n, answering a set intersection query in constant time
requires Ω(n2) space. For the connection between distance oracles and various variants of
the set intersection problem, see [28, 26, 27]. In this paper we provide the first connection
between distance sensitivity oracles and the set intersection problem.

2 Preliminaries and Notations

Let G = (V (G), E(G)) be a directed or undirected graph on n vertices with S ⊆ V (G) as
the source set and T ⊆ V (G) as the destination set. Let H be a subgraph of G. We use HR

to denote the graph obtained by reversing all edge directions of H (if H is undirected then
HR is same as H). For any vertex w, let Tw,H be the shortest path tree of H rooted at w,
and T Rw,H be the shortest path tree of HR rooted at w. When H is same as G, we can as
well use the notions Tw and T Rw . We will denote by πH(u, v) the shortest path between the
two vertices u and v in H, and by dH(u, v) its length, i.e., the distance between u and v in
H. Moreover, whenever H = G, we will omit the subscript. Given a set F ⊆ E(G) of edges,
we will denote by G− F the subgraph of G obtained by removing the edges in F from E(G).
For the sake of simplicity we might slightly abuse the notation and write G− e instead of
G−{e} when F = {e}. Given a simple path P , we denote by |P | its size, i.e., the number of
its edges. Moreover, if P traverses the vertices u and v in this order, we denote by P (u, v)
the subpath of P between u and v (endpoints included). For any non-negative integer i, we
define P [−i] to be the path containing the last min{|P |, i} edges of P . Given any two paths
P and Q with last vertex of P same as the first vertex of Q, we use P ::Q to denote the path
formed by concatenating paths P and Q.

Given a tree T and any two vertices a, b ∈ T , we use the notation T (a, b) to denote the
path from a to b in tree T . Throughout the paper we use Õ(f(x)) (resp. Ω̃(f(x))) as a
shorthand for O(f(x)polylogf(x)) (resp. Ω(f(x)/polylogf(x)). Below we state a lemma
that will be crucially used in our fault tolerant data structures.

I Lemma 1. Let G be an undirected unweighted graph, and let L ∈ [5, n/ logn] and P =
{π(u, v) | u, v ∈ V (G), d(u, v) ≥ L logn} be the family of shortest paths in G having length
at least L logn. Then (i) In expected polynomial time we can compute a subset R of V (G)

STACS 2018



13:6 Efficient Oracles and Routing Schemes for Replacement Paths

with O(n/L) vertices such that R ∩ V (P ) 6= ∅ for each path P ∈ P; (ii) We can also have a
deterministic polynomial time construction for set R that intersects each path in P, such an
R contains O

(
n
L logn

)
vertices.

Although Lemma 1 allows for both randomized and deterministic constructions, in the
rest of the paper, we will only focus on the randomized case, as however this will only differ
up to logarithmic factors in the query time and the size of our solutions.

We assume edge weights are slightly perturbed by adding a small noise so that edge-
weights are always positive and between any two vertices x, y there is exactly one shortest
path. This will help us to uniquely define πH(x, y) for any subgraph H of G. When we focus
on undirected graphs, we assume perturbation is small enough so that for any simple path P
between x and y of weighted length λ, we have |P | = bλc.

3 Distance Sensitivity Oracle

The basic building block in our construction is an W ×W DSO that reports, in O(1) time,
the distance between any pair of vertices in W ⊆ V (G). This will be used to obtain our
S × T oracle.

3.1 Distance Sensitivity Oracle for W × W

As an input we are given a set W of vertices in a directed or undirected weighted graph G.
We will use ideas similar to the ones of the edge/vertex fault tolerant V × V oracle of [17].
For the sake of simplicity we only discuss the edge-failure case, but our results naturally
extend to the vertex failures as well. Our data structure stores the following information:
1. For each w ∈W , it stores:

An incoming and an outgoing shortest path tree rooted at w, i.e. trees Tw and T Rw ;
The pre-order and post-order numbering, and depth of each v ∈ V in Tw and T Rw ;
A level ancestor data structure for trees Tw and T Rw , namely a data structure able to
return in O(1) time the k-th ancestor of a node, for any k ≥ 1 [4];
The distances d(w, v) and d(v, w), where v ∈ V .

2. For every vertex pair (s, t) ∈ (W × V ) ∪ (V ×W ) and every integer 0 ≤ i ≤ log |π(s, t)|:
B1(s, t, i) stores the distance dG−e(s, t), where e = (u, v) is an edge lying on π(s, t)
and satisfying |π(s, u)| = 2i;
B2(s, t, i) stores the distance dG−π(u,v)(s, t), where u, v are vertices on π(s, t) and
satisfying (i) |π(u, v)| = 2i, and (ii) |π(s, u)| = 2i.

We now explain the query process. Let (s, t) ∈W ×W be a query pair and e = (u, v) be
a failing edge lying on π(s, t). (Whether e lies on π(s, t) or not can be verified in constant
time using pre-order and post-order numbering, and depth of vertices in Tw and T Rw , w ∈W ).
Let i0 and j0 be greatest integers satisfying 2i0 ≤ |π(s, u)| and 2j0 ≤ |π(u, t)|. Let s′, t′ be
vertices on π(s, t) such that |π(s′, u)| = 2i0 and |π(v, t′)| = 2j0 . (See Figure 1). These vertices
can be computed in constant time by using the level ancestor data structure on shortest
path trees Tw and T Rw .

Let P be an s− t shortest path in G− e. We have the following two cases.
1 P passes through either s′ or t′:

If P passes through t′, then dG−e(s, t) = dG−e(s, t′) + d(t′, t), and if P passes through
s′, then dG−e(s, t) = d(s, s′) + dG−e(s′, t). So in this case we can use B1 to report the
distance between s and t in G− e.
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s u v ts0 u0 v0 t0

2i0 2j0

2i0 2i0

Figure 1 Depiction of vertices s′, u′, v′, t′ when the failing edge e = (u, v) lies on path π(s, t).

2 P does not pass through s′ and t′:
Let us assume that i0 ≤ j0. (If j0 < i0 then a similar analysis will follow). Let u′, v′
be vertices on π(s, t) such that |π(s, u′)| = |π(u′, v′)| = 2i0 . Since 2i0 ≤ 2j0 , we have
u′ ∈ π(s′, u) and v′ ∈ π(v, t′). Thus P does not pass through segment π(u′, v′), i.e.,
πG−e(s, t) = πG−π(u′,v′)(s, t). So in this case, we can use B2 to report dG−e(s, t).

The space and the query time of our data structure are summarized by the following
theorem:

I Theorem 2. An n-vertex directed or undirected weighted graph G for a given set W ⊆ V (G)
can be preprocessed in polynomial time to compute a data structure of O(n|W | logn) size
that given any two vertices s, t ∈W and any failing edge e can report dG−e(s, t) in constant
time. Our result also holds for single vertex failure.

3.2 Distance Sensitivity S × T Oracle
In the following we assume that G is a directed or undirected unweighted graph. Also we
assume |S| ≤ |T |, as otherwise we could consider GR instead and swap the roles of S and T .
Let L ≥ 5 be a parameter in [n/

√
|S||T |, n/ logn] and let R ⊆ V (G) be a set of size O(n/L)

as obtained from Lemma 1. Also let ` be dL logne. Our construction is a simple two step
process:
1. Set W = S ∪R, and compute the W ×W oracle of Section 3.1 over set W .
2. For each pair (s, t) ∈ S × T , if e1, e2, . . . , emin{`,|π(s,t)|} are the edges on π(s, t)[−`] listed

in reverse order (i.e., from t towards s), then store in d−i(s,t) the distance dG−ei(s, t).

I Lemma 3. Let e = (u, v) be an edge lying on π(s, t) for some vertices s, t ∈ V (G). Also
let x ∈ V (G) be such that d(x, t) ≤ d(v, t). Then e /∈ π(x, t), and so dG−e(x, t) = d(x, t).

Proof. Let us assume on the contrary that π(x, t) traverses e, and let u′ (resp. v′) be the
first (resp. last) vertex in {u, v} it encounters. Then

d(x, t) = d(x, u′) + 1 + d(v′, t) ≥ 1 + d(v, t) > d(v, t).
However, by our hypothesis d(x, t) ≤ d(v, t). Hence, we get a contradiction. J

I Lemma 4. Let e = (u, v) be an edge lying on π(s, t) for some vertices s, t ∈ V (G). Also
assume e /∈ π(s, t)[−`], then dG−e(s, t) = min

x∈R, d(x,t)≤`

(
dG−e(s, x) + d(x, t)

)
.

Proof. Let P be the shortest path from s to t inG−e. Since |P | ≥ d(s, t) > `, by Lemma 1 and
sub-optimality of shortest paths, the path P [−`] must contain at least one vertex from set R,
let this be r. Consider the path P (r, t) = πG−e(r, t). Since d(r, t) ≤ |πG−e(r, t)| ≤ ` ≤ d(v, t),
Lemma 3 implies that dG−e(r, t) is equal to d(r, t). Therefore we have:

dG−e(s, t) = dG−e(s, r) + dG−e(r, t) = dG−e(s, r) + d(r, t).

STACS 2018



13:8 Efficient Oracles and Routing Schemes for Replacement Paths

Algorithm 1: Compute dG−e(s, t) where e = (u, v) is a failing edge on π(s, t).
1 if (i ≤ `) then return d−i

(s,t) = dG−e(s, t)
2 else return min

x∈R, d(x,t)≤`

(
dG−e(s, x) + d(x, t)

)

Also notice that for any r0 ∈ R, if d(r0, t) ≤ `, then by Lemma 3, d(r0, t) = dG−e(r0, t), as
d(v, t) ≥ `. Thus dG−e(s, r0) + d(r0, t) = dG−e(s, r0) + dG−e(r0, t) ≥ dG−e(s, t). So from
above discussion it follows that dG−e(s, t) = minx∈R, d(x,t)≤`

(
dG−e(s, x) + d(x, t)

)
. J

Query algorithm. Consider a pair (s, t), let e = (u, v) be a failing edge lying on π(s, t). (As
before whether e belongs to π(s, t) can be verified in constant time). If π(s, t)[−`] contains
e, then we can output new distance in O(1) time. If π(s, t)[−`] does not contain e, then
by Lemma 4, dG−e(s, t) = min{dG−e(s, r) + d(r, t)|r ∈ R, d(r, t) ≤ `}. In this equation the
distance dG−e(s, r) for any s ∈ S and r ∈ R can be computed in constant time using the data
structure of the previous subsection. Since the values d(r, t) are pre-stored, the query time
is O(|R|) = O(n/L). Algorithm 1 presents the pseudocode of our implementation. Notice
that the space used is O(n|W | logn + |S||T |`) = O

(
(n2/L + |S||T |L) logn

)
which, due to

our choice of L, is O(|S||T |L logn). We hence obtain the following result:

I Theorem 5. An n-vertex (directed or undirected) unweighted graph G for a given source set
S ⊆ V (G) and destination set T ⊆ V (G) can be preprocessed in polynomial time to compute
a DSO of size O(|S||T |L logn) and query time O(n/L), where L ∈ [n/

√
|S||T |, n/ logn].

Notice that the subgraph lower bound of Ω(n
√
n|S|) provided in [24] holds also for the

oracles setting (by using standard information theoretic arguments). Therefore, by choosing
L = Θ(n/

√
|S||T |) in Theorem 5, we obtain an oracle of size O(n

√
|S||T | logn) and query

time O(
√
|S||T |) which, for |T | = Θ(n), has optimal size (up to the poly-logarithmic factors).

3.3 Space-Improved S × T Oracle
Recall that in last subsection we computed an S × T oracle with O(n

√
|S||T | logn) space

and O(
√
|S||T |) query time using a random sample of vertices R. In this section, we obtain

an oracle with an improved size at the expense of higher (quasi-polynomial) query time. In
particular, this oracle has the optimal size for |T | = Ω(

√
|S|n). Our main idea is to use a

hierarchy of random sets R1, R2, . . . , Rα for an appropriate α.
We now explain our construction. Let α be integer to be fixed later on, and for i ∈ [0, α],

let Li be (n/|S|) 2α−i
2α and Ri be random set of size O(n/Li) = O(|S| 2α−i2α n

i
2α ) computed

using Lemma 1. For each i ≥ 0, we will compute an oracle for S ×Ri, say OS×Ri . Also we
use OS×T to denote our oracle for the product S×T . Since |R0| = O(|S|), we use Theorem 2
to compute an oracle for S ×R0 with O(n|S| logn) space and O(1) query time. It turns out
that for any i > 1, our oracle OS×Ri uses OS×Ri−1 , and OS×T uses OS×Rα .

For sake of convenience let Rα+1 = T . For an oracle O, let size(O) be the size of the
oracle and let time(O) be its query time. For any i ∈ [0, α], we compute the OS×Ri+1 oracle
from OS×Ri as follows. We first compute oracle OS×Ri , this is augmented by storing
1. d(x, y) for (x, y) ∈ Ri ×Ri+1, and
2. dG−e(s, y) for (s, y) ∈ S ×Ri+1, e ∈ π(s, y)[−Li logn].
So, we have: size

(
OS×Ri+1

)
= size

(
OS×Ri

)
+ (|Ri||Ri+1|+ |S||Ri+1|Li logn).
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For any y ∈ Ri+1, to report the distance dG−e(s, y) we proceed in a similar way as
in Algorithm 1. If π(s, y)[−Li logn] contains e we return the stored distance. Otherwise
we compute dG−e(s, y) as minx∈Ri, d(x,y)≤Li logn

(
dG−e(s, x) + d(x, y)

)
, where dG−e(s, x) is

obtained by querying OS×Ri . Since at most |Ri| queries to OS×Ri are performed, we have
time

(
OS×Ri+1

)
= time

(
OS×Ri

)
× |Ri|. Summing the first equation from i = 0 to α, and

substituting α = logn− 1, we obtain the size of oracle OS×T :

size
(
OS×T

)
= size

(
OS×R0

)
+

α∑
i=0

(|Ri||Ri+1|+ |S||Ri+1|Li logn)

≤ n|S| logn+ α|Rα|2 + |Rα||T |+
α−1∑
i=0

(|S||Ri+1|Li logn) + |S||T |Lα logn

= (α+ logn)n|S|+ |T |
√
n|S|+

α−1∑
i=0

(n|S|(n/|S|) 1
2α logn) + |T |

√
n|S| logn

= O(n|S| log2 n+ |T |
√
n|S| logn).

Turning to query time, we get that time(OS×T ) = O(1)·
α∏
i=0
|Ri| = (n|S|)

α+1
2 = O

(
(n|S|)

logn
2
)
.

The following theorem follows from above discussion.
I Theorem 6. An n-vertex (directed or undirected) unweighted graph G for a given source
set S ⊆ V (G) and destination set T ⊆ V (G) can be preprocessed in polynomial time to
compute a DSO with O(n|S| log2 n+ |T |

√
n|S| logn) size and O

(
(n|S|)

logn
2
)
query time.

Notice that the subgraph lower bound of Ω(n
√
n|S|) provided in [24] can be easily

adapted to yield an Ω(|T |
√
n|S|) lower bound for the S × T case (oracles setting included),

and the details will be given in the full version of the paper. Therefore, for |T | = Ω(
√
n|S|),

the oracle of Theorem 6 has optimal size (up to poly-logarithmic factors).
We next show that for the special case of |T | = Ω(n 3

4 |S| 14 ), we can obtain an even better
space-optimal oracle (up to logarithmic factors) having polynomial query time.
I Theorem 7. An n-vertex (directed or undirected) unweighted graph G for a given source
set S ⊆ V (G) and destination set T ⊆ V (G) satisfying the condition |T | = Ω(n 3

4 |S| 14 ) can be
preprocessed in polynomial time to compute a DSO of size O

(
T
√
n|S| logn

)
and query time

O
(
n

3
2 |S| 32 |T |−1) = O(n 3

4 |S| 54 ) .
Proof. Let L be a parameter and R be a random set of size O(n/L) computed by Lemma 1.
Our oracle consists of an S×R oracle OS×R of size O(|S||R|L0 logn) and query time O(n/L0),
for some parameter L0 ∈ [n/

√
|S||R|, n/ logn] (see Theorem 5). This is augmented by storing

(i) d(x, t) for x ∈ R, t ∈ T , and (ii) the distance dG−e(s, t) for s ∈ S, t ∈ T , e ∈ π(s, t)[−`]
(recall that ` = dL logne). The overall size is O(|S||R|L0 logn+ |R||T |+ |S||T |L logn).

To report dG−e(s, t) we proceed in a similar way discussed in Algorithm 1. If e ∈ π(s, t)[−`]
we return the stored distance. Otherwise we compute dG−e(s, t) as
minx∈R, d(x,t)≤`

(
dG−e(s, x)+d(x, t)

)
, where dG−e(s, x) is obtained by querying OS×R. Since

O(|R|) queries to OS×R are performed, the total query time is O(|R|(n/L0)).
Now we get our result by substituting |R| as Θ(n/L), and picking L =

√
n/|S| and

L0 = |T |/|S| to obtain an oracle of size O(T
√
n|S| logn), and query time O((n|S|) 3

2 /|T |). J

3.4 S × T Oracle with Additive Distortion
We conclude this section by focusing on the case in which an additive distortion to the reported
distance is allowed. The following theorem provides a family of oracles whose additive stretch
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decreases as soon as the size increases, regardless of the number of destinations.

I Theorem 8. Let L ∈ [5, n/|S|] and G be an undirected unweighted graph with S as source
set and T as destination set, and assume w.l.o.g. that |S| ≤ |T |. Then, there exists a
polynomial-time constructible (2L logn)-additive DSO of O((n2/L) · logn) size and O(1)
query time.

For the prominent single-source case, the above result is complemented by the following
conditional lower bound:

I Theorem 9. Let ε ∈ (0, 1] be any fixed constant. If the Set-Intersection Conjecture holds,
then any single-source DSO with constant query time and additive distortion d = O(n1−ε)
must use Ω̃

(
n

3
2 ε
)
bits of memory.

The above result improves several (unconditional) lower bounds on fault-tolerant additive-
distortion single-source structures. Moreover, we have recently extended the above lower
bound to the case of multiple sources, and we will provide it in the full version of the paper.

4 Path-Reporting S × T Oracle and Fault-Tolerant Preservers

The following lemma shows that the shortest paths have a very nice structure in the graph
G− e. (Since all our results in this section will crucially use this lemma, the results in this
section will hold for undirected graphs and edge failures only.)

I Lemma 10 (also proved in [21, 10]). Let G be an undirected weighted graph, s, t ∈ V (G) and
e ∈ π(s, t) such that s and t are connected in G− e. There exists an edge (y, z) ∈ G− e such
that π(s, y)::(y, z)::π(z, t) is a shortest path in G− e. We will refer to (y, z) by link(s, t, e).

For W ×W , the above lemma implies the following:

I Theorem 11. An n-vertex undirected weighted graph G for a given set W ⊆ V (G) can
be preprocessed in polynomial time to compute a data structure of O(n|W | logn) size that
given any two vertices s, t ∈ W and any failing edge e ∈ E(G), can report πG−e(s, t) in
O(|πG−e(s, t)|) time.

Moreover, as a by-product we get a sparse subgraph with O(n|W | logn) edges that preserves
distance between any vertex pair (s, t) ∈W ×W after single edge failure e.

The above construction can be used to design a path-reporting oracle for S × T , for the
unweighted case only though. As before, for a parameter L we take a random set R with
O(n/L) vertices. We pre-compute the path reporting oracle for W ×W , where W = S ∪R,
and also the distance oracle for S × T . Recall that this will take O((n2/L+ |S||T |L) logn)
space. Next, for each (s, t) ∈ S × T and e ∈ π(s, t)[−`], we store the following: (i) edge
(y, z) = link(s, t, e), (ii) the distance d(z, t), and (iii) the suffix πG−e(s, t)[−`].

Notice that the total space used by us is O((n2/L) logn+ |S||T |L2 log2 n). On choosing L
as n2/3(|S||T |)−1/3, we get a bound of O(n4/3(|S||T |)1/3 log2 n). Then, we use the following:

Path-reporting Query Algorithm
1. If e /∈ π(s, t), we return π(s, t) stored in the shortest path tree Ts (recall s ∈W ).
2. If e ∈ π(s, t)[−`] then we retrieve the pre-stored edge (y, z) = link(s, t, e), the distance

d(z, t), and the path P = πG−e(s, t)[−`].
If d(z, t) ≤ `, then z must lie on P and πG−e(s, t) will be equal to π(s, y)::(y, z)::P (z, t).
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If d(z, t) > `, then we compute a vertex r ∈ R lying on P = πG−e(s, t)[−`] in O(|P |) =
O(`) time. Such an r exists by Lemma 1. We output πG−e(s, t) = πG−e(s, r)::π(r, t).
Notice that in this case πG−e(s, t) can be outputted in O(|πG−e(s, t)|) time.

3. If e /∈ π(s, t)[−`], then it follows from Lemma 4 that πG−e(s, t) = πG−e(s, r)::π(r, t),
where r = arg min

(
dG−e(s, x) + d(x, t) | x ∈ R, d(x, t) ≤ `

)
. Such an r is computable

in O(|R|) = O(n1/3|S|1/3|T |1/3) time. Thus in this case in O(|πG−e(s, t)|+ (n|S||T |)1/3)
time we can report πG−e(s, t).

The above analysis thus implies the following result:

I Theorem 12. For any undirected unweighted graph G there exists a polynomial-time con-
structible DSO for a source set S and destination set T of size O(n4/3(|S||T |)1/3 log2 n)
that for any (s, t) ∈ S × T , and any failing edge e ∈ E(G), can report πG−e(s, t) in
O(|πG−e(s, t)|+ (n|S||T |)1/3) time.

Moreover, as a by-product we get a sparse subgraph with O(n4/3|S|1/3|T |1/3 log2 n) edges
that preserves distance between any vertex pair (s, t) ∈ S × T after single edge failure e.

Finally, we conclude this section by providing an even better oracle for the meaningful
scenario in which T = V (G). As before we take a set R with

√
|S||T | vertices and compute

the path reporting oracle for W ×W , where W = S ∪R. We also pre-compute a distance
oracle for S × T . For each t ∈ V (G), and each e ∈ π(s, t)[−`], we store the last edge of
πG−e(s, t). Notice that the overall size of the oracle remains same, i.e. O(n

√
|S||T | logn).

A path query is performed as follows: if e /∈ π(s, t), we return π(s, t) stored in the shortest
path tree Ts (recall s ∈W ); if e appears on π(s, t)[−`], we can access the last edge, say (w, t),
of P = πG−e(s, t) in constant time and obtain path P [s, w] = πG−e(s, w) by recursively
querying the oracle. Finally, in the remaining case, we compute in O(|R|) time the vertex
r = arg min{dG−e(x) + d(z, t) | x ∈ R, d(x, t) ≤ `}. We know that the concatenation
πG−e(s, r) :: π(r, t) is a shortest path from s to t in G− e. Notice that using Theorem 11,
πG−e(s, r) can be reported in O(|πG−e(s, r)|) time, also the path π(r, t) is stored in the tree Tr
(recall r ∈W ). Thus the time for reporting path πG−e(s, t) is O(|R| + |πG−e(s, t)|). Notice
that |R| =

√
n|S| and |πG−e(s, t)| ≥ d(s, t) ≥ ` = (n/|R|) logn =

√
n/|S| logn. Therefore in

this case as well, the total time spent is of order of the number of edges on the shortest path
πG−e(s, t). To summarize, we have:

I Theorem 13. For any undirected unweighted graph G there exists a polynomial-time
constructible DSO for a source set S of size O(n

√
n|S| logn) that for any s ∈ S, t ∈ V (G),

and any failing edge e ∈ E(G), can report πG−e(s, t) in O(|πG−e(s, t)|) time.

Remarkably, the above multi-source oracle is the natural counterpart of the multi-source
fault-tolerant preserver given in [24], and so it is optimal in space (up to poly-logarithmic
factors) and in query time.

5 Distributed Routing Scheme for Single-Source Distances

In this section, we present the main crux of our edge-fault-tolerant routing distributed
schemes for the single-source to all-destinations case. Details about our labeling scheme and
the remaining details of the routing scheme can be found in the full version of the paper.
We use s to denote the designated source vertex. For any two vertices a, b, we denote by
Treepath(a, b) the path from a to b in tree Ts.

It turns out that finding our labeling scheme of Õ(n 3
2 ) bitsize is quite easy, while designing

our routing scheme is not that straightforward. Our approach for it works as follows. First
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we show how to represent the FT-BFS (w.r.t. s) subgraph as a union of trees and link-edges
(see Lemma 10) of total size Õ(n3/2), so that each replacement path can be represented as a
combination of two tree paths connected by a link edge. We can then use the routing scheme
over trees by Thorup and Zwick [29]. For ensuring small routing tables, we will need that
each vertex must be present in only Õ(

√
n) number of trees in the family of trees considered

by us. In this way, we will obtain a scheme for routing packets from s along replacement
shortest paths with poly-logarithmic headers and Õ(

√
n) bitsize node routing tables and

edge labels.

5.1 Tree Representations
For a parameter L =

√
n we take R ⊆ V (G) to be a set of vertices as obtained from Lemma 1.

Also ` is taken to be dL logne. We define two family of trees Tlong and Tshort as follows:
(i) The family Tlong consists of shortest path tree Ts, and the shortest path trees Tr for each
r ∈ R; (ii) The family Tshort consists of all the possible trees Te,z given by Definition 14
below and have depth at most `.

I Definition 14. Let e = (u, v) ∈ Ts, and (y, z) be an edge that becomes tree edge in Ts,G−e.
Also assume d(u, z) ≤ 2`. We define Te,z to be a subtree of Ts,G−e which is (i) rooted at
vertex z, and (ii) truncated to depth `, that is, it contains only those vertices whose depth
differ from depth of z in Ts,G−e by at most `.

In the following table, we show how the families Tlong and Tshort can be directly used to
obtain a shortest path from s to any arbitrary vertex t after an edge failure on Treepath(s, t).

If Then New s− t shortest path in G− e

t = r0 ∈ R
Treepath(s, y)::(y, z)::Tr0 (z, r0)

where (y, z) = link(s, r0, e)
e ∈ Treepath(s, t)[−`]

(y, z) = link(s, t, e), d(z, t) ≤ ` t ∈ Te,z ∈ Tshort Treepath(s, y)::(y, z)::Te,z(z, t)

Remaining
cases

πG−e(s, t)[−`] must
contain some r ∈ R

Treepath(s, yr)::(yr, zr)::Tr(zr, t)
where (yr, zr) = link(s, r, e)

We now show correctness of above table case by case.

Case 1. t = r0 ∈ R
Let (y, z) = link(s, r0, e). Recall that we showed in Lemma 10, π(s, y)::(y, z)::π(z, r0) =
Treepath(s, y)::(y, z)::Tr0(z, r0) is a shortest path from s to r0 in G − e. Notice that
the trees Ts and Tr0 are present in the family Tlong.

Case 2. e ∈ Treepath(s, t)[−`], (y, z) = link(s, t, e), d(z, t) ≤ `
Since d(t, z) ≤ `, we will have d(u, z) ≤ 2`. This along with the fact that (y, z) be-
comes a tree edge in Ts,G−e shows that tree Te,z is present in the family Tshort. Also
from Lemma 10 we know that e cannot lie on π(z, t), so dG−e(z, t) = d(z, t) ≤ `.
Since tree Te,z contains shortest paths up to depth `, vertex t must lie in Te,z. This
shows that Te,z(z, t) = πG−e(z, t) = π(z, t). So by applying Lemma 10, we get that
Treepath(s, y)::(y, z)::Te,z(z, t) is a shortest path from s to t in G− e.

Case 3(i). e ∈ Treepath(s, t)[−`], (y, z) = link(s, t, e), d(z, t) > `

Let P = π(s, y)::(y, z)::π(z, t) be a shortest path from s to t in G \ e (see Lemma 10).
As |P (z, t)| ≥ `, by Lemma 1, P [−`] must contain a vertex from set R, say r. Let
(yr, zr) = link(s, r, e). Since P [s, r] = πG−e(s, r), edge (yr, zr) must be identical to the
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edge (y, z). Notice that π(z, t) = Tr(z, r)::Tr(r, t) = Tr(z, t) = Tr(zr, t). Thus in this case
Treepath(s, yr)::(yr, zr)::Tr(zr, t) is a shortest path from s to t in the graph G− e.

Case 3(ii). e /∈ Treepath(s, t)[−`]
Let P = πG−e(s, t). By Lemma 1, P [−`] must contain a vertex from set R, say r.
We know by Lemma 3 that P [r, t] is a shortest path in G, thus P [r, t] = Tr(r, t). Let
(yr, zr) = link(s, r, e), then P [s, r] = πG−e(s, r) = Treepath(s, yr)::(yr, zr)::Tr(zr, r).
Thus in this case also πG−e(s, t) = Treepath(s, yr)::(yr, zr)::Tr(zr, t). (Notice that if
Treepath(s, r) is intact in graph G − e, then we can define link(s, r, e) to be any
arbitrary edge on Treepath(s, r)).

All that remains is to show that each vertex in G appears in Õ(
√
n) trees in the families

Tshort and Tlong. For the family Tlong, proof is trivial because |Tlong| = O(|R|) = O(
√
n),

and it turns out the same holds for the family Tshort. From this, the bound on the size of
our routing scheme will follow.
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