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Abstract12

Biological neural computation is inherently asynchronous due to large variations in neuronal spike13

timing and transmission delays. So-far, most theoretical work on neural networks assumes the14

synchronous setting where neurons fire simultaneously in discrete rounds. In this work we aim at15

understanding the barriers of asynchronous neural computation from an algorithmic perspective. We16

consider an extension of the widely studied model of synchronized spiking neurons [Maass, Neural17

Networks 97] to the asynchronous setting by taking into account edge and node delays.18

Edge Delays: We define an asynchronous model for spiking neurons in which the latency values19

(i.e., transmission delays) of non self-loop edges vary adversarially over time. This extends the20

recent work of [Hitron and Parter, ESA’19] in which the latency values are restricted to be fixed21

over time. Our first contribution is an impossibility result that implies that the assumption that22

self-loop edges have no delays (as assumed in Hitron and Parter) is indeed necessary. Interestingly,23

in real biological networks self-loop edges (a.k.a. autapse) are indeed free of delays, and the24

latter has been noted by neuroscientists to be crucial for network synchronization.25

To capture the computational challenges in this setting, we first consider the implementation of26

a single NOT gate. This simple function already captures the fundamental difficulties in the27

asynchronous setting. Our key technical results are space and time upper and lower bounds28

for the NOT function, our time bounds are tight. In the spirit of the distributed synchronizers29

[Awerbuch and Peleg, FOCS’90] and following [Hitron and Parter, ESA’19], we then provide a30

general synchronizer machinery. Our construction is very modular and it is based on efficient31

circuit implementation of threshold gates. The complexity of our scheme is measured by the32

overhead in the number of neurons and the computation time, both are shown to be polynomial33

in the largest latency value, and the largest incoming degree ∆ of the original network.34

Node Delays: We introduce the study of asynchronous communication due to variations in35

the response rates of the neurons in the network. In real brain networks, the round duration36

varies between different neurons in the network. Our key result is a simulation methodology37

that allows one to transform the above mentioned synchronized solution under edge delays into38

a synchronized under node delays while incurring a small overhead w.r.t space and time.39
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1 Introduction47

Understanding how the brain works, as a computational device, is a central challenge of48

modern neuroscience, artificial intelligence, and lately also in theoretical computer science49

and distributed computing [18, 19, 20, 17, 16, 32, 6, 39, 37]. This line of work usually50

assumes a simple synchronized model [23, 24] in which neurons fire simultaneously in discrete51

rounds in response to their neighboring neurons that fired in the previous round. This52

model, while being very convenient for algorithm design, does not take into account the53

inherent asynchronous nature of neural communication. In the neuroscience literature it54

has been noted that the asynchronous nature of these networks mostly stems from two55

independent sources [29]: edge delays (known as response latency1.) [35, 5] and node delays56

(known as refractory period) [34, 3]. In this paper, we aim at understanding the compu-57

tational cost incurred by such asynchronous communication. The overhead is measured58

by the overhead in the number of neurons and computation time required to compute59

a certain function. We believe that understanding the computational power, limitations60

and the connections between these models go beyond the setting of spiking neurons, and61

might also be relevant for the theory of digital logic design and circuit computation in general.62

63

The Standard Synchronous Model [23, 24]: Before describing our asynchronous models,64

we first revise the standard synchronous model formally defined by Maass. In this model, the65

network evolves in discrete, synchronous rounds as a Markov chain where each neuron u in66

the network is a probabilistic threshold gate with a threshold (or bias) value b(u). In every67

round t, the firing probability of neuron u only depends on the firing status of its incoming68

neighbors in the preceding round t− 1. Formally, the potential pott(u) of neuron u in round69

t is defined by the weighted sum over its incoming neighbors that fired in round t− 1. The70

neuron u fires in round t with probability that depends on the quantity pott(u)− b(u).71

1.1 Asynchronous Computation with Bounded Edge Delays72

We define an asynchronous model with edge delays bounded2 by some given integer L. The73

dynamic of the network N is specified by a latency function ` : V ×V ×N→ N≤L interpreted74

as follows: For every neuron u firing in round τ , its spike reaches its outgoing neighbor v75

within `(u, v, τ) rounds where `(u, v, τ) ∈ [1, L] might be chosen adversarially for every u 6= v,76

and every round τ . The network solution N should then output the desired solution for any77

adversarial choice of the latency function `. Setting L = 1 yields the standard synchronous78

model.79

Asynchronous computation with edge delays was recently introduced by Hitron and80

Parter [12]. Their model is similar to ours only that in their model, the edge latencies are81

required to be fixed over time, whereas in our model the adversary is allowed to change it82

from round to round. The model of Hitron and Parter includes an additional restriction83

on the adversary (that sets the latency values) by requiring that self-spikes, i.e., of the84

form 〈u, u, τ〉 have no latency and arrive within a single round to their destination. This85

assumption is justified in [12] by the experimental evidence that self-spikes in brain networks86

have almost no delays [14]. It is commonly believed in the neuroscience community that this87

no-delay property of self-edges is in fact essential for network synchronization [33, 21, 40, 8].88

1 Throughout, we use the terms edge-delay and latency interchangeably.
2 This bound is crucial as will be later implied by our lower bound results that depend on L. E.g., both

the computation time and the size of the network in this model must depend on L.
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In this work, we provide a theoretical support for this hypothesis by showing that without89

such an assumption, one cannot even implement a single AND gate in this model. This90

impossibility result holds already in a setting where L = 2, the edge latencies are fixed over91

time (as assumed in [12]), and the computation time and network size are allowed to be92

unbounded. For this reason, we will mostly consider in this paper nice latency functions in93

which all self-spikes have a latency value of one round.94

1.2 Asynchronous Computation with Bounded Node Delays95

We next turn to consider an alternative source for asynchronous communication due to96

variations in the response timing of the individual neurons in the network. In real brain97

networks, for every neuron u there is a predefined time interval between two consecutive98

spikes of u. The length of this interval, which we call round, varies considerably among99

different neurons in the network [34, 3]. This poses the challenge of creating a synchronized100

response at the network level. To account this behavior, we consider a model in which101

network’s evolution proceeds in seconds. A second in this context is simply the smallest102

measurable time unit. For a given integer T ≥ 1, the dynamics is specified by a node-103

delay function t : V → N≤T interpreted as follows: the round duration of each neuron104

v consists of t(v) seconds. Specifically, the ith round of v is defined by the time interval105

Ri(v) = [(i− 1)t(v) + 1, i · t(v)] for every i ≥ 1. The neuron u fires in the second i · t(v) (i.e.,106

at the end of its ith round) only if the total potential due to spikes arriving in the interval107

Ri(v) is sufficiently large. The network solution N should then output the desired solution108

for any adversarial choice of the node-delay function t. The input parameter T sets a bound109

on the differences between the round duration over all neurons in the network. Setting T = 1110

yields the standard synchronous model.111

Observe that the edge and node delay models do not imply one another. In the edge112

latency model, even though the spikes arrive in adversarially chosen rounds, all neurons in113

round τ still depend only on the spikes arriving in round τ . Thus, the duration of a round for114

all the neurons in the network is the same: a single tick (or a second) of the global clock. In115

contrast, in the node delay model, the adversary selects the round duration for each neuron116

which has two physical interpretations. First, it determines the time duration over which117

the potential due to arriving spikes is accumulated. In addition, it also determines the time118

interval between two consecutive spikes by the given neuron. In one of our most technically119

involved results, we show a non-trivial reduction between the edge delay and the node delay120

models, provided that the input network satisfies certain properties.121

Finally, we note that this model has several variations which are in fact supported by122

our simulation results (from edge delays to node delays). In particular, one can consider123

a more elaborated setting in which the duration of each round per node varies in an124

adversarial manner over time, i.e., the node-delay function in such a model is of the form125

t : V × N≥1 → N≤T interpreted as follows: the ith round duration on each neuron v consists126

of t(v, i) seconds. For example, in such a model the ith round of node u can consists of 2127

seconds while its (i+1)th round might consist of 100 seconds. In another variation, both edge128

and node delays are combined and the dynamic is specified by an L-bounded edge latency129

function ` : V × V ×N≥1 → N≤L and a T -bounded node-delay function t : V ×N≥1 → N≤T .130

1.3 Synchronizers131

In the spirit of Awerbuch and Peleg’s synchronizers for distributed networks [2] and the recent132

work of [12], our primary goal with respect to upper bound results is to provide a general133

CVIT 2016
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simulation methodology that takes any n-neuron network N that solves the problem in the134

standard synchronized setting (i.e., in which all spikes arrive within a single round) and135

transforms it into an “analogous" network Sync(N ) in the edge delay setting while incurring136

a small overhead in the number of neurons and the computation time (w.r.t the base network137

N ).138

For the setting in which the edge latencies are fixed over time and bounded by some integer139

L, Hitron and Parter [12] showed such a simulation using their efficient constructions for140

neural timers and counters. Their synchronized network solution Sync(N ) has O(n+L logL)141

neurons and O(rL3) rounds where r is the computation time of the base network N . While142

being quite efficient in terms of space and time, the synchronizers of [12] are heavily built up143

on the strong assumption that the latency values of the edges are fixed over time. In this144

paper, we aimed at understanding the edge latency setting in its most general form, and ask:145

Can one provide a general synchronization scheme in a setting that allows the latency146

of the network edges to vary in an adversarial manner in each round?147

A priori it is not so clear if one can compute even basic Boolean functions without assuming148

that the latency values are fixed. We answer this question in the affirmative by presenting149

a modular syncronization scheme using a different approach than that taken in [12]. The150

benefit of this approach is in its modularity. We start by understanding the implementation151

of a single NOT gate in this model in terms of upper and lower bounds on the space and the152

time of the computation. We then use this synchronized NOT solution as a building block in153

the final synchronized network solution. Specifically, the synchronized NOT gates are used154

to build synchronized circuits (and hence threshold gates) which in turn combined into a155

whole synchronized network solution. The space and time overheads incurred by our solution156

are polynomial in L (the bound on the latency) and ∆, the maximal incoming degree in the157

base network N .158

We next turn to consider synchronizers for the node delay model. Our approach is based159

on showing a simulation result that takes any synchronized solution syncE(N , L) obtained160

by the synchronizer in the L-bounded edge latency model, and transforms it into a syn-161

chronized solution syncV (N , T ) that works in the T -bounded node delay model for L = Θ(T 2).162

163

Remark. It is noteworthy that in contrast to the distributed setting of Awerbuch and164

Peleg [2] where the network size does not depend on the latencies, in the neural setting it is165

not the case. As our lower bound constructions, both the computation time and the network166

size must depend (in fact, polynomially) on the largest edge latency. For this reason, for167

any practical purposes, the study of asynchronous communication, in general, must assume168

bounded delays.169

1.4 Our Results170

We study the cost and limitations of asynchronous neural computation in a biologically171

plausible yet simple model of spiking neural networks. Our main focus is in the edge latency172

model where the dynamic is specified by an L-bounded function ` : V × V × N→ N≤L. The173

node delay model is concerned only towards the end of the paper (Appendix C), as it is174

handled via reduction to the edge delay setting. In the first part of the paper, we show175

several negative results for the L-bounded model. This includes an impossibility results for176

delay on self-loop edges, as well as size and time lower bound on an implementation of a NOT177

gate in this model. In the second part, we consider the construction of synchronizers in this178

generalized setting. We note that these constructions are self-contained and are technically179
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different from [13].180

181

Negative Results: We first show that without assuming a minimal latency value on182

the self-loop edges, one cannot compute AND(x, y) given two Boolean inputs x and y, even183

when the edge latency values are fixed over time and the largest latency is L = 2.184

I Theorem 1 (Impossibility for Arbitrary Latency Functions). There exists no network
that computes AND(x, y) in a setting that allows the adversary to pick latencies in
{1, 2} for all edges in the network.

The proof goes by showing that for any given candidate network solution N , there exists185

a bad latency function ` under which N fails to compute AND(x, y). This holds even when186

the latencies are fixed over time. From that point on, we restrict attention to nice latency187

functions, that assign latency value 1 to the self-loop edges in the network.188

I Definition 2. A latency function is nice if `(u, u, τ) = 1 for every u ∈ V and round τ .189

Our key technical contributions are lower bounds on the network size and the computation190

time for computing the NOT (x) function in the L-bounded setting. Informally speaking, the191

NOT (x) function appears to be a “complete" function for the purpose of synchronization in192

this asynchronous model. Indeed, our NOT (x) implementation captures most of the essence193

of the L-bounded model. To obtain the final synchronization scheme we mainly glue together194

synchronized NOT units. For this reason, we spend much attention into understanding the195

tightness of our constructions by providing nearly matching lower bound results.196

I Lemma 3 (Size and Time Lower Bounds for Async. Computation of NOT (x)). Any
network that computes NOT (x) in the L-bounded asynchronous setting must use Ω(L)
neurons and Ω(L3) time (the time lower bound is tight).

This should be compared with the size lower bound of Ω(logL) shown by [13] for their197

simplified asynchronous setting.198

199

Positive Results: Our end result is a synchronizer that given any network N in the200

standard synchronous setting and an integer L, computes a network syncE(N , L) that201

performs the “same" computation as N in the L-bounded edge delay setting.202

I Theorem 4 (Synchronizers for Edge Delays). There exists a synchronizer that given
a network N with n neurons, maximum in-degree ∆, and maximum edge latency L,
constructs a network syncE(N , L) that has an “analogous" execution in the L-bounded
edge-delay setting with a total number of Õ(L4 ·poly(∆) ·n) neurons and a time overheada

of Õ(L5 · log ∆).
a The Õ hides a factor of poly(log(n · r)), where r is the number of simulation rounds.

Although the construction is inspired by the work of Awerbuch and Peleg [2], the imple-203

mentation is very different as our neurons, unlike processors in a distributed network, are204

memoryless. Thus, they cannot aggregate the incoming messages as in [2]. Our construction205

is also different than that of [13], as the latter crucially depends on having fixed latencies206

over time.207

CVIT 2016
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For the node delay model, in Appendix C we show that given a network N in the standard208

synchronous setting and an integer T , one can compute an analogous network syncV (N , T )209

in the node-delay model with bounded node delay T by taking the following approach. Apply210

the algorithm of Theorem 4 with N and L = Θ(T 2). This results with a network syncE(N , L)211

that performs the same computation as N in the L-bounded edge delay model. The desired212

network syncV (N , T ) is then obtained by multiplying the edge weights of a carefully defined213

edge subset in syncE(N , L) by a factor of T . The quite delicate analysis then shows that214

the network syncV (N , T ) indeed simulates the original network N upon any selection of215

the node-delay function t : V → N≤T . By setting L = O(T 2) in Theorem 4, we show the216

following for the node delay model:217

I Theorem 5 (Synchronizers for Node Delays). There exists a synchronizer that given
a network N with n neurons, maximum in-degree ∆, and maximum node delay T ,
constructs a network syncV (N , T ) that has an “analogous" execution in the T -bounded
node-delay setting with a total number of Õ(T 8 ·poly(∆) ·n) neurons and a time overhead
of Õ(T 10 · log ∆).

We note that our preference to take a modular approach rather then an optimized one218

inevitably leads to suboptimal space and time bounds in both Theorems 4 and 5. For example,219

Theorem 5 is shown via a simulation result, which further deepens our understanding of the220

connections between these models. We believe that by employing a more direct approach221

for building synchronizers in the node-delay model, one should get a considerably improved222

dependency in the delay bound T .223

1.5 Our Approach in a Nutshell224

We next provide the high level ideas for the key contributions. Throughout, unless stated225

otherwise we consider the edge delay model where the dynamics is specified by an arbitrary226

latency function.227

228

Size and Time Lower Bound for Computing NOT (x). A network N with input229

neuron x and an output neuron z computes the function NOT (x) in the asynchronous setting230

if the following holds: when x = 0, the output z fires in at least one round regardless of the231

latency function; and when x = 1 the output z never fires for any latency function. To show232

a size lower bound of Ω(L) we take the following approach. First, we reduce any network233

N that computes NOT (x) into a simpler and yet not larger network Nsimple. In the latter234

network the only inhibitor is the input x which also has a self-loop of large positive weight,235

and outgoing edges of very large negative weight to all the excitatory neurons in N . The236

second part of the proof shows a lower bound for Nsimple using its specialized structure. We237

will assume towards a contradiction that the in-degree of each neuron in Nsimple is less than238

L and exhibit two conflicting latency functions `0, `1 that satisfy the following. If Nsimple239

computes NOT (x) with `0 and with x = 0, then it must fail to compute NOT (x) with the240

function `1 and x = 1. To compute these latency functions, we partition the simulation into241

blocks T0, . . . , each containing L rounds. In each phase i, we set the latency values for all the242

edges and all the rounds in block Ti. Throughout, we will keep the invariant that there exists243

no neuron that fires when x = 0 and with `0, but does not fire when x = 1 and with `1. By244

the correctness of the network, the output neuron must fire at least once when x = 0, thus245

leading to the contradiction. In the very high level, the fact that the in-degree of each vertex246

is small is used in order to spread over the at most L incoming spikes of each neuron u in a247
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balanced manner over the L rounds of the block. This will prevent the firing of a neuron z248

when x = 0. Our lower bound is complemented by an upper bound of O(L2) as described next.249

250

The Generalized Synchronization Scheme. The scheme is based on gradual steps.251

252

Step I: Synchronization of NOT and OR Gates. We start by considering the asyn-253

chronous computation of simple Boolean functions NOT (x) and OR(x1, . . . , x`) with a small254

number of neurons. The key challenge is in implementing the NOT gate. When x = 1,255

the output gate is required not to fire (i.e., output 0) throughout the entire execution. In256

contrast, when x = 0 the output gate should fire at least once during the execution. The257

construction is combinatorial and uses a similar logic to the lower bound arguments. It258

contains a collection of L + 1 neurons with outgoing edges to the output z. The above259

mentioned lower bound result shows that the incoming degree of z must be at least L− 2.260

261

Step II: Synchronization of a Boolean Circuit. Any Boolean circuit A can be imple-262

mented by NOT and OR gates. To simulate the computation of A in the asynchronous263

setting, we replace each gate gi in A by its synchronized implementation Sync(gi) constructed264

in Step (I). For a gate gi in layer j with incoming gates gi,1, . . . , gi,k, the input to the265

sub-network Sync(gi) are the output neurons of the sub-networks Sync(gi,1), . . . ,Sync(gi,k).266

The synchronization between the layers of the circuit is governed by a directed chain of267

O(dL3) neurons. The head of the chain fires in the first round of the simulation and activates268

the network. The sub-networks Sync(gi) of gates gi in layer j are activated by the Θ(j · L3)269

neuron in this chain. These parameters are set so that we can be sure that the modules of270

layer j are activated, only after the spikes from the output neurons of the previous layer271

have reached the input of this layer. Overall the synchronized transformed network Sync(A)272

has O(d ·L3 +m ·L2) neurons, where d is the depth of A and m is the number of gates. The273

overtime in the computation is O(d · L4) rounds.274

275

Step III: Synchronization of a Single (Probabilistic) Threshold Gate. To syn-276

chronize a single deterministic threshold gate, we use the fact that a threshold gate with277

incoming degree ∆ can be implemented by a Boolean circuit with poly(∆) neurons and depth278

O(log ∆). This allows us to use the synchronized construction of the previous step. Turning279

to probabilistic threshold gates, here it is much less clear how to implement such a gate by a280

Boolean circuit. We take the following approach. First, we use the fact from [20] that a spik-281

ing neuron3 u with bias b(u) is equivalent to a deterministic neuron u′ whose bias is sampled282

from the Logistic distribution with mean b(u). Therefore our key challenge is in sampling283

a value from a given Logistic distribution. To do that, we use a collection of k (input-less)284

spiking neurons each fires independently with probability half. These neurons provide us the285

random bits for this process of sampling. In fact, these fair coins tosses allows one to sample286

a value almost uniformly at random in the range [0, 2k]. We will then use the method of287

inverse transform sampling to convert this almost-uniform sampled value to a value that is288

sampled from the Logistic distribution up to a small error in the sampling. Using Taylor289

expansion of the natural log function, we implement this Uniform to Logistic transformation290

by a collection of simple arithmetic operations applied on a collection of Boolean neurons.291

The total error in our sampling is set to be small enough so that the output distribution292

of the Boolean circuit is almost indistinguishable from that of the probabilistic threshold gate.293

3 The probabilistic threshold gates of SNN.

CVIT 2016
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NOT Gates
(Lemma 14, Sec. 4.1)

Boolean Circuits
(Lemma 15, Sec. 4.1)

Probabilistic Threshold Gates
(Lemmas 16 and 17, Sec. 4.2)

Spiking Networks
(Sec. 4.3)

Figure 1 A road-map for synchronizing spiking neural networks.

294

Grand Finale: Synchronization of a Spiking Neural Network. Finally, given an295

SNN network N of (probabilistic) threshold gates the synchronized network sync(N ) is ob-296

tained as follows. Each threshold gate gi in N is replaced by its synchronized implementation297

Sync(gi). The key challenge is in synchronizing these modules so that every neuron v in N298

(i.e., not only the output neuron) has an equivalent neuron v′ in sync(N ) that simulates v for299

any possible latency function throughout the entire simulation. See Fig. 1 for an illustration.300

301

From Edge Delays to Node Delays. Given a network N to be simulated and an302

integer T , our goal is to build a synchronizer syncV (N , T ) that simulates N in the T -303

bounded node-delay model. To do that, we first compute a network syncE(N , L) that304

simulates N in the L-bounded edge-delay model for L = Θ(T 2). Then the output network305

syncV (N , T ) is obtained by dividing some of the edge weights in syncE(N , L) by a factor306

of T . The correctness argument is based on showing that for every node-delay function307

t : V → N≤T , there exists an edge-delay function ` : V × V × N≥0 → N≤L such that the308

execution of the network syncE(N , L) with the edge-delay function ` (in the edge-delay309

model) is similar to the execution of the network syncV (N , T ) with the node-delay function310

t (in the node-delay model). Since the network syncE(N , L) simulates the original network311

N for any edge-delay function, it will imply that the network syncV (N , T ) simulates the312

original network N for any node-delay function as desired.313

314

Additional Related Work. Asynchronized communication in spiking neural networks has315

been studied in several settings. Maass [22, 25] considered a quite elaborated model for316

deterministic neural networks with arbitrary response functions for the edges, and a vector317

firing times for all neuron. The approach of [22] mostly concerned the computational power318

of this model upon choosing the best parameters for the network. I.e., showing feasibility319

results for various functions. In contrast, in this work our goal is to bound the computation320

time and the network size under this asynchronous setting. Khun et al. [15] studied the321

asynchronous dynamics under the stochastic model of DeVille and Peskin [7].322

Turning to the setting of logical circuits, there is a long line of work on the asynchronous323

setting under various model assumptions [1, 11, 36, 4] that do not quite fit the memory-less324

setting of spiking neurons. A more related work to our setting is by Martin, Manohar and325

Moses [28, 26, 27] who studied the computational power of asynchronous digital circuits. In326

particular, they characterize the necessary and sufficient conditions for a valid operation of a327

given circuit in the asynchronous setting. For example, they showed that if all edges and328

nodes suffer from an unbounded delay then the computational power of the circuit must be329

very limited. The focus in our work is quite different. Instead of studying the computational330

power of the asynchronous setting, we bound the computational overhead for solving concrete331

problems.332
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2 The Synchronous and Asynchronous SNN Models333

A deterministic neuron u is modeled by a deterministic threshold gate. Letting b(u) to be the334

threshold value of u, then u outputs 1 if the weighted sum of its incoming neighbors exceeds335

b(u). A spiking neuron is modeled by a probabilistic threshold gate which fires with a sig-336

moidal probability that depends on the difference between its weighted incoming sum and b(u).337

338

Neural Network Definition. A Neural Network (NN) N = 〈X,Z, Y,w, b〉 consists of339

n input neurons X = {x1, . . . , xn}, m output neurons Y = {y1, . . . , ym}, and k auxiliary340

neurons Z = {z1, ..., zk}. In spiking neural network (SNN), the neurons can be either de-341

terministic threshold gates or probabilistic threshold gates. The directed weighted synaptic342

connections between V = X ∪ Z ∪ Y are described by the weight function w : V × V → R.343

A weight w(u, v) = 0 indicates that a connection is not present between neurons u and344

v. Finally, for any neuron v, the value b(v) ∈ R is the threshold value (activation bias).345

The in-degree of every input neuron xi is zero, i.e., w(u, x) = 0 for all u ∈ V and x ∈ X.346

Additionally, each neuron is either inhibitory or excitatory: if v is inhibitory, then w(v, u) ≤ 0347

and if v is excitatory, then w(v, u) ≥ 0 for every u. This restriction arises from the biological348

structure of the neurons.349

350

Network Dynamics in the Synchronous Setting. The network evolves in discrete,351

synchronous rounds as a Markov chain. The firing probability of every neuron in round τ352

depends on the firing status of its neighbors in round τ − 1, via a standard sigmoid function,353

with details given below. For each neuron u, and each round τ ≥ 0, let στ (u) = 1 if u354

fires (i.e., generates a spike) in round τ . Let σ0(u) denote the initial firing state of the355

neuron. The firing state of each input neuron xj in each round is the input to the network.356

For each non-input neuron u and every round τ ≥ 1, let pot(u, τ) denote the membrane357

potential at round τ and p(u, τ) denote the firing probability (Pr[στ (u) = 1]), calculated358

as pot(u, τ) =
∑
v∈V w(v, u) · στ−1(v) − b(u) and p(u, τ) = 1

1+e− pot(u,τ)/λ where λ > 0 is a359

temperature parameter which determines the steepness of the sigmoid. Clearly, λ does not360

affect the computational power of the network, thus we set λ = 1.361

2.1 Network Dynamics in the Edge Delay Setting362

The dynamic of the network is governed by a latency function ` : V ×V ×N→ N interpreted363

as follows. For every directed edge e = (u, v) and round τ , a spike generated by u in round τ364

arrived at v after `(u, v, τ) rounds. In the synchronous setting, `(u, v, τ) = 1 for every u, v, τ .365

For every neuron v and round τ , let A(u, τ) = {(v, τ ′)| v ∈ V, τ ′ + `(v, u, τ ′) = τ} denote366

all the spike events that if occur, arrive to u at round τ . The state of u in round τ is given367

by:368

pot(u, τ) =
∑

(v,τ ′)∈A(v,τ)

w(v, u) · στ ′(v) − b(u) and στ (u) = 1 iff pot(v, τ) ≥ 0 . (1)369

If u is a probabilistic threshold gate then it fires with probability p(u, τ) = 1
1+e− pot(u,τ) .370

When `(u, v, τ) = `(u, v, τ ′) for every u, v and τ ′ 6= τ , we may omit τ and write `(u, v).371

I Definition 6 (The L-bounded Edge-Delay Setting). Given is a network N and an integer372

L. It is assumed the network contains a special neuron, the starter, that fires in the first373

round of the simulation. The dynamic is determined by a latency function `. This function `374

can be chosen arbitrarily among all L-bounded nice functions.375
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I Definition 7 (Computation of a Boolean Function in the L-bounded Edge-Delay Setting). Let376

f : {0, 1}n → {0, 1}k be a Boolean function. A network N with n input neurons x1, . . . , xn377

and k output neurons z1, . . . , zk computes f in this setting if for every nice L-bounded function378

` and for every fixed possible assignment to the input neurons b1, . . . , bn the following holds:379

(i) If fi(b1, . . . , bn) = 1, then there exists a round in which zi fires, where fi(·) is the ith bit in380

the output of f . (ii) If fi(b1, . . . , bn) = 0 then zi does not fire throughout the entire execution.381

Furthermore, the network N computes the function f in r rounds if N computes f , and for382

every nice L-bounded function `, input bits b1, . . . , bn and index i such that fi(b1, . . . , bn) = 1,383

zi fires in some round τ ≤ r.384

Note that by this definition, for a network N that computes a Boolean function f within385

r rounds, to evaluate the output of the function it is sufficient to inspect the state of the386

output bits over the first r rounds of the network’s simulation. Furthermore, as edge delays387

are allowed to be chosen in an adversarial manner, one cannot hope for having all output388

neurons to fire in the exact same around. One mechanism that we use to keep the out-389

put neurons fire simultaneously is by using self-loop edges whose latency values is fixed to be 1.390

391

Synchronizers. A synchronizer ν is an algorithm that gets as input a network N and392

outputs a network N ′ = sync(N ) that contains all the neurons of N , plus additional auxiliary393

neurons. One of the auxiliary neurons in N ′ is a starter neuron that fires in the first round of394

the simulation. The network N ′ works in the asynchronous setting and should have similar395

execution to N in the sense that for every neuron v ∈ V (N ), the firing pattern of v in the396

asynchronous network should be similar to the one in the synchronous network. The output397

network N ′ simulates each round of the network N by a phase.398

I Definition 8 (Phases). We partition the execution of N ′ into phases 1, 2, . . ., using a399

function r : V (N )× N→ N that defines the beginning of phase p, i.e. the pth phase is the400

round interval [r(v, p), r(v, p+ 1)).401

I Definition 9 (Similar Executions (Deterministic Networks)). The synchronous execution Π402

of a deterministic network N is specified by a list of states Π = {σ1, . . . , } where each σi is403

a binary vector describing the firing status of the neurons in round i. The asynchronous404

execution of the network N ′ = syncE(N , L) with a latency function ` denoted by Π′(`) is405

defined analogously only when applying the asynchronous dynamic of Eq. (1). The execution406

Π′(`) is divided into phases according the a function r : V (N )× N→ N.407

The network N and the pair 〈N ′, `〉 have a similar execution if V (N ) ⊆ V (N ′), and408

in addition, a neuron v ∈ V (N ) fires in round p in the execution Π iff v fires during phase p409

in Π′(`). The networks N and N ′ are similar if N and 〈N ′, `〉 have a similar execution for410

every nice latency function `.411

Note that specifically, if a synchronous network N computes a Boolean function f by round412

r and N and N ′ are similar, then N ′ computes f by phase r. Therefore, if we know that413

each phase is of at most q rounds, we get that N ′ computes f in r · q rounds.414

Finally, we note that the extension for randomized networks with probabilistic gates is415

quite straightforward if one simply fixed the random coins used by the neurons over the416

simulation. That is, to be able to faithfully compare the simulation of two random networks,417

one has to fix the random coins of both of the simulations to be the same. For this reason,418

given an input randomized network N in the synchronized model, we maintain all the random419

coins generated by the neurons of the network over the simulation. These random coins420

are then fed to the network N ′ (i.e., obtained by applying our synchronizers). Since we421
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compare two randomized networks that use the same set of random coins, we can treat422

these networks as deterministic. In Appendix C we provide the analogous definitions for the423

T -bounded node-delay model. Throughout the main paper, we consider only the edge-delay424

model and to avoid cumbersome notation that synchronized network solutions for this model425

are denoted by sync(N ) (rather than syncE(N , L)).426

3 Negative Results427

Impossibility Result for Arbitrary Latency Functions. We start by considering428

Theorem 1, and show that if the latency values are allowed to be set in an adversarial manner429

in {1, 2}, then there exists no network that computes the AND of two Boolean inputs. In430

Appendix A, we show:431

I Lemma 10. Given input neurons x, y and an output neuron z, there is no network432

computing AND(x, y) under every latency function ` : V × V → {1, 2}.433

In the high level, we show that one can set the latency values such that all the spikes that434

depend on the value of x (resp., y) arrive at odd (resp., even) rounds. Therefore, at any435

round, there is no neuron that fires as a function of both x and y.436

Size and Time Lower Bound437

In this section we show the proof for Lemma 3. Here we focus on the size lower bound438

although the high level proof strategy for the time lower bound is quite similar. The time439

lower bound is presented in Appendix A.1. Our proof strategy is as follows. First we reduce440

any network N that computes NOT (x) in the asynchronous setting, to a network Nsimple441

with a simpler structure that makes it easier to make arguments on it. The second part of442

the argument shows the lower bound for simple networks. All missing proofs of this section443

are in Appendix A.444

I Definition 11 (Strong Neurons and Simple Networks). A neuron u is strong in a given445

network if w(u, u) ≥ b(u), and otherwise it is weak. Note that specifically, an excitatory446

neuron u with b(u) ≤ 0 is strong. Given a single input neuron x, we say that a network447

N is simple if the following hold: (i) x is a strong neuron and has an outgoing edge of448

infinite negative weights to all other neurons in the network; and (ii) all other neurons are449

excitatory.450

We note that the simple network is not a legally defined neural network: the input neuron451

has an incoming edge (self-loop), and it is an inhibitor with a positive self-loop. However,452

this network definition is only for the sake of the analysis and as such, it is not restricted to453

follow any rule.454

455

Reduction to Simple Networks. Given a network N with an input neuron x, define456

Nsimple as follows. Exclude all the inhibitory neurons from Nsimple and take all edges457

between excitatory neurons to be as in N . Then, add a self-loop of infinite weight to the458

input neuron x, and connect it to every neuron with infinite4 negative weight.459

4 By infinite we mean large enough so that when the spike by x arrives at some neuron v, v would not fire.
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I Lemma 12. If N computes NOT (x) within r rounds starting with the initial state σ̄,460

then also Nsimple computes it within r rounds, when starting with the initial states as in σ̄461

restricted to the vertices of Nsimple.462

The proof goes by claiming that for any latency function `simple for Nsimple, we can show463

the existence of a latency function ` for N whose performance is only worse than that of464

Nsimple with `simple. That is, when x = 0 (resp., x = 1) then the potential of all neurons in465

Nsimple, `simple is not decreased (resp. increased) when compared to N , `. Since the network466

N computes NOT (x) with the latency function ` within r rounds, we conclude that also467

Nsimple computes it with the latency function `simple within at most r rounds.468

Fix a NOT (x) network N . For an integer r, a latency function ` for N is r-good with the469

initial configuration σ̄, if the network computes NOT (x) within r rounds. I.e., when x = 0,470

the output of N fires in some round τ ≤ r, and when x = 1 it never fires when all latencies471

are given based on `. If ` is r-good for some integer r we say it is good, and otherwise the472

latency function is bad (the network fails to compute NOT (x)). Note that in order for a473

network to compute NOT (x) within r rounds, it is required that any latency function is474

r-good for a fixed initial configuration.475

476

Lower Bound for Simple Networks. Assume towards contradiction that there ex-477

ists a simple network N = Nsimple with maximum in-degree ∆in < L − 2 that computes478

NOT (x). I.e., there exists an initial configuration σ̄ for all neurons but x such that every479

latency function ` is good for 〈N , σ̄〉. In what follows, we define two conflicting latency480

functions `0 and `1, such that if `0 is good when the initial state of x is 0, then it implies481

that `1 is bad when the initial state of x is 1.482

483

Defining the Latency Functions `0 and `1. Recall that for every b ∈ {0, 1}, σ̄b = [b, σ̄] is484

the initial state vector where x has the initial state b and the initial states of all other neurons485

is specified by the vector σ̄. The construction of `0, `1 is inductive. To avoid cumbersome486

notation, we start the simulation in round −1 rather than in round 0. For this first round487

−1, let `b(v, u,−1) = 1 for v 6= x, and `b(x, u,−1) = L for every u and b ∈ {0, 1}. Thus, the488

positive spikes (by any v 6= x) fired in round −1 arrive in round 0, and the negative spikes of489

x arrive in round L− 1.490

To define the latency of the edges in the remaining rounds τ ≥ 0, we partition them into491

blocks, each of size L rounds where the ith block is Ti = [iL, iL+ (L− 1)] for every i ≥ 0. We492

continue in steps i = 1, . . . where in step i, the latency values of `0(e, τ), `1(e, τ) are defined493

for every edge e in the network N , and for every round τ ∈ Ti. For every b ∈ {0, 1} and a494

block Ti, define Ai,b as the set of neurons that fire (hence active) in the first round of Ti495

when executing N with the initial configuration σ̄b, and the latency function `b. Throughout496

the process of defining the latency functions, we maintain these invariants at the beginning497

of step i:498

(I1) All the positive spikes generated at any round before the interval Ti arrive to their499

destination by the first round of Ti. Furthermore, all negative spikes generated at any500

round before the interval Ti arrive to their destination either by the first round of Ti or501

on the last round of Ti, namely, round iL+ (L− 1).502

(I2) Ai,0 \
⋃
i′≤iAi′,1 = ∅.503

We define the latency for the rounds in Ti, and then show that the invariants are maintained.504

Defining the latency function `1 for Ti. For every self-loop edge e and every τ ∈ Ti,505

let `1(e, τ) = 1. For every edge e = (x, u) where u 6= x, and τ ∈ Ti \ {iL + (L − 1)}, let506

`1(e, τ) = (iL+ (L− 1))− τ , i.e., the spike of x arrives u in the last round of the interval507
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Ti. For e = (x, u) and τ = iL+ (L− 1), let `1(e, τ) = L so that the spike arrives in the last508

round of the next block, i.e., round (i+ 1)L+ (L− 1). For every other edge e = (v, u) with509

v 6= x, let `1(e, τ) = (i+ 1)L− τ , i.e., the spike arrives at the first first round of the next510

block Ti+1.511

Defining the latency function `0 for Ti. As for `1, for a self-loop edge e, we set512

`0(e, τ) = 1. For an edge e = (x, u) we set `0(e, τ) arbitrarily (since x = 0, those values513

are meaningless). We now fix a neuron u, and set the latency values of all its incoming514

edges (v, u). Since we have already defined the latency values of all edges up to block Ti,515

at the beginning of step i, the sets Ai,0, Ai,1 can be computed. Let g1, . . . , gω be the weak516

incoming neighbors of u in Ai,0, and h1, . . . , hs be the strong incoming neighbors of u in517

Ai,0. We Consider two cases. The neuron u is said to have a dominant neighbor if it has518

a neighbor with a sufficiently large incoming weight, where the precise weight threshold519

depend on whether the incoming neighbor is weak or strong. Specifically, it has a dominant520

neighbor if it has either a weak neighbor gj with w(gj , u) ≥ b(u), or a strong neighbor hj521

with w(hj , u) ≥ b(u)/(L− 1).522

Case 1: u has a dominant neighbor. Let `0(e, τ) = (i+ 1)L− τ for every incoming523

edge e = (v, u). That is, we schedule all the incoming spikes of u in this block to arrive524

at u in the first round of the next block Ti+1.525

Case 2: u has no dominant neighbor. Since deg(u) < L−2, we have that ω+s < L−2,526

and in particular ω ≤ L − 2. For each weak neuron gj , set `0(gj , u, iL) = j + 1. That527

is, the spike from gj in round iL is scheduled to arrive at u in round iL+ (j + 1). For528

each strong neighbor hj , we split all the spikes generated by hj during the ω + 1 rounds529

iL, . . . , iL + ω in a balanced manner over L − (ω + 1) rounds. Specifically, we set the530

latency values of the at most ω + 1 spikes by hj during the rounds iL, . . . , iL+ ω such531

that in each round τ ∈ [iL+ (ω + 2), (i+ 1)L], u receives at most (ω + 1)/(L− (ω + 1))532

spikes from hj
5. For every τ ∈ [iL+ (ω + 1), iL+ (L− 1)], let `0(hj , u, τ) = 1, i.e., the533

spike arrives one round later. The latency of all the remaining edges e and rounds τ in534

Ti is set to `0(e, τ) = (i+ 1)L− τ , so that it arrives in round (i+ 1)L.535

In AppendixA.1.2, we prove that the invariants hold by induction on the number of rounds.536

Since the output z is required to fire when x = 0 but must not fire when x = 1, we get the537

desired contradiction. In Appendix A.1, we show the time lower bound of Ω(L3) rounds.538

This bound is tight, and the construction while having a similar high-level ideas is slightly539

more involved than the size lower bound.540

4 Upper Bounds541

4.1 Synchronization of Logic Gates and Boolean Circuits542

First observe that the simple implementation of an OR-gate works also in the asynchronous543

setting.544

B Observation 13 (OR gate). Given input neurons x1, . . . , xn and output neuron z, there545

exists a deterministic network ORsync with no auxiliary neurons, that computes the OR gate546

of x1, . . . , xn using L rounds. I.e, it holds that: (i) If σ0(x1)∨ . . .∨σ0(xn) = 0, then σt(z) = 0547

for every t, and (ii) If σ0(x1)∨ . . .∨ σ0(xn) = 1, then there exists a round t ∈ [1, L] such that548

σt(z) = 1. Moreover, if an input neuron fires in round τ , the output neuron z fires in some549

round t ∈ [τ + 1, τ + L].550

5 For simplicity, we assume that (ω + 1) divides (L− (ω + 1))
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We next consider the more technically involved setting of synchronizing a NOT gate.551

I Lemma 14 (NOT gate). There is a network NOTsync of size O(L2) with input neuron x552

and output z, that computes NOT (x) within O(L3) rounds. I.e, it holds that: (i) If σ0(x) = 1,553

then σt(z) = 0 for every t, and (ii) If σ0(x) = 0, then there exists a round t ∈ [L,Θ(L3)]554

such that σt(z) = 1.555

The following synchronous implementation assumes that the network contains a special556

starter neuron v∗ that fires at the beginning of the simulation, regardless of the input value557

of x. Later on in Section 4.3, when presenting the complete synchronization scheme, this558

neuron v∗ will receive the starting firing signal from the global pulse generator.559

560

Network Description. The network consists of the following components, see Figure 2.561

1. A chain C = [c0 = v∗, . . . , c5L2 ] containing 5L2 + 1 neurons. The head of the chain is562

the starter neuron that fires in the first round. For every i ≥ 0, the neuron ci has bias563

b(ci) = 1. Moreover, for every i ≥ 1 the neuron ci has an incoming edge from ci−1 with564

weight 1.565

2. A memory neuron m that remembers the initial state of x. The memory neuron has a566

positive incoming edge from x, as well as a self-loop both with weight 1 and bias b(m) = 1.567

3. A reset inhibitory neuron r with an edge from m of weight w(m, r) = 1, and bias b(r) = 1.568

4. A collection of L+ 1 intermediate neurons v0, . . . , vL that are connected to the output569

neuron z, where each vi has an incoming edge from the neuron c5·iL ∈ C with weight570

w(ci·5L, vi) = 1, a self-loop of weight 1 and bias b(vi) = 1. In addition, each vi has a571

negative incoming edge from the reset neuron r with weight w(r, vi) = −∞. Finally, each572

vi has an edge to z with weight w(vi, z) = 1 and bias b(z) = L+ 1.573

The correctness of the construction and the proof of Lemma 14 are deferred to Appendix B.1.574

575

Synchronization of a Boolean Circuit. Given the synchronized sub-networks of Obser-576

vation 13 and Lemma 14, we now show how to synchronize a Boolean circuit that contains577

OR and NOT gates.578

I Lemma 15. Given a Boolean circuit A of OR and NOT gates with n inputs, k outputs,579

m gates and depth d, there exists a deterministic network N = sync(A) with input neurons580

x1, . . . , xn, output neurons z1, . . . , zk and O(dL3 +mL2) auxiliary neurons, that computes A581

in O(dL4) rounds. I.e., it holds that (i) If [A(σ0(x1), . . . , σ0(xn))]i = 0 then σt(zi,N ) = 0582

for every t; and (ii) If [A(σ0(x1), . . . , σ0(xn))]i = 1, then6 there exists t ∈ [1, O(dL4)] such583

that σt(zi,N ) = 1.584

In the high-level, the network N = sync(A) is obtained by replacing each gate gi with its585

synchronized module Sync(gi). The input neurons to the gate modules in layer j of A are the586

output neurons of the gate modules of layer j − 1 in A. The network then contains a chain587

of length O(d · L3) to control the synchronization between layers: the modules of layer j are588

activated only after the modules of the previous layer have completed their computation.589

See Appendix B.2.590

4.2 Synchronization of a Single Threshold Gate591

Deterministic Threshold Gate. Given a deterministic threshold gate g with ∆ inputs,592

one can implement g using a Boolean Circuit with poly(∆) gates and depth O(log ∆) (see593

6 For a vector of n bits x ∈ {0, 1}n, let [x]i denote the ith bit of x. I.e., if x = (x1, . . . , xn), then [x]i = xi.
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Appendix B.3). Combining with the construction described in Lemma 15 we show the594

following:595

I Lemma 16. Given a weighted threshold gate g = f(x1, . . . , x∆), there exists a network N =596

Sync(g) with ∆ input neurons x1, . . . , x∆, an output neuron z, and O(log ∆ ·L3 +poly(∆) ·L2)597

auxiliary neurons that computes f within O(log ∆ · L4) rounds. I.e. the output z fires in598

round τ ∈ [2, O(log ∆ · L4)] if and only if f(σ0(x1), . . . , σ0(x∆)) = 1.599

Probabilistic Threshold Gate. We next turn to consider the more challenging setting of600

probabilistic threshold gates. To synchronize such gates, we first describe how to implement601

them by using a Boolean circuit A that contains two types of gates: deterministic threshold602

gates, and input-less gates which outputs 1 with probability 1/2. We hereafter denote603

the latter gates by uniformly random gates7. The output distributions of the probabilistic604

threshold gate and the output gate of A will be very close up to a small additive error of ε ∈605

(0, 1). The synchronized probabilistic gate will be obtained by applying the synchronization606

scheme of Lemma 15 on the circuit A.607

Our key result might be of independent interest in the context of Boolean circuits:608

I Lemma 17. Given a probabilistic threshold gate g with ∆ inputs, and an error para-609

meter ε ∈ (0, 1), there exists a Boolean circuit with depth poly(log ∆, log(1/ε)) and a total610

poly(∆, log(1/ε)) deterministic gates. In addition, there is a collection of O(log(1/ε)) uni-611

formly random gates (each outputs 1 independently w.p. 1/2), and an output gate g′ that612

approximates g in the following sense. Letting p(x̄), p′(x̄) be the probability that g, g′ output 1613

given input x̄, it holds that |p(x̄)− p′(x̄)| ≤ θ(ε) for any fixed assignment of input x̄.614

Our starting point is the following useful fact from [20]:615

B Observation 18. Let g1 be a probabilistic gate with an incoming weighted sum W and616

bias b1. Let g2 be a deterministic threshold gate with incoming weighted sum W and bias617

b2, where b2 is sampled from the Logistic distribution with mean b1 and scale 1. Then618

Pr[g1 = 1] = Pr[g2 = 1] = 1/(1 + e−(W−b1)).619

The observation holds as the cumulative density function of the Logistic distribution is a620

Sigmoidal function. Since we already know how to implement a deterministic threshold621

gate using a Boolean circuit, the key challenge is in sampling a value from the Logistic622

distribution using a small number of uniformly random gates (i.e., fair coins). This is done623

in two key steps. First, using O(log 1/ε) uniformly random gates, we sample a value from an624

ε4-discretization of the uniform distribution 8. Then, we use the method of inverse transform625

sampling to sample from a distribution that is Θ(ε)-close (in L1 norm) to the Sigmoidal626

distribution. For a value r sampled u.a.r in [0, 1], a sample from the Logistic distribution with627

mean b and scale 1 is given by b+ ln(r/(1− r)). To compute the expression b+ ln(r/(1− r))628

using a Boolean circuit, we approximate the ln(x) function using the first O(log 1/ε) terms629

of the Taylor expansion. The almost-Logistic sample will serve as the bias of a deterministic630

threshold gate and will be fed to the Boolean circuit of Lemma 16. The full description is631

given in Appendix B.4.632

We can then synchronize the Boolean Circuit as described in Lemma 17.633

7 A uniformly random gate is a fair coin, in contrast to probabilistic threshold gate that outputs 1 based
on a Sigmoidal distribution.

8 Our sample is equivalent to sampling a value from the uniform distribution and then rounding it to the
closest value of the form i · ε4 for some integer i.
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Figure 2 Left: synchronized network of a single NOT gate. Middle: A synchronized network for
a Boolean circuit. Right: The transformation of a single neuron vi in the synchronized network for
the given SNN.

I Corollary 19. Given a probabilistic threshold gate g with ∆ inputs, and an error parameter634

ε ∈ (0, 1), there exists a network N = Sync(g) with ∆ input neurons x1, . . . , x∆, an output635

neuron z, and poly(∆, log 1/ε) · L3 auxiliary neurons such that z approximates the gate636

g within poly(log ∆, log 1/ε) · L4 rounds in the following sense. For any fixed input x̄,637

with probability at least 1 − Θ(ε), it holds that g outputs 1 iff z fires in some round in638

[1,poly(log ∆, log 1/ε) · L4].639

4.3 The Complete Synchronization Scheme640

The complete synchronization scheme and the proof of Theorem 4 are given in Appendix B.5.641

In the high level, the construction has two parts: a global pulse generator, and a specific642

adaptation of the given network N into a network sync(N ), see Figure 2.643

The pulse generator is implemented by a directed cycle of length k = Õ(L4 log ∆). The644

input layer and output layer in sync(N ) are exactly as in N . Let V be the neurons of N . For645

each auxiliary neuron vi ∈ V , we add its synchronized sub-network Sync(vi) from Lemma646

16 and Cor. 19. Recall that each neuron in N implements either a threshold gate or a647

probabilistic threshold gate. For each such vi ∈ V , we also add an AND module ANDi, which648

receives input from the sub-network Sync(vi) and the pulse generator. The neuron vi is set649

to be the output neuron of this ANDi module.650
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A Missing Proofs for the Negative Results752

Impossibility Result, Proof of Lemma 10: Assume towards contradiction there exists753

a network N = (V, {x, y}, {z}, w, b) that computes the AND gate of the initial states x0, y0754

of the inputs x and y. It is then required that if x0 ∧ y0 = 1, then there exists a round755

in which z fires, and if x0 ∧ y0 = 0 then z is idle throughout the execution. Our goal is756

to show the existence of a bad assignment of latency values to the edges of N . Such bad757

assignment exists even if we fix the latency of each edge to the same value throughout the758

entire execution. We begin with some quick observations.759

The state of a neuron v in round τ , namely, στ (v), is fully determined by the network, the760

latency function, the input and the initial state σ0, that is στ (v) = H(N , `, σ0, x0, y0, v, τ)761

for some function H.762

Given the network N and a latency function `, the state of a neuron v in round τ is a
function of the previous states of its incoming neighbors denoted as u1 . . . uk:

στ (v) = Fv(στ−`(u1,v)(u1), . . . , στ−`(uk,v)(uk)).
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I Definition 20. For a neuron v and round τ , we say that the state στ (v) is x-independent
(equivalently y-independent) if its value does not depend on the initial state of x, i.e if

H(N , `, σ0, x0 = 0, y0, v, τ) = H(N , `, σ0, x0 = 1, y0, v, τ) .

B Observation 21. A concatenation of x-independent functions is also x-independent.763

Specifically, for round τ and neuron v with incoming neighbors u1, . . . uk, it holds that if764

στ−`(u1,v)(u1), . . . , στ−`(uk,v)(uk) are x-independent then στ (v) is also x-independent.765

Given the network N we set the edge latencies as follows:766

`(u, v) =
{

1 if either u = x or v = x, but not both.
2 otherwise.

767

We next show that for every neuron v ∈ V , its firing state in each round if either x-independent768

or y-independent. Specifically, the firing state of z in each round does not depend on both769

x0 and y0. This will contradict the assumption that z computes an AND gate of x0 and y0.770

B Claim 22. For every round τ ≥ 1 it holds that: (1) For every v ∈ V \ {x}, the firing state771

στ (v) is x-independent if τ is even and y-independent if τ is odd. (2) στ (x) is x-independent772

if τ is odd and y-independent if τ is even.773

Proof. By induction on the round τ . For τ = 1, since all outgoing edges from y have latency
2 (except for the edge (y, x), if exists), in round 1 no neuron v ∈ V \ {x} received a spike
from y and therefore σ1(v) is y-independent. Because the edge from x to itself has latency 2,
and the edge from y to x has latency 1, in round 1 the neuron x can receive a signal from y

but not from x and therefore also σ1(x) is x-independent. For τ = 2 and v 6= x, since the
edges from x have latencies 1, and all other edges have latency 2, it holds that

σ2(v) = Fv(σ1(x), σ0(y), σ0(u1), . . . , σ0(uk)),

where u1, . . . , uk are the neighbors of v in V \ {x}. Because σ1(x) is x-independent, and
σ0(ui) are the initial states, by Observation 21 we can conclude that σ2(v) is x-independent.
Next, for the input neuron x, since all its incoming edges (except for the self-loop) have
latency 1 it holds that

σ2(x) = Fx(σ0(x), σ1(u1), . . . , σ1(uk)).

Because σ1(v) is y-independent for all v 6= x, we conclude that σ2(x) is y-independent as774

well.775

Assume the claim holds for every round τ ′ < τ and we will show the claim holds for
round τ as well. For v 6= x with incoming neighbors u1, . . . uk in V \ {x}, by the definition of
the latencies it holds that

στ (v) = Fv(στ−1(x), στ−2(u1), . . . , στ−2(uk)).

If τ is even, so is τ −2 and by the induction assumption στ−2(ui) are x-independent. Because
τ − 1 is odd, στ−1(x) is x-independent. Hence, by Observation 21 we conclude that στ (v) is
also x-independent. Similarly, if τ is odd, then by the induction assumption στ−2(ui) and
στ−1(x) are y-independent, and therefore στ (v) is also y-independent. Then, for the neuron
x, it holds that

στ (x) = Fx(στ−2(x), στ−1(u1), . . . , στ−1(uk)).
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If τ is odd, by the induction assumption στ−2(x) as well as στ−1(u1), . . . , στ−1(uk) are776

x-independent and therefore στ (x) is x-independent. On the other hand, if x is even, then777

by the induction assumption στ−2(x) and στ−1(u1), . . . , στ−1(uk) are y-independent and778

therefore στ (x) is also y-independent. J779

Since in each round the output neuron z is either x-independent or y-independent, this780

contradicts the assumption and Lemma 10 follows.781

A.1 Size Lower Bound for Computing NOT (x)782

A.1.1 Reduction to Simple Networks, Proof of Lemma 12:783

The reduction is based on the following notion of domination between two configurations.784

785

Domination. Given a network N , a latency function `, and a vector of starting states σ̄786

for all neurons but the input x, for b ∈ {0, 1} define potb(u, τ,N , `, σ̄) as the potential of787

neuron u in round τ in the simulation of N with the initial vector state [b, σ̄], i.e., with the788

initial state of x is being b and all other initial states are as in σ̄. When σ̄ is clear from789

the context, we may omit it, and simply write potb(u, τ,N , `). Given networks N1,N2 with790

vertices V1, V2 and latency functions `1, `2 respectively, we say that 〈N1, σ̄1〉 and 〈N2, σ̄2〉 are791

compatible if V1 ⊆ V2 and σ1 and σ2 agree on the mutual vertices of V1, i.e., σ1(u) = σ2(u)792

for every u ∈ V1.793

In our arguments, we consider a pair of compatible configurations 〈N1, σ̄1〉 and 〈N2, σ̄2〉794

along with latency functions `1, `2 for these configurations. We say that 〈N1, σ̄1, `1〉 dominates795

〈N2, σ̄2, `2〉 if 〈N1, σ̄1〉 and 〈N2, σ̄2〉 are compatible and in addition:796

pot1(u, τ,N1, `1, σ̄1) ≤ pot1(u, τ,N2, `2, σ̄2) for every u ∈ V1 \ {x} and τ ≥ 0.797

pot0(u, τ,N1, `1, σ̄1) ≥ pot0(u, τ,N2, `2, σ̄2) for every u ∈ V1 \ {x} and τ ≥ 0.798

Let V, Vsimple be the vertex sets of N and Nsimple respectively. Let σ̄simple be the initial
state vector that agrees with σ̄ on all vertices in Vsimple. Thus, 〈Nsimple, σ̄simple〉 and 〈N , σ̄〉
are compatible. For a number of rounds r, a latency function ` is r-good for 〈N , σ̄〉 if N
computes NOT (x) within r rounds under ` when starting from the initial state vector σ̄.
Our proof strategy is as follows. We will show that every latency function `simple is r-good
for 〈Nsimple, σ̄simple〉, by showing that there exists a function ` such that

〈Nsimple, σ̄simple, `simple〉 dominates 〈N , σ̄, `〉.

Given a latency function `simple for the network Nsimple, let ` be a latency function for N799

which is similar on excitatory neurons and gives inhibitory neurons the latency value of the800

neuron x. I.e., `(v, u, τ) = `simple(v, u, τ) for every pair of excitatory neurons. In addition,801

`(v′, u, τ) = `simple(x, u, τ) for every inhibitory neuron v′, and a neuron u ∈ Vsimple. All802

remaining latency values (i.e., the incoming edges to the inhibitors of N ) can be chosen803

arbitrarily.804

We show by induction on the round τ , that (i) pot1(u, τ,Nsimple, `simple) ≤ pot1(u, τ,N , `)805

for every u ∈ Vsimple \ {x} , τ ≥ 0, and (ii) pot0(u, τ,Nsimple, `simple) ≥ pot0(u, τ,N , `) for806

every u ∈ Vsimple \ {x} and τ ≥ 0. For τ = 0, this is true as the potential values in τ = 0 are807

simply the initial states, and the vector of initial states of σ̄ and σ̄simple are compatible. For808

the induction step, let τ ≥ 1, and assume correctness for all τ ′ ≤ τ − 1. We will prove the809

claims for round τ . Let u be a neuron in Vsimple \ {x}, and let v1, . . . , vk be its incoming810

excitatory neighbors.811

812
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The initial state of x is 0: By the induction assumption, it holds that813

pot0(u, τ ′,Nsimple, `simple) ≥ pot0(u, τ ′,N , `) for every round τ ′ ≤ τ − 1 and every neuron814

v ∈ {v1, . . . , vk}. Thus every excitatory neuron vi that fires in round τ ′ in the simulation of815

N , also fires in round τ ′ in the simulation of Nsimple for every τ ′ ≤ τ−1. Combining with the816

definition of the latency function `, we get that each spike from vi that arrives to u at round817

τ of the simulation of N also arrives u in round τ in the simulation of Nsimple. Let ω be an818

inhibitory incoming neighbor of u in N , then ω does not exist in Nsimple. Also note that since819

σ0(x) = 0, a negative spike from x never arrives at u in the simulation of network Nsimple.820

Therefore, no negative spikes arrive at u in Nsimple. Summing over the positive and negative821

spike weights, we get that pot0(u, τ,Nsimple, `simple) ≥ pot0(u, τ,N , `) for every u ∈ V1\{x}.822

823

The initial state of x is 1: By the induction assumption it holds that824

pot1(u, τ ′,Nsimple, `simple) ≤ pot1(u, τ ′,N , `) for every round τ ′ ≤ τ − 1 and every u ∈825

{v1, . . . , vk}. Thus every vi that fires in round τ ′ in the simulation of Nsimple, also fires in826

round τ ′ in the simulation of N . Combining with the definition of the latency function `,827

we get that each spike from vi that arrives at u in round τ of the simulation of Nsimple also828

arrives at u in round τ in the simulation of N .829

Let ω be an inhibitory incoming neighbor of u in N . By the definition of the latency830

function `, and the fact that x fires in every round, for each spike that ω fires and arrives at831

u in round τ in N , there is a spike from x that arrives at u in round τ in Nsimple. Since the832

edges from x have weight −∞, we get that the negative spikes weight arriving at u in round833

τ in Nsimple are larger (in absolute value) than the negative spikes in N . Thus, summing834

up the both positive and negative spike weights, we get that pot1(u, τ,Nsimple, `simple) ≤835

pot1(u, τ,N , `) for every u ∈ Vsimple \ {x}. This proves the induction step for round τ . We836

get that 〈Nsimple, σ̄simple, `simple〉 dominates 〈N , σ̄, `〉.837

Finally, we show that if 〈N1, σ̄1, `1〉 dominates 〈N2, σ̄2, `2〉 and `2 is r-good for 〈N2, σ̄2〉,838

then also `1 is r-good for 〈N1, σ̄1〉.839

Consider the simulation of 〈N2, σ̄2, `2〉, and assume that the initial state of x is 0. Since `2840

is r-good for N2, there is a round τ ≤ r in which z fires in N2. Since 〈N1, σ̄1, `1〉 dominates841

〈N2, σ̄2, `2〉, we can apply the condition of domination for z, τ and get that z also fires in842

round τ in N1. Now, assume that the initial state of x is 1. Since `2 is r-good for N2, there843

is no round τ in which z fires in N2. Since 〈N1, σ̄1, `1〉 dominates 〈N2, σ̄2, `2〉, we can apply844

the condition of domination for z and every τ , and get that z also never fires in N1. Hence,845

`1 is r-good for N1. This completes the proof of the lemma.846

A.1.2 Size Lower Bound for Simple Networks847

We show that the latency values defined in the step i satisfy the invariant in the beginning848

of step i+ 1.849

850

Proving that the Invariants Hold: For round i = 0, the correctness of invariant (I1)851

hold since in the first round τ = −1 all positive spikes are set to arrive in round 0 in both852

`0, `1, while a spike from x arrives at round τ = L− 1. As for the correctness of invariant853

(I2), note that both simulations are similar for all neurons V \ {x}, and, again, a spike from854

x arrives only in round L− 1. Therefore the same neurons are active in round τ = 0. Hence855

A0,0 = A0,1 and we get correctness for (I2). We now show that the invariants are preserved856

after each step. Assume that the correctness holds at the beginning of each step j ≤ i, and857

consider now the beginning of step i+ 1.858
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(I1) By the construction, in all of the cases, the values we set for `0, `1 in step i are such859

that all spikes except the spike from x generated at round iL+(L−1) which are generated860

in Ti arrive at some round τ ≤ (i + 1)L, i.e. by the first round of Ti+1. Furthermore,861

spikes from x generated at round iL+ (L− 1) is set to arrive in round (i+ 1)L+ (L− 1).862

The invariant holds by combining with the correctness for all steps i′ ≤ i.863

(I2) We start by proving the following auxiliary claim.864

B Claim 23. Consider the simulation of N with initial state σ̄b and latency function `b,865

and let τ be round in Ti. Then:866

1. For a strong neuron u ∈ Ai,1, u fires iff τ ∈ [iL, iL+ (L− 2)] ⊆ Ti. For a strong neuron867

u ∈ Ai,0, u fires for every τ ∈ Ti.868

2. For a weak neuron u ∈ Ai,b, u fires iff τ = iL.869

3. For u /∈ Ai,b, u is not active in round τ .870

Proof. Case b = 1: We start by showing that all three claims hold for b = 1. By871

the definition of `1, the only positive spikes received by any neuron in some round872

τ ∈ [iL + 1, iL + (L − 1)] are self-loop spikes. Since a strong active neuron u ∈ Ai,1873

receives an inhibiting spike from x in round iL+ (L− 1), it is not active in this last round.874

For a weak neuron u′, its spike from the self-loop is not strong enough to make it active.875

Lastly, for u /∈ Ai,1 since no negative spikes arrive at u in round iL we have that b(u) > 0.876

Due to the fact that no spikes arrive at u in round τ , we get that u stays inactive.877

Case b = 0: claim (1) holds since a strong u ∈ Ai,0 never gets inhibited as x never878

fires. We will now consider claim (2) and (3) for a neuron u that is either a weak879

neuron, or a strong neuron that is not in Ai,0. By Invariant (I1), all the positive spikes880

from the previous blocks arrived by the first round of Ti. Thus if u fires in any round881

τ ∈ [iL+ 1, iL+ (L− 1)] (i.e., any round which is not the first one in Ti), this must be882

due to the incoming spikes generated in the first round of Ti. We will know prove by883

induction on the round τ that u does not fire in any round in [iL+ 1, iL+ (L− 1)].884

Induction Base, Round τ = iL+ 1:. By the definition of the latency function `0, no885

spike arrives at u from an incoming neighbor in that round. Therefore, if u is weak, then886

a spike from itself will not make it active in round τ . In addition, if u /∈ Ai,0 then u did887

not fire in round iL, and thus receives no self-spike in round τ . Since no negative spikes888

arrive at u in round iL, for every u /∈ Ai,0, it must hold that b(u) > 0.889

Induction Step τ ≥ iL+ 2. Assume that the claims (2,3) hold up to round τ − 1 and890

consider round τ ≥ iL+ 2. Consider first the case that u has either a weak neighbor gj891

with w(gj , u) ≥ b(u), or alternatively a strong neighbor hj with w(hj , u) ≥ b(u)/(L− 1).892

Then by the definition of `0 (Case I in our definition), all the spikes fired by the incoming893

neighbors of u are scheduled to arrive in the first round of Ti+1. Therefore, u does not894

receive any spike in round τ , and remains inactive.895

Next, consider the complimentary case where all the weak neighbors gj satisfy that896

w(gj , u) < b(u), and all the strong neighbors hj satisfy w(hj , u) < b(u)/(L− 1).897

Case (1): τ ∈ [iL+ 2, iL+ ω + 1]. By the induction assumption on τ − 1, u did not fire898

in round τ − 1. By the definition of `0, u receives a spike from at most one weak neighbor899

gj in round τ , and since w(gj , u) < b(u), it does not fire in this round.900

Case (2): τ ∈ [iL+(ω+2), iL+(L−1)]. Let hj be a strong active neighbor of u. By the901

definition of `0, in round τ , u receives at most (ω+1)/(L− (ω+1)) of the spikes that fired902

by hj during the interval [iL, iL+ ω]. Furthermore, there is one additional spike that hj903

fired at round τ −1, that arrives at u in round τ . Note that u does not receive spikes from904

weak neighbors in round τ since all spikes from weak neighbors arrive in an earlier round905
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τ ′′ ∈ [iL+ 2, iL+ (ω + 1)]. In addition, since u did not fire in round τ − 1, it also does906

not get any self spikes in round τ . Overall, u receives at most ((ω + 1)/(L− (ω + 1))) + 1907

spikes by strong neighbors in round τ , and no other spikes (by a weak neighbor or by908

u). Since the spikes from the strong neighbors have weight of at most b(u)/(L− 1), and909

there are s strong active neighbors, the overall weighted sum of the received spikes at910

round τ is at most911

s · ((ω + 1)/(L− (ω + 1)) + 1) · b(u)
L− 1 <912

s · ((ω + 1)/s+ 1) b(u)
L− 1 = (s+ ω + 1) b(u)

L− 1 < b(u) , (2)913

where both inequalities follow as s+ ω < L− 2. Therefore, u does not get activated at914

round τ , claims (2)+(3) follow. J915

We are now ready to prove the induction step for (I2). Assume towards contradiction916

that there exists a neuron u ∈ Ai+1,0 \
⋃
i′≤i+1Ai′,1. Since u is active in the first round917

of Ti+1, using Claim 23(3), it must have an incoming neighbor that fires in the first round918

of the previous block. Let Ai,0(u) = Γin(u) ∩Ai,0 be those neighbors.919

B Claim 24. For every strong neuron v ∈ Ai,0(u), it holds that w(v, u) < b(u)/(L− 1).920

Proof. Consider such strong v ∈ Ai,0(u). By Invariant (I2) for the beginning of step921

i, there exists a round j ≤ i such that v ∈ Aj,1. When running N with initial state922

σ̄1 and the latency function `1, by Claim 23(1), v fires in all of the L − 1 rounds of923

[jL, jL+(L−2)]. By the construction of `1, all these L−1 spikes arrive in round (j+1)L.924

Therefore, if (L−1) ·w(v, u) ≥ b(u), then u is activated in round (j+1)L, i.e., u ∈ Aj+1,1,925

in contradiction to the definition of u. Therefore (L− 1) · w(v, u) < b(u) for every strong926

neuron v. J927

B Claim 25. For every weak neuron v ∈ Ai,0(u), it holds that w(v, u) < b(u).928

Proof. Consider such weak neuron v ∈ Ai,0(u). When running N with initial state σ̄1929

and latency function `1, by Claim 23(2), v fires once in the interval Tj , i.e., in the first930

round jL. By the construction of `1 this spike arrives in round (j + 1)L. Therefore,931

if w(v, u) ≥ b(u), then u is activated in round (j + 1)L, implying that u ∈ Aj+1,1,932

contradiction to the definition of u. We therefore conclude that w(v, u) < b(u) for every933

weak neuron v ∈ Ai,0(u). J934

Let ω, s be the number of weak (resp., strong) neurons in Ai,0(u). By Claims 25 and935

23(2), all active weak neurons in Ti fire only in the first round of that block. By the936

definition of the latency function, all these spikes are scheduled to the first ω rounds in937

Ti, and therefore none of them is scheduled to arrive on the first round of Ti+1. This938

implies that u fires in that round due to the spikes generated by its strong neighbors.939

By Claim 24, w(v, u) < b(u)/(L − 1) for each such strong neighbor v of u. This in940

particular implies that u is a weak neuron, and by Claim. 23 it did not fire in the last941

round of Ti. By the definition of the latency function, the spikes generated by such strong942

neighbors are divided almost evenly among L− ω rounds, up to the first round of Ti+1.943

Each round gets at most s · (ω/(L− ω) + 1), which is strictly less than b(u) by Eq. (2).944

Leading to contradiction for the assumption that u ∈ Ai+1,0.945
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Since `1 is a good latency function when starting with x = 1, we have that z never fires946

and thus z /∈
⋃
Ai,1. By applying invariant (I2) on the output neuron z for every round947

τ ≥ 0, we get that z /∈
⋃
Ai,0. By using Claim 23, we get that z never fires with `0 and948

x = 0. Contradiction to the fact that N solves NOT (x).949

A.2 Time Lower Bound for Computing NOT (x)950

In this section we show the following.951

I Lemma 26. Every network N that computes NOT (x) in the L-bounded asynchronous952

setting requires Ω(L3) rounds.953

By Lemma 12, we restrict attention to a simple network N = Nsimple with one input neuron954

x that computes NOT (x). Similarly to the size lower bound, we define two conflicting955

latency functions `0 and `1, such that if `1 is good when x0 = 1, then the output neuron z of956

N fires after Ω(L3) rounds in the simulation with the latency function `0 and x0 = 0.957

The simulation with the latency function `0 is partitioned into consecutive blocks of L958

rounds, Ti = [iL, iL+ (L− 1)] for every i ∈ N.959

The simulation with the latency function `1 is based on the notion of important and960

unimportant rounds. Consider the L-round interval Tk = [k · L, k · L+ (L− 1)] for k ∈ N.961

Among the first L/2 rounds, there is an important round once every 16 rounds, and the rest962

are unimportant. Furthermore, each of the last L/2 rounds of the interval are unimportant.963

I.e., the important rounds in the interval are {kL+ 16j | 16j < L/2, j ∈ N}. Denote by964

τi the ith important round in the simulation. Note that by definition τi+1 − τi ≤ L/2.965

In our arguments, the configuration of the network in the ith important round τi of the966

simulation with `1 and x0 = 1 will be compared against the configuration in round iL967

(i.e., the first round of the block Ti) in the simulation with `0 and x0 = 0.968

Active subsets of neurons: For every i ∈ N, let A0,i be the firing neurons (hence active)969

of round i · L (the first round of the block Ti) in the simulation of 〈N , σ0, `0〉. Similarly,970

let A1,i be the firing neurons in round τi of the simulation of 〈N , σ1, `1〉. Also define971

A′b,i = Ab,i \
⋃

j≤i−1
Ab,j , the neurons that fire for the first time in “round" i.972

For every neuron u, b ∈ {0, 1} and i ∈ N, let Ab,i(u) = Ab,i∩Nin(u), A′b,i(u) = A′b,i∩Nin(u)973

where Nin(u) is the set of incoming neighbors of u.974

For a subset of neurons V ′ ⊆ V and a neuron u, let w(V ′, u) =
∑
v∈V ′

w(v, u). Moreover,975

let S(V ′) and W(V ′) be the strong9 and weak (respectively) neurons subsets of V ′.976

A.2.1 Defining the latency functions `0 and `1977

Throughout, a spike event is represented by a triplet 〈v, u, τ〉 where v ∈ Nin(u) fires in round978

τ . Since the functions are nice, the latency values for the self spikes 〈u, u, τ〉 for every u979

and τ are set to 1. For technical reasons, it is more convenient to start the simulations in980

round −1, rather than in round 0. For this first round −1, let `b((v, u),−1) = 1 for every u981

and every v 6= x, and `b((x, u),−1) = L for every u and b ∈ {0, 1}. As a result, the positive982

spikes (by any v 6= x) fired in round −1 arrive to their destination in round 0, and the negat-983

ive spikes of x arrive in round L−1. We now define the latency values for the remaining spikes.984

985

9 Recall that a neuron u is strong if w(u, u) ≥ b(u) and it is weak otherwise.
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Defining the function `0. Note that when x0 = 0, x never fires and thus there is986

no need to define `0 values for the spikes of x. We define `0 iteratively in a block by block987

manner. Here we do not accumulate spikes and spikes generated in the ith block Ti will988

arrive by the first round of the (i+ 1)th block Ti+1. Fix a block Ti = [iL, iL+ (L− 1)] for989

i ≥ 0 and assume that the latency values `0 for all prior spikes in rounds τ < iL have already990

been fixed. Thus the active set A0,i can be determined. First, the algorithm checks if there is991

a way to spread all the spikes generated in rounds of Ti among the interval [iL+ 2, (i+ 1)L],992

in a way that guarantees that u will not fire in any of the rounds this interval. In particular,993

no spike is scheduled to arrive in round iL+ 1. Otherwise, all spikes generated in this block994

are scheduled to arrive in round (i+ 1)L (the first round of the (i+ 1)th block).995

996

Defining the function `1. The definition of the function `1 is more involved. Unlike997

the function `0 in which all spikes generated in block Ti are scheduled by round (i + 1)L,998

here the setting is slightly more sensitive. Specifically, the scheduling algorithm of `1 will999

make sure that non-self spikes arrive to their destination only in important rounds.1000

Spikes by the input (inhibitory neuron) x: All spikes from x are scheduled to arrive1001

in the last round of the blocks Ti, namely, in rounds of the form i · L+ (L− 1). Formally,1002

for every spike 〈x, u, τ〉 where τ = i · L + (L − 1) for some i ∈ N, let `1((x, u), τ) = L1003

thus arriving in round τ + L = (i + 1)L + L − 1. For every τ ∈ [iL, iL + (L − 2)], let1004

`1((x, u), τ) = (iL+ (L− 1))− τ , thus arriving in round iL+ (L− 1) as desired.1005

Spikes by v 6= x: The latency values are defined in a round by round fashion, such that1006

for every important round τi, every neuron u gets activated if possible. Otherwise the arrival1007

of the spikes towards u are postponed (when possible) to the next important round τi+1.1008

The spikes generated at non-important rounds will be always delayed to the next important1009

round. This is always possible as the distance to the next important round is at most L/2.1010

For a subset of spikes S, let w(S) =
∑

〈v,u,τ〉∈S
w(v, u) be the total weight of the spikes in S.1011

For every important round τi, we will maintain a list of pending spikes Rτi(u) towards u1012

that were not yet scheduled. In every step τ ≥ 0, the algorithm will schedule the spikes1013

generated in this round. If the round τ is important, then the algorithm will also make1014

decisions regarding the set of pending spikes Rτi(u).1015

We will keep the invariant that at the beginning of step τ , the latency value of all spikes1016

scheduled to arrive by round τ has already been determined. As we will see, the non-self1017

spikes will always be scheduled to arrive in important rounds. As a result, a neuron u fires in1018

an unimportant round τ iff u is strong and it fired in round τ − 1. Initially, for every neuron1019

u, the algorithm adds every non-self spike 〈v, u,−1〉 to Rτi(u). For every τ ≥ 0, we consider1020

the following algorithm.1021

All self-spikes 〈u, u, τ ′〉 are given a latency value of `(u, u, τ ′) = 1.1022

Handling important rounds τi. Consider a neuron u. If u fired in round τi − 1, add1023

the self-spike 〈u, u, τi − 1〉 to the pending spike set Rτi(u). If the total weight of its1024

pending spikes (towards u) is sufficiently large to make u fire, all the non-self spikes are1025

scheduled to arrive in τi. Formally, if w(Rτi(u)) ≥ b(u), schedule all these spikes to round1026

τi by setting `(v, u, τ ′) = τi − τ ′ for every spike 〈v, u, τ ′〉 ∈ Rτi(u).1027

Otherwise, if the total weight of pending spikes is small, i.e., w(Rτi(u)) < b(u), the1028

non-self spikes are deferred to the next important round τi+1 if possible (i.e., if the1029

latency does not exceed its upper bound L). Formally, for every non-self pending spike1030

〈v, u, τ ′〉 ∈ Rτi(u), if τi+1 − τ ′ > L then let `((v, u), τ ′) = L (i.e., 〈v, u, τ ′〉 cannot be1031

further deferred). Otherwise, add 〈v, u, τ ′〉 to the pending spike set Rτi+1(u) of the next1032

important round τi+1.1033
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Finally, all spikes generated in round τi are also (safely) added to the pending list1034

Rτi+1(u).1035

Handling unimportant rounds. The non-self spikes towards u generated in round1036

τ are added to the pending spike set Rτi+1(u) of the next important round τi+1 (after1037

round τ).1038

First observe that the function `1 is valid: All self-spikes have a latency value of 1. Moreover,1039

the non-self spikes have a latency value in [1, L]. To see this observe that for unimportant1040

round τ , a non-self spike 〈v, u, τ〉 is added to the pending list Rτi+1(u) where τi+1 is the next1041

important round after τ . Due to the fact that τi+1 − τi ≤ L/2, this assignment is valid. In1042

addition, the pending spikes 〈v, u, τ〉 ∈ Rτi(u) are deferred to τi+1 only if τi+1 − τ ≤ L.1043

A.2.2 Proof of Lemma 261044

The key lemma that establishes Lemma 26 is the following:1045

I Lemma 27. For every neuron u 6= x with u ∈ A′0,i for i < L2/1024, there exists some1046

i′ ≤ i such that u ∈ A′1,i′ .1047

By the correctness of the simple network N , the output neuron z should not fire when x0 = 11048

and with the latency function `1. In other words, z /∈ A1,i′ for any i′. By Lemma 27, we get1049

that z can only be in A′0,j for some j ≥ L2/1024, hence firing when x0 = 0 only after Ω(L3)1050

rounds. We start with the following simple observation.1051

B Observation 28. In the simulation of 〈N , σ̄0〉 with `0, it holds for every i that: (i) each1052

strong neuron s ∈ A0,i fires in every round of block Ti; (ii) each weak neuron ω ∈ A0,i which1053

is not x fires only in the first round of block Ti; and (iii) every neuron v /∈ A0,i does not fire1054

in any round of block Ti.1055

Proof. (i). In the simulation with `0 with x0 = 0 there are no inhibiting spikes, and if a1056

strong neuron s fires in some round, it will keep on firing for the rest of the simulation.1057

(ii). By the definition of the latency function `0, no spikes from incoming neighbors of1058

the weak neuron ω arrive in round iL+ 1, the second round of block Ti. We will prove by1059

induction on τ ∈ [iL+ 1, iL+ (L− 1)] that ω does not fire in round τ . For the base of the1060

induction, since ω 6= x is excitatory and weak, it holds that 0 ≤ w(ω, ω) < b(ω), thus ω does1061

not fire in round iL+ 1. Assume that the claim holds up to round τ ≥ iL+ 1 and consider1062

round τ + 1. Since ω did not fire in round τ by the induction assumption, it does not receive1063

a self spike in round τ + 1. By the definition of the function `0, the non-self spikes that arrive1064

in round τ + 1 < (i+ 1)L cannot make ω fire. Thus ω does not fire in τ + 1 and (ii) holds.1065

(iii). Let v /∈ A0,i, i.e., v did not fire in round iL. Since v does not receive negative spikes1066

in round iL (as the spikes of x are always scheduled to the last round of the blocks). We can1067

then conclude that b(v) > 0. Since in round iL + 1, it receives no self-spike and no other1068

spike, it also did not fire in round iL+ 1. The argument then follows inductively in the same1069

manner as in (ii). J1070

We next state the following claim which is crucial to complete the key lemma.1071

B Claim 29. Fix a neuron u ∈ A′0,i such that for every v ∈ A0,i−1 it holds that w(v, u) < b(u).1072

Then the total weight of spikes fired towards u in block Ti−1 is at least L · b(u)/8.1073

We first complete the proof of Lemma 27 and only then prove Claim 29.1074
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Proof of Lemma 27. The proof is shown by induction on the block i. For the base case of1075

i = 0, note that the initial states and the latency functions for the neurons V \ {x} in both1076

simulations are the same, and that spikes from x (that exist only in the simulation with `1)1077

arrive only in round L− 1. This implies that in both simulations the same neurons (except1078

for x) are active in round τ = 0, hence A0,0 = A1,0 \ {x}. Now consider the block Ti for1079

1 ≤ i < L2/1024. Let u ∈ A′0,i, i.e. u fires for the first time in round iL in the simulation1080

with `0 and x0 = 0.1081

Case 1: There exists a previously firing dominant incoming neighbor: First1082

assume that u has some incoming neighbor v ∈ A0,i−1 with w(v, u) ≥ b(u). By definition1083

v ∈ A′0,j(u) for some j ≤ i − 1, and then by the induction assumption v ∈ A′1,i′ for some1084

i′ ≤ j ≤ i− 1. By definition of the latency function `1, since w(v, u) ≥ b(u), the total weight1085

of spikes from incoming neighbors will be sufficient to activate u in the next important1086

round, τi′+1. Therefore, u ∈ A1,i′+1, which implies u ∈ A′1,i′′+1 for some i′′ ≤ i′ + 1. Since1087

i′′ ≤ i′ + 1 ≤ i the condition holds.1088

Case 2: All previously firing incoming neighbors are not dominant: By applying
Claim 29 on u and block Ti, we get that the total weight of spikes fired towards u in block
Ti−1 is at least L · b(u)/8. Due to Observation 28, we get

L · w(S(A0,i−1(u)), u) + w(W(A0,i−1(u)), u) ≥ L

8 · b(u).

By the definition of A′0,j and the induction assumption, it holds that

A0,i−1 ⊆
⋃

j≤i−1
A′0,j ⊆

⋃
i′≤i−1

A′1,i′ .

We now consider the simulation with x0 = 1 and the latency function `1, and partition
all the rounds until τi into k blocks of L rounds (expect perhaps the last one). Formally, for
every j ≤ k − 2, let Bj = [jL, jL+ (L− 1)] and let Bk−1 = [(k − 1)L, τi−1 + 15]. Denote by
S(Bj) and W(Bj) the strong and weak (respectively) incoming neighbors of u that fire in
some round of Bj . Using these notations, we can write

k−1∑
j=0

L · w(S(Bj), u) + w(W(Bj), u) ≥ L

8 · b(u).

Case 2.1: Most of the weight is in the last block. We first assume that

L · w(S(Bk−1), u) + w(W(Bk−1), u) ≥ L

16 · b(u).

Consider the algorithm that defines `1, and recall that Rτi′ (u) is the set of pending spikes1089

that were not yet scheduled when the algorithm considered the important round τi. The1090

interesting case is when u did not fire in any round of Bk−1. In such a case, all the spikes1091

generated towards u in the rounds of Bk−1 were added to the pending list of Rτi(u). Note1092

that each strong neuron v ∈ S(Bk−1) fires at least 16 spikes in Bk−1, since τi − τi−1 = 16.1093

Furthermore, each v ∈W(Bk−1) fires at least one spike in Bk−1. Moreover, the gap between1094

any τi′ ∈ Bk−1 and τi is at most L rounds, so they do not exceed the maximal latency in τi.1095

Altogether, we get that1096

w(Rτi(u)) ≥ 16 · w(S(Bk−1), u) + w(W(Bk−1), u) ≥ (3)1097

16
L
· (L · w(S(Bk−1), u) + w(W(Bk−1), u)) ≥ b(u) .1098

1099
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Therefore u fires in τi and u ∈ A1,i′ for some i′ ≤ i as desired.1100

Case 2.2: Most of the weight is in the first k − 1 blocks. It remains to consider
the complementary case where

k−2∑
j=0

L · w(S(Bj), u) + w(W(Bj), u) ≥ L

16 · b(u).

Since i < L2/1024 and each block Bj for j ≤ k − 2 consists of L/32 important rounds, we1101

have k ≤ L2/1024
L/32 = L

32 . Therefore, by an averaging argument there exists Bj for j ≤ k − 21102

satisfying that:1103

L · w(S(Bj), u) + w(W(Bj), u) ≥ 2 · b(u). (4)1104
1105

First observe that every strong neuron s ∈ S(Bj) fires for at least L/2 rounds in this block.1106

The reason is that there is a gap of L/2 rounds between the last important rounds of Bj1107

and the round where the inhibiting spike from x arrives. During this time interval every1108

strong neuron in S(Bj) keeps on firing. Now, assume that u does not fire in any round of1109

Bj , and denote the first important round of Bj+1 by τi′ . Again, consider the algorithm1110

that defines `1. Since u did not fire in any round of the block Bj , all the spikes that are1111

fired towards u in Bj are in the residual set Rτi′ (u). Therefore by Eq. (4), we get that1112

w(Rτi′ (u)) ≥ (L/2) ·w(S(Bj), u) +w(W(Bj), u) ≥ b(u), and u fires in τi′ . Therefore, we get1113

that u fires either in some important round of Bj or in τi′ . In both cases there is a round1114

τi′′ with i′′ ≤ i such that u ∈ A1,i′′ . This implies u ∈ A′1,i′′ for i′′ ≤ i, and the condition1115

holds. J1116

Finally, it remains to prove Claim 29.1117

Proof of Claim 29. Recall that S(A0,i−1(u)) and W(A0,i−1(u)) are the strong and weak1118

(respectively) incoming neighbors of u that fire in block Ti−1. If w(S(A0,i−1), u) ≥ b(u)/8,1119

then by Observation 28 the total spike weight fired in block i− 1 is at least L · b(u)/8, and1120

we are done. Therefore, it remains to consider the case where w(S(A0,i−1), u) < b(u)/81121

and w(W(A0,i−1)) < L · b(u)/8. We will show that in this case, there is a way to schedule1122

all spikes fired towards u in block Ti−1 to arrive in rounds [(i − 1)L + 2, iL], such that u1123

does not get activate in any of these rounds. By the definition of `0, we get that u does1124

not get activated in any of the rounds [(i− 1)L+ 2, iL], and in particular u /∈ A′0,i, thus a1125

contradiction.1126

First observe that b(u) > 0 since u did not fire in round (i − 1)L (as u /∈ A0,i−1) and1127

it did not receive any negative spike in that round (as all negative spikes arrive in the last1128

rounds of the blocks). We next show that all the spikes generated in block Ti−1 can be1129

scheduled in rounds [(i− 1)L+ 2, iL] without making u fire in any of these rounds. Since1130

the scheduling algorithm of `0 works in this manner, we will get a contradiction to the fact1131

that u ∈ A0,i.1132

1133

Scheduling spikes from weak neighbors. Let FW = {〈v, u, (i− 1)L〉 | v ∈W(A0,i−1)}1134

be the spikes of weak neighbors fired in the block Ti−1. Recall that by Observation 28, these1135

weak neurons fire only in the first round. Since these spikes are fired in round (i − 1)L,1136

they can arrive in any of the rounds [(i − 1)L + 2, iL]. As the total weight of the weak1137

spikes is at most Lb(u)/8, we show that we can schedule them in a greedy manner into1138

at most L/2 − 2 rounds while keeping the total weight in each such round to strictly less1139



Y.Hitron, M.paerter, G.Perri 23:29

than b(u). We traverse the weak spikes one by one, and start throwing them into rounds1140

in [(i − 1)L + 2, iL − 1]. We add a spike to round τ as long as the total weight of weak1141

spikes scheduled to it is at most b(u)/2. If the addition of the next weak spike raises the1142

weight to above b(u) it is deferred to the next round τ + 1. Let τ ′ be the last round to1143

which the weak spikes are schedules. Since in each τ ∈ [(i− 1)L+ 2, τ ′ − 1] the total weight1144

of weak spikes is at least b(u)/2, we get that τ ′ ≤ (i−1)L+L/4+3 ≤ (i−1)L+L/2 as desired.1145

1146

Scheduling spikes from strong neighbors. We next turn to show that also the strong1147

spikes can be scheduled in a balanced manner in the remaining L/2 slots of the block Ti without1148

activating the neuron u. Let FS = {〈v, u, τ〉 | v ∈ S(A0,i−1), τ ∈ T0,i−1)} be the spikes of1149

strong neighbors fired in block Ti−1. For a spike 〈v, u, τ〉 ∈ FS with τ ≤ (i− 1)L+ (L/2− 1),1150

schedule 〈v, u, τ〉 to arrive in round τ + L/2 + 1. For 〈v, u, τ〉 ∈ FS with τ ≥ (i− 1)L+ L/2,1151

schedule 〈v, u, τ〉 to arrive in round τ + 1. In this way, due to Observation 28, u receive1152

two spikes from each v ∈ W(A0,i−1) in each round τ ∈ [(i − 1)L + L/2 + 1, iL]. Since1153

w(S(A0,i−1)) < b(u)/8, we get that the total weight of spikes that u receives in each of1154

these rounds is less than b(u)/4, and therefore u does not get activated. Overall, all spikes1155

generated in the block Ti−1 are scheduled by `0 without activating the neuron u in any of1156

the rounds [(i− 1)L+ 2, iL], contradiction to the fact that u ∈ Ai,0. The claim follows. J1157

B Missing Proofs for the Positive Results1158

B.1 Synchronization of Boolean Gates1159

Proof of Observation 13. The network is as follows: connect each input neuron xi to the1160

output neuron z by an edge of weight w(xi, z) = 1, and let the bias of z be b(z) = 1. First1161

note that if all input neurons xi did not fire in round 0, then pot(z, τ) = −1 for all τ , and z1162

will not fire. If a neuron xi fires in round τ , since the latency of each edge is at most L, there1163

is a round τ ′ ∈ [τ + 1, τ + L] in which the spike from xi arrives to z. Thus, in round τ ′, the1164

weighted incoming sum to z is at least 1, therefore pot(z, τ ′) ≥ 0 and z fires in round τ ′. J1165

The Complete Proof of Lemma 14: We analyze the correctness of the network NOTsync.1166

We begin by proving the following auxiliary claim.1167

B Claim 30. If all the intermediate neurons v0, . . . vL fire starting round τ for at least1168

L(L+ 1) rounds, then there exists a round τ ′ ∈ [τ + 1, τ + L(L+ 1)] in which the output1169

neuron z fires (i.e., regardless of the latencies of the edges).1170

Proof. For every i ∈ {0, 1 . . . , L(L+ 1)}, denote the L-length interval Ti = [τ + i ·L, τ + (i+1171

1)L− 1]. In addition, define T̃ = T0 ∪ ... ∪ TL+1. Let qi be the number of spikes that were1172

fired in the interval of Ti but received by z in the next interval Ti+1. Note that since the1173

maximum edge latency is L, in the worst case the spikes of interval Ti must arrive to z by1174

the end of the next interval Ti+1. We next prove by induction on i that either z fires by the1175

end of the interval Ti, or qi+1 ≥ i · L. For the base of the induction, consider i = 0. If z did1176

not fire in some round during T0, we claim that q1 ≥ L. Since all the L + 1 neurons fire1177

in every round during the interval, overall L(L+ 1) many spikes where fired. By the fact1178

that z did not fire during T0, we have that in each of these rounds, it received at most L1179

spikes. This implies that z received at most L2 many spikes during T0, and therefore at least1180

q1 ≥ L many spikes will be received by z in the interval T1. Assume that the claim holds1181

up to i− 1 and consider the ith interval. If z fired by the end of the ith interval Ti, we are1182

done. Otherwise, by induction assumption for i − 1, we have that qi ≥ i · L. In addition,1183
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all these qi spikes must be received at z during the interval Ti. Then, in interval Ti we1184

again have a total of L(L+ 1) fresh spikes by the neurons v0, . . . vL. This creates a total of1185

L(L+ 1) + i ·L spikes. As z did not fire in Ti, it received at most L2 many spikes, leaving at1186

least qi+1 ≥ L(L+ 1) + i · L− L2 ≥ (i+ 1)L spikes for the next interval. This completes the1187

proof of the induction step.1188

Overall, for i = L, we have that either z fired by the end of the interval TL, or that1189

qL+1 ≥ L(L+ 1). In the latter case, since all these spikes must arrive during the last interval1190

TL+1, by the pigeonhole principle there must be a round in this interval in which z received1191

at least L+ 1 spikes and fire. This completes the proof of the claim. J1192

Proof of Lemma 14. Due to Claim 30, it remains to show that if x did not fire in round1193

0, then there must be a starting round τ , in which all the neuron v0, . . . vL fire for at least1194

L(L+ 1) rounds.1195

If x did not fire, then neither the memory neuron m nor the reset neuron r fire during1196

the execution. Since we assume that v∗ fires in round 0, it must hold that all these1197

neurons fire starting some round τ ∈ [5L2, 5L3 + 2L]. This holds due to the self-loops on1198

the neurons v0, . . . vL, and the chain of length 5L2. By Claim 30, there exists a round1199

τ ′ ∈ [τ + 1, τ + L(L+ 1)] in which z fires.1200

We next show that if x fired in round 0, then z would not fire in any round. The key1201

observation is as follows:1202

B Observation 31. In order for z to fire in some round τ , it must receive spikes from at least1203

two different vi neurons.1204

Proof. To see this, note that since the maximum edge latency is L, in round τ , z can receive1205

spikes only from the L previous rounds τ − L, . . . , τ − 1. In particular, a single neuron can1206

be accounted for at most L many spikes received by z in a given round. Finally, since the1207

bias of z is L+ 1, and all edge weights are 1, we conclude that z must receive spikes from at1208

least two neurons in order to fire. J1209

When x fires in round 0, the memory neuron m fires from round τm ∈ [1, L+ 1] ahead, due1210

to its self-loop. Hence, starting round τr ∈ [2, 2L + 2], the reset neuron r starts firing at1211

least once in every interval of 2L rounds. Recall that each vi gets a negative spike from the1212

inhibitor r and positive spike from the neuron c5iL ∈ C. We next show that each neuron vi1213

gets inhibited at least L rounds before the activation of the neurons vi+1. As a result, at any1214

point of time, there will be no two neurons vi and vj such that z received both of their spikes1215

in the same round. By induction on i, the first intermediate neuron v0 has an incoming1216

edge from c0 = v∗, and thus it begins to fire in some round τ ′ ∈ [0, L]. Due to the negative1217

edge from the reset neuron r, it stops firing before round 3L+ 2. Since v1 has an incoming1218

edge from c5L, it starts firing only after round 5L+ 1, and therefore z starts receiving spikes1219

from v1 only starting round 5L+ 2. Assume the claim is correct for neurons v0, . . . , vi−1 and1220

consider neuron vi. If the neuron vi starts firing in round τi, by round τi + 2L it is inhibited1221

by r. Because vi starts to fire after receiving a spike from c5·i·L and vi+1 starts firing after1222

receiving a spike from c5(i+1)L, neuron vi+1 begins to fire only after round τi + 4L, at least1223

L rounds after vi is inhibited.1224

Hence, z cannot receive input from two different neurons vi, vj at the same round, and1225

the claim follows by combining Observation 31. Finally, the next observation plays a rule in1226

the subsequent constructions.1227

B Observation 32. The correctness still holds even if the chain starts to fire at some round1228

τ > 0. In this case the output neuron z fires in some round t ∈ [τ + 1, τ + Θ(L3)].1229



Y.Hitron, M.paerter, G.Perri 23:31

Proof of Observation 32. The correctness of the observation follows from the fact that the1230

input neuron x activates the memory neuron m, that keeps on firing (i.e., presenting the1231

state of x) due to its self-loop. Thus all arguments in Lemma 14 still hold in case the chain1232

starts to fire in any later round. J1233

B.2 Synchronization of a Boolean Circuit, Proof of Lemma 151234

The Construction. Given a Boolean circuit A of OR / NOT gates g1, . . . , gm of depth d,1235

we describe a construction of an analogous neural network N with a similar execution. For1236

every gi, let Sync(gi) be the synchronized sub-network of the gate gi. Specifically, for a NOT1237

gate (resp., OR) gi, the sub-network Sync(gi) is taken from Lemma 14 (resp., Observation 13).1238

Recall, that for a NOT gate gi, its syncronized sub-network Sync(gi) contains a chain of1239

neurons where the head of the chain c0 will be denoted hereafter by v∗i . The network N1240

consists the following components:1241

1. Input neurons x1, . . . , xn, and output neurons z1, . . . , zk, that serve as the input and the1242

output for the network N .1243

2. A chain C = [c0, . . . , cq] containing q + 1 = αdL3 + 1 neurons, where α is a constant1244

satisfying that αL3 ≥ 5L3 + L. For every i ≥ 0, the neuron ci has bias b(ci) = 1.1245

Moreover, for every i ≥ the neuron ci has a positive incoming edge from ci−1 with weight1246

w(ci−1, ci) = 1. Our simulation starts with neuron c0 firing.1247

3. A Sync(gi) network (using Lemma 14 and Observation 13 respectively) for every gate gi.1248

The connections between these components are as follows:1249

1. For every gate gi in the first layer, the input for its synchronized sub-network Sync(gi) is1250

given by xi,1, . . . , xi,ki , namely, the input bits of the gate gi in the circuit A.1251

2. For every gate gi in layer j ≥ 2, denote by gi,1, . . . , gi,ki the input of the gate gi in1252

the circuit A. In the network N , the input to the sub-network Sync(gi) are the output1253

neurons of the sub-networks Sync(gi), Sync(gi1), . . . ,Sync(gik).1254

3. The output gates of the network N are the output neurons of the sub-networks1255

Sync(o1), . . . ,Sync(ok), where o1, . . . , ok are the output gates of the circuit A.1256

4. Finally, the synchronized sub-networks of the NOT gates are connected to the chain C as1257

follows. For each NOT gate gi in every layer j, the (jαL3)th neuron cjαL3 in the chain1258

has an outgoing edge to v∗i with weight 1 (where v∗i is the head of the internal chain in1259

Sync(gi)), since the bias of v∗i is 1, a spike from cjαL3 makes v∗i fire.1260

Figure 3 illustrates the construction for a circuit with 4 NOT and OR gates of depth 3. We1261

note that one can shave an L-factor in the size and time overhead of lemma 15, by reusing1262

the synchronization chain for all the Boolean gates in the network. For clarity of explanation,1263

we defer this improvement to the full paper.1264

1265

Correctness. Let V be the total set of neurons in N , and let ` : V × V × N → [1, L]1266

be a fixed (arbitrary) nice latency function. First note that in the global chain C, each of1267

the neurons fires once, in a sequential manner. Recall, that we assume that the starter c01268

fires in round τ0 = 0. For every j ∈ {1, . . . , d}, let τj be the round in which cjαL3 fires (i.e.,1269

the spike from cjαL3−1 is received at cjαL3 in round τj − 1).1270

For every gate gi in the circuit A in layer j ≥ 1, denote by out(gi,A) the final state of gi1271

after receiving its inputs in the circuit A. In addition, let qi be the output neuron in the1272

sub-network Sync(gi), and let σt(qi,N ) be the state of the neuron in round t when simulating1273

the network N . Our goal is to show that for every gi, its corresponding output qi in the1274

network N , has the same “output" as gi in the circuit A.1275
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Starter 𝒗∗

Figure 3 The transformation of the circuit on the left with 4 inputs and 3 layers. For each
gate we add the corresponding synchronized sub-network, where we connect the input and output
neurons of the sub-network according to the original circuit. In addition we introduce a global chain
that activates the sub-networks in each layer after the previous layers have already finished the
computation. The first neuron in the global chain is set to be the starter neuron which fires in the
beginning of the simulation.

B Claim 33. For every layer j ∈ {1, . . . , d} and every gate gi in layer j of circuit A, its holds1276

that: (i) If out(gi,A) = 0, then σt(qi,N ) = 0 for every t, and (ii) If out(gi,A) = 1, then1277

there exists t ∈ [τj−1 + 1, τj ] such that σt(qi,N ) = 1.1278

Proof. We prove by induction on the layer j. For j = 1, recall that the input neurons1279

xi,1, . . . , xi,ki of the sub-network Sync(gi) are the input neurons of the network N . Therefore,1280

in round 0 in the simulation of N , the sub-network Sync(gi) has the same input as gate gi1281

in the circuit A. Assume first that gi is a NOT gate. Then the spike of the starter neuron1282

c0 arrived at the head chain v∗i by round L. Combining with Observation 32 we get that1283

if out(gi,A) = 1 then σt(qi,N ) = 1 for some t ∈ [L,L + 5L3] ⊆ [1, αL3]. In addition, if1284

out(gi,A) = 0 then σt(qi,N ) = 0 for every t. The case where gi is an OR gate is even simpler1285

and follows by Observation 13. Since the path from c0 to cαL3 in the chain C is of length1286

αL3, we have that τ1 ≥ αL3. Therefore [1, αL3] ⊆ [τ0 + 1, τ1], and the claim holds for j = 1.1287

For the induction step, let j ≥ 2, and assume correctness up to layer j − 1. We now1288

prove the claim for layer j. Let gi be a gate in layer j. By Observation 32, the important1289

thing to take care of regarding a NOT gate g is to make sure that its inputs have the correct1290

states (i.e., as the corresponding states in A) by the time that the head of the chain v∗i in1291

Sync(g) has received the spike from c(j−1)αL3 . Denote by qi,1, . . . , qi,ki the output neurons1292

of the sub-networks Sync(gi,1), . . . ,Sync(gi,ki). By the induction assumption, for each gi,h, if1293

out(gi,h,A) = 0 then σt(qi,h) = 0 for every t, and otherwise σt(qi,h) = 1 for some t ≤ τj−1.1294

Since the neurons qi,1, . . . , qi,ki are the input neurons of g, it holds that the sub-network1295

Sync(g) gets the same input as the input of g in A, by round τj−1 of the simulation of N .1296

Now, assume that gi is a NOT gate. Then, by round τj−1 + L, the head of the chain v∗i1297

has recieved the spike from c(j−1)·α·L3 . Combining with Observation 32, when out(qi,N ) = 11298

, it holds that σt(qi,N ) = 1 for some t ∈ [τj−1 + 1, τj−1 + L + 5L3]. In addition, when1299

out(qi,N ) = 0 then σt(qi,N ) = 0 for every t. Again, since the path from c(j−1)αL3 to cjαL31300

in the chain C is of length αL3, we have that τj ≥ τj−1 + L+ 5L3, and the claim follows.1301

The case where gi is an OR gate follows in a similar way by Observation 13. J1302
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Lemma 15 follows by using Claim 33 with j = d, and noting that each output neuron zi in1303

N is the output neuron qi′ for some sub-network Sync(gi′) where gi′ is a gate in layer d of A.1304

This completes the correctness and the bound on the time overhead. We finally bound the1305

size of the network. The network N consists of a chain of O(dL3) neurons, and a Sync(gi)1306

sub-network of size O(L2) for each gate gi in A. Therefore, there are overall O(dL3 +mL2)1307

auxiliary neurons.1308

B.3 Synchronization of a Single Deterministic Threshold Gate1309

We now turn to consider the synchronized implementation of a single deterministic threshold1310

gate and prove Lemma 16.1311

Thanks to a result of [30], we can assume without loss of generality that the weights and1312

bias values can be represented using binary vectors of length d∆ log ∆e. Hastad [10] also1313

showed that this bound is tight. In addition, we can also assume without loss of generality1314

that b(z) ≥ 0. The key part is to implement the single threshold gate by a Boolean circuit.1315

This requires small adaptations from existing results in the area, specifically we will use the1316

following known facts.1317

B Fact 34. [31, 38][Iterated Addition] Given two input binary vectors x̄ = [x1, . . . , x∆]1318

and ȳ = [y1, . . . , y∆], there exists a Boolean circuit with poly(∆) gates and O(1) depth that1319

outputs the binary representation of dec(x̄) + dec(ȳ).1320

I Corollary 35. [Multiple Iterated Addition] Given ∆ input binary vectors x̄1, . . . , x̄∆ where1321

x̄i ∈ {0, 1}m for some integer m ≥ 1, there exists a Boolean circuit with poly(∆,m) gates1322

and O(log ∆) depth that outputs the binary representation of
∑
i dec(x̄i).1323

B Observation 36 (Comparison). Given two input binary vectors x̄ = [x1, . . . , x∆] and1324

ȳ = [y1, . . . , y∆], there exists a Boolean circuit with poly(∆) gates and O(1) depth that1325

outputs 1 iff dec(x̄) ≥ dec(ȳ).1326

We are now ready to implement a threshold gate by a small depth Boolean circuit of1327

polynomial size. This lemma explains the dependency in the largest in-degree ∆ of the final1328

synchronized solution.1329

I Lemma 37. Given a threshold gate g with Boolean inputs x1, . . . , x∆ with weights1330

w1, . . . , w∆, and an output neuron z with bias b(z), there exists a Boolean circuit that1331

computes g (i.e., outputs 1 iff
∑
wi · xi ≥ b(z)) using poly(∆) gates and depth O(log ∆).1332

Proof. Each input xi is connected to ` = d∆ · log ∆e neurons wi,1, . . . , wi,`, where the edge1333

weight w(xi, wi,j) is 1 if the jth-bit in wi is 1 and 0 otherwise. We set the bias values to1334

be b(wi,j) = 1. Thus, the outgoing edge weights of xi encode the binary representation1335

of the weight wi. As a result, once xi fires in round τ , after at most L rounds, wi,j fires1336

iff the jth bit in the representation of wi is 1. As we will see, those ∆2 · log ∆ neurons1337

w1,1, . . . , w∆,` will serve as the input layer to the circuit. In addition, we also represent the1338

bias of z using ` neurons b1, . . . , b` that encode the binary representation of b(z): the bias1339

of bj = 1 if the jth bit in b(z) is 0, and bj = −1 otherwise. Let x̄pos = {xi | wi ≥ 0}1340

and x̄neg = {xi | wi < 0}. In the same manner, let Wpos =
∑
{wi | wi ≥ 0} and1341

Wneg =
∑
{|wi| | wi < 0}. We will use the Multiple Iterated Addition circuit of Corollary1342

35 to compute the binary representation of Wpos and Wneg + b(z). Finally, we use the1343

Comparison circuit of Observation 36 to compare those values, such that the output will be1344

1 iff Wpos ≥Wneg + b(z), hence computing the function of the threshold gate. J1345
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The final synchronous implementation of g is obtained by applying Lemma 15 on C, i.e.,1346

Sync(g) ← Sync(C). The construction uses a total O(log ∆ · L3 + poly(∆) · L2) auxiliary1347

neurons, and computation time of O(L4 ·log ∆) rounds. This completes the proof of Lemma 16.1348

B.4 Probabilistic Threshold Gate1349

B.4.1 Description of the Boolean Circuit1350

The construction of the boolean circuit A approximating a probabilistic threshold gate is1351

achieved using two main steps. First we sample an almost uniform random variable, then we1352

use the sampled value in order to approximate a sample from the Logistic distribution.1353

1354

Step 1: Sampling from the Almost Uniform Distribution. We introduce k =1355

4 log(1/ε) uniformly random gates, denoted as r1, . . . rk. Hence, dec(r̄) encodes an integer1356

number that is uniformly sampled between 0 and d(1/ε)4e. In addition, we introduce1357

k input bits (with fixed value) a1, . . . ak such that dec(ā) = d(1/ε)4e. Thus, the value1358

r′ = dec(r̄)/dec(ā) is sampled uniformly at random from the set {0, ε4, 2ε4, 3ε4, . . . 1}.1359

1360

Step 2: Sampling from the Almost Logistic Distribution. Next, we transform1361

the sample r′ from Step 1 into a sample from an almost Logistic distribution. This is done by1362

using the method of inverse transform sampling. In our context, for a sample r u.a.r in [0, 1],1363

the value b+ ln(r/(1− r)) is a sample from the Logistic distribution with mean b and scale1364

1. To compute the expression b+ ln(r′/(1− r′)) using a Boolean circuit, we approximate1365

the ln(x) function (up to ± poly(ε)) using the first O(log 1/ε) terms of the Taylor expansion1366

around a point x0 where 0 ≤ x0 − x ≤ 1/2.1367

I Definition 38 (ε-Approximation of the ln(x) Function). Given x > 0 and a positive integer1368

k, let l̂nk(x) be the ln-approximation of x obtained by computing the first k terms of the1369

Taylor expansion around a point x0, where 0 ≤ x0 − x ≤ 1/2. When k is clear from the1370

content we may omit it and simply write l̂n(x).1371

The task of sampling from the (almost) Logistic distribution then boils into computing1372

f(r′) = l̂nk(r′/(1 − r′)) with k = d4 log 1/εe. We first use a Boolean circuit to distinguish1373

between the case where r′ ≤ 1−r′, and the complementary case. Using the vectors r̄ and ā, this1374

can be done using integer operations and comparison as r′/(1−r′) = dec(r̄)/(dec(ā)−dec(r̄)).1375

When r′ > 1− r′, we calculate f(−r′), and then either add or subtracts it from the bias b1376

respectively.1377

In what follows, assume that r′ ≤ 1 − r′, and therefore r′/(1 − r′) ∈ [0, 1]. To pick1378

the point x0 around which the Taylor approximation is expended, we let x0 = 1/2 when1379

r′/(1 − r′) ≤ 1/2, and x0 = 1 otherwise. This latter condition can also be easily checked1380

with a Boolean circuit.1381

To finally be able to compute the function l̂nk(x) using a Boolean circuit, we must ensure1382

that all our operations are applied on integers. Therefore, instead of computing f(r′), we will1383

be actually computing q · f(r′) for some large enough constant q that guarantees that q · f(r′)1384

is an integer. Specifically, letting q = (dec(ā)−dec(r̄))k does the job as the function l̂nk(x) is1385

a polynomial of degree k. This factor of q would not affect the correctness of the computation1386

as it will be canceled out later on. Using the circuit for iterated addition [38, 31] and fast1387

multipliers [9], we can compute q · f(r′) using only integer addition and multiplication. The1388

output of the final Boolean circuit is ȳ where dec(ȳ) = q · b+ q · f(r′) . In the analysis section,1389

we show that dec(ȳ)/q is sampled from a distribution that is poly(ε)-close to the Logistic1390
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distribution with mean b.1391

1392

Putting all Together: The Output Circuit. Let w1, . . . , w∆ be the weights of the1393

probabilistic threshold gate g. To cancel out the multiplication of q in the output bias1394

value from the previous step, we multiply all the incoming weights by q as well. We can1395

then use the construction of Lemma 16 for a deterministic threshold gate with weights1396

w′1 = q · w1, . . . , w
′
∆ = q · w∆ and bias b′′ = dec(ȳ). This completes the description of the1397

construction.1398

B.4.2 Analysis and Proof of Lemma 171399

We now turn to prove Lemma 17 and start with several auxiliary claims.1400

B Claim 39. Let r1, r2 ∈ [0, 1] such that |r1 − r2| ≤ ε2 and ε ≤ r1 ≤ 1− ε, then

| ln(r1/(1− r1))− ln(r2/(1− r2))| ≤ 2ε .

Proof. By the definition of r1 and r2 we get the following inequalities:1401

| ln(r1/(1− r1))− ln(r2/(1− r2))| = | ln(r1)− ln(1− r1)− ln(r2) + ln(1− r2)|1402

≤ | ln(r1 + ε2

r1
)|+ | ln(1− r1 + ε2

1− r1
)|1403

≤ | ln(1 + ε2/r1)|+ | ln(1 + ε2/(1− r1))|1404

≤ 2 ln(1 + ε) ≤ 2 · ε ,1405

where the last inequality is due to the Taylor expansion of ln(1 + x) around 0. J1406

Recall that given x > 0 and an integer k > 0, l̂nk(x) is the ln-approximation of x1407

obtained by computing the first k terms of the Taylor expansion around a point x0 where1408

0 ≤ x0 − x ≤ 1/2.1409

B Claim 40. Fix r1, r2 ∈ [0, 1] such that |r1 − r2| ≤ ε2 and ε ≤ r1 ≤ 1 − ε, denote1410

b̂1 = b+ ln(r1/(1− r1)) and b̂2 = b+ l̂n(r2/(1− r2)). Then, |̂b1 − b̂2| ≤ 3ε .1411

Proof. Fix x ∈ (0, 1). Since l̂n(x) is obtained by using the first k terms in the Taylor1412

expansion of ln(x) around x0, we have that | ln(x) − l̂n(x)| = 1
xk0
· (x−x0)k

k · ηk, where1413

η ∈ [x, x0]. Since x0 ≥ x, also x0 ≥ η. As |x−x0| ≤ 1/2, we get that | ln(x)− l̂n(x)| ≤ (1/2)k.1414

By plugging k = Θ(log 1/ε), we have that | ln(x)− l̂n(x)| ≤ ε for every x.1415

Thus, combining with Claim 39 we conclude the following:1416

|̂b1 − b̂2| = |b+ ln(r1/(1− r1))− b− l̂n(r2/(1− r2))| (5)1417

≤ | ln(r1/(1− r1))− ln(r2/(1− r2)) + ε |1418

≤ ε+ | ln(r1/(1− r1))− ln(r2/(1− r2))| ≤ 3 · ε .1419

J1420

B Claim 41. Consider two threshold gates g1, g2 with the same weighted sum and bias values1421

b1 ≤ b2 such that b2 − b1 ≤ ε. Then |Pr[g1 = 1]− Pr[g2 = 1]| ≤
√
ε.1422
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Proof. Let W be the weighted incoming sum to both g1 and g2. The probability that g11423

outputs 1 is 1/(1 + e−(W−b1)), and the probability that g2 outputs 1 is 1/(1 + e−(W−b2)).1424

The following holds:1425

Pr[g2 = 1] = 1/(1 + e−(W−b2)) ≥ 1/(1 + e−(W−b1−ε)) = 1/(1 + eεe−(W−b1))1426

≥ 1
eε · (1 + e−(W−b1))

≥ 1
(1 +

√
ε) · (1 + e−(W−b1))

1427

= (1−
√
ε)(1/(1 + e−(W−b1))) ≥ 1/(1 + e−(W−b1))−

√
ε = Pr[g1 = 1]−

√
ε .1428

In the third inequality we use the fact that e < (1 +
√
ε) 1

ε and thus eε < 1 +
√
ε. On the

other hand, since b2 ≥ b1 it holds that

Pr[g2 = 1] = 1/(1 + e−(W−b2)) ≤ 1/(1 + e−(W−b1)) = Pr[g1 = 1] .

Hence, we conclude that |Pr[g2 = 1]− Pr[g1 = 1]| ≤
√
ε as required. J1429

Analysis of Step 1. In the first step of the construction, since each uniformly random gate ri1430

is 1 with probability 1/2, the value dec(r̄) is a uniform sample in {0, 1 . . . , (1/ε)4}. Therefore,1431

r′ = dec(r̄)/dec(ā) = ε4 · dec(r̄) is sampled uniformly at random from {0, ε4, 2ε4, 3ε4, . . . 1}.1432

By a simple coupling argument, sampling r′ is equivalent to the process of sampling a uniform1433

random variable r1 ∈ [0, 1] and rounding it to the closest value of the form i · ε4 for some1434

integer i. In this manner, these two samples have an additive distance of at most ε4.1435

1436

Analysis of Step 2. Denote the probability z outputs 1 by q, and the probability u1437

outputs 1 by p. Recall that g is the probabilistic gate and g′ is the output gate of the Boolean1438

circuit that approximates g.1439

In the second step, we compute dec(ȳ) = q · (b+ f(r′)) where q = (dec(ā)− dec(r̄))k and1440

f(r′) = l̂n(r′/(1 − r′)). Then g′ outputs 1 iff dec(ȳ) ≤ W · q, or simply iff b + f(r′) ≤ W .1441

Given that r′ ∈ [2ε2, 1− 2ε2] by Claim 40, b′ = b+ f(r′) satisfies that |b∗− b′| ≤ 3ε2 where b∗1442

is a true sample from the Logistic distribution with mean b. Therefore, the following holds.1443

Pr[g′ = 1 | r′ ∈ [2ε2, 1− 2ε2]] = Pr[W ≥ b′ | r′ ∈ [2ε2, 1− 2ε2]]1444

≤ Pr[W + 3ε2 ≥ b∗ | r′ ∈ [2ε2, 1− 2ε2]]1445

= 1/(1 + e−(W−b+3ε2)),1446

and in addition

Pr[g′ = 1] ≥ Pr[W − 3ε2 ≥ b∗ | r′ ∈ [2ε2, 1− 2ε2]] = 1/(1 + e−(W−b−3ε2)).

Recall that Pr[g = 1] = 1
1+e−(W−b) . By claim 41 we conclude that |Pr[g′ = 1]−Pr[g = 1]| ≤ 3ε.1447

We note that r′ ∈ [2ε2, 1− 2ε2] with probability at least 1− 4ε2. Hence, we conclude that:

Pr[g′ = 1] ≤ Pr[g′ = 1 | r′ ∈ [2ε2, 1− 2ε2]] + 4ε2 ≤ Pr[g = 1] + 3ε+ 4ε2 = p+ Θ(ε) ,

and on the other hand:1448

Pr[g′ = 1] ≥ (1− 4ε2) Pr[g′ = 1 | r′ ∈ [2ε2, 1− 2ε2]]1449

≥ (1− 4ε2)(Pr[g = 1]− 3ε) ≥ Pr[g = 1]−Θ(ε) .1450

Thus, |Pr[g = 1]− Pr[g′ = 1]| = O(ε) as required.1451

1452

Complexity. We assume that the bias and weights of the given probabilistic threshold1453

gate g are polynomial in 1/ε. We first claim that with high probability of 1 − Θ(ε), the1454

approximate bias sampled from the almost Logistic distribution in also bounded by poly(1/ε).1455
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B Claim 42. Given that |µ| = poly(1/ε), for a random variable x drown from the logistic1456

distribution with mean µ it holds that |x| = poly(1/ε) with probability greater than 1− ε.1457

Proof. By the definition of the Logistic CNF function it holds that

Pr[x > 2 ln(1/ε) + µ] = 1− 1
1 + e−2 ln(1/ε)−µ+µ = ε2

1 + ε2
< ε2 .

On the other hand

Pr[x ≤ −2 ln(1/ε) + µ] = 1
1 + e2 ln(1/ε)−µ+µ = 1

1 + 1/ε2 < ε2 .

J1458

Thus we can assume from now on that all integer numbers can be representing using1459

O(poly(1/ε)) bits. Using circuits for fast integers multiplication as described in [9] and1460

iterated addition [38, 31], there exists a Boolean circuit computing W · q as well as b · q using1461

poly(∆, log(1/ε)) gates and poly(log ∆, log(1/ε)) depth. When computing the polynomial1462

q · l̂n( r′

1−r′ ) (of total degree 2k), calculating each term requires O(log k) multiplicity operations.1463

Since we have k summands, in total we use k · log k multiplicity operations, each requires1464

O(k · log k · 2O(log∗ k)) gates (and depth), and log k addition operations. The comparison1465

circuits uses poly(log 1/ε) gates and depth, and the final threshold gate circuit requires1466

poly(∆, log 1/ε) gates and depth poly(log ∆, log 1/ε). We conclude that the Boolean circuit1467

has poly(∆, log(1/ε)) gates and depth of poly(log ∆, log(1/ε)).1468

B.4.3 Synchronizing a Probabilistic Threshold Gate1469

In order to construct a synchronized neural network computing the Boolean Circuit described1470

in Lemma 17, we use the construction for synchronized Boolean circuits as described in1471

Lemma 15. We are left with describing the implementation of the random bits r̄ and the1472

constant bits ā.1473

In order to represent ā, we introduce k neurons a1, . . . , ak. If the ith bit in the binary1474

representation of dec(ā) = (1/ε)4 equals 1 we set the bias of ai to be b(ai) = −1 and1475

otherwise we set the bias to be b(ai) = 1. As a result, the neurons that represent the bits1476

that are 1 in the binary representation fire on every round, and the other neurons idle1477

thought the execution.1478

In order to represent r̄ we introduce k spiking neurons r1, . . . , rk. For the computation1479

to succeed, we need to sample each random variable ri only once. Therefore, each neuron1480

ri has a very large bias b(ri) = poly(1/ε) and an incoming edge from the starter neuron1481

s with weight w(s, ri) = b(ri). As a result, as long as ri did not receive a spike from s,1482

with high probability it does not fire. On the other hand, when neuron ri receives a spike1483

from the starter neuron v∗ it fires with probability 1/2.1484

B.5 The Complete Synchronization Scheme1485

Finally, we describe the synchronizer for a given neural network and prove Theorem 4. We1486

start by describing the construction for a network of deterministic threshold gates. The1487

adaptation to a network of spiking neurons is quite straightforward as discussed in the1488

end of the section. The construction has two parts: a global pulse generator that can1489

be used to synchronize many networks, and an adaptation of the given network N into a1490

network Sync(N ), see Figure 2. The pulse generator is implemented by a directed cycle1491
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PG = [c0, . . . , ck] of length k = O(L4 log ∆). All neurons in PG have bias b(ci) = 1. In1492

addition, for every i ≥ 1 neuron ci has an incoming edge from neuron ci−1 with weight1493

w(ci−1, ci) = 1, and the first neuron c0 has an incoming edge from the last neuron ck with1494

weight w(c0, ck) = 1. The last neuron of the chain ck will declare the end of each phase. We1495

assume throughout that the simulation starts by a spike of the starter v∗ = c0.1496

1497

Modifications to the Network Sync(N ). The input layer and output layer in Sync(N )1498

are exactly as in N . We will now focus on the set of auxiliary neurons V in N . The network1499

Sync(N ) contains the vertices V of the original network N , and in addition, for each neuron1500

vi ∈ V we add the following components to the network:1501

A synchronized sub-network Sync(vi) using Lemma 16 implementing the threshold gate1502

defined by neuron vi. The input neurons to the sub-network Sync(vi) are the incoming1503

neighbors of vi in N . The first neuron v∗i in the internal chain of the sub-network Sync(vi)1504

has an incoming edge from the Lth neuron of PG cycle, namely cL with weight 1 and1505

bias b(v∗i ) = 1. Denote the output of the sub-network Sync(vi) by vout
i .1506

An AND module ANDi whose output neuron is vi. This module is implemented by a1507

circuit of ORsync and NOTsync gates with three layers (using simple De-morgan rule). The1508

ANDi module receives input from the neuron vout
i and from the (αL4)th neuron in PG,1509

cαL4 where α is a large enough constant. The internal chains of the ANDi circuit receive1510

input from neuron cβ in PG where β = αL4 + L, making sure the circuit begins the1511

execution after receiving all its inputs10.1512

Modifications to the Circuit Synchronization of Sec. 4.1. So far, we handled the1513

synchronization of circuits. In order to handle general networks (e.g., that contains self-loops1514

and recurrent edges), we need to apply small adaptations to the synchronized sub-networks of1515

Sec. 4.1. Specifically, unlike circuits, in the execution of a network, certain neurons (or gates)1516

might be activated several times. To be able to re-use the sync. sub-networks throughout1517

the execution, we need to reset the states kept by their self-loops.1518

We therefore adapt the construction of the sync. sub-network presented in Section 4.11519

to reset themselves at the end of their computation. For each NOTsync gate, we augment1520

its internal chain by 3 · L2 neurons, and the last neuron of this chain is connected to an1521

inhibitor neuron vr. The inhibitor vr has outgoing edges of weight −∞ to all neurons in the1522

sub-network. Due to Claim 30, it holds that the inhibition by vr (i.e., the round in which1523

vr fires) occurs after the output neuron has already fired. Observe that the timing of the1524

inhibition by vr is set in a way that guarantees that all gates in the sub-network will be idle1525

from that point on (i.e., there will be no delayed spikes that arrive after this inhibition). For1526

the sub-network ORsync which do not contain self-loops, no adaptation is needed.1527

B.6 Correctness1528

Throughout, we fix a synchronous execution Πsync and an asynchronous execution Πasync.1529

For every neuron v and phase p, define the beginning of phase p of v in the asynchronous1530

execution (r(v, p)) as the round in which the pth spike of c0 is fired. I.e., the pth phase of v1531

is the time interval [r(v, p), r(v, p+ 1)). For every round p, let V +
sync(p) be the set of neurons1532

that fire in round p in Πsync (i.e., the neurons with positive entries in σp). Similarly, let1533

V +
async(p) be the set of neurons that fire during phase p.1534

10We say that the circuit receives its input, if every gate in the first layer has received the signals from its
incoming input.
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I Lemma 43. The networks Sync(N ) and N have similar executions.1535

In order to show the networks Sync(N ) and N have similar executions, we show by induction1536

on round (resp., phase) p that V +
sync(p) = V +

async(p). For p = 1, let V +
sync(0) be the neurons1537

that fired at the beginning of the simulation in round 0. We will show that every neuron1538

vi ∈ V fires in phase 1 iff vi ∈ V +
sync(1). For vi ∈ V , the spikes from its incoming neighbors1539

in V +
sync(0) reach the sub-network Sync(vi) by round L. The global chain in Sync(vi) is then1540

activated by the neuron cL in some round τ ∈ [L,L2]. Therefore, by Lemma 16 there exists1541

a constant γ such that vout
i fires in some round τi ∈ [2, τ + γ · log ∆ · L4] iff the output of the1542

threshold function corresponding to vi is 1, meaning that vi ∈ V +
sync(1). We next note that1543

the first layer of the sub-network ANDi consists of two NOTsync sub-networks with input1544

from cα·L4 and vout
i . Hence, by Observation 32 as long as ANDi receives the information1545

from cα·L4 and vout
i before the activation of the global chain of the network ANDi in some1546

round τ∗ its output neuron fires by round τ∗ +O(L4) iff both vout
i and cα·L4 fired.1547

The global chain of ANDi is activated by neuron cβ for β = α · L4 + L and therefore is1548

indeed activated after ANDi receives the spike from cαL4 . In addition, we choose α such that1549

αL4 > L2 + γ · log ∆ · L4. Therefore the neuron cβ fires after round τi + L, i.e. after ANDi1550

received the spike from vout
i as well. We conclude that vi fires in some round τ ′′ ∈ [β,O(L4)]1551

iff vout
i fires in round τi. We choose k to be large enough to make sure that ck fires after1552

round τ ′′ and therefore all neurons in V +(1) fired during the first phase.1553

Next, we assume that V +
sync(p) = V +

async(p) and consider phase p+ 1. Let τp be the round1554

that c0 fired at the beginning of phase p and let τp+1 be the round in which c0 fired at1555

the beginning of phase p+ 1. In addition, we denote the round in which cαL4 fired during1556

phase p by τα. By the induction assumption, neuron vi fires between round τp and round1557

τp+1 iff vi ∈ V +
sync(p). Moreover, since the activation of the sub-network ANDi is performed1558

by neuron cβ , every vi ∈ V +
sync(p) fires after round τα. We choose α to be large enough1559

such that by round τα, all sub-networks Sync(vi) have been reset due to the modification1560

in the circuit synchronization. Hence, for neuron vi ∈ V , the spikes from its incoming1561

neighbors in V +
async(p) reach Sync(vi) after the sub-network has already been reset. Thus,1562

when the global chain of the sub-network Sync(vi) is activated by the neuron cL in round1563

τL ∈ [τp+1 + L, τp+1 + L2], the sub-network Sync(vi) received spikes from the incoming1564

neighbors of vi in V +
async(p). Combining with Lemma 16 we conclude that vout

i fires in round1565

τi ∈ [τp+1 + L, τp+1 + L2 + γ · log ∆ · L4] iff vi ∈ V +
sync(p+ 1). Thus, when neuron cβ fires in1566

phase p+ 1, the sub-network ANDi has received the spikes from both vout
i and cαL4 . Since1567

the global chain of ANDi is activated by the neuron cβ , we conclude that vi fires in some1568

round τ∗ ∈ [τp+1 + β, τp+1 + Θ(L4)], iff vi ∈ V +
sync(p+ 1). Choosing k to be large enough, τ∗1569

occurs before ck fires and ends the phase.1570

1571

Synchronization of a Spiking Neural Network. We next explain the adaptation1572

of the construction given a network of spiking neurons N . Let n be the number of auxiliary1573

neurons in N and let t be the number of rounds. Each spiking neuron implemented by a1574

probabilistic threshold gate can be made synchronized using Cor. 19 where we use an error1575

parameter of ε = 1/ poly(n, t). Thus, The network Sync(N ) consists of poly(∆, logn ·t) ·L4 ·n1576

auxiliary neurons and uses poly(log ∆, logn · t) · L5 rounds.1577

To compare the simulation of the given spiking neural network N and the synchronized1578

network Sync(N ), we fix the randomness used by N throughout the simulation and use these1579

coins when simulated the network Sync(N ). For neuron v ∈ V and round τ ≥ 1, by Cor. 19,1580

with probability at least 1 − 1/ poly(n · t) it holds that v ∈ V +
sync(τ) iff v ∈ V +

async(τ). By1581

applying the union bound over all n neurons and t rounds of the simulation, we conclude1582
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that with high probability N and Sync(N ) have similar executions.1583

C Synchronization in the Node-Delay Model1584

C.1 Network Dynamics in the Node Delay Setting1585

Network evolution proceeds in seconds, namely, a sufficiently small time unit. For a given
integer T ≥ 1, the dynamics is specified by a node-delay function t : V → N≤T interpreted
as follows: the round duration on each neuron v consists of t(v) seconds. Specifically, the ith
round of v is defined by the time interval Ri(v) = [(i− 1)t(v) + 1, i · t(v)] for every i ≥ 1. All
spikes are assumed to arrive with a delay of a single second11. For the neuron v and integer
i, the set of spikes received at v during its ith round is given by

A(v, i) = {(u, j · t(u)) | j · t(u) + 1 ∈ Ri(v)}.

The state of v in its i-round (i.e., at the second i · t(v)) is given by:1586

pot(v, i) =
∑

(u,j·t(u))∈A(v,i)

w(u, v) · σj(v) − b(v) and σi(v) = 1 iff pot(v, i) ≥ 0 . (6)1587

If v is a probabilistic threshold gate then it fires in second i · t(v) with probability p(v, i) =1588

1
1+e− pot(v,i) .1589

I Definition 44 (The T -bounded Node-Delay Setting). We are given a network N and an1590

integer T . It is assumed the network contains a special neuron, the starter, that fires in1591

the first round of the simulation. The dynamic is determined by a node-delay function1592

t : V → N≤T . This function t can be chosen arbitrarily.1593

I Definition 45 (Computation of a Boolean Function in the T -bounded Node-Delay Setting).1594

Let f : {0, 1}n → {0, 1}k be a Boolean function. A network N with n input neurons x1, . . . , xn1595

and k output neurons z1, . . . , zk computes f in this setting if for every T -bounded function1596

t : V → N≤T and for every fixed possible assignment to the input neurons b1, . . . , bn the1597

following holds: (i) If fi(b1, . . . , bn) = 1, then there exists a round in which zi fires, where1598

fi(·) is the ith bit in the output of f . (ii) If fi(b1, . . . , bn) = 0 then zi does not fire throughout1599

the entire execution.1600

Synchronizers for the Node-Delay. A synchronizer ν is an algorithm that gets as input1601

a network N and integer T , and outputs a network N ′ = syncV (N , T ) that contains all the1602

neurons of N , plus additional auxiliary neurons. One of the auxiliary neurons in N ′ is a1603

starter neuron that fires in the first round of the simulation. The network N ′ works in the1604

asynchronous setting and should have similar execution to N in the sense that for every1605

neuron v ∈ V (N ), the firing pattern of v in the asynchronous network should be similar to1606

the one in the synchronous network. The output network N ′ simulates each round of the1607

network N by a phase.1608

I Definition 46 (Phases). We partition the execution of N ′ into phases 1, 2, . . ., using a1609

function r : V (N )× N→ N that defines the beginning of phase p. Hence, the pth phase is1610

the round interval [r(v, p), r(v, p+ 1)).1611

11As discussed in the introduction, this model can be generalized to support both edge-delays and
node-delays, to isolate the node-delay effect we assume that all edges have latency of 1.
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I Definition 47 (Similar Executions (Deterministic Networks)). The synchronous execution1612

Π of a deterministic network N is specified by a list of states Π = {σ1, . . . , } where each σi1613

is a binary vector describing the firing status of the neurons in round i. The asynchronous1614

execution of the network N ′ = syncV (N , T ) with a node-delay function t : V → N≤T denoted1615

by Π′(t) is defined analogously only when applying the asynchronous dynamic. The execution1616

Π′(t) is divided into phases according the a function r : V (N )× N→ N.1617

The network N and the pair 〈N ′, t〉 have a similar execution if V (N ) ⊆ V (N ′), and1618

in addition, a neuron v ∈ V (N ) fires in round p in the execution Π iff v fires during phase p1619

in Π′(t).1620

The networks N and N ′ are similar if N and 〈N ′, t〉 have a similar execution for every1621

node-delay function t.1622

As for the edge-delay model, the extension for randomized networks is made by fixing1623

the random bits in the simulation of the input network.1624

C.2 Reduction to the Edge-Delay Model: A Simulation Result1625

Given a neural network N and an integer parameter T , our goal is to construct a network1626

NR = syncV (N , T ) in the T -bounded node-delay model that behaves similarly to N , i.e.,1627

that N and NR are similar according to Definition 47.1628

Given the network N and the delay bound T , we start by computing the network1629

NL = syncE(N , L) with L = 5T 2. The desired NR = syncV (NT ) is obtain by changing some1630

of the edge weights in NL. Our proof of correctness is based on similarity between a network1631

in the node-delay model and a network in the edge-delay model.1632

1633

Similarity between the networks NR and NL. Fix integer parameters T, L. Given an1634

edge-delay network NL, a latency function ` : E(NL)×N→ N≤L, a node-delay network NR1635

on the same neuron set and a node-delay function t : V (NR) → N≤T , we want to define1636

similarity between the simulations 〈NL, `〉 and 〈NR, t〉, where both simulations use the same1637

initial configuration.1638

This notion of similarity is based on defining different time scales in each of the simulations.
Specifically, for every i ≥ 1 and neuron u ∈ V the time window Ri(u) will be the time that u
collects spikes for its round i in the simulation of 〈NR, t〉. Moreover, for every i ≥ 0 the time
window Li(u) correspond to the firing period of round i of u in the simulation of 〈NR, t〉,
where

Ri(u) = [(i− 1) · t(u) + 1, i · t(u)] and Li(u) = [i · T · t(u), i · T · t(u) + (T · t(u)− 1)].

Furthermore, for every second τR in the simulation of 〈NR, t〉 we will have the corresponding
block BτR = [τR · T, τR · T + (T − 1)] in the simulation of 〈NL, `〉. For the simulation of
〈NL, `〉 define for every neuron u and i ≥ 0:

σi(u,NL) =


1 u is strong and u fires in every τL ∈ Li(u)
1 u is weak and u fires in τL ∈ Li(u) only for τL = i · T · t(u)
0 u never fires in Li(u)
∅ Otherwise.

For the simulation of 〈NR, t〉 define for every neuron u and i ≥ 0:

σi(u,NR) =
{

1 u fires in round i of u (i.e. in the second i · t(u))
0 Otherwise.
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I Definition 48. The simulations 〈NR, t〉, 〈NL, `〉 are similar, denoted as 〈NR, t〉 ∼ 〈NL, `〉,1639

if for every neuron u and i ≥ 0 it holds that σi(u,NL) = σi(u,NR).1640

A network NL in the L-bounded edge-delay model and a network NR in the T -bounded node-1641

delay model are similar, denoted by NL ∼ NR, if for every node-delay function t : V (NR)→1642

N≤T there exists a latency function ` : E(NL)× N→ N≤L such that 〈NR, t〉 ∼ 〈NL, `〉.1643

The key simulation lemma used in the synchronization scheme is as follow:1644

I Lemma 49. Given a network NL in the L-bounded edge delay model such that:1645

1. b(u) > 0 for every neuron u.1646

2. Every weak neuron v has no self-loop.1647

3. There is no edge from a strong neuron to a strong neuron.1648

4. Every negative edge has weight −∞.1649

5. For every neuron u, either any excitatory incoming neighbor of u is weak, or any excitatory1650

incoming neighbor of u is strong.1651

6. Let v be a strong incoming neighbor of a neuron u, and let f be an inhibitor. Then if f1652

has an edge to v, it also has an edge to u.1653

Then there exists a network NR in the T -bounded node-delay model with T ≤
√
L/5 with1654

V (NR) = V (NL) such that NR and NL are similar.1655

Defining the node-delay network NR. The network NR is exactly as NL, up to small
adaption of the weights. Denote by wL : V → R the weight function of the network NL.
Define the weight function wR of NR as

wR(v, u) =
{
T · wL(v, u) v 6= u, v is strong,
wL(v, u) Otherwise.

1656

1657

Correctness. We will show that NL and NR are similar. Fix a node-delay function1658

t : V → N≤T . First, we define the corresponding latency function ` and prove it is valid, i.e.1659

that ` is nice and `(v, u, τ) ∈ [1, L] for every neurons v, u and round τ . Then, we restate1660

Lemma 49 in order to prove its correctness by induction on the round.1661

1662

Definition of the latency function `. First, set the latency of self-spikes to be of1663

value 1. For a neuron u, we say that u is weak-incoming if any excitatory incoming neighbor1664

of u is weak, and we say that u is strong-incoming if any excitatory incoming neighbor of u is1665

strong. Note that by property 5, every neuron u is either weak-incoming or strong-incoming.1666

For a strong-incoming neuron u, an inhibitor v and τL ≥ 0, set `(v, u, τL) = 2T 2 + 1. Now1667

consider the remaining spikes, which are either positive spikes, or spikes to a weak-incoming1668

neuron u.1669

For every τL ≥ 0 define the latency value for the spike event 〈v, u, τL〉 as follows. Let j1670

be an integer satisfying that τL ∈ Lj(v), and let i be such that j · t(v) + 1 ∈ Ri(u), hence1671

(v, j · t(v)) ∈ A(u, i).1672

If v is weak, then for τL = j · T · t(v) set `(v, u, τL) = i · T · t(u) − τL. That is, the1673

spike 〈v, u, τL〉 is scheduled to arrive in the first round of Li(u). For τL > j · T · t(v), set1674

`(v, u, τL) = 1. Otherwise, if v is strong, consider the following argument. For every second1675

τL in the edge-latency simulation, let τR be the second in the node-delay simulation such1676

that τL ∈ BτR .1677

Case (I): there exists a second in [τR + 1, τR + 2T ] such that u fires in the node-delay1678

simulation, let τ ′R be the first such second. Set `(v, u, τL) = τ ′R · T − τL, that is schedule1679

〈v, u, τL〉 to arrive in round τ ′R · T .1680
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Case (II): case I does not apply, and there is an inhibitor f which is an incoming1681

neighbor of u, and a second τ ′R ∈ [τR − T, τL + 2T ] such that f fires in τ ′R in the node-1682

delay simulation. Then for such τ ′R, set `(v, u, τL) = τ ′R · T + (2T 2 + 1) − τR, that is1683

schedule 〈v, u, τL〉 to arrive in round τ ′R · T + (2T 2 + 1).1684

Case (III): neither case (I) nor case (II) apply. Set `(v, u, τL) = 1.1685

The intuition is that for a positive spike in the edge-delay simulation, we look for a round1686

such that u is supposed to fire in the next 2T 2 rounds. If we cannot find one, we want to1687

send the spike to a round that we know it will not activate u. This is a round in which u1688

receives a negative spike (since negative spikes are of weight −∞). If such round also does1689

not exist, it implies that the total weight of positive incoming neighbors of u that fired in1690

round τL is low, and we can schedule all these spikes to arrive together in τL + 1 without1691

activating u. We next show that ` is valid.1692

B Claim 50. ` is a valid latency function for NL.1693

Proof. First, since all self-spikes have latency value 1, ` is nice. For a negative spike 〈v, u, τL〉1694

such that u is strong-incoming, it holds that `(v, u, τ) = 2T 2 + 1 < L. Therefore we are1695

left to show validity for positive spikes, and for negative spikes that are fired towards a1696

weak-incoming neuron. Consider a spike 〈v, u, τL〉, and let j be an integer satisfying that1697

τL ∈ Lj(v). Furthermore, let i be an integer such that j · t(v) + 1 ∈ Ri(u).1698

Next, assume that v is weak. We distinguish between two cases depending whether τL is1699

the first round in the block or not. For τL = i · T · t(v) we have `(v, u, τL) = i · T · t(u)− τL.1700

Recall that Ri(u) = [(i− 1) · t(u) + 1, i · t(u)], thus j · t(v) + 1 ≤ i · t(u), and `(v, u, τL) =1701

T · (i · t(u) − j · t(v)) ≥ T ≥ 1. Furthermore j · t(v) + 1 ≥ (i − 1) · t(u) + 1, hence1702

i · t(u)− j · t(v) ≤ t(u) ≤ T , and `(v, u, τL) ≤ T · (i · t(u)− j · t(v)) ≤ L. Otherwise, i.e. for1703

τL ≥ i · T · t(v), it holds that `(v, u, τL) = 1, and thus `(v, u, τL) ∈ [1, L].1704

It remains to consider the case where v is strong. Let τR be the second in the node-1705

delay simulation such that τL ∈ BτR . Consider the definition of ` for a spike 〈v, u, τL〉.1706

In case (I), we have `(v, u, τL) = τ ′R · T − τL, and since τ ′R ∈ [τR + 1, τR + 2T ] it holds1707

that 1 ≤ τ ′R · T − τL ≤ 2T 2 < L. In case (II), since τ ′R ∈ [τR − T, τR + 2T ], we have1708

that `(v, u, τL) = τ ′R · T + (2T 2 + 1) − τL ∈ [1, 5T 2]. Finally, in case (III) we simply have1709

`(v, u, τL) = 1. Hence, in all cases it holds that `(v, u, τL) ∈ [1, L]. J1710

In order to show that 〈NR, t〉 ∼ 〈NL, `〉, we restate the condition for similarity in the following1711

lemma. We then prove the lemma by induction on the round τL.1712

I Lemma 51 (Restating Lemma 49). For every round τL ≥ 0 of the simulation 〈NL, `〉 and1713

for every neuron u, let i be such that τL ∈ Li(u). Then:1714

1. If σi(u,NR) = 1:1715

If τL = i · T · t(u) then u fires in τL.1716

If τL > i · T · t(u) then u fires iff u is strong.1717

2. If σi(u,NR) = 0 then u does not fire in τL.1718

For the base case τL = 0, the correctness follows the fact that both simulations have the1719

same starting configuration. Now, let τL ≥ 1 and assume correctness for every τ ′L ≤ τL − 1.1720

Fix a neuron u and let i be an integer such that τL ∈ Li(u). We start with a useful auxiliary1721

claim.1722

B Claim 52. Let u be a weak-incoming neuron, v an incoming neighbor of u, and τ ′L ≥ 0.1723

Furthermore, let j be such that τ ′L ∈ Lj(v), and i such that j · t(v) + 1 ∈ Ri(u). Then the1724

spike 〈v, u, τ ′L〉 occurs and arrives to u in round τL = i · T · t(u) in the simulation 〈NL, `〉 iff1725
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τ ′L = j · t(v) and the spike 〈v, u, j · t(v)〉 occurs and arrives to u in Ri(u) in the simulation1726

〈NR, t〉.1727

Proof of Claim 52. Since u is weak-incoming v is weak, then by the induction assumption1728

for τ ′L and the definition of `, the spike event 〈v, u, τ ′〉 occurs and arrives in round τL iff there1729

exists j such that τ ′L = j · T · t(v) and σj(v,NR) = 1. This happens iff in the simulation of1730

〈NR, t〉 the spike event 〈v, u, j · t(v)〉 occurs and arrives to u in Ri(u). J1731

We split the proof of Lemma 51 into two cases.1732

Case 1: u is weak-incoming. Assume τL = i·T ·t(u), we want to show that u fires in round1733

τL iff σi(u,NR) = 1. By Claim 52, we get that the mapping 〈v, u, j ·T · t(v)〉 7→ 〈v, u, j · t(v)〉1734

is a bijection between the set of non self-spikes that u receives in τL in the simulation 〈NL, `〉1735

and the set of non-self spikes that u receives in Ri(u) in the simulation 〈NR, t〉. As for1736

self-spikes, note that if u is weak it has no self-loop. If u is strong, then by the induction1737

assumption u fires in τL − 1 iff σi−1(u,NR). Thus, u receives the self-spike 〈u, u, τL − 1〉 in1738

τL iff it receives the self-spike 〈u, u, (i − 1) · T · t(u)〉 in Ri(u). Since wL(v, u) = wR(v, u)1739

for every weak neuron v and for v = u, we get that the total spike weight that u receives1740

in τL equals to the total spike weight it receives in Ri(u). Thus, u fires in round τL iff1741

σi(u,NR) = 1.1742

Now, assume τL > i · T · t(u) and that either v is weak, or v is strong and σi(u,NR) = 0.1743

We want to show that u does not fire. Note that if v is weak then it has no self-loop, and if1744

v is strong and σi(u,NR) = 0 then by the induction assumption for τL − 1, u does not fire1745

in τL − 1. Thus, in both cases u does not receive a self-spike in τL. Furthermore, u has no1746

strong neighbors, therefore by Claim 52 u does not receive any positive spikes from incoming1747

neighbors. Since b(u) > 0, u does not fire in τL.1748

Finally, assume τL > i · T · t(u), and assume u is strong and σi(u,NR) = 1. We want1749

to show that u fires. Note that by Claim 52, u does not receive a negative spike in τL.1750

Furthermore, since σi(u,NR) = 1 by the induction assumption for τL − 1, u fires in τL − 11751

and therefore u receives a self-spike in τL. Since wL(u, u) ≥ b(u), u fires in τL.1752

Case 2: u is strong-incoming. By the properties of NL there is no edge between strong1753

neurons, and weak neurons have no self-loop. Hence u is weak and has no self-loop. We1754

handle separately the following sub-cases:1755

Case 2.1: σi(u,NR) = 1 and τL = i · T · t(u). We want to show that u fires in τL. Let1756

〈v, u, j · t(v)〉 be a positive spike in the simulation 〈NR, t〉 that arrives to u in Ri(u), and1757

let τ ′L be one of the T rounds [j · T · t(v), j · T · t(v) + (T − 1)]. Since v is strong then by1758

the induction assumption for τ ′L v fires in τ ′L, and therefore the spike event 〈v, u, τ ′L〉 occurs1759

in the simulation 〈NL, `〉. We now show that 〈v, u, τ ′L〉 arrives to u in τL, according to the1760

definition of ` for spikes from strong neurons.1761

Since σi(u,NR) = 1, u fires in the second rR = i · t(u) in the simulation 〈NR, t〉.1762

Note that j · t(v) + 1 ∈ Ri(u) implies that i · t(u) − j · t(v) ≤ T . Hence in particular1763

i · t(u) ∈ [j · t(v) + 1, j · t(v) + 2T ]. Let r′R ∈ [j · t(v) + 1, j · t(v) + 2T ] with r′R < i · t(u).1764

Note that r′R ∈ Ri(u), therefore r′R is not an end of a round of u. Hence u does not fire in1765

r′R. Therefore the second rR = i · t(u) is the first second in [j · t(v) + 1, j · t(v) + 2T ] that u1766

fires, and due to the definition of ` the spike 〈v, u, τ ′L〉 arrives in round τL.1767

Now, let f be an inhibitory incoming neighbor of u. By the definition of `, a spike from1768

f to u can arrive only in a round of the form τ ′R · T + T 2 + 1 for some second τ ′R, which is1769

not a multiplicity of T . Note that τL = i · T · t(u) is a multiplicity of T . Thus u does not1770

receive a negative spike in τL.1771

We get that in round τL, u receives only positive spikes in τL, and for every positive spike1772
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〈v, u, j ·t(v)〉 that arrives to u in Ri(u) and every τ ′L ∈ [j ·T ·t(v), j ·T ·t(v)+(T−1)], u receives a1773

spike 〈v, u, τ ′L〉. Since wR(v, u) = T ·wL(v, u) for every strong v and [j·T ·t(v), j·T ·t(v)+(T−1)]1774

contains T rounds, we get that the total spike weight that u receives in τL is at least the1775

total spike weight it receives in Ri(u) in the node-delay simulation. Since σi(u,NR) = 1, u1776

receives in Ri(u) a spike weight of at least b(u), which implies the same for round τL in the1777

edge-delay simulation. Thus u fires in round τL.1778

Case 2.2: σi(u,NR) = 0 or τL > i ·T · t(u). We want to show that u does not fire in τL.1779

Towards contradiction, assume that it does. First note that if u receives no positive spikes1780

in τL, then since b(u) > 0 u does not fire in τL. Otherwise, let 〈v, u, τ ′L〉 be a positive spike1781

that arrives to u in round τL. Recall that since v is strong, there are three cases for defining1782

the latency value of 〈v, u, τ ′L〉.1783

We will now show that 〈v, u, τ ′L〉 belongs to case (II). It does not belong to case (I), since1784

it does not hold that σi(u) = 1 and τL = i · T If we are in case (II), then there exists an1785

inhibitor f which is connected to u that fired in second τ ′R in the node-delay simulation that1786

arrived in τL, i.e. such that τL = τ ′R · T + (T 2 + 1). By the induction assumption for τ ′R · T ,1787

u fires in round τ ′R · T in the edge-delay simulation, and since u is strong-incoming then by1788

the definition of ` the spike 〈f, u, τ ′R · T 〉 arrives to u in round τ ′R · T + (T 2 + 1) = τL. Since1789

negative spikes are of weight −∞, u does not fire in τL. Therefore, 〈v, u, τ ′L〉 belongs to case1790

(III).1791

By the definition of case (III), 〈v, u, τ ′L〉 was generated in round τ ′L = τL − 1. Let j be1792

such that τL − 1 ∈ Lj(v), and let τR such that τL − 1 ∈ BτR . Furthermore, let v be an1793

excitatory incoming neighbor that fires in τL − 1, let j be such that τL − 1 ∈ Lj(v), and1794

let τR such that τL − 1 ∈ BτR . Our goal is to show that v fires in [τR + 1, τR + T ] in the1795

node-delay simulation, by showing that it receives enough positive spikes from its neighbors1796

in this interval.1797

Let f be an inhibitor that has an edge to v. By the network properties f also has an
edge to u, and since we are not in case (II) in the definition of `, f does not fire in the
interval [τR − T, τL + 2T ] in the node-delay simulation. This implies that v does not receive
a negative spike in [τR − T + 1, τR + 2T + 1]. Notice that τR ∈ [j · t(v), (j + 1) · t(v)− 1], and
since t(v) ≤ T we get

Rj+1(v) = [j · t(v) + 1, (j + 1) · t(v)] ⊆ [τR − T + 1, τR + 2T + 1].

Therefore, v does not receive a negative spike in Rj+1(v).1798

By the induction assumption for τL − 1 we have σj(v,NR) = 1. Together with the fact that1799

v is strong and receives no negative spikes in Rj+1(v), we get that σj+1(v,NR) = 1, i.e. v1800

fires in the node-delay simulation in the second (j + 1) · t(v). This implies that u receives a1801

spike from v in (j + 1) · t(v) + 1, which is inside the interval [τR + 1, τR + T ]. If so, let W1802

the total weight of the incoming neighbors of u that fired in round τL − 1. Since u fires in1803

round τL, it holds that W ≥ b(u). We will show this implies that u fires in some round in1804

[τR + 1, τR + 2T ], which contradicts the fact that none of the arriving spikes belong to case I.1805

We showed that for every neuron v that fires in τL − 1 in the edge-latency simulation, u
receive a spike from v in some round τ ′R ∈ [τR + 1, τR + T ] in the node-delay simulation. By
the definition of wR it holds that wR(v, u) = T · wL(v, u), and therefore we get

τR+T∑
τ ′
R

=τR+1

Wτ ′
R
≥ T ·W.

By an averaging argument there is a second τ ′R ∈ [τR+1, τR+T ] withWτ ′
R
≥ (T ·W )/T = W .1806
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Let i′ be an integer such that τ ′R ∈ Ri′(u). Therefore u receive in Ri′(u) a total positive1807

spike weight of at least W ≥ b(u). Furthermore, since no spike belongs to case C.2, u1808

do not receive a negative spike in Ri′(u) ⊆ [τR + 1, τR + 2T ]. Thus, u fires in the second1809

i′ · t(u) ∈ [τR + 1, τR + 2T ], a contradiction.1810

C.3 The Complete Synchronization Scheme1811

We are now ready to complete the proof of Theorem 5. We consider a neural network N1812

and an integer parameter T . Set L = 5T 2 and let NL = syncE(N , L) be the synchronized1813

network of N in the L-bounded node-delay model. We will now show that NL satisfies the1814

properties in the conditions of Lemma 49.1815

1816

Showing that NL satisfies the properties of Lemma 49.1817

Note that by the definition of the edge-delay synchronization scheme given in Section 4.3,1818

every neuron u ∈ NL is contained in one of the following modules: (1) an ORsync or NOTsync1819

subnetwork (Section 4.1), (2) a chain of a threshold gate which is a implemented as a boolean1820

circuit subnetwork (Section B.3), or (3) the chain of the global pulse generator (Section 4.3).1821

By the definitions of these modules, properties 1 and 2 hold. Moreover, together with the fact1822

that edges between the modules connect only weak excitatory neurons, we also get property1823

3. Furthermore, note that the only inhibitors in the network are r and vr neurons (which is1824

later added in 4.3) in the NOTsync module, and all their edges have weight −∞. Therefore,1825

property 4 is satisfied.1826

The remaining properties 5 and 6 are relevant only for strong neurons. Therefore, consider1827

the NOTsync module (Lemma 14), which is the only module that contains strong neurons.1828

By the module definition, there are two possible types of strong neurons: (i) the memory1829

neuron m, that is only connected to the reset neuron r; and (ii) intermediate neuron vi, that1830

is only connected to the output neuron z. In case (i), v has only one incoming inhibitor,1831

which is the neuron vr that resets the whole network after it finishes. Thus vr also has an1832

edge to r. In case (ii), v has two incoming inhibitors, vr and r, which both have an edge to1833

z. Therefore property 6 holds. Furthermore, both r and z have no edges from weak neurons.1834

Hence, property 5 holds.1835

Indeed, NL satisfies the conditions of Lemma 49, and therefore there exists a network1836

NR in the T -bounded node delay model which is similar to NL. We are left to show the1837

transitivity of similarity, i.e. that if N ∼ NL and NL ∼ NR, also N ∼ NR.1838

1839

Showing transitivity of similarity.1840

Let t be a node-delay function for NR. First, by the similarities of the networkss we get1841

V (N ) = V (NL) = V (NR). Moreover, by the definition of NL ∼ NR there exists a latency1842

function ` for NL such that 〈NL, `〉 ∼ 〈NR, t〉. Let Π be the execution of N , ΠL be the1843

execution of 〈N , `〉, and ΠR be the execution of 〈N , t〉. Let the interval [rL(v, p), rL(v, p+ 1))1844

be the pth phase of ΠL, and define [rR(v, p), rR(v, p+ 1)) as the pth phase of ΠR, where the1845

definition of rR(v, p) is as follows. Let L∗p(v) be the earliest block Li(v) whose first round τ∗p1846

is contained in phase p of ΠL, then rR(v, p) = τ∗p /T . We wish to prove the following claim.1847

B Claim 53. For every neuron v and p ≥ 0, v fires in round p of Π iff v fires in phase p of1848

ΠR.1849

First, note that by the construction of NL = sync(N ,L), every neuron v ∈ V (N ) can fire1850

only after the chain neuron cαL4+L fires. Since αL4 > t(v) · T this implies that v does not1851

fire in the first t(v) · T rounds of each phase in ΠL. We prove the two directions of the claim.1852
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Assume neuron v fires in round p in Π. Because N ∼ 〈NL, `〉 there is a round τL in1853

phase p of ΠL where v fires. Since v does not fire in the first t(v) · T rounds of each1854

phase we have τL ≥ rL(v, p) + t(v) · T . Since Lj(v) consists of t(v) · T rounds, the first1855

round of Lj(v) is in phase p. Therefore, j · t(v) · T ≥ τ∗, and therefore j · t(v) ≥ rR(v, p).1856

Furthermore we have that j · t(v) is not in phase p+ 1. Hence also j · (v) < rR(v, p+ 1),1857

i.e. j · t(v) is in phase p of Π. Due to the similarity 〈NL, `〉 ∼ 〈NR, t〉, since v fires in1858

Lj(v) it also fires in j · t(v). Hence v fires in phase p of ΠR.1859

Assume that v fires in phase p in ΠR. Assume this happens in round τR, then τR ≥ τ∗p /T .1860

Thus j ·T · t(v) ≥ τ∗p ≥ rL(v, i). Furthermore, j · t(v) < τ∗p /T implies that round j ·T · t(v)1861

was before phase p+ 1 of ΠL. Therefore j · T · t(v) is in phase p of ΠL. By the similaritiy1862

〈NL, `〉 ∼ 〈NR, t〉 we have that v fires in round j · T · t(v) in ΠL. Hence v fires in phase p1863

of ΠL. By the similarity N ∼ 〈NL, `〉 we get that v fires in round p of Π.1864
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