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Abstract14

In this paper, we study local and global broadcast in the dual graph model, which describes15

communication in a radio network with both reliable and unreliable links. Existing work proved16

that efficient solutions to these problems are impossible in the dual graph model under standard17

assumptions. In real networks, however, simple back-off strategies tend to perform well for solv-18

ing these basic communication tasks. We address this apparent paradox by introducing a new19

set of constraints to the dual graph model that better generalize the slow/fast fading behavior20

common in real networks. We prove that in the context of these new constraints, simple back-off21

strategies now provide efficient solutions to local and global broadcast in the dual graph model.22

We also precisely characterize how this efficiency degrades as the new constraints are reduced23

down to non-existent, and prove new lower bounds that establish this degradation as near opti-24

mal for a large class of natural algorithms. We conclude with an analysis of a more general model25

where we propose an enhanced back-off algorithm. These results provide theoretical foundations26

for the practical observation that simple back-off algorithms tend to work well even amid the27

complicated link dynamics of real radio networks.28
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1 Introduction35

In this paper, we study upper and lower bounds for efficient broadcast in the dual graph36

radio network model [4, 12, 13, 3, 6, 5, 8, 7, 15, 9], a dynamic network model that describes37
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0:2 On Simple Back-Off in Unreliable Radio Networks

wireless communication over both reliable and unreliable links. As argued in previous studies38

of this setting, including unpredictable link behavior in theoretical wireless network models39

is important because in real world deployments radio links are often quite dynamic.40

The Back-Off Paradox. Existing papers [13, 8, 15] proved that it is impossible to solve41

standard broadcast problems efficiently in the dual graph model without the addition of42

strong extra assumptions (see related work). In real radio networks, however, which suf-43

fer from the type of link dynamics abstracted by the dual graph model, simple back-off44

strategies tend to perform quite well. These dueling realities seem to imply a dispiriting45

gap between theory and practice: basic communication tasks that are easily solved in real46

networks are impossible when studied in abstract models of these networks.47

What explains this paradox? This paper tackles this fundamental question.48

As detailed below, we focus our attention on the adversary entity that decides which49

unreliable links to include in the network topology in each round of an execution in the dual50

graph model. We introduce a new type of adversary with constraints that better generalize51

the dynamic behavior of real radio links. We then reexamine simple back-off strategies52

originally introduced in the standard radio network model [2] (which has only reliable links),53

and prove that for reasonable parameters, these simple strategies now do guarantee efficient54

communication in the dual graph model combined with our new, more realistic adversary.55

We also detail how this performance degrades toward the existing dual graph lower56

bounds as the new constraints are reduced toward non-existent, and prove lower bounds57

that establish these bounds to be near tight for a large and natural class of back-off strate-58

gies. Finally, we perform investigations of even more general (and therefore more difficult)59

variations of this new style of adversary that continue to underscore the versatility of simple60

back-off strategies.61

We argue that these results help resolve the back-off paradox described above. When62

unpredictable link behavior is modeled properly, predictable algorithms prove to work sur-63

prisingly well.64

The Dual Graph Model. The dual graph model describes a radio network topology with65

two graphs, G = (V,E) and G′ = (V,E′), where E ⊆ E′, V corresponds to the wireless66

devices, E corresponds to reliable (high quality) links, and E′ \E corresponds to unreliable67

(quality varies over time) links. In each round, all edges from E are included in the network68

topology. Also included is an additional subset of edges from E′ \ E, chosen by an adver-69

sary. This subset can change from round to round. Once the topology is set for the round,70

the model implements the standard communication rules from the classical radio network71

model: a node u receives a message broadcast by its neighbor v in the topology if and only72

if u decides to receive and v is its only neighbor broadcasting in the round.73

We emphasize that the abstract models used in the sizable literature studying distributed74

algorithms in wireless settings do not claim to provide high fidelity representations of real75

world radio signal communication. They instead each capture core dynamics of this setting,76

enabling the investigation of fundamental algorithmic questions. The well-studied radio77

network model, for example, provides a simple but instructive abstraction of message loss78

due to collision. The dual graph model generalizes this abstraction to also include network79

topology dynamics. Studying the gaps between these two models provides insight into the80

hardness induced by the types of link quality changes common in real wireless networks.81

The Fading Adversary. Existing studies of the dual graph model focused mainly on the82

information about the algorithm known to the model adversary when it makes its edge83

choices. In this paper, we place additional constraints on how these choices are generated.84
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Problem Time Prob. Remarks Ref.

Local broadcast

O
(

∆1/τ̄ ·τ̄2

log ∆ · log (1/ε)
)

1− ε τ̄ = min{τ, log ∆} Thm 6

Ω
(

∆1/τ τ
log ∆

)
1
2 τ ∈ O(log ∆) Thm 7

Ω
(

∆1/τ τ2

log ∆

)
1
2 τ ∈ O(log ∆/ log log ∆) Thm 8

Global broadcast

O
(

(D + log(n/ε)) · ∆1/τ̄ τ̄2

log ∆

)
1− ε τ̄ = min{τ, log ∆} Thm 9

Ω
(
D · ∆1/τ τ

log ∆

)
1
2 τ ∈ O(log ∆) Thm 10

Ω
(
D · ∆1/τ τ2

log ∆

)
1
2 τ ∈ O(log ∆/ log log ∆) Thm 10

Table 1 A summary of the upper and lower bounds proved in this paper, along with pointers
to the corresponding theorems. In the following, n is the network size, ∆ ≤ n is an upper bound
on local neighborhood size, D is the (reliable link) network diameter, and τ is the stability factor
constraining the adversary.

In more detail, in each round, the adversary independently draws the set of edges from85

E′ \ E to add to the topology from some probability distribution defined over this set. We86

do not constrain the properties of the distributions selected by the adversary. Indeed, it87

is perfectly valid for the adversary in a given round to use a point distribution that puts88

the full probability mass on a single subset, giving it full control over its selection for the89

round. We also assume the algorithm executing in the model has no advance knowledge of90

the distributions used by the adversary.91

We do, however, constrain how often the adversary can change the distribution from92

which it selects these edge subsets. In more detail, we parameterize the model with a sta-93

bility factor, τ ≥ 1, and restrict the adversary to changing the distribution it uses at most94

once every τ rounds. For τ = 1, the adversary can change the distribution in every round,95

and is therefore effectively unconstrained and behaves the same as in the existing dual graph96

studies. On the other extreme, for τ = ∞, the adversary is now quite constrained in that97

it must draw edges independently from the same distribution for the entire execution. As98

detailed below, we find τ ≈ log ∆, for local neighborhood size ∆, to be a key threshold after99

which efficient communication becomes tractable.100

Notice, these constraints do not prevent the adversary from inducing large amounts of101

changes to the network topology from round to round. For non-trivial τ values, however,102

they do require changes that are nearby in time to share some underlying stochastic struc-103

ture. This property is inspired by the general way wireless network engineers think about104

unreliability in radio links. In their analytical models of link behavior (used, for example, to105

analyze modulation or rate selection schemes, or to model signal propagation in simulation),106

engineers often assume that in the short term, changes to link quality come from sources107

like noise and multi-path effects, which can be approximated by independent draws from an108

underlying distribution (Gaussian distributions are common choices for this purpose). Long109

term changes, by contrast, can come from modifications to the network environment itself,110

such as devices moving, which do not necessarily have an obvious stochastic structure, but111

unfold at a slower rate than short term fluctuations.112

In our model, the distribution used in a given round captures short term changes, while113

the adversary’s arbitrary (but rate-limited) changes to these distributions over time capture114

long term changes. Because these general types of changes are sometimes labeled short/fast115

fading in the systems literature (e.g., [17]), we call our new adversary a fading adversary.116

OPODIS 2018



0:4 On Simple Back-Off in Unreliable Radio Networks

Our Results and Related Work. In this paper, we study both local and global broadcast.117

The local version of this problems assumes some subset of devices in a dual graph network118

are provided broadcast messages. The problem is solved once each receiver that neighbors a119

broadcaster in E receives at least one message. The global version assumes a single broad-120

caster starts with a message that it must disseminate to the entire network. Below we121

summarize the relevant related work on these problems, and the new bounds proved in this122

paper. We conclude with a discussion of the key ideas behind these new results.123

Related Work. In the standard radio network model, which is equivalent to the dual graph124

model with E = E′, Bar-Yehuda et al. [2] demonstrate that a simple randomized back-off125

strategy called Decay solves local broadcast in O(log2 n) rounds and global broadcast in126

O(D logn + log2 n) rounds, where n = |V | is the network size and D is the diameter of G.127

Both results hold with high probability in n, and were subsequently proved to be optimal128

or near optimal1 [1, 14, 16].129

In [12, 13], it is proved that global broadcast (with constant diameter), and local broad-130

cast require Ω(n) rounds to solve with reasonable probability in the dual graph model131

with an offline adaptive adversary controlling the unreliable edge selection, while [8] proves132

that Ω(n/ logn) rounds are necessary for both problems with an online adaptive adversary.133

As also proved in [8]: even with the weaker oblivious adversary, local broadcast requires134

Ω(
√
n/ logn) rounds, whereas global broadcast can be solved in an efficient O(D log (n/D)+135

log2 n) rounds, but only if the broadcast message is sufficiently large to contain enough shared136

random bits for all nodes to use throughout the execution. In [15], an efficient algorithm for137

local broadcast with an oblivious adversary is provided given the assumption of geographic138

constraints on the dual graphs, enabling complicated clustering strategies that allow nearby139

devices to coordinate randomness.140

New Results. In this paper, we turn our attention to local and global broadcast in the141

dual graph model with a fading adversary constrained by some stability factor τ (unknown142

to the algorithm). We start by considering upper bounds for a simple back-off style strategy143

inspired by the decay routine from [2]. This routine has broadcasters simply cycle through a144

fixed set of broadcast probabilities in a synchronized manner (all broadcasters use the same145

probability in the same round). We prove that this strategy solves local broadcast with146

probability at least 1 − ε, in O
(

∆1/τ̄ ·τ̄2

log ∆ · log (1/ε)
)
rounds, where ∆ is an upper bound on147

local neighborhood size, and τ̄ = min{τ, log ∆}.148

Notice, for τ ≥ log ∆ this bound simplifies to O(log ∆ log (1/ε)), matching the optimal149

results from the standard radio network model.2 This performance, however, degrades to-150

ward the polynomial lower bounds from the existing dual graph literature as τ reduces from151

log ∆ toward a minimum value of 1. We show this degradation to be near optimal by prov-152

ing that any local broadcast algorithm that uses a fixed sequence of broadcast probabilities153

requires Ω(∆1/ττ/ log ∆) rounds to solve the problem with probability 1/2 for a given τ .154

For τ ∈ O(log ∆/ log log ∆) , we refine this bound further to Ω(∆1/ττ2/ log ∆), matching155

our upper bound within constant factors.156

We next turn our attention to global broadcast. We consider a straightforward global157

broadcast algorithm that uses our local broadcast strategy as a subroutine. We prove that158

this algorithm solves global broadcast with probability at least 1 − ε, in O(D + log(n/ε)) ·159

1 The broadcast algorithm from [2] requires O(D logn+ log2 n) rounds, whereas the corresponding lower
bound is Ω(D log (n/D) + log2 n). This gap was subsequently closed by a tighter analysis of a natural
variation of the simple Decay strategy used in [2]

2 To make it match exactly, set ∆ = n and ε = 1/n, as is often assumed in this prior work.
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∆1/τ̄ τ̄2/ log ∆) rounds, where D is the diameter of G, and τ̄ = min{τ, log ∆}. Notice, for160

τ ≥ log ∆ this bound reduces to O(D log ∆ + log ∆ log (1/ε)), matching the near optimal161

result from the standard radio network model. As with local broadcast, we also prove the162

degradation of this performance as τ shrinks to be near optimal. (See Table 1 for a summary163

of these results and pointers to where they are proved in this paper.)164

Finally we consider the generalized model when we allow correlation between the dis-165

tributions selected by the adversary within a given stable period of τ rounds. It turns out166

that in the case of arbitrary correlations any simple algorithm needs time Ω(
√

∆/l) if it167

uses only cycles of length l. In particular any our previous algorithms would require time168

Ω(
√

∆/ log ∆) in the model with arbitrary correlations. The adversary construction in this169

lower bound requires large changes in the degree of a node in successive steps. Such changes170

are unlikely in real networks thus we propose a restricted version of the adversary. We assume171

that the expected change in the degree of any node can be at most ∆1/(τ̄(1−o(1)). With such172

restriction it is again possible to propose a simple, but slightly enhanced, back-off strategy173

(with a short cycle of probabilities) that works efficiently in time O
(
∆1/τ̄ · τ̄ · log (1/ε)

)
.174

Technique Discussion. Simple back-off strategies can be understood as experimenting175

with different guesses at the amount of contention afflicting a given receiver. If the network176

topology is static, this contention is fixed, therefore so is the right guess. A simple strategy177

cycling through a reasonable set of guesses will soon arrive at this right guess—giving the178

message a good chance of propagating.179

The existing lower bounds in the dual graph setting deploy an adversary that changes180

the topology in each round to specifically thwart that round’s guess. In this way, the al-181

gorithm never has the right guess for the current round so its probability of progress is182

diminished. The fading adversary, by contrast, is prevented from adopting this degenerate183

behavior because it is required to stick with the same distribution for τ consecutive rounds.184

An important analysis at the core of our upper bounds reveals that any fixed distribution185

will be associated with a right guess defined with respect to the details of that distribution.186

If τ is sufficiently large, our algorithms are able to experiment with enough guesses to hit187

on this right guess before the adversary is able to change the distribution.188

More generally speaking, the difficulty of broadcast in the previous dual graph studies189

was not due to the ability of the topology to change dramatically from round to round (which190

can happen in practice), but instead due to the model’s ability to precisely tune these changes191

to thwart the algorithm (a behavior that is hard to motivate). The dual graph model with192

the fading adversary preserves the former (realistic) behavior while minimizing the latter193

(unrealistic) behavior.194

2 Model and Problem195

We study the dual graph model of unreliable radio networks. This model describes the net-196

work topology with two graphs G = (V,E) and G′ = (V,E′), where E ⊆ E′. The n = |V |197

vertices in V correspond to the wireless devices in the network, which we call nodes in the198

following. The edge in E describe reliable links (which maintain a consistently high quality),199

while the edges in E′ \ E describe unreliable links (which have quality that can vary over200

time). For a given dual graph, we use ∆ to describe the maximum degree in G′, and D to201

describe the diameter of G.202

Time proceeds in synchronous rounds that we label 1, 2, 3... For each round r ≥ 1, the203

network topology is described by Gr = (V,Er), where Er contains all edges in E plus a204

subset of the edges in E′ \E. The subset of edges from E′ \E are selected by an adversary.205

The graph Gr can be interpreted as describing the high quality links during round r. That206

OPODIS 2018



0:6 On Simple Back-Off in Unreliable Radio Networks

is, if {u, v} ∈ Er, this mean the link between u and v is strong enough that u could deliver207

a message to v, or garble another message being sent to v at the same time.208

With the topology Gr established for the round, behavior proceeds as in the standard209

radio network model. That is, each node u ∈ V can decide to transmit or receive. If u210

transmits, it learns nothing about other messages transmitted in the round (i.e., the radios211

are half-duplex). If u receives and exactly one neighbor v of u in Er transmits, then u212

receives v’s message. If u receives and two or more neighbors in Er transmit, u receives213

nothing as the messages are lost due to collision. If u receives and no neighbor transmits,214

u also receives nothing. We assume u does not have collision detection, meaning it cannot215

distinguish between these last two cases.216

The Fading Adversary. A key assumption in studying the dual graph model are the con-217

straints placed on the adversary that selects the unreliable edges to include in the network218

topology in each round. In this paper, we study a new set of constraints inspired by real219

network behavior. In more detail, we parameterize the adversary with a stability factor that220

we represent with an integer τ ≥ 1. In each round, the adversary must draw the subset221

of edges (if any) from E′ \ E to include in the topology from a distribution defined over222

these edges. The adversary selects which distributions it uses. Indeed, we assume it is223

adaptive in the sense that it can wait until the beginning of a given round before deciding224

the distribution it will use in that round, basing its decision on the history of the nodes’225

transmit/receive behavior up to this point, including the previous messages they send, but226

not including knowledge of the nodes’ private random bits.227

The adversary is constrained, however, in that it can change this distribution at most228

once every τ rounds. On one extreme, if τ = 1, it can change the distribution in every round229

and is effectively unconstrained in its choices. On the other other extreme, if τ =∞, it must230

stick with the same distribution for every round. For most of this paper, we assume the231

draws from these distributions are independent in each round. Toward the end, however,232

we briefly discuss what happens when we generalize the model to allow more correlations.233

As detailed in the introduction, because these constraints roughly approximate the fast/s-234

low fading behavior common in the study of real wireless networks, we call a dual graph235

adversary constrained in this manner a fading adversary.236

Problem. In this paper, we study both the local and global broadcast problems. The local237

broadcast problem assumes a set B ⊆ V of nodes are provided with a message to broadcast.238

Each node can receive a unique message. Let R ⊆ V be the set of nodes in V that neighbor239

at least one node in B in E. The problem is solved once every node in R has received at least240

one message from a node in B. We assume all nodes in B start the execution during round241

1, but do not require that B and R are disjoint (i.e., broadcasters can also be receivers).242

The global broadcast problem, by contrast, assumes a single source node in V is provided a243

broadcast message during round 1. The problem is solved once all nodes have received this244

message. Notice, local broadcast solutions are often used as subroutines to help solve global245

broadcast.246

Uniform Algorithms. The broadcast upper and lower bounds we study in this paper focus247

on uniform algorithms, which require nodes to make their probabilistic transmission deci-248

sions according to a predetermined sequence of broadcast probabilities that we express as a249

repeating cycle, (p1, p2, ..., pk) of k probabilities in synchrony. In studying global broadcast,250

we assume that on first receiving a message, a node can wait to start making probabilistic251

transmission decisions until the cycle resets. We assume these probabilities can depend on252

n, ∆ and τ (or worst-case bounds on these values).253
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In uniform algorithms in the model with fading adversary an important parameter of any254

node v is its effective degree in step t denoted by dt(v) and defined as the number of nodes255

w such that (v, w) ∈ Et and w has a message to transmit (i.e., will participate in step t).256

As mentioned in the introduction, uniform algorithms, such as the decay strategy from [2],257

solve local and global broadcast with optimal efficiency in the standard radio network model.258

A major focus of this paper is to prove that they work well in the dual graph model as well,259

if we assume a fading adversary with a reasonable stability factor.260

The fact that our lower bounds assume the algorithms are uniform technically weaken261

the results, as there might be non-uniform strategies that work better. In the standard radio262

network model, however, this does not prove to be the case: uniform algorithms for local and263

global broadcast match lower bounds that hold for all algorithms (c.f., discussion in [16]).264

3 Local broadcast265

We begin by studying upper and lower bounds for the local broadcast problem. Our upper266

bound performs efficiently once the stability factor τ reaches a threshold of log ∆. As τ267

decreases toward a minimum value of 1, this efficiency degrades rapidly. Our lower bounds268

capture that this degradation for small τ is unavoidable for uniform algorithms. In the fol-269

lowing we use the notation τ̄ = min{τ, dlog ∆e}. By logn we will always denote logarithm270

at base 2 and by lnn the natural logarithm.271

3.1 Upper Bound272

All uniform local broadcast algorithms behave in the same manner: the nodes in B repeat-273

edly broadcast according to some fixed cycle of k broadcast probabilities. We formalize274

this strategy with algorithm RLB (Robust Local Broadcast) described below (we break out275

Uniform into its own procedure as we later use it in our improved FRLB local broadcast algo-276

rithm as well):
1 Procedure: Uniform(k, p1, p2, . . . , pk)
2 for i = 1, 2, . . . , k do
3 if has message then
4 with probability pi Transmit otherwise Listen
5 else

Listen // without a message always listen

1 Algorithm: RLB(r, τ̄)
2 for i← 1 to τ̄ do pi ← ∆−i/τ̄
3 repeat r times
4 Uniform (τ̄ , p1, p2, . . . , pτ̄ )

277

Before we prove the complexity of RLB we will show two useful properties of any uniform278

algorithm. Let R(v)
t denote the event that node v receives a message from some neighbor in279

step t.280

I Lemma 1. For any uniform algorithm and any node v and step t if dt(v) > 0 and the281

algorithm uses in step t probability p ≤ 1/2, then Pr
[
R

(v)
t

]
≥ p·dt(v)

(2e)p·dt(v) .282

Proof. For this to happen exactly one among dt(v) neighbors of v has to transmit and v283

must not transmit. Node v does not transmit with probability 1 − p if it has the message284

and clearly with probability 1 if it has the message. Denote by α = p · dt(v). We have285

Pr
[
R

(v)
t

]
≥ pdt(v) · (1− p)dt(v) = α ·

(
1− α

dt(v)

)dt(v)
286

= α

((
1− α

di(v)

)dt(v)/α−1
· (1− p)

)α
≥ α(e−1(1− p))α ≥ α

(2e)α .287

288
J289

OPODIS 2018
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I Lemma 2. For any uniform algorithm, node v and step t if dt(v) > 0:290

Pr
[
R

(v)
t | dt(v) ∈ [d1, d2]

]
≥ min

{
Pr
[
R

(v)
t | dt(v) = d1

]
,Pr

[
R

(v)
t | dt(v) = d2

]}
.291

Proof. If the algorithm uses probability p in step t then Pr
[
R

(v)
t

]
= pdt(v)(1 − p)dt(v).292

Seeing this expression as a function of dt(v) we can compute the derivative and obtain that293

this function has a single maximum in dt(v) = 1/(ln(1/(1− p))). Hence if we restrict dt(v)294

to be within a certain interval, then value of the function is lower bounded by the minimum295

at the endpoints of the interval. J296

Our upper bound analysis leverages the following useful lemma which can be shown by297

induction on n (the left side is also known as the Weierstrass Product Inequality):298

I Lemma 3. For any x1, x2, . . . , xn such that 0 ≤ xi ≤ 1:299

1−
n∑
i=1

xi ≤
n∏
i=1

(1− xi) ≤ 1−
n∑
i=1

xi +
∑

1≤i<j≤n
xixj .300

To begin our analysis, we focus on the behavior of our algorithm with respect to a301

single receiver when we use the transmit probability sequence p1, p2, ..., pτ̄ , where τ̄ =302

min{τ, dlog ∆e}, and pi = ∆−i/τ̄ .303

I Lemma 4. Fix any receiver u ∈ R and error bound ε > 0. It follows: RLB(2dln(1/ε)e · d4e ·304

∆1/τ̄e, τ̄) delivers a message to u with probability at least 1− ε in time O(∆1/τ̄ τ̄ log(1/ε)).305

Proof. It is sufficient to prove the claim for τ ≤ log ∆. For τ > log ∆ we use the algorithm306

for τ = log ∆. Note that any algorithm that is correct for some τ must also work for any307

larger τ because the adversary may not choose to change the distribution as frequently as308

it is permitted to. In the case where τ ≤ log ∆ we get that ∆1/τ ≥ 2.309

We want to show that if the nodes from Nu∩B execute procedure Uniform(τ, p1, . . . , pτ )310

twice, then u receives some message with probability at least log ∆/(2e∆1/ττ). Every time311

we execute Uniform twice, we have a total of 2τ consecutive time slots out of which, by312

the definition of our model, at least τ consecutive slots have the same distribution of the313

additional edges and moreover stations try all the probabilities p1, p2, . . . , pτ (not necessarily314

in this order). Let T denote the set of these τ time slots and for i = 1, 2, . . . , τ let ti ∈ T be315

the step in which probability pi is used. We also denote the distribution used in steps from316

set T by E(T ). Hence we can denote the edges between u and its neighbors that have some317

message by Epart = {(u, b) : b ∈ B} ∩ E′. We know that the edge sets are chosen indepen-318

dently from the same distribution: Et ∼ E(T ) for t ∈ T . Let us denote by Xt = |Et ∩Epart|319

the random variable being the number of neighbors that are connected to u in step t and320

belong to B. For each i from 1 to τ we define qi = Pr
[

∆(i−1)/τ < Xt ≤ ∆i/τ
]
, for any321

t ∈ T . Observe that probabilities qi do not depend on t during the considered τ rounds.322

Moreover since u ∈ R then u is connected via a reliable edge to at least one node in B, thus323

E ∩ Epart 6= ∅, hence Pr[Xt = 0 ] = 0 thus:324
τ∑
i=1

qi = 1, (1)325

Let Si denote the indicator random variable being 1 if in ti-th round if exactly one neighbor326

of u transmits and u is not transmitting in round t and 0 otherwise. Clearly if Si = 1 in327

some round t, then u receives some message in round t. Then we would like to show for328

each i = 1, 2, . . . , τ that:329

Pr[Si = 1 ] ≥ qi
2e∆1/τ . (2)330
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In ti-th slot the transmission probability is pi = ∆−i/τ and the transmission choices done331

by the stations are independent from the choice of edges Eti active in round ti. Note that332

u might also belong R and try to transmit. But since pi ≤ 1/2 then u is not transmitting333

with probability at least 1/2. If Qi denotes the event that ∆(i−1)/τ < Xti ≤ ∆i/τ then:334

Pr[Si = 1 ] ≥ Pr[Si = 1|Qi ] ·Pr[Qi ]335

≥ pi(∆(i−1)/τ + 1) · (1− pi)∆(i−1)/τ
· 1

2 · qi336

≥ pi∆(i−1)/τ · (1− pi)∆i/τ−1 · 1
2 · qi337

≥ ∆−1/τ ·
(

1− 1
∆i/τ

)∆i/τ−1
· qi2 ≥

qi
2e∆1/τ ,338

339

because inequality (1 − 1/x)x−1 ≥ e−1 holds for all x > 0. Since the edge sets are chosen340

independently in each step and the random choices of the stations whether to transmit or341

not are also independent from each other we have:342

Pr
[

τ∧
i=1

(Si = 0)
]

=
τ∏
i=1

Pr[Si = 0 ] ≤
τ∏
i=1

(
1− qi

2e∆1/τ

)
by Equation (2)343

≤ 1−
τ∑
i=1

qi
2e∆1/τ +

∑
1≤i<j≤τ

qiqj
4e2∆2/τ by Lemma 3344

≤ 1−
∑τ
i=1 qi

2e∆1/τ +
(
∑τ
i=1 qi)

2

4e2∆2/τ345

≤ 1− 1
2e∆1/τ + 1

4e2∆2/τ ≤ 1− 1
4e∆1/τ by Equation (1)346

347

Hence if we execute the procedure for 2τdln(1/ε)e · d4e ·∆1/τe time steps, we have at least348

dln(1/ε)e · d4e ·∆1/τe sequences of τ consecutive time steps in which the distribution over349

the unreliable edges is the same and the algorithm tries all the probabilities {p1, p2, . . . , pτ}.350

Each of these procedures fails independently with probability at most 1− 1/(4e∆1/τ ) hence351

the probability that all the procedures fail is at most:
(
1− 1

4e∆1/τ

)dln(1/ε)e·d4e∆1/τe ≤352

e−dln(1/ε)e < ε J353

On closer inspection of the analysis of Lemma 4, it becomes clear that if we tweak slightly354

the probabilities used in our algorithm, we require fewer iterations. In more detail, the prob-355

ability of a successful transmission in the case where each of the x transmitters broadcasts356

independently with probability α/x is approximately α/(2e)α. In the previous algorithm we357

were transmitting in successive steps with probabilities ∆−1/τ ,∆−2/τ , . . . . Thus if x = 1 we358

would get in i-th step α = ∆−i/τ and approximately the sum of probabilities of success in τ359

consecutive steps would be ∆−1/τ . The formula α/(2e)−α shows that the success probability360

depends on α linearly if α < 1 (“too small" probability) and depends exponentially on α if361

α > 1 (“too large" probability). In the previous theorem we intuitively only use the linear362

term. In the next one we would like to also use, to some extent, the exponential term. If363

we shift all the probabilities by multiplying them by a factor of β > 1, the total success364

probability would be approximately β∆−1/τ if x = 1 and β(2e)−β if x = ∆. Thus by setting365

β = log2e ∆/τ we maximize both these values.366

The following lemma makes this above intuition precise and gains a log-factor in per-367

formance in algorithm FRLB (Fast Robust Local Broadcast) compared to RLB. As part of368

this analysis, we add a second statement to our lemma that will prove useful during our369

subsequent analysis of global broadcast. The correctness of this second lemma is a straight-370

forward consequence of the analysis.371

OPODIS 2018



0:10 On Simple Back-Off in Unreliable Radio Networks

1 Algorithm: FRLB(r, τ̄)
2 for i← 1 to τ̄ do pi ← ∆−i/τ̄ · log2e ∆/τ̄
3 repeat r times
4 Uniform (τ̄ , p1, p2, . . . , pτ̄ )

372

I Lemma 5. Fix any receiver u ∈ R and error bound ε > 0. It follows:373

1. FRLB(2dln(1/ε)e · d4∆1/τ̄ τ̄ / log2e ∆e, τ̄) completes local broadcast with a single receiver in374

time375

O
(

∆1/τ̄ ·τ̄2

log ∆ · log (1/ε)
)
with probability at least 1− ε, for any ε > 0,376

2. FRLB(2, τ̄) completes local broadcast with a single receiver with probability at least log2e ∆
4∆1/τ̄ τ̄

.377

Proof Idea. The proof is similar to the one of Lemma 4. We define the probabilities qi378

and events Qi in the same way. The key difference is in the evaluation of the probability379

of success in round ti conditioned on Qi (Pr[Si = 1 | Qi ]). Event Qi restricts the num-380

ber of neighbors connected to u to some interval. We prove that the success probability381

Pr[Si = 1 | Qi ] is lower bounded by the minimum of the values at the endpoints of this382

interval. This is true because when x stations transmit with probability p to a common383

neighbor then the probability of a successful transmission seen as a function of x has a sin-384

gle maximum at x = 1/p hence its value at any point of some fixed interval is lower bounded385

by the minimum of the values at the endpoints. J386

In Lemmas 4 and 5 we studied the fate of a single receiver in R during an execution of387

algorithms RLB and FRLB. Here we apply this result to bound the time for all nodes in R to388

receive a message, therefore solving the local broadcast problem. In particular, for a desired389

error bound ε, if we apply these lemmas with error bound ε′ = ε/n, then we end up solving390

the single node problem with a failure probability upper bounded by ε/n. Applying a union391

bound, it follows that the probability that any node from R fails to receive a message is less392

than ε. Formally:393

I Theorem 6. Fix an error bound ε > 0. It follows that algorithm FRLB(2dln(n/ε)e ·394

d4∆1/τ̄ τ̄ / log ∆e) solves local broadcast in O
(

∆1/τ̄ ·τ̄2

log2e ∆ · log (n/ε)
)

rounds, with probability395

at least 1− ε.396

3.2 Lower bound397

Observe that for τ = Ω(log ∆), FRLB has a time complexity of O(log ∆ logn) rounds for398

ε = 1/n, which matches the performance of the optimal algorithms for this problem in399

the standard radio model. This emphasizes the perhaps surprising result that even large400

amounts of topology changes do not impede simple uniform broadcast strategies, so long as401

there is independence between nearby changes.402

Once τ drops below log ∆, however, a significant gap opens between our model and the403

standard radio network model. Here we prove that gap is fundamental for any uniform404

algorithm in our model.405

In the local broadcast problem, a receiver from set R can have between 1 and ∆ neigh-406

bors in set B. The neighbors should optimally use probabilities close to the inverse of their407

number. But since the number of neighbors is unknown, the algorithm has to check all the408
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values. If we look at the logarithm of the inverse of the probabilities (call them log-estimates)409

used in Lemma 4 we get i log ∆/τ , for i = 1, 2, . . . , τ—which are spaced equidistantly on the410

interval [0, log ∆]. The goal of the algorithm is to minimize the maximum gap between two411

adjacent log-estimates placed on this interval since this maximizes the success probability412

in the worst case. With this in mind, in the proof of the following lower bound, we look413

at the dual problem. Given a predetermined sequence of probabilities used by an arbitrary414

uniform algorithm, we seek the largest gap between adjacent log-estimates, and then select415

edge distributions that take advantage of this weakness.416

I Theorem 7. Fix a maximum degree ∆ ≥ 10, stability factor τ ≤ log(∆ − 1)/16, and417

uniform local broadcast algorithm A. Assume that A guarantees with probability at least418

1/2 to solve local broadcast in f(∆, τ) rounds when executed in any dual graph network419

with maximum degree ∆ and fading adversary with stability τ . It follows that f(∆, τ) ∈420

Ω(∆1/ττ/ log ∆).421

Proof Idea. In this proof we use a star with ∆ arms out of which only one is reliable – all422

other arms are controlled by the adversary. The single receiver u is the center of the star.423

For any uniform algorithm we divide the probabilities pi into sequences of length τ and find424

a distribution in which the degree of u is “hard” for each sequence. The algorithm places τ425

log-estimates on interval [0, log ∆] we, as an adversary, can clearly find a largest gap between426

adjacent log-estimates of length approximately log ∆/τ . We choose the degree d of u such427

that its logarithm is inside this gap (in correct distances from both its endpoints). With this428

choice we can upper bound the probability of a successful transmission in any step during429

these τ steps, because the distance between the log-estimate and the logarithm of the degree430

of u gives us lower bound on dpi if pi > 1/d or of 1/(dpi) if pi < 1/d which in turn upper431

bounds the probability of a successful transmission. J432

In our next theorem, we refine the argument used in Theorem 7 for the case where τ is a433

non-trivial amount smaller than the log ∆ threshold. We will argue that for smaller τ , the434

complexity is Ω(∆1/ττ2/ log ∆), which more exactly matches our best upper bound. We are435

able to trade this small amount of extra wiggle room in τ for a stronger lower bound because436

it simplifies certain probabilistic obstacles in our argument. Combined with our previous437

theorem, the below result shows our upper bound performance is asymptotically optimal for438

uniform algorithms for all but a narrow range of stability factors, for which it is near tight.439

I Theorem 8. Fix a maximum degree ∆ ≥ 10, stability factor τ ≤ ln(∆−1)/(12 log log(∆−440

1)), and uniform local broadcast algorithm A. Assume that A guarantees with probability441

at least 1/2 to solve local broadcast in f(∆, τ) rounds when executed in any dual graph442

network with maximum degree ∆ and fading adversary with stability τ . It follows that443

f(∆, τ) ∈ Ω(∆1/ττ2/ log ∆).444

Proof Idea. The proof is similar to proof of Theorem 7. Here we also find a gap of length445

log ∆/τ and then we argue that in a “proximity” of each such a large gap there has to exist446

a large number of log-estimates. The proximity is defined so that all log-estimates outside of447

it are (almost) irrelevant, give a very small probability of success, if we choose the logarithm448

of the degree of u to be inside the considered gap. This in turn implies that in the remaining449

part of the interval the “density" of log-estimates is lower hence there must exist another450

large gap. By repeating this argument we can derive a contradiction with the assumed time451

complexity. The reason why we need to restrict τ is that our defined proximity must be of452

the same order as log ∆/τ which is no longer true for τ being close to log ∆. J453
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4 Global Broadcast454

We now turn our attention to the global broadcast problem. Our upper bound will use the455

same broadcast probability sequence as our best local broadcast algorithm from before. As456

with local broadcast, for τ ≥ log ∆, our performance nearly matches the optimal perfor-457

mance in the standard radio network model, and then degrades as τ shrinks toward 1. Our458

lower bound will establish that this degredation is near optimal for uniform algorithms in459

this setting. In this section we also use the notation τ̄ = min{τ, dlog ∆e}.460

4.1 Upper Bound461

A uniform global broadcast algorithm requires each node to cycle through a predetermined462

sequence of broadcast probabilities once it becomes active (i.e., has received the broadcast463

message). The only slight twist in our algorithm’s presentation is that we assume that once464

a node becomes active, it waits until the start of the next probability cycle to start broad-465

casting. To implement this logic in pseudocode, we use the variable Time to indicate the466

current global round count. We detail this algorithm below (notice, the FRLB(2) is the local467

broadcast algorithm analyzed in Lemma 5).

1 Algorithm: RGB(ε)
2 Wait until receiving the message
3 Wait until (Time mod 2τ̄) = 0
4 repeat dln (2n/ε)e · d4∆1/τ̄ τ̄ / log ∆e times
5 FRLB(2)

468

I Theorem 9. Fix an error bound ε > 0. It follows that algorithm RGB(ε) completes global469

broadcast in time O
(

(D + log(n/ε)) · ∆1/τ̄ τ̄2

log ∆

)
, with probability at least 1− ε.470

Proof Idea. Here we use the same idea as in the proof of [2, Theorem 4]. There a local471

broadcast algorithm (Decay) is used as a black box in a global broadcast algorithm. We use472

a different local broadcast algorithm (FRLB) but the same analysis applies. J473

4.2 Lower Bound474

The global broadcast lower bound of Ω(D log(n/D)), proved by Kushilevitz and Mansour [14]475

for the standard radio network model, clearly still holds in our setting, as the radio network476

model is a special case of the dual graph model where E′ = E. Similarly, the Ω(logn log ∆)477

lower bound proved by Alon et al. [1] also applies.3 It follows that for τ ≥ log ∆, we almost478

match the optimal bound for the standard radio network model, and do match the time of479

the seminal algorithm of Bar-Yehuda et al. [2].480

For smaller τ , this performance degrades rapidly. Here we prove this degradation is481

near optimal for uniform global broadcast algorithms in our model. We apply the obvious482

approach of breaking the problem of global broadcast into multiple sequential instances of483

local broadcast (though there are some non-obvious obstacles that arise in implementing484

this idea). As with our local broadcast lower bounds, we separate out the case where τ is485

3 This bound is actually stated as Ω(log2 n), but ∆ = Θ(n) in the lower bound network, so it can be
expressed in terms of ∆ as well for our purposes here.
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at least a 1/ log log ∆ factor smaller than our log ∆ threshold, as we can obtain a slightly486

stronger bound under this assumption.487

I Theorem 10. Fix a maximum degree ∆ ≥ 10, stability factor τ , diameter D ≥ 24 and488

uniform global broadcast algorithm A. Assume that A solves global broadcast in expected489

time f(∆, D, τ) in all graphs with diameter D, maximum degree ∆ and fading adversary490

with stability τ . It follows that:491

1. if τ < ln(∆− 1)/(12 log log(∆− 1)) then f(∆, D, τ) ∈ Ω(D∆1/ττ2/ log ∆),492

2. if τ < ln(∆− 1)/16 then f(∆, D, τ) ∈ Ω(D∆1/ττ/ log ∆).493

Proof Idea. In this proof we connect together Ω(D) gadgets used in the proof of Theorem 7494

(and 8) and lower bound the time the message spends in each of the gadgets. The only495

problem in this approach is that after the message enters to the next gadget, the adversary496

might not be allowed to change the distribution for some number of steps. We solve this by497

keeping a distribution that is “hard” for the first τ probabilities of the algorithm in each of498

the gadgets that has not been reached by the message yet. J499

5 Correlations500

Here we explore a promising direction for the study of broadcast in realistic radio network501

models. In particular, the fading adversary studied above assumes that the distribution502

draws are independent. As we will show, interesting results are still possible when con-503

sidering the even more general case where the marginal distributions in each step are not504

necessarily independent in each round. More precisely, in this case, the adversary chooses a505

distribution over sequences of length at least τ of the sets of unreliable edges. A sequence506

from this distribution is used to determine which unreliable edges are active in successive507

steps. The adversary after a least τ steps can decide to change the distribution. In this508

model, we first show a simple lower bound that any uniform algorithm using a short list509

of probabilities of length l (our algorithms in previous sections always used list of length510

min{τ, log ∆}) needs time Ω(
√
n/l) for some graphs. Our lower bound uses distributions511

over sequences of graphs in which the degrees of nodes change by a large number in suc-512

cessive steps. Such large changes in degree turn out to be crucial as we show that if in the513

sequence taken from the distribution chosen by the adversary, in every step in expectancy514

only O(∆1/(τ−o(τ))) edges adjacent to each node can be changed then we can get an algo-515

rithm working in time O(∆1/ττ log(1/ε)) with probability at least 1 − ε and using list of516

probabilities of length O(min{τ, log ∆}).517

5.1 A Lower Bound for Correlated Distributions518

The following lower bound shows that any simple back-off algorithm, similar to the ones519

presented in Section 3, that uses at most log ∆ probabilities requires time Ω(
√

∆/ log ∆) if520

arbitrary correlations are permitted.521

I Proposition 1. Any uniform local broadcast algorithm that repeats a procedure consisting522

of l probabilities requires expected time Ω(
√

∆/l) in some graph with ∆ = n − 2 even if523

τ =∞.524

Proof. Denote the procedure that is being used by the algorithm by P. Assume for simplic-525

ity that
√

∆ is a natural number. We take as a graph a connected pair of stars (a similar526

graph was used in Theorem 7).527

The fist star has arms v1, v2, . . . , v∆ and center at u. In the fist star, arms v1, v2, . . . , v∆528

are connected to center u by reliable edges. The second star has arms v1, v2, . . . , v∆ and529
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center at v. In the second star, connection from v1 to v is reliable and all other connections530

are unreliable. Note that by such construction, graph G is connected. All nodes, except v,531

are initially holding a message.532

The single distribution is defined in the following way. Let ei = min{1/pi,∆} for
i = 1, 2, . . . , l be the estimates used by procedure P. Let

ēi =
{

1 if ei ≥
√

∆,
n if ei <

√
∆.

Let s be a number chosen uniformly at random from {1, 2, . . . , l}. In our distribution, the533

degree of v in step t is dt = ē1+rt , where rt is the remainder of t+s modulo l. More precisely,534

in step t in the distribution exactly dt − 1 edges chosen at random among edges between v535

and v2, v3, . . . , v∆ are activated. Observe that before the algorithm starts, the distribution of536

the degree of node v in each step is simply a uniform number from multiset {ē1, ē2, . . . , ēl}.537

But after step 1 the sequence of degrees of v becomes deterministic and depends only on538

the value s of the shift. The dependencies are designed in such a way that if s = l (which539

happens with probability 1/l) then in any step t of the algorithm, the probability pt used540

by the algorithm satisfies either pt · dt ≥
√

∆ or pt · dt < 1/
√

∆. This means by Lemma 1541

that the success probability is at most 1/
√

∆ in each step and hence by the union bound542

the success probability in the whole procedure is at most l/
√

∆. Thus with probability at543

least 1/l the algorithm has to repeat procedure P at least
√

∆/(2l) times to get a constant544

probability of success. Hence the expected time is Ω(
√

∆/l). J545

5.2 Locally Limited Changes546

The previous section shows that under an adversary that is allowed to use arbitrary corre-547

lations then any simple procedure need polynomial time in the worst case.548

In this section we want to consider the adversary that can use correlations but cannot549

change the degree too much in successive steps. Of course once every at most τ steps the550

adversary is allowed to define a completely new distribution over the unreliable edges. We551

want to argue that it is possible to build a simple algorithm resistant to such an adversary.552

Intuitively the changes of the degree are problematic only if the changes are by a large553

(non-constant) factor. Note by Lemma 1 that if we perturb the effective degree by only a554

constant factor then the bound also changes only by a constant factor. Hence in order to555

design an algorithm that is immune to such changes we should add more “coverage” to the556

small-degree nodes. We do this by enhancing each phase of algorithm RLB with additional557

steps in which we assume that the effective degree of a node is small. The adversary may558

try to avoid the successful transmission in these steps by changing the degree (the adversary559

knows the probabilities used by the algorithm). But having the restriction on the distance560

the adversary can move the degree allows us to define overlapping “zones” such that in two561

consecutive steps we are sure to find the degree in one of the zones. We also have to make562

sure that the whole phase of the new algorithm fits into τ steps.563

Now we present algorithm RLBC (Robust Local Broadcast with Correlations). We first564

show that the algorithm works under (l, τ)–deterministic adversary that can change at most565

l edges adjacent to each node per round and all the edges from E′ \E once every at most τ566

rounds. Our algorithm will be resistant to deterministic adversary that can change at most567

τ∆1/(τ−o(τ)) edges adjacent to each node in every step.568

Then we show that it also works under restricted fading adversary with parameters τ and569

l. Restricted fading adversary can change the distribution arbitrarily once every at most τ570

steps, if the distribution is not changed then the expected change of the degree of any node571
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can be at most l. Under these restrictions, the adversary can design arbitrary correlations572

between successive steps. We show that RLBC works with restricted fading adversary with l573

of at most ∆1/(τ−o(τ)).

1 Algorithm: RLBC(r, τ)
2 τ̄ = min{dlog2e ∆/2e, τ}
3 a← dτ̄ / log2e τ̄e
4 k ← d∆1/(τ−2a)e
5 e1 ← k · a
6 e2 ← k2 · τ · a
7 repeat 2r times
8 RLB(1, τ̄ − 2a)
9 repeat a times

10 Uniform (1, 1/e1)
11 Uniform (1, 1/e2)

574

I Theorem 11. If τ ≥ 1000 Algorithm RLBC(8edln(1/ε)∆1/τe, τ) solves local broadcast in575

the presence of
(⌊

∆
1

τ−2dτ/ log2e τe
⌋
τ/2, τ

)
-deterministic adversary in time O(∆1/ττ log(1/ε))576

with probability at least 1− ε.577

Proof Idea. For a fixed receiver v we want to show that the probability that v receives the578

message in one of the r cycles (each 2 iterations of loop in Lines 7 − 11 is one cycle) is at579

least ps = 1
8ek . We do it by separately considering two cases depending on degree dt(v),580

where t is the first step of the considered cycle. If dt(v) ≥ 2l2 we can show that the degree581

cannot change in total in this cycle by more than a factor of 2 (here we use the restriction582

on the adversary) in which case we can show that in one of the steps of procedure RLB the583

probability of success is at least ps. For smaller degrees dt(v) < 2l2 we pick a pairs of steps584

such that in the first step of the pair the algorithm uses probability 1/e1 and in the second585

it uses 1/e2. Then we observe that either in the first step of the pair the degree is at most586

2l in which case broadcasting with probability 1/e1 gives probability ps/a of success. In the587

opposite case the degree is at least l (here we use the restriction on the adversary) in the588

second step and broadcasting with probability 1/e2 gives probability ps/a of success. Since589

we have a such pairs the claim follows. J590

The case with deterministic adversary can be generalized to stochastic restricted adversary.591

I Theorem 12. If τ ≥ 1000 Algorithm RLBC(16edln(1/ε)∆1/τe, τ) solves local broadcast in592

the presence of l-restricted fading adversary using correlations with l =
⌊
∆

1
τ(1−1/ log2e τ)

⌋
/4593

in time O(∆1/ττ log(1/ε)) with probability at least 1− ε.594

Proof Idea. We show that if an algorithm works with 2lτ -deterministic adversary then it595

also works with l-stochastic adversary with correlations. We note that by Markov’s inequal-596

ity with probability at least 1/(2τ) the degree of the receiver changes by at most 2lτ . By597

the union bound with probability at least 1/2, the degree does not change by more then 2lτ598

throughout the whole cycle of length τ . For such cycles, the analysis of the deterministic599

case gives us probability ps of success. Thus in the stochastic case the probability of success600

in each cycle is at least ps/2. J601
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