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Abstract

Today’s wireless networks tend to be centralized: they are organized around a fixed
central backbone such as a network of cellular towers or wireless access points. How-
ever, as mobile computing devices continue to shrink in size and in cost, we are
reaching the point where large-scale ad-hoc wireless networks, composed of swarms
of cheap devices or sensors, are becoming feasible. In this thesis we study the theo-
retical computation power of such networks, and ask what tasks are they capable of
carrying out, how long does solving particular tasks take, and what is the effect of
the unpredictable network topology on the network’s computation power.

In the first part of the thesis we introduce an abstract model for dynamic networks.
In contrast to much of the literature on mobile and ad-hoc networks, our model makes
fairly minimalistic assumptions; it allows the network topology to change arbitrarily
from round to round, as long as in each round the communication graph is connected.
We show that even in this weak model, global computation is still possible, and any
function of the nodes’ initial inputs can be computed efficiently. Also, using tools
from the field of epistemic logic, we analyze information flow in dynamic networks,
and study the time required to achieve various notions of coordination.

In the second part of the thesis we restrict attention to static networks, which
retain an important feature of wireless networks: they are potentially asymmetric. We
show that in this setting, classical data aggregation tasks become much harder, and
we develop both upper and lower bounds on computing various classes of functions.
Our main tool in this part of the thesis is communication complexity: we use existing
lower bounds in two-player communication complexity, and also introduce a new
problem, task allocation, and study its communication complexity in the two-player
and multi-player settings.

Thesis Supervisor: Nancy A. Lynch
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Modeling Wireless and Dynamic Networks

Sequential models of computation, such as Turing machines, are robust to changes in
the assumptions of the model.1 It does not matter if a Turing machine has one working
tape or two, or even infinitely many; it does not matter whether its alphabet is binary
or ternary, or whether it is deterministic or can use random coins — the computation
power of the Turing machine is unaffected. In contrast, models of distributed systems
are notoriously fragile and non-robust. Tasks such as fault-tolerant consensus, which
can be solved using randomness, can become impossible in deterministic models;
Byzantine consensus is possible to solve if up to ⌈n/3⌉−1 nodes are faulty, but not if
⌈n/3⌉ nodes are faulty. Consequently the distributed computing community, perhaps
more than any other sub-field in theoretical computer science, is interested in the
minute details of the modeling assumptions, and the effect that they can have on
computation power and efficiency.

In this thesis we study wireless networks, in particular dynamic ones, and their
computation power. Wireless networks are inherently difficult to model: unlike tradi-
tional wired networks, wireless networks do not come equipped with a built-in network
graph, and modeling them using graph-theoretic formalisms can be non-trivial. In-
stead of pairwise communication over wires, which is easy to represent as an edge in
the network graph, wireless nodes broadcast their messages on the wireless medium,
to be received by whichever nodes happen to be nearby and receive the signal with
sufficiently high signal-to-noise ratio. Interference and noise render wireless commu-
nication difficult to pin down in a clean way; traditional assumptions such as bidi-
rectional communication and reliability no longer apply. These concerns arise even
in static networks, and adding mobility into the picture only complicates matters
further.

Much of the literature in the theory of wireless communication attempts to model
wireless networks using a geographical model, which assumes that the wireless nodes

1This assertion is often referred to as the Church-Turing thesis, although there is considerable
controversy over the exact nature of the theses formulated by Church and Turing in their writings,
and indeed whether either of them intended anything near the modern interpretation of the Church-
Turing thesis [121].
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are embedded in the two-dimensional (or three dimensional) plane, and two nodes can
communicate with each other only if their locations satisfy some geometric condition.
For example, the popular unit disk graph model [31, 87, 99, 25] assumes that two nodes
can reliably communicate if and only if they are within a fixed distance from each
other. However, it is recognized [19, 99] that such simplistic models, while amenable
to theoretical analysis, do not always represent the reality of wireless communication.
We survey existing models in the literature in Section 1.4.1.

The approach we take in this thesis is different. Instead of attempting to model
the low-level details of physical wireless communication, we model wireless networks
at a higher level, above the medium-access (MAC) layer. We assume that some
MAC protocol is responsible for message delivery and all that it entails; this protocol
interfaces with higher levels in the stack by means of a synchronous (round-based)
interface, which guarantees that in each round, the graph induced by all the messages
successfully delivered to their destinations is strongly-connected. Beyond this we
make few or no assumptions. In particular, in Part I of the thesis, we do not assume
a static topology or reliable message delivery, and allow the communication graph
induced by the delivered messages to change arbitrarily from round to round. In
Part II of the thesis we do assume that the network is static and communication is
reliable — as occurs, for example, when nodes initially establish some time-division
scheme and adhere to it thereafter. In both cases, we strive to avoid many restrictive
assumptions often made in the literature, such as:

• A fixed set of participants, with UIDs labeled 1, . . . , n; or, somewhat weaker,

• A fixed number of participants with unknown UIDs;

• A known diameter, maximum degree, or even entire topology of the communi-
cation graph;

• Bi-directional communication;

• Information regarding the node’s neighbors in the network (neighbor discovery);

• Predictable mobility patterns for the nodes.

Where possible, we study the effects of these assumptions on the computation power of
the model and the efficiency of algorithms running in it. Our aim is to establish upper
bounds (i.e., algorithms) using as few assumptions as possible, and lower bounds under
as strong a model as possible, in order to point out which assumptions are or are not
relevant to a particular problem. Our model is much more abstract and general than
many existing models in the literature, as we discuss in Section 1.4.1.

1.2 A Hierarchy of Distributed Tasks

In this thesis we will focus mainly on the following distributed tasks, listed here in
decreasing order of their relative difficulty:

14



1. Information dissemination, where nodes must disseminate up to n pieces of
information throughout the network.

2. Counting and approximate counting, where nodes compute or approximate the
size n of the network.

3. Computing duplication-insensitive functions, such as the minimum or maximum
input value.

4. Consensus, where each node receives a private binary input, and the goal is for
all nodes to agree on the same output, which must also be the input to one of
the nodes.

We will show in this thesis that an oracle for solving each task in the hierarchy allows
us to solve all lower-level tasks (see Section 2.2 for our definition of a reduction in the
context of a distributed dynamic network); this is mostly obvious, but the connection
between counting and computing “simple” functions is perhaps less obvious (it will
be discussed in Section 3.1). It is therefore interesting to ask whether the hierarchy
is strict, or whether in fact all these problems are equally hard. The answer depends
on the assumptions used, and we show several surprising results; for example,

• If nodes do not know the size of the network in advance, solving consensus is as
hard as computing the minimum input, even though consensus does not specify
a deterministic output value, while the task of computing a minimum does.

• Moreover, if we want to solve consensus and have all nodes terminate simulta-
neously, this task is as hard as computing an upper bound on the size of the
network, and it requires at least n rounds in every single execution, even very
well behaved-ones.

• Computing the size of the network requires at least two nodes in the network
to exchange a total of Ω(n) bits with each other. Even if the network is static
and the diameter of the network is known in advance to be 2, this task requires
Ω(n/B) rounds, where B is an upper bound on the number of bits in each
message.

• In a similar vein, if the diameter of the network is not known in advance, then
solving consensus requires Ω(

√

n/B) rounds, even when in practice the diameter
of the network is 2.

These results are all negative in nature: they show that a problem is unconditionally
hard, or that one problem is at least as hard as another. We also give many positive
results; e.g.,

• Even if nodes know nothing about the network in advance except for their own
unique identifier, and the network topology can change arbitrarily from round
to round, it is still possible to deterministically compute any function of the
nodes’ initial inputs.

15



• Randomization and approximation allow us to circumvent some of the bounds
above. For example, if we are willing to settle for a high-probability constant
approximation for the size of a static network, we can compute it in Õ(D)
rounds when the diameter is D.

1.3 Overview of the Results

We now briefly describe several results that form the core of this thesis.2

In the sequel, we let n denote the number of nodes in the network, and D its
diameter.

1.3.1 Token Dissemination

In Chapter 3, we show that in highly-dynamic networks it is possible to solve the
problem of all-to-all token dissemination, where each node receives some input token
and must collect all tokens from all n nodes. This is possible in O(n2) rounds using
messages of size O(logn), even when n is not known in advance, and even when
nodes have no a priori information about the network other than their own unique
identifier. The algorithm is quite pessimistic, as it assumes that the network topology
is generated on-the-fly by a worst-case adversary, and may change completely from
round to round. We also show that when the network enjoys some stability, it is
possible to improve upon the running time: if there is some underlying connected
subgraph that is present throughout the execution, then n pieces of information can be
exchanged in O(n) rounds. We then combine ideas from the O(n2)-round“pessimistic”
algorithm and the O(n)-round “optimistic” algorithm to obtain an algorithm that
makes an intermediate assumption, namely that any T consecutive rounds contain
some persistent connected subgraph. This algorithm requires O(n + n2/T ) rounds,
and can be generalized to the case where T , the “amount of stability”, is not known in
advance. We conclude Chapter 3 by drawing several generalizations and extensions
of the results in the chapter, and then describing an Ω(n+ n2/T )-round lower bound
on a specific type of information dissemination algorithm (which includes all the
algorithms we give in this thesis). Most of the results in Chapter 3 are deterministic
in nature, but our lower bound also applies to randomized algorithms.

1.3.2 Counting and Approximate Counting

When the size of the network is not known in advance, the problem of determining this
parameter is tightly coupled to the problem of all-to-all information dissemination:
in order for a node to know when it has collected all the tokens from the other nodes,
it must implicitly figure out how many other nodes there are. Thus, the information-
dissemination algorithms that we present in Chapter 3 also compute the size of the
network as they go along, in order to determine when it is safe to halt. In Chapter 3

2The results are grouped here by problem, not by chapter. Please see Section 1.5 for a chapter-
by-chapter roadmap.

16



we also give a randomized approximate-counting algorithm that requires nearly-linear
time, improving upon the O(n2)-round running time of the deterministic information
dissemination/counting algorithm from that chapter.

We return to study counting in the second part of the thesis, where we consider
static directed networks. We now study the hardness of counting and related tasks
through the lens of communication complexity, which will allow us to investigate
how many bits must be exchanged to solve these tasks. In Chapter 6, we show that
even in strongly-connected networks of diameter 2, counting requires Ω(n/B) rounds,
where B is an upper bound on the message size. This is a somewhat suprising result,
as it is well-known that in undirected networks of diameter 2, the same task only
requires O(1) rounds (regardless of message size [110]). This lower bound is tight
if the diameter of the network is known in advance to be 2, but it degrades to a
constant if we allow a constant approximation instead of an exact count. However, if
the diameter is not known in advance, we derive an Ω(

√

n/B)-round lower bound on
computing even an approximate count.

1.3.3 Minimum and Similar “Easy” Functions

Througout the thesis, we will treat the task of computing the minimum input to the
nodes as representative of a large class of “easy” functions, which are not sensitive
to duplication of inputs (unlike, for example, counting). To compute the minimum
input, all nodes have to do is send the smallest value they have heard so far, “wait
long enough” to ensure they have heard the global minimum, and then halt. How
long is long enough? We encapsulate this question as a separate task, which we call
hearing from everyone (and denote HF n): informally, hearing from everyone requires
each node u to halt at some point, but only after node u has “heard from” each node
v in the network by means of a chain of messages starting at v and ending at u.3

It is easy to show that computing the minimum input requires hearing from ev-
eryone. On the other hand, if we have an algorithm for solving the HF n task, we can
also easily compute the minimum, by simply appending the minimum value heard so
far to each message of the HF n algorithm. Other duplication-insensitive functions
behave similarly; thus, the HF n task is a good proxy for this class, and any upper or
lower bound we establish on HF n will carry over to all duplication-insensitive func-
tions. (We make this argument more formally in Section 3.1, where we prove that
HF n is complete for the class of duplication-insensitive functions.)

Because HF n is such a fundamental task, many of the algorithms we give in this
thesis implicitly solve it, even though they may be targeted at higher-level tasks. For
example, to solve information-dissemination or counting, one must also solve HF n; all
the algorithms given in Chapter 3 therefore solve the HF n task. However, in Chap-
ter 6 we devote some time to studying the HF n task for its own sake. We show that if
the diameter of the network is not known in advance, but in practice happens to be 2,
solving HF n requires Ω(

√

n/B) rounds; in other words, HF n algorithms cannot adapt
to conditions “on the ground” and cannot exploit a small network diameter when it

3This notion is Lamport’s causal order ; see Section 2.3 for the definition as we use it here.
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arises in practice. On the positive side, we give a nearly-matching randomized algo-
rithm for HF n, which of course also allows us to compute any duplication-insensitive
function.

1.3.4 Consensus and Coordinated Consensus

Consensus is one of the most well-known problems in distributed computing; it is
useful for modeling many different situations that arise in practice, from deciding
which version of a file to commit to having all members of a swarm agree on the
direction they should move in. We study consensus, and several variants of consensus
that also include timing constraints, in Chapter 4.

Chapter 4 stands apart from the rest of the thesis in that it considers full-
information algorithms, where nodes send their entire history in each message (lead-
ing, unsurprisingly, to very large messages). Full-information algorithms are interest-
ing because they extract as much information as possible from the execution: because
nodes send each other everything they have observed about the execution, each node
learns everything it can possibly learn about the execution as quickly as it possible.
Thus, lower bounds on full-information algorithms are quite powerful, and are very
different in nature from the more information-theoretic arguments we use in the rest
of the thesis (where nodes are restricted to messages of bounded size).

Our main tool in Chapter 4 is epistemic logic, the logic of knowledge and belief.
By analyzing the state of the nodes’ knowledge about an execution we are able to
prove a set of powerful lower bounds:

• Consensus, even with no timing constraints, is as hard as hearing from everyone,
which means that it is as hard as computing the minimum (or other duplication-
insensitive functions).

• Simultaneous consensus, which adds the requirement that all nodes halt at the
same time, requires n rounds in every execution, even the static clique graph.
This lower bound is shown by analyzing the time required for nodes to acquire
common knowledge [48].

• If we compromise and allow nodes to halt within ∆ rounds of each other, we
make non-trivial gains compared to simultaneous consensus (slashing the run-
ning time by a factor of 2, for example), but we still have a lower bound of
n − O(∆0.28n0.72) rounds in line graphs (with any input assignment), and a
lower bound of Ω(nD/(D + ∆)) rounds in graphs of dynamic diameter D.

1.3.5 Finding Spanning Trees and Solving Task Allocation

In undirected networks, most any “interesting” function of the input can be computed
by first constructing a BFS tree of the network, and then computing the value of
the function “up the tree”. This requires only O(D) rounds (or sometimes more, for
“holistic” functions like the median or the mode). Our results in Chapter 6 show that
the situation is much more complicated in directed networks: we cannot compute easy
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functions like minimum or sum in O(D) rounds, and instead they requires poly(n/B)
rounds, independent of the diameter.

Motivated by this observation we ask: just what is the round complexity of finding
a rooted spanning tree in a directed network? As we said, many functions can be
computed very quickly by convergecast up a tree (provided the tree is of low depth). If
we want compute several consecutive easy functions instead of just one, is it perhaps
worth investing in finding a spanning tree first, and then computing our functions by
convergecast?

The answer is a fairly resounding “no”: we show that finding a rooted spanning
tree requires Ω(n/B) rounds, even in networks of diameter 2, where the size of the
network and the UIDs of the nodes are known in advance, even when there are no
long simple paths that might “confuse” the spanning tree algorithm. This means that
in the time required to compute the spanning tree once, we could instead compute
O(
√

n/B) separate minima, using the algorithm from Chapter 6. We obtain a hint of
this result in Chapter 6, but to show the general statement, in Chapter 7 we introduce
a new communication complexity problem, called TaskAlloc.

The TaskAlloc problem can be viewed as a simple distributed variant of the
well-known k-server problem in combinatorial optimization [52]. We have m players,
and each player initially receives a set of tasks drawn from {1, . . . , n}. The goal is for
the players to partition the tasks amongst themselves, so that each player eventually
outputs a set of tasks that is disjoint from the sets output by the other players, and
together the players cover all the tasks.

The connection between TaskAlloc and finding a rooted spanning tree is not
hard to see: in order to construct the spanning tree, each node must choose a subset of
its incoming edges and claim their sources as its children. We do not allow more than
one node to claim any given node as a child, and we also require each node (except
the root) to be claimed by some parent. Therefore a lower bound on TaskAlloc

immediately translates to a lower bound on spanning tree computation. In Chapter 7
we give a lower bound of Ω(n) on the randomized two-player communication com-
plexity of TaskAlloc, and deduce the Ω(n/B)-round lower bound discussed above
on finding a spanning tree.

We believe that the TaskAlloc problem is interesting for its own sake, as it
models a job-allocation scenario often encountered in distributed systems. In Chap-
ter 7 we also give several algorithms for solving this problem in various settings, from
the classical shared-blackboard model of communication complexity, to the general
model of directed networks used in the rest of the thesis.

1.4 Related Work

In this section we briefly survey the main research directions in the field of wireless
and dynamic networks, and compare them to the approach taken in this thesis. Our
discussion here will be kept at a high level; more specific results and connections will
be pointed out in the body of the thesis where relevant.

19



1.4.1 Models for Dynamic Networks

Networks with a dynamic topology arise in many different circumstances: mobile ad-
hoc networks are a natural example, but even static wireless or wired networks may
experience topology changes as a result of link and node failures. Different causes for
dynamic behavior yield drastically different models of dynamic networks.

Static Networks with Faults

Since fault-tolerance is a mainstay of distributed computing, topology changes re-
sulting from faults have been extensively studied since the very beginnings of the
field [10, 110]. Many types of faults have been considered [110]: crash faults, where
nodes simply crash and stop working; omission faults, where nodes may fail to send
or receive messages, but otherwise work correctly; and Byzantine faults, where nodes
may behave arbitrarily and maliciously.

When failures are the only cause of topology changes, it is reasonable to assume
that changes will be few and far-between; the models used to represent such networks
are typically quite restrictive in the type of changes that they allow. However, they
do allow for a dynamic topology, and in that sense they can be viewed as dynamic
networks models. In particular, the omission fault model (e.g., [112]), like our dynamic
graph model, involves nodes that are essentially reliable, and communication links
that may fail arbitrarily.

One of the most widely-used models is the f -bounded fault model [110], in which
no more than f nodes may experience faults that cause them to crash or fail to send
or receive messages. It is well-known that in asynchronous networks, even a single
faulty node can render simple tasks such as consensus impossible [54], but under
various assumptions of synchrony or partial-synchrony meaningful computation is
possible with up to n − 1 faults (e.g., [104, 44, 134]). Another assumption, studied
for example in [88, 90, 111], requires topology changes to be infrequent and spread
out over time, so that the system has enough time to recover from a change before
the next one occurs. Some of these algorithms use link-reversal [59], an algorithm for
maintaining routes in a dynamic topology, as a building block.

Another popular assumption for studying fault-prone networks is eventual stabi-
lization (e.g., [3, 15, 16, 141, 75]), which asserts that although the network may be
arbitrarily badly-behaved at the beginning of the execution, changes eventually stop
occurring. Algorithms developed for this setting typically guarantee safety throughout
the execution, but progress is only guaranteed to occur after the network stabilizes.
In this context, self-stabilization is a useful property that requires that the system
converge to a valid configuration from any arbitrary starting state. We refer to [40]
for a comprehensive treatment of this topic.

In contrast to all the models above, the dynamic graph model we study in this
thesis does not restrict the number, frequency, or duration of changes to the network.
Our only assumption is that the network remains connected at any given time; subject
to this constraint, arbitrarily many links may appear and disappear, and the network
is not assumed to eventually stabilize. However, we do assume that the participants
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in the computation are reliable: they always follow the protocol, and do not crash.
In this sense our model is incomparable with the bounded crash-fault and Byzantine-
fault models [110].

Population Protocols

The population protocol model, introduced in [5], models a dynamic system as a
collection of finite-state agents that interact whenever a pair of agents “meet” and
communicate. The model is intended to represent large networks of passive and
computationally-weak sensors, such as might be deployed, for example, to track the
behavior of birds in the wild [5]. We refer to [8] for a comprehensive survey of work
on population protocols.

The population protocol model differs from our dynamic graph model in several
fundamental ways:

• Although the schedule of pairwise interactions between agents is controlled by a
worst-case adversary, population protocols typically rely on a strong global fair-
ness assumption which requires every pair of agents to interact infinitely often
in an infinite execution. In contrast, our model assumes that any connected
topology may arise, and two nodes may potentially never communicate with
each other directly.

• The agents in a population protocol are extremely weak computationally: they
are anonymous, identical and have a constant amount of memory that does not
grow with the network size. This severely restricts the power of the model: it
is known that the original model introduced in [5] is able to compute exactly
the set of semilinear predicates [6]. Subsequent work has considered removing
some or all of these restrictions (see [8]), obtaining models ranging in strength
from semilinear predicates all the way up to linear-space Turing machines.

In this thesis we make no computation restrictions on the nodes participating
in the computation; each node has a unique identifier and may locally store
arbitrary amounts of information, although in practice our algorithms tend to
require sublinear space.

• Population protocols compute some function in the limit : all agents must even-
tually stabilize on the correct answer, but they do not have to know when they
have it. This can make sequential composition of protocols challenging, since
it is not possible to execute a protocol until it terminates, then take the final
result and use it as input for some other computation. Instead, one may use
self-stabilizing population protocols, which are resilient to inputs that fluctuate
and eventually stabilize to some value; but this is not always possible [53].

In our model nodes must eventually output the result of the computation, and
sequential composition is straightforward, as we will see in many instances
throughout this thesis.
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Dynamic Overlay Networks

Our dynamic graph model assumes the network topology is controlled by an adversary,
but there is a vast literature on algorithms that choose the communication topology
themselves, typically in the form of an overlay network that the algorithm super-
imposes on an underlying fully-connected network. One very popular application
domain is peer-to-peer protocols, where participants must maintain a small number of
connections to peers they select, e.g., [127, 138]. The algorithm must deal with nodes
joining and leaving the network (churn) by adjusting the overlay network. Examples
of protocols that deal with continual concurrent joins and leaves controlled by an
adaptive worst-case adversary are given, for instance, in [97, 107].

A very popular line of research on dynamic overlay networks is gossip protocols,
which follow the following basic template: the underlying network topology is assumed
fully-connected, but in each round, each node chooses a random neighbor, and either
sends its information to that neighbor (push) or asks that neighbor for its information
(pull). Basic gossiping protocols can be used to efficiently disseminate information or
compute aggregates such as the sum or maximum of inputs (e.g.,[82, 85, 84, 114, 73]
and many others). In order to make gossip algorithms more scalable, it is possible
to maintain a sparse random overlay structure, and have nodes contact a random
neighbor from the overlay graph rather than the entire network [61, 66].

When the underlying network topology is not fully-connected, the performance of
gossip algorithms typically depends on the conductance of the underlying graph [30,
64]; informally, the conductance measures the sparsity of cuts in the graph. However,
it was recently shown that gossip-based techniques can be used to quickly emulate
local broadcast in any static graph [28], regardless of its conductance.

Geometric and Random Mobility Models

Much of the work on dynamic networks is motivated by an underlying distribution
of the nodes on the two- or three-dimensional plane, with some geometric constraint
governing which nodes have a communication link to each other. Perhaps the most
popular assumption is the unit disk graph model, where only nodes within some fixed
distance of each other can directly communicate; see [100] for a discussion of this
model and its generalization, the quasi-unit disk graph model.

In geometric mobility models, it is assumed that from time to time the nodes
change their positions according to some mobility pattern, either adversarially con-
trolled or random; e.g., the random way-point model [22, 79, 105], the models surveyed
in [27], and the work of [35, 34], where nodes are assumed to travel randomly over
a square grid with some fixed speed. In [49, 50, 51], simulation results are used to
analyze the performance of flooding-based broadcast and routing protocols in various
random geometric models.

Another line of work considers graphs that are not motivated by a geographic
model, but evolve randomly over time. Random graph models are typically Marko-
vian: the dynamic graph for round r + 1 is chosen according to some probability
distribution that only depends on G(r) (see, e.g., [11]). A special class of Markovian
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graphs has been considered in [21, 32, 35]: there it is assumed that in each round,
each edge appears or disappears with some fixed probabilities p and q (respectively)
independent of other edges.

Algorithms for randomly-changing graphs differ significantly from the algorithms
we consider in this thesis, because many random graph models studied in the literature
enjoy good expansion, quick propagation of messages, and other nice density and
connectivity properties. Sometimes the random graph converges to a known and
“easy” stationary distribution; for instance, the Markovian birth-death graph model
considered in [76] is shown to converge to the Erdős–Rényi random graph Gn,p, where
each edge exists with probability p independent of other edges. These properties allow
one to come up with fast and elegant algorithms, but it is not clear to what extent real
mobile networks obey the assumptions of random graph models. For example, is it
reasonable to assume that communication links originating at the same node appear
or disappear independently of each other? We avoid such questions by allowing the
graph topology to change arbitrarily, rather than assuming some “nice” distribution.

Models with Arbitrary Topology Changes

Protocols that work in the presence of continual and arbitrary dynamic changes have
not been widely studied prior to our work. Early work (e.g., [14]) considered the
problem of end-to-end message delivery in continually changing networks under an
assumption of eventual connectivity, which asserts that the source and the destination
are connected by a path whose links appear infinitely often during the execution.
There is also some work on handling nodes that join and leave continually in peer-
to-peer overlay networks [71, 97, 106]. Most closely related to the problems studied
here is [119], where a few basic results in a similar setting are proved; mainly it is
shown that in 1-interval connected dynamic graphs (the definition in [119] is slightly
different), if nodes have unique identifiers, it is possible to globally broadcast a single
message and have all nodes eventually stop sending messages. The time complexity
is at least linear in the value of the largest node identifier. In [4], Afek and Hendler
give lower bounds on the message complexity of global computation in asynchronous
networks with arbitrary link failures.

1.4.2 Computation in Wireless Networks

Many of the computation tasks we study in this thesis have previously been studied
in the context of static networks. We now review existing literature on the main
problems we will discuss.

Consensus, Simultaneous Coordination, And Knowledge

Consensus is a central topic in distributed computing, initiated by the seminal paper
by Pease, Shostak and Lamport [124]. Most of the literature on the subject in the
context of message-passing systems assumes that the network is a complete graph,
with direct channels connecting every pair of nodes. For more general networks, there
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has been work on the connectivity requirements for reaching consensus under various
failure models (see, e.g., [39]), as well as work on implementing consensus in bounded-
degree networks with special properties, such as expanders [63, 46]. We are not aware
of a study of the efficiency of consensus protocols in general graphs, much less general
graphs with a dynamic topology.

While most of the literature on consensus is concerned with tolerating node fail-
ures, in the dynamic network model that we consider here the nodes themselves are
assumed to be reliable, but the protocol must overcome potentially drastic changes in
topology between rounds. Santoro and Widmayer studied consensus in the context
of edge failures [132], and showed that it is unsolvable if more than n− 2 (arbitrarily
chosen) edges can be down in every round. The dynamic network model allows a
much broader set of executions, since almost all (in fact, all but n− 1) edges can be
down in every round, and their choice is almost arbitrary. The only requirement is
that the network in each round be connected.

Some of our results on consensus concern cases in which the number of nodes
in the network is unknown, or in which there is a rough but inexact bound on the
number of nodes. These are unusual assumptions in the context of consensus. A
number of standard consensus protocols (e.g., [17]) can easily be modified to handle
such assumptions, but this is only due to the fact that the network there is a complete
graph, so that a node hears from all correct nodes in every round.

In Chapter 4 we also consider the problem of simultaneous coordination. Simul-
taneous coordination has been shown to be closely related to the notion of common
knowledge [69, 48]. Thus, for example, in a simultaneous consensus protocol [45, 113],
when the nodes decide on v, it must be common knowledge that some initial value
is v. This is much stronger than for regular consensus, in which a node deciding v
must (individually) know that one of the initial values was v. It has been shown that
deciding in simultaneous consensus (and in a large class of simultaneous coordination
tasks) can be reduced to the problem of computing when facts (and which facts) are
common knowledge at any given point in an execution. For simultaneous tasks, this
enables the design of protocols that are all-case optimal: for every behavior of the
adversary, in the execution of the all-case optimal protocol, nodes decide as fast as
they do for that behavior under any other protocol. (All-case optimality does not
exist for eventual consensus, as shown in [113].)

Part of our analysis in Chapter 4 centers on the problem of ∆-coordinated con-
sensus, in which decisions must be taken at most ∆ rounds apart. In the standard
literature, many protocols for eventual agreement are 1-coordinated in this sense: be-
cause the network is assumed to be fully-connected, once some correct node v decides,
all other correct nodes find out about v’s decision in the next round; it is then safe
for all correct nodes to decide v as well. For networks that are general graphs, we
know of no work developing ∆-coordinated consensus protocols. As in the case of
simultaneous coordination, the property of ∆-coordination has a natural counterpart
in knowledge theory, called ∆-common knowledge. Very roughly speaking, if u knows
that a fact is ∆-common knowledge, then within ∆ rounds everyone will know that
this is the case. In order to decide, a node must know that the decision value is
∆-common knowledge [69, 48]; the analysis in Section 4.4 is the first case in which
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such coordination is analyzed and nontrivial bounds are obtained as a result.

Data Aggregation and Spanning Tree Computation

In Chapters 6 and 7 we study the complexity of computing functions of the initial
inputs and of finding a rooted spanning tree of a static network. Early work on these
problems was concerned with their message complexity, that is, the total number of
messages sent by all processes, as well as their time complexity. Awerbuch observed
in [12] that in undirected networks, the message and time complexity of leader elec-
tion, computing a distributive sensitive function (e.g., minimum or maximum) and
counting are all within a constant factor of the complexity of finding a spanning tree
in the network.

It is also shown in, e.g., [12, 56] that the time complexity of these problems in
undirected networks is Θ(n) and the message complexity is Θ(m+n logn) in networks
of size n with m edges. However, the Ω(n) lower bound is obtained in networks of
diameter Ω(n), and the message complexity lower bound does not yield a non-trivial
bound in our model. In a synchronous undirected network of diameter D edges, it
is possible to construct a breadth-first search spanning tree in O(D) rounds, even if
the diameter and size of the network are not known in advance. Using such a tree,
functions such as minimum, maximum, sum, or average can all be computed in time
O(D). Based on a pre-computed spanning tree, many papers have also considered
the computation of more complicated functions such as the median or the mode
[91, 92, 117, 123, 130, 131, 136].

A related problem that has drawn particular interest in the distributed computing
community is computing a minimum-weight spanning tree (MST). Since the seminal
paper of Gallager, Humblet and Spira [60], the problem has been studied extensively,
typically in static and undirected networks (e.g., [12, 62, 47] and others). Of partic-
ular relevance to our work here is the lower bound given in [133], which is based on
a reduction from the two-player communication problem of Set Disjointness. Com-
munication complexity lower bounds will be used extensively in Chapter 6 of this
thesis, but the style of reduction we will use is quite different from reductions used in
existing literature (see the discussion in Section 5.2).

Broadcast and Information Dissemination

Another class of widely-studied problems involves broadcasting information through-
out the network and collecting information from other nodes. Early work showed that
using pipelining, k pieces of information can be disseminated throughout a static net-
work with a latency of at most k [139]; in this thesis we extend pipelining to dynamic
networks and use this technique extensively. Another technique often used for infor-
mation dissemination is gossip, which we discussed in Section 1.4.1.

The problem of broadcasting a single message or multiple messages throughout
the network has been studied in many different contexts, and in particular in wireless
networks with collisions ([18, 89, 36, 93], to list but a few examples of the vast liter-
ature on this topic). This work is markedly different from our work here, because it
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assumes that when two nodes send a message to the same target node at the same
time, the messages may collide and fail to arrive at their destination; in contrast we
assume that nodes can receive arbitrarily many messages in one round. The time
required for global broadcast has been studied in a probabilistic version of the edge-
dynamic graph model, where edges are independently formed and removed according
to simple Markov processes [21, 32, 33]. Similar edge-dynamic graphs have also been
considered in control theory literature, e.g. [120, 129]. In [33] the authors also consider
a worst-case dynamic graph model which is similar to ours, except that the graph is
not always connected and collisions are modelled explicitly. This lower-level model
does not admit a deterministic algorithm for global broadcast; however, [33] gives a
randomized algorithm that succeeds with high probability.

1.5 Organization of the Results

This thesis is divided into two parts. In Part I we study the limits of computation in
highly-dynamic networks. We present our dynamic graph model in Chapter 2, and
discuss its basic properties and the rules characterizing information flow in dynamic
graphs. In Chapter 3, we study the high-level tasks of information dissemination
and counting ; we show that it is possible to solve these tasks in dynamic graphs even
under minimal assumptions, and study ways in which performance can be improved
using techniques such as pipelining or randomization. The results in Chapter 3 are
concerned with algorithms that use only small messages, of polylogarithmic size.

In Chapter 4 we turn to a more abstract investigation of knowledge and common
knowledge in dynamic graphs, with the goal of analyzing the tasks of consensus and
simultaneous consensus. Our main tool in this chapter is epistemic logic. We give
lower bounds on the ability of algorithms to acquire knowledge, common knowledge,
and ∆-approximate common knowledge, and leverage these bounds to obtain lower
bounds on the tasks of consensus, simultaneous consensus and ∆-coordinated consen-
sus (respectively). On the positive side, we give a general scheme that allows one to
transform a consensus algorithm into a ∆-coordinated consensus algorithm (adding
the constraint that all nodes should halt within ∆ rounds of each other), and give
two concrete examples.

In Part II of the thesis we restrict attention to static networks, and study the effects
of asymmetric communication channels, which can easily arise in wireless networks.
In this part of the thesis we rely on lower bounds and techniques from the world of
communication complexity, which we review in Chapter 5. Next, in Chapter 6, we
study the round complexity of computing data aggregates in directed networks of
small diameter, and give several surprising lower bounds which show that these tasks
are much harder in directed networks than they are in undirected networks. Finally,
in Chapter 7, we introduce a new problem, task allocation, which models a scenario
where the network nodes must partition a set of tasks between them. We give a strong
lower bound on the two-player communication complexity of task allocation, and use
it to obtain a lower bound on the round complexity of computing rooted spanning
trees in shallow networks. We also give several algorithms for solving task allocation
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in the shared-blackboard model and also in the network model used elsewhere in the
thesis.

1.6 Definitions and Notation

Sets and functions. We use N, N+, R and R
+ to denote the natural numbers, the

positive naturals, the real numbers and the positive reals, respectively. If A and B
are sets, the notation A ⊂ B indicates that A is a strict subset of B (we use A ⊆ B
to denote non-strict inclusion). We use AB to denote the set of all partial functions
from B to A.

Given a function f : N+ → N
+, we let f (i) be defined recursively by

f (0)(s) := s, and

f (i+1)(s) := f(f (i)(s)) + f (i)(s) for all i ≥ 0.

(Here gi stands for standard function composition, that is, gi is g composed with itself
i times; in particular, for i = 0 we define g0(s) = s.) Equivalently, f (i) can be defined
by

f (0)(s) := s,

f (1)(s) := f(s) + s, and

f (i) := (f (1))i for all i ≥ 2.

If X is a set that does not include the special symbol ⊥, we let X⊥ denote the set
X ∪ {⊥}.

Multisets. We use ND to denote the set of all multisets over domainD; each multiset
X ∈ N

D is represented as a partial mapping from elements of D to their multiplicities.
We also sometimes represent multisets as a set of pairs (x,m), where x ∈ D and m is
the multiplicity of x.

Strictly speaking, a multiset should map each value of D to its multiplicity, that is,
it should be a total function from D to N. However, to simplify our notation we also
admit partial functions, with the understanding that elements outside the domain of
the multiset have multiplicity 0.

Given a mapping f : V → D, we let

m-image(f) := {(x,m) |m = |v ∈ V : f(v) = x|} ∈ N
D

denote the multiset of values occurring in f ’s image.
Set notation is extended to multisets in the natural way: if A,B ∈ N

D, we use
A ⊆ B to denote the fact that for all x, y ∈ D we have A(x) ≤ B(x). Strict inclusion,
A ⊂ B, is defined similarly: A ⊂ B iff A ⊆ B and there is some x ∈ D such that
A(x) < B(x). The size |A| of a multiset A is the sum of the multiplicities of all the
values in A.
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Graph notation. In the sequel, the word “graph” refers to a directed graph G =
(V,E), where E ⊆ V 2. An undirected graph is a graph where for all (u, v) ∈ E we
also have (v, u) ∈ E. The distance distG(u, v) from u to v in G is the length of the
shortest directed path form u to v.

Given a graph G = (V,E) and a set S ⊆ V , we use

ΓG(S) := {v ∈ V \ S | ∃u ∈ S : (u, v) ∈ E}

to denote the set of nodes outside S that are out-neighbors of some node in S, and
we let

ΥG(S) := {v ∈ V \ S | ∃u ∈ S : (v, u) ∈ E}
denote the in-neighbors of S. By extension, Γd

G(S) denotes the set of nodes at out-
distance exactly d from some node in S, and similarly for Υd

G(S).
For any d,

Γ
(d)
G (S) := {v ∈ V | distG(u, v) ≤ d} and Υ

(d)
G (S) := {v ∈ V | distG(v, u) ≤ d}

denote the set of nodes at distance at most d from some node in S or distance at
most d to some node in S, respectively (including, in both cases, the nodes of S
themselves).

In all of our graph notation, we omit the subscript G when it is clear from the
context. In part II of the thesis, we often drop the parentheses and write Υd

G(S)

instead of Υ
(d)
G (S).
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Part I

Distributed Computation in Dynamic
Networks
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Chapter 2

The Dynamic Graph Model

In this thesis we study the computation power of dynamic networks. In the interest
of obtaining widely-applicable results, we use an abstract model, which does not
capture specific details such as the medium-access control (MAC) protocol used in the
network, the geographic locations of the network nodes, or the particular trajectories
followed by the mobile nodes. Instead, we model the network above the MAC layer,
and assume that message delivery and node mobility are governed by a worst-case
adversary.

This chapter introduces the dynamic graph model, an adversarial model for dy-
namic networks, which will be used in the sequel to study the limits of computation
in general dynamic networks. In Section 2.1 we present the model and define the
dynamic graph adversary. Next, Section 2.2 introduces single-shot tasks, the general
class of computation problems studied in this thesis, and the notion of a reduction
between tasks. In Section 2.3 we define several properties characterizing the degree
of connectivity, information flow and vertex growth in dynamic networks, and show
how these properties relate to each other. Finally, in Section 2.4 we review the basic
definitions of epistemic logic, and show how it can be applied to reason about infor-
mation flow in dynamic graphs. (Epistemic logic will be discussed more extensively
in Chapter 4; in this chapter we only review the basic definitions.)

2.1 Dynamic Graphs: an Abstract Model of Dynamic
Networks

To represent the evolution of a communication network over time we use a dynamic
graph, defined as follows.

Definition 2.1 (Dynamic graphs). A dynamic graph is a pair G = (V,E), where V
is a fixed set of nodes and E : N+ → P(V 2) is an edge function assigning a set of
(directed) edges to each communication round r ∈ N

+. Each vertex v ∈ V represents
a wireless node participating in the computation, and an edge (u, v) ∈ E(r) represents
a communication link between node u and node v in round r.

31



We say that a dynamic graph is undirected if for all r ∈ N
+, if (u, v) ∈ E(r) then

(v, u) ∈ E(r) as well.

Since we do not seek to model the dynamics of a particular network, we assume
that the dynamic graph is generated by an adversary, which chooses the edges E(r)
for each round r. We distinguish between two types of adversaries:

• An adaptive adversary generates the dynamic graph on-the-fly; it chooses the
edges E(r) for round r based on the entire history up to round r, including the
results of coin tosses in rounds 1, . . . , r − 1. (We note that at the beginning of
each round, nodes may toss additional coins and use the results to determine
their behavior in that round. The results of coin tosses made at the beginning
of round r are not available to the adversary when it chooses E(r).)

• An oblivious adversary must commit to the dynamic graph in advance, choosing
E(r) for all r ∈ N

+ before the first round begins.

For deterministic algorithms this distinction is moot: the only difference between an
adaptive adversary and an oblivious adversary is that the latter cannot see the results
of coin tosses performed during the execution, but a deterministic algorithm does not
use random coins.

Computation model. Since we are interested in wireless networks, we assume that
nodes communicate with each other using local broadcast (henceforth referred to as
simply “broadcast”). Computation is synchronous, and we model it as a sequence of
communication rounds. At the beginning of each round r, each node u tosses private
coins and generates a message m to broadcast in that round. At the same time and
independently, the adversary chooses the edges E(r) for round r. (If the adversary
is oblivious, it must commit to the edges E(r) in advance; however, the nodes still
do not know which edges will appear in round r until round r takes place.) The
adversary then delivers u’s message to all the nodes it selected as u’s out-neighbors
in round r, i.e., to the nodes {v ∈ V | (u, v) ∈ E(r)}. Finally, the nodes process the
messages they received, transition to a new state, and the next round begins.

Synchronous vs. asynchronous wakeup. At the beginning of the execution all
nodes are asleep; computation is initiated when the adversary wakes up some subset
of nodes. If synchronous wakeup is assumed, the adversary must wake up all nodes
at once. On the other hand, if asynchronous wakeup is assumed, the adversary can
initially wake up any non-empty set of nodes; in later rounds the adversary can
spontaneously wake up sleeping nodes. If node u is asleep at time r, and u receives
a message in round r + 1 (from some node that was already awake at time r), then
node u wakes up at time r+ 1. Its state at time r+ 1 can depend on the messages it
receives in round r + 1. Node u can send its first message in round r + 2.

In the sequel we assume synchronous start unless we state otherwise.
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Unique identifiers, input size and message size. Each network node has a
unique identifier (UID) drawn from some large well-ordered set U ; we assume w.l.o.g.
that U ⊆ N, that is, we think of UIDs as natural numbers. We conflate a graph vertex
v ∈ V with the UID of the wireless node represented by the vertex, and use GN to
denote the set of all dynamic graphs over nodes drawn from N.

In addition, nodes may receive some input pertaining to the task they must solve.
Our algorithms are agnostic to the representation of UIDs and input values; UIDs
and input values are treated as “black boxes”, whose values can be stored, copied and
compared, but not manipulated or combined in any way. In particular, the size of
the representation is not available to the algorithm, and nodes cannot infer an upper
bound on the size of the network by examining their own UID and the number of bits
used to represent it. (This allows, for example, the use of variable-width encoding for
UIDs and inputs.) In the sequel, whenever we say that an algorithm does not require
an priori bound on the size of the network, we mean that it treats UIDs and inputs
as black-boxes as explained above, and works correctly when deployed in a network
of any size.

In our algorithms nodes typically send each other only a constant number of UIDs
and inputs per message, so the message size is linear in the size of the UID and the
input (unless noted otherwise). To avoid introducing the size of the input and UID as
a parameter in our analysis, we assume that UIDs and inputs are drawn from some
domain whose size is polynomial in the size n of the network, and represented using
O(logn) bits. This is not an inherent limitation of our algorithms; if the UID and
the input are instead drawn from some set I whose size is not polynomially related
to n, we can replace the O(logn) term with O(log |I|).

2.2 Single-Shot Computation Tasks

We now present the class of computation problems we will study throughout this
thesis, single-shot tasks, and introduce the notion of a reduction between tasks.

Tasks are defined over a domain D. An input or output over D for a graph
G = (V,E) is a mapping f : V → D; we say that the nodes of G receive input
I : V → D if each node u ∈ V receives I(u) as its initial input, and we say that
the nodes of G produce output O : V → D if each node u ∈ V eventually halts and
produces O(u) as its output.

The tasks we are interested in are usually UID-agnostic: the task specification is
not concerned with the specific value received or produced by each node, but rather
the multiset of values received or produced by all nodes together. To specify a task in
a manner that does not depend on UIDs we use dynamic graph isomorphisms, which
extend the standard notion of a (static) graph isomorphism in the natural way: a
mapping f : V1 → V2 is an isomorphism between G1 = (V1, E1) and G2 = (V2, E2)
if f is an isomorphism between (V1, E1(r)) and (V2, E2(r)) for all r > 0. We use
G1 ∼ G2 to denote the fact that G1 and G2 are isomorphic.

In addition to the output values, we sometimes wish to constrain the times at which
nodes halt and produce their output. To formalize such requirements we introduce
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timing constraints. Informally, a timing constraint maps dynamic graphs to a set of
permissible halting times for the nodes of the graph. (For convenience we represent
timing constraints as relations rather than functions.)

Definition 2.2 (Timing constraints). A timing constraint is a relation T ⊆ GN×N
N,

such that

(a) If (G, h) ∈ T , where G = (V,E), then domain(h) = V .

(b) T is invariant under isomorphism: if f is an isomorphism from G2 to G1, and
(G1, h) ∈ T , then we also have (G2, h ◦ f) ∈ T .

We say that an algorithm A satisfies timing constraint T (resp. satisfies T with
high probability) if whenever A is executed in dynamic graph G = (V,E), for all
H ∈ domain(T ) such that G ∼ H we have (H, h◦f) ∈ T (resp. with high probability),
where f is an isomorphism from H to G and h : V → N is a mapping representing
the halting time of each node in G (i.e., node u ∈ V halts at time h(u)).

Definition 2.3 (Single-shot tasks). A single-shot task over a domain D is a pair
(R, T ), where R ⊆ N

D × N
D is a relation on multisets, called the input/output

relation of the task, and T is a timing constraint. We say that a distributed algorithm
A solves task (R, T ) if

(a) For all dynamic graphs G = (V,E) and all inputs I : V → D in the domain of
R, when A is executed in G with input I, all nodes eventually halt and produce
an output O such that (m-image(I),m-image(O)) ∈ R. Moreover,

(b) A satisfies T .

Definition 2.3 above is for deterministic algorithms; it is extended to randomized
algorithms in the usual manner, by requiring that A satisfy T and produce a correct
output on R with high probability (over its own random choices). We require deter-
ministic termination, that is, all nodes must halt in every execution regardless of the
outcomes of random choices.1

1This restriction is without loss of generality: we will see in Chapter 3 that it is possible to
deterministically compute the size of 1-interval connected network from no prior information. It
follows that if we are given a randomized algorithm A where with probability p(n) all nodes halt
after t(n) rounds and produce a correct output, we can convert it into an algorithm A′ where nodes
always halt after at most 2t(n) rounds, and a correct output is produced with probability p(n). We
do this by interleaving the steps of A with the counting algorithm from Chapter 3: in every even
step we execute one step of A, and in every odd step we execute one step of the counting algorithm.
Eventually, at every node, one of the two algorithms halts (because the counting algorithm always
halts). If A finished first, we simply output the result of A. On the other hand, if the counting
algorithm finished first, we now know n; we continue running A until it has taken its t(n)-th step
(i.e., until time 2t(n)). If A does not halt by time 2t(n) the node halts and outputs an arbitrary
value. From the probabilistic correctness guarantee of A we know that with probability p(n), A does
finish by time 2t(n) at all nodes and produces a correct global output.
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Many of the tasks studied in this thesis do not have any non-trivial timing con-
straints; we say that a task is untimed if its timing constraint is

{(G = (V,E), f) | domain(f) = V } ,

which allows nodes to halt at any time. Informally we also say that untimed tasks
have no timing constraints, and we conflate untimed tasks with their input/output
relations.

A non-trivial timing constraint is often used to impose some degree of coordination
upon the nodes. For example, in Chapter 4 we will study simultaneous tasks, where
the timing constraint is

Tsimult := {(G = (V,E), f) | domain(f) = V and for all u, v ∈ V , f(u) = f(v)} .

This constraint requires all nodes to halt at the same time. Another task with a
non-trivial timing constraint, HFm, is introduced in Section 2.3 below; informally,
the HFm task requires nodes to halt only after they have “heard from” at least m
nodes, where “u hears from v” if there is a chain of messages leading from v to u (see
Definition 2.9).

Task classes. We classify tasks according to the following characteristics of their
input/output relation R.

• Single-valued tasks: a task where all nodes are required to output the same
value. Formally, for each (X, Y ) ∈ R, the multiset Y contains a single value
whose multiplicity is |X|.

• Deterministic tasks (or functions): a task with input/output relation R is
deterministic if R is a function from N

D to N
D. In this case we let R(X) denote

the value of R on multiset X . We are often interested in functions R that are
single-valued.

• Globally-sensitive functions: a function R is said to be globally sensitive if
we can change the input to a single node and obtain a different output value.
Formally, R is globally sensitive if for each n, there exists a multiset X of size
n in the domain of R, such that for any multiset X ′ of size n that differs from
X on the input to a single node, we have X ′ ∈ domain(f) and R(X) 6= R(X ′).

• ε-sensitive functions: a generalization of globally-sensitive functions; a func-
tion R is said to be ε-sensitive if we can change the input to an ε-fraction of
nodes and obtain a different output value. Formally, R is ε-sensitive if for each
n, there exists a multiset X of size n, such that for any multiset X ′ of size n
that differs from X by at least ε · n elements we have X ′ ∈ domain(f) and
R(X) 6= R(X ′).

• Duplication-insensitive: a task is said to be duplication-insensitive if its
input/output relation is not sensitive to the multiplicities of values in the in-
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put and output. Formally, a task with input/output relation R is duplication-
insensitive if for any four multisets X,X ′, Y, Y ′, if domain(X) = domain(X ′),
domain(Y ) = domain(Y ′) and (X, Y ) ∈ R, then we also have (X ′, Y ′) ∈ R. If
a task is not duplication-insensitive then we say that it is duplication-sensitive.

Example 2.4. In this thesis we will study the complexity of the following untimed
tasks, defined over the domain of natural numbers (D = N):

• Counting, that is, determining the number of nodes in the network. Phrased
as a task, each node receives 1 as its input, and must output the sum over
all inputs. This task is deterministic and duplication-sensitive, but it is not
globally-sensitive, since the input cannot be changed without altering the size
n of the network (i.e., there do not exist X,X ′ in the domain of R that differ
from each other but have the same size).

• Minimum: each node receives an input, and must output the minimum of all
inputs (if inputs are binary, this is equivalent to taking their Boolean AND).
This task is deterministic and globally-sensitive, but it is duplication-insensitive:
the output depends only on the values present in the input assignment, not on
their multiplicities.

• Consensus : each node receives a binary input, and all nodes must output the
same binary value, which must be the input to one of the nodes. This task is
not deterministic: if the input assignment contains both 0 and 1, both values
are permissible as output. Consensus is duplication-insensitive, but since it is
not a function, it is not globally-sensitive.

Finally, let us define what it means for one task to be at least as hard as another.
We are interested in the size of messages and number of rounds required to solve tasks,
and we therefore introduce a notion of reduction that preserves these parameters.

Definition 2.5 ((α, β)-reduction). Let α, β : GN → N. An (α, β)-reduction from task
T1 to task T2 is an algorithm A1 that solves T1 using black-box access to an algorithm
A2 for solving T2. When executed in dynamic graph G, A1 can interact with A2 as
follows:

• A1 initially specifies an input for A2, and then runs alongside A2 until A2 halts.

• During A2’s run, A1 cannot examine A2’s internal state or the contents of its
messages. However, A1 can append at most β(G) bits to each message sent by
A2 (treating each message as a black box).

• When A2 halts, A1 can observe A2’s output value. A1 may continue running
after A2 terminates, using messages of size at most β(G).

In executions where A2 solves T2 correctly, A1 must with high probability terminate at
most α(G)+1 rounds after A2 does and solve T1. (If A1 is a deterministic reduction,
the above should hold deterministically in every execution where A2 succeeds.)
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A1 A1
. . . A1

A2 A2
. . . A2

β bits β bits β bits

u1 u2 un

Figure 2-1: A reduction A1 from T1 to T2, combined with an algorithm A2 for solving
T2. Thick lines indicate the input and output to the system, as well as messages
exchanged between nodes. Thin lines indicate the (virtual) interaction between the
(virtual) instances of A1 and A2 running in the system. Since A1 cannot interfere
with or examine A2’s execution, we can think of A1 as executing alongside A2 and
sending its own messages, which are separate from A2’s messages and comprise at
most β bits each. A1 provides the input to A2 and captures A2’s output.

Definition 2.6 (Complete tasks). We say that a task T is (α, β)-complete for a task
class C if any task T ′ ∈ C (α, β)-reduces to T .

The parameters α, β typically depend only on some parameters of the dynamic
graph (e.g., its size or its interval connectivity); to simplify our notation, in such cases
we represent α, β as mappings from the graph parameter’s value (or from a tuple of
parameter values) to natural numbers. Most often α and β depend only on the size
n of the graph and we represent them as mappings N→ N.

We say that T1 (α, β)-reduces (or (α, β)-reduces via a high-probability reduction)
if there exists a deterministic (α, β)-reduction (resp. a randomized (α, β)-reduction)
from T1 to T2. If T1 (α, β)-reduces to T2, then we can solve T1 by running an algorithm
for solving T2 in parallel with an (α, β)-reduction from T1 to T2 (see Fig. 2-1 for an
illustration), obtaining the following relationship between the complexity of T1 and
of T2:

Proposition 2.7. If T2 can be solved (or solved w.h.p.) in t(n) rounds using B(n)-
bit messages, and T1 is a task that (α(n), β(n))-reduces (resp. w.h.p.) to T2, then T1
can be solved (resp. solved w.h.p.) in t(n) + α(n) + 1 rounds using (B(n) + β(n))-bit
messages.

The reductions in this thesis will mostly fall into the following three classes:

• A subclass of (α,O(logn))-reductions, in which the reduction calls the algorithm
for T2, waits until it terminates without doing any work itself in the meantime,
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and only then “starts running” for α rounds. We can think of such a reduction
as an algorithm that takes as part of its own input a solution to T2 on input it
selects. Typically such reductions will be to simultaneous tasks, so that we are
assured that all nodes finish solving T2 and “start running” the reduction at the
same time.

• (0, β)-reductions: a (0, β)-reduction from T1 to T2 is an algorithm A1 that takes
an algorithm A2 for T2, appends some extra information to A2’s messages, and
halts immediately when A2 does. The typical (0, β)-reduction in this thesis uses
A2 as a termination condition: A1 will not use A2’s output at all, only the fact
that A2 has terminated.

To argue the correctness of such a reduction we show that solving T2 requires
A2 to detect when the dynamic graph satisfies certain conditions, and thus A1

can “outsource” detecting these conditions to A2. For example, to compute
the minimum input value, we can design an algorithm A1 where nodes always
forward the smallest input value they have heard so far. Eventually the global
minimum will be received by all nodes, and at this point A1 can halt; however,
A1 by itself cannot detect when it should halt. If we have another algorithm
A2 that “knows when to halt” (for example, we will see in Section 3.1 that an
algorithm for counting can serve in this role), then A1 can piggyback on top of
A2’s messages, and halt when A2 halts.

• (0, 0)-reductions: a (0, 0)-reduction simply maps inputs for T1 to inputs for
T2, and then maps the output for T2 back to an output for T1. Informally, a
(0, 0)-reduction asserts that any algorithm for T2 must implicitly solve T1.

2.3 Connectivity, Expansion and Information Flow
in Dynamic Networks

In static networks, the diameter of the network graph and its connectivity and ex-
pansion properties greatly impact the performance of distributed algorithms in the
network. We now define several dynamic graph properties that extend these notions
to the dynamic case.

Connectivity. Global distributed computation usually requires some notion of con-
nectivity : essentially, we must be guaranteed that given sufficient time and effort, a
message from any node in u ∈ V can reach any other node in v ∈ V . In the case
of dynamic networks, a basic requirement is instantaneous connectivity, that is, each
instantaneous graph (V,E(r)) for any r ∈ N

+ must be connected. However, if the
network enjoys some stability, connected subgraphs may persist for more than a sin-
gle round; the following definition captures the amount of stability in the network.
Recall that dynamic graphs are defined as directed graphs in Definition 2.1.
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Definition 2.8 (T -interval connectivity). A dynamic graph G = (V,E) is said to be
T -interval connected, for T ∈ N

+, if for each r ∈ N
+, the edges

⋂

r′∈[r,r+T−1)E(r′)
induce a strongly-connected graph on V .

We abuse this definition slightly by saying that a graph is ∞-interval connected
if
⋂

r∈N+ E(r) induces a strongly-connected graph on V .

Our algorithms assume at least 1-interval connectivity (that is, each instantaneous
graph must be strongly-connected).

Information flow. To capture the manner in which information propagates in a
dynamic network we use a version of Lamport’s causal order [103], defined as follows.2

Definition 2.9 (Lamport’s causal order). Given a dynamic graph G = (V,E), Lam-
port’s causal order for G is a relation  G⊆ (V × N

+)
2
indicating the existence of

a (directed) chain of messages between two nodes at two points in time. Formally,
the relation  G is defined as the transitive and reflexive closure of the relation →G,
where (u, t)→G (v, t+ 1) iff either u = v or (u, v) ∈ E(t+ 1).

We omit the subscript G from our notation when the graph is clear from the
context.

The causal order has the following simple properties:

Proposition 2.10. The causal order  is reflexive and transitive. Moreover,

(a) For all u ∈ V and t ≤ t′ we have (u, t) (u, t′);

(b) For all u, v ∈ V and t1 ≤ t2 ≤ t3, if (u, t1) (v, t2) then (u, t1) (v, t3), and if
(u, t2) (v, t3) then (u, t1) (v, t3).

(c) For all u, v ∈ V and t ∈ N, if u 6= v then (u, t) 6 (v, t).

Proof. Reflexivity and transitivity follow from the definition of  as the reflexive
and transitive closure of →. Part (a) follows from transitivity and the fact that
(u, t)→ (u, t+1) (by definition of→). Part (b) follows from transitivity and part (a).
For part (c), suppose that (u, t) (v, t). Then there is a sequence (u0, t0), . . . , (uk, tk)
such that (u, t) = (u0, t0)→ (u1, t1)→ . . .→ (uk, tk) = (v, t). By definition of →, for
all x, y ∈ V we have (x, t) 6→ (y, t), and moreover, if t′ > t then (x, t′) 6→ (y, t). Thus,
we can show by induction on k that ui = u and ti = t for all i ≤ k. It follows that
u = v, as required.

2The causal order was originally defined in [103] for asynchronous systems; the definition of
(u, t)→ (v, t′) in [103] asserts that at time t, node u sends a message which v receives at time t′. In
contrast, Definition 2.9 above is stated in terms of the dynamic graphG alone, but the two definitions
are equivalent: since the network is synchronous, and nodes communicate by local broadcast, node
u sends a message to v in round r iff (u, v) ∈ E(r).
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The pairs (u, t) (where u ∈ V and t ∈ N) are referred to as time-nodes. If
(u, t) (v, t′), then we say that (u, t) causally influences (v, t′).

Lamport’s causal order yields a pessimistic characterization (from the perspective
of proving lower bounds) of the information that nodes can acquire about the execu-
tion: if (u, t) (v, t′), then at time t′ node v may or may not have some information
regarding the state of node u a time t, depending on the contents of messages sent
by the algorithm; but if (u, t) 6 (v, t′), then node v cannot know any non-trivial fact
regarding the state of u at time t, regardless of the messages sent by the algorithm.
(We defer the definition of a “non-trivial fact” until Section 2.4.) For example, if
(v, 0) 6 (u, t), then at time t node u cannot distinguish the current execution from
one in which node v receives a different input or is not present in the network at
all. This fact will be used extensively when we characterize the hardness of comput-
ing functions of the nodes’ initial input (e.g., the minimum input or the sum of the
inputs).

To represent the set of time-nodes influencing a given time-node we introduce the
following notation.

Definition 2.11. The past set and future set of time-node (u, t) are defined by

past(u, t) := {(v, t′) | (v, t′) (u, t)} , and
future(u, t) := {(v, t′) | (u, t) (v, t′)} .

The projection of a set of time-nodes X ⊆ V × N on a time t ∈ N is defined by

Xt := {v ∈ V | (v, t) ∈ X} .

We can now re-state Proposition 2.10 in terms of past and future sets:

Proposition 2.12. For all nodes u, v ∈ V and times t ≤ t′ ≤ t′′,

(a) past(u, t) ⊆ past(u, t′) and future(u, t′) ⊆ future(u, t).

(b) past(u, t′′)t′ ⊆ past(u, t′′)t and future(u, t)t′ ⊆ future(u, t)t′′.

(c) past(u, t)t = {u} and future(u, t)t = {u}.

Proof. Parts (a) and (b) follows from part (b) of Proposition 2.10; part (c) combines
parts (a) and (c) of Proposition 2.10.

When we discuss more than one execution or dynamic graph, we distinguish be-
tween past sets and future sets in the different executions or graphs by indicating the
execution or graph in the subscript; i.e., past(u, t)α,t′ is the projection of the past set
of (u, t) in execution α on time t′, and similarly for future sets.
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The dynamic diameter. In static networks, the efficiency of distributed algorithms
is usually closely related to the diameter of the network: the diameter is a bound on
the time required for a message from any node to reach all the nodes in the network.
In a dynamic network, the diameter of each instantaneous communication graph
(V,E(r)) does not yield a meaningful bound on the time required for information
to propagate throughout the network; instead we introduce the following definition,
based on Lamport’s causal order.

Definition 2.13 (Dynamic Diameter). We say that a dynamic graph G = (V,E)
has a dynamic diameter bounded by D (where D ∈ N

+) if for any time t and nodes
u, v ∈ V we have (u, t)  (v, t + D). The dynamic diameter of G is the smallest
number D ∈ N such that the diameter of G is bounded by D.

Equivalently, we can define the dynamic diameter of G in terms of past and future

sets:

Proposition 2.14. The dynamic diameter of G is bounded by D iff either of the
following conditions holds:

(a) For every u ∈ V and t ≥ 0 we have future(u, t)t+D = V .

(b) For every u ∈ V and t ≥ D we have past(u, t)t−D = V .

Proof. By Definition 2.11 we have (u, t)  (v, t + D) iff u ∈ past(v, t + D)t iff v ∈
future(u, t)t+D. The claim follows.

Example 2.15. Let us briefly illustrate why this new notion is necessary, and why
we cannot simply use a bound on the (standard) diameter of the instantaneous com-
munication graph in each round. Consider the dynamic graph shown in Fig. 2-2. The
graph is a “dynamic star” over n nodes 0, . . . , n − 1: in round r, the center of the
graph is node r mod n, and the remaining nodes are leaves of the star. Suppose that
node 0 wishes to disseminate a message m to all the nodes in the network, and that
all nodes that receive m cooperate by re-sending the message m in each subsequent
round. How long until all nodes receive m?

1

2

0 3

Round 1

2

1

0 3

Round 2

3

1

0 2

Round 3

0

1

3 2

Round 4

. . .

Figure 2-2: The dynamic star graph with n = 4. Nodes that received the message
are indicated in gray.

Node 0 is initially a leaf, so in the first round its message is received only by the
center of the star, node 1. However, in the next round node 1 also becomes a leaf. In
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the second round, even though nodes 0 and 1 both send m, only node 2, the center
of the new star, receives it. In the following round node 2 also becomes a leaf, and
so on. In general, at time i ≤ n− 2 the message is known only to leaves of the star,
and only one new node (the center of the star) learns it in round i+ 1. It takes n− 1
rounds for all nodes to receive the message. In other words, the dynamic diameter
of the dynamic star graph is n− 1, even though the diameter of each “instantaneous
star” is 2.3

Vertex growth. Real wireless networks are often dense and well-connected. To
quantify the degree of connectivity we define the vertex growth of a graph, a natural
generalization of the notion of a vertex expander.

Definition 2.16 (Vertex growth). We say that a static graph G = (V,E) has vertex
growth g : N+ → N

+ if for every S ⊆ V , if |S| ≤ |V |/2 then |Γ(S)| ≥ g(|S|).

Example 2.17. If G is an undirected vertex expander with expansion constant α,
then G has vertex growth g(s) := αs. If G is k-connected (for k ≤ n/2), then G has
vertex growth g(s) := k.

It is easy to extend the bound on the size of the immediate out-neighborhood of
a set into a bound on the size of the d-neighborhood:

Lemma 2.18. If G has vertex growth g, then for any distance d and set S ⊆ V we
have

|Γ(d)(S)| ≥ min
{

g(d)(|S|), n/2 + 1
}

.

Proof. The lemma follows from the definition of vertex growth and an easy induction
on d: until the size of Γ(j)(S) exceeds n/2, we can continue to apply the definition of
vertex growth (Definition 2.16) to bound the size of Γ(j+1(S) from below.

Now we can generalize Definition 2.8 to quantify both the connectivity and the
duration of spanning subgraphs in a dynamic graph.

Definition 2.19 ((T, g)-interval connectivity). We say that a dynamic graph G =
(V,E) is (T, g)-interval connected if for each r ∈ N

+, the subgraph induced by
⋂

r′∈[r,r+T−1]E(r′) is strongly-connected and has vertex growth g.

Even though vertex growth is defined over static graphs, we often say that a
dynamic graph has vertex growth g if it is (1, g)-interval connected.

3The dynamic star graph is something of a pathological case; the same graph was also used in [11]
to show that a random walk can have exponential cover time in a dynamic graph.
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The relationship between vertex growth and dynamic diamete r. In Exam-
ple 2.15 we saw that a small diameter for each instantaneous communication graph
does not necessarily translate to a small dynamic diameter. However, good vertex
growth for each instantaneous graph does: it implies that in each round, many new
nodes are causally influenced by each time-node, and so it does not take many rounds
for a pair of nodes to causally influence each other. More formally we can state the
following.

Lemma 2.20. Let G = (V,E) be an undirected dynamic graph over n nodes with
vertex growth g. Then the dynamic diameter of G is at most 2d, where d = d(g, n) is
the smallest integer such that g(d)(1) > n/2.

Proof. Fix two nodes u, v ∈ V and a time t ≥ 0. We must show that (u, t)  
(v, t+ 2d). For each time i, 0 ≤ i ≤ 2d, let

Fi := future(u, t)t+i = {w ∈ V | (u, t) (w, t+ i)} ,

and let

Pi := past(v, t+ 2d)t+2d−i = {w ∈ V | (w, t+ 2d− i) (v, t+ 2d)} .

(See Fig. 2-3 for an illustration.) We will show that Fd ∩ Pd 6= ∅, that is, there is
some node w such that (u, t) (w, t+ d) and (w, t+ d) (v, t+ 2d). This will then
imply that (u, t) (v, t+ 2d), by transitivity of the causal order.

To show that Fd ∩ Pd 6= ∅, we show by induction on i ≤ d that

(I) Either |Fi| > n/2 or |Fi| ≥ g(i)(1), and similarly,

(II) Either |Pi| > n/2 or |Pi| ≥ g(i)(1).

In other words, as we go forward or back in time from times t and t+ 2d (resp.), Ft′

and Pt′ expand at the rate of the vertex growth g until their size exceeds n/2. In
particular, since g(d)(1) > n/2 by definition, we obtain |Ft+d| > n/2 and |Pt+d| > n/2,
and hence Ft+d ∩ Pt+d 6= ∅.

The induction base, i = 0, is immediate: from Proposition 2.12 we have |F0| =
|future(u, t)t| = 1 and |P0| = |past(v, t + 2d)t+2d| = 1, and by definition, g(0)(1) = 1.
For the induction step, assume that the claim holds for i < d. By Proposition 2.12
we have Fi ⊆ Fi+1 and Pi ⊆ Pi+1. If |Fi| > n/2, then we have |Fi+1| > n/2 as well,
and similarly for Pi. Thus, assume that |Fi| ≤ n/2 and |Pi| ≤ n/2.

Consider the communication graph Gi := (V,E(t+ i+1)) in round t+ i+1. From
the definition of vertex growth, |ΓGi

(Fi)| ≥ g(|Fi|). For each node w ∈ ΓGi
(Fi) we

have w 6∈ Fi, and there exists some z ∈ Fi such that (z, w) ∈ E(t+ i+ 1). Therefore
(u, t)  (z, t + i)  (w, t + i + 1), and hence w ∈ Fi+1 \ Fi. In addition, Fi ⊆ Fi+1;
therefore |Fi+1| ≥ g(|Fi|) + |Fi| ≥ g(g(i)(1)) + g(i)(1) = g(i+1)(1). (In the last step we
applied the induction hypothesis, which shows that |Fi| ≥ g(i)(1).)

A similar argument can be made for Pi+1, except that we must go “back in time”
instead of forward. Let Gi := (V,E(t+ 2d− i)). Since |Pi| ≤ n/2, the vertex growth
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u

v

Time 0 Time 1 Time 2 Time 3 Time 4

Figure 2-3: The sets Ft′ and Pt′ from Lemma 2.20, with n = 9 and t = 0. Each
instantaneous graph is 2-connected (vertex growth 2), but only edges relevant to the
proof are shown. The smallest d satisfying g(d) > 9/2 is d = 2, and the dynamic
diameter is 4. The shaded areas indicate Ft′ for t′ = 0, 1, 2 in light gray, and Bt′ for
t′ = 2, 3, 4 in darker gray, with F2 ∩B2 6= ∅, as argued in the proof.

of Gi again yields |ΓGi
(Pi)| ≥ g(|Pi|). For each node w ∈ ΓGi

(Pi) we have w 6∈ Pi, and
there exists some z ∈ Pi such that (z, w) ∈ E(t+2d−i). Since G is undirected we also
have (w, z) ∈ E(t+2d−i), and hence (w, t+2d−(i+1)) (z, t+2d−i) (v, t+2d).
As above, we obtain |Pi+1| ≥ g(|Pi|) + |Pi| ≥ g(i+1)(1).

We remark that Lemma 2.20 also holds for directed graphs, if their vertex growth
applies “in both directions”: every set S ⊆ V of size at most n/2 has at least g(|S|)
in-neighbors as well as at least g(|S|) out-neighbors.

Similar arguments to Lemma 2.20 have also been applied to analyze gossip-based
algorithms, e.g., in [82, 24]. In a gossip-based algorithm, each node selects a neighbor
uniformly at random, and connects to that neighbor. (For example, it might send its
information to that neighbor, or request the neighbor’s information.) In each round,
the graph induced by these connections is with high probability a vertex expander;
thus, the dynamic graph induced by the algorithm over many rounds has a logarithmic
dynamic diameter with high probability, and this is a key factor in the performance
of gossip-based algorithms. Lemma 2.20 generalizes the argument slightly in that it
allows for other types of expansion (e.g., k-connectivity), but the analysis is quite
similar.

One special case of particular interest to us is a 1-interval connected dynamic
graph (possibly directed) with no non-trivial vertex growth. Such graphs have a
dynamic diameter of at most n − 1, because the vertex growth g(s) := s + 1, which
follows from strong connectivity, continues to apply even after the set size s exceeds
n/2. The following lemma formalizes this intuition and will be quite useful to us in
the sequel.

Lemma 2.21. If G is a 1-interval connected graph over n nodes, then for all nodes
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u ∈ V and times t ≤ t′ we have

(a) |past(u, t′)t| ≥ min {n, t′ − t + 1}, and

(b) |future(u, t)t′| ≥ min {n, t′ − t+ 1}.

Proof. By induction on t′ − t. The base case, t′ = t, is immediate. For the step,
assume that the claim holds for all u ∈ V and all times t′, t such that t′ − t = k, and
consider a node u ∈ V and two timepoints t′, t such that t′ − t = k + 1.

For part (a), observe that past(u, t′)t+1 ⊆ past(u, t′)t: if (v, t + 1) ∈ past(u, t′)
then we have (v, t) → (v, t + 1)  (u, t′), so (v, t) ∈ past(u, t′) as well. Thus, if
|past(u, t′)t+1| ≥ n, the claim holds. On the other hand, if |past(u, t′)t+1| < n, then
from 1-interval connectivity, in the graph (V,E(t+1)) for round t+1 there is some edge
(v, w) in the directed cut (V \ past(u, t′)t+1, past(u, t

′)t+1). We have v 6∈ past(u, t′)t+1

and (v, t)→ (w, t+1) (u, t′), so v ∈ past(u, t′)t\past(u, t′)t+1. Since t′−(t+1) = k,
the induction hypothesis shows that |past(u, t′)t+1| ≥ t′ − (t + 1) + 1 = t′ − t, and
therefore |past(u, t′)t| ≥ t′ − t+ 1, as desired.

Part (b) is quite similar. We have future(u, t)t′−1 ⊆ future(u, t)t′ , and hence if
|future(u, t)t′−1| ≥ n we are done. Otherwise there is some edge (w, v) in the directed
cut (future(u, t)t′−1, V \future(u, t)t′−1) for round t′, which implies that (u, t) (w, t′−
1) → (v, t′). Therefore v ∈ future(u, t)t′ \ future(u, t)t′−1, and applying the induction
hypothesis yields the claim.

Corollary 2.22. The dynamic diameter of any 1-interval connected graph over n
nodes is at most n− 1.

The following easy corollary will be of use to us in Chapter 3, where computing
the minimum input value will be a useful building block.

Proposition 2.23. If k ≥ n, then for any dynamic graph of size n and for any node
u we have past(u, k − 1)0 = V . If all nodes cooperate to forward the smallest input
value they have heard so far, then after k − 1 rounds all nodes have the minimum
input.

Proof. If k ≥ n, then by Corollary 2.22 the dynamic diameter of any graph over n
nodes is at most n − 1 ≤ k − 1. Therefore by Propositions 2.12 and 2.14, we have
V = past(u, n − 1)0 = past(u, k − 1)0 and V = future(u, 0)n−1 = future(u, 0)k−1. If
in each round all nodes send the smallest value they have heard so far, k − 1 rounds
are sufficient for the true minimum to reach all other nodes: if u is a node that has
the minimum input, it is easy to show by induction on t that at each time t ≥ 0,
all nodes in future(u, 0)t have u’s input value. In particular at time k − 1 (i.e., after
round k − 1) all nodes in future(u, 0)k−1 = V have u’s input value.

Finally, let us introduce one of the main problems studied in this thesis: hearing
from m nodes. Informally, the problem requires nodes to analyze information flow in
the network, and halt when they have been causally-influenced by sufficiently many
nodes.
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Definition 2.24 (Hearing from m nodes, HFm). In the hearing from m nodes task
(denoted HFm), each node u must halt at some time t such that |past(u, t)0| ≥
min {m,n}, where n is the size of the network. The size of the network may or
may not be known in advance.

We are especially interested in the variant HF n, where nodes must halt only when
their past-set includes the initial states of all nodes in the graph. Informally, HF n is
necessary to compute functions of the nodes’ initial states, and we will see throughout
this thesis that the complexity of HF n often dominates the complexity of computing
whichever function of the initial states we were truly interested in.

2.4 Epistemic Logic and Information Flow

When proving lower bounds in distributed computing, it is often useful to reason
about what facts a node “knows” about the current execution — and more impor-
tantly, what facts it does not know. To reason formally about such knowledge we
use epistemic logic [48]. Informally, we say that a node knows some fact about the
current execution if its state contains sufficient information to distinguish the current
execution from any execution where the fact does not hold.

Definition 2.25 (Knowledge). Fix a set C of executions, an execution α ∈ C, and a
node u participating in the execution. Let P be a Boolean predicate over executions.
We say that at time t in α node u knows fact P (with respect to the class C) if for
any execution β ∈ C (including α itself), if u participates in β and α and β are
indistinguishable to u at time t (that is, u’s state at time t is the same in α and β),
then β satisfies P .

The class C will usually be the set of all executions of a specific algorithm, in which
the input is drawn from the domain of the problem being studied and the dynamic
graph satisfies some constraints (or often is not constrained). When the problem
and the graph constraints are understood from the context, we leave C implicit (e.g.,
when we say “there exists an execution”, this is to be understood as “there exists an
execution in C”, and so on).

In this thesis we are especially interested in the effect of prior information on the
complexity of solving various tasks. We say that a fact is known a priori if it is known
to all nodes at time 0 in every execution of C.
Example 2.26. The size of the network is known a priori in the following cases
(among others):

• All nodes u receive the same number n as part of their input, and C contains
only executions in which n equals the size of the dynamic graph. (Note that n
may differ from execution to execution; it simply provides a means for nodes to
distinguish between executions with different graph sizes.)

• There is some constant n such that in all executions of C the dynamic graph
has size n. (In this case Definition 2.25 holds for the property P = “the size of
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the network is n” because there do not exist executions in which the property
does not hold.)

Similarly, an upper bound on the size of the network is known a priori in the following
cases:

• The two examples above (in these cases an exact upper bound is known),

• The set U from which UIDs are drawn is finite (in this case an upper bound of
|U| is known),

• Each node u receives a number Nu as part of its input, and C contains only
executions in which Nu is no smaller than the size n of the dynamic graph.
If in addition there is some function f : N+ → N

+ such that C contains only
executions in which Nu ≤ f(n) (where n is the size of the dynamic graph), then
we say that an upper bound of f(n) is known.

In Section 2.3 we claimed informally that the causal order captures all the infor-
mation a node can possibly acquire about an execution; let us now make the case
formally. We say that node u cannot distinguish between executions α and β at time
t, and denote (α, t) ∼u (β, t), if node u has the same state at time t in α and β. We
now show that if two executions differ only in ways that are “visible” to nodes outside
past(u, t)0, then node u cannot distinguish them at time t.

Definition 2.27. Given a node u and a time t, we say that two executions α, β are
(u, t)-identical if

(a) Node u participates in both α and β,

(b) Node u’s input is the same in α and β, and

(c) In each round up to time t, node u has the same incoming edges in α and in β.

We say that α and β are (S, t)-identical, where S is a set of nodes, if α and β are
(u, t)-identical for every u ∈ S.

Proposition 2.28. Let α be an execution with dynamic graph G = (V,E), and
fix u ∈ V and a time t. Let β be an execution such that for all t′ ≤ t, α and β
are (past(u, t)α,t′, t

′)-identical: that is, for all (v, t′) ∈ past(u, t), executions α, β are
(v, t′)-identical. Then (α, t) ∼u (β, t).

Proof. We show by induction on t′ ≤ t that α and β are indistinguishable at time t′

to all nodes in past(u, t)α,t′. The base case is immediate: α and β are (past(u, t)0, 0)-
identical, so all nodes of past(u, t)α,0 have the same input in α and β. This means these
nodes have the same initial states in α and in β, and hence they cannot distinguish
the two executions.

For the induction step, assume that the executions are indistinguishable up to time
t′ to all nodes in past(u, t)α,t′, and consider time t′ + 1 ≤ t. Fix v ∈ past(u, t)α,t′+1.
In round t′ + 1 node v’s incoming edges are the same in α, β. Moreover, if (w, v) ∈
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E(t′ + 1) then (w, t′) →G (v, t′ + 1)  G (u, t), and hence w ∈ past(u, t)α,t′. By the
induction hypothesis each such node w cannot distinguish α from β at time t′, and
since (v, t′)  G (v, t′ + 1)  G (u, t), neither can v itself. Therefore node v receives
the same messages in round t′ + 1 of α and β and its state at time t′ + 1 remains the
same in both.

By Proposition 2.12 we have u ∈ past(u, t)α,t. The claim follows by applying the
induction hypothesis to node u at time t.

Informally speaking, the proposition above asserts that if (v, t′) 6 (u, t), then
node u cannot know at time t any non-trivial fact about node v at time t′, where here
“non-trivial” means that the fact is not satisfied in some other execution, and “a fact
about node v” is a fact that can be made false by changing only the input to node v
or the edges that hit node v, or by omitting node v from the execution entirely.
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Chapter 3

Counting and Information
Dissemination in Dynamic Networks

In this chapter we study two basic primitives for dynamic networks: information
dissemination and counting. An information dissemination task requires all nodes to
collect the initial inputs of all the other nodes; this is a powerful primitive, which
allows nodes to compute any global function of their initial inputs. Counting simply
requires nodes to determine the size of the network, or to find an upper bound on the
size (precise definitions will be introduced in the sequel). Counting and information
dissemination are closely related: informally, as part of information dissemination,
nodes must determine the size of the network in order to know when they have
collected everyone’s information. In this chapter we will show that both tasks can be
solved efficiently even when no a priori information about the network is available to
the nodes.

We begin in Section 3.1 by introducing the formal problem definitions and proving
a few simple facts regarding their relationships to other problems. In Section 3.2 we
give a simple counting / information dissemination algorithm that uses large mes-
sages, but demonstrates a key idea that will be used throughout. In the remainder
of the chapter we study solutions for counting and information dissemination using
small messages. We begin in Sections 3.3–3.4 by showing that in 1-interval connected
graphs, we can solve both problems deterministically in O(n2) rounds using mes-
sages of size O(logn). In Section 3.4.2 we turn our attention to∞-interval connected
graphs, and give a different approach that allows us to solve counting and information
dissemination in O(n) rounds in such graphs. Next, combining ideas from both ap-
proaches, we show in Section 3.4.3 that counting and information dissemination can
be solved deterministically in O(n + n2/T ) rounds in T -interval connected graphs.
We address several weaker variants of the model in Section 3.5.

The solutions above are all deterministic; in Section 3.6 we give a randomized ap-
proximate counting algorithm which terminates in O(n) rounds with high probability.
We conclude in Section 3.7 with an Ω(n+ nk/T ) lower bound on a restricted class of
algorithms for exchanging k pieces of information in a T -interval connected graph.
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3.1 Problem Definitions and Basic Properties

We define several variants of information dissemination and counting. The following
tasks are all untimed, unless otherwise noted.

Definition 3.1 (Token Dissemination). In the k-token dissemination task, each node
receives an initial set of tokens drawn from some domain, such that the total number
of tokens in the input to all nodes is k. The goal is for each node to collect and output
all k tokens. The nodes may or may not know k in advance; if k is not known, part
of the task is to determine k, since nodes cannot halt until they have collected all k
tokens.

Expressed as a task, the input to each node u is a set I(u) ⊆ D, where D is the
domain from which tokens are drawn. The input/output relation is given by

{

(I,
⋃

image(I)) | I ∈
(

2D
)N ∧

∣

∣

∣

⋃

image(I)
∣

∣

∣
= k

}

.

All-to-all token dissemination is a variant of k-token dissemination in which k =
n, each node receives a unique token in its input, and the nodes do not know n in
advance.

Definition 3.2 (Counting and Approximate Counting). In the counting task, nodes
receive no input, and each node must output the size n of the network. To express
counting as a task, we assign all nodes the constant input 1, and require all nodes to
output the sum of the inputs.

In ε-approximate counting nodes again receive no input, and must each output
an approximate count ñ ∈ R, such that |ñ − n| ≤ ε · n. We do not require all nodes
to output the same approximate count (although the algorithm we give in Section 3.6
does have this property). To express ε-approximate counting as a task we once again
assign all nodes the fixed input 1 and require each node to output an ε-approximation
to the sum of the inputs.

Definition 3.3 (k-Verification). In the k-verification task, all nodes are given a
bound k in their input, and must output a Boolean value indicating whether n ≥ k
(i.e., whether the size of the input multiset, which is the number of participants in
the execution, is at least k). Unlike the previous tasks, k-verification has a timing
constraint: we require simultaneous termination, that is, all nodes must halt at the
same time.

Clearly, all-to-all token dissemination is “the hardest” single-shot task: any other
task can be solved using all-to-all token dissemination by having all nodes collect all
the inputs to the other nodes and then compute the solution locally.

Proposition 3.4. Any single-shot task (0, 0)-reduces to all-to-all token dissemination
over the data domain of the task.

Using the dynamic graph properties we saw in Section 2.3, we can point out several
other relationships between the problems defined above and other useful tasks.
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Proposition 3.5. Computing the minimum input value ((1 + ε)n/(1− ε), O(logn))-
reduces to ε-approximate counting.

Proof. If ñu is an ε-approximate count known to node u, then |ñu − n| ≤ ε · n, and
in particular n ≤ ñu/(1− ε). We can reduce minimum to ε-approximate counting as
follows: while the ε-approximate counting algorithm is running, all nodes forward the
smallest input value they have heard so far (appending O(logn) bits to the messages
of the approximate counting algorithm). When the ε-approximate counting algorithm
terminates at node u and outputs an approximate count ñu, node u continues running
until time ñu/(1− ε) (if the ε-approximate counting algorithm terminates before this
time), still forwarding in each round the smallest input value it has heard so far. Then
node u halts and outputs the smallest value it received.

In every execution where the ε-approximate counting algorithm outputs a“correct”
(i.e., ε-approximate) count at all nodes, every node u forwards the smallest value it
has heard for at least ñu/(1−ε) ≥ n rounds. Corollary 2.22 states that any 1-interval
connected graph has a dynamic diameter of at most n− 1. Since all nodes run for at
least n rounds, we have past(u, n)0 = V for all nodes u; that is, at time n all nodes
have the global minimum. Since the minimum value received by node u can never
increase (and also never decreases below the global minimum), all nodes eventually
output the global minimum.

As for the running time of the reduction, if ñu is an ε-approximate count then
ñu ≤ (1+ε)n, so the reduction requires at most (1+ε)n/(1−ε) additional rounds.

The reduction above is in some sense pessimistic: it ensures that nodes run for
at least n − 1 rounds, which in turn guarantees that if node u halts at time t then
past(u, t)0 = V . However, in some cases the dynamic diameter of the graph can be
much smaller than n− 1, and in such cases counting and minimum can be solved in
much fewer than n− 1 rounds. (For example, in Section 4.3.3 we will see that we can
detect in O(1) rounds whether the graph is a clique, and if so we can solve all-to-all
token dissemination in O(1) rounds.) Must we always waste n − 1 rounds, even if
the counting algorithm terminates before time n − 1? In other words, are there any
situations where counting is faster than computing a minimum? It turns out that
the answer is no: counting is at least as hard as hearing from everyone (HF n), which
in turn is no harder than computing a minimum. Informally speaking, the following
lemma shows that if node u halts before it has heard from everyone (i.e., before its
past-set from time 0 is V ), then node u “knows nothing” about the size of the network
– including the exact count or any non-trivial approximation of the count.

Lemma 3.6. In the absence of an a priori bound on the size of the network, the HF n

task (0, 0)-reduces to ε-approximate counting for any n.

Proof. We claim that if A is a randomized algorithm for ε-approximate counting, then
in any execution of A, with high probability (or deterministically for deterministic
algorithms) each node u halts at some time t such that past(u, t)0 = V . In other words,
we will show that A already solves HF n all by itself. Thus, a trivial (0, 0)-reduction
from HF n is obtained by simply running A until it halts, and then halting.
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Let us show that any ε-approximate counting algorithm must already solve HF n.
For clarity, we first present the proof for deterministic algorithms, and then generalize
the proof to randomized algorithms.

We claim that if A is a deterministic algorithm for ε-approximate counting, then
in any execution of A, no node u can halt at time t unless past(u, t)0 = V . Suppose
for the sake of contradiction that this is not the case: that is, in some dynamic graph
G = (V,E) with |V | = n, some node u ∈ V halts at time t such that past(u, t)0 6= V
and outputs a count ñu. Let v ∈ V \ past(u, t)0, that is, (v, 0) 6 (u, t). Informally,
we will show that u cannot estimate the size of V at time t, because arbitrarily many
nodes could be “hidden behind” node v, which node u does not hear from.

Consider an alternative execution with dynamic graph G′ = (V ′, E ′), where V ′ =
V ∪

{

x1, . . . , x⌈2εn/(1−ε)⌉+1

}

for some fresh UIDs x1, . . . , x⌈2εn/(1−ε)⌉+1 6∈ V .1 We have

|V ′| = |V |+
⌈

2εn

1− ε

⌉

+ 1 > n+
2εn

1− ε =
1 + ε

1− εn. (3.1.1)

The edges E ′ of G′ are defined by

E ′(r) = E(r) ∪ {(w, v), (v, w) | w ∈ V ′ \ V } ,

that is, in each round we take all the edges of G(r) and add edges between all the new
nodes (V ′ \ V ) and node v. By definition, G and G′ (more precisely, the executions
induced by G and G′) are (V \ {v} , t)-identical: all nodes of V \ {v} participate in
G′, and they have the same input (the constant 1) and the same incoming edges.
Therefore Proposition 2.28 shows that node u cannot distinguish G′ from G at time t;
the new nodes are “hidden” from u because they are connected only to node v, which
node u does not hear from. Thus, at time t in G′ node u’s state is the same as it is at
time t in G, and hence in G′ it also halts and outputs ñu. However, ñu cannot be an
ε-approximate count for both G and G′: if ñu is an ε-approximate count for G, then

ñu ≤ (1 + ε)n
(3.1.1)
< (1− ε)|V ′|.

This shows that no node can halt before it has heard from everyone, and completes
the proof for deterministic algorithms.

Now suppose that A is a randomized algorithm for ε-approximate counting which
succeeds with probability at least p(n) = 1− o(1) in networks of size n. Fix a graph
G = (V,E) of size n, and let B be the event that when A is executed in G, some node
halts before hearing from everyone (i.e., there exists a node u that halts at some time
t such that past(u, t)0 6= V ). We will show that Pr [B] ≤ 1 − p(n) = o(1), that is, A
solves HF n with high probability.

Let us decompose B into a set of not necessarily disjoint events {Bu,v | u, v ∈ V },
where Bu,v is the event that in G, node u halts before hearing from node v. For

1Recall that we assume no a priori upper bound on the size, and this means that the UID space
is unbounded, otherwise the size of the UID space represents a bound on the size of the network (see
Section 2.1). Therefore we can always add as many nodes as necessary.
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each v ∈ V and N > n, we construct a graph Hv,N = (Vv,N , Ev,N) where node u errs
with high probability (note that the construction of Hv,N is independent of u and
depends only on v and N). The graph Hv,N is similar to the graph G′ we used in
the deterministic case: we set Vv,n := V ∪ {x1, . . . , xN−n}, where x1, . . . , xN−n 6∈ V ,
and Ev,N (r) := E(r) ∪ {(xi, v), (v, xi) | 1 ≤ i ≤ N − n} for all r. Let Cu,v,N be the
event that in Hv,N , node u halts before hearing from v. As we saw above for the
deterministic case, if v 6∈ past(u, t)Hv,N ,0 (or equivalently v 6∈ past(u, t)G,0), then we
have past(u, t)Hv,N

= past(u, t)G, that is, node u cannot “see” the difference between
G and Hv,N . Since the behavior of node u depends only on the time-nodes in its past
set, and the random choices of the time-nodes in u’s past set are independent of the
states and randomness of time-nodes outside u’s past set, Pr [Cu,v,N ] = Pr [Bu,v], and
moreover, the distribution of node u’s output in Hv,N given Cu,v,N is the same as the
distribution of node u’s output in G given Bu,v. We can choose N sufficiently large so
that any correct ε-approximate count for G is an incorrect output in Hv,N (choosing
N > (1 + ε)n/(1− ε) suffices); for any such choice of N ,

Pr [u errs in Hv,N | Cu,v,N ] ≥ Pr [u succeeds in G |Bu,v] .

Thus,

1− p(N) ≥ Pr [u errs in Hv,N ] ≥ Pr [u errs in Hv,N | Cu,v,N ] Pr [Cu,v,N ]

≥ Pr [u succeeds in G |Bu,v] Pr [Bu,v] = Pr [u succeeds in G ∧Bu,v] .

The first inequality follows from the fact that A fails in Hv,N whenever any node
errs, and in particular when node u errs. (There is some slack here, since we analyze
each node individually.) Similarly, A succeeds in G only when all nodes succeed, and
hence

Pr [A succeeds in G ∧ B] ≤
∑

u,v∈V

Pr [A succeeds in G ∧ Bu,v]

≤
∑

u,v∈V

Pr [u succeeds in G ∧ Bu,v] ≤ n2(1− p(N)).

Finally, we can write

1− p(n) ≥ Pr [A fails in G] ≥ Pr [A fails in G ∧ B]

≥ Pr [B]− Pr [A succeeds in G ∧ B] ≥ Pr [B]− n2(1− p(N)),

that is,
Pr [B] ≤ 1− p(n) + n2(1− p(N)) = 1− p(n) + o(1).

For all δ > 0, we can show by increasing N sufficiently (while n remains fixed) that
Pr [B] ≤ 1− p(n) + δ. Therefore we must have Pr [B] ≤ 1− p(n).

If we have an a priori bound N on the size of the network, we may not be able
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to carry out the proof above: we cannot necessarily extend the graph G by adding
as many nodes as we like (doing so may violate the bound N if the size of the graph
is already close to N). However, exact counting is always as hard as HF n, unless an
exact count is known a priori; more generally, ε-approximate counting still requires
all nodes to hear from all but a 2ε/(1 + ε)-fraction of nodes in the graph, that is, it
requires all nodes to hear from a (1− ε)/(1 + ε)-fraction of nodes.

Proposition 3.7. For any ε ∈ (0, 1), the HF ((1−ε)/(1+ε))n task (0, 0)-reduces to deter-
ministic ε-approximate counting.

Proof. We proceed as in Lemma 3.6, except that we now remove nodes from the graph
instead of adding them: the UID space may be smaller than (1+ε)n/(1−ε), in which
case we cannot pad the graph as we did in Lemma 3.6.

Fix a graph G of size n, and suppose for the sake of contradiction that u is a node
that halts at time t such that |past(u, t)0| < (1 − ε)n/(1 + ε). Let ñu ≥ (1 − ε)n
be the value output by u at time t, and let G′ = (V ′, E ′) be the graph induced by
G on V ′ := past(u, t)0. (Note that |past(u, t)0| ≥ 1 by Proposition 2.12, so G′ is
well-defined.) We have

|V ′| < 1− ε
1 + ε

n ≤ ñu

1 + ε
.

Therefore ñu > (1+ε)|V ′|, and ñu is an incorrect approximate count for G′. However,
node u cannot distinguish G from G′ up to time t, and hence it still outputs ñu in
G′.

So far we have shown that counting (and indeed any other task) reduces to all-to-
all token dissemination, and that hearing from everyone (HF n) reduces to counting.
To complete the picture, let us show that HF n is representative of a large class
of functions, which all reduce to counting. (Refer to the task classes defined in
Section 2.2.)

Proposition 3.8. For any b ≥ 1, the HF n task is (0, b)-complete for the class of
duplication-insensitive single-valued tasks over inputs drawn from {1, . . . , b}.

Proof. Let T be a duplication-insensitive single-valued task over inputs in {1, . . . , b}.
Then the permissible output values to T depend only on the set of values present in
the input assignment, not on the multiplicities of these values.

Given an HF n algorithm A, we can solve T by having each node append a tuple
(x1, . . . , xb) to each of A’s messages, where initially xi = 1 iff the node received value i
in its input, and subsequently (x1, . . . , xb) is the pointwise-OR of all tuples received so
far. When A halts, each node’s tuple (x1, . . . , xb) is exactly the characteristic vector
of the set of inputs. Since T is duplication-insensitive, this information is sufficient
for the node to compute and output a permissible output value.

To conclude, the results in this section show that counting is a useful primitive,
since it allows us to compute “easy” (duplication-insensitive) functions of the input.
Lemma 3.6 shows that a counting algorithm only terminates (or w.h.p. only termi-
nates) when the past-set of each node includes all other nodes. Therefore if we have

54



a function that is “easy to compute but hard to know when we are done computing”,
like the minimum input value, we can compute it by attaching a small amount of
information (in this case the smallest input heard so far) to the messages sent by the
counting algorithm, and halting when the counting algorithm halts. In Section 3.6
we will see that the relationship goes both ways: computing the minimum is also
useful towards randomized approximate counting. However, in the following sections
we first study deterministic exact counting.

3.2 Counting and Information Dissemination using
Large Messages

Throughout this chapter we are mostly concerned with algorithms that use small
messages, of polylogarithmic size. However, we remark that using messages of size
O(n logn), counting and information dissemination can be solved in linear time using
the algorithm below. We assume here that the information being disseminated is
the set of node UIDs (and in particular, to compute the count, nodes can simply
output the size of the set of UIDs they have collected). For more general information
dissemination, nodes can execute the same algorithm, using pairs of the form (UID,
input) everywhere that UIDs are used below.

Algorithm 3.1: Information dissemination with O(n logn)-bit messages: code
executed by each node

1 A← {self }
2 t← 0
3 while |A| > t do
4 send A
5 receive B1, . . . , Bs from neighbors
6 A← A ∪ B1 ∪ . . . ∪Bs

7 t← t + 1

8 end
9 output A

In the algorithm, nodes collect and forward all the UIDs they have heard, and halt
when they reach a time t in which they have heard no more than t UIDs. Let Au(t)
denote the value of node u’s local variable A at time t. Since each node forwards all
the UIDs it has heard so far, at any time t we have Au(t) = past(u, t)0, i.e., Au(t)
stores exactly the UIDs of nodes that causally influence u. From Lemma 2.21 we have
that |Au(t)| ≥ min {n, t+ 1}. If node u halts at time t, then |Au(t)| ≤ t, and hence
|Au(t)| = n and the set output by u is exactly V . As for termination, when we reach
time n the halting condition is satisfied, because we always have |Au(t)| ≤ n.

The main idea we wish to illustrate through this algorithm is the termination test,
i.e., the idea of deciding to terminate when past(u, t)0 ≤ t. In this particular instance
we can think of the time t as a guess for the count n. There are two ingredients
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here that we will re-use in later sections: first, |Au(t)| serves as an accurate count of
the number of nodes that have causally influenced u by time t (i.e., for |past(u, t)0|),
because Au(t) contains the UIDs of exactly those nodes. Second, Lemma 2.21 shows
that nodes can expect to be causally influenced by at least t+1 nodes by time t, unless
t ≥ n. These two ingredients make up the termination test, in which nodes estimate
the number of nodes they have been causally influenced by, and compare this number
to the number of nodes they would expect to have been causally influenced by if their
guess for the count (in this case t) is too small.

In the sequel we restrict our attention to algorithms that use small messages,
which rules out sending all the UIDs heard so far; we will see other ways to estimate
the size of past(u, t)0. In Section 3.4.2 we will assume that the graph is ∞-interval
connected and use a pipelining algorithm to assemble this set (with some additive
delay compared to the algorithm above), and in Section 3.6 we will use randomized
approximate counting to estimate the size of this set in 1-interval connected graphs.
In both cases we will use termination tests similar to the test above. However, to con-
struct a deterministic solution for finite-interval connected graphs we require another
key ingredient, which we introduce below: the idea of counting through repeatedly
solving k-committee election.

3.3 Counting Through k-Committee Election

In this section we introduce a new problem, k-committee, and show that it can be
used to solve counting and token dissemination in graphs that are at least 1-interval
connected. The problem is defined as follows.

Definition 3.9 (k-committee). In the k-committee task, each node receives as input
a parameter k ≥ 1, and all nodes must simultaneously halt and output a committee ID
(comprising O(logn) bits). We refer to a set of nodes that output the same committee
ID as a committee. The output must satisfy the following conditions:

(a) The size of each committee does not exceed k, and

(b) If k ≥ n, all nodes must be in the same committee (i.e., all nodes output the same
committee ID).

The k-committee problem is equivalent to the k-verification problem from Defini-
tion 3.3: that is, any solution for one of these problems also allows us to solve the
other. The more useful part of this equivalence is the fact that k-committee allows us
to solve k-verification. In turn, k-verification lets us solve the counting problem by
trying exponentially-increasing values of k, and using k-verification to check whether
each value is an upper bound on the size of the network. (Repeated doubling does
not yield an exact count, but rather a 2-approximate count; we will see in Section 3.4
how to improve upon this approach to obtain an exact count.)

To reduce k-verification to k-committee we use the following algorithm, which
assumes that we have already solved the k-committee task and each node u has a
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committee ID cidu satisfying the conditions of Definition 3.9. Assume without loss
of generality that ⊥ is a special value that is not used as a committee ID.

The k-verification protocol (see Algorithm 3.2). For k rounds, each node u broad-
casts the value of cidu and receives the values sent by its neighbors; if it receives a
different committee ID from its own, or the special value ⊥, it sets cidu ← ⊥ and
broadcasts that value in subsequent rounds. After k rounds, all nodes u output 1 if
cidu 6= ⊥ and 0 otherwise.

Algorithm 3.2: The k-verification protocol, where cid is the node’s input

1 foreach t = 1, . . . , k do
2 send cid
3 receive c1, . . . , cs from neighbors
4 if exists i such that ci 6= cid then
5 cid ← ⊥
6 end

7 end
8 if cid 6= ⊥ then
9 output 1

10 else
11 output 0
12 end

Lemma 3.10. The k-verification task (k,O(logn))-reduces to k-committee.

Proof. We show that if we execute the k-verification protocol above from an initial
state representing a solution to k-committee, then the output of all nodes is 1 if
k ≥ n and 0 otherwise. A (k,O(logn))-reduction from k-verification to k-committee
is then obtained by running the k-committee algorithm until it terminates (note that
all nodes halt at the same time, since k-committee guarantees simultaneity), and then
running the k-verification protocol, which requires an additional k rounds.

Suppose first that k ≥ n. In this case, from the definition of k-committee, there
is only one committee in the graph; all nodes send the same committee ID, and no
node ever receives a committee ID different from its own (or ⊥). After k rounds all
nodes still have their original cid , and all output 1.

Now suppose that k < n. We will show that each committee “shrinks by one” in
each round of the k-verification protocol, until after k rounds all committees are empty
and all nodes output 0. More formally, let SC(i) be the set of nodes in committee C
(i.e., the nodes u that have cidu = C) after i rounds of the k-verification protocol.
We show that |SC(i)| ≤ k − i.

The base case, i = 0, follows from the definition of k-committee: no committee
can have more than k members. For the step, assume that |SC(i)| ≤ k − i but
SC(i) 6= ∅ (otherwise the claim holds trivially), and consider a cut between SC(i)
and the rest of the graph in round i + 1 ≤ k, oriented towards SC(i). By 1-interval
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connectivity, there is an edge in the cut, and some node u ∈ SC(i) receives a value that
is either ⊥ or a committee ID different from its own; this node then sets cidu ← ⊥
and drops out of the committee. We have i ∈ SC(i) \ SC(i + 1), and therefore
|SC(i+ 1)| ≤ |SC(i)| − 1 ≤ k − (i + 1), as desired.

After k rounds we have SC(k) = ∅ for all committee IDs C. Therefore all nodes
must have cid = ⊥, and all output 0.

For the sake of completeness we also prove the other direction of the equiva-
lence: k-committee reduces to k-verification. This direction serves to show that we
do not introduce any “extra difficulty” by using the k-committee problem to solve
k-verification, because k-verification is already as hard as k-committee.

Lemma 3.11. The k-committee problem (k − 1, O(logn))-reduces to k-verification.

Proof. Suppose we start in a global state that represents a solution to k-verification:
that is, each node already knows whether k ≥ n or not. Then we can solve k-
committee as follows:

• If k < n, each node outputs its own UID as its committee ID. This is a valid
solution to k-committee, because the size of each committee does not exceed k,
and the second condition in Definition 3.9 does not apply (as k < n).

• If k ≥ n, all nodes forward the smallest UID they have heard so far for k − 1
rounds. After k − 1 rounds all nodes output the smallest UID they have heard
as their committee ID. Correctness follows from Proposition 2.23: since k ≥ n,
after k − 1 rounds all nodes have the true smallest UID in the graph and only
one committee is formed.

Remark 3.12. The fact that the communication graph is 1-interval connected was
used in the k-verification protocol to guarantee that in every round, every directed
cut in the graph contains at least one edge. The algorithm extends easily to the case
where the graph is not 1-interval connected, but there is some constant upper bound
on the number of rounds until an edge appears in any cut, and this bound is known
to the nodes. Similarly, if there is some constant bound D (independent of n) on
the dynamic diameter, and this bound is known to the nodes, then we can simply
run the protocol for D rounds instead of k − 1; if there is more than one committee
in the graph, we are guaranteed that any node is causally influenced by some node
in a different committee, so it receives either the UID of that committee or ⊥ and
eventually outputs 0.

It is not hard to see that for the purpose of counting, these two generalizations
are essentially the best that we can do. If the best upper bound on the diameter
known to the nodes is a function D(n) = ω(1) of the true count n, and the best upper
bound on the number of rounds that can pass until an edge appears in any cut is
f(n) = ω(1), then counting is impossible: for sufficiently large n, the adversary can
create a partition in the graph and maintain it until all nodes halt and output an
incorrect count.

58



3.4 Deterministic Counting and All-to-All Token Dis-
semination

In the previous section we showed that k-committee can be used to obtain an upper
bound on the size of the network; the k-verification protocol requires only k additional
rounds beyond the time required to solve k-committee. When we use exponentially-
increasing guesses k = 1, 2, 4, 8, . . . the largest value we might reach before finding
a value k ≥ n is k = 2n; after this point we can narrow in on the exact count
using binary search, requiring an additional O(logn) rounds. Thus, if we can solve
k-committee in t(k) rounds, then we can solve counting in O(t(n) + n) rounds by
combining k-committee and k-verification.

In this section we show how to solve the k-committee task, and obtain a solution
to all-to-all token dissemination (with unknown count) along the way. This renders
the binary search unnecessary: while solving k-committee election, we can have each
node collect the UIDs of all other nodes, so that by the time a value of k ≥ n is
reached, all nodes have the UIDs of all other nodes and can compute the exact count.

For the sake of exposition we begin with some special cases which illustrate the
main ideas. In Section 3.4.1 we give a general solution that works in 1-interval con-
nected graphs, and requires O(n2) rounds. In Section 3.4.2 we consider the other
extreme of the spectrum, ∞-interval connected graphs, and show that that all-to-all
token dissemination can be solved in O(n) rounds in ∞-interval connected networks.
For this purpose we do not require k-committee; instead we use an approach quite
similar to the large-message algorithm from Section 3.2. Finally, in Section 3.4.3 we
combine the ideas used in Sections 3.4.1 and 3.4.2 to show that k-committee can be
solved in O(n+n ·d(g, n)/T ) rounds in (T, g)-interval connected graphs, where d(g, n)
is the smallest integer such that g(d(g,n))(1) > n/2.

3.4.1 k-Committee in 1-Interval Connected Graphs

We saw in Proposition 2.23 that if k ≥ n, then k − 1 rounds are sufficient for one
piece of information to propagate throughout the network: the minimum input value,
or similarly, any piece of information that all nodes cooperate in disseminating (by
sending only this piece of information once they receive it). Our strategy for solving k-
committee is to repeatedly rely on Proposition 2.23: whenever nodes wish to globally
disseminate some piece of information, they forward it for k − 1 rounds. Using k in
this way, the nodes attempt to partition themselves into committees comprising k
nodes each; each committee is created by a single leader node, which itself belongs to
the committee, and this leader issues invitations for exactly k− 1 other nodes to join
the committee. Nodes join a committee only when they receive an invitation from its
leader. The ultimate effect is the following.

• If k ≥ n then committee formation succeeds: k − 1 rounds are sufficient for
information to reach everywhere in the network, all invitations reach their des-
tinations, and we end up with a unique leader who successfully invites all other
nodes to join its committee.
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• If k < n then committee formation may fail: invitations may not reach their
destinations and the committees formed may be very small. However, by defi-
nition of k-committee, all we have to achieve in this case is that no more than
k nodes join any committee, and this is guaranteed by the fact that no leader
issues more than k invitations (including one to itself).

The protocol itself has two parts.

(1) Leader election: for k − 1 rounds, all nodes in the network propagate the UID of
the smallest node they have heard so far. At the end of the k − 1 rounds, any
node that has not heard a smaller UID than its own selects itself to be a leader.
Leaders immediately join their own committees.

(2) Committee formation: the nodes iterate through k−1 cycles. Each cycle proceeds
as follows.

(a) Polling phase: for k − 1 rounds, all nodes propagate the UID of the smallest
node they have heard about that has not yet joined a committee.

(b) After polling ends, each leader selects the smallest UID it heard during
polling, and issues an invitation to that node. The invitation is a message
containing the UID of the leader and that of the invited node.

(c) Invitation phase: for k − 1 rounds, all nodes propagate the invitations they
hear. In each round each node sends no more than one invitation; if a node
receives more than one invitation, it may select an arbitrary one of them to
forward, or it may simply drop all invitations (the algorithm’s correctness is
preserved regardless of this choice).

(d) After the invitation phase ends, invited nodes join the committee of the leader
that invited them. If a node receives more than one invitation (including
invitations from past cycles), it may select an arbitrary invitation to accept,
or it may elect not to join a committee; the algorithm’s correctness does not
depend on the nodes’ behavior in this case, as long as nodes do not join
committees uninvited.

Finally, each node that has joined a committee outputs that committee’s leader as its
committee ID, and nodes that have not joined a committee output their own UID as
their committee ID. Pseudocode for the algorithm is given in Algorithm 3.3. (In the
pseudocode we treat ⊥ as a special value that is smaller than all other values.)

Lemma 3.13. The protocol above solves the k-committee problem in O(k2) rounds.

Proof. We show that after the protocol ends, the values of the local cidu variables
constitute a valid solution to k-committee.

(a) Each committee comprises at most k nodes: in each cycle, each node invites at
most one node to join its committee. After k−1 cycles at most k nodes have joined
a given committee (the leader of the committee and at most k − 1 other nodes).
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Algorithm 3.3: k-committee in 1-interval connected graphs

1 leader := true
2 cid := ⊥
// Leader election

3 min uid := self
4 for r = 1, . . . , k − 1 do
5 send min uid
6 receive u1, . . . , us from neighbors
7 min uid := min {min uid , u1, . . . , us}
8 if min uid < self then
9 leader := false

10 else cid := self
// Committee formation

11 for i = 1, . . . , k − 1 do
// Polling phase

12 if cid = ⊥ then
13 candidate := self

14 else
15 candidate := ⊥
16 for r = 1, . . . , k − 1 do
17 send candidate
18 receive u1, . . . , us from neighbors
19 candidate := min {candidate, u1, . . . , us}
20 if leader then
21 invitation := (self , candidate)

22 else
23 invitation := ⊥

// Invitation phase

24 for r = 1, . . . , k − 1 do
25 send invitation
26 receive inv1, . . . , inv s from neighbors

// Choose the first invitation to forward (this choice is

completely arbitrary)

27 invitation := inv1

// Invited nodes join committees

28 if invitation = (uℓ, self ) for some uℓ then
29 cid := uℓ

30 if cid = ⊥ then
31 cid := self

32 output cid
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If a node is not invited in any cycle and eventually forms its own committee, then
the node is not a leader, and therefore it is the only node in its committee (it did
not issue any invitations). Therefore the size of all committees does not exceed
k.

(b) If k ≥ n, all nodes join the same committee: suppose that k ≥ n, and let u be
the node with the smallest ID in the network. During the leader election part,
k − 1 rounds are sufficient for all nodes to hear about u (by Proposition 2.23),
and hence u will be the only leader in the network. Next, during committee
formation, k−1 ≥ n−1 cycles are sufficient for u invite all the other nodes in the
network; in each cycle, k − 1 rounds are sufficient for u to successfully identify
the smallest uninvited node and to invite that node to join the committee (by
Proposition 2.23 in both cases). Therefore all nodes join u’s committee and there
is only one committee in the network.

The protocol above is easily modified so that in the case where k ≥ n, it also solves
all-to-all token dissemination. Let tu be the token node u received in its input. We
now have nodes attach their tokens to their UIDs, and send pairs of the form (u, tu)
instead of just u. Likewise, invitations now contain the token of the invited node, and
have the structure (leader , (u, tu)). Whenever we take a minimum in Algorithm 3.3,
we disregard the token and use only the UID. However, nodes record the tokens
attached to all messages they receive.

When k ≥ n, for each node in the network there are n− 1 rounds where the pair
(u, tu) is forwarded by all nodes in the network: for the leader these rounds occur in
the leader election phase, and for the remaining nodes, when the node is invited to
join the committee. Thus, if nodes store the tokens attached to UIDs they hear, then
all nodes collect all tokens by the time the algorithm completes.

Proposition 3.14. When Algorithm 3.3 is executed with k ≥ n, and all nodes attach
their tokens to their UIDs and collect all tokens they receive, all nodes collect all
tokens by the time the algorithm completes.

Combining the results above yields an O(k2)-round algorithm for k-verification,
which we can use to obtain an O(n2)-round algorithm for exact counting and all-to-all
token dissemination.

Theorem 3.15. Exact counting and all-to-all token dissemination can be solved in
O(n2) rounds in 1-interval connected networks.

Proof. Combining Lemma 3.13 with Lemma 3.10 we obtain an O(k2)-round algorithm
for k-verification, with the property that all nodes halt at the same time (since k-
verification and k-committee both require simultaneous termination). To solve exact
counting and all-to-all token dissemination, we solve k-verification for k = 1, 2, 4, . . .,
attaching input tokens (or node UIDs if we are only interested in counting) to messages
as in Proposition 3.14 above. When k-verification returns 1 (i.e., we reach a value of
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k at least as large as the size of the network), all nodes halt, and output the set of
tokens they have collected (to solve token dissemination) or the size of this set (to
solve exact counting). The running time is dominated by the time required for the
last iteration of k-verification, which is O(n2) rounds because k ≤ 2n.

Remark 3.16. The counting algorithm we constructed has the property that all
nodes halt at the same time. This is not an inherent requirement of the counting prob-
lem, but in some sense it comes “free of charge”: if we are given a non-simultaneous
exact counting algorithm with worst-case running time t(n), we can turn it into a
simultaneous algorithm by having all nodes execute the original algorithm but wait
until time t(n) before halting. Knowing an exact count is sufficient to compute t(n),
and the worst-case running time is unaffected by this change. We will see in Chapter 4
that counting and simultaneous termination are also closely related in another sense:
any algorithm for solving a non-trivial simultaneous task must implicitly compute an
upper bound on the size of the network.

Remark 3.17. So far in this section we did not assume a non-trivial bound on the
dynamic diameter, beyond the bound of n−1 which holds for any 1-interval connected
graph. It bears noting that the algorithm’s running time can be reduced to O(kD)
if a bound of D on the dynamic diameter is known to all nodes, by simply reducing
the duration of each propagation phase to D rounds instead of k − 1. In fact, this
holds even if the graph is not 1-interval connected but has a dynamic diameter of
D. In general, if nodes know that the dynamic diameter of the graph is bounded
by some function f(n) of the count n, then they can propagate messages for f(k)
rounds in Algorithm 3.3, yielding a correct k-committee election algorithm that runs
in O(kf(k)) rounds. Unfortunately, as we saw in Remark 3.12, the k-verification
protocol does not extend as nicely. Therefore to solve the counting problem we still
require a fixed upper bound (independent of n) on either the dynamic diameter or
the number of rounds that can pass until an edge appears in any cut, and it is easy
to prove that such a bound is necessary.

3.4.2 All-to-All Token Dissemination in ∞-Interval Connected
Graphs

We now turn to studying ∞-interval connected graphs, as a step towards general T -
interval connected graphs (Section 3.4.3). An∞-interval connected graph G = (V,E)
is a dynamic graph where

⋂

r≥0E(r) induces a strongly-connected graph on V ; in
other words, there is a stable strongly-connected spanning subgraph G′ = (V,E ′),
such that E ′ ⊆ E(r) for all r. Along the edges of G′ we enjoy a neat pipelining effect:
if nodes collect all the tokens they receive and broadcast each token just once, all
nodes are guaranteed to receive all tokens in 2n rounds.2 This property gives rise to
Algorithm 3.4 for solving the all-to-all token dissemination problem with unknown n.

2A similar pipelining effect was shown for static graphs in [139]; our analysis here is different and
more precise. Pipelining arguments were also used in [93] to analyze multi-message global broadcast
in terms of the progress bounds guaranteed by a local broadcast algorithm.
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We assume that the input to node u is stored in Au(0), that is, in u’s local variable
A at time 0.

Algorithm 3.4: All-to-all token dissemination in ∞-interval connected graphs

1 A← {input token} // Tokens received so far

2 S ← ∅ // Tokens already sent

3 t← 0 // The current time

4 while |A| ≥ ⌊t/2⌋ do
5 if S 6= A then
6 x← min (A \ S)
7 send x
8 S ← S ∪ {x}
9 end

10 receive x1, . . . , xs from neighbors
11 A← A ∪ {x1, . . . , xs}
12 t← t + 1

13 end
14 output A

We note that for our purpose here, it is sufficient to have a node send any token
it has not sent yet, not necessarily the smallest one. However, we will generalize this
approach to finite-interval connected graphs in Section 3.4.3, and there choosing the
smallest token will be significant.

For a node u ∈ V and a token x ∈ ⋃v∈V Av(0), let tdist(x, u) denote the shortest-
path distance in the stable graph G′ from any node v ∈ V such that x ∈ Av(0) to node
u. (In all-to-all token dissemination there is exactly one node v such that x ∈ Av(0);
however, we will later extend this approach to a more general case where nodes can
receive more than one token in their input.) The correctness of Algorithm 3.4 hinges
on the following property, which shows that nodes are continually making progress.
Informally, we assert that if t ≥ tdist(x, u), then t rounds are “enough time” for u to
receive x; if u has not received x and sent it on, the path between u and the nearest
node that knows x must have been blocked by other tokens, which node u received
and sent on. Note that this statement concerns the tokens sent by node u, rather
than the tokens received by node u; this is essential for the proof to go through. On a
very high level, pipelining works because each token can impede the progress of each
other token at most once. A token that u has already sent will never again block the
progress of another token at node u, because nodes never send the same token twice;
in contrast, tokens that u has received but not yet sent will be sent by u in some
future round, delaying other tokens. Therefore, to bound the total delay a token may
suffer as it propagates along some path, we must reason about the tokens the nodes
on the path have already sent, not just the tokens they receive.

The following lemma is stated in a slightly more precise form than we require for
this section; we will re-use it in Section 3.4.3, and the additional details will be useful
there.

Lemma 3.18. For any node u ∈ V , token x ∈ ⋃v∈V Av(0) and time t ≥ tdist(x, u),
either x ∈ Su(t), or Su(t) includes at least (t− tdist(x, u)) tokens that are smaller

64



than x.

Proof. The proof is by induction on t. The base case, t = 0, is immediate. For the
inductive step, suppose that the claim holds at time t with respect to all nodes and
all tokens, and fix a node u and a token x such that t+1 ≥ tdist(x, u). We must show
that either x ∈ Su(t + 1) or Su(t + 1) contains at least (t + 1− tdist(x, u)) tokens
smaller than x.

Let us first dispense with two easy cases. If tdist(x, u) = 0, then x ∈ Au(0), and
x is in Au \ Su until it is sent and added to Su. Thus, either x ∈ Su(t + 1), or in
rounds 1, . . . , t+ 1 node u was busy sending smaller tokens than x, and these tokens
were then added to Su. The claim holds in both cases.

Next, consider the case where t+1 = tdist(x, u). In this case (t + 1− tdist(x, u)) =
0, so the claim holds trivially.

In the sequel we therefore assume that tdist(x, u) > 0 and that t+ 1 > tdist(x, u),
that is, t ≥ tdist(x, u). Let v be an in-neighbor of u with tdist(x, v) = tdist(x, u)− 1.
(That is, v is the node before u on a shortest path from the nearest node that has x
in its input to node u; distances are always measured with respect to the stable graph
G′.)

We now apply the induction hypothesis twice. Since t ≥ tdist(x, u), we can apply
the induction hypothesis at node u and time t to obtain

(⋆) Either x ∈ Su(t) or Su(t) contains (t− tdist(x, u)) tokens smaller than x.

At node v we have also have tdist(x, v) = tdist(x, u) − 1 ≤ t (recall that, by the
conditions of the claim, t+1 ≥ tdist(x, u)). Applying the induction hypothesis at time
t shows that either x ∈ Sv(t), or Sv(t) contains (t− tdist(x, v)) = (t+ 1− tdist(x, u))
tokens smaller than x. Moreover, since v is an in-neighbor of u in G′, any token sent
by v is received by u in the same round and added to Au; thus we have

(⋆⋆) Either x ∈ Au(t) or Au(t) contains (t+ 1− tdist(x, u)) tokens smaller than x.

We now have everything we need to prove the claim. Since u never discards tokens
from Su, we have Su(t) ⊆ Su(t + 1). If Su(t) contains x, then so does Su(t + 1), and
we are done. Otherwise we know from (⋆) that Su(t) contains at least (t− tdist(x, u))
tokens smaller than x. If Su(t) contains more than (t− tdist(x, u)) tokens smaller
than x, then it contains at least (t + 1− tdist(x, u)) tokens smaller than x, and we
are also done. The only remaining case is that Su(t) contains exactly (t− tdist(x, u))
tokens smaller than x, and does not contain x itself. In this case it is sufficient to
show that min (Au(t) \ Su(t)) ≤ x: this ensures that node u sends either x or some
token smaller than x in round t + 1, and this token is then added to Su(t + 1); so
we either have x ∈ Su(t+ 1) or Su(t+ 1) contains (t + 1− tdist(x, u)) tokens smaller
than x.

Thus, let us show that min (Au(t) \ Su(t)) ≤ x. If x ∈ Au(t) then this holds,
because we assumed that x 6∈ Su(t). If x 6∈ Au(t), then (⋆⋆) shows that Au(t) contains
(t+ 1− tdist(x, u)) tokens smaller than x, and we assumed that Su(t) contains only
(t− tdist(x, u)) such tokens; therefore Au(t)\Su(t) contains at least one token smaller
than x, and we are done.
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Corollary 3.19. For all nodes u and for all t ≤ n we have |Au(2t)| ≥ t.

Proof. In all-to-all token dissemination each node receives a unique token in its input.
Since G′ is strongly-connected, the t-in-neighborhood of u in G′ contains at least t
nodes, each with a different input; consequently there are at least t different tokens
x that satisfy t ≥ tdist(x, u). Applying Lemma 3.18 we see that for each token x
with t ≥ tdist(x, u), either x ∈ Au(2t) or Au(2t) contains (2t− tdist(x, u)) ≥ t tokens
smaller than x. Since there are at least t such tokens x, it follows that |Au(2t)| ≥ t.

Theorem 3.20. Algorithm 3.4 solves the all-to-all token dissemination problem, and
consequently also counting, in 2n+ 2 rounds.

Proof. Suppose that node u halts at time t. Then |Au(t)| < ⌊t/2⌋, and since 2⌊t/2⌋ ≤
t and the size of Au is non-decreasing (elements are never removed), we also have
|Au(2⌊t/2⌋)| ≤ |Au(t)| < ⌊t/2⌋. Corollary 3.19 shows that we must have ⌊t/2⌋ > n
and therefore t ≥ 2n. From strong connectivity of G′, for any token x in the input we
have tdist(x, u) ≤ n−1, and hence t− tdist(x, u) ≥ 2n− (n−1) = 2n−n+1 = n+1.
Lemma 3.18 shows that x ∈ Su(t), as there do not exist t− tdist(u, x) ≥ n+ 1 tokens
smaller than x. This shows that the set output by u at time t is the set of all tokens.

As for termination, the size of Au(t) never exceeds n (there are only n tokens in
the input), and hence at time 2n + 2 we have ⌊(2n + 2)/2⌋ = n + 1 > |Au(2n + 2)|
and all nodes halt.

3.4.3 Solving Counting and Token Dissemination in T -Interval
Connected Graphs

In Sections 3.3 and 3.4.1 we developed the basic approach of counting by k-committee
election, and in Section 3.4.2 we showed that in more stable graphs we can use pipelin-
ing to achieve faster information dissemination. We now combine these ingredients to
obtain fast counting and token dissemination in T -interval connected graphs for finite
T . We also bring in the vertex growth of the graph, which we showed in Section 2.3
can lead to a smaller dynamic diameter.

The k-verification protocol we gave in Section 3.3 requires only k rounds, while
the k-committee election protocol from Section 3.4.1 requires O(k2) rounds and forms
the bottleneck in the counting algorithm. Thus, our goal is to speed up k-committee
election. The basic idea is to operate in “batches” of nodes: instead of finding and
inviting nodes one by one, committee leaders will now find and invite nodes in batches
of Θ(T ) nodes each. Using the fact that the graph is T -interval connected, we em-
ploy pipelining to disseminate Θ(T ) UIDs in O(n) time, rather than just one UID
as in Section 3.4.1. Finally, if the graph enjoys good vertex growth, information dis-
semination requires fewer rounds, as each node quickly acquires all the tokens in its
neighborhood.

For convenience, we assume from now on that the graph is 2T -interval connected,
and we begin by showing how to disseminate T pieces of information in O(n) rounds.
These results concern only undirected graphs, because we rely on bidirectional neigh-
borhood growth, as in Lemma 2.20. However, if one omits the portions relating to
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non-trivial vertex growth and assumes only the trivial vertex growth of 1, the results
are easily shown to apply to directed graphs as well. In the sequel we assume that
the graph is undirected, unless stated otherwise.

Disseminating T Tokens Quickly in 2T -Interval Connected Graphs

Suppose that nodes initially receive an arbitrary number of tokens, but we wish to
disseminate only the T smallest tokens in the input to all nodes in the graph. (This
problem is similar to T -token dissemination, except that we do not require the input
assignment to contain only T tokens in total.) We begin by executing the first 2T
rounds of Algorithm 3.4. Although Lemma 3.21 no longer applies in its general form,
we can still use it to reason about the first 2T rounds with respect to the stable
subgraph that exists throughout those rounds. Thus we can show that each of the T
smallest tokens is acquired by every node at distance at most T from some node that
knows the token initially (at least T nodes, but possibly more, depending on the vertex
growth of the graph). After these first 2T rounds, we “reset” the algorithm by clearing
the set S of tokens already sent, and execute another 2T rounds of Algorithm 3.4.

To know (or rather, guess) when we have repeated this process enough times we
use a guess D̃; if the graph is (2T, g)-interval connected and contains n nodes, then a
“correct” value for D̃ is one that satisfies D̃ ≥ 2d(g, n), where

d(g, n) := min
{

d ∈ N | g(d)(1) > n/2
}

.

Each time we execute 2T rounds of Algorithm 3.4, each of the T smallest tokens
spreads to the entire T -neighborhood of all nodes that know it at the beginning of
the 2T rounds. It is sufficient to repeat this process roughly D̃/T times to ensure
that all nodes learn each of the T smallest tokens.

In Lemma 2.20 we showed that 2d(g, n) is an upper bound on the dynamic diam-
eter of the graph. The argument we use here will be quite similar, except that we are
interested only in edges that belong to the stable graphs that 2T -interval connectivity
implies, because the pipelining effect is only guaranteed to occur along stable paths.
This is why we cannot use the actual dynamic diameter of the graph (which could be
much smaller than 2d(g, n)) as a bound on the time required for token dissemination:
a small dynamic diameter could result from many transient edges, but although these
edges can never hurt, we cannot rely on them for pipelining.

The algorithm is formalized in Algorithm disseminate, which takes three argu-
ments: a set of tokens A (the node’s input), the stability parameter T , and a guess
D̃. The algorithm is only guaranteed to succeed if the graph is (2T, g)-interval con-
nected and D̃ ≥ 2d(g, n); in that case, the T smallest tokens are disseminated to all
nodes. In particular, if there are only T tokens (i.e., if we are solving true T -token
dissemination), then all nodes acquire all tokens.

We refer to each iteration of the outermost loop as a phase. Because the graph is
2T -interval connected and each phase lasts exactly 2T rounds, in each phase i there is
a stable connected subgraph Gi that persists throughout the phase. If there is more
than one such graph, we choose Gi to be one among them that has the largest vertex
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Algorithm 3.5: disseminate(A, T, D̃)

1 A← {input tokens} // Tokens received so far

2 S ← ∅ // Tokens already sent

3 for i = 0, . . . , 2⌈D̃/(2T )⌉ − 1 do
4 for r = 1, . . . , 2T do
5 if S 6= A then
6 x← min (A \ S)
7 broadcast x
8 S ← S ∪ {x}
9 end

10 receive x1, . . . , xs from neighbors
11 A← A ∪ {x1, . . . , xs}
12 end
13 S ← ∅
14 end
15 return A

growth, so that if the dynamic graph is (2T, g)-interval connected, then each Gi has
vertex growth g.

For convenience we use a pair (i, t) to denote time i · 2T + t, that is, the time
immediately following the t-th round in phase i, where 0 ≤ t ≤ 2T . Note that times
(i, 2T ) and (i+ 1, 0) are actually the same time (i+ 1) · 2T , which is both the end of
phase i and the beginning of phase i + 1. This will be convenient when we argue by
induction on the number of phases executed.

We say that u knows token x whenever x ∈ Au. Let Ki(x) denote the set of nodes
that know x at the beginning of phase i (i.e., at time (i, 0)), and let tdisti(x, u) denote
the distance in Gi from any node in Ki(x) to u. The key property of Algorithm 3.5
is the following.

Lemma 3.21. For any node u ∈ V , token x ∈ ⋃v∈V Av(0) and time (i, t) such that
tdisti(x, u) ≤ t ≤ 2T , either x ∈ Su(i, t) or Su(i, t) includes at least (t− tdisti(x, u))
tokens smaller than x.

The proof is identical to the proof of Lemma 3.18, except that the induction is
carried through only 2T rounds; we do not repeat the proof here. We now use the
lemma to show that in each phase, each of the T smallest tokens spreads to the entire
T -neighborhood of the nodes that know it at the beginning of the phase. Recall from
Section 1.6 that Γ

(d)
G (S) denotes the set of nodes at distance at most d from some

node in S in graph G.

Corollary 3.22. For any token x ∈ ⋃v∈V Av(0) of the T smallest tokens and for any

phase i, we have Γ
(T )
Gi

(Ki(x)) ⊆ Ki+1(x).

Proof. Fix a token x among the T smallest tokens and a node u ∈ Γ
(T )
Gi

(Ki(x)), i.e.,
a node u such that tdisti(x, u) ≤ T . Lemma 3.21 shows that at time (i, 2T ), either
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x ∈ Su(i, t) or Su(i, t) includes at least 2T − T = T tokens smaller than x; the latter
case is impossible because x is one of the T smallest tokens. Therefore x ∈ Su(i, t),
which implies that u knows x; that is, u ∈ Au(i, t), or equivalently u ∈ Ki+1(t).

Since each stable graph Gi has vertex growth g, it is easy to show the following:

Lemma 3.23. For each i and for any set S ⊆ V we have

|Γ(T )
Gi

(S)| ≥ min
{

g(T )(|S|), n/2 + 1
}

.

Proof. This is simply Lemma 2.18, instantiated with d = T .

Now we can show that after 2⌈D̃/(2T )⌉ phases, each of the T smallest tokens is
successfully disseminated to all nodes in the graph.

Lemma 3.24. If x is one of the T smallest tokens in the input, the graph is undi-
rected and (2T, g)-interval connected, and D̃ ≥ 2d(g, n), then at the end of Algorithm
disseminate(A, T, D̃) all nodes know token x.

Proof. For convenience, let p := ⌈D̃/(2T )⌉ denote half the number of phases Algo-
rithm disseminate uses. We first consider only the first p phases, and show by
induction on the phase number i = 0, . . . , p that

|Ki(x)| ≥ min
{

g(i·T )(1), n/2 + 1
}

. (3.4.1)

This shows that the token makes quick progress in the first phases, as the set of
nodes that know it grows quickly. The base case is immediate, and the induction
step follows from Corollary 3.22, which shows that Γ

(T )
Gi

(Ki(x)) ⊆ Ki+1(x), and from

Lemma 3.23, which shows that |Γ(T )
Gi

(Ki(x))| ≥ min
{

g(T )(|Ki(x)|), n/2 + 1
}

.
Now we turn our attention to the last p phases, and show that the token still

makes quick progress, as the set of nodes that do not know it shrinks quickly. Let
K̄i(x) := V \ Ki(x) denote the set of nodes that do not know x at the beginning of
phase i. Using a similar induction to the one above, except going back instead of
forward, we can show that for each i = 2p, . . . , p,

|K̄i(x)| ≥ min
{

g((2p−i)·T )(|K̄2p(x)|), n/2 + 1
}

. (3.4.2)

The base case is once again immediate. For the inductive step, we rely on Lemma 3.23
to show that |Γ(T )

Gi
(K̄i(x))| ≥ min

{

g(T )(|K̄i+1(x)|), n/2
}

, and on Corollary 3.22 to

show that Γ
(T )
Gi

(K̄i+1(x)) ⊆ K̄i(x). The last step is, informally speaking, the con-

trapositive of Corollary 3.22, which asserts that Γ
(T )
Gi

(K̄i(x)) ⊆ K̄i+1(x): if u ∈
Γ
(T )
Gi

(K̄i+1(x)) then there is some node v ∈ K̄i+1(x) such that distGi
(v, u) ≤ T , and

Corollary 3.22 shows that we cannot have u ∈ Ki(t), because then we would also have
v ∈ Ki+1(x) (the graph is undirected, so distGi

(u, v) = distGi
(v, u)).
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Let us now put the two pieces together. Suppose for the sake of contradiction that
|K̄2p(x)| ≥ 1, that is, some node does not know x at the end of the last phase. By
assumption, D̃ ≥ 2d(g, n), and therefore

p · T = ⌈ D̃
2T
⌉ · T ≥ D̃

2
≥ d(g, n),

and thus by definition of d(g, n) we have g(p·T )(1) > n/2. For phase p, (3.4.1) yields

|Kp(x)| ≥ min
{

g(p·T )(1), n/2 + 1
}

> n/2

and (3.4.2) yields

|K̄p(x)| ≥ min
{

g(p·T )(|K̄2p(x)|), n/2 + 1
}

≥ min
{

g(p·T )(1), n/2 + 1
}

> n/2.

But Kp(x) and K̄p(x) are disjoint by definition, so this is a contradiction.

An easy modification of the proof above shows that for directed graphs we still
enjoy fast dissemination, albeit without taking into account the vertex growth.

Lemma 3.25. If x is one of the T smallest tokens in the input, the graph is 2T -
interval connected, and D̃ ≥ n, then at the end of disseminate(A, T, D̃) all nodes
know token x.

Proof. As in Lemma 3.24, except that we use only the forward induction, carry it up
to the end of the last phase (2p), and instead of Lemma 3.23 we rely on the fact that

|Γ(T )
Gi

(S)| ≥ min {|S|+ T, n} for all sets S ⊆ V , which follows from strong connectivity
of Gi.

Counting and Token Dissemination

To solve counting and token dissemination with up to n tokens (where n is unknown),
we use Algorithm disseminate to speed up the k-committee protocol from Sec-
tion 3.4. Instead of inviting one node in each cycle, we can use disseminate to
have the leader learn the UIDs of the T smallest nodes in the polling phase, and use
Algorithm disseminate again to extend invitations to all T smallest nodes in the
invitation phase. Thus, in O(D̃+T ) rounds we can increase the size of the committee
by T .

Recall that D̃ is the nodes’ guess for 2d(g, n). This guess should of course depend
on the guess k for the count: if the network is known to be (2T, g)-interval connected,
then the proper value for D̃ is 2d(g, k), that is, twice the smallest integer d such that
g(d)(1) > k/2.

The algorithm resulting from combining the k-committee approach with the fast
T -token dissemination algorithm is given below. For the sake of conciseness we merge
the leader election part into the committee formation part: instead of first electing
leaders and then forming committees, all nodes now begin the committee formation
phase assuming they are leaders, but stop acting as leaders if at any point they hear
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a UID smaller than their own. (The original algorithm from Section 3.4.1 can also be
written this way; it was presented in two parts only for the sake of clarity.)

At the end of the algorithm each node outputs a committee ID and a set of tokens;
the committee IDs always form a correct solution to k-committee, and if k ≥ n then
the tokens are guaranteed to be a correct solution to all-to-all token dissemination. We
follow the algorithm below with the k-verification algorithm (Algorithm 3.2), which
allows nodes to determine whether k ≥ n and, as a result, whether they have in fact
collected all tokens. We assume as usual that the tokens being collected are UIDs;
if not, we can run the algorithm below with pairs of the form (UID, input token)
instead of UIDs.

Theorem 3.26. Algorithm 3.6 above solves k-committee in O(k+k·d(g, k)/T ) rounds
in (2T, g)-interval connected graphs. If k ≥ n, the algorithm also solves all-to-all
token dissemination. When combined with the k-verification protocol (Algorithm 3.2),
we obtain an O(n + n · d(g, n)/T )-round protocol for counting and all-to-all token
dissemination.

Proof. Let us show first that the committee IDs output by the nodes form a correct
solution to the k-committee problem. Throughout the algorithm, each node issues at
most T · (⌈k/T ⌉ − 1) + k − T · (⌈k/T ⌉ − 1) = k invitations: even if a node remains a
leader throughout the execution of the algorithm, it can issue at most T invitations in
each of the first ⌈2d(g, k)/T ⌉−1 cycles, and k−⌈k/T ⌉·T invitations in the last cycle.
As before, nodes that “invite themselves” to join their own committee in the last step
of the algorithm are nodes that never extended an invitation to any other node, and
in this case the committee formed is a singleton. Thus, no committee contains more
than k nodes.

Now suppose that k ≥ n. In this case we know from Lemma 3.24 that any call
to disseminate succeeds in spreading the T smallest tokens in the input to all the
nodes in the network. In our case, in each cycle of committee formation, in the polling
phase we successfully disseminate the UIDs of the T smallest nodes that have not yet
joined a committee (or of all remaining nodes if there are fewer than T ). These UIDs
reach all nodes, and all nodes add them to their tokens variable. In particular, exactly
one node remains a leader at the end of the first polling phase — the node with the
smallest UID. In the invitation phase we successfully disseminate invitations to the
T smallest nodes (or to all remaining nodes in the last cycle), and these nodes then
join the leader’s committee. At the end of the ⌈k/T ⌉ ≥ n/T cycles, all n nodes have
been invited to join the leader’s committee, and all have received their invitations
and joined. Further, during the polling phases all nodes add the UIDs of all other
nodes to their tokens set. Therefore all nodes join the same committee and output
the set of all UIDs as their token set.

3.5 Other Variations on the Model

In the sections above we saw that counting and token dissemination are possible under
fairly weak assumptions: the graph is 1-interval connected but may change arbitrarily

71



Algorithm 3.6: k-committee in (2T, g)-interval connected graphs

1 leader ← true
2 committee ← ⊥
3 tokens ← ∅
// Committee formation

4 for i = 1, . . . , ⌈k/T ⌉ − 1 do
// Polling phase

5 if committee = ⊥ then
6 candidates ← {self }
7 else
8 candidates ← ∅
9 candidates ← disseminate(candidates , T, 2d(g, k))

10 tokens ← tokens ∪ candidates
11 if min(candidates) < self then // Stop acting as a leader

12 leader ← false

// Leaders issue invitations

13 if leader then
// Leaders invite the T smallest IDs they collected

// (or fewer in the final cycle, so that the total does not

exceed k)

14 if i < ⌈k/T ⌉ − 1 then
15 selected ← smallest-T (candidates)
16 else
17 m← k − (⌈k/T ⌉ − 1) · T
18 selected ← smallest-m(candidates)

19 invitations ← {self } × selected

20 else
// Non-leaders do not invite anybody

21 invitations ← ∅
// Invitation phase

22 invitations ← disseminate(invitations , T, 2d(g, k))
// Invited nodes join committees

23 if (uℓ, self ) ∈ invitations for some uℓ then
24 committee ← uℓ

25 if committee = ⊥ then
26 committee ← self

27 output (committee, tokens)
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from round to round, and nodes initially know only their own UID. We now show
that these tasks remain solvable (in some cases efficiently) even when the model is
further weakened in several ways.

3.5.1 Graphs with Unknown Interval Connectivity and Vertex
Growth

Algorithm 3.6 above assumes that all nodes know the degree of interval connectivity
present in the communication graph; if the graph is not 2T -interval connected, in-
vitations may not reach their destination, and the committees formed may contain
fewer than k nodes even if k ≥ n. Similarly, the vertex growth g must be known
to all nodes. However, the protocol has “one-sided error”: if the dynamic graph is
not (2T, g)-interval connected, then the committees formed may be too small, but
they can never contain more than k nodes, simply because no node ever issues more
than k invitations. When we execute the k-verification protocol (Algorithm 3.2) after
Algorithm 3.6, we may falsely conclude that k < n even when this is not the case,
but we will never conclude that k ≥ n when k < n. A mistaken verdict of k < n does
not lead us to halt with an incorrect answer, it only prevents us from halting with
the current value of k; in other words, feeding in wrong values for T or g impacts the
termination (or liveness) of the counting algorithm, not its safety. We can use this
fact to adapt our counting/token-dissemination algorithm to unknown stability and
vertex growth.

Let us focus first on unknown stability and not assume any non-trivial vertex
growth: assume that the graph is 2T -interval connected, but T is unknown. Recall
that our overall scheme is to first run the k-committee protocol with some parameters
k and T (in this case g is set to the trivial growth function, g(s) = s+ 1), and follow
with the k-verification protocol, which returns 1 iff k ≥ n. An output of 0 is inter-
preted to mean that k is too small and should be increased. If the degree of interval
connectivity is unknown, and we run the k-committee protocol with parameters k and
T which are both guesses, we must interpret an output of 0 as meaning that either k
is too small, or T is too large. In this case we either increase k or decrease T , and
try again.

Theorem 3.27. All-to-all token dissemination (with unknown count) can be solved
in O(min {n2, (n+ n2/T ) logn}) rounds in T -interval connected graphs, even if T is
not known in advance.

Proof. The basic approach is shown in Algorithm 3.7. Let A(k, T ) denote a call to
the combined k-committee + k-verification protocol (i.e., Algorithm 3.6 followed by
Algorithm 3.2) with parameters k and T , where k is a guess for the size of the graph,
and T is a guess for the degree of interval connectivity. Assume that the output of
A(k, T ) is ⊥ if k-verification failed (i.e., if Algorithm 3.2 outputs 0), and otherwise
the output is the set of tokens collected during the execution of the k-committee
algorithm (Algorithm 3.6).
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Algorithm 3.7: Token dissemination in T -interval connected graphs, T un-
known
1 for i = 1, 2, 4, 8, . . . do
2 for k = 1, 2, 4, . . . , i do
3 tokens ← A(k, ⌊k2/i⌋)
4 if tokens 6= ⊥ then
5 return tokens
6 end

7 end

8 end

Each call to A(k, ⌊k2/i⌋) requires O(k + k2/⌊k2/i⌋) = O(i) rounds (note that we
always have k ≤ i), and thus the total time complexity of the i-th iteration of the
outer loop is O(i log i).

If the communication graph is T -interval connected, the algorithm terminates the
first time we reach values of i and k such that k ≥ n and ⌊k2/i⌋ ≤ T . Let N be the
smallest power of 2 that is no smaller than n; clearly N < 2n. Let us show that the
algorithm terminates when we reach i = max {N, ⌈N2/T ⌉}.

First consider the case where max {N, ⌈N2/T ⌉} = N , and hence T ≥ N . When
we reach the last iteration of the inner loop, where k = i = N , we call A(N,N).
This call must succeed (and return a set of tokens rather than ⊥), and the algorithm
terminates.

Next, suppose that ⌈N2/T ⌉ > N . Consider the iteration of the inner loop in which
k = N . In this iteration we call A(N, ⌊N2/⌈N2/T ⌉⌋). Since ⌊N2/⌈N2/T ⌉⌋ ≤ T , this
again must succeed, and the algorithm terminates.

The time complexity of the algorithm is dominated by the last iteration of the
outer loop, which requires O(i log i) = O((n+ n2/T ) log(n)) rounds.

The asymptotic time complexity of Algorithm 3.7 improves upon the original
O(n2) algorithm (which assumes only 1-interval connectivity) only when T = ω(logn).
However, it is possible to execute both algorithms in parallel, either by doubling the
message sizes or by interleaving the steps (e.g., executing one step of Algorithm 3.3
in even rounds and one step of Algorithm 3.7 in odd rounds, and keeping separate
copies of the local variables for each). When the first of the two algorithms finishes,
the combined algorithm terminates and returns the same answer. This leads to a
time complexity of O(min {n2, (n+ n2/T ) logn}).

We can follow the same approach to adapt to unknown vertex growth. For ex-
ample, say that we believe the network is likely to be a vertex expander, but we
are not certain that it will be and we do not know the expansion constant if it is.
Fix some family H ⊆ R of expansion constants. For each combination of a guess
k = 1, 2, 4, 8, . . . and an expansion constant α ∈ H ∪ {0}, we can execute the k-
committee + k-verification protocol under the assumption that the graph is (1, gα)-
interval connected, where gα(s) := α · s if α 6= 0 and gα(s) := 1 if α = 0 (that is,
α = 0 represents the case where the graph is not an expander). If k-verification suc-
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ceeds we terminate, and otherwise we either increase k or decrease α, and try again.
We pay an additional log |H| factor in the running time, so if the graph is not an
expander, the total round complexity will be O(n2 log |H|). However, if the graph
is a vertex expander with expansion constant at least α for some α ∈ H , then the
total round complexity is O(n logα(n) log |H|). Along similar lines one might try to
guess various combinations of stability parameter T and vertex growth g such that
the graph is (T, g)-interval connected; we always pay a log factor in the worst case,
but the potential gain when the network is well-behaved can be large.

3.5.2 Coping with Asynchronous Wakeup

A common strategy for conserving power during period of inactivity in a wireless
network is to have nodes switch their hardware radios to a low-powered “sleeping”
state, where instead of sending and receiving messages nodes sense the channel and
only “wake up” upon sensing activity. We model this behavior as asynchronous start
(see Section 2.1): instead of assuming that all nodes begin the computation at the
same time, as we have done until now, in asynchronous wakeup, computation is
initiated by one or more nodes, and the remaining nodes are initially asleep. A node
wakes up when it receives a message from some node that is already awake, and then
it joins the computation. However, since it is already “too late” to send messages in
the current round, the awakened node sends its first message only in the next round.

It is not hard to see that under asynchronous wakeup, no meaningful global com-
putation can be accomplished. We use consensus as the essential example for “mean-
ingful global computation”, since it is a fairly weak task: it only requires nodes to
agree on a single bit, and the output is only constrained under two specific input
assignments (the all-zero and the all-one inputs).

Proposition 3.28. If there is no a priori upper bound on the count, consensus cannot
be solved under asynchronous wakeup: there is no randomized algorithm that achieves
both validity and agreement with probability ≥ 3/4 in every execution.

Proof. We use the classical partitioning argument : we construct an execution where
two parts of the network cannot observe each other’s existence, and show that agree-
ment is violated, as the nodes in one part must decide 0 and the nodes in the other
must decide 1.

Suppose for the sake of contradiction that A is a randomized algorithm that solves
consensus under asynchronous wakeup, and let s be the worst-case number of rounds
required for A to halt with probability 1/2 in networks of size 1. Now consider an
undirected network G = (V,E) over s + 2 nodes V = {1, . . . , s+ 2}, where initially
only nodes 1 and 2 are awake, the input to node 1 is 0 and the input to node 2 is
1. The edges are defined as follows: at each time t we have a pool of s − t sleeping
nodes (initially we have s, since only 1 and 2 are awake); in round t + 1 we choose
some sleeping node u, and we connect all the active nodes only to u. In addition, the
sleeping nodes are connected amongst themselves in a line. Since all active nodes are
connected only to u, only node u wakes up in round t+ 1; however, it does not get to
send a message until the next round, and by that point it is no longer connected to any
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active node. Therefore node 1 cannot distinguish this execution from an execution
α where it is the only node in the network, and node 2 also cannot distinguish this
execution from an execution β where it is the only node in the network. In executions
α and β, validity requires nodes 1 and 2 to output 0 and 1 respectively, and by choice of
s, each of the two nodes halts by time s with probability at least 1/2 (independently
of the other node). Thus, after at most s rounds in G, with probability at least
1 − (1/2)2 = 3/4, nodes 1 and 2 halt and output 0 and 1 respectively, violating
agreement.

Corollary 3.29. Counting (exact or approximate) and all-to-all token dissemination
cannot be solved under asynchronous wakeup in the absence of an a priori bound on
the size of the network.

Proof. We saw in Section 3.1 that counting reduces to all-to-all token dissemination,
and computing a minimum reduces to counting. Consensus is easily reduced to min-
imum by having all nodes decide on the minimum input. Thus the impossibility of
the “harder” tasks follows from the impossibility of consensus.

The impossibility of consensus is an artifact of our round model: since nodes
wake up after receiving a message, they cannot provide any feedback to the node(s)
that woke them up, since at that point it is too late in the round to send messages.
Thus, the node initiating the computation can labor under the illusion that it is all
by itself in the network, while in fact there are many other nodes that wake up but
are immediately whisked away by the adversary. We could eliminate this scenario in
several ways: e.g., we could change the model to allow nodes that wake up to respond
immediately, or allow the graph to change only once every two rounds. This would
allow every node that wakes up to alert the node that awakened it. However, it turns
out that a weaker guarantee is sufficient: we only need some node that wakes up to
alert the node that awakened it, and for this purpose 2-interval connectivity suffices,
provided the graph is undirected.

Theorem 3.30. In 2-interval connected undirected graphs with asynchronous wakeup,
all-to-all token dissemination with unknown count can be solved in O(n2) rounds.

Proof. We modify the definition of k-committee and the algorithms from Sections 3.3–
3.4 as follows.

k-committee with wakeup: Each awake node outputs a committee ID, such that
no committee contains more than k nodes. Sleeping nodes are not counted as belong-
ing to any committee. If k ≥ n, we require all nodes to belong to the same committee,
and in particular all nodes must be awake at the end of the protocol.

Timestamps: Since each node wakes up at a different time, we no longer have a
global time-reference that all nodes are aware of; instead, each node knows only its
local time, i.e., how many rounds have passed since it woke up. To resolve this issue,
we attach to each message a timestamp containing the local time at the sender. Note
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that each part of the combined k-committee/k-verification protocol requires a fixed
number of rounds that depends only on k. Therefore the timestamp is sufficient to
know which step of the combined k-committee/k-verification protocol the sender just
executed, including the value of k, the current line number in Algorithm 3.3, etc.
Nodes always strive to be up-to-date: when they receive a message with a timestamp
larger than their local time, they update their local time to match the timestamp, and
jump to the step that corresponds to the new local time. In particular, a node that
wakes up jumps to the step indicated by the timestamp on the message that awakened
it (or the largest timestamp if it received more than one message). Jumping into the
middle of a phase requires several modifications to the algorithm, which we describe
below.

The k-committee algorithm: Algorithm 3.3 is modified as follows.

• All UIDs stored and sent are replaced with pairs (timestamp, UID); where nodes
use their own UID, they use their local clock as the timestamp.

• Wherever nodes compare UIDs (to select leaders, etc.), they now lexicograph-
ically compare the pair (timestamp, UID), giving precedence to nodes with a
larger local time (i.e., nodes that woke up earlier).

• A node that jumps into the leader election part of Algorithm 3.3 participates
normally: it sets min uid to the value it received in the message that woke it
up and follows the remainder of the protocol.

• A node that jumps to any step of Algorithm 3.3 following the leader election
“sits out”the current value of k: instead of actively participating in the protocol,
it only forwards messages it receives (choosing an arbitrary message if there is
more than one), and at the end it forms its own committee, outputting its own
UID as its committee ID. From this point on it participates normally in the
remainder of the execution (unless it later makes another jump).

The modified protocol solves our modified version of k-committee: it is still true that
no committee contains k members, because no node issues more than k invitations.
And if k ≥ n, then the leader election part takes up at least n − 1 rounds, which is
sufficient to wake up all the nodes in the graph and have them set their clocks to the
largest clock in the network. Since nodes give precedenc toe nodes with a larger local
time when they compare (UID,timestamp) pairs, at the end of the leader election
part, only the smallest node among the nodes that initiated the computation survives
as a leader; this node successfully invites all the other nodes to join its committee.

k-verification: We follow the original k-verification protocol, except that we execute
it for 2k rounds instead of k rounds. Nodes that jump into the middle of the protocol
set their cid to⊥ and participate normally (i.e., they send ⊥ in all subsequent rounds).

If we start from an initial state where the cids represent a legal solution to k-
committee, then k-verification succeeds: if k ≥ n, then initially all nodes are awake
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and have the same cid , so as in the synchronous-wakeup case, all nodes output 1. If
k < n, we can show that every two rounds, each committee shrinks by at least one:
from 2-interval connectivity, each committee has some edge {u, v} that persists for
two rounds, such that u belongs to the committee and v either belongs to a different
committee, or has cidv = ⊥, or is asleep. In the first two cases we have cidv 6= cidu,
so v sends a value that causes u node to drop out of the committee in the first round.
In the second case, v wakes up in the first round, and sends ⊥ in the second round,
causing u to drop out of the committee. Since each committee initially contains at
most k nodes, after 2k such rounds all committees are empty, and all nodes output 0.

3.5.3 Counting and Token Dissemination with Beeps

As a curiousity, we observe that the problem of exact counting can be solved (albeit
very inefficiently) in 1-interval connected graphs even if nodes have rudimentary radios
that are only capable of making and detecting noise on the channel. This model is
called “the beep model” [37, 2]. More precisely, in each round, nodes can decide
whether to “beep” (broadcast some signal or cause noise) or not, and their feedback
for the round is “noise” if they or some node in their in-neighborhood beeped in the
round, and otherwise it is “silence”.

To solve counting in the beep model, we proceed as follows: we devote a phase
comprising k rounds to each “guess” k = 1, 2, 4, 8, . . . for the count. During these k
rounds, each node whose UID is greater than k beeps in every round, and every node
that hears noise beeps in all subsequent rounds of the phase. At the end of the phase,
if the node heard noise at any point, it moves on to the next value of k; otherwise it
concludes that k ≥ n. At this point we can narrow in on the exact count by using
binary search. Correctness follows from the simple fact that since UIDs are unique,
there can be at most k nodes that have UIDs no greater than k; if k < n, then k
rounds suffice for all of these nodes to hear noise, just as we saw in the k-verification
protocol. We note that this procedure is extremely inefficient, as the largest UID in
the graph may be much larger than the number of nodes in the graph.

Once the count is determined, nodes are able to compute the minimum over inputs
encoded in ℓ bits in n·ℓ rounds: initially all nodes compete to have their input selected;
for each bit i = 1, . . . , ℓ, remaining competitors whose input has 0 in position i beep
for n rounds, while all other nodes simply forward beeps they hear (i.e., they remain
silent until they hear noise, then they start beeping). After n rounds, the i-th bit
of the minimum input is determined to be 0 if noise was heard at any point, and 1
otherwise. If the i-th bit is determined to be 0, any competitor whose input has 1
in the i-th position stops competing. In this manner all nodes can learn the value
of the smallest input in n · ℓ rounds. To solve all-to-all token dissemination, nodes
can repeat this process n times, disseminating first the smallest token, then the next-
smallest token, and so on. Nodes whose token was already disseminated (i.e., was
selected as the minimum) in some iteration do not compete in subsequent iterations,
to ensure that we disseminate a new token in each iteration.
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Theorem 3.31. Counting and token dissemination can be solved in O(N logN +
n2 log n) rounds in the beep model, where N is the largest UID present in the execution.

3.6 Randomized Approximate Counting

Until now we considered deterministic and exact counting. We now show that against
an oblivious adversary, randomization allows us to compute an approximate count in
linear time. We assume that the nodes know some potentially loose upper bound
N on n. Recall from Chapter 2 that an oblivious adversary commits to the entire
dynamic graph in advance, before the nodes make any random choices.

High-level overview of the algorithm. Our algorithm is based on a technique
described in [114] in the context of gossiping protocols.3 The main idea is to use the
fact that the minimum of n iid exponential random variables with rate 1 is itself an
exponential variable with rate n. If we have each node draw an exponential random
variable with rate 1, then the expected value of the minimum is 1/n, and we can use
this to approximate the count. To amplify the probability of obtaining an accurate
estimate we repeat this process several times in parallel, and compute our estimate
from the average result. Formally, given a set S of ℓ-tuples of independent exponential

variables with rate 1, S =
{(

Y 1
1 , . . . , Y

ℓ
1

)

, . . . ,
(

Y 1
|S|, . . . , Y

ℓ
|S|

)}

, the estimate we

compute from S is

n̂(S) :=
ℓ

∑ℓ
i=1 min1≤j≤|S| Y

i
j

. (3.6.1)

In [114], the approach above was used to approximate the sum of a known number
of inputs. For our purposes, their technique suggests the following scheme: to estimate
|V |, each node v initially computes an ℓ-tuple of exponential random variables with
rate 1, (Y 1

v , . . . , Y
ℓ
v ). The objective of the nodes is to compute n̂(V ). (Here and in

the sequel, we abuse notation slightly be using n̂(U), where U ⊆ V , to denote the
estimate n̂(SU) computed from the set SU =

{

(Y 1
v , . . . , Y

ℓ
v ) | v ∈ U

}

.) To compute
the estimate, each node u computes the pointwise minimum

(min
v∈S

Y 1
v ,min

v∈S
Y 2
v , . . . ,min

v∈S
Y ℓ
v ),

where S is the set of nodes whose values u has heard, and then node u computes
n̂(S) = ℓ/

∑ℓ
i=1 minv∈S Y

i
v . The pointwise minimum is easily computed by simply

forwarding the smallest value heard for each coordinate.
How should we decide when to terminate?4 At time t, the only information avail-

3A gossip protocol operates in a complete graph, with each node choosing a random neighbor
to contact in each round. Such protocols, including the one in [114], typically use messages of
unbounded size.

4This is a challenge that does not arise in [114], where nodes never halt and the sum is computed
in the limit.

79



able to node u is the estimate n̂(S) it has computed so far, where S = past(u, t)0 is
the set of nodes from which u has heard. Since we want to estimate the size of the
entire network, we wish node u to terminate only when past(u, t)0 = V . Recall that
in Section 3.2, we used the following termination test:

|past(u, t)0|
?
≤ t (3.6.2)

as a condition which, when true, indicates that past(u, t)0 = V and we are allowed to
halt. We will now use the same idea: to check at time t whether past(u, t)0 = V , node
u examines its estimate n̂u and compares it to the time t, taking into account the
inaccuracy of n̂u, which is bounded with high probability by ε. If n̂u < (1− ε)t, node
u concludes that with high probability condition (3.6.2) above is true, and therefore
past(u, t)0 = V ; in this case node u halts and outputs its current estimate. Otherwise
node u continues until the termination test succeeds.

The technical details. In [114], an easy application of Cramér’s Theorem yields
the following bound on the error of the average-based estimate:

Lemma 3.32 ([114]). Let S be a set of ℓ-tuples of independent exponential variables

with rate 1, S =
{(

Y 1
1 , . . . , Y

ℓ
1

)

, . . . ,
(

Y 1
|S|, . . . , Y

ℓ
|S|

)}

. Define

n̂(S) :=
ℓ

∑ℓ
i=1 min1≤j≤|S| Y

i
j

.

Then

Pr

(

∣

∣n̂(S)− |S|
∣

∣ >
2

3
ε · |S|

)

≤ 2e−ε2ℓ/27.

In our case the number of repetitions ℓ is chosen as follows: given parameters
ǫ ∈ (0, 1/2) and c ≥ 1 representing the approximation error and the constant in the
success probability 1− 1/N c, respectively, we define

ℓ := ⌈(2 + 2c) · 27 ln(N)/ε2⌉. (3.6.3)

Plugging this value into Lemma 3.32, we obtain

Pr

[

∣

∣n̂(S)− |S|
∣

∣ >
2

3
ε · |S|

]

≤ 2e−ε2ℓ/27 ≤ 2e−3−(2+c) lnN

<
1

4N2+c
. (3.6.4)

Let us now describe two technical issues having to do with the size of messages
sent by the algorithm. First, sending exact values for the variables Y

(v)
i would require

nodes to send real numbers, which cannot be represented using a finite number of
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bits. Therefore we round and truncate the variables Y i
v as follows:

Ỹ i
v := min

{

1

4ℓN1+c
,max

{

ln(4ℓN1+c),
(

1 +
ε

4

)⌊log1+ε/4(Y
i
v )⌋
}}

. (3.6.5)

In other words, we round Y i
v down to the next smaller integer power of 1 + ε/4,

and restrict it to the range [1/(4ℓN1+c), ln(4ℓN1+c)]. We will show that with high
probability, all variables Y i

v are already in this range, and thus restricting the range
only has an effect with negligible probability. Since Ỹ i

v is an integer power of 1+ε/4 in
the range [1/(4ℓN1+c), ln(4ℓN1+c)], it can be represented using O(log log1+ε/4(ℓN)) =
O(log logN + log(1/ε)) bits.

In order to further reduce message sizes, we may wish to avoid sending a complete
tuple (Y 1

v , . . . , Y
ℓ
v ) in a single message; we can trade off time against message size by

sending the tuple over several rounds. To do this we partition the variables Y 1
v , . . . , Y

ℓ
v

into subsets of b variables each, where b is a parameter of the algorithm (and 1 ≤
b ≤ ℓ). We assume for simplicity that b is an integer divisor of ℓ (if not, ℓ can be
increased to the nearest multiple of b without reducing the success probability), and
let m := ℓ/b be the number of subsets. Now, instead of sending the entire tuple
(minv∈S Y

1
v , . . . ,minv∈S Y

ℓ
v ), we iterate through the subsets, sending only coordinates

i · b+1, i · b+2, . . . , i · b+ b (that is, coordinates corresponding to the (i+1)-st subset)
in each round r such that (r − 1) mod m = i. The total runtime of the algorithm
is increased by a factor of b. A slight complication arises from the fact that now
different coordinates are sent in different rounds, which means they are broadcast
over different communication graphs. However, we will see that this issue is easily
dealt with.

The final algorithm is given in Algorithm 3.8. We use X to denote a tuple, and
Xi to denote the i-th coordinate of the tuple. As usual, we omit the subscript v we
give the code executed by node v.

Note that each iteration of the outer loop (r = 1, 2, . . .) spans m rounds. Thus, at
time m · r the nodes complete the r-th iteration of the outer loop and compute a new
estimate ñ(r). We are not interested in intermediate values encountered during the
execution of the inner loop. To simplify our notation we use ñu(r) to denote ñu(m ·r),
that is, the estimate computed by u at the end of the r-th iteration of the outer loop.

Because we partition the ℓ coordinates into subsets and send only one subset in
each round, different coordinates j reflect the initial values Y j

v of different sets of
nodes v. To capture the set of nodes that influence a specific coordinate, we define a
restriction of the dynamic graph: given a graph G = (V,E), for each i = 1, . . . , m we
define G|i := (V,E|i), where E|i(r) = E(m · (r − 1) + i). In other words, round r in
G|i corresponds to the round in which subset i is sent for the r-th time in the original
execution in G. Now let

C i
u(t) := past(u, 1 + ⌊(t− i)/m⌋)G|i,0 =

{

v ∈ V | (v, 0) G|i (u, 1 + ⌊(t− i)/m⌋)
}

.

An easy induction on t shows that for any node u ∈ V , subset i = 1, . . . , m, index
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Algorithm 3.8: Randomized approximate counting in linear time, code for node
v

1 Z ← (Ỹ 1, . . . , Ỹ ℓ)
2 for r = 1, 2, . . . do
3 for i = 1, . . . , m do

// Send the i-th subset

4 W ← (Z(i−1)b+1, . . . , Z(i−1)b+b)
5 broadcast W
6 receive Wv1 , . . . ,Wvs from neighbors

// Update each coordinate in subset i to the minimum value

heard for that coordinate

7 for j = (i− 1)b+ 1, . . . , (i− 1)b+ b do
8 Zj ← min

{

Zj,W j
v1
, . . . ,W j

vs

}

9 end

10 end

11 ñ(r)← ℓ/
∑ℓ

i=1 Z
i

12 if (1− ε)r > ñ(r) then terminate and output ñ(r)

13 end

j = 1, . . . , b inside subset i, and time t, we have

Z(i−1)b+j
u (t) = min

v∈Ci
u(t)

Ỹ (i−1)b+j
v .

Now we are ready to prove the correctness of the algorithm. Recall that each node v
initially computes ℓ exponential random variables Y 1

v , . . . , Y
ℓ
v , and then truncates and

rounds them according to (3.6.5). We first analyze the algorithm ignoring truncation,
and then show that w.h.p. truncation does not change the output. Let

Ẏ j
v :=

(

1 +
ε

4

)⌊log1+ε/4(Y
j
v )⌋

(3.6.6)

denote the value of Y j
v after rounding but before truncation. Note that

Ẏ
(v)
j ≤ Y

(v)
j ≤

(

1 +
ε

4

)

· Ẏ (v)
j . (3.6.7)

Consider an algorithm A′ which is identical to Algorithm 3.8 except that nodes ini-
tialize Zv using (Ẏ 1

v , . . . , Ẏ
ℓ
v ) instead of (Ỹ 1

v , . . . , Ỹ
ℓ
v ). Let ṅv(r) denote the estimate

computed by node v at time r · m in A′ (as opposed to ñv(r), the actual estimate
computed by node v in Algorithm 3.8). We first show that if the algorithm terminates
at time t, then ṅv(t) is a good approximation for n w.h.p., and then we show that
w.h.p. we have ṅv(t) = ñv(t) for all nodes v.

The first step in the analysis is to bound the nodes’ estimates from below, and
show that nodes are not likely to halt before time n: with high probability, at all times
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preceding time n, each node’s estimate is large enough to prevent it from halting.

Lemma 3.33. For each node v ∈ V and iteration r ≤ n, with probability at least
1− 1

4N2+c we have
ṅv(r) ≥ (1− ε)r.

Proof. Recall that for each specific coordinate j in subset i = ⌈j/m⌉, we have Zj
v =

minu∈Ci
v(t)

Ỹ j
u , so intuitively the quality of the estimate ṅv(r) is closely related to the

size of the sets C i
v(t) for different i. These sets cannot be too small; from Lemma 2.21,

for any subset i we have

|C i
v(t)| ≥ min

{

n, 1 + ⌊t− i
m
⌋
}

= min

{

n, 1 + ⌊r ·m− i
m

⌋
}

= min {n, r} . (3.6.8)

For each i = 1, . . . , m, we choose r nodes vi1, . . . , v
i
r ∈ C i

v(t) (if |C i
v(t)| > r the choice

is arbitrarily). Let S =
{

Y1, . . . , Yr
}

, where for each k = 1, . . . , r,

Yk =
(

Y 1
v1k
, . . . , Y b

v1k
, Y b+1

v2k
, . . . , Y 2b

v2k
, . . . , Y

(m−1)b+1
vmk

, . . . , Y mb
vmk

)

.

Due to rounding and to the fact that we might have |C i
v(t)| > r, the estimate ṅv(r)

computed by node v at time t is not quite n̂(S), but it is not too far off. For any
coordinate j = 1, . . . , ℓ that belongs to subset i = ⌈j/m⌉,

Zj
v = min

u∈Ci
v(t)

Ẏ j
u ≤ min

k=1,...,r
Ẏ j

vik

(3.6.7)

≤ min
k=1,...,r

Y j

vik
.

It follows that

ṅv(r) =
ℓ

∑ℓ
j=1Z

(u)
j

≥ ℓ
∑ℓ

j=1 mink=1,...,r Y
(vik)
j

= n̂(S).

Consequently we obtain

Pr
[

ṅv(r) < (1− ε)r
]

≤ Pr
[

n̂(S) < (1− ε)r
]

≤ Pr
[

∣

∣n̂(S)− r
∣

∣ > ε · r
] (3.6.4)

≤ 1

4N2+c
. (3.6.9)

Lemma 3.33 shows that w.h.p., nodes do not halt prematurely, and when they are
ready to halt (at time n), their estimate is not too small compared to n. We now
bound the estimate from above and show that starting from time n, the estimate is
w.h.p. not too large compared to n.

Lemma 3.34. For each node v ∈ V and iteration r ≥ n, with probability at least
1− 1

4N2+c we have
ṅv(r) = ṅv(n) ≤ (1 + ε)n.
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Proof. The proof is quite similar to Lemma 3.33. In fact the two proofs can be
combined, since (3.6.4) gives us both an upper and a lower bound on the estimate.
However, at times m ·r < n we do not obtain a meaningful upper bound as a function
of r, as the sets C i

v(r) of nodes whose values “go into the estimate” may contain more
than r nodes. For clarity, we separate the lower bound (Lemma 3.33), which bounds
the estimate in terms of r, from the upper bound (the current lemma), which applies
only starting from time n and bounds the estimate in comparison to n.

Let S =
{(

Y 1
v , . . . , Y

ℓ
v

)

| v ∈ V
}

be the set of all ℓ-tuples initially computed by

the nodes, and let Ṡ =
{(

Ẏ 1
v , . . . , Ẏ

ℓ
v

)

| v ∈ V
}

be the set of ℓ-tuples of rounded

values. If t is a time that falls in iteration r ≥ n, then from (3.6.8) we know that for
all i we have |C i

v(t)| = n, and hence for any coordinate j in subset i,

Zj
v = min

u∈Ci
v(t)

Ẏ j
v = min

u∈V
Ỹ j
u

(3.6.7)

≥ minu∈V Y
j
u

1 + ε
4

.

In particular, the estimate ṅv(r) does not change after time t = n ·m (that is, after
the loop counter r reaches n). Thus, at any time t ≥ n ·m we have

ṅv(r) = ṅv(n) = n̂(Ṡ) =
ℓ

∑ℓ
j=1 Z

(u)
j

≤
(

1 +
ε

4

) ℓ
∑ℓ

j=1 minv∈V Y
(v)
j

=
(

1 +
ε

4

)

n̂(S).

Now let us bound the probability that ṅv(r) is too large:

Pr [ṅv(r) > (1 + ε)n] ≤ Pr
[(

1 +
ε

4

)

n̂(S) > (1 + ε)n
]

= Pr

[

(

1 +
ε

4

)

(n̂(S)− n) >
3

4
εn

]

(ε<1/2)

≤ Pr

[

(

1 +
ε

4

)

(n̂(S)− n) >
(

1 +
ε

4

)

· 2

3
εn

]

≤ Pr

[

∣

∣|n̂(S)− n
∣

∣ >
2

3
εn

]

(3.6.4)

≤ 1

4N2+c
.

Theorem 3.35. For ε ∈ (0, 1/2) and c > 0, with probability at least 1− 1/N c, every
node of Algorithm 3.8 outputs the same value ñ, and this value satisfies |ñ−n| ≤ εn.

Proof. Let Bv,r be the event that at node v, if r ≤ n then we have ṅv(r) ≥ (1 − ε)r,
and if r ≥ n then we have ṅv(r) ≤ (1 + ε)n. Lemmas 3.33 and 3.34 together show
that

Pr [Bv,r] ≥ 1−
(

1

4N2+c
+

1

4N2+c

)

= 1− 1

2N2+c
.
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Also, let A be the event that for all v ∈ V and j = 1, . . . , ℓ we have Ỹ j
v = Ẏ j

v ;
that is, all the exponential variables are within the range [1/(4ℓN1+c), ln(4ℓN1+c)],
so truncating them has no effect. For a single exponential variable X with rate 1 we
have

Pr
[

Ẋ 6= X̃
]

= e− ln(4ℓN1+c) + 1− e−1/(4ℓN1+c)

≤ 1

4ℓN1+c
+

1

4ℓN1+c
=

1

2ℓN1+c
.

Since there is a total of n · ℓ exponential variables in the system, a union bound yields

Pr [A] ≥ 1− n · ℓ · 1

2ℓN1+c
≥ 1− 1

2N c
.

If A occurs then for all v ∈ V and r ∈ N
+ we have ñv(r) = ṅv(r). If, in addition

to A, all events Bv,r for v ∈ V and r = 1, . . . , n occur, then

(a) No node v halts and outputs ñv(r) if r < n (because in that case ñv(r) = ṅv(r) ≥
(1− ε)r at all nodes),

(b) All nodes halt at time (((1+ε)/(1−ε))n+1)m (because ñv(n) = ṅv(n) ≤ (1+ε)n,
and ñ does not change once r reaches n), and

(c) All nodes output the same estimate ñv(n) = ṅv(n) = n̂(S̃), which satisfies
∣

∣

∣
n̂(S̃)− n

∣

∣

∣
≤ εn. Here S̃ is the set of rounded and truncated tuples initially

generated by all nodes.

In other words, if A and
⋂

v∈V

⋂n
r=1Bv,r occur, then the algorithm terminates in linear

time (assuming ε is a constant) and computes an ε-approximation for the count. A
union bound shows that the probability that this does not occur is bounded by

Pr

[

A ∪
⋃

v∈V

n
⋃

r=1

Bv,r

]

≤ 1

2N c
+N2 · 1

2N2+c
=

1

N c
.

This completes the proof.

Remark 3.36. As the proof above shows, Algorithm 3.8 has the useful property that
with high probability, all nodes halt at the same time and output the same estimate.
This allows us to treat ε-approximate counting as a simultaneous task which, once
completed, provides all nodes with a consistent bound on the size that all agree on.

Remark 3.37. Algorithm 3.8 is designed to estimate the number of nodes in the
network. However, suppose that instead we wish to estimate the number of nodes
matching some criteria (e.g., nodes that received a specific value in their input).
We can accomplish this by running two instances of Algorithm 3.8 side-by-side. In
the first instance, A, all nodes participate. In the second instance, A′, only nodes
matching the criteria participate, and the remaining nodes only forward the values
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they receive. When A halts, nodes halt and output the estimate computed by A′. We
saw in Theorem 3.35 that w.h.p. A does not halt before time n; it is easy to modify the
proof of Theorem 3.35 to show that by this time A′ has obtained an ε-approximation
to the number of nodes matching the criterion.

This modification will be useful when we later discuss the relationship between
counting and sensitive tasks.

3.7 Lower Bound on Token Dissemination by Token-
Forwarding

In this section we focus on the problem of token dissemination with a known number
of tokens k, and discuss lower bounds on this problem. (The problem is of course no
harder than token dissemination with an unknown number of tokens.)

The token-dissemination algorithms we presented in this chapter used no “com-
bining”: they could store and forward tokens, but not alter or combine them in any
way (unlike, e.g., network coding algorithms). We call the class of algorithms that
satisfy this property token-forwarding algorithms.

Definition 3.38. A token-dissemination algorithm is called a token-forwarding al-
gorithm if it satisfies the following conditions.

(a) The messages of the algorithm are pairs of the form (x, y), where x is either
a token or the special symbol ⊥ (indicating “no token”), and y contains control
information of the algorithm (in arbitrary format).

(b) A node u can send a message (x, y) only if x was in node u’s input or node u
has previously received a message of the form (x, z). (The control information y
is unconstrained.)

(c) Node u can halt only when it has received all tokens in the global input, either in
its own input or in messages from other nodes.

Note that this definition allows nodes to interact with their tokens arbitrarily and
to compute unrestricted control information. However, informally speaking, control
information can only be used to decide which token to send ; it cannot replace the
actual sending of whole, unaltered tokens. We say that a token-forwarding algorithm
uses no control information if its messages are of the form (x, ε), that is, the control
information is always empty.

When this work was originally presented (in [94]), we gave two lower bounds on
token-forwarding algorithms:

1. An Ω(n log k)-round lower bound on centralized token-forwarding algorithms in
1-interval connected graphs.

2. An Ω(n+nk/T )-round lower bound on a restricted class of distributed random-
ized token-forwarding algorithms (formalized in Definition 3.39). This class of
algorithms includes all the algorithms in this chapter.
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The first lower bound has since been strengthened in [43] to an Ω(nk)-round
lower bound on centralized token dissemination in 1-interval connected graphs, later
generalized in [68] to an Ω(n + n2/T 2)-round bound in T -interval connected graphs.
Therefore we do not include our first lower bound here. However, the result of [68]
does not subsume our second lower bound, as it is off by a factor of T from our upper
bound in Section 3.4.3. We therefore include the second lower bound here.

The lower bound we describe here is against a restricted class of randomized
token-forwarding algorithms, which we call limited-history algorithms. Informally, in
a limited-history algorithm, once a node receives all the tokens, its behavior in all
future rounds is fixed and depends only on the history up to that point.

We assume for simplicity that the nodes do not halt, and we are interested in
the time required for each node to collect all tokens (this only strengthens our lower
bound: in the original problem nodes are required to halt, but cannot do so before
collecting all tokens). We therefore treat each node’s output as an infinite sequence
x1, x2, . . . ,∈ (X⊥)ω, where X is the set of tokens and X⊥ denotes the set X ∪ {⊥}
(recall that ⊥ a special symbol indicating that the node does not send a token).

Definition 3.39 (Limited-history algorithms). A token-forwarding algorithm is said
to be limited-history if it satisfies the following condition: let α be an execution prefix
comprising t ≥ 0 rounds, and let u be a node that receives all tokens by time t in α.
Then the distribution of tokens sent by u in the rounds following t is the same in all
possible extensions of α. That is, there is a fixed mapping5

D : (X⊥)∗ → [0, 1]

such that in any extension of α (regardless of the dynamic graph and the messages
received by u), node u outputs each sequence of tokens6 x1, . . . , xm in rounds t +
1, . . . , t+m with probability D(x1, . . . , xm).

The class of limited-history algorithms includes all the token-dissemination algo-
rithms in this chapter, as well as the following natural approaches:

• Sending a random token from the set of tokens known in each round,

• Round-robin over tokens (possibly depending on the order in which they were
first received).

However, the class does not include more adaptive strategies, such as sending the
token received least often in past rounds.

Fix parameters k and T . For randomized and deterministic limited-history algo-
rithms, we show the following lower bounds against an adaptive adversary:

5The mapping is a measure over the σ-algebra of cylinder sets, {Cyl(x) | x ∈ (X⊥)
∗}, where

Cyl(x) = {y ∈ (X⊥)
ω | x is a prefix of y}. It satisfies the usual constraints: e.g., the measures of all

sequences x1, . . . , xm of length m add up to 1 (for any m), and the measure of a sequence x1, . . . , xm
is at least as large as that of any sequence x1, . . . , xm+1 that extends it by one round. However, for
our purposes here we do not require the technical details.

6Technically, node u0 sends a sequence of messages (x1, y1), . . . , (xm, ym), but here we care only
about the tokens x1, . . . , xm.
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Theorem 3.40. Any randomized limited-history k-token dissemination algorithm re-
quires Ω(n + nk/T ) rounds in the worst case to succeed with probability 1/2 in T -
interval connected networks.

Theorem 3.40 asserts the existence of a “hard input assignment”, but this assign-
ment is somewhat “centralized”: one node initially has all the tokens. For determinis-
tic algorithms that use no control information, the lower bound also applies to input
assignments where each node starts with exactly one token:

Theorem 3.41. If the UID space is sufficiently large compared to the size of the
network (Ω(n3/T ) suffices), then any deterministic algorithm that uses no control
information requires Ω(n + n2/T ) rounds to solve all-to-all token dissemination in
T -interval connected networks.

We begin with a high-level overview, and then describe the lower bound in detail.

High-level overview. Fix a limited-history algorithmA, a set of nodes u0, . . . , un−1,
and an input assignment I where node u0 receives all tokens and all other nodes receive
at most one token each. Let t1 := (n− 2)(k − 1)/(4T ). By Definition 3.39 there is a
fixed distribution D : (X⊥)∗ → [0, 1] governing u0’s output in all rounds, regardless
of the dynamic graph we choose. Since t1 < (n − 2)(k − 1)/(4T ), we can show that
there exists a token x that is initially not known to at least n − 2 nodes, such that
with high probability node u0 sends x fewer than n− 2 times by time t1. The idea in
the proof is to always use u0 as a buffer between the nodes that have already learned
x and those that have not; since u0 broadcasts x infrequently with high probability,
in this manner we can limit the number of nodes that learn x. To preserve T -interval
connectivity, whenever u0 does broadcast x we must wait T rounds before we can do
“damage control” and remove the nodes that have learned x from the vicinity of the
nodes that have not. However, we will design the graph in such a way that only O(T )
nodes learn x while we wait to change the graph, so that the cost incurred every time
u0 broadcasts x is O(T ) nodes. To do this we keep the nodes that do not know x in
a ring, while the nodes that do know x (or may know x) are connected in a clique
(see Fig. 3-1). The only connection between the ring and the clique is through node
u0. Thus, token x can be learned by ring nodes only when u0 sends it. To maintain
this property we must occasionally “clean up” the graph and remove nodes that may
have learned x from the ring. We show that we can do this in a manner that respects
T -interval connectivity.

The technical details. Fix a set of n nodes u0, . . . , un−1. For a finite sequence
x1, . . . , xm ∈ (X⊥)m and a token x ∈ X , let #x(x1, . . . , xm) be the number of times x
appears in the sequence. We treat #x as a random variable (over sequences of some
fixed length m) and omit the sequence (x1, . . . , xm) where it is clear from the context.

We first show that we can (adaptively) construct a dynamic graph such that if
node u0 sends some token x ∈ X infrequently, then this token does not propagate
everywhere and the algorithm cannot terminate. Recall from Chapter 2 that an
adaptive adversary constructs the dynamic graph on the fly, basing its choices in
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round r on the entire history up to to time r − 1, including all random choices made
in rounds 1, . . . , r−1. Technically, an adaptive adversary is a function that maps the
history up to time r − 1 (inclusive) to a set of edges for round r. In our case, the
adversary’s behavior depends only on the tokens sent by node u0 in prior rounds.

Lemma 3.42. Fix a token x ∈ X that is initially known to node u0 and at most one
other node. There is an adaptive adversary G that constructs a T -interval connected
dynamic graph, depending only on the tokens sent by node u0, such that if u0 sends
tokens x1, . . . , xt in rounds 1, . . . , t, then at most 2T ·#x(x1, . . . , xt) + 2 nodes know
token x at time t.

Proof. Let us describe the graph constructed by the adaptive adversary G.

Execution segments. We divide the rounds 1, . . . , t into segments α1, . . . , αm; the
graph remains static during each segment, but changes between segments. There are
two types of segments in our construction.

• Quiet segments, each of which ends immediately after the first time that u0
sends x in the segment (or at time t, whichever occurs sooner).

• Active segments, which last exactly T rounds each (or until time t if it occurs
less than T rounds after the beginning of the segment).

The type (and hence also the duration) of each segment α1, . . . , αm is defined recur-
sively. The first segment, α1, is a quiet segment (i.e., it ends immediately after u0
sends x for the first time). For each i ≥ 1, if node u0 sends token x at any point
during segment αi, then segment αi+1 is active; otherwise segment αi+1 is quiet. Note
that the type of each segment depends only on the behavior of u0 in the rounds that
strictly precede the segment, so an adaptive adversary can already determine the
segment type in the first round of each segment.

We say that a segment αi is even (resp. odd) if the number of active segments
that precede αi is odd (resp. even). In particular, the first segment α1 is even.

Construction of the dynamic graph. In each segment αi we partition the nodes
{u0, u1, . . . , un−1} into two sets, Ci and Di. The nodes in Ci are referred to as clean
nodes : they do not know token x. The nodes in Di are dirty nodes : they may or may
not know token x, but in the construction we pessimistically assume that they do. If
at some point in the construction we have Di = V , that is, all nodes are dirty, then
the construction terminates and the graph remains fixed from that point on.

By our assumption on x, initially token x is known to node u0 and possibly to
one other node uℓ. Accordingly we define D1 = {u0, uℓ} and C1 = V \ {u0, uℓ}. Let
v1, . . . , vn−2 be some arbitrary ordering of the nodes in C1. In each segment i, the
nodes of Ci are a contiguous subset vLi

, . . . , vRi
⊆ C1, where 1 ≤ Li ≤ Li+1 ≤ Ri+1 ≤

Ri ≤ n − 2 for all i. In the first segment αi we have Li = 1 and Ri = n − 1. In
subsequent segments αi+1 for i ≥ 1, we define Li+1 and Ri+1 recursively as follows:

• If αi is a quiet segment, then Li+1 := Li and Ri+1 = Ri.
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• If αi is active and αi+1 is an even segment, then Li+1 := Li+2T and Ri+1 := Ri.

• If αi is active and αi+1 is an odd segment, then Li+1 := Li and Ri+1 := Ri−2T .

The edges of the graph are defined as follows (see Fig. 3-1): if r is a round during
segment αi, then

• If αi is a quiet segment, then Ci is a line, with u0 connected to either vLi
or vRi

,
depending on whether the segment is even or odd. Formally,

E(r) := (Di ×Di) ∪ {{vj , vj+1} | Li ≤ j < Ri} ∪ {{u0, wi}} ,

where

wi :=

{

vLi
if the current segment is even, and

vRi
otherwise.

(3.7.1)

• If αi is an active segment, then Ci is a ring, with u0 between nodes vLi
and vRi

.
Formally,

E(r) := (Di ×Di) ∪ {{vj , vj+1} | Li ≤ j < Ri} ∪ {{u0, vLi
} , {u0, vRi

}} .

Analysis of the execution. To unify the discussion of odd and even segments, let
us define the following sets of nodes:

• The red nodes, redi, are nodes vLi
, . . . , vLi+2T if αi is an even active segment, or

nodes vRi−2T , . . . , vRi
if αi is an odd active segment.

• The yellow nodes, yellowi, are nodes vRi−T , . . . , vRi
if αi is an even active seg-

ment, or nodes vLi
, . . . , vLi+T if αi is an odd active segment.

• The green nodes, greeni, during an active phase αi are all the nodes in Ci that
are neither red nor yellow. During a quiet phase, the green nodes are all nodes
of Ci except node wi.

Informally, in terms of red, yellow and green nodes, the construction of the graph can
be re-phrased as follows: after each active segment we remove the red nodes from the
ring and move them into the clique; then, if the new segment is also active, the nodes
that were previously yellow become red, while the T nodes adjacent to u0 that were
previously green now become yellow.

Our construction maintains the following invariant:

Invariant 3.43. Throughout the execution,

(a) After each round of a quiet segment αi except the last round, all nodes of Ci do
not know token x. In the last round only node wi ∈ Ci learns token x.

(b) At the beginning of each active segment αi, the only nodes in Ci that may know
token x are the T red nodes in redi closest to u0.
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u0 v1 v2 vn−3 vn−2

(a) The beginning of the execution, showing
only nodes of C1 (all but at most one node of
V that receives token x in its input).

v2T+1

v2T
v2T−1

v2

vL = v1

u0

vR = vn−1

vn−T

(b) The beginning of the first active segment.
The dotted line indicates the edge that will be
added at the end of the segment if the next
segment is also active.

u0

v3T
v2T+2

v2T+1

vn−1

vn−T

(c) At the end of the active segment, we remove
the red nodes from the ring and place them in
the clique. If the next segment is active, the
ring is repaired by connecting u0 to v2T+1.

u0

v3T
v2T+2

v2T+1

vn−1

vn−T

(d) In the second active segment, the nodes
that were previously yellow become red, and
the green nodes on u0’s other side become yel-
low.

Figure 3-1: Illustration for Lemma 3.45, with T = 3. Bold lines indicate edges that
remain stable throughout the current segment and the next one. Green nodes are
shown in white, yellow nodes in diagonal yellow lines, red nodes in red crosshatch,
and nodes in Di in solid grey.

(c) At the end of each active segment αi, all green nodes (greeni) do not know token
x. Moreover, if u0 did not send token x during segment αi, then the yellow nodes
yellowi also do not know token x.

In particular, the invariant implies that if a node u that did not initially know x
learns x in some segment αi, then either u is a red node in αi, or u is a yellow node
in αi and will be a red node in αi+1. Thus the number of nodes that know x at time
t is bounded by the number of nodes that were red at any point before time t.

We prove the invariant by induction on the segment number. The first segment,
α1, is quiet. By choice of the token x and the set C1, initially all nodes in C1 do not
know token x, and since u0 does not send token x until the last round of α1, the nodes
of C1 do not learn x until the last round of α1. Finally, in the last round of αi node
u0 sends x, but the only node that receives x is node w1, which is u0’s only neighbor
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in Ci.
For the induction step, suppose that the invariant holds until the end of segment

αi, and consider segment αi+1. Let us show parts (a)–(c) of the invariant:

(a) If αi+1 is a quiet segment, then by definition, node u0 did not send token x at any
point during segment αi. By the induction hypothesis, the only nodes in Ci that
know token x at the end of αi are the red nodes redi. However, these are removed
from the ring: by definition of Ci+1, it contains only nodes that were green or
yellow in segment αi. Therefore the invariant holds at the beginning of αi. Since
u0 does not send token x until the last round of αi, the invariant continues to
hold until the end (as we showed for α1).

(b) If αi+1 is an active segment and αi is quiet, the claim follows immediately from
part (a) of the invariant (together with the fact that node wi is red in αi+1). If
αi+1 is an active segment and αi is also active, then the red nodes in αi+1 are
the yellow nodes of αi, plus their T neighbors in the direction away from u0 on
the ring. By the induction hypothesis, only the T nodes nearest to u0 may know
token x, so the invariant holds.

(c) By part (b), at the beginning of the current active segment only the T red nodes
nearest to u0 can know token x. If u0 does not send x during the segment, then
since the segment lasts T rounds, by the end of the segment token x can spread
only to the next T nodes of the ring, i.e., only to the remaining red nodes. In this
case the green and the yellow nodes do not know x at the end of the segment.
On the other hand, if u0 sends x, then the yellow nodes may also learn x, since
they are the T nodes adjacent to node u0 on the other side from the red nodes.
But in this case the green nodes still do not know token x, so the invariant holds.

This concludes the proof of the invariant.
We have given an adaptive adversary G that maps a sequence x1, . . . , xt of tokens

sent by node u0 to a graph G(x1, . . . , xt). From the invariant we showed above, it
follows that in each such graph G(x1, . . . , xt), a node learns token x in segment αi

only if it is a red node in segment αi or αi+1. (In particular, yellow nodes either do
not learn x and go back to being green in the next segment, or they become red in
the next active segment.) Since there are only 2T red nodes in every active segment,
the number of nodes that learn token x is bounded by 2T times the number of active
segments, which is itself bounded by 2T times the number of times u0 sends token x,
that is, by 2T · #x(x1, . . . , xt). We assumed that initially at most two nodes know
token x; therefore, by time t, at most 2T ·#x(x1, . . . , xt)+2 nodes know x, as desired.
(If 2T · #x(x1, . . . , xt) + 2 ≥ n, then the construction may terminate before time t,
because we may run out of clean nodes and have Di = V . However, in this case the
lemma holds trivially.)

Before concluding the proof of the lemma, we must also show that the dynamic
graph we constructed is T -interval connected. Observe that for even active seg-
ments, the line ℓeven = vLi+2T , vLi+2T−1, . . . , u0, vRi

, vRi−1, . . . , vLi+2T+1 over the nodes
of Ci persists throughout the entire even active segment and the segment that fol-
lows it; similarly, for odd active segments, the line ℓodd = vRi−2T , vRi−2T+1, . . . ,
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u0, vLi
, vLi+1, . . . , vRi−2T−1 persists throughout the segment and the segment that fol-

lows it. Also, the edges of Di are stable once they appear. So we have the following
types of intervals of T rounds:

• Intervals entirely contained in some segment: the graph is static and connected
throughout the segment.

• Intervals beginning in some quiet segment and ending in the following active
segment: no edges are removed at the end of the quiet segment, so the graph
during the quiet segment persists into the next segment.

• Intervals beginning in some active segment αi, and ending in the following
segment (active or quiet): connectivity for the nodes of Ci is preserved along
either ℓeven or ℓodd; for the nodes of Di connectivity is preserved along the clique
edges; and node u0 is stably connected through both ℓeven/ℓodd and the clique
over Di.

• Intervals beginning in some active segment, containing the next quiet segment,
and ending in the next active segment: since we do not remove edges in the
transition from a quiet segment to an active one, the previous case also applies
here.

• Intervals containing an entire active segment but not contained in that segment:
there are no such T -round intervals, because an active segment lasts T rounds.

Lemma 3.42 does not involve any probabilistic reasoning — it shows that we
can (adaptively and deterministically) construct a dynamic graph where if u0 sends
token x infrequently, then the algorithm cannot terminate. We now show that for
limited-history algorithms that do not run for enough rounds, there is a token that
u0 sends infrequently with high probability: the following easy lemma shows that for
any distribution over token sequences, roughly nk/T rounds are required to guarantee
that each token is sent roughly n/T times with high probability.

Lemma 3.44. Let I be an input assignment containing a total of k tokens X =
{x0, . . . , xk−1}, where node u0 receives all k tokens, and for all i ≥ 1 we have {x0} ⊆
I(ui) ⊆ {x0, xi}. Let

t1 :=
(n− 2)(k − 1)

4T
− 1,

and let D : (X⊥)t1 → [0, 1] be a distribution over token sequences of length t1. Then
there is a token x ∈ X such that

Pr
(x1,...,xt1)∼D

[

#x(x1, . . . , xt1) <
n− 2

2T

]

≥ 1/2.
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Proof. We have

∑

x∈X

E [#x] =
∑

x∈X

t1
∑

r=1

Pr
D

[xr = x]

=
t1
∑

r=1

∑

x∈X

Pr
D

[xr = x] =
t1
∑

r=1

1 = t1 < (n− 2)(k − 1)/(4T ).

It follows that there exist two tokens x 6= x′ such that E [#x] ,E [#x′] < (n−2)/(4T ).
At least one of these tokens is not x0; assume without loss of generality that x 6= x0.
Since E [#x] < (n− 2)/(4T ), Markov’s inequalty shows that

Pr

[

#x ≥ n− 2

2T

]

≤ E [#x]
n−2
2T

<
1

2
,

and the claim follows.

Now we can combine Lemmas 3.44 and 3.42 to obtain the following:

Lemma 3.45. Let I be an input assignment as in Lemma 3.44. For any limited-
history algorithm, there is an adaptive adversary such that under input assignment I,
the algorithm fails to solve k-token dissemination with probability 1/2 by time

t1 :=
(n− 2)(k − 1)

4T
− 1.

Proof. Since node u0 initially receives all tokens, by Definition 3.39 there is a fixed
mapping D : (X⊥)∗ → [0, 1] governing u0’s output in all future rounds, regardless
of the dynamic graph. In the sequel, probabilities and expectations (over node u0’s
output) are taken with respect to D.

By Lemma 3.44, there is a token x ∈ X such that

Pr

[

#x <
n− 1

2T

]

≥ 1

2
.

By Lemma 3.42, there is an adaptive adversary G that maps the sequence y1, y2, . . . , yt1
of tokens sent by node u0 in rounds 1, . . . , t1 to a dynamic graph G(y1, . . . , yt1), such
that at time t1 at most 2T ·#x(y1, . . . , yt1) + 2 nodes know token x. Since we started
with at least n− 2 nodes that do not know token x, whenever 2T ·#x(y1, . . . , yt1) <
n− 2, there is some node that does not know token x at time t1 in G(y1, . . . , yt1) and
A cannot terminate.

By choice of x we have Pr [#x < (n− 2)/(2T )] ≥ 1/2, so Pr [2T ·#x < n− 2] ≥
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1/2. Thus,

Pr [A does not terminate by time t1]

=
∑

y1,...,yt1∈(X⊥)t1

Pr [y1, . . . , yt1] · [[ A does not terminate by t1 in G(y1, . . . , yt1)]]

≥ Pr [2T ·#x(y1, . . . , yt1) < n− 2] ≥ 1/2,

where here the notation [[P ]] denotes the value of Boolean predicate P and the se-
quence y1, . . . , yt1 is drawn from the distribution D governing node u0’s output.

From Lemma 3.45 we obtain our two lower bounds:

Proof of Theorem 3.40. A lower bound of Ω(n) is demonstrated trivially in a static
line network where at least one token starts at one end of the line: n− 1 rounds are
required for the node at the other end of the line to receive the token. Therefore we
focus on showing the bound of Ω(nk/T ). By Lemma 3.45, there is no limited-history
algorithm that succeeds with probability greater than 1/2 by time

t1 =
(n− 2)(k − 1)

4T
= Ω

(

nk

T

)

.

The claim follows.

Proof of Theorem 3.41. As in Theorem 3.40, we focus on the Ω(n2/T ) lower bound.
Let the UID space also be the token domain. We rely on Lemma 3.45 again. We now
start from an input assignment where each node ui receives one unique token ui, and
we show that either

1. The algorithm runs for Ω(n2/T ) rounds, or

2. We reach time t0 in which some node, without loss of generality we assume that
it is node u0, knows all the tokens, and for all i 6= 1 we have Aui

(t0) ⊆ {u0, ui}.
Here, as usual, Au(t) stands for the set of tokens received by node u no later
than time t.

In case (2), we then apply Lemma 3.45, starting from the configuration at time t0.
Note that this configuration satisfies the requirements on the input assignment in
Lemma 3.45 (it is easy to verify that the lemma applies starting from any time, not
just time 0).

Let us now show that one of the two cases above must hold. Assume that |U | ≥
cn3/T +n−1 for some constant c ≥ 0. Say that a node u ∈ U fires in round r if when
node u receives as its input the set {u}, and hears nothing in the first r− 1 rounds of
the execution, node u will stay silent in rounds 1, . . . , r − 1 and then spontaneously
send its token in round r. If u does not fire in any round r′ ≤ r we say that u is
passive until round r.

We divide into two cases.
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Case I. There exist u0, . . . , un−1 ∈ U that are all passive until round cn2/T . In
this case we construct the static clique over u0, . . . , un−1, give each node its own UID
as its input, and let the algorithm run. During the first cn2/T rounds, all nodes
send nothing, and no node learns new tokens. Consequently the algorithm cannot
terminate by round cn2/T = Ω(n2/T ).

Case II. All but at most n − 1 nodes in U fire no later than round cn2/T . Since
|U| ≥ cn3/T +n−1, by the pigeonhole principle there must exist a round r0 ≤ cn2/T
such that at least n nodes fire in round r0. Let u0, . . . , un−1 be n such nodes, and let S
be the static star with u0 at the center: S = (V,ES), where ES(r) = {{u0, ui} | i > 1}
for all r ≤ r0.

Because all nodes fire in round r0, when the algorithm is executed in S, the network
is silent until round r0, and in round r0 all nodes send their tokens. At time r0 (i.e.,
after round r0), node u0 knows all tokens, and the remaining nodes know token u0
and the token they started with, that is, their own UID. At this point we apply
Lemma 3.45 (with k = n), which shows that Ω(n2/T ) more rounds are necessary
after time r0 to solve all-to-all token dissemination. (The statement of Lemma 3.45
concerns randomized algorithms, but of course, it applies to deterministic algorithms
as well.)

3.8 Summary and Open Problems

In this chapter we focused on two problems: token dissemination and counting. We
now summarize our results, and point out several open problems.

Token dissemination. We showed that it is possible to deterministically solve to-
ken dissemination (and therefore also counting) in O(n2/T + n) rounds in T -interval
connected graphs. We gave a lower bound of Ω(n2/T + n) rounds for a restricted
class of algorithms; however, the deterministic (and randomized) round complexity of
token dissemination in T -interval connected graphs for general algorithms remains an
open problem. A nearly-tight lower bound of Ω(n2/ logn) is given in [43] for 1-interval
connected graphs, and this was later strengthened in [68] to a bound of Ω̃(n+n2/T 2)
for T -interval connected graphs. Both bounds hold for centralized token-forwarding
algorithms, but there remains a factor of T between the best known upper bound and
lower bound.

Oblivious vs. adaptive adversaries. Our O(n2/T+n)-round token dissemination
algorithm from Section 3.4.3 is deterministic; for deterministic algorithms there is
no distinction between an oblivious adversary and an adaptive one. However, the
randomized Ω(n2/T + n) lower bound we gave in Section 3.7 requires the adversary
to be adaptive. The question of whether randomization allows us to improve on the
running time of O(n2/T + n) when the adversary is oblivious remains an interesting
open problem.
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Algorithms that combine tokens. Our results focused on token-forwarding algo-
rithms, which treat the tokens as black boxes. We assumed throughout that each
message can contain a constant number of tokens, or polylog(n) bits. The results
extend to the case where d > 1 tokens can be packed into each message, and we
obtain a speedup linear in d.

Following the publication of the results in this chapter, it was shown in [67] that
using random linear network coding, one can improve the running time from O(n2/d)
rounds to O(n2/d2) in 1-interval connected graphs. For the case where only O(logn)
bits can be sent in each message, [67] gives an O(n2/ logn)-round algorithm, a loga-
rithmic improvement over our results.

It is also shown in [67] that when the dynamic graph satisfies a constraint called
T -stability, which asserts that the graph changes only once every T rounds, token
dissemination can be solved in O(n2/(d2T 2)) rounds, again improving upon the lin-
ear O(n2/(dT )) improvement our algorithms obtain in this case. Strictly speaking,
the results from [67] are incomparable with ours, because T -stability and T -interval
connectivity are incomparable: T -stability does not allow any changes to the graph,
except once every T rounds; when the graph changes, it may change completely, and
bear no relationship to the graph in the previous T rounds (in particular the intersec-
tion of the new graph and the old one does not have to be connected). In contrast,
T -interval connectivity allows the graph to change in every round, but requires a
connected subgraph to persist over a “sliding window” of T rounds, so there can be
no sharp transitions. We can define a weaker constraint, let us call it weak T -interval
connectivity, that divides the execution into consecutive non-overlapping blocks of T
rounds each, and requires the existence of a stable connected subgraph in each block
of T rounds. Weak T -interval connectivity allows sharp transitions between blocks;
it is strictly weaker than both T -stability and T -interval connectivity. All the algo-
rithms we gave in this chapter, with the exception of Section 3.5.2, work under weak
T -interval connectivity.

Many problems remain open. The first and most immediate is to extend the
results of [67] to T -interval connected graphs (or show that the results do not extend).
A larger problem is to find non-trivial lower bounds on the round complexity of
algorithms that may combine tokens. This is likely to be a challenge, as this problem
is currently not well understood even for static networks.
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Chapter 4

Consensus and Coordination in
Dynamic Networks

In this chapter we study consensus, a fundamental distributed problem, in the context
of dynamic networks. In the classical formulation of consensus, each node receives a
binary input, and the goal is for each node to produce a binary output satisfying the
following conditions:

• Agreement: all nodes produce the same output.

• Validity: the output produced by the nodes is the input to some node.

One way to solve consensus is to have all nodes agree on the minimum input (see,
e.g., the FloodMin algorithm in [110]). In Section 4.2 we show that this strategy is
optimal: although consensus appears on first sight to be “easier” than minimum (in
the sense that it is less constrained), in the absence of an a priori bound on the size
of the network consensus is as hard as computing the minimum.

In addition to “standard” consensus, which requires nodes to agree on an output
value, we also study variants of the problem that require nodes to agree on a time. In
Section 4.3 we study simultaneous consensus, a variant of consensus where all nodes
must produce their outputs at the same time. We give a lower bound on simultaneous
consensus and any other “non-trivial” simultaneous task, and show that any such task
is at least as hard as computing an upper bound on the size of the network. Next,
in Sections 4.4 and 4.5 we turn our attention to ∆-coordinated consensus, a weaker
version of coordinated consensus which requires nodes to output their values within
∆ rounds of each other, and give upper and lower bounds on this problem.

One of the main themes of this chapter is the connection between coordination,
causality and knowledge. This connection, formalized through epistemic logic, was
already known for traditional network models in which consensus has been studied
in the past — namely, single-hop networks with various types of faults (we refer
to [48] for a comprehensive account of these results). We extend the connection to
multi-hop networks, networks that are not known in advance to the participants, and
dynamic networks, and we show that it yields strong lower bounds and reductions
from problems that on first sight appear harder than consensus. Some of our results
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(in Sections 4.2 and 4.4) apply to static networks as well as dynamic ones. To our
knowledge, this is the first study of consensus, knowledge and common knowledge in
general multi-hop networks.

In the previous chapter we assumed that nodes can send only a limited amount of
information in each message. In contrast, in this chapter we study full-information
protocols, where each node sends its entire history in each message (see Section 4.1
for a more precise definition). Full-information protocols are interesting because they
extract the maximum amount of information out of the system: if it is at all possible
for a node to know some fact at some point in the execution, then it will know it in
a full-information protocol. A lower bound against full-information protocols must
rely only on the inherent uncertainty of the distributed system; it cannot appeal to
“information bottleneck” arguments such as the one in Section 3.7 and the ones we
will see in Chapter 6. We have already seen simple full-information lower bounds
in Section 3.1 (Lemma 3.6 and Proposition 3.7). In this chapter we will give more
involved lower bounds and explore their underpinnings in epistemic logic.

4.1 Epistemic Logic in Distributed Computing

In this section we review several basic concepts in epistemic logic. The concept
of knowledge was already introduced in Section 2.4, where we gave an operational
description of what it means for a node to “know” a fact (Definition 2.25). We now
formalize knowledge as a modal operator of epistemic logic and relate it to several
other operators. The definitions in this section follow the conventions of [48], with
several minor changes necessary to to deal with the fact that in our model the set of
participants in an execution is not fixed in advance.

Executions and timepoints. Recall from Section 2.4 that knowledge is studied
with respect to a set C of possible executions induced by a given algorithm. We
represent each execution in C as a pair (G, I), where G is a dynamic graph and I is
an input assignment that maps nodes to inputs. A timepoint (also called a point or
configuration) of the system is a pair (α, t) ∈ C × N, represented by a vector of the
states of the nodes in the system at time t in α. We let V (α) denote the set of nodes
participating in α.

Full-information protocols. A full-information protocol is a protocol in which
nodes store their entire history in their local state, and send their entire state in
each message. We refer to [48] for the details of the construction. For our purposes
here, a full-information protocol is a protocol that achieves the following: for any two
executions α, β, node u ∈ V (α) ∩ V (β), and time t,

(α, t) ∼u (β, t) ⇔ α and β are (v, t′)-identical for all (v, t′) ∈ past(u, t)α.

Recall from Definition 2.27 that two executions α, β are said to be (u, t)-identical if
node u participates in both executions, and has the same input and edges in every
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round up to time t in both executions. A full-information protocol is therefore a
protocol that allows nodes to distinguish between two executions whenever they differ
in any way that causally influences the node. We saw in Proposition 2.28 that the
other direction, which asserts that if α, β are identical on past(u, t) then u cannot
distinguish them at time t, holds for any protocol. Thus, a full-information protocol
extracts as much information as can possibly be extracted about an execution.

In the rest of the chapter, unless stated otherwise, we assume a full-information
protocol. Our lower bounds will rely heavily on Proposition 2.28 to bound the power
of such protocols.

The similarity graph. Fix a set C of executions. We let (α, t) ∼u (β, t) denote the
fact that node u participates in executions α, β ∈ C and has the same state at time t
in α and β, that is, node u cannot distinguish between (α, t) and (β, t).1 The relations
{∼u | u ∈ U} induce an undirected, edge-labeled graph on C×N. This graph is called
the similarity graph. We are interested in the connected components of the similarity
graph: we let (α, t) ∼ (β, t) denote the fact that (α, t) and (β, t) are in the same
component of the similarity graph, that is, either α = β or there exist u1, . . . , uk ∈ U
and executions α1 = α, α2, . . . , αk+1 = β such that (α, t) = (α1, t) ∼u1 (α2, t) ∼u2

. . . ∼uk
(αk+1, t) = (β, t). In this case we say that (α, t) and (β, t) are similar.

The following property of the similarity graph will be useful in the sequel:

Proposition 4.1. If (α, t) ∼u (β, t) and t′ < t, then (α, t′) ∼u (β, t′).

Proof. If (α, t) ∼u (β, t) then since we assume a full-information protocol, α and
β are (v, s)-identical for all (v, s) ∈ past(u, t)α. In particular, α and β are (v, s)-
identical for all (v, s) ∈ past(u, t′)α ⊆ past(u, t)α. It follows from Proposition 2.28
that (α, t′) ∼u (β, t′).

As an immediate consequence of Proposition 4.1, two executions α, β are similar
at time t iff they are similar at all times t′ ≤ t.

Epistemic logic. Fix a set P of atomic propositions, that is, basic facts about
which we wish to reason. The atomic propositions are interpreted by a valuation
v : C × N

+ × P → {0, 1}, which maps each timepoint (α, t) and atomic proposition
p ∈ P to a truth value v((α, t), p) ∈ {0, 1}. If v((α, t), p) = 1, then we denote
(α, t) |= p, and say that (α, t) satisfies p.

Each atomic proposition is a formula of epistemic logic. In addition, complex
formulas can be built up from simpler formulas using the standard Boolean operators
(∧,∨,→,¬), and the following epistemic operators :

1Note that the indistinguishability relation ∼u is defined only over points (α, t), (β, t) that share
the same time t. In general (e.g., in [48]) this relation is usually defined over points (α, t), (β, s) at
possibly differing times t, s. However, in this thesis we study only synchronous systems, where all
nodes know the current time; in our model, if t 6= s then any node u can distinguish point (α, t)
from point (β, s). Thus our definition is equivalent to the more general one; in both definitions we
can only have (α, t) ∼u (α, s) if t = s.
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• Knowledge: if ϕ is a formula, then for each u ∈ U , the formulaKuϕ is interpreted
as follows:

(α, t) |= Kuϕ ⇔ [u ∈ V (α) ∧ ∀(β, t) : (α, t) ∼u (β, t)⇒ (β, t) |= ϕ] .

(This definition is a small generalization of Definition 2.25 from Section 2.4;
Definition 2.25 addressed only the case where ϕ is an atomic proposition, but
we now allow ϕ to be an arbitrary knowledge formula.)

• Everyone knows : for any formula ϕ, the formula Eϕ is interpreted by

(α, t) |= Eϕ ⇔ [∀u ∈ V (α) : (α, t) |= Kuϕ] .

• Common knowledge: if ϕ is a formula, then formula Cϕ is interpreted as follows:

(α, t) |= Cϕ ⇔ [∀(β, t) ∼ (α, t) : (β, t) |= ϕ] .

Intuitively, a formula ϕ is common knowledge (Cϕ) if ϕ is true, everyone knows that
ϕ is true, everyone knows that everyone knows that ϕ is true, and so on. This is
because “everyone knows that. . . everyone knows ϕ” at nesting depth k corresponds
to ϕ holding for all timepoints within distance k in the similarity graph:

Proposition 4.2 ([48]). For all timepoints (α, t), formulas ϕ and k ∈ N, (α, t) |=
Ekϕ iff (β, t) |= ϕ for all (β, t) at distance at most k from (α, t) in the similarity
graph.

Proof. By induction on k. For k = 0 we have E0ϕ = ϕ, so the claim holds trivially.
For the inductive step, suppose that the claim holds for k, and consider k + 1. By
definition, (α, t) |= Ek+1ϕ iff (α, t) |= KuE

kϕ for all u ∈ V (α). Unwinding the
definitions further, this holds iff (β, t) |= Ekϕ for all (β, t) such that for some u ∈ V (α)
we have (β, t) ∼u (α, t). These are exactly the timepoints (β, t) at distance one from
(α, t) in the similarity graph. (The edges of the similarity graph are defined with
respect to all possible nodes in U , and here we use only edges ∼u for u ∈ V (α);
however, we can only have (α, t) ∼v (β, t) if v ∈ V (α)∩ V (β), so the edges coincide.)
By the induction hypothesis, for each such point we have (β, t) |= Ekϕ iff (γ, t) |= ϕ
for all (γ, t) at distance at most k from (β, t). Putting everything together we see
that (α, t) |= Ek+1ϕ iff (γ, t) |= ϕ for all (γ, t) at distance at most k + 1 from (α, t),
as desired.

Corollary 4.3. The formula Cϕ is logically equivalent to
∧∞

i=0E
iϕ.

Throughout Chapter 3 we used Lemma 2.21 as a “termination criterion”, which
allowed us to determine when nodes have heard from everyone by computing or ap-
proximating the size of their past sets. We now show that this termination criterion
can be refined slightly to yield an optimal termination test. Let us first observe that
Lemma 2.21 is easily generalized to yield:
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Lemma 4.4. For any times t ≤ t′ ≤ s, if past(u, s)t 6= V then |past(u, s)t \
past(u, s)t′| ≥ t′ − t.
Proof. An easy induction on t′ − t, as in Lemma 2.21. The base case (t′ = t) is
immediate. For the induction step, suppose that the claim holds for all nodes u and
times t ≤ t′ ≤ s such that t′− t = k, and fix u and t ≤ t′ ≤ s such that t′− t = k+ 1.
Suppose further that past(u, s)t 6= V . By Proposition 2.12, past(u, s)t+1 ⊆ past(u, s)t,
so we also have past(u, s)t+1 6= V . From 1-interval connectivity, there is some edge
(v, w) in the cut (V \ past(u, s)t+1, past(u, s)t+1), and the source v of this edge is in
past(u, s)t \ past(u, s)t+1. Since t′ − (t + 1) = k, from the induction hypothesis we
have |past(u, s)t+1 \past(u, s)t′| ≥ t′− (t+1), and therefore |past(u, s)t \past(u, s)t′| ≥
t′ − (t + 1) + 1 = t′ − t.

We can now refine our termination criterion and re-cast it in terms of epistemic
logic. Let Pu be a propositional formula such that (α, t) |= Pu iff past(u, t)α,0 = V (α),
that is, Pu holds iff u has heard from everyone.

Lemma 4.5. The following conditions are equivalent:

(a) (α, t) |= KuPu,

(b) There exist times t′, t′′ such that t′′ ≤ t′ ≤ t and |past(u, t)α,t′′ \ past(u, t)α,t′| <
t′ − t′′,

(c) |past(u, t)α,0| = |past(u, t)α,1|.

Proof. We will show that (c) ⇒ (b) ⇒ (a) ⇒ (c).
Condition (c) immediately implies condition (b) (simply set t′ = 1, t′′ = 0). Condi-

tion (b) implies condition (a) because of Lemma 4.4: if there exist t′′ ≤ t′ ≤ t such that
|past(u, t)α,t′′\past(u, t)α,t′ | < t′−t′′, then by Proposition 2.12 and Lemma 4.4 we must
have past(u, t)α,0 ⊇ past(u, t)t′′ = V (α). Since |past(u, t)α,t′′ \ past(u, t)α,t′| < t′ − t′′
always implies past(u, t)α,0 = V (α), whenever |past(u, t)α,t′′ \ past(u, t)α,t′ | < t′ − t′′
node u knows that past(u, t)α,0 = V (α).2

It remains to show that condition (a) implies condition (c). We will show the
contrapositive. Suppose that |past(u, t)α,0| 6= |past(u, t)α,1|. By Proposition 2.12 we
have past(u, t)α,1 ⊆ past(u, t)α,0, so there must exist some node v ∈ past(u, t)α,0 \
past(u, t)α,1. We can construct another execution β just as we did in Lemma 3.6,
where we add an arbitrary number of nodes to V (α) and connect them only to node
v; the nodes of V (α) \ {v} have the same edges in β as they do in α, and all nodes
of V (α) have the same input in α and β. By Proposition 2.28, (α, t) ∼u (β, t), as α
and β are identical on every time-node in past(u, t)α (recall that (v, 1) 6∈ past(u, t)α,
and hence (v, s) 6∈ past(u, t)α for all s ≥ 1 as well). Since (β, t) 6|= Pu, it follows that
(α, t) 6|= KuPu.

2Epistemic logic is an instance of the modal logic S5 [48], and in particular it satisfies the following
“distributivity” axiom: Ku(ψ1 → ψ2) → (Kuψ1 → Kuψ2). Here we are instantiating this axiom
with ψ1 = “|past(u, t)α,t′ \ past(u, t)α,t′′ | < t′ − t′′” and ψ2 = Pu. We also use the fact that since
the protocol is full-information, whenever |past(u, t)α,t′ \ past(u, t)α,t′′ | < t′ − t′′, node u knows that
|past(u, t)α,t′ \ past(u, t)α,t′′ | < t′ − t′′.
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Lemma 4.5 gives us an HF n algorithm that is optimal in every execution: the
HF n task is the problem of determining when past(u, t)0 = V , that is, the problem of
determining when Pu holds. Lemma 4.5 shows that node u can know that Pu holds
only when condition (c) holds. Thus an optimal way to solve HF n is to run a full-
information protocol, evaluate condition (c) at every timestep, and halt as soon as
the condition is satisfied. In the next section we will show that consensus is as hard as
HF n in the worst case, so this also yields a protocol for consensus that is worst-case
optimal. However, all-case optimality is lost for consensus. (This is unavoidable, as
no all-case optimal algorithm for consensus exists [48].)

4.2 Consensus and Causality

In this section we study the consensus task with no timing constraints. Recall that
in consensus, the only constraint on the global decision value is validity: the decision
value must be the input to some node. This appears to be a fairly weak constraint.
However, we now show that even though consensus is not a deterministic function
of the nodes’ inputs, in the absence of an a priori count it is still as hard as HF n,
which means that it is no easier than computing a deterministic function such as the
minimum input.

Lower bounds on consensus are often proven by a partitioning argument, where it
is shown that due to a lack of communication, two parts of the network fail to agree
on their outputs. Our analysis of the hardness of consensus relies on the following
partitioning result:

Lemma 4.6. Let U, V ⊆ U be disjoint sets of UIDs, and fix a class C of executions of
a consensus protocol. Let α ∈ C be an execution over the nodes of U where the input
to all nodes is 0, and let β ∈ C be an execution over the nodes of V where the input
to all nodes in 1. If C admits all executions over the nodes U ∪ V , then in either α
or β, no node halts before it has heard from everyone.

Proof. Suppose for the sake of contradiction that there exist nodes u ∈ U, v ∈ V such
that node u halts at time t in α and node v halts at time t′ in β, but past(u, t)α,0 6= U
and past(v, t′)β,0 6= V . Let u′ ∈ U\past(u, t)α,0 and let v′ ∈ past(v, t′)β,0. We construct
a third execution γ over the nodes U ∪ V as follows:

• In each round, the dynamic graph of γ contains the edges present in the corre-
sponding round of α and β, and also the edge {u′, v′} (that is, we include both
directed edges (u′, v′) and (v′, u′)).

• The input to the nodes of U is 0 and the input to the nodes of V is 1.

Executions α, γ are (U \ {u′} , t)-identical, and executions β, γ are (V \ {v′} , t′)-
identical. By Proposition 2.12, since u′ 6∈ past(u, t)α,0 we have u′ 6∈ past(u, t)α,s
for all s ≤ t, so by Proposition 2.28, node u cannot distinguish α from γ and it halts
at time t. In α node u must output 0, because the input to all nodes is 0; therefore
in γ node u also halts and outputs 0 at time t. Similarly, node v cannot distinguish
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β from γ at time t′; since in β node v must output 1, node v also outputs 1 in γ,
violating agreement.

We can use Lemma 4.6 to show that consensus is as hard as HF n. The reduction
we use for this purpose does not quite fit Definition 2.5; it does not use the consensus
algorithm as a black box. Nevertheless, we are able to convert any consensus algo-
rithm into a HF n algorithm with the same worst-case time complexity and the same
asymptotic message complexity.

Corollary 4.7. If there is no a priori upper bound on the size of the network, then
any consensus algorithm A can be transformed into an HF n algorithm A′ that has
the same running time and message size as A in any execution.

Proof. The absence of an a priori bound on the size of the network corresponds to an
infinite set of UIDs (see Example 2.26). Assume without loss of generality that the
UID space is N, and fix a consensus algorithm A. One of the following cases holds:

I. For every set U of UIDs and every dynamic graph, with the all-zero input as-
signment, no node halts before hearing from everyone. Then we can solve HF n

by running A with input 0 at every node, and halting when A halts.

II. There exists a set U of UIDs and a dynamic graph G over U such that with the
all-zero input assignment, some node halts before hearing from everyone. Let
f : N → N \ U be some injective mapping (e.g., we can map every number m
to m + 1 + max(U)), and let f(X) denote the image of f on a set X ⊆ N. To
solve HF n, we execute A using input 1 at every node, but instead of using the
original UIDs, every node u executes A with UID f(u). By Lemma 4.6, for any
dynamic graph H = (V,E), when A is executed this way, no node halts before
hearing from everyone (because f(V ) and U are disjoint by choice of f).

Corollary 4.8. If A is a consensus algorithm that uses no a priori bound on the size
of the network, then there is an algorithm for computing the minimum input that has
the same running time as A in every execution, and uses messages of size M + d,
where M is the message size of A and d is the size of the input to each node.

Proof. By Corollary 4.7, we can transform A into an algorithm A′ for HF n, which
uses the same running time and message size as A. To compute the minimum, we
run A′ and append the smallest input heard so far to every message. When A′ halts
we halt and output the minimum received so far.

When the UID space is finite, the size of this set is an upper bound on the size of
the network, and we can no longer find an injective but non-surjective UID mapping
f as we did in Corollary 4.7. (Indeed, the existence of an injective but non-surjective
mapping from a set to itself is one way to define what an infinite set is.) To see the
problem, consider the case where the “bad set” U is exactly U , the entire UID space.
Clearly we cannot “circumvent” U by mapping to a disjoint set of UIDs.
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In fact, when the UID space is finite it is no longer true that nodes must implicitly
solve HF n if they are to solve consensus. For example, consider the following algo-
rithm, which uses an upper bound of N on the size of the network: in each round,
each node sends the UIDs of all nodes it has heard from so far, together with the
input to each such node. (This is a simple variant of Algorithm 9, where we attach
input values to UIDs.) If a node ever hears of a total of more than N/2 nodes that
received the same input x, it immediately halts and decides x. Otherwise nodes use
the usual termination test from Algorithm 9 to determine when they have heard from
everyone, and at that point they halt and output the majority input. The algorithm
is correct because all nodes always decide on the majority input value. This algorithm
sometimes allows nodes to halt after hearing from only N/2 nodes, even when the
network contains as many as N nodes. Thus, some nodes may halt before hearing
from everyone.

Another “bad strategy” for our purposes is to always decide on the input of some
special node, say node 1, if that node is present. In this case node 1 may decide
without hearing from any other node, because it knows the decision value will be
its own input. However, we can show that these two strategies — designating some
“special nodes” or deciding on the majority value when the graph contains at least
N/2 nodes — are essentially the only tricks that can be played: if the algorithm is
comparison based (so no UIDs are “special”), all nodes must always hear from either
all nodes in the graph or at least N/2 nodes, whichever is smaller.

Lemma 4.9. If A is a comparison-based algorithm, where nodes nodes access UIDs
in a black-box manner and can only compare them to each other, and N is the size
of the UID space, then either for the all-zero input assignment or the all-one input
assignment, A solves HFmin{n,N/2} in all executions.

Proof. Suppose not. Then there is some dynamic graph G0 = (V0, E0) such that in
execution α = (G0, I0) where I0 is the all-zero input assignment, some node u0 halts
at time t0 such that |past(u0, t0)0| < min {|V0|, N/2}, and similarly there is a graph
G1 = (V1, E1) such that in execution β with the all-one input assignment some node
u1 halts at time t1 with |past(u1, t1)0| < min {|V1|, N/2}.

Let U0 be a set of |past(u0, t0)0| UIDs, such that U0 ∩ past(u1, t1)0 = ∅. (We know
that there exist sufficiently many UIDs for U0, because by assumption |past(u0, t0)0| <
N/2 and |past(u1, t1)1| < N/2, and we assumed that there are N UIDs. There-
fore there exist N − |past(u1, t1)0| > N/2 > |past(u0, t0)0| UIDs that are not in
past(u1, t1)0.) Let f be an order-preserving mapping from V0 to U0 (i.e., f maps the
i-th UID in V0 to the i-th UID in U0), and let H0 be the dynamic graph obtained by
applying the isomorphism f to G0. Since the algorithm is comparison-based and f
preserves the order of UIDs, the state of each node f(v) at time s in H0 is the same as
the state of node v at time s in G0. Therefore, if γ is the execution over H0 with the all-
zero assignment, f(u0) halts in γ at time t0 with |past(f(u0), t0)0| < min {|V0|, N/2}.
In particular, in β node u1 halts before hearing from everyone, and in γ node f(u0)
halts before hearing from everyone. This contradicts Lemma 4.6, which shows that
since γ and β are over disjoint node sets and have the all-zero and all-one input as-
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signment respectively, in at least one of the two executions no node can halt only
after hearing from everyone.

4.3 Simultaneous Tasks and Common Knowledge

In static, fully-connected networks, it is well known that simultaneous actions are
closely related to common knowledge [69, 48, 45, 113]. In this section we revisit this
connection and explore its implications for coordination in dynamic networks.

4.3.1 Simultaneous Tasks

Recall that a task T is said to be simultaneous if its timing constraint requires all
nodes to halt at the same time. As shown in [69], if T is a simultaneous task, then
in any algorithm for solving T , nodes can halt in round r only if there is common
knowledge that all nodes are going to halt in round r. For the sake of completeness,
we begin with a review of the proof of this property and how it can be applied to
derive lower bounds on simultaneous tasks.

Since knowledge formulas are evaluated at timepoints rather than rounds (i.e.,
between timepoints), it is convenient to associate the act of halting and producing an
output value with a time rather than a round. Thus, let us consider only algorithms
where the state-space of each node contains a set of special “halting” states, one state
for each possible output value, and each node halts and outputs x in round t + 1 iff
the node is in the halting state corresponding to value x at time t. (This is without
loss of generality, since any algorithm is easily modified to satisfy this property at
the cost of at most one additional round.) Let halt be an atomic proposition that is
satisfied in (α, t) iff all nodes of V (α) are in a halting state at time t.

Lemma 4.10 ([69]). If T is a simultaneous task and A is an algorithm that solves
T , then (α, t) |= halt iff (α, t) |= C(halt).

Proof. One direction is immediate: if (α, t) |= C(halt), then by Proposition 4.2, all
points in the similarity component of (α, t) satisfy halt, and in particular (α, t) |= halt.

To show the other direction, suppose that (α, t) |= halt. By Proposition 4.2, to
show that (α, t) |= C(halt), it is sufficient to show that for all (β, t) ∼ (α, t) we have
(β, t) |= halt. This is proven by induction on distance between (α, t) and (β, t) in
the similarity graph. The base case, distance zero, is immediate, since we assumed
that (α, t) |= halt. For the induction step, suppose that all points at distance k
from (α, t) satisfy halt, and let (β, t) be a point at distance k + 1 from (α, t) in the
similarity graph. Then there is some point (γ, t) such that (γ, t) ∼u (β, t) for some
node u ∈ V (γ) ∩ V (β), and (γ, t) is at distance k from (α, t). By the induction
hypothesis, (γ, t) |= halt, and in particular node u is in a halting state at time t in
γ. Since (γ, t) ∼u (β, t), node u is also in a halting state at time t in β, which means
u halts in round t + 1 of β. But since T is a simultaneous task, all nodes must halt
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in round t + 1 of β, which implies that all nodes are in halting states at time t and
(β, t) |= halt.

The contrapositive of Lemma 4.10 is useful for proving lower bounds on simulta-
neous actions.

Corollary 4.11. Suppose that T is a simultaneous task, and ϕ is a formula such that
for any algorithm that solves T , in any point (α, t) of the execution of the algorithm
we have (α, t) |= (halt → ϕ). (That is, nodes can halt only if ϕ holds.) If no full-
information protocol acquires common knowledge of ϕ by time t in any execution,
then no algorithm solves task T by time t in any execution.

Proof. Suppose for the sake of contradiction that A is an algorithm that solves T
and terminates at time t′ ≤ t in some execution α. Consider the similarity graph
induced by the executions of A. By Proposition 4.2, since (halt → ϕ) holds at all
points in the similarity graph, (halt → ϕ) is also common knowledge at all points:
(β, s) |= C(halt→ ϕ) for all (β, s).

By Lemma 4.10, we have (α, t′) |= C(halt). The common knowledge operator
C satisfies the axioms of the S5 modal logic [48], and in particular, it satisfies the
axiom C(ψ → χ) → (C(ψ) → C(χ)) for any ψ, χ. Since (α, t′) |= C(halt → ϕ) and
(α, t′) |= C(halt), we obtain (α, t′) |= C(ϕ). This means that A obtains common
knowledge of ϕ by time t′ ≤ t in α. It is always possible to simulate any algorithm
by a full-information protocol [48], and therefore there is a full-information protocol
that acquires common knowledge of ϕ by time t, contracting the assumption of the
corollary.

For example, in simultaneous consensus, nodes cannot output a decision value of
x unless they know that some node received x in its input. If we can show that the
fact ϕ = “for either x = 0 or x = 1, all nodes know that some node received input x”
does not become common knowledge until time t, then we obtain a lower bound of
t rounds on simultaneous consensus. Note that this lower bound is stronger than a
worst-case lower bound: it is an all-case lower bound, which shows that simultaneous
consensus cannot be solved in t rounds in any execution, not just in some execution.

4.3.2 Common Knowledge in Dynamic Graphs

We now characterize the time required to obtain common knowledge in dynamic
graphs, towards the goal of obtaining a lower bound on simultaneous tasks (see Corol-
lary 4.11 above). First we must exclude certain “trivial” facts from our results.

Definition 4.12 (Non-trivial facts). A fact ϕ is said to be a non-trivial fact about
time t if for any execution α and time t′,

1. (α, t′) |= ϕ iff (α, t) |= ϕ, and

2. There exists an execution β that is identical to α up to time t − 1 (inclusive),
over at least as many nodes as participate in α, such that (β, t) 6|= ϕ.
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For example, the fact that the current time is 6 is trivial — that is, it is not a
non-trivial fact about any time. However, the fact that some node received input 0 is
a non-trivial fact about time 0. The fact that the network contains exactly 6 nodes
may or may not be a trivial fact: if nodes know the size of the network a priori (for
example because the class of executions contains only executions with 6 nodes), then
this fact is trivial, otherwise it may not be.

Recall that we represent an execution as a pair (G, I), where G is the dynamic
graph and I is the input assignment. In the sequel we assume that the class C of
executions satisfies the following closure condition:

• If (G, I), (G, I ′) ∈ C, where G = (V,E) andG′ = (V ′, E ′), then for all U ⊆ V ∪V ′

of size at most max {|V |, |V ′|}, for all 1-interval connected dynamic graphs H
over U , and for all input assignments J satisfying

∀u ∈ U :











J(u) = I(u) if u ∈ V \ V ′,

J(u) = I ′(u) if u ∈ V ′ \ V , and

J(u) ∈ {I(u), I ′(u)} if u ∈ V ∩ V ′,

we have (H, J) ∈ C.

• If (G, I) ∈ C and H is a 1-interval connected dynamic graph obtained from G
by adding or removing a single edge in one round of G, then (H, I) ∈ C as well.

The condition implies that we can span between any two executions by making a
sequence of local changes, such as changing the input to a single node, removing
a single edge, etc. This intuition will be made formal in Lemma 4.18 below. The
condition can be viewed as requiring that the set of executions contain no “topological
holes”.3

Roadmap. Our goal in this section is to show that common knowledge of any non-
trivial fact about time t cannot be acquired by time t + n− 2; that is, n− 1 rounds
are required to achieve common knowledge of any non-trivial fact. This holds even if
the size of the graph is known in advance to be n (that is, the class C of executions
includes only executions where the size of the graph is n). If the size of the graph is
not known in advance, we can extend the lower bound by an additional round and
show that n rounds are required. Formally, we will show the following:

Theorem 4.13. If ϕ is a non-trivial fact about time t, then for all executions α over
n nodes and times t′ < t + n − 1 we have (α, t′) 6|= Cϕ. Moreover, if t = 0 and in α
the size of the graph is not known in advance to be at most n, then (α, n− 1) 6|= Cϕ
as well.

3The condition is not merely for convenience: it is known that when the topological structure
of the space of executions is not sufficiently connected, tasks that are in impossible in the general
case become possible. For example, asynchronous fault-tolerant consensus, which is known to be
impossible in the general case [54], becomes possible under some restrictions on the global input
assignment [115]. We refer to [72] for a comprehensive account of the connection between distributed
computation and topology.
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Recall from Section 4.1 that a fact ϕ is common knowledge in (α, t) iff ϕ holds in
every point (β, t) in the similarity component of (α, t). To show that a non-trivial fact
ϕ about time t cannot be common knowledge at any time t′ ∈ [t, . . . , t+n−2], we will
first show that the last n−2 rounds of any execution are “mutable”, in the sense that
we can change them arbitrarily while remaining in the same similarity component.
For this part of the proof we will first keep the participants and the input assignment
fixed, and focus on the dynamic graph itself. We will show that we can change any
aspect of the dynamic graph G at times t, t+ 1, . . . , t+ n− 2 while still remaining in
the similarity component of (G, t+ n− 2):

Theorem 4.14. For every full-information protocol, every set V of |V | = n nodes,
all dynamic graphs G and H over V , and all times t and t′ ≤ t + n − 2, if G and
H agree on all rounds preceding time t, then ((G, I), t′) ∼ ((H, I), t′) for every input
assignment I for the nodes of V .

Theorem 4.14 will be proven by showing that we can construct an indistinguisha-
bility chain spanning between ((G, I), t′) and ((H, I), t′). Theorem 4.14 allows us to
make arbitrary changes to the dynamic graph in the last n − 2 rounds, as long as
we keep the input assignment and set of participants fixed. However, to prove Theo-
rem 4.13 for time t = 0, we must also be able to alter the input assignment and the set
of participants, because a non-trivial fact about time 0 may depend on these aspects
of the execution. Thus, to complete the proof, we will show in Lemma 4.19 that we
can span between any two initial configurations while remaining in the same similar-
ity component. Together with Theorem 4.14, this will give us all the ingredients to
prove Theorem 4.13.

The technical details. Fix some input assignment I. The input assignment I
will be kept constant throughout the proof of Theorem 4.14; we therefore simplify
our notation by omitting I, and use (G, t) ∼ (G′, t) as short-hand notation for
“((G, I), t) ∼ ((G′, I), t)”.

To establish Theorem 4.14 we must show that we can span between any two dy-
namic graphs G,H that are identical up to time t − (n − 2) by making only “local
changes” that some node cannot observe, obtaining an indistinguishability chain be-
tween (G, t) and (H, t). We must maintain 1-interval connectivity at every step of
the chain.

If we wish to maintain indistinguishability to some node u at time t, we cannot
make any changes to time-nodes in past(u, t). Therefore a key idea in the proof is
hiding, an operation that allows us, informally speaking, to “remove” time-nodes from
past(u, t): informally, we say that we hide (X, t′) from (u, t) when we move inside the
similarity component of (G, t) to a point (G′, t) ∼ (G, t) where (X, t′) is hidden from
(u, t); in (G′, t), node u knows nothing about the states of the nodes in X from time
t′ onwards. Once we have done this, we can add or remove any edges adjacent only
to nodes in X in round t′, while still remaining in the similarity component of (G, t),
because u does not learn of these changes by time t. In particular, hiding (X, t′) from
(u, t) allows us to remove more edges from the graph, which in turn lets us hide more
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nodes from (u, t), and so on. In this manner we incrementally transform a dynamic
graph into another dynamic graph while remaining in the same similarity component.

Definition 4.15 (Hiding). Given a graph G = (V,E), nodes u, v ∈ V and times
t ≤ t′, we say that (v, t) is hidden from (u, t′) in graph G if (v, t) 6∈ past(u, t′)G. For
a set X ⊆ V , we say that (X, t) is hidden from (u, t′) if (v, t) is hidden from (u, t′)
for every v ∈ X.

The hiding set hide(G, (X, t), (u, t′)) is the set of points (G′, t′) such that

(a) (G, t′) ∼ (G′, t′) and G′ is defined over the same nodes as G,

(b) G and G′ are identical up to time t (inclusive), and

(c) (X, t) is hidden from (u, t′) in G′.

When can we hide a time-node (v, t) from another time-node (u, t′)? Clearly, if
t′ ≥ t+n−1, then we always have past(u, t′)t = V (by Lemma 2.21), so we cannot hope
to hide any time-t nodes from (u, t′). However, one might hope that if t′ < t+ n− 1
then we would be able to hide any time-t node from (u, t′), and the following lemma
shows that this is indeed the case. The lemma is stated in a more general form that
allows us to hide sets of nodes rather than just single nodes; this will be useful when
we wish to add or remove edges (which requires hiding both endpoints of the edge).

Lemma 4.16 (Hiding Lemma). Fix a point (G, t), where G = (V,E). For any
k ≤ n− 2, set X of size |X| ≤ n− k − 1, and node u 6∈ X, we have hide(G, (X, t −
k), (u, t)) 6= ∅.

Proof. We begin with an informal overview of the proof, and then give the technical
construction.

Proof overview. The proof is by induction on k. The base case, k = 0, is immedi-
ate, because at time t node u has not heard from any time-t node but itself.

For the induction step, we fix a set X ⊆ V of size n − (k + 1) − 1 = n − k − 2
and a node u 6∈ X . To hide (X, t − (k + 1)) from (u, t), we must remove all edges
from nodes in X to nodes in past(u, t)t−k in round t − k, while preserving 1-interval
connectivity. We can think of the induction hypothesis as providing us with a set of
n − k − 1 “pebbles” that we can use to cover time-nodes at time t − k, hiding them
from (u, t) and allowing us to changes the edges adjacent to these nodes in round
t− k. We make our changes in three steps:

1. Fix some node w 6∈ X ∪{u}. In order to preserve 1-interval connectivity, before
removing any edges, we will first connect all nodes to node w in round t − k.
We use two pebbles for this task: for each edge {w, v} that we need to add, we
first cover nodes w, v at time t−k (hiding them from some third node z at time
t), then add the edge {w, v} and remove the pebbles so that we can use them
again for the next edge.
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2. The next step is to remove all edges from nodes in X to nodes outside X ∪{w}
in round t − k, using the same approach as above: for each pair (x, y) where
x ∈ X and y 6∈ X ∪ {w}, we hide ({x, y} , t − k) from (u, t), then remove the
edge (x, y) from round t−k. 1-interval connectivity is preserved because node w
is connected to all nodes of the graph, and we never remove any edges adjacent
to node w.

3. Finally, having “fixed” round t − k so that the nodes in X only communicate
with nodes in X ∪ {w}, we place all n − k − 1 of our pebbles on the nodes of
X ∪ {w}, which hides (X, t− k − 1) from (u, t).

Let us now describe the construction of the similarity chain more formally.

Formal proof. We proceed by induction on k. The base case is k = 0, for which
the claim is trivial: by Proposition 2.12 we have past(u, t)G,t = {u}. Thus, if X is a
set such that u 6∈ X , then past(u, t)G,t ∩ X = ∅ and (X, t) is hidden from (u, t). It
follows that (G, t) ∈ hide(G, (X, t), (u, t)).

For the inductive step, assume that the claim holds for k, and consider k+1 ≤ n−2.
Fix a set X ⊆ V of size n − (k + 1) − 1 = n − k − 2 and a node u 6∈ X . To hide
(X, t − (k + 1)) from (u, t), we must remove all edges from nodes in X to nodes in
past(u, t)t−k in round t− k, while preserving 1-interval connectivity. We can think of
the induction hypothesis as providing us with a set of n − k − 1 “pebbles” that we
can use to cover time-nodes at time t− k, hiding them from (u, t) and allowing us to
make changes to round t− k. We proceed as follows:

1. Fix some node w 6∈ X∪{u} (there exists such a node, because |X| ≤ n−k−2 ≤
n − 2), and fix some ordering V = {v1, . . . , vn} where vn = w. We construct a
chain (G, t) = (G0, t) ∼ (G1, t) ∼ . . . ∼ (Gn−1, t), such that each Gi is identical
to G up to time t− k− 1, and in Gi = (V,Ei) we have {v1, . . . , vi}× {w} ⊆ Ei.
The base case (i = 0) is immediate. For the inductive step, to construct Gi+1

from Gi, we choose some node z 6∈ {w, vi+1}, and use the induction hypothesis
to find some G′

i ∈ hide(Gi, ({w, vi+1} , t−k), (z, t)) (note that | {w, vi+1} | = 2 ≤
n−k−1, because k+1 ≤ n−2; therefore the induction hypothesis applies here).
Then we add edge {w, vi+1} to round t − k of G′

i, obtaining G′
i+1. Time-node

(z, t) cannot distinguish G′
i from Gi+1, because ({w, vi+1} , t−k) is hidden from

(u, t) in G′
i. Therefore (G0, t) ∼ . . . ∼ (Gi, t) ∼ (G′

i, t) ∼u (Gi+1, t). Note also
that Gi+1 is 1-interval connected, because we only add edges to the original
graph G.

The final point, (Gn−1, t), satisfies

(a) (G, t) ∼ (Gn−1, t),

(b) G and Gn−1 are identical up to time t− k − 1, and

(c) (V \ {w})×{w}∪{w}×(V \ {w}) ⊆ En−1(t−k), where Gn−1 = (V,En−1).
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2. Next we remove all edges from nodes in X to nodes outside X ∪ {w} in round
t−k, by constructing a chain exactly as above: for each pair (x, y) where x ∈ X
and y 6∈ X ∪{w}, we hide ({x, y} , t−k) from (u, t), then remove the edge (x, y)
from round t − k. At every step, 1-interval connectivity is preserved, because
node w has bidirectional edges to all nodes of the graph, and we never remove
any edges adjacent to node w. Eventually we obtain a point (H, t) such that

(a) (H, t) ∼ (Gn−1, t),

(b) H and Gn−1 are identical up to time t− k − 1, and

(c) EH(t− k) ∩ (X × (V \ (X ∪ {w}))) = ∅, where H = (V,EH). That is, all
edges from nodes in X in round t− k hit nodes in X ∪ {w}.

3. Since |X ∪ {w} | = |X| + 1 ≤ n − k − 1, the induction hypothesis implies that
hide(H, (X ∪ {w} , t− k), (u, t)) 6= ∅. Fix some (H ′, t) ∈ hide(H, (X ∪ {w} , t−
k), (u, t)). We have

(a) (H ′, t) ∼ (H, t),

(b) H ′ and H are identical until time t− k, and

(c) past(u, t)H′,t−k ∩ (X ∪ {w}) = ∅.

We claim that (H ′, t) ∈ hide(G, (X, t− k − 1), (u, t)). This holds because

(a) (H ′, t) ∼ (H, t) ∼ (Gn−1, t) ∼ (G, t), and therefore (H ′, t) ∼ (G, t);

(b) H ′ is identical to H until time t−k, and combining the properties of H and
Gn−1, we obtain that H ′ is identical to G until time t− k − 1; and finally,

(c) past(u, t)H′,t−k−1 ∩ X = ∅: fix x ∈ X . By construction of H and the fact
that H and H ′ are identical in round t− k, all edges from x in round t− k
hit nodes in X ∪ {w}. However, because (X ∪ {w} , t − k) is hidden from
(u, t) in H ′, we have (y, t − k) 6 (u, t) for every y ∈ X ∪ {w}. It follows
that (x, t− k − 1) 6 (u, t).

We can use the Hiding Lemma to prove Theorem 4.14:

Proof of Theorem 4.14. Let G,H be graphs over the same nodes that are identical
up to time t, and let t′ ≤ t+n−2. Graphs G,H can differ only in rounds t+ 1, . . . , t′

(or after time t′). Lemma 4.16 shows that for every u, v, w ∈ V , graph G′ and time
t + 1 ≤ r ≤ t′, the set hide(G, ({v, w} , t′), (u, t)) is non-empty, that is, we can hide
({v, w} , r) from (u, t′) without altering any round preceding time t. (We instantiate
Lemma 4.16 with k = t′ − r, |X| = 2, which is permissible because the lemma allows
any set X of size at most n−k−1 = n−(t′−r)−1 ≥ n−(t+n−2)+(t+1)−1 = 2.)

We can span between (G, t) and (H, t) as follows: we iterate over rounds r =
t+ 1, . . . , t′. For each round r,
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1. For each edge (x, y) ∈ G(r) \ H(r), hide the endpoint {x, y} in round r from
some node w 6∈ {x, y} (formally, we use Lemma 4.16 to move to a point in
hide(G, ({x, y} , r), (w, t′))). Then add the edge {x, y} to round r. Node w
cannot observe the difference at time t′.

At the end of this stage, we have a similarity chain (G, t′) ∼ (F, t′), where F is
a dynamic graph obtained by taking the union of the edges of G(r) and H(r)
in each round r.

2. Next, for each edge (x, y) ∈ H(r) \ G(r), hide the endpoint {x, y} in round r
from some node w 6∈ {x, y} as before, and remove {x, y} from round r. Note
that 1-interval connectivity is preserved, because we do not remove any edges
of H , and H is 1-interval connected.

At the end of this stage we have a similarity chain (F, t′) ∼ (H, t′).

This shows that (G, t′) ∼ (H, t′).

Let us now turn our attention to Theorem 4.13. We have already shown (Theo-
rem 4.14) that we can transform the last n−2 rounds of a dynamic graph arbitrarily.
Now, to deal with time 0, we must also show that we can span between any two
initial configurations. Specifically we will show that we can span between any two
executions over the same number n of nodes, maintaining similarity at least until time
n−2, and furthermore, we will show that if the execution space admits any execution
over more than n nodes, then we can maintain similarity up to time n− 1.

Theorem 4.14 forms a crucial part of the argument: when we wish to change the
input to some node u or replace node u with another node, Theorem 4.14 allows us
to re-arrange the graph into a static line graph with u at one end of the line. We can
then swap out node u and/or change its input, and since there are n nodes in the
line, the node at the other end of the line cannot notice this change by time n − 2.
The following lemma captures this single step:

Lemma 4.17. Fix a set U of |U | = n nodes, a node v (which may or may not be in
U), and let V := (U \ {u}) ∪ {v}. Let I be some input assignment to the nodes of
U , and let J be an input assignment to V such that I(x) = J(x) for all x 6∈ {u, v}.
Finally, let α = (G, I) be some execution over the nodes in U , and let β = (H, J) be
some execution over the nodes in V . Then (α, n− 2) ∼ (β, n− 2).

Proof. Fix an order U = {u0, . . . , un−1} where u0 = u. Then we can write V =
{v, u1, . . . , un−1}. Let L be a static line graph u, u1, . . . , un−1, and let L′ be the
static line v, u1, . . . , un−1. Since L and L′ agree on past(un−1, n− 2) (the only change
occurs at distance n − 1 from un−1), and input assignments I and J do as well, we
have ((L, I), n − 2) ∼un−1 ((L′, J), n − 2). By Theorem 4.14 we have (α, n − 2) ∼
((L, I), n− 2) ∼un−1 ((L′, J), n− 2) ∼ (β, n− 2), and the claim follows.

By repeatedly applying Lemma 4.17 we can span between any two executions,
preserving similarity until time n − 2, where n is the size of the smaller of the two
executions.
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Lemma 4.18. For any two executions α, β over at least n nodes we have (α, n−2) ∼
(β, n− 2).

Proof. We can span between α and β using a sequence of intermediate executions
α0 = α, α1, . . . , αm = β, where each αi+1 is obtained from αi by replacing a single
node u participating in α with a node v participating in β, and also changing the
input assignment accordingly. By Lemma 4.17 (together with Proposition 4.1) we
have (αi, n− 2) ∼ (αi+1, n− 2) for every i = 0, . . . , m− 1, and the claim follows.

Lemma 4.18 and Theorem 4.14 yield the first part of Theorem 4.13: together
these claims imply (informally) that no aspect of the execution that depends on time
t ≥ 0 can become common knowledge by time t + n − 2. To show the second part
of Theorem 4.13, we will show that we can if C contains some execution over at least
n+1 nodes, we can extend similarity by one extra round and obtain a similarity chain
at time n− 1.

Lemma 4.19. If C contains an execution over more than n nodes, then for any two
executions α, β over at least n nodes we have (α, n− 1) ∼ (β, n− 1).

Proof. Suppose that there is some execution γ ∈ C with at least n+1 nodes. If α and
β both contain at least n+ 1 nodes, then Lemma 4.18 yields (α, n− 1) ∼ (β, n− 1),
and we are done. Thus, assume (without loss of generality) that α contains exactly
n nodes.

Let U = {u1, . . . , un} be the nodes participating in α, and let V = {v1, . . . , vk} be
the nodes of β (where k ≥ n). From the existence of γ, we know that there is some
node w 6∈ U that does not participate in α, and from the condition on the execution
space C, any execution obtained from an execution in C by adding node w with the
input it has in γ (in a manner that preserves 1-interval connectivity) is an execution
of C.

By Lemma 4.16, there exists an execution α1 ∈ hide(α, (u1, 1), (u2, n − 1)).4

Execution α1 satisfies (u1, 1) 6∈ past(u2, n − 1)α1 and (α1, n − 1) ∼ (α, n − 1).
Let α2 be the execution obtained from α1 by adding node w with its input in
γ, and adding the edge {w, u1} to each round. Since (u1, 1) 6∈ past(u1, n − 1)α1 ,
there is no time t ∈ {1, . . . , n− 1} such that (u1, t) ∈ past(u1, n − 1)α1 ; that is,
past(u2, 1)α1 ⊆ ({u2, . . . , un} × {0, . . . , n− 1}) ∪ {(u1, 0)}. By definition, α1 and α2

are ({u2, . . . , un} , n − 1)-identical, and also (u1, 0)-identical (because node u1 re-
ceives the same input in both executions). Therefore Proposition 2.28 shows that
(α1, n − 1) ∼u2 (α2, n − 1). Together with the fact that (α1, n − 1) ∼ (α, n− 1), we
obtain (α, n− 1) ∼ (α2, n− 1).

If k ≥ n + 1, that is, β already contains at least n + 1 nodes, then we define
β2 := β. Otherwise we know that there exists a node that does not participate in β,
and we repeat the process above to obtain an execution β2 over at least n + 1 nodes
such that (β, n− 1) ∼ (β2, n− 1). Since α2 and β2 both contain at least n+ 1 nodes,
the first part of the theorem shows that (α2, n− 1) ∼ (β2, n− 1); therefore we obtain
(α, n− 1) ∼ (α2, n− 1) ∼ (β2, n− 1) ∼ (β, n− 1), and we are done.

4More precisely, there exists a dynamic graph Gα1
such that (Gα1

, n−1) ∈ hide(G, (u1, 1), (u2, n−
1)), and we define α1 := (Gα1

, I).
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Now we can put all the ingredients together to prove Theorem 4.13.

Proof of Theorem 4.13. Let ϕ be a non-trivial fact about time t, and let t′ < t+n−1,
that is, t′ ≤ t+ n− 2. Fix an execution α such that (α, t) |= ϕ. (Note that common
knowledge of ϕ cannot be held at time t unless ϕ holds at time t.) We divide into
two cases:

1. t > 0. Then exists an execution β which is identical to α up to time t− 1 ≥ 0,
such that (β, t) 6|= ϕ. Let Gα, Gβ be the dynamic graphs in α, β respectively.
Since α, β are identical up to time 0 (at least), Gα and Gβ are over the same
nodes, and all nodes receive the same inputs in α and β. By Theorem 4.14
(together with Proposition 4.1) we have (Gα, t

′) ∼ (Gβ, t
′), as α, β are identical

up to time t − 1 ≥ t′ − (n − 2), and since the inputs are the same in both
executions we also have (α, t′) ∼ (β, t′).

Because ϕ is a fact about time t, and (β, t) 6|= ϕ, we also have (β, t′) 6|= ϕ. It
follows that (α, t′) 6|= Cϕ.

2. t = 0. Then t′ < t + n − 1, and there exists an execution β, over at least n
nodes, such that (β, 0) 6|= ϕ and thus also (β, t′) 6|= ϕ. Using Lemma 4.18 and
Proposition 4.1 we have (α, t′) ∼ (β, t′), and therefore (α, t′) 6|= Cϕ.

Now suppose that the number of nodes participating in α is not known in advance
to be at most n. This implies that there exists some execution γ with more than n
nodes. Since ϕ is a non-trivial fact about time t, there exists an execution β over at
least n nodes, such that (β, t) 6|= ϕ, and therefore also (β, n−1) 6|= ϕ. By Lemma 4.19
we have (α, n− 1) ∼ (β, n− 1), so (α, n− 1) 6|= Cϕ.

4.3.3 Application to Simultaneous Consensus

The characterization of common knowledge from Theorem 4.13 yields the following
lower bound on simultaneous consensus:

Theorem 4.20. For any class C of executions,

(a) Even if all executions in C are over a fixed set of n nodes, simultaneous consensus
requires at least n− 1 rounds in every execution of C.

(b) Moreover, if C contains executions over more than n nodes (that is, if the size
of the graph is not known in advance to be at most n), then in every n-node
execution in C, simultaneous consensus requires at least n rounds.

Proof. Let us first show part (a). Assume that the set V of participants is the same
in all executions in C.

Let ϕx stand for the proposition “some node has input x”. Then the formula
(Eϕ0 ∨ Eϕ1) is a non-trivial formula about time 0: clearly its truth value depends
only on the inputs (i.e., only on the state at time 0). We also claim that no execution
β satisfies (β, 0) |= (Eϕ0 ∨ Eϕ1), so this fact is non-trivial.
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Claim. No execution β ∈ C satisfies (β, 0) |= (Eϕ0 ∨ Eϕ1).

Proof. Any node whose input is 0 cannot distinguish (β, 0) from an execution where
all nodes receive input 0, so if there exists a node u with input 0 we have (β, 0) 6|=
Kuϕ1 and therefore (β, 0) 6|= Eϕ1. Similarly, if there is a node with input 1, then
(β, 0) 6|= Eϕ0. Thus, if in β some node receives input 0 and some node receives input
1, then (β, 0) 6|= (Eϕ0 ∨ Eϕ1).

Now suppose that in β all nodes receive input 0 (the case where all inputs are 1
is similar). There is an execution β ′ whose initial configuration is the same as in β,
except that some node u receives input 1. Any node v 6= u cannot distinguish (β, 0)
from (β ′, 0), and therefore (β, 0) 6|= Eϕ0. But also (β, 0) 6|= Eϕ1, because this would
imply that (β, 0) |= ϕ1 (which is false). So again we have (β, 0) 6|= (Eϕ0 ∨ Eϕ1).

To show that (Eϕ0 ∨ Eϕ1) is a non-trivial fact about time t = 0, we must show
that for any execution α and time t′, there exists an execution β that is identical
to α until time t − 1 = −1, over at least as many nodes as α, such that (β, 0) 6|=
(Eϕ0 ∨ Eϕ1). By the claim we showed above, we can simply set β := α: we have
(α, 0) 6|= (Eϕ0 ∨ Eϕ1), and obviously α is identical to itself. Therefore (Eϕ0 ∨ Eϕ1)
is a non-trivial fact about time 0. By Theorem 4.13, (Eϕ0 ∨ Eϕ1) does not become
common knowledge until time n− 1 in any execution.

To apply Corollary 4.11, we must also show that for any simultaneous consensus
algorithm, all points (α, t) satisfy (α, t) |= halt → (Eϕ0 ∨ Eϕ1): suppose for the
sake of contradiction that there is a point (α, t) such that (α, t) |= halt but (α, t) 6|=
Eϕ0∨Eϕ1. Let x be the decision value in (α, t) (that is, the value output by all nodes
in round t + 1 of α). Since (α, t) 6|= Eϕ0 ∨ Eϕ1, we also have (α, t) 6|= Eϕx, so there
is a point (β, t) and node u ∈ V (α) such that (α, t) ∼u (β, t) but (β, t) 6|= ϕx. Since
(α, t) ∼u (β, t) and node u is ”locked in“ to a decision value of x in (α, t), node u also
outputs x in execution β, where no node has input x (because ϕx is not satisfied),
contradicting validity.

Now we can apply Corollary 4.11, which yields a lower bound of n− 1 rounds on
simultaneous consensus in any execution. This completes the proof or part (a). To
obtain part (b), note that if the number of participants is not known in advance, we
obtain from Theorem 4.13 a lower bound of n rounds (instead of n − 1 rounds) on
acquiring common knowledge of (Eϕ0 ∨ Eϕ1) in any execution. Corollary 4.11 then
yields a lower bound of n rounds on simultaneous consensus.

Corollary 4.21. When the count is not known in advance, obtaining an upper bound
on the count (0, 0)-reduces to simultaneous consensus.

Proof. Simply run the simultaneous consensus algorithm, and when it halts, output
the current time.

To illustrate the stark difference between simultaneous consensus and “plain” con-
sensus (with no timing constraints), let us show there is a class of executions where
plain consensus can decide in O(1) rounds, while simultaneous consensus still requires
n− 1 rounds (by Theorem 4.20). Consider the following problem:
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Definition 4.22 (Clique detection). In the clique detection problem, each node must
eventually output “yes” or “no”, such that

(a) If the communication graph in each round is a clique, all nodes output “yes”; and

(b) If any node outputs “yes”, then the communication graph in the first round is a
clique.

If the communication graph in the first round is a clique but in subsequent rounds it
is not a clique, nodes may output “yes” or “no” arbitrarily.

Theorem 4.23. There is a clique detection algorithm that terminates in 4 rounds
and uses messages of size O(logn).

Before we give the clique detection algorithm, note its application to consensus:

Corollary 4.24. There is a consensus algorithm using messages of size O(logn) such
that in some executions, all nodes decide in 4 rounds.

Proof. To solve consensus, we can execute the clique detection algorithm side-by-side
with a more“pessimistic”consensus algorithm, e.g., the token-dissemination algorithm
from Chapter 3. In the first round nodes also append their input value to the message
they send. If the clique detection algorithm outputs “yes” in round 4, we decide on
the minimum input received in the first round; otherwise we continue to execute the
pessimistic consensus algorithm until it decides.

In contrast, Theorem 4.20 shows that simultaneous consensus can never be reached
in less than n− 1 rounds, even when messages are not bounded in size and the graph
is a static clique.

Let us now prove that an O(1)-round clique detection algorithm exists.

Proof of Theorem 4.23. Consider the following algorithm.

• In round 1, all nodes send their UIDs.

• In round 2, each node examines the set of the UIDs it received in round 1, and
treats them as an ordered cycle. It sends its own UID plus the next UID after
its own in cyclic order; i.e., if its UID is not the largest it sends the next largest
UID, and if its UID is the largest it sends the smallest UID.

• In round 3, each node checks if the messages it received in round 2 are consistent
with the set of UIDs it received in round 1: that is, if X is the set of UIDs
received in round 1 (including the node’s own UID), then the node expects to
receive exactly the pairs (u, v) that form the ordered Hamiltonian cycle over X .
If this holds, the node sends its UID + “yes”, otherwise it sends its UID + “no”.

• If only “yes” votes were received in round 3 (including the node’s own vote),
and all nodes heard in round 1 were received again in round 3, output “yes”;
otherwise output “no”.
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It is easy to see that if the graph is always a clique then all nodes output “yes”. The
other direction is more interesting: assume that the graph in the first round is not
a clique, i.e., some edge (x, y) is missing from the graph in round 1. We will show
that each node either votes “no” in round 3 or receives a “no” vote in this round, and
hence all nodes output “no” in round 4.

Let Xv denote the set of UIDs received by node v ∈ V in round 1, that is, the set
of v’s in-neighbors in round 1, including node v itself. Let u be a node that outputs
“yes” at the end of the algorithm. Then

(⋆) In round 2 node u receives the directed cycle over Xu, and in particular, all
nodes in Xu send UIDs of other nodes in Xu in round 2; and

(⋆⋆) In round 3 node u receives “yes” votes from all the nodes in Xu.

We will now show that

I. Xu = V , that is, node u hears from everyone in the first round.

II. Using this fact together with (⋆) and (⋆⋆), we will show that E(1) = V 2, that
is, the graph is a clique in the first round.

I. Node u hears from everyone in the first round: suppose for the sake of con-
tradiction that Xu 6= V . From strong connectivity, there is some edge (z, w) in the
directed cut (V \Xu, Xu) in round 1. We have w ∈ Xu and z ∈ Xw \Xu.

By (⋆⋆), since w ∈ Xu, we know that w votes “yes” in round 3. Therefore, the pairs
received by node w in round 2 form the ordered cycle x0 → x1 → . . . → xk−1 → x0
over Xw, where x0 = w and k = |Xw|. Since z ∈ Xw, there is some index i such
that xi = z. We know from (⋆) that all nodes in Xu send the UIDs of other nodes
in Xu in round 2; since x(i−1) mod k sends xi = z 6∈ Xu in round 2, it must be that
x(i−1) mod k 6∈ Xu as well. By the same logic we must also have x(i−2) mod k 6∈ Xu, and
continuing backwards along the cycle in this manner we can show that x0 6∈ Xu. But
this is a contradiction, because x0 = w ∈ Xu by choice of w. It follows that Xu = V .

II. The graph is a clique in the first round: suppose not, that is, assume that
some edge (x, y) is missing from E(1). We have already shown in (I) that Xu = V ,
and in particular y ∈ Xu. Therefore, by (⋆⋆), node y votes “yes” in round 3. This
implies that in round 2 node y receives an ordered cycle Cy of the nodes in Xy.
Because we assumed that (x, y) 6∈ E(1), we have x 6∈ Xy, so x does not appear in Cy.

We also know by (⋆) that node u receives in round 2 the complete ordered cycle
Cu over V , since (⋆) asserts that node u receives the ordered cycle over Xu, and we
showed in (I) that Xu = V . In particular, Cu does include node x. Note that Cy and
Cu are both subgraphs of the graph H = (V, F ), where

F := {(z, w) | node z sends the pair (z, w) in round 2} .

The out-degree of each node in H is exactly 1, and Cu is a cycle over all nodes of
V ; therefore Cy must equal Cu. But Cu includes x while Cy does not, and this is a
contradiction.
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4.4 ∆-Coordinated Consensus

Since simultaneous consensus is expensive and requires n−1 rounds even in very well-
behaved executions, it is interesting to consider a trade-off between the performance
of the consensus algorithm and the degree of coordination it achieves. To this end we
consider the following problem:

Definition 4.25 (∆-Coordinated Consensus). A protocol solves ∆-coordinated con-
sensus if it solves consensus, and in addition, all nodes output their decision values
within a window of ∆ rounds. This timing constraint is called ∆-coordination.

In the sequel, to simplify the presentation, we assume that the set V of participants
is fixed (although our algorithms require only an upper bound on the count).

One might expect that ∆-coordinated consensus would not be much easier than
simultaneous consensus. For example, when ∆ = 1, we require all nodes to decide
within one round of each other; it seems that if we can achieve this, then simultaneous
coordination can be achieved at not much extra cost — a cost of ∆ additional rounds,
perhaps. Indeed, in the worst case this expectation is borne out by the following lower
bound.

Theorem 4.26. For any ∆-coordinated consensus algorithm, there exists an execu-
tion in which no node decides before round n−∆−1, even when n is known a priori.

Proof. Suppose that there exists a ∆-coordinated consensus algorithm A, such that
in every execution some node decides before time R < n − ∆ − 1. Then in A, all
nodes decide no later than time R + ∆ < n − 1 in every execution. We can obtain
an algorithm for simultaneous consensus in fewer than n−1 rounds by simply having
each node run A and output A’s decision value at time R+ ∆ < n− 1, contradicting
the lower bound from Section 4.3.

This result shows the existence of only one “bad” execution where no node can
decide until time n−∆−1. Given the general similarity between ∆-coordinated con-
sensus and simultaneous consensus, one might expect that a ∆-coordinated consensus
protocol would never be able to decide before time n−∆ − 1 (just as simultaneous
consensus can never decide before time n − 1). However, we now show that even in
1-coordinated consensus, nodes can sometimes decide significantly earlier than time
n−∆− 1. Consider the following protocol.

Clear-Majority Protocol Fix some integer kmax, and for each k = 1, . . . , kmax, let
tk := n−k ·∆−1. In each round the nodes forward the set of all node UIDs they have
heard from so far, along with the input to each node. At time tk, an undecided node
decides v iff it has heard of at least ⌊n/2⌋ + 1 +

(

k
2

)

∆ inputs equal to v. Finally, at
time n−1, all the nodes know all the inputs; at this point any undecided node decides
on the majority input (breaking ties in some consistent way if there is no majority).
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Lemma 4.27. The clear-majority protocol solves ∆-coordinated consensus. Further-
more, when the fraction of identical inputs is at least (1/2 + ǫ)n for some constant ǫ,
and if ∆ ≤ (ǫn− 1)/2, all nodes can decide after n−Θ(

√
n∆) rounds.

Proof. Agreement and validity follow immediately from the fact that nodes always
decide on the majority value (or, if there is no majority value, all nodes reach time
n−1 and decide in some consistent way). To show that the protocol is ∆-coordinated,
suppose that in some execution, the earliest node u decides on value v at time tk. We
must show that all nodes decide no later than time tk + ∆ = tk−1.

Because the communication graph in every round is connected, for all s ≤ n− 1,
at time n−s−1 in the execution each node has heard all but at most s of the inputs.
In particular, by time tk−1 = n− (k − 1)∆− 1 each node has heard all but (k − 1)∆
of the inputs. Since u decides v at time tk, the input assignment contains at least
⌊n/2⌋ + 1 +

(

k
2

)

∆ values equal to v, and hence by time tk−1 each node hears at least

⌊n/2⌋+ 1 +
(

k
2

)

∆− (k− 1)∆ = ⌊n/2⌋+ 1 +
(

k−1
2

)

∆ inputs equal to v. Thus, all nodes
that do not decide at time tk decide v at time tk−1 = tk + ∆, as required.

Now suppose that for some constant ǫ, the input assignment contains at least
(1/2 + ǫ)n copies of some value v. By time tk = n − k · ∆ − 1 each node hears
all but k · ∆ of the input values, i.e., at least (1/2 + ǫ)n − k · ∆ copies of v. If
∆ ≤ (2ǫn − 1)/4, we set kmax = ⌊

√

(2ǫn− 1)/∆ − 1⌋, and then simple algebra

shows that (1/2 + ǫ)n − kmax · ∆ ≥
(

kmax

2

)

+ ⌊n/2⌋ + 1; thus, by time tkmax , each
node hears sufficiently many copies of v to decide. For this value of kmax we have
tkmax = n−Θ(

√
n∆).

The clear-majority protocol can be viewed as an instance of a more general scheme,
in which nodes decide as soon as they know that everyone else will decide the same
value within ∆ rounds. We now present this scheme and use it to derive another ∆-
coordinated consensus algorithm, one that performs well when the dynamic diameter
is small.

A general transformation for achieving ∆-coordination. The timing constraint
in ∆-coordinated consensus allows nodes to halt only if they know that all other nodes
will also have halted within ∆ rounds. To make this intuition formal, let us associate
halting with a time rather than a round (as in Section 4.3.1), and let haltu,t be an
atomic proposition that holds true iff node u is in a halting state at time t in the
execution. The ∆-coordination constraint now requires nodes to enter halting states
at times that are separated by no more than ∆ rounds. We assume that once a node
enters a halting state it remains in it forever, and say that a node halts when it first
enters a halting state.

Proposition 4.28. An algorithm satisfies ∆-coordination iff all points (α, t) in its
execution satisfy

∀u ∈ V : (α, t) |=
(

haltu,t → Ku

(

∧

v∈V

haltv,t+∆

))

. (4.4.1)
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Proof. The first direction is easy: suppose that an algorithm satisfies (4.4.1), and
node u halts in (α, t). By (4.4.1) we have (α, t) |= Ku

(
∧

v∈V haltv,t+∆

)

, and since a
node cannot know a fact unless it is true, (α, t) |= ∧v∈V haltv,t+∆. Therefore all nodes
halt no later than time t+ ∆, as required.

To show the other direction, fix a ∆-coordinated algorithm, and suppose for the
sake of contradiction that for some point (α, t) and node u we have (α, t) |= haltu,t but
(α, t) 6|= Ku

(
∧

v∈V haltv,t+∆

)

. Then there is an execution β such that (α, t) ∼u (β, t)
but (β, t) 6|= ∧

v∈V haltv,t+∆. This implies that there is some node v ∈ V such that
(β, t) 6|= haltv,t+∆, that is, node v is not in a halting state at time t + ∆ in β. Since
(α, t) ∼u (β, t) and (α, t) |= haltu,t, node u is also in a halting state in (β, t), which
means it halts more than ∆ rounds before node v. Therefore the algorithm does not
satisfy ∆-coordination.

Now suppose that we are given an (untimed) consensus algorithm A, and we wish
to transform it into a ∆-coordinated consensus algorithm. Since A is a consensus
algorithm, it already ensures agreement and validity; all we need to do is delay the
outputs so as to satisfy (4.4.1). One way to do so is to explicitly use the condition
from (4.4.1),

Ku

(

∧

v∈V

haltv,t+∆

)

, (4.4.2)

as the condition that determines whether node u halts at time t. However, there is
some circularity inherent in this description: the termination condition in (4.4.2) de-
termines at what points the formulas haltv,t are satisfied (as it determines when nodes
halt), but this in turn determines whether (4.4.2) holds or not. Any algorithm that
abides by the termination condition in (4.4.2) is in fact a fixpoint of this circular pro-
cess. Next we describe how an (untimed) consensus algorithm can be transformed into
a conservative approximation of such a fixpoint, satisfying (4.4.1) and guaranteeing
∆-coordination.

Fix a full-information consensus algorithm A which always decides by time n− 1,
and let “valA(v)” stand for the formula that asserts that (α, t) is v-valent with respect
to A; that is, in any possible extension of the first t rounds of α, all nodes decide
v under A. Let K@t

u ϕ be short-hand notation for the formula that means “node u
knows that at time t fact ϕ will hold”, and let E@tϕ :=

∧

u∈V K
@t
u ϕ. Also, since we

now study protocols where nodes reason over the executions of other protocols, let
us be more explicit about the protocol with respect to which we evaluate knowledge
formula: we use R(A) to denote the similarity graph induced by all the executions of
algorithm A, and let (R(A), α, t) denote time t in the run of algorithm A in execution
α = (G, I), where G is a dynamic graph and I is the input assignment.

Now we can state the transformation:

The ∆-Ladder. Given an eventual consensus algorithm A in which all nodes decide
no later than time n − 1, we first transform A into an equivalent full-information
algorithm A′. In A′, nodes store their entire history in their local state and send
it every message. Each node locally computes from its state (i.e., its history) the
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corresponding state that it would be in under the original algorithm A, and uses the
computed state to determine when to halt and what value to output in accordance
with A.

Next we construct a ∆-coordinated algorithm B = B(A′) that uses A′ to obtain
a consensus value but uses its own rules to decide when to halt. In B, nodes emulate
A′, but do not immediately output its decisions. Instead, each undecided node u
evaluates the following decision rules at each decision point tk = n −∆ · k − 1. The
rules are defined recursively in k, and accordingly, we list them in reverse order of
decision time:

• Decide v at time n−1 if (R(A′), α, n−1) |= Ku (valA′(v)), that is, if it is known
that the run is v-valent for A′. Here α is the execution of A′ that is being
emulated by the nodes.

This rule is a catch-all “default case” which simply ensures that all nodes halt
no later than time n− 1. Note that since A′ decides no later than time n− 1,
the rule is always satisfied at time n− 1 for either v = 0 or v = 1.

• Decide v at time n−∆− 1 if

(R(A′), α, n−∆− 1) |= KuE
@(n−1)valA′(v).

That is, each node decides v at time n − ∆ − 1 if it knows that the rule for
deciding v at time n− 1 (listed above) will be satisfied for all nodes.

• Decide v at time n− 2∆− 1 if

(R(A′), α, n− 2∆− 1) |= KuE
@(n−∆−1)E@(n−1)valA′(v).

That is, each node decides v at time n − 2∆ − 1 if it knows that the rule for
deciding v at time n−∆− 1 (listed above) will hold for everyone.

• And so on.

In general, the decision rules are a set of knowledge formulas ϕ0(v), . . . , ϕkmax(v) for
v ∈ {0, 1}, defined recursively by ϕ0 := valA′(v) and ϕi+1 := E@(n−i·∆−1)ϕi. An
undecided node u decides at time n− k ·∆− 1 iff Kuϕk holds.

We remark that since A′ is a full-information algorithm, the messages it sends
allow nodes to eventually construct a complete picture of the dynamic graph and the
messages received by the other nodes (with some delay, depending on the dynamic
diameter of the graph). Thus, nodes are able to reason not only about their own
knowledge, which is determined solely by their local state, but also about the knowl-
edge of other nodes. To evaluate the rules above, nodes use the information they have
about the dynamic graph to compute the local states of the other nodes and thereby
determine what the other nodes know.

It is easy to see that any instantiation of this scheme satisfies ∆-coordinated
consensus.
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Lemma 4.29. Let A be a consensus algorithm and A′ be its full-information version.
Then B = B(A′) solves ∆-coordinated consensus.

Proof. Agreement and validity follow from the fact that the decision value of B is
always the decision value that would be output by A′ in the same execution. Let us
show that B satisfies ∆-coordination.

Note first that all nodes halt no later than time n− 1: A′ always decides by this
time and thus the valency is known to all nodes and Kuϕ0 holds for all u ∈ V . If all
nodes halt exactly at time n−1 then clearly ∆-coordination is satisfied. Now suppose
that for some k ≥ 1, the first node u decides at time n− k ·∆− 1. Then (α, n− k ·
∆−1) |= Kuϕk, and thus (α, n−k ·∆−1) |= ϕk. Since ϕk = E@(n−(k−1)∆−1)ϕk−1, we
have (α, n− (k − 1)∆ − 1) |= Kvϕk−1 for each v ∈ V ; it follows that any undecided
node decides at time n− (k − 1)∆− 1, no later than ∆ rounds after u.

The ∆-ladder requires nodes to keep track of information about the full dynamic
graph, and to evaluate complex knowledge criteria; the clear-majority protocol uses
less tight rules, but they are simpler and easier to evaluate. In general, any approxima-
tion for the knowledge criteria above can be used, as long as the same approximation
is applied consistently at each decision point n− k ·∆− 1.

Approximate ∆-Ladder. Let A be an eventual consensus algorithm with round
complexity at most n − 1, let kmax ∈ N, and fix a collection

{

Φk,v
u

}

u∈V,k∈[kmax],v∈{0,1}

of local knowledge formulas, such that u can evaluate the satisfaction of Φk,v
u based

on its local state. These formulas represent the decision rules: if Φk,v
u holds at time

n−k ·∆−1, then node u halts at this time and outputs v. The formulas must satisfy:

(a) Consistency: For every u, α and t,

(R(A), α, t) |=
(

Φ0,0
u → valA(0)

)

and (R(A), α, t) |=
(

Φ0,1
u → valA(1)

)

.

In other words, whenever Φ0,v
u is satisfied for v ∈ {0, 1}, the current execution

must be v-valent under algorithm A.

(b) Timeliness: For all executions α,

(R(A), α, n− 1) |= Φ0,0
u ∨ Φ0,1

u .

That is, at time n− 1, for some v ∈ {0, 1}, Φ0,v
u must hold, so node u knows that

the current run is v-valent for A.

(c) Coordination: For every 1 ≤ k ≤ kmax and v ∈ {0, 1}, if
(R(A), α, n− k ·∆− 1) |= Φk,v

u , then

(R(A), α, n− (k − 1)∆− 1) |=
∧

w∈V

Φk−1,v
w .
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That is, whenever Φk,v
u holds for some k and v at time n − k · ∆ − 1, we are

guaranteed that at time n− (k − 1)∆− 1 all formulas Φk−1,v
w for w ∈ V will also

hold.

Then a protocol for ∆-coordinated consensus is given by the following: the nodes
simulate algorithm A with their local inputs, but do not output A’s decisions imme-
diately. Instead, for each k = kmax, . . . , 1, a node u (which has not decided already)
decides v at time n− k ·∆− 1 if (R(A), α, n− k ·∆− 1) |= Φk,v

u . (Note that because
we assumed that Φk,v

u is a local predicate, which depends only on u’s local state, Φk,v
u

holds iff KuΦk,v
u holds.)

Lemma 4.30. For any consensus algorithm A, collection
{

Φk,v
u

}

u∈V,k∈[kmax],v∈{0,1}
of

local knowledge formulas satisfying Consistency, Timeliness and Coordination, the
approximate ∆-ladder protocol instantiated with

{

Φk,v
u

}

solves ∆-coordinated consen-
sus. Moreover, the worst-case time complexity of the protocol is n− 1 rounds.

Proof. We must show:

• Agreement and validity: unwinding the Coordination requirement above, we
see that for any u ∈ V we have (R(A), α, n−k ·∆−1) |= Φk,v

u ⇒ (R(A), α, n−
(k− 1) ·∆− 1) |= Φk−1,v

u ⇒ . . . ⇒ (R(A), α, n− 1) |= Φ0,v
u . By the Consistency

requirement, Φ0,v
u implies valA(v). Therefore Φk,v

u implies valA(v).

If node u decides v at some time n − k ·∆ − 1, then Φk,v
u holds, and therefore

the run is v-valent for A. Since A is a correct consensus algorithm, agreement
and validity follow.

• ∆-coordination: suppose that node u is the first to decide, and it decides v at
time n− k ·∆− 1. Then (R(A), α, n− k ·∆− 1, ) |= Φk,v

u . By the Coordination
requirement we have (R(A), α, n− (k− 1)∆− 1) |= Φk−1,v

w for each w ∈ V , and
consequently, any node that did not decide at time n − k · ∆ − 1 decides v at
time n− (k − 1)∆− 1.

Note that Timeliness has so far not been used; indeed, any set of local decision
rules satisfying Consistency and Coordination yields a safe ∆-coordination algorithm.
However, the resulting algorithm may not terminate; for example, if we choose Φk,v

u =
false for all u, k and v, then Consistency and Coordination hold vacuously, but nodes
will never decide. Timeliness guarantees that at time n− 1, either Φ0,0

u or Φ0,1
u holds,

causing all nodes that have not yet decided to now decide.

The approximate ∆-ladder allows us to use any set of decision rules
{

Φk,v
u

}

, not
just the rules we gave in the original ∆-ladder.

Example 4.31. The clear-majority algorithm is an instance of the approximate ∆-
ladder, obtained by taking the consensus algorithm A that forwards all inputs and
decides on the majority input value, together with the following decision rules:

Φk,v
u = node u received at least ⌊n/2⌋+ 1 +

(

k

2

)

∆ copies of input value v.
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The proof of Lemma 4.27 shows that these rules satisfy consistency, timeliness and
coordination.

Finally, let us give another instantiation of the approximate ∆-ladder, which de-
cides quickly in graphs where all nodes hear from everyone quickly.

Dynamic Diameter-Based Protocol. Let f : {0, 1}n → {0, 1} be any function
that satisfies f(0n) = 0 and f(1n) = 1. Let A be the following (untimed) consensus
algorithm: for n − 1 rounds, all nodes forward all inputs they have heard so far; at
time n− 1 all nodes know the entire input assignment x̄, and they decide f(x̄).

We now construct a ∆-coordinated consensus algorithm based on A. In this
protocol all nodes forward the full structure of the dynamic graph that they have
seen so far, as well as all inputs they are aware of. At time tk := n− k ·∆− 1, a node
decides f(x̄) if it knows that the input assignment is x̄ ∈ {0, 1}n, and it knows that
there exists some D such that the dynamic graph had a dynamic diameter of at most
D until time (k − 1)D (where (k − 1)D ≤ n− k ·∆− 1). That is,

Φk,v
u =Ku

(

∃x̄ ∈ {0, 1}n [input(x̄) ∧ f(x̄) = v]

∧ ∃D : ∀t ∈ [0, (k − 2)D], ∀x, y ∈ V [(x, t) (y, t+D)]
)

,

where input(ȳ) is a formula that holds iff the input assignment is y ∈ {0, 1}n. As
usual, the decision points tk are defined for k = 1, . . . , kmax, where kmax determines
the earliest point at which some node can decide.

Let us show that these decision rules satisfy the requirements.

• Consistency: nodes only decide once they know that the input is x̄, and their
decision value is then f(x̄). This is the same value that is decided at time n− 1
under A, so Consistency is satisfied.

• Timeliness: the decision rule Φ0,v
u for time n − 1 (that is, k = 0) asserts that

node u should decide v if it knows that x̄ is the input and v = f(x̄), and if
it knows that there exists some D such that the dynamic diameter is at most
n− 1 up until time (k − 1)D.

The first requirement holds at time n − 1 because n − 1 rounds are sufficient
for all nodes to assemble the initial input assignment (by Lemma 2.21). The
second requirement holds vacuously, since for k = 0 we obtain (k − 1)D < 0.

• Coordination: suppose that the rule for deciding at time n− k ·∆− 1 holds at
node u, i.e., u knows the input assignment, and for some D, node u knows that
dynamic diameter of the graph is at most D until time (k−1)D ≤ n−k ·∆−1.

If k = 1, then the decision rule for time n− (k− 1)∆− 1 = n− 1 holds at time
n− 1 for all nodes, as we showed above (Timeliness).

If k ≥ 2, then because the dynamic diameter is at most D until time (k− 1)D,
for any two nodes w,w′ we have (w, (k− 2)D) (w′, (k− 1)D). Consequently,
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at time (k − 1)D ≤ n− (k − 1)∆− 1 < n− (k − 2)∆− 1, all nodes know that
the dynamic graph had diameter at most D up to time (k− 2)D, and all nodes
know the input assignment. This is exactly the criterion for deciding at time
n − (k − 1)∆ − 1. Note that the decision rules are all stable properties; once
true, they remain true forever. Therefore when time n − (k − 1)∆ − 1 arrives
the decision rule for k − 1 is satisfied and all undecided nodes now decide.

The value we choose for kmax should satisfy (kmax − 1)D < n − kmax · ∆ − 1,
otherwise the decision rule for time tkmax would be unsatisfiable: a node can never
know at time tkmax = n− kmax ·∆− 1 that the graph had diameter at most D up to
time (kmax− 1)D if time (kmax− 1)D occurs after time tkmax . It is sufficient to choose
kmax := ⌊n/(D + ∆)⌋. For this value of kmax, nodes can decide as early as time

tkmax = n− kmax ·∆− 1 ≤ n− n∆

D + ∆
+ 1− 1 = O

(

nD

D + ∆

)

.

For example, if the communication graph is always a clique (D = 2), then the running
time is slashed by a factor of ∆. Note that the algorithm does not commit in advance
to some diameter D; nodes always evaluate the stopping condition with respect to all
D, and check if some bound D satisfies the requirement.

Theorem 4.32. There is a ∆-approximate algorithm that decides at time O(nD/(D+
∆)) in any dynamic graph of dynamic diameter D.

4.5 Lower Bounds on ∆-Coordinated Consensus

We now prove two lower bounds that complement the upper bounds from the previous
section. The first lower bound, Theorem 4.39, shows that in static line executions,
for any input assignment, no ∆-coordinated consensus algorithm terminates in fewer
than n−O(∆0.28n0.72) rounds. This shows that the best-case performance of the Clear
Majority algorithm, n−Θ(

√
n∆) (Lemma 4.27), is“of the right type”(although it may

not be optimal). The second lower bound, Theorem 4.40, shows that for any dynamic
diameter D ≤ n/2, there is a graph of dynamic diameter D in which ∆-coordinated
consensus requires Ω(nD/(D+∆)) rounds, which shows that the Dynamic Diameter-
Based Protocol from Theorem 4.32 is optimal for any given D. Our lower bounds are
for undirected graphs.

4.5.1 General Setup

Our lower bounds require an adaptation of the lower bound technique we used in
Section 4.3 to show that common knowledge cannot be acquired by time n−1. Let us
begin by summarizing the lower bound from Section 4.3, as it applies to simultaneous
consensus. To show that simultaneous consensus cannot decide in (α, t), we showed
that there exist two points (α0, t) and (α1, t) such that

(a) In α0 the input to all nodes is 0, and in α1 the input to all nodes in 1; and
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(b) (α0, t) ∼ (α, t) ∼ (α1, t).

To briefly review the argument, suppose that some node decides v in (α, t). Consider
a path between (α, t) and (α1−v, t) in the similarity graph; denote this path by

(α, t) = (p0, t) ∼u1 (p1, t) ∼u2 . . . ∼uℓ
(pℓ, t) = (α1−v, t).

We show that some node decides v in (α1−v, t), violating validity, by employing the
following argument at each step i = 1, . . . , ℓ along the path:

1. Some node w decides v in (pi, t); therefore,
2. From simultaneity and agreement, node ui decides v in (pi, t); therefore,
3. Node ui also decides v in (pi+1, t), because it cannot distinguish (pi+1, t) from (pi, t).

This argument hinges on simultaneity, and we cannot employ it as-is to prove lower
bounds on ∆-coordinated consensus. However, ∆-coordination allows us to make the
following weaker argument:

1. Some node w decides v in (pi, t); therefore,
2. From ∆-coordination and agreement, node ui decides v in (pi, t + ∆);5

therefore,
3. If (pi, t + ∆) ∼ui

(pi+1, t + ∆), node ui also decides v in (pi+1, t + ∆), because it
cannot distinguish (pi+1, t+ ∆) from (pi, t+ ∆).

The key difference is that unlike the simultaneous case, now we have to pay for each
step we take in the similarity graph: our lower bound is weakened by ∆ rounds at
each step.

This reasoning, applied repeatedly, yields the following lemma.

Lemma 4.33. Let α, α0, α1 be executions where in α0 and α1 all nodes receive input
0 and 1, respectively. Assume that for some ℓ ≥ 1 and time t, the following two
sequences of steps (i.e., edges) exist in the similarity graph:

(α, t+ ∆) ∼u1 (p1, t+ ∆),

(p1, t+ 2∆) ∼u2 (p2, t+ 2∆),

. . .

(pℓ−1, t+ ℓ∆) ∼uℓ
(α0, t+ ℓ∆)

and

(α, t+ ∆) ∼u′
1

(p′1, t+ ∆),

(p′1, t+ 2∆) ∼u′
2

(p′2, t+ 2∆),

. . .

(p′ℓ−1, t + ℓ∆) ∼u′
ℓ

(α1, t+ ℓ∆);

Then in any ∆-coordinated consensus algorithm, no node can decide by time t in α.

5Technically, there exists some t′ ≤ t+∆ such that ui decides v in (pi, t
′). The essential property

is that by time t+∆ node ui has already decided v in pi.
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Proof. As explained above, if some node decides v in (α, t), we show by induction on
the path length (ℓ) that some node decides v in (α1−v, t+ ℓ∆), violating validity.

The condition of Lemma 4.33 involves many different times, t+ ∆, t+ 2∆, . . . , t+
ℓ∆. A simpler condition that still implies a lower bound can be obtained by replacing
all times with the last time, t + ℓ∆ (to still obtain a lower bound for time t). We
show the existence of the following two walks in the similarity graph:

(α, t+ ℓ∆) = (p0, t+ ℓ∆) ∼u1 (p1, t+ ℓ∆) ∼u2 . . .

∼uℓ
(pℓ, t+ ℓ∆) = (α0, t+ ℓ∆), and

(α, t+ ℓ∆) = (p′0, t+ ℓ∆) ∼u′
1

(p′1, t+ ℓ∆) ∼u′
2
. . .

∼u′
ℓ

(p′ℓ, t+ ℓ∆) = (α1, t+ ℓ∆).

This only strengthens the condition, since (α, t) ∼u (α′, t) implies (α, t′) ∼u (α, t′) for
all t′ ≤ t. Thus the existence of these walks is sufficient to apply Lemma 4.33.

Corollary 4.34. Let α, α0, and α1 be executions where in α0 and α1 all nodes receive
input 0 and 1, respectively. Assume that for some ℓ ≥ 1 and time t ≥ ℓ∆, point (α, t)
is at distance at most ℓ from both (α0, t) and (α1, t) in the similarity graph. Then in
α, no node can decide by time t− ℓ∆.

When a full-information protocol is used, all information about the input becomes
common knowledge at time n− 1; therefore we cannot hope to have t + ℓ∆ > n− 1
when we apply Lemma 4.33 or its simplified version. In order to maximize t and
obtain the strongest possible lower bound, we must minimize ℓ; that is, we must find
short walks in the similarity graph. Since our ultimate goal is to span between α and
two runs where the inputs are 0 and 1 (respectively), the walk should allow us to flip
the inputs of as many nodes as possible in each step.

4.5.2 Lower Bound For Static Paths

We now apply the strategy described above to obtain an n−O(∆0.28n0.72) lower bound
in static paths (i.e., line graphs) of length n. A path is a natural candidate for proving
strong lower bounds: we can flip the inputs of nodes at one end of the path, and the
nodes at the other end do not find out for a long time.

Proposition 4.35. If P is a static line graph over n nodes u1, . . . , un (in this order),
and I, I ′ are input assignments that differ only in the inputs to nodes u1, . . . , um for
m ≤ n, then ((P, I), n−m− 1) ∼un ((P, I ′), n−m− 1).

Proof. Node un, at the end of the path, does not hear from any node u1, . . . , um by
time n−m− 1. Therefore ((P, I), n−m− 1) ∼un ((P, I ′), n−m− 1).

However, to use Lemma 4.33, we must be able to flip the inputs of all the nodes
in the network, not just the nodes at the end of the path. Thus, we start with some
path u1, . . . , un, and flip the inputs in some prefix u1, . . . , up of the path (where p is
a parameter that will be fixed later). Node un cannot distinguish the two executions
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until time roughly n− p. Then we find a short walk in the similarity graph from our
original path u1, . . . , un to a new path, up+1, . . . , un+p, i.e., we preserve the order of
nodes, but we remove edge {un+p, un+p+1} and instead put in {un, u1}. (Here and
in the sequel, node indices are given modulo n.) The effect is to rotate the path, so
that now it starts at up+1. Now we can flip the inputs of nodes up+1, . . . , u2p; node
up = un+p, located at the end of the new path, cannot detect this change until time
roughly n− p. We require at most ⌈n/p⌉ such steps to flip any input assignment into
either the all-zero or the all-one input assignment.

The strength of the lower bound is determined by the length of the walk from one
path, ui·p+1, . . . , un+i·p, to the next path, u(i+1)·p+1, . . . , un+(i+1)·p. To construct the
walk we use an intricate recursion. During the walk between paths we do not change
any input values; in the sequel we focus on the dynamic graph and assume some input
for all the executions we consider. As we did in Section 4.3, we simplify our notation
by representing points as (G, t) where G is the dynamic graph under consideration.

Let Pk := uk+1, . . . , un+k denote the path starting at node uk+1, and let C denote
the cycle u1, . . . , un, u1. It is convenient to use the cycle C to bridge between paths:
we cannot remove any edge of a path without violating connectivity, but a cycle is
2-vertex connected, so we can drop any of its edges. Intuitively, to move from a path
Pk to a different path Pk+s (for s 6= 0), we first close Pk to form the cycle C, then
drop edge {vk+s, vk+s+1} to obtain Pk+s.

The following lemma shows how we can move from a path to the cycle while
ensuring that some node cannot distinguish the two executions; it represents an in-
termediate step which will be used later to move between two paths. Our recursion
works on increasingly long suffixes, so Lemma 4.36 assumes that some suffix [t− b, t]
of the execution has already been tranformed from path Pk to path Pk+s. We now
wish to reach further into the past, to rounds [t−b−a, t−b], and transform them from
Pk into the cycle C, in preparation for further changes. The suffix [t− b, t], where the
graphs in the two executions are Pk and Pk+s respectively, will help cut off the spread
of information about the change we make in rounds [t− b−a, t− b] (see Fig. 4-1). We
are able to make the change only if the lengths a, b of the segments we are working
on satisfy a + b < n − s, otherwise indistinguishability cannot be maintained up to
time t.

Lemma 4.36. Let k ∈ {0, . . . , n− 1}, s ∈ Z, and let 0 ≤ a ≤ |s| and b ≥ 0 satisfy
a+ b < n− s. Fix a time b < t ≤ n− 1. Consider two graphs G,G′ that agree on the
first max {0, t− b− a} rounds, such that
• In rounds r ∈ [t− b− a + 1, t− b], G(r) = C and G′(r) = Pk;
• In rounds r ∈ [t− b+ 1, t], G(r) = G′(r) = Pk+s.

Then (G, t) ∼uk+s−1
(G′, t).

Proof. Assume that s ≥ 0 (the other case is symmetric). At each time r = (t−b−a+
1) + i for i = 1, . . . , a, only nodes uk−i, . . . , uk+i+1 have learned of the missing edge,
{uk, uk+1}, and only these nodes can distinguish G from G′. Thus, at time t− b, only
nodes uk−a, . . . , uk+a+1 can distinguish G from G′. Next, both graphs switch to Pk+s

where the distance between any node uk−a, . . . , uk+a+1 and node uk+s−1 = uk−(n−s+1)

is at least n− s− a. Since G and G′ are identical from this point on, only the nodes
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t− b− a

G : . . .

G′ :

k k + 1

. . .

k − a

a rounds

t− b

. . .

t

b rounds

. . .

k + s− 1

k + s

k − (a+ b) < k + s− 1

Figure 4-1: Illustration of Lemma 4.36. The shaded arcs indicate which nodes can
distinguish G from G′. Switching from Pk to Pk+s “cuts off” the spread of information
about the missing edge, and prevents it from reaching node k + s− 1.

that can distinguish G from G′ at time t − b are able to “spread information” about
the difference between G and G′. Since b < n − s − a, by time t node uk+s−1 does
not hear from any node that can distinguish G from G′; hence node uk+s−1 cannot
distinguish G from G′ by time t.

Our eventual goal is to transform the entire execution from one path Pk to another
path Pk+r Next, we show how to use Lemma 4.36 to recursively transform increasingly
long suffixes of the execution from Pk to Pk+r. Lemma 4.36 requires us to have a suffix
of the execution that is already transformed from path Pk to another path Pk+s, in
order to cut off information propagation and maintain indistinguishability; the path
Pk+s required by Lemma 4.36 is not the path Pk+r that we are aiming for, only an
intermediate step we must go through in order to apply the lemma. Therefore the
structure of the recursion is as follows (for parameters a, b, s, s′ that will be fixed in
the lemma below):

1. Recursively transform a suffix [t−b, t] of the execution from Pk to the path Pk+s

required for Lemma 4.36;

2. Apply Lemma 4.36 to close the path Pk into the cycle C in rounds [t−b−a, t−b];

3. Recursively transform the suffix [t − b, t] into a new path Pk+s′, in preparation
for another application of Lemma 4.36;

4. Apply Lemma 4.36 to open the cycle C and obtain Pk+r in rounds [t−b−a, t−b];
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5. Finally, recursive transform the suffix [t− b, t] from Pk+s′ into our desired path
Pk+r.

Following the last step, the entire suffix [t− b−a, t] of the execution is the path Pk+r.
See Fig. 4-2 for an illustration (in the figure, “I.H.” stands for “induction hypothesis”).

G[Pk, Pk] :

G[Pk, Pk+β] :

G[C, Pk+β] :

G[C, Pk′+β] :

G[Pk′, Pk′+β] :

G[Pk′, Pk′] :

t− b− a t− b t

I.H. (d(2β) steps)

Lemma 4.36 (one step)

I.H. (d(2β) steps)

Lemma 4.36 (one step)

I.H. (d(2β) steps)

Figure 4-2: The recursion from Lemma 4.37. The two graphs shown for each step
represent the communication graph for rounds t − b − a, . . . , t − b and for rounds
t− b+ 1, . . . , t.

Let d((G, t), (G′, t)) denote the distance between (G, t) and (G′, t) in the similarity
graph.

Lemma 4.37. Fix a time 0 ≤ t ≤ n − 1 and a value 1 ≤ p ≤ n − 1. Let G,G′ be
dynamic graphs that agree up to time t− (n−1−p), such that in rounds r ∈ [t− (n−
1 − p) + 1, t], G(r) = Pk and G′(r) = Pk′ (for some k, k′). Then d((G, t), (G′, t)) ≤
9(n/p)log2 3.

Proof. Define ℓp := ⌈log2(n/p)⌉. We show by induction on ℓp that d((G, t), (G′, t)) ≤
3ℓp+1 − 1. The claim then follows, because

3ℓp+1 − 1 ≤ 3log2(n/p)+2 = 9

(

n

p

)log2 3

.

Let us denote dp := 3ℓp+1. Note that we are transforming the suffix [t−(n−1−p)+1, t]
of the execution; hence, smaller values of p (or equivalently, larger values of ℓp) are
“harder” because they require us to transform a longer suffix.
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The induction base is immediate: if ℓp = ⌈log2(n/p)⌉ = 0, then p ≥ n. Since we
know that G and G′ agree up to time t − (n − 1 − p) ≥ t, we have (G, t) = (G′, t),
and therefore d((G, t), (G′, t)) = 0.

For the induction step we use Lemma 4.36. Set a = p and b = n − 1 − 2p. For
convenience, let us introduce the following notation: given static graphs H1, H2, let
G[H1, H2] be the dynamic graph defined by

G[H1, H2](r) :=











G(r) r ≤ t− (n− 1− p),
H1 t− (n− 1− p) < r ≤ t− b,
H2 t− b < r ≤ t.

Since b = n − 1 − 2p and ℓ2p = ℓp − 1, the induction hypothesis shows that for
any graph H and for any two paths Pq, Pq′ we have d((G[H,Pq], t), (G[H,Pq′], t)) ≤
d(2p). Further, Lemma 4.36 shows that d((G[Pq, Pq+p], t), (G[C, Pq+p], t)) = 1 for any
q (because these points are indistinguishable to some node). Thus, we construct the
following walk:

(G, t) = (G[Pk, Pk], t)
d(2p)→
I.H.

(G[Pk, Pk+p], t)
1→

Lem. 4.36

(G[C, Pk+p], t)
d(2p)→
I.H.

(G[C, Pk′+p], t)
1→

Lem. 4.36

(G[Pk′, Pk′+p], t)
d(2p)→
I.H.

(G[Pk′, Pk′], t) = (G′, t).

The length of the walk is at most 3d(2p) + 2 = 3(3ℓp − 1) + 2 = 3ℓp+1 − 1.

We showed in Lemma 4.37 that we can move from a path Pk to the next path,
Pk+p, in few steps (specifically, in 9(n/p)log2 3 steps). To complete the lower bound, we
must use the lemma to completely transform the input assignment into the all-zero
or all-one input assignment:

Lemma 4.38. Let α = (P1, I) be an execution, and let I0, I1 be the all-zero and all-
one input assignments, respectively. Let p ≥ 0, and define t := n− 2p− 1. Then for
both v = 0 and v = 1,

((P 1, I), t+ p) ∼ℓ ((P n−p, Iv), t+ p),

where

ℓ = O

(

(

n

p

)1+log2 3
)

.

Proof. For v ∈ {0, 1}, we span between ((P 1, I), t + p) and ((P n−p, Iv), t + p) by
repeating the following steps O(n/p) times:
1. Flip the inputs of the leftmost p nodes on the path to v in one move. By Proposi-

tion 4.35, the rightmost node on the path cannot distinguish the previous execution
from the current one until time t+p, because t = n−2p−1 and the distance from
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the nodes whose inputs we changed to the rightmost node on the path is n − p.
Let J be the resulting input assignment.

2. Applying Lemma 4.37, move from our current point ((P k, J), t+p) to ((P k+p, J), t+
p) in O((n/p)log2 3) steps, preserving similarity at time t + p.

The resulting similarity chain is ((P 1, I), t+p) ∼ ((P 1, J1), t+p) ∼ ((P p+1, J1), t+p) ∼
((P p+1, J2), t+p) ∼ . . . ((P n−p, Iv), t+p), where in Ji, nodes 1 . . . , i·p have input v, and
the remaining nodes have the same input they had in the original input assignment
I. The total length of the walk is ℓ = O((n/p) · (n/p)log2 3) = O((n/p)1+log2 3).

Theorem 4.39. In the static line graph P1 no ∆-coordinated consensus algorithm can

decide by time n−O(∆
1

2+log2 3n
1− 1

2+log2 3 ) ≈ n−O(∆0.28n0.72) for any input assignment.

Proof. Let α = (P1, I) be an execution, and let I0, I1 be the all-zero and all-one
input assignments, respectively. Let p be a parameter, and set t := n − 2p − 1.
By Lemma 4.38 we have ((P1, I), n − p − 1) ∼ℓ ((P n−p, Iv), n − p − 1) for both
v = 0 and v = 1. Thus, by Corollary 4.34, no node decides by time t − ℓ∆ =
n− p− 1−O

(

(n/p)1+log2 3
)

.
To obtain as strong a bound as possible, we seek to minimize the term

p+ 1 + c ·∆ ·
(

n

p

)1+log2 3

,

where here c is the constant in the big-O expression for the length of the walk. Taking
the derivative with respect to p yields

1− c∆(1 + log2 3)

(

n

p

)log2 3

· n
p2
.

Setting this expression equal to zero and solving for p, we obtain

p = c(1 + log2 3)∆
1

2+log2 3n
1− 1

2+log2 3 = O
(

∆
1

2+log2 3n
1− 1

2+log2 3

)

.

Plugging this value of p into the bound of n−p−1− ℓ∆, we see that no node decides

by time n−O(∆
1

2+log2 3n
1− 1

2+log2 3 ).

Recall that in Section 4.4 we gave an algorithm (the Clear Majority Algorithm)
whose earliest possible decision time is n − Θ(

√
n∆). Theorem 4.39 matches this

algorithm in a qualitative sense (though it is far from tight): it shows that for any
algorithm there exists an assignment under which no node can decide until time
n− O(∆cn1−c) for some c ∈ (0, 1), in our case c = 1/(2 log2 3) ≈ 0.28.

4.5.3 Lower Bound for Graphs of Specific Dynamic Diameter

Another algorithm we gave in Section 4.4 showed that when the dynamic diameter
of the graph is D, we can decide at time O(nD/(D + ∆)) (Theorem 4.32). We now
show that this algorithm is asymptotically optimal for any input assignment.
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Theorem 4.40. For every D satisfying 4 ≤ D ≤ n/2 and ∆ ≥ 1, there is a static
graph of diameter D such that for any input assignment, no node decides before time
Ω(nD/(D + ∆)) in any ∆-coordinated consensus protocol.

Proof. We construct a static graph H as follows. Let

k := D − 3,

k1 :=

⌊

k

2

⌋

, k2 :=

⌈

k

2

⌉

,

n1 :=

⌊

n− k
2

⌋

, n2 :=

⌈

n− k
2

⌉

.

Partition the nodes V into four sets V1, V2, X1, X2 of size n1, n2, k1 and k2, respectively,
and fix an arbitrary ordering V1 = {u1, . . . , un1}, V2 = {v1, . . . , vn2}. The edges of H
are the following:

• The nodes of V1 are connected in a clique, and the nodes of V2 are connected in
a clique;

• The nodes of X := X1∪X2 are connected in a path PX , starting with the nodes
of X1 (in arbitrary order) and then the nodes of X2 (in arbitrary order).

• The first node in PX is connected to un1, and the last node in Px is connected
to v1.

Since X contains k = D − 3 nodes, the length of the path PX is D − 4. Every node
of V1, V2 is at distance at most 2 from an endpoint of Px. Therefore the diameter
of H is D. Our goal is to show that in H , for every input assignment, no node can
decide until time Ω(nD/(D+ ∆)). To do this, we gradually transform H into a static
path, where we can flip many inputs at once without some node distinguishing the
difference. Then we apply Corollary 4.34 to show that no node can decide quickly.

Formally, define

t0 :=

⌊

n(D − 3)∆

2(D + ∆)

⌋

.

Our goal now is to incrementally transform the first ≈ t0 rounds of the static graph
H into the static path P using a short similarity chain. We work in increments of k2
rounds, transforming first the first k2 rounds of H into P , then the next k2 rounds,
and so on. For each j = 1, . . . , ⌊t0/k2⌋, let tj := j · k2, and define a graph Gj as
follows:

• In rounds 1, . . . , tj, the communication graph is H .

• Starting from round tj + 1 onwards, the communication graph is P .

We claim that for each j we have (Gj, ⌊n/2⌋ − 2) ∼2 (Gj+1, ⌊n/2⌋ − 2). To see this,
define an intermediate graph G′

j , where

• In rounds 1, . . . , tj, the communication graph is H (as in both Gj and Gj+1).
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• In rounds tj+1+1, . . . the communication graph is P (again, as in Gj and Gj+1).

• In rounds tj + 1, . . . , tj+1, the communication graph is H ′, which is a hybrid of
H and P : the nodes of V1 have their edges from P , that is, they are connected
in a path ending at un1; the nodes of V2 have their edges from H , i.e., they are
connected in a clique. The nodes of X have their edges from P and from H :
in both graphs they are connected in a path PX , connected to un1 and v1 at its
respective endpoints.

We show the following.

Claim 4.41. (Gj, ⌊n/2⌋ − 2) ∼u2 (G′
j , ⌊n/2⌋ − 2).

Proof. Up to time tj the two graphs are identical. In rounds tj + 1, . . . , tj+1, the
communication graph in Gj isH , while the communication graph inG′

j isH ′; however,
H and H ′ differ only on the nodes in V1. By time tj+1 = tj + k2, only the nodes of
V1 ∪X1 ∪ {w}, where w is the first node of X2, can possibly distinguish Gj from G′

j,
as no other nodes are in the k2-neighborhood of V1 (recall that |X1| = k1 = ⌊k/2⌋
while |X2| = k2 = ⌈k/2⌉, and therefore k2 ≤ |X1|+1). Finally, after time tj+1, graphs
Gj and G′

j are again identical, and in both graphs the distance from any node of
V1 ∪X1 ∪ {w} to node u2 is at least k2 +n2− 2 = ⌈k/2⌉+ ⌈(n− k)/2⌉− 2 ≥ n/2− 2.
This distance is greater than the number of rounds between time tj+1 ≥ 1 and time
⌊n/2⌋−2, and therefore node u2 cannot distinguish Gj from G′

j at time ⌊n/2⌋−2.

Claim 4.42. (G′
j, ⌊n/2⌋ − 2) ∼u1 (Gj+1, ⌊n/2⌋ − 2).

Proof. Similar to the previous claim. Up to time tj the graphs are identical, and in
rounds tj + 1, . . . , tj+1 they differ only on the nodes of V2. At time tj+1 only the
nodes of V2 ∪X2 can distinguish G′

j from Gj+1, because these nodes comprise the k2-
neighborhood of V2. Finally, after time tj+1 the graphs are identical, and the distance
of any node in V2∪X2 from node u1 is at least n1+k1 ≥ (n−k)/2−1+k/2−1 = n/2−2.
Therefore node u1 cannot distinguish G′

j from Gj+1 until time ⌊n/2⌋ − 2.

Together the two claims show that (Gj, ⌊n/2⌋ − 2) ∼2 (Gj+1, ⌊n/2⌋ − 2), and
putting the entire chain together we obtain

(G0, ⌊n/2⌋ − 2) ∼2⌊t0/k2⌋ (Gj⌊t0/k2⌋
, ⌊n/2⌋ − 2). (4.5.1)

For convenience let us denote G∗ := Gj⌊t0/k2⌋
.

Note that G0 is just the static path P . If v0 is the all-zero input assignment,
for any input assignment I we have ((G0, I), ⌊n/2⌋ − 2) ∼2 ((G0, v0), ⌊n/2⌋ − 2):
to get from (G0, I) to (G0, v0) we first flip the inputs of the first ⌊n/2⌋ nodes on
the path from their values in I to 0 in one step, and then flip the values of the
other ⌈n/2⌉ nodes to 0 in one more step. In both steps, one endpoint of the path
cannot distinguish the two executions until time ⌊n/2⌋− 2, because its distance from
the nodes whose inputs we changed is at least ⌊n/2⌋. Similarly we can show that
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((G0, I), ⌊n/2⌋− 2) ∼2 ((G0, v1), ⌊n/2⌋− 2), where v1 is the all-one input assignment.
Combining these four steps with the chain from (4.5.1) above yields the following:

((G0, v0), ⌊n/2⌋ − 2) ∼2 ((G0, I), ⌊n/2⌋ − 2) ∼2⌊t0/k2⌋ ((G∗, I), ⌊n/2⌋ − 2)

∼2⌊t0/k2⌋ ((G0, I), ⌊n/2⌋ − 2) ∼2 ((G0, v1), ⌊n/2⌋ − 2).

We now appeal to Corollary 4.34: using values of t = ⌊n/2⌋− 2 and ℓ = 4⌊t0/k2⌋+ 4,
the corollary shows that in G∗, if c is sufficiently small, no node decides until time

t− ℓ∆ =
⌊n

2

⌋

− 2− 2(









⌊

n(D−3)∆
2(D+∆)

⌋

⌈

D−3
2

⌉







+ 4)

≥ n

2
− 3− 2

( n(D−3)∆
2(D+∆)

D−3
2

+ 4

)

=
n

2
−
(

n∆

2(D + ∆)

)

− 11

=
nD + n∆− n∆

2(D + ∆)
− 11 =

nD

2(D + ∆)
− 11 = Ω

(

nD

D + ∆

)

.

We are almost done, but one important detail remains: the graph G∗ for which
we have a lower bound is not a static graph, and it does not have a small dynamic
diameter. We must show that the lower bound also holds in the static graph H , which
does have a dynamic diameter of D. However, we are not far from our goal, since G∗

is identical to H for the first k2⌊t0/k2⌋ ≥ t0 − k2 rounds by construction. We have
shown that in G∗, no node decides until time nD/(2(D + ∆)) − 11. For sufficiently
large n, this time is no smaller than nD/(3(D + ∆)), and hence for any constant
c ≥ 3 no node decides until time tc := nD/(c(D + ∆)) = Ω(nD/(D + ∆)). If we can
find a value of c for which tc ≤ t0 − k2, then we have shown the lower bound for the
static graph H , because G∗ and H are identical up to time t0 − k2 (and in particular
no node can distinguish them). For sufficiently large n, a value of c ≥ 18 suffices,
because it satisfies

tc =
nD

c(D + ∆)
≤ t0 − k2 =

⌊

n(D − 3)∆

2(D + ∆)

⌋

−
⌈

D − 3

2

⌉

.
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Part II

The Communication Complexity of
Distributed Computation in Directed

Networks
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Chapter 5

Directed Networks and Two-Player
Communication Games

In this part of the thesis we turn our attention to networks that are not dynamic,
but still retain an important property that distinguishes wireless networks from wired
networks: they are potentially asymmetric. In a wired network, nodes can communi-
cate with each other directly only if they are linked by a cable; the communication
medium is inherently symmetric, and wired networks typically exploit this property
and allow bidirectional communication between every pair of adjacent nodes. In con-
trast, wireless communication is not symmetric by nature: diffraction, absorption and
multi-path propagation effects can lead to situations where two terminals transmit at
the same power, but only one of them receives from the other with a signal-to-noise
ratio high enough to decode the transmission. In addition, since power consumption
is of greater concern in wireless networks, nodes may wish to transmit at different
power levels in order to conserve energy, and this is another source of asymmetry.
In the next two chapters we will study the effects of asymmetry on basic distributed
computation tasks in static networks. In Chapter 6 we study traditional tasks such as
estimating the size of the network and computing sensitive functions. In Chapter 7 we
introduce a new problem, task allocation, study its communication complexity, and
use it to obtain a lower bound on finding a rooted spanning tree in small-diameter
networks.

5.1 Directed Broadcast Networks

The model we use to study static radio networks is a special case of the dynamic graph
model introduced in Chapter 2: we simply assume now that the network graph re-
mains static throughout the execution. The model retains its other features, including
full synchrony, directed communication links and communication by local broadcast.

Formally, a directed network is modelled as a strongly-connected directed graph
G = (V,E), where V is a set of nodes drawn from some large UID space U , and
E ⊆ V 2 is a set of directed communication links. In Chapter 2 the dynamic graph was
generated on-the-fly by a worst-case adversary; since we now consider static networks,
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the adversary’s role is reduced to choosing the static graph G, and we assume that it
does so before the execution begins (i.e., the adversary is oblivious). As in Chapter 3,
we are concerned with algorithms that use sub-linear sized messages: we let B denote
the maximum number of bits that can be sent by a single node in one round. We call
B the messages size or bandwidth of the algorithm, and we typically assume that B
is sublinear, that is, B = o(n).

As in previous chapters, one of the central themes in this part of the thesis will be
the effect of prior knowledge on the hardness (that is, the time complexity) of solving
various tasks. In Chapter 2 we introduced the hearing from everyone task, HF n, to
model the problem of estimating the dynamic diameter of the network (i.e., learning
when a particular node has been causally influenced by all other nodes). In a static
network, HF n reduces to the following task:

Definition 5.1 (HF n in Static Networks). We say that nodes solve the HF n task in
a static graph G = (V,E) if every node u halts at some time t such that Υt(u) = V .

(Recall from Section 1.6 that Υd(u) = {v ∈ V | dist(v, u) ≤ d}.) Equivalently, the
HF n problem can be stated as: each node u should halt at a time t no smaller than
u’s inwards-eccentricity, that is, the largest distance from any node to u. This is
simply the restriction of Definition 2.24 to static graphs. (Definition 2.24 defines the
more general task HFm for any m; here we are interested in the specific case where
m = n).

If it is known in advance that the diameter of the graph is D, then a trivial solution
to HF n is simply to wait until time D and then halt. Thus, HF n is only “interesting”
when the diameter of the graph is not known in advance, and this is the context in
which we will study the problem in Section 6.2.

In addition to HF n, we will also study other tasks introduced in Part I of the
thesis, such as approximate counting and computing the minimum input. The general
definition of a single-shot task (see Section 2.2) remains the same for this part of
the thesis. Our definitions and results concerning causality and information flow
(Section 2.3) also remain in effect, as static directed graphs are a special case of the
dynamic graph model from Chapter 2. We remain concerned with time complexity
as the main measure of an algorithm’s efficiency, and treat the message size B as an
external parameter.

5.2 Two-Player Communication Complexity

In this section we review the model of two-player communication games, as well as
several celebrated communication complexity lower bounds. These lower bounds will
form the basis for our results in the next chapter.

5.2.1 Two-Player Communication Games

A two-player communication game over a universe {0, 1}n involves two players, Alice
and Bob, who receive private inputs x, y ∈ {0, 1}n (respectively) and wish to compute
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some Boolean function f(x, y) of their joint inputs. To accomplish this goal, Alice
and Bob communicate some number of rounds, sending as many bits as they wish
in each round, until eventually both players output f(x, y). We are interested in
the total number of bits exchanged between Alice and Bob in the worst case. The
deterministic communication complexity of an algorithm is the worst-case number of
bits exchanged on any input; the deterministic communication complexity of f is the
minimum deterministic communication complexity of any deterministic protocol for
computing f .

As for randomized protocols, the literature considers two types: public-coin proto-
cols, where Alice and Bob have access to a shared source of randomness, and private-
coin protocols, where each player has its own private randomness. We are interested
here in randomized protocols that err with some small probability, which is fixed and
independent of n; unless otherwise specified, we will assume that the error probabil-
ity is 1/3.1 The randomized communication complexity of a randomized algorithm
is defined as the expected number of bits exchanged in the worst case over inputs,
and the public-coin (resp. private-coin) randomized communication complexity of f
is obtained by taking the minimum over all public-coin (resp. private-coin) protocols
for computing f .

The lower bounds we review below were proven for private-coin protocols. How-
ever, a result of Newman [118] shows that they can be extended to public-coin pro-
tocols without much loss:

Theorem 5.2 ([118]). Any public-coin protocol can be transformed into a private-coin
protocol that uses at most O(logn) additional communication bits.

Since the lower bounds we are interested in are super-logarithmic in n, this trans-
formation will allow us to apply them to public-coin protocols as well as to private-coin
protocols.

5.2.2 Lower Bounds in Communication Complexity

The two-player communication complexity model was introduced by Yao in [143], and
has since found application in many areas, including circuit lower bounds, streaming
algorithms and data structures. One of the most widely applied results is the Ω(n)
lower bound on the randomized communication complexity of Set-Disjointness,
where the players must determine whether their input sets intersect or not:

Definition 5.3 (Set Disjointness, Disjn). In the Set Disjointness problem, denoted
Disjn, Alice and Bob receive sets X, Y ⊆ [n] (represented as binary n-bit vectors),
and must determine whether X ∩ Y = ∅. Formally,

fDisjn(X, Y ) =

{

0 if X ∩ Y 6= ∅,
1 otherwise.

1As usual, the exact constant does not matter; we can achieve an arbitrarily small constant
probability of error by repeating the protocol a constant number of times.
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In the sequel we use upper-case letters to denote sets, and small-case letters to de-
note their respective characteristic vector (e.g., we use x, y to denote the characteristic
vectors of Alice and Bob’s inputs X, Y ).

A trivial solution to Set Disjointness is to have Alice send her entire input over to
Bob, who then compares it with his input and sends back one bit indicating whether
to accept or reject. In a celebrated result, this naive strategy has been proven to be
asymptotically optimal, even for randomized protocols.

Theorem 5.4 ([80, 128]). The randomized communication complexity of Disjn is
Ω(n).

This bound was first proven by Kalyanasundaram and Schnitger in [80], and the
proof was simplified by Razborov in [128]. The communication complexity of Set-

Disjointness with sets of restricted size was studied, for example, in [70, 102]. For
both deterministic and randomized protocols, the complexity of Set-Disjointness

with sets of size k for k ≤ cn (where c is a sufficiently small constant) is known to be
Ω(k).

We are also interested here in a relaxed variant of Set Disjointness, where the
players are only required to distinguish sets that do not intersect from sets that have
a large intersection.

Definition 5.5 (Gap Set Disjointness, Gap-Disjn,g). In the Gap Set Disjointness
problem, denoted Gap-Disjn,g, the players are given sets X, Y ⊆ [n], with the promise
that either X ∩ Y = ∅ or |X ∩ Y | ≥ g. The players must determine which of these
cases holds.

When the gap g is large with respect to n (e.g., g = cn for some constant c ∈ (0, 1)),
Gap-Disjn,g is quite easy for randomized algorithms: one can distinguish sets with
a large intersection from disjoint sets by sampling elements at random and testing
whether they belong to the intersection. However, for deterministic protocols the
problem remains hard even with a linear gap. This fact appears to be folklore in the
communication complexity community; for the sake of completeness, and to establish
the exact constant in the gap, we include a proof.

Theorem 5.6 (folklore). For any constant ε ∈ (0, 1/2), the deterministic communi-
cation complexity of Gap-Disjn,(1/2−ε)n is Ω(n).

The proof uses a classical result in extremal set theory by Frankl and Rödl [55]:

Theorem 5.7 ([55]). For any constant ρ ∈ (0, 1/2) there is a constant δ(ρ) > 0 such
that for any even distance d ∈ [ρn, (1 − ρ)n], if C ⊆ {0, 1}n is a set such that for all
x, y ∈ C we have ∆(x, y) 6= d, then |C| ≤ 2n(1−δ(ρ)).

Proof of Theorem 5.6. The lower bound can be shown by the tiling method [101, 7].
In this approach we view a protocol for Gap-Disjn,g as operating on a matrix M ∈
{0, 1}{0,1}

n×{0,1}n, where each element M(x, y) corresponds to the desired output value
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f(x, y):

f(x, y) =











1 if |X ∩ Y | ≥ g,

0 if X ∩ Y = ∅, and

∗ otherwise.

(Here ∗ stands for “don’t care”, i.e., pairs on which any output is permissible.)
A combinatorial rectangle is a subset R = A×B of matrix entries, where A,B ⊆

{0, 1}n are sets of row and column indices, respectively. A rectangle is monochromatic
if it does not contain both 0 and 1 entries. Before the protocol begins, each player
knows only his or her own input, so Alice considers all instances {x} × {0, 1}n as
possible and Bob considers {0, 1}n × {y} as possible. An execution of the protocol
induces a partition of the matrix M into combinatorial rectangles: for example, if
the first bit is sent by Alice, this partitions the matrix into two rectangles A0 ×
{0, 1}n , A1 × {0, 1}n, where each Ai ⊆ {0, 1}n is the set of inputs x that would
cause Alice to send bit i. If Alice also sends the second bit, this refines the partition
into four rectangles A00 × {0, 1}n , A01 × {0, 1}n , A10 × {0, 1}n , A11 × {0, 1}n, and so
on. Similarly, each bit sent by Bob refines the partition and doubles the number of
rectangles. At the end of the protocol, if a total of k bits are sent by both players,
the matrix M is partitioned into 2k combinatorial rectangles, where each rectangle
R = A×B contains only instances (x, y) that lead to the same trace of the protocol,
that is, the same k bits being sent during the protocol by the players.

Each rectangle R = A×B must be monochromatic: for all x1, x2 ∈ A and y1, y2 ∈
B, if f(x1, y1) 6= ∗ and f(x2, y2) 6= ∗, then we must have f(x1, y1) = f(x2, y2). This is
because Alice’s output is determined only by her input x ∈ A and the communication
pattern she observes during the protocol, which is the same for all y1, y2 ∈ B; and
similarly, Bob’s output given input y ∈ B is the same for all x1, x2 ∈ A. It follows that
f(x1, y1) = f(x1, y2) = f(x2, y2). Thus, the protocol induces a monochromatic tiling
of M : a partition of {0, 1}n × {0, 1}n into monochromatic combinatorial rectangles.
A lower bound on the communication complexity can be obtained by bounding the
size of a monochromatic tiling of M ; if we can show that r rectangles are necessary
to cover M , then the communication complexity is at least log r.

Now suppose we are given a monochromatic tiling T for Gap-Disjn,(1/2−ε)n, and
let us focus on instances of the form (X,X). Given a rectangle R ⊆ {0, 1}n×{0, 1}n,
let support(R) :=

{

x ∈ {0, 1}n | (X,X) ∈ R
}

. Since T covers M , we must have
⋃

R∈T support(R) = {0, 1}n, or in other words
∑

R∈T | support(R)| = 2n. We will
show the following:

Claim. For some constant δ < 1, for each R ∈ T it holds that | support(R)| ≤ 2δn.

This will allow us to conclude that |T | ≥ 2(1−δ)n, and consequently the communi-
cation complexity of Gap-Disjn,(1/2−ε)n is at least (1− δ)n.

To prove the claim, suppose that x, y ∈ support(R) for some rectangle R ∈ T .
Clearly, since X ∩ X = Y ∩ Y = ∅, the “color” of the rectangle is 0: f(x, x) =
f(y, y) = 0. Since R is monochromatic, we must also have f(x, y) = f(x, y) ∈ {0, ∗}.
This implies that ∆(x, y) < (1− 2ε)n (where ∆(z, w) denotes the Hamming distance
between z and w, that is, the number of bits in which the two vectors differ): otherwise
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either |X\Y | ≥ (1/2−ε)n or |Y \X| ≥ (1/2−ε)n, and hence either |X∩Y | ≥ (1/2−ε)n
or |X ∩ Y | ≥ (1/2− ε)n. In both cases the rectangle is not monochromatic.

To bound the size of the rectangle we use Theorem 5.7. We have shown that
any two sets x, y ∈ R must have ∆(x, y) ≤ (1 − 2ε)n. In particular, if we choose
d ≥ (1 − 2ε)n, no two sets x, y ∈ R have ∆(x, y) = d. Fix ρ := min {ε, 1/4}. Since
ρ < 2ε we have 1 − 2ε < 1 − ρ, and hence for sufficiently large n there exists an
even value d ∈ (max {ρ, (1− 2ε)}n, (1− ρ)n]. Applying the theorem, we see that the
size of support(R) is bounded by | support(R)| ≤ 2n(1−δ(ρ)) where δ(ρ) is a positive
constant. This completes the proof.

More recently, the Gap-Hamming-Distance (GHD) problem has also drawn
attention in the complexity community. In GHD the players each receive a binary
vector and must determine whether the Hamming distance of their vectors exceeds a
threshold n/2 + g, or whether it is below the threshold n/2− g, where the parameter
g is called the gap.

Definition 5.8 (Gap Hamming Distance, GHDn,g). In the Gap Hamming Distance
problem, denoted GHDn,g, the players receive vectors x, y ∈ {0, 1}n and must deter-
mine whether the Hamming distance ∆(x, y) satisfies ∆(x, y) > n/2 + g or whether
∆(x, y) ≤ n/2− g. Formally,

fGHDn,g =











0 if ∆(x, y) > n/2 + g,

1 if ∆(x, y) ≤ n/2− g, and
∗ otherwise,

where ∗ indicates that any answer is permissible.

The GHD problem was first studied in [74], where it was shown that lower bounds
on the communication complexity of GHD with a gap of Θ(

√
n) yield lower bounds

on the space complexity of counting the number of distinct elements in a data stream.
The one-way communication complexity of GHD was shown to be Ω(n) in [142];

subsequent work (e.g., [26]) obtained lower bounds for the two-way communication
complexity with a constant number of rounds. Finally, in [29], Chakrabarti and
Regev characterized the unrestricted two-way communication complexity of GHD

completely. The lower bound was simplified by Vidick [140], and further simplified
by Sherstov [135].

Characterizing the randomized communication complexity of GHD remained an
open problem for a long time after its introduction in [74] (for the case g =

√
n, which

is in some sense the most interesting setting2) until in [29], Chakrabarti and Regev
proved the following lower bound. Their proof was later simplified in [140, 135].

Theorem 5.9 ([29]). For any g ≤ n, the private-coin randomized communication
complexity of GHDn,g is Ω(min {n, n2/g2}).

2As
√
n/2 is exactly the standard deviation of the number of coordinates that agree if we draw

two vectors uniformly at random.
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5.2.3 Applying Communication Complexity Lower Bounds in
Distributed Computing

Communication complexity lower bounds are often used to obtain lower bounds in
distributed computing. The classical reduction technique (see [101]) partitions the
network into two parts A,B, with each player simulating the nodes in one part. Each
players’ input is used to construct that player’s part of the network; for example,
Alice’s input may determine the edges connecting the nodes in A, or the input as-
signment to these nodes.

Since the players simulate disjoint parts of the network, and the structure and
input of the part simulated by each player is determined only by that player’s input,
the two players can simulate their respective parts of the network with very little
communication: the only information they need to exchange is the contents of mes-
sages crossing the cut (VA, VB). The partition is usually chosen so that the bandwidth
going across the cut is small, call it b.

By simulating the algorithm until it halts and examining its behavior and output,
the players are able to solve some communication complexity problem for which we
have a lower bound, say Ω(c(n)), on the number of bits necessary. If the algorithm
requires t(n) rounds to terminate, the simulation costs the players a total of b · t(n)
bits, so we obtain a lower bound of t(n) = Ω(c(n)/b) on the time complexity of the
algorithm. For example, this technique is used in [123] to obtain a lower bound on
the complexity of computing the number of distinct elements in the input.

The reductions we give here are quite different in nature; we do not partition
the network into two disjoint parts, and instead the players simulate potentially-
overlapping sets of nodes. For instance, when we reduce from Set-Disjointness,
each node of the network represents an element of the Set-Disjointness universe,
and any node in the intersection of the inputs is simulated by both players. We still
have a conceptual “information bottleneck” on which the bound relies, but it is no
longer a sparse vertex cut in the graph. Since the two players simulate overlapping
parts of the network, care must be taken to ensure that each player can simulate his or
her nodes without needing to exchange too much information with the other player;
this aspect of our reduction crucially relies on the fact that the network is directed.
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Chapter 6

Data Aggregation in Directed
Networks

In this chapter we study the complexity of computing basic functions in directed
networks. We are particularly interested in the effect of prior information regarding
parameters such as the network size and diameter, and in the difference between the
deterministic and randomized complexity of various tasks.

We begin in Section 6.1 with a lower bound of Ω(n/B) rounds on computing an
approximate count in networks of diameter 2, where B is the message size of the
algorithm. This lower bound holds even if the diameter is known in advance to all
participants. In Section 6.2 we give a lower bound of Ω(

√

n/B) rounds on computing
sensitive functions in networks of diameter 2, which holds only when it is not known
in advance that the diameter is small. We conclude in Section 6.3 by giving a nearly-
matching Õ(

√

n/B)-round algorithm for solving the HF n task, which allows us to
compute simple duplication-insensitive functions.

6.1 Approximate and Exact Counting

We begin by describing a lower bound for ε-approximate counting or exact counting.
In this setting we assume that nodes know some loose upper bound N ≥ n on the size
of the network, and their goal is to determine the exact or approximate size. Since
exact counting is a special case of approximate counting, we first describe the lower
bound for approximate counting, and later discuss exact counting.

6.1.1 Lower Bound on Approximate Counting

Our lower bound on approximate counting is obtained by reduction from GHDN,εN .
Fix ε ∈ (0, 1), and suppose that we are given an ε-approximate counting algorithm
A. Given an instance (x, y) of GHDN,εN , we construct a network Gx,y, in which Alice
and Bob jointly simulate the execution of A. When A terminates, Alice and Bob
use the output of A to determine the correct answer to GHD on the instance (x, y).
Since Alice knows only her input x and Bob knows only y, neither player knows the
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complete topology of the network Gx,y, which depends on both x and y. The players
therefore cooperate to determine the topology of Gx,y and simulate the execution of
A in it.

Let X, Y ⊆ [N ] be the sets whose characteristic vectors are x and y, respectively.
The network Gx,y is given by Gx,y = (Vx,y, Ex,y), where Vx,y = X∪Y ∪{a, b} (for a, b 6∈
[N ]), and Ex,y = ({a} × (Vx,y \ {a}) ∪ ({b} × (Vx,y \ {b})) ∪ (X × {a}) ∪ (Y × {b}).
See Fig. 6-1 for an illustration.

1 2 4 7 9

a b

Figure 6-1: The network Gx,y for inputs x = 110000100, y = 010100101 (that is,
X = {1, 2, 7} , Y = {2, 4, 7, 9}).

The Hamming distance ∆(x, y) is closely related to the size of Gx,y:

Lemma 6.1. For all (x, y) ∈ ({0, 1}N)2, the graph Gx,y is strongly connected, its
diameter is 2, and its size is |Vx,y| = |x|+ |y|+ ∆(x, y))/2 + 2.

Proof. Since ∆(x, y) = |X ⊕ Y |, we have

∆(x, y) = |(X ∪ Y ) \ (X ∩ Y )| = |X ∪ Y | − |X ∩ Y |
= |X ∪ Y | − (|X|+ |Y | − |X ∪ Y |) = 2|X ∪ Y | − |X| − |Y |,

that is,
|X ∪ Y | = (|X|+ |Y | −∆(x, y))/2.

The size of Gx,y is therefore given by

|Vx,y| = |X ∪ Y |+ 2 = (|x|+ |y| −∆(x, y))/2.

The diameter of Gx,y is 2, because nodes a and b have edges going in both directions,
every node of X ∪Y has an edge to either node a or node b (or both), and from nodes
a, b there are edges to all other nodes. Strong connectivity also follows.

Next we show that an efficient algorithm for approximating the size of diameter
2 networks leads to an efficient protocol for GHDN,εN .

Lemma 6.2. Given an ε-approximate counting algorithm A which outputs a correct
answer after t rounds with probability at least 1 − δ (where ε, δ ∈ (0, 1)), one can
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construct a public-coin protocol for GHDN,εN which exchanges a total of O(Bt+logN)
bits and succeeds with probability 1− δ.

Proof. Given an instance (x, y), Alice and Bob simulate the execution of A in Gx,y

as follows. Alice locally simulates the nodes in X ∪ {a}, and Bob locally simulates
the nodes in Y ∪ {b}. The shared random string is used to provide the randomness
of all nodes in the network. (Since Alice and Bob do not initially know which of the
nodes {1, . . . , N} are present, we interpret the shared random string as containing the
randomness of each node 1, . . . , N regardless of whether or not the node is in X ∪Y .)
Notice that there can be some overlap, X ∩ Y , which is simulated by both players
independently.

The initial states of all nodes in X ∪ {a} and in Y ∪ {b} are known to Alice and
Bob, respectively, because they depend only on the UIDs of these nodes and on the
shared randomness. Each round of A is simulated as follows:
• Based on the states of their local simulations, Alice and Bob compute the mes-

sages sent by the nodes in X ∪ {a} and in Y ∪ {b}, respectively.
• Alice sends to Bob the message sent by node a, and Bob sends to Alice the

message sent by b. Following this exchange, Alice and Bob have all the messages
received by each node they need to simulate.
• The players update the states of their local simulations by feeding to each node

the messages it receives in Gx,y: the nodes of X ∪ Y receive the messages sent
by a and b; node a receives the messages sent by nodes in X ∪ {b}; and node
b receives the messages sent by nodes in Y ∪ {a}. (Note that Alice knows X
and Bob knows Y , so the two players know which messages are supposed to be
received by nodes a, b, respectively.)

Although Alice and Bob do not directly exchange information about the states of
nodes in X ∩ Y — indeed, they do not know which nodes are in X ∩ Y , and this is
what makes the problem difficult — still their local simulations agree on the states of
these nodes.

With probability at least 1− δ, after t rounds of the simulation node a halts and
outputs an approximate count ñ which satisfies |ñ − n| ≤ εn. When node a halts,
Alice sends ñ to Bob, and in addition Alice and Bob send each other |X| and |Y |
(respectively). Let ∆̃ = 2(ñ− 2)− |X| − |Y |. Both players output 0 if ∆̃ < N/2, and
1 if ∆̃ ≥ N/2. (If node a fails to halt after t rounds, the players output an arbitrary
answer.)

If |ñ−n| ≤ εn then Lemma 6.1 shows that |∆̃−∆(x, y)| = 2|ñ−n| ≤ 2εn ≤ 2εN .
Hence, with probability at least 1 − δ, the players output the correct answer: if
∆(x, y) ≥ N/2 + 2εN then ∆̃ ≥ N/2, and if ∆(x, y) < N/2− 2εN then ∆̃ < N/2.

The total number of bits sent during the protocol is 2Bt+ 2 log(N). The commu-
nication complexity is therefore O(Bt+ logN).

From Theorem 5.9 and Lemma 6.2, we obtain the main lower bound of this section:

Theorem 6.3. If B = Ω(logN), then any randomized algorithm for computing an
ε-approximate count requires Ω((min {n, 1/ε2} /B) rounds to succeed with probability
2/3 in networks of diameter 2.
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Proof. By Lemma 6.2, if there is a randomized distributed algorithm for counting with
round complexity t ≥ 1 and message size B = O(logN), then there is a randomized
public-coin protocol for GHDN,εN with communication complexity O(Bt+ logN) =
O(Bt). By Theorem 5.2 we can transform the protocol into a private-coin protocol
with communication complexity O(Bt+ logN) = O(Bt). However, by Theorem 5.9,
the public-coin communication complexity of GHDN,εN is Ω(min {N, 1/ε2}−logN) =
Ω(min {n, 1/ε2}). Therefore we must have t = Ω(min {n, 1/ε2} /B).

Note that the lower bound is stated in terms of the actual size n, rather than the
upper bound N on the size. Although our reduction in Lemma 6.2 is stated in terms
of the upper bound N (we reduce from GHDN,εN), the “hard” instances are the ones
where n is roughly linear in N ; it is always possible to solve GHD by exchanging the
coordinates of indices i such that xi = 1 or yi = 1, and hence when |X ∪ Y | = n the
problem can easily be solved in O(n logN) bits. It is therefore more informative to
state our lower bound in terms of the actual size n of the network.

6.1.2 Deterministic and Exact Counting

The deterministic communication complexity of GHDN,g is Ω(N) even when g = c·N
for a sufficiently small constant c [29]; therefore we obtain the following lower bound
for deterministic algorithms:

Theorem 6.4. Deterministically computing an ε-approximate count for ε a suffi-
ciently small constant requires Ω(n/B) rounds.

Proof. As in Theorem 6.3, using the deterministic lower bound of Ω(N) on GHDN,εN

instead of the randomized lower bound of Ω(min {N, 1/ε2}).

As for exact counting (deterministic or randomized), computing the exact count
is as hard as computing a (1/n)-approximate count, so Ω(n/B) rounds are required.

Theorem 6.5. Any randomized algorithm for computing the exact size of the network
requires Ω(n/B) rounds to succeed with probability 2/3.

Proof. This follows from Theorem 6.3 by plugging in ε = 1/n.

6.1.3 A Nearly-Matching Upper Bound

The lower bound of Theorem 6.3 is nearly tight if the diameter of the network is
known to be D.

Theorem 6.6. There is a randomized ε-approximate counting for networks of di-
ameter 2 that requires Õ(min {n, 1/ε2} /B) rounds and succeeds with probability 1 −
1/ poly(N).

Proof sketch. The case where min {n, 1/ε2} = n is easy to handle: we use Algo-
rithm 3.4 to disseminate the UIDs of all nodes using pipelining, with B/ logn UIDs
in each message. In O(D + n logn/B) rounds, all nodes acquire all UIDs, and can
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then compute the exact count. In particular, for D = 2, this matches Theorem 6.3
up to a log n factor.

For the case where min {n, 1/ε2} = 1/ε2 we can use the same idea we used in
Section 3.6 to compute an ε-approximate count. Each node computes an ℓ-tuple of
exponential variables with rate 1, where ℓ = Θ(logN/ε2), then rounds and truncates
each variable according to (3.6.5). For D rounds, all nodes forward the smallest value
heard so far for each coordinate of the tuple, and finally all nodes output the estimate
n̂ from (3.6.1).

As we saw in Section 3.6, with probability 1 − o(1) the estimate n̂u computed
by node u is an ε-approximation to the number of nodes that causally influence u;
since in our case we know that the diameter is D, node u is causally influenced by
all nodes after D iterations, so we obtain an ε-approximate count of the number of
nodes in the network. The size of each ℓ-tuple is O(logN(log logN + log(1/ε))/ε2) =
Õ(1/ε2). Given bandwidth B, we can split every tuple into blocks of B bits each,
obtaining an algorithm that runs in Õ(D/(ε2B)). This matches Theorem 6.3 up to a
polylogarithmic factor for the case where min {n, 1/ε2} = 1/ε2 and D = 2.

There is some apparent slack between the upper bound and the lower bound:
the lower bound of Theorem 6.3 applies to algorithms where each node individually
succeeds with probability 2/3, while the upper bound sketched above has all nodes
succeed together with probability 1−1/poly(N). This suggests that we can shave off a
few log-factors by reducing the success probability to a constant, and eliminating the
union bound that extends the analysis to all nodes rather than just one node. Indeed,
if we set ℓ = Θ(1/ε2) instead of Θ(logN/ε2), we accomplish exactly that. However,
there are some log-factors that are not so easily eliminated, and they come from
rounding and truncating the exponential variables: the coarseness of our rounding
scheme (see (3.6.5)) depends on ε, and the thresholds for truncation depend on both
ε and logN . It is conceivable that the dependence on logN can be eliminated by
changing the truncation threshold so that it does not depend on N , and using a more
sophisticated argument (in Theorem 3.35, where we use a union bound to show that
with probability 1 − o(1) all nodes do not need to truncate their variables). But
the dependence on ε, which contributes a log(1/ε) factor to the running time, seems
inherent to this approach.

A similar problem has been studied in the context of communication complexity:
given sets of size k, where k = o(n), a naive solution to Disjn is for Alice to encode her
input set using O(k logn) bits and send it to Bob. Can we eliminate the dependence
on n, and use only O(k) bits? It is known that for randomized algorithms the answer
is yes [70], but for deterministic algorithms the answer is no [102]. Even in the
randomized case, the solution is an elaborate protocol that uses public randomness
(although for two players, public randomness almost comes for free [118]). It is
interesting to ask whether these results carry over to the multi-player setting, which
is closer to distributed computation. For example, do they carry over to multi-party
promise Set Disjointness, where the players receive sets that either intersect at exactly
one element or are pairwise disjoint? To our knowledge this question has not been
investigated.

151



6.1.4 Lower Bound on Finding a Rooted Spanning Tree

We can use the reduction from Lemma 6.2 to show that finding a rooted spanning
tree in directed networks is hard, even when the diameter of the network is known a
priori to be 2 and the network graph admits no spanning trees of depth more than
3. This is because the network Gx,y from Lemma 6.2 has exactly these properties. If
one could find a rooted spanning tree of Gx,y in t rounds, then an exact count could
be computed in t + 3 rounds by finding a rooted spanning tree and then “summing
up the tree” (convergecast). Since exact counting requires Ω(n/B) rounds, finding a
rooted spanning tree must also require Ω(n/B) rounds.

This lower bound was included in [96], where the results in this chapter first
appeared. However, it is not a very satisfying lower bound, because it depends on the
nodes not knowing the count n in advance; if they do, we cannot argue that finding the
count requires Ω(n/B) rounds. This seems like “the wrong reason” for this hardness
result, as knowing the size of the network does not appear to help in any way. And
indeed, in Chapter 7 we will introduce a new multi-player problem, task allocation,
and through it obtain an Ω(n/B)-round lower bound on finding rooted spanning trees
in networks whose size is known to be n.

6.2 Lower Bounds on Sensitive Functions

In this section we study the complexity of computing sensitive functions, such as the
minimum or maximum input value. In contrast to the previous section, here we are
interested in instances where the diameter of the network is not known a priori to
be small, but the algorithm is deployed in a network that does in practice have a
small diameter. We ask to what degree an algorithm can exploit the small diameter
of the network, and in particular, how easy is it to detect that the network has a
small diameter.

In Section 2.2 we defined two notions of sensitivity that apply regardless of whether
the number of nodes is known in advance:

• Globally-sensitive functions : For each n, there exists an input assignment (mul-
tiset) X of size n in the domain of f , such that changing any single input in X
changes the value of f .

• ε-sensitive functions (for ε ∈ (0, 1)): For each n, there exists an input assign-
ment X of size n in the domain of f , such changing any ε ·n inputs in X changes
the value of f .

It is easy to see that these two notions are closely related to the problem of hearing
from everyone (HF n) and hearing from a (1− ε)-fraction of nodes (HF (1−ε)n):

Proposition 6.7. Let A be an algorithm that computes a globally-sensitive function
f . Then for any network size n, there is an input assignment X such that when A
is executed with input X in any graph of size n, no node halts before hearing from
everyone (i.e., A with input X solves HF n). Similarly, if A′ computes an ε-sensitive
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function f ′, then for any network size n there is an input X ′ such that A′ with input
X ′ solves HF (1−ε)n.

Proof. Let X be an input assignment on which f is globally-sensitive. Suppose for
the sake of contradiction that in some graph G, when A is executed with input X ,
HF n is not solved: some node u halts at time t such that Υt(x) 6= V . Then there
is some node v 6∈ Υt(x), and we can change node v’s input to obtain a new input
assignment X ′ differing from X by exactly one element. Since f is globally-sensitive
on X , we have f(X) 6= f(X ′). But on the other hand, Proposition 2.28 shows that u
cannot distinguish the execution with input X from the execution with input X ′, so
its output is the same in both.

For ε-sensitive functions the proof is similar: if some node u halts before hearing
from (1− ε)n nodes, then there exist at least ε ·n nodes from which u does not hear.
We can change the input to these nodes and obtain an assignment on which the value
of f ′ differs from f ′(X ′), but u does not notice this change.

It follows from Proposition 6.7 that a lower bound on HF n yields a lower bound
on computing any globally-sensitive function, and a lower bound on HF (1−ε)n yields
a lower bound on computing any ε-sensitive function. In the current section we
prove two such lower bounds, one for randomized algorithms solving HF n and one for
deterministic algorithms solving HF (1−ε)n. In Section 6.3 we will give a nearly-optimal
randomized algorithm for solving HF n. This algorithm by itself is not sufficient to
compute any function, but by Proposition 3.8 it is sufficient to compute duplication-
insensitive single-valued functions over at most O(logn) input values, because HF n

is (0, b)-complete for functions over b input values.

6.2.1 Lower Bounds on the HFm Task

We now show that distinguishing networks of diameter 2 from networks of diameter
Ω(
√

n/B) requires Ω(
√

n/B) rounds in the worst case. More formally, we show that
when the size of the network is known, the UID space is 1, . . . , n, and no a priori
bound on the diameter is known,

(a) Any randomized algorithm for HF n requires Ω(
√

n/B) rounds to succeed with
constant probability, even when executed in a network of diameter 2; and

(b) For any ε ∈ (0, 1/2), any deterministic algorithm for HF (1−ε)n requires Ω(
√

n/B)
rounds, again when executed in networks of diameter 2.

(Of course, in networks of diameter 2, two rounds are sufficient to solve HF n, if only
the algorithm knew that the diameter is 2.)

Fix an algorithm A for HFm and a network size n ≥ m. We describe a reduction
from Set Disjointness to HF n, which we will use to show the hardness of HF n for
randomized algorithms. We then use the same reduction to show the hardness of
HF (1−ε)n for deterministic algorithms, reducing this time from Gap Set Disjointness
(which is merely Set Disjointness with a gap promise).
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6.2.2 A Reduction from Set Disjointness to HFm

Our reduction is parameterized by m, the number of nodes from which each node
must hear in HFm, and by a specific algorithm A. As in Section 6.1, in the reduction
we construct a network G based on the instance of Set Disjointness given to Alice and
Bob. The two players then simulate the execution of A in G, and output an answer
to Set Disjointness (or Gap Set Disjointness) based on the behavior of A in G — in
particular, based on the time when A terminates. We now describe the construction
of the network and the simulation used by Alice and Bob.

The construction has several parameters. First, let tA be a bound on the time
complexity of A in networks of n + 2 nodes with diameter 2: specifically, when A is
executed in any network of size n with node UIDs 1, . . . , n′, a, b, where n′ = n−2, with
probability at least 2/3 all nodes halt by time tA. Based on tA and on the parameter
m, we choose a segment length s ≥ tA + 1 which will be fixed later. Informally, in
the reduction nodes must distinguish diameter 2 networks from diameter s + 2, and
we will show that this requires Ω(n/s) rounds in the worst-case.

Assume for simplicity that s divides n′. We divide the nodes 1, . . . , n′ into segments
S1, . . . , Sn′/s, each of size s, where Si := {(i− 1) · s+ 1, (i− 1) · s+ 2, . . . , i · s}. Each
segment Si is further subdivided into two parts: a back end SB

i containing nodes
(i − 1) · s + 1, . . . , i · s − tA, and a front-end SF

i containing the remaining nodes,
i · s− tA + 1, . . . , i · s. In the sequel we implicitly use wrap-around for node indices,
so that −1 ≡ n′, −2 ≡ n′ − 1, and so on.

We are now ready to describe the reduction itself. The reduction is from Disjn′/s,
that is, Set Disjointness (or Gap Set Disjointness) with a universe of n′/s elements;
each segment Si represents a single element of the universe. Given an instance (x, y)
of Disjn′/s, we define a network Gs,x,y := ({1, . . . , n′, a, b} , Es,x,y), where

• Nodes a, b have edges to all nodes of the graph.

• Nodes 1, . . . , n are connected in a directed cycle: for each i ∈ [n′] we have
(i, i+ 1) ∈ Es,x,y.

• In each segment Si, the last node (node i · s) is connected to node a. (This is
to ensure strong connectivity and a bound of s+ 2 on the diameter.)

• For all i 6∈ X and for all v ∈ Si we have (v, a) ∈ Es,x,y; similarly, for all i 6∈ Y
and for all v ∈ Si we have (v, b) ∈ Es,x,y.

Here, X and Y are the sets whose characteristic vectors are x, y respectively. See
Fig. 6-2 for an illustration of Gs,x,y.

Let us describe informally why Gs,x,y “captures” the Disjn′/s problem. With the
exception of the last node in each segment (which is always connected to node a), the
nodes in segment Si are connected to node a iff Alice did not receive i in her input,
and connected to node b iff Bob did not receive i in his input. Therefore, if there

exists an element i in the intersection X∩Y = X ∪ Y , the nodes of the corresponding
segment Si, with the exception of the last node, will not be connected to either node
a or node b. These nodes are only connected to the rest of the graph by the cycle
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1 4 7 10

2 5 8 11

3 6 9 12

a b

S1 S2 S3 S4

Figure 6-2: The network Gs,x,y from Theorem 6.10, with n = 12, tA = 2, s = tA + 1 =
3. Edges from a, b to nodes 1, . . . , 12 are omitted for clarity. The Disj4 instance
shown here is X = {2, 4} , Y = {1, 2, 3}. Since 2 ∈ X ∩ Y , all S2 nodes except the
last (node 6) are not connected to a or to b. Therefore 4 6∈ ΥtA(a), i.e., two rounds
are not sufficient for node a to hear from node 4.

edges (i − 1) · s + 1 → (i − 1) · s + 2 → . . . → i · s. Consequently the diameter of
the graph is s + 1 > tA in this case. In tA rounds, nodes a and b can only hear from
the last tA nodes of segment Si, i.e., only from the front-end SF

i ; for each segment Si

such that i ∈ X ∩ Y , |SB
i | = s− tA nodes are missing from ΥtA(a).

On the other hand, if X ∩ Y = ∅ (or equivalently, X ∪ Y = {1, . . . , n′/s}), all
nodes in all segments are connected to either node a or node b, and the diameter of
the graph is 2.

More formally, we observe that the graph Gs,x,y has the following characteristics.

Lemma 6.8. For any x, y ∈ {0, 1}n′

,

(a) The graph Gs,x,y is strongly connected,

(b) For all i ∈ X ∩ Y and for all v ∈ SB
i we have v 6∈ ΥtA(a) and v 6∈ ΥtA(b),

(c) If X ∩ Y = ∅, the diameter of Gs,x,y is 2, and

(d) |ΥtA(a) ∩ΥtA(b)| ≤ n′ − |X ∩ Y | · (s− tA) (and similarly for b).

Proof. From each node (i−1)·s+j ∈ Si (where 1 ≤ i ≤ n′/s, 1 ≤ j ≤ s), the distance
to nodes a, b is exactly (s − j) + 1 if i ∈ X ∩ Y , and the distance is either 1 or 2 if
i 6∈ X ∩ Y . Since a and b have edges to all other nodes, Gs,x,y is strongly-connected.
Also, if i ∈ X ∩ Y then i ∈ X and i ∈ Y , so the distance from node (i − 1) · s + j
to nodes a, b is at least (s − j) + 1; if this is a back-end node, then j ≤ s − tA, so
the distance exceeds s− j ≥ tA. This shows part (b) of the lemma. Part (c) follows
from the fact that if X ∩ Y = ∅ then X ∪ Y = {1, . . . , n′}, and therefore each node
is connected directly either to node a or to node b or both; from these nodes to all
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other nodes the distance is 1. And finally, part (d) follows from part (b), which shows
that all back-end nodes of all segments i ∈ X ∩ Y are not in ΥtA(a); there are s− tA
nodes in each segment’s back-end, so part (d) follows.

Alice and Bob simulate the execution of A in Gs,x,y in a slightly different manner
than in Lemma 6.2; here both players simulate nodes 1, . . . , n′ regardless of the input
instance, and in addition Alice simulates node a and Bob simulates node b. The
remainder of the simulation is the same as in Lemma 6.2.

Proposition 6.9. Given inputs x and y respectively, and a shared string representing
the randomness of all nodes, Alice and Bob can each simulate nodes {a, 1, . . . , n′} and
{b, 1, . . . , n′} (respectively) throughout rounds 1, . . . , tA of the execution of A in Gs,x,y.
The simulation requires 2B bits per simulated round.

Proof. As in Lemma 6.2, the players store a local copy of the states of all nodes they
need to simulate, and exchange only the messages sent by nodes a and b (simulated
by Alice and Bob, respectively). Each node 1, . . . , n receives the messages sent by a
and b, which are known to both players after their exchange. The players are also
able to compute the message generated by each node 1, . . . , n′, and moreover, Alice
knows which incoming edges node a has (they depend only on X) and Bob knows
which incoming edges node b has (they depend only on Y ). Therefore the players can
compute the next state of each node they need to simulate.

It remains only to put the pieces together to obtain the following lower bounds.

Theorem 6.10. If the diameter of the network is not known initially, any randomized
algorithm for solving HF n requires Ω(

√

n/B) rounds with probability at least 2/3 when
executed in networks of diameter 2.

Proof. Fix an algorithm A, and let tA be defined as above. Fix a segment length of
s := tA + 1 (so that the back-end of each segment contains exactly one node).

Given an instance (x, y) of Disjn′/s, where n′ = n − 2, Alice and Bob jointly
simulate the first tA rounds in the execution of A in Gs,x,y as in Proposition 6.9. After
tA rounds, Alice informs Bob whether or not node a has halted in the simulation. If
node a has halted, the players output“X∩Y = ∅”; otherwise they output“X∩Y 6= ∅”.

As we saw in Lemma 6.8, if X ∩ Y = ∅ then the diameter of GtA+1,x,y is 2, so
with probability at least 2/3 all nodes halt after tA rounds and Alice and Bob output
“X ∩Y = ∅”. On the other hand, if X ∩Y 6= ∅, then by time tA node a has not heard
from all nodes, as Lemma 6.8 shows that at least (s − tA) · |X ∩ Y | = |X ∩ Y | > 0
nodes are missing from ΥtA(a). Consequently, with probability at least 2/3, node a
does not halt by time tA and the players output “X ∩ Y 6= ∅”.

The total number of bits exchanged by the players in the protocol above is 2B ·
tA + 1, because Alice and Bob only send each other the messages output by nodes a
and b, plus one bit needed for Alice to inform Bob whether node a has halted. An
additional O(log(n/tA)) bits are required to obtain a private-coin protocol. Since the
randomized communication complexity of Disj⌊n′/(tA+1)⌋ is Ω(n′/tA) = Ω(n/tA), we

must have 2B · tA + 1 = Ω(n/tA), or in other words, tA = Ω(
√

n/B).
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Theorem 6.11. If the diameter of the network is not known initially, then for any
ε ∈ (0, 1/2), any deterministic algorithm for solving HF (1−ε)n requires Ω(

√

n/B)
rounds, even in networks of diameter 2.

Proof. The proof is similar to that of Theorem 6.10, except that we now reduce from
Gap-Disj⌊n′/s⌋,ε′⌊n′/s⌋ for an appropriately chosen constant ε′ ∈ (0, 1/2), and the
segment length s is also chosen differently.

Fix a deterministic algorithm A for HF (1−ε)n, and let tA = tA(n) be the maximal
time at which the algorithm halts in any network of diameter 2 and size n. Assume
that tA = o(n), otherwise we are done. We must now choose a segment length
s = Θ(tA) so that the following conditions hold:

(a) If X∩Y = ∅, then the diameter of Gs,x,y is 2. This ensures that in “yes” instances,
all nodes halt by time tA.

(b) If |X ∩ Y | ≥ ε′⌊n/s⌋ then we have |ΥtA(a)| < (1 − ε)n = (1 − ε)(n′ + 2). This
ensures that in “no” instances, node a cannot halt by time tA, because it has not
heard from sufficiently many nodes.

Whenever these conditions hold, the protocol from Theorem 6.10 allows Alice and
Bob to solve Gap-Disj⌊n/s⌋,ε′⌊n/s⌋ as well.

From Lemma 6.8 we see that condition (a) holds regardless of our choice of s. As
for condition (b), from part (d) of Lemma 6.8, it is sufficient to choose s := αtA and
ε′ so that

n′ − ε′
⌊

n′

αtA

⌋

· (α− 1)tA < (1− ε)n′, (6.2.1)

that is,

ε′
⌊

n′

αtA

⌋

· (α− 1)tA > εn′. (6.2.2)

Fix some constants ε′ ∈ (ε, 1/2) and α such that (α− 1)/α > ε/ε′. (There exist such
ε′, α, because ε ∈ (0, 1/2) and limα→∞(α− 1)/α = 1 > ε/ε′.) Since we assumed that
tA = o(n) (and hence n′/tA = ω(1)), and since (α − 1)/α > ε/ε′, there exists an n0

such that for all n ≥ n0 we have

⌊

n′

αtA

⌋

· (α− 1)tA >
ε

ε′
n′. (6.2.3)

Thus, (6.2.2) is satisfied for all n ≥ n0. For this choice of s = αtA, ε
′ and for all n ≥ n0,

the reduction from Theorem 6.10 yields a protocol with communication complexity
2BtA + 1 for Gap-Disjn′′,ε′n′′ , where n′′ = ⌊n′/s⌋ = O(n/tA). Because Gap-Disj is
linearly hard for deterministic protocols even when the gap is linear in the universe
size (Theorem 5.6), we must have 2BtA + 1 = Ω(n/tA), i.e., tA = Ω(

√

n/B).

6.2.3 Discussion and Extensions

The construction in this section can be modified to show a few related results.
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In Theorems 6.10 and 6.11 we assumed that no upper bound on the diameter of
the network is known in advance. Suppose now that some upper bound D̄ on the
diameter is known in advance. We can show:

Theorem 6.12. Any randomized algorithm for computing a globally-sensitive func-

tion, requires Ω(min
{

D̄,
√

n/B
}

) rounds when executed in networks of diameter

2. So does any deterministic algorithm for computing an ε-sensitive function for
ε ∈ (0, 1/2).

Proof. To see this, observe that the diameter of the network Gs,x,y never exceeds s+2:
if X ∩ Y = ∅ then the diameter of Gs,x,y is 2, and if X ∩ Y 6= ∅ then the diameter

is s + 2. If D̄ = Ω(
√

n/B), knowing an upper bound of D̄ is “not useful”: with an
easy modification of constants, the proof of Theorem 6.10 goes through, because it
constructs a network of diameter at most s + 2 = O(

√

n/B) = O(D̄). Therefore

in this case the running time is still Ω(
√

n/B). On the other hand, suppose that

D̄ = o(
√

n/B). We will show that in this case the running time is Ω(D̄).

To that end, suppose that D̄ = o(
√

n/B) and we are given an HF n-algorithm
(or similarly, a deterministic HF (1−ε)n-algorithm) A with tA < D̄ − 2. If we use a
segment length of s = tA + 1 < D̄ in Theorem 6.10, the diameter upper bound of D
is not violated in Gs,x,y. For this choice of s, the reduction from Theorem 6.10 allows
us to solve Disj⌊n/s⌋, where ⌊n/s⌋ ≥ ⌊n/(D̄− 2)⌋, using less than 2(D̄− 2)B+ 1 bits.

We must have 2(D̄ − 2)B + 1 = Ω(n/D̄), that is, D̄ = Ω(
√

n/B), contradicting our

assumption that D̄ = o(
√

n/B).

Next, consider the problem of finding an approximate count when the diameter
of the network is not known in advance. In Section 6.1 we gave a lower bound that
assumes the diameter is known to be 2; however, it is possible to obtain a stronger
lower bound for the case where the diameter is unknown, by following the lines of
Lemma 3.6. Let N be the best upper bound known in advance on the count. Then
we have the following lower bound:

Theorem 6.13. If the diameter of the network is not known in advance, then any
randomized algorithm requires Ω(

√

n/B) rounds to distinguish a network of size n
from a network of size N with probability 2/3, even when executed in networks of
diameter 2.

Proof. We will show that in order to distinguish a network of size n from a network
of size N , nodes a, b must solve a Set Disjointness instance of size O(n/tA), so that
as in Theorem 6.10, tA = Ω(

√

n/B) rounds are required.
Recall that in Gs,x,y, the distance from any node (i− 1) · s+ 1 where i ∈ X ∩Y to

nodes a and b is s > tA. Thus, when X∩Y 6= ∅, we can choose a node v := (i−1)·s+1
where i ∈ X ∩ Y , and “hide” nodes n + 1, . . . , N behind it, adding edges from nodes
n + 1, . . . , N to v and from nodes a, b to nodes n + 1, . . . , N . Let G′

s,x,y be the
resulting network. Since the distance from node v to nodes a, b exceeds tA, and the
new nodes n + 1, . . . , N are connected only to node v, tA rounds are insufficient for
nodes a, b to distinguish Gs,x,y from G′

s,x,y. Therefore, if X ∩ Y 6= ∅, an algorithm for
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distinguishing networks of size n + 2 from networks of size N cannot terminate by
time tA in Gs,x,y (except with small probability). This is sufficient to carry out the

reduction from Theorem 6.10 exactly as before, obtaining an Ω(
√

n/B) lower bound
on any non-trivial approximation of the count.

6.3 A Nearly-Optimal Algorithm for HFn

In the previous section we showed that the HF n problem requires Ω(
√

n/B) rounds,
even when the diameter of the network is 2. We now give a nearly-matching algorithm,
which solves HF n in 2D + Õ(

√

n/B) rounds in networks of diameter D, where D is
not known in advance.

6.3.1 Discussion and High-Level Sketch of the Algorithm

Let us first discuss the connection between HF n and approximate counting. In Sec-
tion 6.1 we showed that obtaining an ε-approximate count of an n-node network
requires Ω(min {n, 1/ε2} /B) rounds. On first impression, this might seem to imply
that our Ω(

√

n/B) lower bound on HF n (Theorem 6.10) is not tight: to solve HF n

it appears we need to count how many nodes we have heard from to a precision of
better than ±1, so that we do not accidentally halt before hearing from some node.
This means we must set ε < 1/n, so we will need Ω(n/B) rounds to count. How-
ever, a more careful examination reveals that we can get away with a much coarser
approximate count, by counting the new nodes we have heard from recently rather
than the total number of nodes. From strong connectivity, if node u has not heard
from all nodes at time t, then we have |Υt(u) \Υt′ | ≥ t− t′ for all t′ ≤ t. If we could
estimate |Υt(u) \ Υt′(u)| to a constant accuracy — that is, with a additive error of
±ε(t− t′) where ε ∈ (0, 1) is some constant — then we could accurately test whether
Υt(u) \ Υt′(u) is empty or not. If we determine that Υt(u) \ Υt′(u) is empty, then
node u may halt at time t; and if node u has heard from everyone at time t′, then
Υt(u) \Υt′(u) will be empty. Thus we can solve HF n in time roughly D + t− t′.

Unfortunately, the approximate counting scheme from Section 3.6 does not lend
itself to estimating the size of the set difference Υt(u) \ Υt′(u). One might try to
estimate the sizes of Υt(u) and Υt′(u) separately using the approach from 3.6 and
taking the difference; this corresponds to measuring the decrease in the value of ñu

between time t′ and t (where ñu is the estimate from 3.6). However, if Υt′(u) is large
(e.g., almost n), the absolute error of ñu(Υt′(u)) may be large enough to overwhelm
the true difference in sizes, |Υt(u) \Υt′(u)|, causing ñu(Υt(u))− ñu(Υt′(u)) to be zero
even when |Υt(u) \Υt′(u)| ≥ t− t′.

Instead, we use the following high-level idea. Initially, each node selects itself with
probability 1/

√
n. The UIDs of the selected nodes are disseminated by pipelining (see

Section 3.4.2). Each node waits until there is some interval of 2
√
n contiguous rounds

in which it does not receive any new UID, and then halts.
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The expected number of nodes that select themselves is
√
n, and the latency of

pipelining is exactly the number of tokens, so the expected running time is D+ 3
√
n:

after D +
√
n rounds all tokens are received, and after waiting an additional 2

√
n

rounds, all nodes halt. Also, if node u halts at time t, then no new UIDs were
received at u between time t and time t − 2

√
n. Notice that at time t − 2

√
n, node

u has not received any UIDs of nodes at in-distance greater than t − 2
√
n from u,

because there is not enough time for these UIDs to reach u; and on the other hand,
at time t, “in expectation”, node u has already received all the UIDs from distance
t−√n. It follows that all UIDs from a distance no smaller than t−2

√
n but no greater

than t−√n are received between time t− 2
√
n and time t. By strong connectivity,

unless Υt(u) = V , there are at least
√
n nodes whose distances from u are in this

range; in expectation at least one of these nodes selects itself, and its UID is received
between time t− 2

√
n and time t, preventing node u from halting at time t.

To turn this idea into a concrete algorithm, we must overcome three hurdles:

• First, and easiest to overcome, is the fact that our algorithm should succeed
with high probability rather than just “in expectation”.

• We do not wish to assume that the nodes initially know the size n of the net-
work.1 This means that nodes do not know the appropriate probability to select
themselves (1/

√
n), nor do they know how long to wait for new tokens (2

√
n).

To deal with this challenge we will use exponentially-increasing guesses for the
size of the network, but we will see that adapting the idea above to a guess
instead of the true size n is slightly more complicated than one might expect.

• Finally, note that the correctness and latency guarantee of pipelining depends
on all nodes participating until all tokens are disseminated everywhere. In our
sketch above, we allowed nodes to simply halt when they have not received any
new UIDs for sufficiently long; however, if nodes actually do this, their lack of
further participation may effectively cause a partition in the network and foil
the other nodes.

To address this, we add a termination protocol, which all nodes execute alongside
the estimation protocol sketched above. The estimation protocol is responsible
for identifying a time t such that Υt(u) = V ; once such a time has arrived, we
say that node u is ready. However, node u continues participating in pipelining
until it is certain that all other nodes are also ready, and only then halts.

Let us now turn to the technical details.

6.3.2 Token Selection Schemes

Our algorithm is based on having nodes generate some initial set of tokens, and then
pipeline these tokens and halt when no new token is received “for a long time”. Let
us use A(u) to denote the set of tokens generated by node u, and A(S) =

⋃

u∈S A(u).

1We did assume this for our lower bound, to make it stronger, but it is not an appealing assump-
tion on which to base an algorithm for HFn.
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A token selection scheme is defined as follows. For each guess k, for the logarithm
of the size of the network, k = log logN, . . . , logN , the scheme specifies a parameter
ℓk and a mechanism by which each node selects a set of tokens from the set {1, . . . , ℓk}.
We define Lk :=

∑

i≤k ℓk. Assume that β tokens can fit in a B-bit message, and let
τk := ⌈Lk/B⌉.

For each guess k, let Ak(S) denote the set of tokens generated by the nodes of
S ⊆ V , and let Tk be the total number of tokens generated by all nodes. Also, let

k̂ := max {log logN, logn}

be the “correct” value of the guess k when executed in networks of size n. The
token selection scheme must guarantee that the following event G occurs with high
probability:

(G1) Tk̂ ≤ ℓk̂/2, that is, on level k̂, no more than ℓk̂/2 tokens are generated by all
nodes together.

(G2) For any node u ∈ V , level k ≤ k̂ and distance d ≥ τk such that Υd(u) ⊂ V ,
either |Ak(Υd−τk(u))| > ℓk/2 or Ak(Υd(u)) \ Ak(Υd−τk(u)) 6= ∅.

We will see in Section 6.3.3 that given a token selection scheme satisfying these
requirements, we can solve HF n in O(D+ℓk̂) rounds with high probability. Thus, our
goal is to find a scheme satisfying these requirements and minimizing the parameter
ℓk̂ (to the extent possible in light of our lower bound from Section 6.2).

In Section 6.3.1 we sketched a scheme where each node selects its own UID with
probability 1/

√
n, and this is the only token it generates. When we attempt to adapt

this to a guess k instead of the true size n, the immediate inclination is to have each
node select itself with probability 1/

√
k. This preserves the essential property that in

each
√
k-neighborhood, in expectation at least one node selects itself. Unfortunately,

the other side of the equation is that we must not have too many nodes select them-
selves, as we must still collect all tokens from the

√
k-neighborhood using pipelining.

If each node selects itself with probability 1/
√
k, we will have n/

√
k tokens in expec-

tation, so the pipelining latency will be n/
√
k. If k < n, then 2

√
k rounds will not

be sufficient to collect all tokens, and we may mistakenly think that no nodes in the
neighborhood selected themselves when in fact some nodes did.

To restrict the total number of tokens, we simply have nodes select not their own
UID but a random name from the domain {1, . . . , ℓk}, where

ℓk := 12(c+ 3)
√

2k+4β lnN + 1.

Here c is a constant corresponding to the desired success probability (1−1/N c). Note
that since our guesses satisfy k ≥ log logN , we have 2k+4 ≥ 16 logN > lnN , and
therefore ℓk ≥ 12(c+3) lnN+1 for each guess k that we consider. (We do not attempt
to optimize constants here.)

After choosing a random name, each node selects its name with probability

pk :=
ℓk

2k+2
.
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Let us now show that the property G is satisfied with high probability.

Lemma 6.14. For any subset S ⊆ V of size at least τk, with probability at least
1− 1/(2N c+3) we have either |Ak(V \ S)| > ℓk/2 or Ak(S) \ Ak(V \ S) 6= ∅.

Proof. By the chain rule of probability, it is sufficient to show that given |Ak(V \S)| ≤
ℓk/2, with probability at least 1− 1/(2N c+3) we have Ak(S) \Ak(V \ S) 6= ∅. In this
scenario, there are at least ℓk/2 names that are not in Ak(V \ S), and each node in
S has a probability of at least 1/2 of choosing such a name. After selecting a name,
each node in S selects itself with probability pk; in order for Ak(S) \Ak(V \ S) to be
non-empty, at least one node in S must choose a name that is not in Ak(V \ S) and
then select itself.

The probability that a specific node v ∈ S chooses a name not in Ak(V \ S) and
also selects itself is at least pk/2. Since |S| ≥ τk, the expected number of nodes that
generate a token outsideAk(V \S) is at least (pk/2)τk ≥ (ℓk/2

k+3)(ℓk/β) = ℓ2k/(2
k+3β),

and by Chernoff,

Pr [Ak(S) \ Ak(V \ S) = ∅] ≤ e−E[|Ak(S)\Ak(V \S)|]/2 ≤ e−ℓ2k/(2
k+4β)

≤ e−(c+3) lnN−1 <
1

2N c+3
.

Corollary 6.15. Event G2 occurs with probability at least 1− 1/(2N c).

Proof. For a specific node u ∈ V , level k and distance d ≥ τk, if Υd(u) 6= V then
by strong connectivity we have Υd(u) \ Υd−τk(u) ≥ τk. Let S := Υd(u) \ Υd−τk(u).
If the condition in G2 fails to hold for u, k and d, then we have both |Ak(V \ S)| ≥
|Ak(Υ

d−τk(u))| ≥ ℓk/2 and Ak(S) \ Ak(V \ S) ⊆ Ak(Υd(u)) \ Ak(Υd−τk(u)) = ∅. By
Lemma 6.14 this occurs with probability at most 1/(2N (c+3)). Since there are at most
N nodes, at most logN < N levels and at most N distances to consider, a union bound
shows that G2 is satisfied with probability at least 1−N3/(2N c+3) = 1−1/(2N c).

Lemma 6.16. With probability at least 1− 1/(2N c) we have |Tk̂| ≤ ℓk̂/2.

Proof. By definition, k̂ = max {log logN, logn}, and therefore 2k̂ ≥ n. Each node

selects itself on level k̂ with probability pk̂ = ℓk̂/2
k̂+2, so the expected number of nodes

selected is pk̂ ·n ≤ (ℓk̂/2
k̂+2) · 2k̂ < ℓk̂/4. By Chernoff, the probability that more than

ℓk̂/2 nodes select themselves is at most e−(1/3)·ℓ
k̂
/4 = e−ℓ

k̂
/12 < 1/(2N c). The number

of tokens generated cannot exceed the number of nodes that selected themselves, so
whenever no more than ℓk̂/2 nodes select themselves we also have |Tk̂| ≤ ℓk̂/2. The
claim follows.

Corollary 6.17. Event G holds with probability at least 1− 1/N c.

Proof. This follows from Corollary 6.15 and Lemma 6.14 by union bound.
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Remark 6.18. In [96], where these results were first presented, we used a differ-
ent selection scheme: instead of renaming and then having a subset of nodes select
themselves, we had each node select a subset of tokens {1, . . . , ℓk}, with each token
included in the set with probability roughly 1/2k. The ultimate effect is roughly the

same as in the scheme presented above, as each node still contributes ℓk/2
k ≈
√

2k

tokens in expectation.

6.3.3 Solving HFn using Token Selection

Next we put the token scheme we developed in 6.3.2 into use to solve the HF n task.

As we explained in Section 6.3.1, our algorithm is composed of two components
that run side-by-side. The first component is called the estimation protocol, and it
is responsible for identifying a time t such that Υt(u) = V ; after time t, we say that
node u is ready to halt (or simply ready). The second component is the termination
protocol, responsible for ensuring that no node halts before all nodes are ready to
halt. The interaction between the two components is limited to having the estimation
protocol inform the termination protocol when the node is ready. Nevertheless, the
success of each of the two protocols depends on the other.

In the estimation protocol, nodes initially generate tokens using the token selection
scheme, which we refer to by a subroutine generate(k). The tokens are stored in
pairs of the form (k, i), where k is the level on which the token was generated, and
i ∈ {1, . . . , ℓk} is the name of the token. The tokens are disseminated using pipelining,
packing β tokens into each message, with lower-level tokens taking precedence over
higher-level tokens. If a node does not receive any new tokens for 2τk rounds, and if
a total of no more than ℓk/2 tokens were received on level k, then the node decides
it has heard from all nodes and changes its status to ready. This condition is called
the level-k readiness condition.

In the termination protocol, nodes compute the last time when some node was
not ready, by sending each other reset(t) messages where t is the last time they have
heard of where some node was not ready. Each node u maintains a variable Mu which
stores the maximum value t received in a reset(t) message. If node u is not ready at
time t, it sends a reset(t) message in round t+ 1; otherwise it sends reset(Mu). Each
node u remembers the time Ru when it becomes ready; when u is ready and the time
t satisfies t−Mu > Ru, node u halts.

The two sub-protocols interact with each other through the ready variable, which
the estimation protocol sets to 1 when it completes; the R variable, which the esti-
mation protocol sets to the current time when it completes; and the t variable, which
stores the current time and is incremented by the termination protocol after each
round.

We will now show that whenever event G occurs, the algorithm above successfully
solves HF n in Õ(D +

√

n/B) rounds.

Pipelining latency guarantee. The algorithm relies on pipelining to quickly dis-
seminate small tokens throughout the network. Because we forward small tokens

163



Algorithm 6.1: A (D + Õ(
√

n/B))-round algorithm for HF n: the estimation
protocol

1 ready ← 0
2 for k = ⌈log logN⌉, ⌈log logN⌉ + 1, . . . , ⌈logN⌉ do
3 Tokens ← {k} × generate(k)
4 last updatek ← 0

5 end
6 Sent ← ∅
7 for r = 1, 2, . . . do
8 X ← select the β smallest tokens in Tokens \ Sent
9 broadcast X and set Sent ← Sent ∪X

10 receive tokens Y from neighbors
11 for all y = (k, i) ∈ Y \ Tokens do ∀k′ ≥ k : last updatek′ ← r
12 Tokens ← Tokens ∪ Y
13 if ∃k : (| {(k, i) ∈ Tokens} | ≤ ℓk/2) ∧ (r − last updatek ≥ 2τk) then

ready ← 1
14 R← t
15 break

16 end

Algorithm 6.2: A (D+ Õ(
√

n/B))-round algorithm for HF n: the termination
protocol

1 M ← 0
2 R←∞
3 t← 0
4 while ready = 0 or t−M ≤ R do
5 if ready = 0 then
6 M ← t
7 end
8 send reset(M)
9 receive reset(x1), . . . , reset(xm) from neighbors

10 M ← max {M,x1, . . . , xm}
11 t← t + 1

12 end
13 halt

164



before large ones, the progress of a token (k, i) can only be impeded by tokens on its
own level (k) or lower levels (k′ < k); there are at most Lk =

∑k
i=1 ℓi such tokens,

and β of them can be sent per message. Thus the “latency” of token (k, i) is at most
⌈Lk/β⌉ = τk.

Let Tokensv(t) stand for the value of the local variable Tokens at node v and time
t. We show the following generalization of Lemma 3.18 (extending it to messages that
each contain multiple tokens).

Lemma 6.19 (Pipelining Lemma II). Assume that no node halts before time t. Then
for any node v and token x, if t ≥ tdist(x, v), either x ∈ Sentv(t) or Sentv(t) contains
at least β (t− tdist(x, v)) tokens that are smaller than x.

Proof. The proof is by induction on t. The base case, t = 0, is immediate. For the
induction step, assume that t > 0, and that the claim holds at time t− 1.

First we dispense with the case where tdist(x, v) = 0, i.e., x ∈ Tokensv(0). Since
node v initially has token x, if v has not sent x by time t, it must be that v was busy
sending smaller tokens until time t; therefore Sentv(t) contains β ·t = β(t−tdist(x, v))
smaller tokens.

Now suppose that tdist(x, v) > 0, and let u be the next node from v along a short-
est path from some node that initially knows x to v. From the induction hypothesis
at (v, t− 1),

(⋆) Either x ∈ Sentv(t − 1) or Sentv(t − 1) contains β (t− 1− tdist(x, v)) tokens
smaller than x.

From the induction hypothesis at (u, t−1), together with the fact that Sentu(t−1) ⊆
Tokensv(t− 1) (because u is an in-neighbor of v),

(⋆⋆) Either x ∈ Tokensv(t − 1) or Tokensv(t − 1) contains β (t− 1− tdist(x, u)) =
β (t− tdist(x, v)) tokens smaller than x.

Note that if x ∈ Sentv(t− 1), or if Sentv(t− 1) contains at least β (t− tdist(x, v))
tokens smaller than t, then we are done, because Sentv(t−1) ⊆ Sentv(t). Therefore let
us assume that x 6∈ Sentv(t−1) and Sentv(t−1) contains less than β (t− tdist(x, v))
tokens smaller than x. There are three cases:

(a) x ∈ Tokensv(t − 1) and x is one of the β smallest tokens in Tokensv(t − 1) \
Sentv(t− 1). In this case x is sent out in round t and added to Sentv(t), and the
claim holds.

(b) x ∈ Tokensv(t− 1) but x is not one of the β smallest tokens in Tokensv(t− 1) \
Sentv(t−1). In this case β tokens smaller than x, which are not in Sentv(t−1), are
sent out in round t. It follows from this together with (⋆) that Sentv(t) contains
at least β (t− tdist(x, v)) tokens smaller than x, so the claim holds.

(c) x 6∈ Tokensv(t − 1). Let mT and mS be the number of tokens smaller than
x in Tokensv(t − 1) and Sentv(t − 1), respectively. Then (⋆⋆) indicates that
mT ≥ β (t− tdist(x, v)), and (⋆) shows that mS ≥ β (t− 1− tdist(x, v)). In
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round t, node v sends at least min {β,mT −mS} tokens smaller than x which are
not in Sentv(t−1). Therefore Sentv(t) contains at least mS+min {β,mT −mS} =
min {mS + β,mT} ≥ β (t− tdist(x, v)) tokens smaller than x.

This completes the proof.

Corollary 6.20. For all v ∈ V and t ≥ τk we have

Tokensv(t) ⊆ A(Υt(v)). (6.3.1)

Moreover, if no node halts before time t, then

Ak(Υt−τk(v)) ⊆ Tokensv(t) ⊆ A(Υt(v)). (6.3.2)

Proof. To show (6.3.2), let x ∈ Ak(Υt−τk
v ), i.e., tdist(x, v) ≤ t − τk. Recall that

τk = ⌈Lk/β⌉. By Lemma 6.19, either x ∈ Sentv(t) or Sentv(t) contains at least
β(t− tdist(x, v)) ≥ β(t− (t− ⌈Lk/β⌉)) ≥ Lk tokens smaller than x. However, there
are fewer than Lk tokens smaller than any token x on level at most k, so the second
case is impossible. Therefore x ∈ Sentv(t) ⊆ Tokensv(t).

The other inclusion, (6.3.1), is immediate: if x ∈ Tokensv(t) then we must have
tdist(x, v) ≤ t, otherwise it is impossible for node v to receive token x and add it to
Tokensv.

Global invariant. Now we can show that when G occurs, the algorithm succeeds
and has good round complexity. The following invariant tracks both the safety and
the progress properties of the algorithm. When we write Rv without a time (that is,
Rv rather than Rv(t)), we are referring to the time at which node v becomes ready.

Lemma 6.21. If event G occurs, then for all v ∈ V and times t,

(a) If the level-k readiness condition first holds for v at time t (that is, if Rv = t),
then Υt(v) = V .

(b) If no node halts before time t, then

Mv(t) = max {t′ | ∃w : (w, t′) ∈ past(v, t) ∧ readyw(t′) = 0} .

(c) If no node halts before time t, and node v halts at time t, then for all w ∈ V we
have (w,Rw) ∈ past(v, t).

(d) If node v halts at time t then all nodes are ready at time t.

(e) If no node halts before time t, and node v halts at time t, then

Mv(t) = max {Rw | w ∈ V } − 1.
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Proof. The proof is by induction on t. The base case, t = 0, is immediate, because
no node halts at time 0, the readiness condition does not hold for any node, and
Mv(0) = 0 satisfies requirement (b).

Now suppose that the claim holds at all nodes until time t− 1 for all nodes, and
let us show that the claim continues to hold for node v at time t.

(a) Suppose that the level-k readiness condition first holds for node v at time t. Then
node v is not ready at time t− 1. By the induction hypothesis part (d), no node
halts before time t. This allows us to apply Corollary 6.20.

The level-k readiness condition asserts that no new level-k tokens are received
during the time interval [t − 2τk, t]. Assume for the sake of contradiction that
Υt(v) 6= V , and let S := Υt−2τk(v), S ′ := Υt−τk(v). From Corollary 6.20 we see
that

(I) Ak(S ′) ⊆ Tokensv(t), that is, all tokens generated by the nodes of S ′ are
known to v at time t; and

(II) Tokensv(t − 2τk) ⊆ Ak(S), i.e., at time t − 2τk node v only knows tokens
generated by the nodes of S.

Since no new tokens were added to Tokensv between time t− 2τk and time t, we
must have Ak(S ′) = Ak(S); in other words, the nodes of S ′ \ S did not generate
any tokens that were not already generated by the nodes of S. Also, there can
be at most ℓk/2 tokens in Ak(S), because Ak(S) ⊆ Ak(S ′) ⊆ Tokensv(t) and the
second part of the readiness criterion asserts that |Tokensv(t)| ≤ ℓk/2. But this
violates G2 (with parameter d = t − τk), and thus contradicts our assumption
that event G occurs.

(b) Suppose that no node halts before time t. Then in particular, no node halts before
time t− 1, and we can apply part (b) of the induction hypothesis. According to
the termination protocol, in round t, each node w ∈ Υ(v) sends reset(Mw(t−1));
by part (b) of the induction hypothesis, for each w ∈ Υ(v),

Mw(t− 1) = max {t′ | ∃w : (w, t′) ∈ past(w, t− 1) ∧ readyw(t′) = 0} .

It follows that

Mv(t) = max {Mw(t− 1) | w ∈ Υ(v)}
= max {t′ | ∃w,w′ : w ∈ Υ(v) ∧ (w′, t′) ∈ past(w′, t− 1) ∧ readyw′(t′) = 0}
= max {t′ | ∃w′ : (w′, t′) ∈ past(v, t) ∧ readyw′(t′) = 0} .

(c) Suppose that node v halts at time t. Then:

(I) readyv(t) = 1, that is, t ≥ Rv. By part (a) of the induction hypothesis,

ΥRv(v) = V, (6.3.3)

that is, the inwards-eccentricity of node v does not exceed Rv.
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(II) Moreover,
t−Mv(t) > Rv. (6.3.4)

From (6.3.3) together with the fact that no node halts before time t and t ≥ Rv

we have past(v, t)t−Rv = V , that is, for each w ∈ V , (w, t− Rv) ∈ past(v, t). For
each w ∈ V , let tw ≥ t − Rv be the maximal time such that (w, tw) ∈ past(v, t).
If tw < Rw, that is readyw(tw) = 0, then by part (b) we have

Mv(t) = max {t′ | ∃w′ : (w′, t′) ∈ past(v, t) ∧ readyw′(t′) = 0} ≥ tw ≥ t−Rv.
(6.3.5)

But this contradicts (6.3.4), which asserts that Mv(t) < t − Rv. It follows that
tw ≥ Rw for all w ∈ V , and therefore we have (w,Rw)  (w, tw)  (v, t) and
(w,Rw) ∈ past(v, t).

(d) Suppose that node v halts at time t. If node v is not the first node to halt —
that is, if there is some node that halts at some time t′ < t — then by part (d) of
the induction hypothesis, all nodes are ready at time t′, and they remain ready
at time t. Thus, assume that no node halts before time t. By part (c), which we
have already proven for time t, we have (w,Rw) ∈ past(v, t) for each w ∈ V . But
this implies that t ≥ Rw for all w ∈ V , that is, all nodes are ready by time t.

(e) Suppose that v halts at time t, and no node halts before time t. Let t′ < t be the
last time when some node w is not ready. Then max {Rw′ | w′ ∈ V } = Rw = t′+1.
By part (c), (w,Rw) ∈ past(v, t), and therefore (w, t′) ∈ past(v, t) as well (because
t′ = Rw − 1). By part (b),

Mv(t) = max {t′ | ∃w′ : (w′, t′) ∈ past(v, t) ∧ readyw′(t′) = 0} ,

Since (w, t′) ∈ past(v, t) and readyw(t′) = 0, it follows that Mv(t) ≥ t′. On the
other hand, there does not exist any node w′ ∈ V such that readyw′(s) = 1 for
some s > t′. Therefore MV (t) ≤ t′ as well, and together we have Mv(t) = t′ =
max {Rw′ | w′ ∈ V } − 1.

Lemma 6.22. For all nodes v and times t we have

Mv(t) < max {Rw(t) | w ∈ V } .

Proof. First, note that if some node w is not ready at time t, then the claim holds
trivially, because Rw(t) =∞. Thus, assume that all nodes are ready at time t, and let
t′ < t be the last time when some node was not ready. Then max {Rw(t) | w ∈ V } =
t′ + 1, that is, the last node becomes ready at time t′ + 1.

By Lemma 6.21 part (c), no node halts before time t′, and by part (b) of the
lemma, for each v ∈ V we have

Mv(t
′) = max {t′′ | ∃w : (w, t′′) ∈ past(v, t′) ∧ readyw(t′′) = 0} ≤ t′,
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and therefore max {Mv(t
′) | v ∈ V } ≤ t′.

From time t′ + 1 onwards, all nodes are ready; they do not execute line 6 of the
termination protocol, and do not increase their M variable except upon receiving a
reset(x) value with x > M from some neighbor. Therefore, an easy induction on time
shows that for all t ≥ t′ + 1 and nodes v we have Mv(t) ≤ max {Mw(t′) | w ∈ V } ≤ t′.
The claim follows, because we already observed that max {Rw(t) | w ∈ V } = t′ + 1 >
t′.

Whenever event G occurs, we can also bound the round complexity of the algo-
rithm in terms of k̂, the “correct” value of k. We first show that all nodes become
ready quickly, and then argue that they halt not too long after the last node becomes
ready.

Lemma 6.23. In graphs of diameter D, when event G occurs, then all nodes become
ready by time D + 3⌈Lk̂/β⌉. That is, for each v ∈ V we have

Rv ≤ D + 3⌈Lk̂/β⌉.

Proof. Suppose that there is some node that is not ready before time D + 3⌈Lk̂/β⌉
(otherwise we are done). Then by Lemma 6.21, no node halts before this time, and
we can apply Corollary 6.20 to all times t′ ≤ D + 3⌈LK̂/β⌉.

From Corollary 6.20, at time D+⌈Lk̂/β⌉ we have Ak̂(Υ
D
v ) = Ak̂(V ) ⊆ Tokensv(t),

i.e., node v knows all Lk̂ tokens of the form (k, i) where k ≤ k̂. After this time node
v cannot hear any new tokens on level k, so by time D + 3Lk̂/β the first part of the

readiness criterion is satisfied for level k̂.

Lemma 6.24. If the last node becomes ready at time t, then each node v halts no
later than time t +Rv.

Proof. Fix a node v. Since the last node becomes ready at time t, we have

max {Rw(t) | w ∈ V } = t.

By Lemma 6.22,
Mv(t+Rv) < max {Rw(t) | w ∈ V } = t.

Therefore t + Rv −Mv(t + Rv) > Rv. At time t + Rv ≥ Rv we have readyv = 1, so
the condition for terminating at time t+ Rv (line 4) holds at node v.

Corollary 6.25. When event G occurs, the algorithm terminates in 2D + 6⌈Lk̂/β⌉
rounds.

Proof. By Lemma 6.23, all nodes v have Rv ≤ D + 3⌈Lk̂/β⌉. Applying Lemma 6.23
we see that each node v terminates no later than time max {Rw | w ∈ V } + Rv ≤
2(D + 3⌈Lk̂/β⌉).

Putting all the ingredients together, we obtain the following theorem.
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Theorem 6.26. For any constant c, with probability at least 1 − 1/N c each node v
halts at a time t = O(D + Lk/β) = Õ(D +

√

n/B) such that Υt(v) = V .

Proof. By Corollary 6.17, event G occurs with probability at least 1 − 1/N c. As we
have already seen, whenever G = G1 ∧ G2 occurs, the algorithm succeeds and halts
after at most 2D + 6⌈Lk̂/β⌉ rounds. By definition, since k̂ = max {log logN, logn},

Lk̂ =
k̂
∑

i=1

ℓi = O(

√

2k̂β lnN) = O(
√

(n+ logN)β logN).

(The last term in the sum, ℓk̂, dominates.) Substituting into the running time yields

2D +O

(√
nβ logN√

β

)

= 2D +O

(√

n

β
logN

)

.

We assumed that β tokens can fit in each B-bit message. Each token is a pair (k, i),
where k ≤ max {log logN, logn} ≤ logN and i ≤ ℓk = O(B logN). Therefore each
token can be represented using O(log logN + logB) bits, and β = Ω(B/(logB +
log logN)). The running time is therefore

2D +O

(
√

n(logB + log logN)

B
logN

)

= 2D + Õ

(
√

n

B

)

.

6.3.4 Simultaneous HFn

Algorithm 6.1 guarantees that each node u will halt at some time tu such that Υtu(u) =
V , but it does not guarantee that all nodes will halt at the same time. This has two
drawbacks that make Algorithm 6.1 less useful as a building block: first, if nodes do
not finish Algorithm 6.1 at the same time, then they do not begin executing whatever
code follows it synchronously; and second, it may be useful for all nodes to obtain the
same upper bound on the diameter of the graph, but the time tu when Algorithm 6.1
halts is only an upper bound on node u’s own inward-eccentricity.

It is easy to modify the algorithm to obtain simultaneous termination and also
provide all nodes with the same upper bound on the diameter. To do this, we leave
the estimation protocol as-is, and modify only the termination protocol. Now, when
the termination condition (the negation of the condition in line 4) holds, nodes do
not immediately halt; instead they increment M and start an M-round countdown,
where for M rounds they inform all nodes to halt and adopt M as their final estimate.
During the countdown all nodes that are already informed of the countdown send
countdown(T,M) messages, where T is the target time for halting and M is the final
estimate for the diameter. At time T , all nodes halt and output M .
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Algorithm 6.3: Simultaneous HF n: the termination protocol

1 M ← 0
2 R←∞
3 t← 0
4 H ←∞
5 while ready = 0 or t−M ≤ R do
6 if ready = 0 then
7 M ← t
8 end
9 send reset(M)

10 receive msgs from neighbors
11 if countdown(t′, x) ∈ msgs then
12 H ← t′

13 M ← x
14 goto 24

15 end
16 else if msgs = {reset(x1), . . . , reset(xm)} then
17 M ← max {M,x1, . . . , xm}
18 end
19 t← t + 1

20 end
21 M ←M + 1
22 H ← t+M
23 while t < H do
24 send countdown(H,M)
25 receive msgs from neighbors
26 if countdown(H ′,M ′) ∈ msgs then
27 H ← min {H,H ′}
28 end
29 t← t + 1

30 end
31 halt and output M
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Analysis. As with Algorithm 6.1, we analyze the algorithm under the assumption
that the “good” event G occurs. We already know from the previous section that G

occurs with high probability.
We say that node v starts the countdown at time t if no countdown messages are

sent until time t, and the first countdown message is sent by node u in round t + 1.2

As the countdown starts exactly at the time when in Algorithm 6.1 the first node
decides to halt, Lemma 6.21 continues to hold, with the following modifications:

Lemma 6.27. If event G occurs, then for all v ∈ V and times t,

(a) If the level-k readiness condition first holds for v at time t (that is, if Rv = t),
then Υt(v) = V .

(b) If no node halts before time t, then

Mv(t) = max {t′ | ∃w : (w, t′) ∈ past(v, t) ∧ readyw(t′) = 0} .

(c) If no node halts before time t, and node v starts the countdown at time t, then
for all w ∈ V we have (w,Rw) ∈ past(v, t).

(d) If node v starts the countdown at time t then all nodes are ready at time t.

(e) If no node halts before time t, and node v reaches line 20 at time t, then

Mv(t) = max {Rw | w ∈ V } − 1.

The proof is nearly identical to the proof of the original Lemma 6.21, and we do
not repeat it here.

Corollary 6.28. If node v is past line 20 of the algorithm at time t, then Mv(t) =
max {Rw | w ∈ V }.

Proof. There are two ways a node can reach a line greater than 20:

I. It can execute line 20 and proceed from there. By Lemma 6.27, when node v
reaches line 20 in round t, we have Mv(t − 1) = max {Rw | w ∈ V } − 1. Upon
executing line 20 we obtain Mv(t) = max {Rw | w ∈ V }.

II. Node v may receive a countdown(x, y) message in some preceding round r ≤ t
and set Mv to y as a result. In this case we have y = Mu(r − 1), where u is
the node that sent the countdown(x, y) message. Node u is itself already past
line 20 when it sends the countdown(x, y) message. Therefore an easy induction
on time shows that the claim holds in this case as well.

2If more than one node sends a countdown message in round t+1, then all nodes that send such
messages are said to start the countdown at time t.
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Now we can show that the following invariant holds during the countdown:

Lemma 6.29. Assume that event G occurs, and let v ∈ V be a node that starts the
countdown at time t. Then Mv(t) ≥ D, and for any t′ ∈ {t, . . . , t+Mv(t)},

(a) No node halts before time t′,

(b) All nodes u ∈ V have Hu(t′) ≥ Hv(t), and

(c) All nodes u such that dist(v, u) ≤ t′− t are past line 20 and have Mu(t′) = Mv(t)
and Hu(t′) = Hv(t) = t+Mv(t).

Proof. Given event G we have ΥRw(w) = V for all nodes w ∈ V , and consequently
max {Rw | w ∈ V } ≥ D. If v starts the countdown at time t, then in particular no
node halts until time t, and by Corollary 6.28 we have Mv(t) = max {Rw | w ∈ V } ≥
D.

Now let us show the invariant concerning times t′ ≥ t, by induction on t′. The
base case is t′ = t. At this time no node has halted yet, by our assumption that the
countdown starts at time t, so part (a) holds. Also, since no countdown messages
have been sent yet, any node u that has changed Hu from its initial value of ∞ is
already past line 20; by Corollary 6.28, Mu(t) = Mv(t) = max {Rw | w ∈ V }, and
consequently Hu(t) = t + Mu(t) = t + Mv(t) = Hv(t). Therefore part (b) holds as
well. And finally, node v is the only node at distance 0 from itself, so part (c) holds
trivially.

For the induction step, assume that the claim holds until time t′, and consider
time t′ + 1 ≤ t +Mv(t). We need to show the following.

(a) No node has halted before time t′ + 1: from part (b) of the induction hypothesis,
all nodes u have Hu(t′) ≥ Hv(t) = t +Mv(t) ≥ t′ + 1. Nodes only halt at time s
if Hu(s) = s, so no node can halt before time t′ + 1.

(b) All nodes u ∈ V have Hu(t′+1) ≥ Hv(t): by part (b) of the induction hypothesis,
for any u ∈ V , Hu(t′) ≥ Hv(t). If node u does not change the value of Hu in
round t′ + 1 then the claim continues to hold. If node u does change Hu to some
value x in round t′ + 1, there can be two reasons for the change:

I. Node u received a countdown(x) message in round t′ + 1 from some other
node w: then x = Hw(t′), and by the induction hypothesis, Hw(t′) ≥ Hv(t).

II. Node u executes line 22 in round t′ + 1, and sets Hu to t′ + Mu(t′). As
in the induction base, node u must have previously executed line 20, and
by Lemma 6.27 part (e) we have Mu(t′) = Mv(t). Therefore Hu(t′ + 1) =
t′ +Mu(t′) ≥ t +Mv(t) = Hv(t).

(c) All nodes u such that dist(v, u) ≤ t′ + 1 − t have Mu(t′ + 1) = Mv(t) and
Hu(t′ +1) = Hv(t) = t+Mv(t): fix one such node u. By the induction hypothesis
we have Hw(t′) ≥ Hv(t) for all nodes w, and by Corollary 6.28, any node w
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that sends a countdown in round t′ + 1 has Mw(t′) = Mv(t). Consequently all
countdown(x, y) messages sent in the network have x ≥ Hv(t) and y = Mv(t).

If we already have Mu(t′) = Mv(t) and Hu(t′) = Hv(t) (in particular, by the
induction hypothesis, if dist(v, u) ≤ t′ − t), then no countdown message received
in round t′ + 1 can cause u to change either variable, as M is never changed after
line 20, and H can only be changed upon receiving a smaller value in a countdown
message (but we showed that no smaller values than Hv(t) are sent).

If dist(v, u) = t′− t+ 1, then there is some node w ∈ Υ(u) such that dist(v, w) =
t′ − t, and by the induction hypothesis, Mw(t′) = Mv(t) and Hw(t′) = Hv(t). In
round t′+1 node w sends a countdown(Hw(t′),Mw(t′)) message, which is received
by node u. Upon receiving the message node u sets Mu(t′ + 1)← Hw(t′) = Hv(t)
and, if it did not already have Mu(t′) = Mv(t), it now sets Mu(t′ +1) to Mw(t′) =
Mv(t).

Theorem 6.30. For any constant c, with probability at least 1− 1/N c, all nodes halt
at the same time t = O(D + Lk/β) = Õ(D +

√

n/B) and output the same value M
satisfying M ≥ D.

Proof. We already saw in Theorem 6.26 that with probability at least 1−1/N c, event G
occurs, and in the original algorithm all nodes u halt by time Õ(D+

√

n/B) and have

Ru = Õ(D+
√

n/B) as well. In the new algorithm the countdown starts at the time

the first node would halt in the original algorithm, so at some time t = Õ(D+
√

n/B),

some node v starts the countdown, with Mv(t) = max {Rw | w ∈ V } = Õ(D+
√

n/B)

and Hv(t) = t + Mv(t) = Õ(D +
√

n/B). By Lemma 6.29, all nodes halt at time
Hv(t) and output Mv(t), which satisfies Mv(t) ≥ D by Corollary 6.28.
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Chapter 7

Distributed Task Allocation in
Directed Networks

In many distributed systems, a large amount of work is performed quickly and effi-
ciently by partitioning the work across the participants in the network. The “work”
to be performed can range from computational work, such as simulating a complex
physical environment or solving a complex optimization problem, to physical work,
such as having robots travel to various locations to carry out assorted tasks. In all
cases, effectively parceling out parts of the global goal to be performed by individual
participants is key to the overall efficiency of the system. This problem has been
studied in many forms and guises, from fault-tolerant task allocation (see [137]) to
centralized and distributed scheduling (e.g., [57, 38, 109] and many others), from
theoretical (e.g., the k-server problem [52]) to practical approaches [1].

In this chapter we study the communication complexity of task allocation, that is,
the total number of bits that the participants need to exchange to allocate the tasks
between themselves. We consider an abstract version of the problem, TaskAllocm,n,
where m players must jointly perform a set of n tasks (we often assume that the set
of tasks is {1, . . . , n}). Each player i receives as input a set Xi ⊆ {1, . . . , n} of
tasks that it is capable of performing; for example, in the case of robots performing
tasks at different geographical locations, the player’s input might consist of the set
of locations requiring servicing that the robot can “see” with its sensors. The goal
is for the players to partition the tasks between them: each player i must output
a subset of tasks Yi ⊆ Xi, such that

⋃

i Yi = {1, . . . , n} and Yi ∩ Yj = ∅ for all
i 6= j. To make the problem feasible, we consider only inputs X1, . . . , Xm such that
⋃

iXi = {1, . . . , n}, that is, there exists some partition that covers all the tasks.
The players are charged for communicating among themselves, but not for writing
their output sets Y1, . . . , Ym. We consider various models of communication between
the players, from shared-blackboard to arbitrary strongly-connected communication
networks.

The task allocation problem can be viewed as a restricted one-shot instance of the
well-known k-server problem [52], where a centralized online algorithm assigns tasks
to k servers, minimizing the total cost of servicing all tasks. In the k-server problem
each (server, task) pair is associated with a cost for having the server perform the task,
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and moreover, tasks arrive continually and must be assigned in an online manner. In
TaskAlloc, all tasks are initially known, and all have a cost of either 1 (if the task
can be performed by the player) or ∞ (if it cannot). Partitioning the tasks between
the players corresponds to finding a minimum-weight assignment of tasks to servers.
To the best of our knowledge, the k-server problem has not been studied from the
perspective of communication complexity, although distributed variants have been
studied (e.g., [13, 20]). These variants achieve good competitive ratio w.r.t. the cost
and the number of messages sent, but require large messages and total communication.
(The algorithm of [20] is competitive w.r.t. the number of messages sent, but not the
size of individual messages; these can grow large, as serves simulate a centralized
k-server algorithm and send each other configurations of the centralized algorithm.)
In this thesis we are not interested in competitive analysis, as the variant we consider
is single-shot; extensions to weighted inputs and the online setting remain interesting
directions for future work.

Our work raises several open problems, which we discuss in Section 7.7. In general,
two-player communication complexity lower bounds have proven very useful in prov-
ing lower bounds on various distributed problems (e.g., [123, 133, 58, 96]). However,
distributed computation is more accurately captured by multi-player communication
games in the number-in-hand model, where each player knows its own input (contrast
with the number-on-forehead model, where each player knows all the other players’
input). The number-in-hand model was neglected by the communication complexity
community for a time, but recently several new techniques have led to exciting ad-
vances (see [65, 77, 78]). We believe that the complexity of distributed computing
in the CONGEST model, where bandwidth is restricted, can be analyzed in terms of
a multi-player communication game. Importing problems from the distributed com-
puting world into the communication complexity model raises issues which are not
often considered in existing communication complexity lower bounds: search prob-
lems, where players are allowed to choose one of many possible outputs (e.g., electing
a leader or reaching consensus);1 partial knowledge, where each player needs to out-
put only part of the answer (as exemplified in the TaskAlloc problem); and unicast
communication cost, where we wish to charge players for the number of other players
they communicate with, not just the total communication complexity as in the shared
blackboard model. We believe that these issues yield new and interesting questions
in multi-player communication complexity.

Despite the apparent simplicity of the problem, TaskAlloc is rich enough to
admit a strong lower bound: in Section 7.2 we show that even for two players (using
public random coins), TaskAlloc2,n has a randomized communication complexity of
Ω(n). We apply this bound in Section 7.3 to show that computing a rooted spanning
tree in directed broadcast networks with diameter 2, where each message is restricted
to B bits, requires Ω(n/B) rounds — even when the size of the network is fixed
in advance, the diameter is known, and nodes have unique identifiers in the range

1Many well-known lower bounds in communication complexity concern decision problems, but
there are some cases where search problems play an important role; for example, in [81] it is shown
that proving a circuit-depth lower bound for a function f reduces to proving a communication lower
bound on a certain search problem associated with f .
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1, . . . , n. In Section 7.4 we study the communication complexity of TaskAllocm,n in
the classical multi-player setting where players communicate over a shared blackboard.
We give two randomized algorithms: the first requires players to write large messages
on the blackboard, but has an overall communication complexity of O(n log(n+m))
and terminates in O(logm) rounds with high probability on any input. The second
algorithm we give works well when no small number of players has to take care
of a large set of tasks, a property that is formally captured by our definition of
task-player expansion in Section 7.1. For inputs with task-player expansion α, our
second randomized algorithm terminates in O

(

(1/α+ logm) logn
)

rounds (or better,
see Theorem 7.13 in Section 7.4) and uses messages of size O(log(n + m)). This is
optimal to within a polylog(m,n) factor. In Section 7.5 we extend our results to an
arbitrary strongly-connected communication network between the players, with the
size of individual messages bounded by B. We show that in networks of diameter
D, TaskAllocm,n can be solved in O(D+

√

m/B logm+ n log(n+m)/B) rounds,
using a total of O((m+ n) polylog(m,n)) bits of communication.

7.1 Problem Statement

Task allocation. The distributed task allocation problem, denoted TaskAllocm,n,
is defined over a set T of |T | = n tasks and a set V of |V | = m players. We often
assume that T = {1, . . . , n}. Each player v ∈ V receives an input set Xv ⊆ T , with
the promise that

⋃

v∈V Xv = T . The goal is for each player to output a set Yv ⊆ Xv,
such that for all u, v ∈ V we have Yu ∩ Yv = ∅, and moreover,

⋃

v∈V Yv = T (that is,
{Yv | v ∈ V } is a partition of T ).

The input assignment {Xv | v ∈ V } induces a bipartite graph H = (V ∪̇T, F ),
where the edges F are given by F := {(v, x) ∈ V × T | x ∈ Xv}. We call H the task-
player graph. For convenience, for each task i ∈ T , we let Vi := {v ∈ V | i ∈ Xv}
denote the set of players that have task i in their input.

Communication model. In order to solve a given task allocation instance the play-
ers in V must communicate. In the current paper we assume synchronous communi-
cation, i.e., the players proceed in synchronous rounds. We consider two models of
communication:
• In the classical shared blackboard model, the players communicate by writing

messages on a shared blackboard which is visible to all other players.
• In addition, we are interested in the directed network model, which is the same

model we studied in Chapter 6. We assume that initially the players do not
know anything about the graph except possibly its size, i.e., the number of
players.

The shared blackboard model is a special case of the general network model, obtained
by choosing G := Km (the complete graph on m nodes).

We are interested in the following performance measures:
• Total communication complexity : the total number of bits ever sent or written

on the blackboard during the protocol.
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• Round complexity : how many rounds of communication are required (where in
each round each player can send/write one message).
• Message size: how many bits the players send or write on the blackboard in

each round. This parameter is usually specified as an external constraint, and
we denote it by B.

Task-player expansion. The hardness of an instance of TaskAlloc depends on
the properties of the input assignment, represented by the task-player graph H . In
particular, we will show that the complexity depends on how well tasks can be dis-
tributed among the players, as formally captured by the following definition.

Definition 7.1 (Task-Player Expansion). The task-player expansion of a task-player
graph H = (V ∪̇T, F ) is defined as

α(H) := min
T ′⊆T

∣

∣

⋃

x∈T ′ Vx
∣

∣

|T ′| .

Informally, when the task-player expansion is large, each set of tasks can be as-
signed to many different players; the problem is in some sense less constrained, which
makes it easier to solve. The smallest value α(H) can take is 1/n, which occurs when
one player receives all the tasks in his input and the others receive nothing. The
largest value, obtained when H is the complete bipartite graph, is m/n.

7.2 Two-Player Lower Bound for Task Allocation

We begin by analyzing the complexity of task allocation in the classic two-party
model, where two players, Alice and Bob, wish to allocate n tasks between them. In
this section we let TaskAllocn stand for TaskAlloc2,n, and we use U, V to denote
the inputs to Alice and Bob respectively and A,B to denote Alice and Bob’s outputs.
It is assumed that T = [n] and both players know n.

The tasks over which Alice and Bob “contend” are the ones in the intersection of
their inputs, U ∩ V ; these tasks must be output by one player but cannot be output
by both. If Alice does not output some task that she received in her input, then she
must know that this task is in the intersection of the inputs, and that Bob will output
it. The connection between task allocation and finding the intersection of the players’
inputs is formalized in the following easy lemma:

Lemma 7.2. Let (A,B) be a valid output on instance (U, V ) of TaskAllocn; that
is, A ∪B = [n], A ∩ B = ∅, A ⊆ U , and B ⊆ V . Then

(a) U \ A ⊆ U ∩ V and V \B ⊆ U ∩ V ; and

(b) U ∩ V ⊆ (U \ A) ∪ (V \B).
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Proof. For (a), let x ∈ U \ A (the other inclusion is similar). In particular, then,
x 6∈ A, and since A ∪ B = [n], we must have x ∈ B. But B ⊆ V , and therefore
x ∈ U ∩ V .

For (b), let x ∈ U ∩V . Since A∪B = [n] we have x ∈ A∪B; assume w.l.o.g. that
x ∈ A. Because A ∩B = ∅ we have x 6∈ B, but on the other hand we have x ∈ V (as
x ∈ U ∩ V ). Together we have x ∈ V \B.

Theorem 7.3. The randomized public-coin communication complexity of two-player
task allocation is Ω(n).

Proof. Suppose the input (U, V ) is generated according to the following distribution
D. Choose a random subset X ⊆ [n] of size pn. Next, choose a random subset
Y ⊆ [n] \X of size (1 − p)n/2. Let U := X ∪ Y and let V := X ∪ Ȳ . Let C be the
support of the distribution (i.e., pairs where each set is of size (1 + p)n/2, and the
intersection is of size pn).

We are interested in the probability over (U, V ) ∼ D that given only U , Alice can
guess U ∩ V = X . Given U , the set X is a uniformly-chosen subset of pn elements of
U . Therefore, given U , Alice’s chance of guessing X is at best

(

(1 + p)n/2

pn

)−1

≤
(

(1 + p)n/2

pn

)−pn

=

(

1 + p

2p

)−pn

. (7.2.1)

Informally, we will show that if there exists a protocol P for task allocation with
communication complexity o(n), then Alice can guess X = U ∩ V with statistically
impossible accuracy (i.e., she can succeed with probability better than the bound
above). For an execution of P , let A and B be the outputs of Alice and Bob, respec-
tively. By Lemma 7.2, U \A ⊆ U ∩V ; in other words, after executing P , Alice knows
that each element in her input that she did not output is in U ∩ V . If U \A is large,
this provides Alice with enough information to guess the remaining elements of U ∩V
“too accurately”.

More formally, let P be a public-coin protocol for task allocation with t rounds,
which succeeds with probability at least 1/2 on each input. For each input (U, V ) ∈ C
we have |U ∩V | = pn (by definition of C), and by Lemma 7.2, |(U \A)∪(V \B)| ≥ pn
(in fact the lemma shows equality, but we do not require it here). Thus, if P succeeds
then either |U \A| ≥ pn/2 or |V \B| ≥ pn/2; assume w.l.o.g. that with probability at
least 1/4 over both the choice of (U, V ) and the coin tosses of P , the players eventually
output a correct output (A,B) with |U \ A| ≥ pn/2.

Now Alice can guess X = U ∩ V given U as follows: she simulates protocol P
by guessing a t-bit transcript (in addition to P ’s own randomness), obtaining some
output A. With probability at least 1/4 · 2−t, Alice guesses a transcript for P that

(a) Matches the input and P ’s randomness (that is, a transcript that might actually
be generated when P is executed with input (U, V ) and the specific random string
Alice guessed), and

(b) Leads to a correct output (A,B), so in particular U \ A ⊆ X , and
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(c) Leads to an output (A,B) such that |U \ A| ≥ pn/2.

Now Alice knows that each element of U \A is in the intersection X (by Lemma 7.2),
and there are at least pn/2 such elements. This considerably narrows down the
number of possibilities for X : there remain at most

(

((1 + p)n/2− |U \ A|
pn− |U \ A|

)

≤
(

(1 + p)n/2

pn/2

)

≤
(

(1 + p)en/2

pn/2

)pn/2

=

(

(1 + p)e

p

)pn/2

values for X that are consistent with U \ A ⊆ X . By choosing the most likely
possibility given the transcript and the public randomness, Alice can guess the correct
value of X with probability at least

(

(1 + p)e

p

)−pn/2

=

(

1 + p

2p
· 2e
)−pn/2

.

Combining with the upper bound from (7.2.1) on Alice’s success probability, we obtain

1

4
· 2−t ·

(

1 + p

2p
· 2e
)−pn/2

≤
(

1 + p

2p

)−pn

.

Simplifying yields

t ≥ pn

2

(

log
1 + p

2p
− (1 + log e)

)

− 2.

To obtain a non-trivial lower bound we must select p such that log 1+p
2p

> (1+log e) ≈
2.4. For example, p := 1/16 satisfies this constraint.

To conclude, if P is a protocol for 2-player task allocation, then there must exist
an input on which with probability at least 1/2, at least n

32

(

log 17
2
− (1 + log e)

)

−
2 = Ω(n) bits are exchanged. Therefore the worst-case expected communication
complexity of P is Ω(n).

Remark 1. The lower bound can be extended to a relaxed variant of TaskAlloc,
where we allow an ε-fraction of tasks to be assigned to both players for a sufficiently
small constant ε ≥ 0. This corresponds to having Alice guess a (1− ε)-fraction of the
elements in the intersection U ∩ V .

Remark 2. The two-player communication complexity of TaskAllocn is O(n),
since Alice can always just send her complete input (represented as the n-bit char-
acteristic vector) to Bob, claim all the tasks in her input, and have Bob claim the
remaining tasks. Theorem 7.3 shows that this strategy is optimal. Moreover, if we
wish to find all the elements in the intersection, when the intersection is of size Ω(n),
repeatedly sampling a random element is the optimal strategy up to a log(n) factor.
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7.3 Lower Bound on Rooted Spanning Tree

Next we show how to apply the lower bound from the previous section to obtain
a lower bound on computing a rooted spanning tree. In Section 6.1.2 we had an
Ω(n/B) lower bound for diameter 2 networks, which we obtained as a corollary of the
counting lower bound (Theorem 6.3). This lower bound applied only when the count
was initially unknown. As we remarked in Section 6.1.2, it seems like knowing the
size of the network should not make it easier to find a spanning tree; we now show
that this intuition is correct.

Formally, the distributed rooted spanning tree problem in a network G = (V,E)
requires each node v ∈ V to output a value pv ∈ V ∪ {⊥}, such that the edges
{(v, pv) | v ∈ V } form a rooted spanning tree of G (oriented upwards toward the root).
Exactly one node v may output pv = ⊥, and this node is the root of the tree. In each
round of the algorithm, each node v ∈ V broadcasts B bits, which are delivered to
all of v’s out-neighbors in G. Each node of G initially knows the size n of the graph
and has a unique identifier (UID) drawn from the set [n].

Our lower bound shows that finding a rooted spanning tree is hard even in a
restricted class Gn of networks, where each G ∈ Gn is strongly-connected, has a
diameter of 2, and has no simple directed path of length more than 4. (In particular,
all spanning trees have depth at most 4, so the algorithm cannot be “confused” by
long paths or by tall potential spanning trees.) The reduction is almost the same as
the reduction we used to prove Theorem 6.3.

Theorem 7.4. Any algorithm for finding a rooted spanning tree in networks of Gn
requires at least Ω(n/B) rounds to succeed with probability 1/2.

Proof. We prove the theorem by reduction to the two-party task allocation problem
TaskAllocn−2. Specifically, we show that if there is an algorithm for finding a
rooted spanning tree in all networks of Gn which requires t rounds to succeed with
probability 1/2, then there is a public-coin protocol for solving TaskAllocn−2 with
communication complexity O(B · t). The theorem then follows from Theorem 7.3.

Fix an algorithm A for finding a rooted spanning tree. Given inputs U, V (respec-
tively), Alice and Bob can solve TaskAllocn−2 by simulating the execution of A in
a network GU,V = ([n], EU,V ), where

EU,V = ({n− 1, n} × [n− 2]) ∪ {(n− 1, n), (n, n− 1)}
∪ (U × {n− 1}) ∪ (V × {n}) .

Informally, in GU,V nodes n−1 and n represent Alice and Bob respectively, and nodes
1, . . . , n− 2 represent the task set of the TaskAllocn−2 problem. Nodes n− 1 and
n always have edges to all nodes of the network, regardless of the input. In addition,
the nodes of U have edges to node n− 1 (that is, to “Alice”) and the nodes of V have
edges to node n (“Bob”). It is easy to verify that GU,V ∈ Gn.

Alice and Bob cooperate to simulate the execution of A, using the public ran-
domness to assign outcomes to the coin tosses of nodes 1, . . . , n; bit n · k + i − 1 of
the public random string is interpreted as bit k of node i’s randomness (for i ∈ [n]
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and k = 0, 1, 2, . . .). Alice is responsible for locally simulating nodes U ∪ {n− 1};
she keeps track of these nodes’ states throughout the execution. Similarly, Bob is
responsible for simulating nodes V ∪{n}. (The nodes in U ∩V are simulated by both
players independently.)

To simulate one round ofA, the players update the states of their locally-simulated
nodes as follows: Alice computes the messages output by nodes U ∪{n− 1}, and Bob
computes the messages output by nodes V ∪{n− 1} in the current round; then Alice
and Bob send each other the messages output by nodes n−1 and n (resp.). Now Alice
computes the new state of each node in U after receiving the messages sent by nodes
n− 1 and n, and Bob does the same for the nodes in V . Finally, Alice computes the
new state of node n− 1 after receiving the messages sent by nodes U ∪ {n}, and Bob
updates the state of node n after receiving the messages of nodes V ∪ {n− 1}. Note
that in the final step, Alice and Bob know which nodes’ messages to deliver, because
Alice knows U and Bob knows V . It is not hard to see that for nodes i ∈ U ∩V , Alice
and Bob agree on the local state of i at every step of the simulation.

Suppose that A succeeds with probability at least 1/2 after t rounds. Then after
simulating round t of the execution, with probability at least 1/2 each node i ∈ [n−2]
outputs a parent pi ∈ [n] ∪ {⊥}, with exactly one node r ∈ [n] outputting ⊥. The
edges {(i, pi)} form a directed spanning tree with root r. To handle the root r, the
protocol concludes with one final exchange: Alice sends Bob one bit b indicating
whether some node i ∈ U (that Alice was simulating) output pi = ⊥. Finally the
players output the following sets:

A = {i ∈ U | pi = n− 1} ∪ {r, if r ∈ U and pr = ⊥} ;

B = {i ∈ V | pi = n} ∪ {r, if r ∈ V and pr = ⊥ and b = 0} .

It is easy to verify that A,B form a valid output on instance (U, V ), as each node in
[n− 2] except possibly r must choose either n− 1 or n as its parent (but not both),
and if r ∈ [n− 2] then it is assigned to exactly one player.

The total amount of communication used by the protocol is 2Bt+1 = O(Bt), and
a correct output is produced with probability at least 1/2.

The lower bound above can be shown to be nearly-tight for networks of constant
diameter (and in particular, the class Gn); more generally, in networks of diameter D
it is possible to construct a rooted spanning tree in O(D2 + n logn/B) rounds, as we
will see in Section 7.6. It is also easy to show that O(D + |E|/B) rounds suffice for
networks of any diameter, by simply disseminating all edges using pipelining. The
time complexity of finding a spanning tree in networks with diameter D = ω(

√
n)

and |E| = ω(n) remains open to the best of our knowledge.
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7.4 Multiparty Complexity in the Shared Blackboard
Model

In this section we study the complexity of distributed task allocation in the shared
blackboard communication model. First note that the two-player lower bound (The-
orem 7.3) can be embedded into the multi-player setting, yielding the following lower
bound:

Theorem 7.5. The shared-blackboard communication complexity of multi-player task
allocation is Ω(n). Further, for any α > 0, m ≥ αn+2, and n ≥ 1/α, there is a class
of inputs with task-player expansion α for which some player needs to communicate
Ω(1/α) bits.

Proof. We can embed a 2-player task allocation instance in an m-player game by
using only two of the players and giving no tasks to the rest. Therefore, it follows
from Theorem 7.3 that the communication complexity of TaskAllocm,n is Ω(n) for
any m.

For the bound involving the expansion α, choose two players u, v ∈ V , and parti-
tion the tasks into two sets T ′, T \ T ′, where |T ′| = 1/α. All the tasks in T ′ \ T are
assigned to each of the players in V \ {u, v}. As for the tasks in T ′, we use them to
construct a random 2-player input for the player u and v as in Theorem 7.3. Because
the sub-problem defined by {u, v} and T ′ is statistically independent of the problem
defined by the remaining players and tasks, u and v have to solve their 2/α-task sub-
problem by themselves2; hence, as in Theorem 7.3, either u or v has to communicate
at least Ω(1/α) bits.

The task-player expansion of our overall input assignment is α: for any set S ⊆ T
of tasks, each task x ∈ S∩T ′ is assigned to at least one player (either u or v or both),
and each task x ∈ S \ T ′ is assigned to m− 2 players (all players except u, v). Thus,
if S is a set of tasks that includes some task from T \ T ′, we have

∣

∣

⋃

x∈S Vx
∣

∣

|S| =
m− 2

s
≥ m− 2

n
≥ α.

If S includes only tasks from T ′, then its size is bounded by |T ′| = 1/α; in the worst
case all tasks will be assigned to only one player (u or v), so

∣

∣

⋃

x∈S Vx
∣

∣

|S| ≥ 1

s
≥ α.

Therefore the task-player expansion across all subsets of tasks is at least α.

There is a simple deterministic strategy that nearly matches the lower bound
above in terms of total bits communicated: we fix some arbitrary ordering v1, . . . , vm

2Indeed, since our lower bound assumes public randomness, players u and v are able to simulate

each of the other players, as the inputs of the other players are constant.
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of the players. The first player goes first and announces its input by writing it on the
shared blackboard. The second player goes next, and writes on the blackboard only
the tasks in its input that were not announced by the next player. The third player
writes the tasks from its input that were not claimed by the first two players, and so
on. Finally, after the last player’s turn, each player outputs exactly the tasks that
it wrote on the board. The total bit complexity is O(n logn), because each task is
written on the blackboard exactly once. However, the number of rounds is m in the
worst case, and messages may be as large as Ω(n logn) if the first player has Ω(n)
tasks in its input. In [41] we gave a randomized algorithm that addresses the first
concern by reducing the number of rounds to O(logm), but still uses messages of
size Ω(n log n). We do not include this algorithm here. Instead, we consider the case
where the input has large task-player expansion, and give a simple algorithm that
solves TaskAllocm,n quickly using messages of size O(log(n+m)).

In our algorithm, at the end of each round some tasks are permanently assigned
to a player. We let T (i) denote the set of tasks that have not been permanently
assigned by the beginning of round i+ 1 (that is, by time i), and we let V (i) denote
the set of players that still have some unassigned tasks at the beginning of round
i+ 1. Let H(i) be the subgraph of H (the task-player graph) induced by V (i)∪T (i).
In a similar manner, we use n(i) := |T (i)|, m(i) := |V (i)| and Xv(i) to denote the
number of remaining tasks, the number of remaining players, and player v’s remaining
(unassigned) tasks at the beginning of round i.

We now consider the case where in each round, each player can only send a message
of at most B = O(log(n + m)) bits. We give an algorithm that has a good round
complexity when the expansion α(H) of the task-player graph is large (cf. Definition
7.1). In the following, we assume that α(H) ≤ 1, i.e., the number of players does not
exceed the number of tasks. (If α(H) > 1, all appearances of α(H) in our bounds
can be replaced by 1.)

Description of the algorithm. In each round, every player v picks a random task
x ∈ Xv(i) uniformly, and proposes the assignment (v, x) by writing it on the black-
board. Task x is then permanently assigned to the smallest player u that attempted
to claim it (i.e., the first player that wrote (u, x) on the blackboard). Unassigned tasks
y ∈ T (i) for which no assignment (v, y) was proposed in round i remain unassigned.
We continue until all tasks in T have been assigned to some player.

Analysis of the running time. First, observe that in each round until the algo-
rithm terminates, at least one task is proposed and then permanently assigned to
some player. Therefore the algorithm terminates after at most n rounds, and to
analyze its running time it is sufficient to consider the first n rounds.

For 1 ≤ i ≤ n, we will let Hi denote the distribution induced by the algorithm on
histories up to time i, including all random choices made in rounds 1, . . . , i − 1. We
abuse notation slightly by also using Hi to denote the support of this distribution,
that is, the set of all possible histories up to time i.

In the rest of this section we assume a fixed input assignment H with task-player
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expansion α(H), and analyze the performance of the algorithm on H . We begin with
a proof outline, which presents the main definitions and lemmas, and then proceed
to fill in the technical details.

Proof outline. We show that in each round, the algorithm makes progress in one
of two ways: either a large fraction of tasks become assigned, or a large fraction of
players lose a large fraction of their task-player edges. We begin by making these
notions of progress formal. Let λ ∈ (0, α(H)/16] be a parameter whose value will be
fixed later.

Definition 7.6 (Task-reducing times). Given a history h ∈ Hi of the algorithm, we
say that time i is a task-reducing time if the expected number of tasks assigned in
round i+ 1 given h is at least λ|T (i)|.
Definition 7.7 (Edge-reducing times). Given a history h ∈ Hi of the algorithm,
time i is called edge-reducing for player v ∈ V (i) if given h, in expectation at least
(

1 −
√

λ/α(H)
)

· |Xv(i)| tasks from Xv(i) are permanently assigned in round i + 1.

Time i is called edge-reducing if it is edge-reducing for at least (1−
√

λ/α(H))|V (i)|
players.

Informally, if a time is task-reducing, we make progress because many tasks be-
come assigned. On the other hand, if the time is not task-reducing, this means that
many players picked the same task to propose (because each player proposes one task,
but not many tasks were proposed in total). Each task x proposed in round i + 1
becomes assigned to some player, and the other players v then remove this task from
their remaining input Xv(i+ 1), causing edge (v, x) to be removed from H(i+ 1). If
H has good expansion, many players are incident to (i.e., have in their input) some
task among the tasks proposed in round i+ 1, and all such players now shed all edges
corresponding to proposed tasks. Thus we can show:

Lemma 7.8. For each time i and any possible history h ∈ Hi, either time i is task-
reducing, or time i is edge-reducing.

To see why this is sufficient for the algorithm to terminate quickly, consider the
simple case where λ and α(H) are both constant. Then in expectation, each task-
reducing round causes a constant fraction of tasks to be eliminated, and each edge-
reducing round causes a constant fraction of players to shed a constant fraction of
their edges in the task-player graphs. After roughly log(n) edge-reducing rounds, a
constant fraction of players have no tasks remaining, and they are removed from V (i).
To eliminate all players (and hence all tasks) we require logarithmically-many such
“phases”, so the overall time complexity is O(logn · logm).

Our definition of task-reducing and edge-reducing rounds is stated in terms of
expectations, but we can use concentration of measure to show that in both cases we
make progress with at least constant probability.

Definition 7.9 (Successful rounds). If |Xv(i + 1)| ≤ (λ/α(H))1/4 · |Xv(i)|, then we
say that round i + 1 is a successful edge-reducing round for player v. We say that
round i+ 1 is successful if either
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• |T (i+ 1)| ≤ (1− λ/2)|T (i)|, or
• There are at least (1− (λ/α(H)1/8))|V (i)| players v for which round i + 1 is a
successful edge-reducing round.

Lemma 7.10. There is a constant q ≈ 0.12 such that given any history h ∈ Hi,
round i+ 1 is successful with probability at least q.

We now apply this result to analyze the total number of successful rounds in an
execution. We have shown that each round is successful with constant probability;
however, the rounds are not independent from each other. We therefore model the
algorithm’s progress as a submartingale. Let S(0, i) be a random variable counting
the number of successful rounds up to time i. We show that the sequence Z0, . . . , Zk

defined by Zi := S(0, i)− qi is a submartingale, and an easy application of Azuma’s
inequality then yields the following:

Lemma 7.11. For any k ≥ 0 and constant δ ∈ (0, 1) we have

Pr
h∼Hk

[

S(0, k) < δqk
]

≤ e−[q(1−δ)]2k/2.

It remains to show that when sufficiently many successful rounds occur, the al-
gorithm terminates. Recall that a successful round may be either task-reducing or
edge-reducing; we now show that for the algorithm to terminate, it is sufficient to
have

NT := log 1

1− λ
2

n =
logn

log 1
1−λ

2

successful task-reducing rounds, or

NE := 5 log
(α(H)

λ )
1/4(n) log

( 4
5)(α(H)

λ )
1/8(m) =

160 log(n) log(m)

log
(

α(H)
λ

)(

log
(

α(H)
λ

)

+ log
(

4
5

)

)

successful edge-reducing rounds. Let N = NT +NE .

Lemma 7.12. If h is a history that contains at least N successful rounds, then the
algorithm terminates in h.

Finally, combining Lemmas 7.11 and 7.12 yields the following bounds:

Theorem 7.13. With high probability, the algorithm terminates in at most T rounds,
where

T = O

(

logm logn

log2(α(H) logm)

)

if α(H) = Ω

(

1

logm

)

, and

T = O

(

log n

α(H)

)

if α(H) = O

(

1

logm

)

.

Let us now give the full proofs of these results.
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The technical details.

Lemma 7.8. For each time i and any possible history h ∈ Hi, either time i is task-
reducing, or time i is edge-reducing.

Proof. Fix a history h ∈ H(i). Let S ⊆ T (i) be a random variable representing the
number of tasks that are assigned in round i+1, given h. If time i is not task-reducing,
then E[S] < λ|T (i)|. We will show that in this case time i is edge-reducing for a large
fraction of remaining players. In the remainder of the proof all events, probabilities
and expectations are implicitly conditioned on the history h.

Let Cu be the event that in round i + 1, player u ∈ V (i) picks a task x ∈ Xv(i)
that is also picked by another player v ∈ V (i). From the assumption that time i is
not task-reducing,

∑

u∈V (i)

Pr(Cu) > |V (i)| − E[S] > |V (i)| − λ|T (i)| ≥ |V (i)| ·
(

1− λ

α(H)

)

. (7.4.1)

The last inequality follows because |V (i)| ≥ α(H)|T (i)|, by the assumption that H
has task-player expansion α(H).

For u ∈ V (i), let Zu be the fraction of tasks in Xu(i) that are assigned to some
player in round i + 1, and let Z ′

u be the fraction of tasks in Xu(i) that are proposed
by other players v ∈ V (i) \ {u}. Clearly, Z ′

u ≤ Zu, and therefore also E[Z ′
u] ≤ E[Zu].

Also, given that Z ′
u = x (that is, the other players propose an x-fraction out of player

u’s tasks), the probability that Cu occurs (that is, u proposes a task that is also
proposed by some other player) is x. We have

Pr(Cu) =

1
∑

x=1/|Xu(i)|

Pr(Z ′
u = x) · Pr(Cu|Z ′

u = x)

=

1
∑

x=1/|Xu(i)|

Pr(Z ′
u = x) · x = E[Z ′

u] ≤ E[Zu].

We need to show that for at least
(

1 −
√

λ/α(H)
)

|V (i)| players u ∈ V (i) we have

E[Zu] ≥
(

1 −
√

λ/α(H)
)

. (i.e., time i is edge-reducing for these players). Suppose

not. Then more than a
√

λ/α(H)-fraction of players have E [Zu] <
(

1−
√

λ/α(H)
)

,
and the remaining players have E [Zu] ≤ 1 (as Zu is a fraction, its value never exceeds
1). Therefore we can write

∑

u∈V (i)

Pr(Cu) ≤
∑

u∈V (i)

E[Zu]

<

(

1−
√

λ

α(H)

)

|V (i)| · 1 +

√

λ

α(H)
· |V (i)| ·

(

1−
√

λ

α(H)

)

=

(

1− λ

α(H)

)

· |V (i)|,
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a contradiction to Inequality (7.4.1).

Lemma 7.10. There is a constant q ≈ 0.12 such that given any history h ∈ Hi,
round i + 1 is successful with probability at least q.

Proof. Fix h ∈ Hi. In the sequel all probabilities and expectations are implicitly
conditioned on h.

First, suppose that in h, time i is task-reducing. For a task x ∈ T (i), let Sx be an
indicator random variable that takes the value 1 iff task x is assigned in round i+ 1.
The sum S =

∑

x∈T (i) Sx is the number of tasks that are assigned to some player in
round i + 1.

By our assumption that time i is task-reducing, E[S] ≥ λ|T (i)|. To apply a concen-
tration bound, we observe that the process by which players choose tasks to propose
can be viewed as a balls-into-bins process, where each ball (player) independently
chooses a random bin (task) according to some distribution (which depends on its
remaining tasks). The indicator variable Sx is then 1 iff some ball (player) landed in
bin (task) x. It is well known that the set of variables counting the number of balls in
each bin is negatively associated, and that taking non-decreasing functions of a set of
negatively-associated variables preserves negative association [42]. Therefore the set
{Sx | x ∈ T (i)} is negatively associated (it is obtained by taking the non-decreasing
function that maps the number of players that chose task x to 1 iff this number is
greater than 0). This allows us to apply the Chernoff-Hoeffding bound to the sum
S [42], obtaining

Pr

[

S ≤ λ|T (i)|
2

]

≤ Pr

[

S ≤ E[S]

2

]

≤ e−(1/22)E[S]/2 ≤ e−1/8 ≈ 0.88. (7.4.2)

In the last inequality we used the fact thatE[S] ≥ 1, because at least one task becomes
assigned in each round until the algorithm terminates. It follows from (7.4.2) that
round i + 1 is successful with probability at least 1− e−1/8 ≈ 0.12.

If time i is not task-reducing, then by Lemma 7.8 it is edge-reducing. Let v ∈ V (i)
be a player for which time i is edge-reducing, and let Y = |Xv(i+1)| be the number of
edges (i.e., unassigned tasks) that player v has left after round i+1. We are interested
in the probability that round i + 1 is successful for player v, that is,

Y ≤
(

λ

α(H)

)1/4

· |Xv(i)|.

Since time i is edge-reducing for v, E[Y ] ≤
√

λ/α(H) · |Xv(i)| (by Definition 7.7),
and therefore by Markov,

Pr

[

Y >

(

λ

α(H)

)1/4

· |Xv(i)|
]

<

√

λ/α(H) · |Xv(i)|
(λ/α(H))1/4 · |Xv(i)|

=

(

λ

α(H)

)1/4

. (7.4.3)

This holds for any player v ∈ V (i) for which time i is edge-reducing.
We assumed that time i is edge-reducing, that is, time i is edge-reducing for at least

188



(1−
√

λ/α(H))|V (i)| players. Now let Z be the number of players for which round i+1
is either not edge-reducing, or edge-reducing but not successful. If Z ≤ (λ/α(H))1/8,
then by Definition 7.9, round i + 1 is successful. We will use Markov’s inequality to
show that this holds with at least a constant probability.

From (7.4.3), linearity of expectation, and the fact that round i is edge-reducing
for at least (1−

√

λ/α(H))|V (i)| players,

E [Z] ≤
√

λ

α(H)
|V (i)|+

(

λ

α(H)

)1/4

·
(

1−
√

λ

α(H)

)

|V (i)|

=

(

λ

α(H)

)1/4
(

1 +

(

λ

α(H)

)1/4

−
√

λ

α(H)

)

|V (i)|.

The maximum of f(x) = 1 + x− x2 is obtained at x = 1/2 and equals 5/4, so

E [Z] ≤ 5

4

(

λ

α(H)

)1/4

|V (i)|.

By Markov,

Pr

[

Z >

(

λ

α(H)

)1/8

|V (i)|
]

<

5
4

(

λ
α(H)

)1/4

|V (i)|
(

λ
α(H)

)1/8

|V (i)|
=

5

4

(

λ

α(H)

)1/8

≤ 5

4

(

1

16

)1/8

≈ 0.88.

Now set q := min
{

1− e−1/8, 1− (5/4)(1/16)1/8
}

≈ 0.12. We have shown that if
time i is task-reducing then round i+ 1 is successful with probability at least q, and
otherwise time i is edge-reducing and round i + 1 is still successful with probability
at least q. This completes the proof.

In the sequel, let S be a random variable counting the number of successful rounds
in the history, and let q be the constant from Lemma 7.10. Also, let h[i, j] denote
times i, . . . , j of h, and let S(i, j) be short-hand for S(h[i, j]).

Lemma 7.11. For any k ≥ 0 and constant δ ∈ (0, 1) we have

Pr
h∼Hk

[

S < δqk
]

≤ e−[q(1−δ)]2k/2.

Proof. Let Z0, . . . , Zk be the sequence defined by

Zi := S(0, i)− qi.

189



Then for any history h ∈ Hk,

E

[

Zi+1

∣

∣

∣
h[0, i]

]

= E

[

S(0, i+ 1)− qi
∣

∣

∣
h[0, i]

]

= E

[

S(i, i+ 1)− q + S(0, i)− qi
∣

∣

∣
h[0, i]

]

= Pr
[

S(i, i+ 1) = 1
∣

∣

∣
h[0, i]

]

− q + Zi ≥ q − q + Zi = Zi.

(In the next-to-last step we used Lemma 7.10, which shows that for any h′ ∈ Hi,
Pr [S(i, i+ 1) = 1 | h′] ≥ q.) This shows that Z0, . . . , Zk is a submartingale (with
respect to the filtration {h[0, i]}i that reveals the first i rounds of the execution).
Moreover, since S(i, i + 1) ∈ {0, 1} for all i, we have

|Zi+1 − Zi| = |S(0, i+ 1)− q(i+ 1)− S(0, i) + qi| = |S(i, i+ 1)− q|
≤ min {q, 1− q} < 1.

Thus, Azume’s inequality yields

Pr
[

Zk − Z0 < −(1− δ)qk
]

≤ e
− ((1−δ)qk)2

2
∑k

i=1
12 = e−[q(1−δ)]2k/2.

By definition of the sequence we have Z0 = S(0, 0) − 0 = 0 and Zk = S(0, k) − qk;
therefore

Pr
[

S < δqk
]

= Pr
[

S− qk < δqk− qk
]

= Pr
[

Zk−Z0 < −(1− δ)qk
]

≤ e−[q(1−δ)]2k/2.

Lemma 7.12. If h is a history that contains at least N successful rounds, then the
algorithm terminates in h.

Proof. Since h contains at least N = NT +NE successful rounds, it contains either NT

successful task-reducing rounds or NE successful edge-reducing rounds. In the first
case it is easy to see that the algorithm terminates, as each successful task-reducing
round eliminates at least a λ/2-fraction of unassigned tasks; after NT = log1/(1−λ/2) n
such rounds no tasks remain.

In the second case, let ℓ := log(α(H)/λ)1/4 n, and let us divide the successful edge-
reducing rounds into blocks of 5ℓ rounds. Note that, since each edge-reducing round
that is successful for player v eliminates at least a (1 − (λ/α(H))1/4)-fraction of v’s
unassigned tasks, after ℓ such rounds player v is eliminated. We now show that each
5ℓ-round block eliminates at least a (1 − (5/4)(λ/α(H))1/8)-fraction of remaining
players.

Let m′, m′′ ≤ m be the number of players that still have unassigned tasks at the
beginning and end of the block, respectively. Consider a matrix where the rows are
indexed by the m′ initial players in the block, the columns are indexed by round
number inside the block, and entry (v, i) of the matrix is 1 if the i-th round is a
successful edge-reducing round for player v or if player v has no tasks left at the
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beginning of the round, and 0 otherwise. Let us count the number of zeroes in the
matrix.

• On one hand, each round in the block is a successful edge-reducing round, so in
each column i, if k players still have unassigned tasks at time i− 1, then there
are at most (λ/α(H))1/8k zeroes in the column. Since k ≤ m′ and the matrix
contains 5ℓ columns, the total number of zeroes is at most 5(λ/α(H))1/8m′ℓ.

• On the other hand, each player for which there are at least ℓ successful edge-
reducing rounds in the block is eliminated; since m′′ players remain, there are
at least m′′ rows that contain less than ℓ one entries, that is, they contain at
least 5ℓ− ℓ = 4ℓ zeroes. The matrix thus contains at least 4ℓm′′ zeroes.

Since the number of zeroes is bounded from below by 4ℓm′′ and from above by
5(λ/α(H))1/8m′ℓ, we must have

4ℓm′′ ≤ 5

(

λ

α(H)

)1/8

m′ℓ,

that is,

m′′ ≤ 5

4

(

λ

α(H)

)1/8

m′.

This shows that all but a (5/4)(λ/α(H))1/8-fraction of players are eliminated.
We already saw in Lemma 7.10 that (5/4)(λ/α(H))1/8 ≈ 0.88 < 1, so the num-

ber of player does shrink after every block. After log(4/5)(α(H)/λ)1/8 m blocks, each
comprising 5ℓ rounds, all players are eliminated and the algorithm completes. Since
NE = 5ℓ · log(4/5)(α(H)/λ)1/8 m, NE successful edge-reducing rounds are sufficient for
termination.

Theorem 7.13. With high probability, the algorithm terminates in at most T rounds,
where

T = O

(

logm log n

log2(α(H) logm)

)

if α(H) = Ω

(

1

logm

)

, and

T = O

(

logn

α(H)

)

if α(H) = O

(

1

logm

)

.

Proof. Consider the first cN rounds, where c is a constant that will be fixed later.
By Lemma 7.11, for histories of length cN ,

Pr [S < N ] = Pr

[

S <
1

c
· cN

]

≤ e−[q(1−1/c)]2·cN/2.

As we saw in Lemma 7.12, whenever S ≥ N the algorithm terminates. Therefore the
algorithm succeeds within cN rounds with probability at least 1− e−c′N , where

c′ :=

[

q

(

1− 1

c

)]2

· c
2
−−−→
c→∞

∞
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is a constant that can be chosen arbitrarily large by increasing c.
Recall that NT = O(logn/ log(1/(1 − λ))), NE = O(logn logm/ log2(α(H)/λ)),

and N = NT +NE . Let us now assume that the algorithm is run on a family of inputs
H with α(H) ≥ α for some fixed expansion α = α(m,n) ≤ 1. The only constraint
on λ is λ ∈ (0, α/16], but since we assume that α ≤ 1 this implies λ ∈ (0, 1/16]. For
such small values of λ we have 1− λ ≈ e−λ and consequently

log
1

1− λ = − log(1− λ) ≈ − log e−λ = Θ(λ).

Therefore NT = O(logn/λ).
If α = O(1/ logm), we set λ = α/16, so that α/λ = 16. For this choice of λ we

have N = NT +NE = O(logn/α) + NE = O(logn logm). Because α = O(1/ logm),
the term O(logn/α) dominates, and we have N = O(logn/α).

If α = Ω(1/ logm), then we choose

λ =
log(α logm)

α logm
.

For this choice, since α ≤ 1,

NT = O

(

α(H) logn logm

log(α logm)

)

= O

(

logn logm

log(α logm)

)

and

NE = O





logn logm

log2
(

α·α logm
logα logm

)



 = O

(

logn logm

log2(α logm)

)

.

Therefore N = O(logn logm/ log2(α logm)).
As for the success probability, in both cases above our choice of λ yields N =

Ω(
√

log n logm), so for any ε(m,n) = 1/ poly(m,n), by choosing c large enough we
can guarantee success with probability 1− e−c′N = 1− ε(m,n).

Remark 7.14. Since each player writes a B-bit message on the blackboard in each
round, the total bit complexity of the algorithm is mB ·T , where T is the running time
from Theorem 7.13. In typical scenario where m = O(n), this is optimal to within
polylogarithmic factors (by Theorem 7.5). However, if the number of players greatly
exceeds the number of tasks, it becomes wasteful to have all the players propose task
assignments in each round.

7.5 Arbitrary Networks

In previous sections we discussed task dissemination in traditional models for com-
munication games, such as two-player and multi-player shared blackboard. We can
also solve task dissemination in the more decentralized setting, where players are con-
nected by an arbitrary communication network, using ideas introduced in previous
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chapters.

To emulate a shared blackboard we use pipelining: recall from Lemma 6.19 that
if we can fit β tokens in each message, then we can disseminate k tokens throughout
the network in D+ ⌈k/β⌉ rounds. If D is not known to the nodes in advance, then as
we saw in Section 6.3, we can obtain an upper bound on it in Õ(D+

√

m/B) rounds,
where B is the message bandwidth. Using these ingredients, we solve task allocation
as follows:

I. Diameter estimation: the players execute the simultaneous variant of Algo-
rithm 6.1 to solve the HFm problem. In parallel, nodes find the minimum UID
in the network, by appending to every message the smallest UID heard so far.
The node with the minimum UID is elected to be a leader. It is responsible
for collecting proposed task assignments from the other nodes and deciding the
final disposition of each task.

Algorithm 6.3 halts at every node within Õ(D +
√

m/B) rounds, and provides

all nodes with an estimate D̂ for the diameter of the network.

II. Proposal: nodes use pipelining to propose task assignments (v, x) ∈ ⋃v∈V {v}×
Xv to the leader, as follows. For each token x ∈ T , we treat all the task-player
edges {(v, x) | v ∈ V, x ∈ Xv} as a single token: the “identifier” of the token is x,
but it carries with it auxiliary information in the form of the UID of some node
v that proposes to claim it. When node u receives a proposal (v, x) in a message,
or if u = v and task x is in player v’s input, node u adds the proposal (v, x) to
its sending queue iff it is the first proposal it has heard for task x. Subsequent
proposals (v′, x) are discarded.

This phase lasts D̂ + ⌈n/β⌉ rounds. At the end, the leader decides on final
assignments for all tasks, by examining the proposals it has received and selecting
for each task x one of the nodes v that proposed the assignment (v, x).

III. Assignment: the leader’s decisions are disseminated throughout the network
using pipelining. Since there are n tasks and the leader assigns each task to a
unique node, we have a total of n tokens, so again D̂+ ⌈n/β⌉ rounds are enough
to disseminate them.

Upon receiving the final assignments, each node outputs the set of tasks that
the leader assigned to it.

It is easy to see that if we project each message (v, x) onto its second component
x we obtain an execution of the pipelining algorithm from Lemma 6.19. The total
number of tokens is n, the number of tasks. Consequently, in O(D̂+n/β) rounds, all
nodes receive at least one proposal for each task.

Theorem 7.15. The algorithm described above solves TaskAllocm,n with high prob-

ability in time Õ(D +
√

m/B + n/B).
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Remark. In the typical case, when m = O(n), the time bound in the Theorem 7.15
simplifies to Õ(D+n/B). The algorithm described above is randomized, because the
diameter-estimation algorithm from [96] is randomized. However, when m = O(n)
we can replace this part by a deterministic coarse upper bound on the diameter D:
simply use pipelining to count the number of players in the network (see [94]), and
use this number m as an upper bound on the diameter. This yields a deterministic
O(D + n/B)-round algorithm for task dissemination.

7.6 An Algorithm for Constructing Rooted Spanning
Trees

We conclude our technical results with a simple algorithm for computing rooted span-
ning trees in directed broadcast networks. Our strategy is similar to the solution for
task allocation in Section 7.5: we treat each network node as both a task and a player,
where the input to player v is its set of in-children. Since we need to make sure that
we do not create any cycles, we have to make task assignments in a more coordinated
fashion than in Section 7.5. Therefore we assign children to parents in a top-down
fashion, from the root towards the leaves.

We first assume that the nodes know the diameter D, or a linear upper bound on
D. The first step, as in Section 7.5, is to select a leader r, which will serve as the root
of the tree. Subsequently the algorithm runs in D phases. In the first phase, the root
node r assigns all its in-neighbors as its children, and communicates this decision by
applying the token dissemination protocol described allocation: the players are the
nodes that are already assigned to some parent node and that still have unassigned
in-neighbors; the tasks are all the unassigned in-neighbors of the players. Hence, the
players of phase i are a subset of the nodes at in-distance i − 1 from the root (the
ones that have in-neighbors at in-distance i from the root), and the tasks are all the
nodes at in-distance i from the root. The algorithm terminates as soon as all nodes
are assigned to some parent node.

Theorem 7.16. The above algorithm solves the spanning tree problem in O(D2 +
n log(n)/B) rounds.

Proof. It follows from the construction of the algorithm that in phase i all nodes
at in-distance i from the root are assigned to a parent node. Therefore, the time
complexity of the algorithm is determined through D sequential executions of the
task assignment protocol from Section 7.5. Let ki be the number of nodes at in-
distance i from the root. The number of tasks in tokens in phase i is ki. Therefore
the running time of the task assignment protocol of round i is O(D+ ki) (recall that
we assumed that the nodes know D). Hence, the overall time complexity is

O

(

D2 +

D
∑

i=1

ki ·
log(n)

B

)

= O

(

D2 +
n logn

B

)

.
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Dealing with an unknown diameter. If the diameter is initially unknown and we
plug in the time complexity from Theorem 7.15, we obtain an overall time complexity
of O

(

D(D+
√

n/B log n) +n log(n)/B
)

. This can be slightly improved by observing
that phases do not necessarily need to be synchronized. As soon as a node receives a
notification that it has been assigned to some parent node, it can start broadcasting
its in-neighbors so that they can be assigned. With this modification, the additive
√

n/B log n penalty term for an unknown diameter is paid only once, instead of D
times (once per phase); the penalty is dominated by the n logn/B in Theorem 7.16,
so the overall time complexity from Theorem 7.16 is preserved. Note, however, that
spanning tree constructed in this way is no longer a BFS tree.

7.7 Discussion and Open Problems

Our results in this chapter leave several problems open. First, our lower bound
from Section 7.3 shows that computing a spanning tree requires Ω(n/B) rounds,
but the best upper bound of which we are aware, even assuming the diameter D is
known in advance, is O(min {D + |E|/B,D2 + n log n/B}). For dense networks with
a large diameter, the bounds do not match. However, TaskAllocn,n can be solved
in O(D + n log n/B) rounds (see Section 7.5). The existence of a fast spanning tree
algorithm implies a fast algorithm for task allocation, where we view each node as
both a task and a player; the input of each player is its set of in-neighbors (viewed
as “tasks”), and its output is the set of in-neighbors that chose it as their parent in
the tree. The other direction is not necessarily true, since in general a task allocation
may contain cycles (when we view nodes as both tasks and players). If the network
is sufficiently dense, and perhaps enjoys good expansion as well, is it nevertheless
possible to use a fast task allocation algorithm to find a rooted spanning tree? Can
we prove that cycles are unlikely to occur, and if so, can we resolve the few cycles
that do occur quickly?

Another open problem concerns task-allocation with good task-player expansion
and the hardness of finding a spanning tree in directed constant-degree expanders.
In a constant-degree network with bounded bandwidth B, each node only receives
O(B) bits of information per round. This bottleneck bounds the number of nodes
with which a given node can “exchange meaningful information”, even though the
diameter is small. To tackle this issue in a communication-complexity setting, we
could charge the protocol not just for the total bits exchanged, but also for activating
the (directed) channel between two players. We could then ask what is the smallest
number of channels that must be activated to solve TaskAlloc or other problems.
All the algorithms we have given for TaskAlloc require either all players to ex-
change information with all other players (as in the shared blackboard model), or one
player to exchange Ω(n) information with all other players (as in the algorithm from
Section 7.5). A strong lower bound on the number of player-to-player channels that
must be activated would yield insight into the problem and perhaps lead to a lower
bound on finding spanning trees in directed constant-degree expanders.

195



196



Chapter 8

Conclusion

We conclude the thesis by giving a brief summary of the results, evaluating their
significance and implications, and describing some open problems.

8.1 Summary of the Results

The problems we investigated in the thesis broadly fall into five classes.

8.1.1 Information Dissemination

One main contribution in Chapter 3 has been to show that all-to-all information
dissemination, the “hardest” of single-shot tasks, can be solved efficiently in dynamic
networks, even under minimal assumptions. We showed that we can disseminate n
pieces of information in O(n + n2/T ) rounds in T -interval connected graphs, and
also extended this result to several weaker models, including the beep model and
asynchronous wakeup.

A key information-dissemination technique introduced in Chapter 3 is pipelining
(Section 3.4.2), which allows us to disseminate k tokens over a static backbone, with a
latency of at most k for each token. Pipelining works particularly well in static graphs,
and we re-used it in the second part of the thesis to solve the HF n task (Section 6.3)
and to emulate a shared-blackboard over a general network (Section 7.5).

8.1.2 Counting and Computing Functions of the Input

We studied counting and approximate counting in both parts of the thesis. In the
first part, we showed that in dynamic networks, we can obtain an approximate count
in nearly-linear time, using messages of only polylogarithmic size. In the second
part we showed that randomized ε-approximate counting requires Ω(min {n, 1/ε2} /B)
rounds, even in static networks of known diameter 2, and that when it is not known
that the diameter is 2, even computing a constant approximation to the count requires
Ω(
√

n/B) rounds. This is tight to within polylogarithmic factors.
We also studied the complexity of computing duplication-insensitive functions,

which are as hard as the HF n task. Any counting or token-dissemination algorithm
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is also capable of computing any duplication-insensitive function (in the sense of a
(0, b)-reduction, where b is the size of the function’s input domain), so in some sense
all the algorithms discussed thus far are also algorithms for computing a duplication-
insensitive function; the converse is not necessarily true. In Chapter 6 we studied
the hardness of solving HF n (and therefore also of computing duplication-insensitive
functions), and showed that this task requires D + Θ̃(

√

n/B) rounds, even for D as
small as 2.

8.1.3 Coordinated Consensus

We showed that consensus, in some sense the easiest possible global task, is as hard as
the HF n task, which implies that it is equivalent in hardness to computing duplication-
insensitive functions. Using tools from epistemic logic, we studied the time required
to achieve simultaneous consensus, and showed that this task requires n rounds in
every execution; this implies that simultaneous consensus is as hard as finding an
upper bound on n. Finally, as a compromise, we introduced an intermediate task, ∆-
coordinated consensus, and showed that its best-case complexity is much better than
that of simultaneous consensus. We also gave two lower bounds on ∆-coordinated
consensus. The developments in this part of the thesis echo the theoretical develop-
ment of ∆-approximate common knowledge [69], but this is the first instance in which
this concept has found application in practice, through both our algorithms and our
lower bounds.

8.1.4 Task Allocation

In Chapter 7 we introduced the task allocation problem, and showed that its two-
player randomized communication complexity is Ω(n). We used this lower bound to
obtain an Ω(n/B)-round lower bound on computing a spanning tree in networks of
diameter 2. We also gave two algorithms for task allocation: the first is designed for
the shared-blackboard model, and performs well when the input is “well-balanced”;
the second algorithm is designed for general networks and requires no assumptions
on the input.

8.2 Discussion and Concluding Remarks

8.2.1 Designing Algorithms for Ad-Hoc Wireless Networks

As far as algorithm design is concerned, the main take-away from this thesis is that
randomized, approximate, and topology-insensitive techniques tend to cope well with
uncertainty and dynamic conditions, while more precise approaches, or approaches
that involve pre-computing network infrastructure, do not scale well.
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Overall Design Philosophy

Many distributed algorithms in the literature fail to find practical application be-
cause they are too fragile: they were developed under certain assumptions (e.g.,
that the communication graph is a unit-disk graph), and do not degrade gracefully
when these assumptions are violated. In contrast, the algorithms we gave here were
typically developed under fairly pessimistic assumptions: an adversarially-chosen dy-
namic network, very little initial information, and so on. However, we also built in
mechanisms for exploiting better conditions where available (e.g., more stability, bet-
ter expansion, etc.). Wherever possible, we designed our algorithms with a built-in
termination test, which assessed whether conditions so far have been good enough to
allow the algorithm to terminate, or whether more time is required.

Our goal in this thesis has been to design algorithms that cope with the worst,
but hope for the best. We believe that this is the correct design philosophy under
conditions as uncertain as those of ad-hoc wireless networks.

Remark 8.1. Ours is far from the first attempt to design algorithms that are adaptive
to circumstances, but previous attempts have revealed some interesting and paradox-
ical behavior of existing models, which can make adaptivity hard.

A relevant comparison here is to early-terminating consensus in the f -crash fault
model (e.g., [83]), where nodes attempt to decide before the worst-case running time
of f − 1 rounds where possible. The study of early-terminating consensus in the f -
crash fault model has exposed a curious and somewhat paradoxical feature of models
that have a bounded number of faults: the fault-free executions are exactly the exe-
cutions with the worst-case running time. This is because when no faults occur, the
adversary “keeps its cards close to its chest”, conserving all its power; the algorithm
must tread carefully because it does not know which nodes may suddenly become
faulty. In contrast, when many faults occur early on in the execution, the faulty
nodes are exposed, and the algorithm can stop worrying about them. Therefore the
best-behaved execution of the system is the worst-case execution for algorithms. This
is arguably not a desirable feature in a fault model.

The 1-interval connected dynamic graph model is not subject to this curious best-
case/worst-case inversion: in each round, the adversary receives “a fresh supply of
energy”, and can choose new edges independent of its past choices.

Randomization and Approximation in Distributed Algorithm s

In classical sequential computing, it is believed by many that randomization does
not add computation power; in particular, it is conjectured that BPP, the class of
languages decided by a probabilistic bounded-error Turing machine, is equal to P.
It is already famously known that in distributed computing this is not the case:
randomization can allow us to solve problems that are impossible to solve determin-
istically (e.g., consensus [54], the best-known instance of this separation), and even
when a deterministic solution is possible, randomization can provide an exponential
improvement in the running time (e.g., [18, 89], where it is shown that randomized
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algorithms for broadcast in small-diameter networks are exponentially faster than the
best deterministic algorithm).

Our work provides more examples of the power of randomization: we showed,
for example, that while randomly computing a constant approximation of the count
requires only Õ(D) rounds in static networks, deterministic attempts to solve the same
problem will run up against a Ω(D+ n/B)-round lower bound. Similarly, computing
an approximate answer is often much easier than finding the exact answer, as our
Ω(D + n/B)-round lower bound on randomized exact counting attests.

It is interesting to ask whether and in what circumstances randomized and ap-
proximate algorithms are useful in practice; for example, computing an approximate
count of the size of the network seems to be good enough for most applications, while
perhaps computing an approximation of the diameter that may err on the low side is
less useful.

Topology-Oblivious Approaches

The traditional approach to any sort of data aggregation is to first compute a spanning
tree, then aggregate on top of the tree. However, we showed in this thesis that this
strategy is not always optimal for directed networks (much less for dynamic networks,
where any spanning tree we find may not persist into the future). We showed that
even under very good conditions — a network of diameter 2, with no simple paths of
length more than 4 — computing a rooted spanning tree requires Ω(n/B); in contrast,
certain “easy” functions (like minimum or the approximate count) can be computed
much faster, in O(D+

√

n/B) rounds. This means that for small-diameter networks,
the“investment” in computing a spanning tree is only worth it if we intend to compute
at least Ω(

√

n/B) minima.
In general it seems that “topology-oblivious” algorithms, such as the algorithm in

Section 6.3 and gossip algorithms [84, 114], may be better suited for directed networks.
However, there is much work to be done in extending and analyzing gossip algorithms
in directed and dynamic networks (see Section 8.3.2 below).

8.2.2 Lower Bound Techniques

In distributed computing as a whole, there are two diametrically-opposed models that
exemplify the challenges a distributed algorithm must overcome. Each model comes
with a technique for proving lower bounds, which tends to work particularly well in
that model (though it may often be very useful in other contexts as well). In this
thesis we have used a model that combines features of both models, and we employed
both lower bound techniques. We will now make these connections concrete, and later
(in Section 8.3.3) point out a direction for future work.

The LOCAL Model and Proofs by Indistinguishability

In the LOCAL model (e.g., [108, 125]), value is placed on the locality of the computa-
tion, rather than on the amount of information conveyed. The network is assumed to
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be some arbitrary graph, but the algorithm is only allowed to run for a small number
k of rounds, which means that nodes can only communicate with their near neighbors.
The amount of communication between pairs of nodes is subject to a sharp cut-off:
nodes at distance no more than k from each other can exchange as much information
as they like, while nodes at distance greater than k cannot communicate at all and
therefore exchange zero information.

Proofs by indistinguishability have been used to great effect in the LOCAL model
(e.g., [95, 98]). The key here is that since nodes only communicate with their k-
neighborhood, they cannot observe any change outside this neighborhood, and cannot
adapt their behavior to the change. Indistinguishability works well when there is
zero communication between the part of the network where we wish to make the
change and the part of the network whose behavior should (but cannot be) affected
by the change. This is why indistinguishability is typically used together with full-
information protocols, where nodes are not charged for the amount of information
they send; it does not matter how much information is sent, because we are already
restricted to arguing about nodes that have not communicated with each other at all.
That is also the way in which indistinguishability was used in this thesis: in Chapter 4,
we showed that even under full-information, coordinated consensus is hard; elsewhere,
we used indistinguishability only to argue about time-nodes (u, t), (v, t′) such that
(u, t) 6∈ past(v, t′), that is, (u, t) has not heard from node (v, t′) at all.

The CONGEST Model and Information-Theoretic Lower Bounds

Lower bounds in the CONGEST model [125] often assume that the network graph is
fully connected, but the size of each message is bounded by a parameter B, which
is very small compared to n.1 This is the opposite of the LOCAL model: now all
nodes can reach each other easily, but the amount of information they can exchange is
bounded. To prove lower bounds in the CONGEST model, one resorts to information-
theoretic arguments, such as the communication-complexity lower bounds used here.

Our network model is not fully-connected, so is not quite the classical CONGEST
model; however, it is no coincidence that our only applications for communication-
complexity lower bounds were in small-diameter networks (diameter 2, to be specific).
The defining feature of the CONGEST model is that everyone hears from everyone
quickly, but the amount of information they gain from the interaction is small.

We believe that there is interesting work to be done in combining the two proof
techniques above. This is discussed further in Section 8.3.3.

8.3 Open Problems

8.3.1 Direct Extensions of the Results in this Thesis

Let us point out several open problems immediately arising from our results here.

1There is also work where the network is a general graph, e.g., [133]. In any case, in the CONGEST
model one typically aims for a runtime lower bound that exceeds the network’s diameter, in contrast
to the LOCAL model, where no such lower bound is possible.
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Information dissemination. We know that in 1-interval connected networks, there
is a tight Θ(n2)-round bound on token-forwarding algorithms. The best non-token-
forwarding algorithm known at present achieves only a logarithmic improvement [67],
but no matching lower bound is known. What is the true gain from giving up token-
forwarding, which has the advantage of great simplicity, in favor of more complicated
schemes, such as network coding?

Counting vs. adaptive adversaries. Our nearly-linear approximate-counting al-
gorithm from Section 3.6 can only cope with an oblivious adversary, which commits
to the entire dynamic graph in advance. Is it possible to design a randomized algo-
rithm that works against an adaptive adversary and improves upon the deterministic
O(n2)-round solution?

Deterministic HFn in static networks. In Chapter 6 we gave an Ω(D+
√

n/B)-
round lower bound on randomized HF n, and a nearly-matching randomized algo-
rithm. What is the deterministic round complexity of the HF n task? Clearly the
randomized lower bound carries over to deterministic algorithms, but is it still tight?

I conjecture that a stronger lower bound, Ω(D+n/B), might perhaps be possible.
For technical reasons, a 2-party reduction in the style of the ones from Chapter 6 will
not yield this result, as the reduction exposes too much information to the players
(this argument can be made concrete). Therefore new tools would be required.

However, if one wishes to tackle deterministic algorithms for HF n instead of (or
in addition to) a stronger lower bound, our work also suggests an approach to do this.
The randomized algorithm from Section 6.3 has only one probabilistic component —
the token selection scheme (Section 6.3.2). Once tokens are selected at the beginning
of the execution, the remainder of the algorithm is entirely deterministic. Therefore,
to come up with a deterministic HF n algorithm, one might try to find a deterministic
token selection scheme that satisfies the condition (G) laid out in Section 6.3.2.

HFn and function computation in dense networks. As we pointed out in Sec-
tion 7.7, our lower bounds based on communication complexity involve networks with
very bad expansion (as bad as 1/n). It is not at all clear that these results continue
to hold in denser networks that enjoy better connectivity properties. The techniques
we use at present do not seem up to the challenge of resolving this question, as we
discussed in Section 7.7. On the other hand, our algorithms also cannot exploit good
connectivity to obtain strongly-sublinear running time: they are strongly based on
pipelining, where the latency is always at least the number of tokens that must be
disseminated (in our case typically polylog(n/B)).

Part of the problem appears to be the fact that we are using local broadcast ; in
each round, each node must send the same message to all its neighbors, which seems
to inhibit the use of the multiple edge-disjoint paths offered by dense graphs with
good expansion. One might consider asking: do local broadcast algorithms suffer
from an inherent disadvantage compared to unicast-based algorithms when it comes
to exploiting graphs with good conductance or expansion?
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8.3.2 Designing Better Algorithms for Ad-Hoc Networks

Computing with a Dynamic Node Set

Throughout this thesis we have assumed that the set of participants in the compu-
tation is fixed and does not change throughout the execution. It is very interesting
to consider extensions of our results to the more general setting where nodes can
join or leave the network. This immediately raises some definitional questions: what
does it mean to compute a function of the nodes’ input, when the set of nodes can
change over time? Should we aim for some notion of computation-in-the-limit, as in
population protocols [5]? Or should we stay closer to the single-shot task framework
we used here?

We suggest the following general scheme: consider an ongoing computation, where
nodes continually maintain some estimate f̂ of the value f(V (t)), where V (t) is the set
of participants at time t and f is the function we wish to compute. Fix some interval
length ∆, which should be as small as possible. Then our criteria for a “correct”
estimate f̂ is that

• f̂(t) should reflect the input values of all nodes in
⋂t

t′=t−∆ V (t′), that is, of
participants that stuck around throughout the interval [t−∆, t].

• f̂(t) should not reflect the input values of nodes in
⋃

t′=t−∆tV (t′), that is, of

participants that were not around at any point during the interval [t−∆, t].

This seems like a reasonable notion which might be achievable in practice.
We leave the details of what we mean by “reflect” here vague. For example, if f

is the minimum, and the input to node v is xv, then we would like to have:

min

{

xv | v ∈
t
⋃

t′=t−∆

V (t′)

}

≤ f̂(t) ≤ min

{

xv | v ∈
t
⋂

t′=t−∆

V (t′)

}

.

Gossip in Directed or Dynamic Networks

We mentioned above that it is not clear whether algorithms based on local broad-
cast can scale gracefully with the density, conductance and expansion of the net-
work. One class of algorithms that do exploit such properties extremely well is gossip
algorithms [84], where in each round, each node contacts a random neighbor and
communicates with that neighbor.

It is known that the running time of gossip in undirected graphs is closely tied to
their conductance [64]. However, conductance is a symmetric measure, which con-
siders all edges in the cut (there is no notion of “incoming” or “outgoing” edges);
conductance is not defined for directed graphs, and we are not aware of a general-
ization that extends it to directed graphs. Gossip algorithms typically work in two
modes: pull, where the node requests the contacted neighbor’s information, and push,
where the node sends the neighbor it contacted its own information. Any notion of
“directed conductance” that we might try to define should reflect these two modes
and the way in which they advance the algorithm’s overall progress, and some of the
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basic ideas (e.g., the notion of a “balanced cut”) do not appear to carry over. For this
reason it appears that a significant technical effort is required to extend the results
of [64] to the directed case.

More recently, it was shown in [28] that using gossip-like techniques, it is possible
to emulate local broadcast efficiently even in graphs with poor conductance. This
outstanding result offers the hope of extending our results in this thesis to models
that do not assume local broadcast. However, [28] relies on having an undirected net-
work even more strongly than [64], as the algorithm must explicitly track backwards
across a chain of messages sent in the past. This is impossible when the network is
directed, and becomes even less feasible when the network is dynamic. We believe
that extending the algorithm from [28] to the directed case and to the dynamic case
is a challenging and worthwhile problem.

Adapting Streaming Techniques to Dynamic Networks

In Section 3.1 we showed that the HF n task is complete for the class of “easy”
(duplication-insensitive) functions, where nodes can summarize everything they know
in one value from the domain of the function (e.g., the minimum value observed so
far). Can we extend this completeness result to cover a larger class of functions, by
introducing approximation and some probability of error? We believe that the answer
is yes; we have already seen one hint of such an extension in Section 3.6, where we
gave an algorithm that solves approximate counting and HF n together.

Techniques from the field of streaming algorithms [116] are likely to prove useful
here. A streaming algorithm must process a long stream of data, using only a small
amount of storage space to“remember”what it has seen so far. One popular way to do
this is to use a sketch of the data: a sketch is a small-space, updatable representation of
a large dataset X , from which the value of some function f(X) can be approximately
recovered [116]. For example, a trivial sketch for computing a minimum is to simply
remember the minimum value seen so far, and update it as more data comes along.
This should seem very familiar.

Sketches are usually designed to be updatable and combinable, but this is not quite
enough for our purposes here. If we wish to compute a duplication-sensitive function
by having all nodes send each other sketches, we must make the sketch resilient
to duplication: we must somehow ensure that if a node receives sketches from its
neighbors containing redundant “copies” of information from some source, its own
sketch will incorporate only one “copy” of the information, that is, it will reflect only
the original source. It is not clear how to do this in general, but one approach might
be to approximately count the number of copies of each input using, e.g., an approach
similar to Algorithm 3.8 (which is resilient to duplication). If our target function is
not highly sensitive to the number of copies of each input, then small errors in the
approximate count should not have a large effect on its value. There is some work to
do in defining the class of functions for which this approach works, fleshing out the
algorithm, and identifying approaches that work for other classes.
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8.3.3 Improving Our Understanding of Information Theoreti c
Principles Underlying Distributed Computation

The Communication Cost of Function Computation

In this thesis we gave reductions in both directions between the three “lower” levels of
the hierarchy: counting, computing duplication-insensitive functions, and consensus.
However, we have not related any of these tasks to information dissemination, except
in the trivial sense that disseminating all inputs allows us to compute anything.

Several of our lower bounds do show that some nodes must exchange a total of,
e.g., Ω(n) bits between themselves, in the case of counting. Conceivably, we could
relate counting to information-sending between two nodes using our reductions from
Chapter 6. However, just because we can show that two nodes a, b must exchange a
total of Ω(n) bits to solve counting, this does not mean that we can reduce the problem
of having a send an arbitrary Ω(n)-bit string to b to the problem of counting: we do
not know the contents of the Ω(n) bits that are exchanged in the counting algorithm,
and how they relate to the nodes’ input. Therefore our reductions in Chapter 6 are
just shy of giving us a reduction from information-sending to counting and HF n.

Let us make this question very concrete, and frame it in the context of commu-
nication complexity. Following [126], let us define the two-player mailing problem as
follows: Alice receives an input string x ∈ {0, 1}n, and Bob receives no input; the
goal is for Bob to learn and output the string x. Then we conjecture that the mailing
problem can be reduced to a small number of Set Disjointness instances, as follows:

Conjecture. Given a Disjn protocol P that uses r bits of public randomness, there
are parameters ℓ = polylog(n), q ≥ r such that there exist

• A mapping fAlice : {0, 1}n × {0, 1}q·ℓ → ({0, 1}n)
ℓ
that Alice can use to generate

a sequence of inputs x1, . . . , xℓ ∈ {0, 1}n for P from her input string x ∈ {0, 1}n
and a shared random string s ∈ {0, 1}q·ℓ,

• A mapping fBob : {0, 1}q·ℓ → ({0, 1}n)
ℓ
that Bob can use to generate a sequence

y1, . . . , yℓ ∈ {0, 1}n of inputs for P from the shared random string s ∈ {0, 1}q·ℓ,
and

• A mapping fout : ({0, 1}∗)ℓ×{0, 1}q·ℓ → {0, 1}n from ℓ transcripts of P and the
shared random string to n-bit strings,

such that for any input x, when Alice and Bob

1. Use their shared randomness s = s1, . . . , sℓ ∈ {0, 1}q·ℓ (interpreted as a sequence of
ℓ q-bit strings) to generate input sequences fAlice(x, s) = x1, . . . , xℓ and fBob(s) =
y1, . . . , yℓ,

2. Execute the Disjn protocol P with each input pair (xi, yi) and the corresponding
shared random substring si, and

3. Bob feeds the resulting ℓ transcripts T1, . . . , Tℓ of P and the random string s into
fout to obtain an n-bit string fout((T1, . . . , Tℓ), s),
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then with high probability over s, Bob correctly outputs Alice’s original input x.

We are essentially claiming that Set Disjointness is a “universal communication
primitive”(between two players), which does not directly follow from the lower bounds
on the communication complexity of Set Disjointness; although we know that Alice
and Bob must exchange Ω(n) bits to solve a Disjn instance, we do not know what
information these bits convey about the inputs — for all we know, Alice and Bob
could just be talking about the weather.

Communication Complexity in the Multi-Hop Setting

In Section 8.2.2 we discussed two useful but contrasting techniques for proving lower
bounds: in proofs based on indistinguishability, we assume that it is “hard” for players
to contact each other, but if two players have managed to contact each other, then they
may potentially have shared with each other all the information they have about the
execution; in proofs based on information-theoretic (or communication-complexity)
arguments, we assume that the amount of information players can convey to each
other is bounded, but that it is very easy for players to contact each other.

Both proof techniques have been used to great effect in proving lower bounds
on distributed computation, but to our knowledge, they have never been combined.
Indistinguishability arguments are used in multi-hop networks, or in settings (such
as fault-prone asynchronous shared memory and asynchronous message-passing net-
works) where communication is infrequent and subject to the adversary’s interfer-
ence. In contrast, information-theoretic bounds are usually employed in shallow, syn-
chronous networks, often in the fully-connected / shared-blackboard setting, where
each message sent by one player is immediately received by all the other players. This
avoids the need to argue about indirectly-conveyed information.

Imagine a tree (or worse, a DAG) of nodes, oriented upwards towards a root node
u, with leaf nodes x1, . . . , xℓ. If nodes perform a convergecast where each node sends
a B-bit message up the tree, what does node u now know about the states of nodes
x1, . . . , xℓ? If node u can send B-bit “questions” to nodes x1, . . . , xℓ to try to instruct
them on what information to send, what is the effect of this bounded feedback? We
need some notion of composing the amount of uncertainty (entropy) that each node
has about its children, together with the uncertainty induced by having the node send
only B bits about its knowledge up the tree, and the bounded feedback provided by
nodes “asking” their children for information. Moreover, we need to combine absolute
uncertainty in the sense of indistinguishability — about parts of the network from
which the node has not heard at all — with quantified, partial uncertainty, about
nodes from which some bounded amount of information has been received.

To the best of our awareness, such techniques have not been developed and applied
in the context of distributed computing, but the rich and deep field of information
theory is sure to yield relevant insights and techniques.
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Multi-Party Communication Complexity in the Context of Mul ticore Proces-
sors

Finally, let us conclude with another potential application of multi-party communica-
tion complexity, which is quite far from the topic of this thesis, but which we believe
may be rewarding to explore.

In recent years, the data structures community has experienced a resurgence in
lower bounds, due in large part to the seminal work of Mihai Pătraşcu in relating
lower bounds in the cell-probe model to two-player communication complexity prob-
lems [122]. This progress has allowed a deeper understanding of the trade-offs between
the space required to represent the data and the number of steps required to perform
queries and update operations. In the two-party games of [122], Bob represents the
data structure, and Alice represents the algorithm querying the data structure; each
exchange between the players corresponds to a cell probe, where Alice asks Bob for
the contents of some memory cell.

As computers gain more and more cores, it seems only natural to extend the
study of data structures to the multi-core setting. This adds another interesting
element: in addition to the space required to represent the data structure and the
number of cell probes required to access it, we are now also interested in the amount
of communication required between cores, as local operations that access the core’s
own memory are cheaper and faster than remote operations by orders of magnitude.2

To address this challenge, it seems quite likely that the two-player techniques of [122]
ought to be extended to the multi-player setting, with each player representing one
core which both stores part of the data and also holds some of the queries. Such a
study would allow us to ask questions about the trade-offs between redundancy in
data representation and the amount of communication between cores, about the best
ways to partition the data between cores, and so on; perhaps it might even provide
insights that will be helpful in the design of future multi-core architectures.

2There is already great interest in the remote-memory-reference (RMR) model, which captures
exactly this notion; however, to date, only “low-level” problems such as mutual exclusion (e.g., [86])
and simulating basic memory primitives (e.g., [9, 23]) have been studied in the RMR model.

207



208



Index

T -interval connectivity, 38, 66
∆-coordinated consensus, 120
HF n, 45, 104, 140, 152–174
k-committee, 56, 59
k-verification, 50, 56

adaptive adversary, 32, 87
approximate counting, 50, 79, 147
asynchronous wakeup, 32, 75

beep model, 78

causal order, 39
common knowledge, 101, 107
communication complexity, 140
complete tasks, 37, 54
consensus, 36, 99–137
coordinated consensus, 120, 120–137
counting, 50, 147

directed networks, 139–195
duplication-insensitive functions, 35, 54
dynamic diameter, 41, 126, 134
dynamic graph, 31, 31–137

gap hamming distance, 144, 147
gap set disjointness, 142, 153, 157
globally-sensitive functions, 35, 152

hearing from everyone, 45

identical executions, 47

knowledge, 46, 101, 99–137

non-trivial facts, 108, 116

oblivious adversary, 32, 79

past and future sets, 40
pipelining, 63, 159

reduction, 36, 50, 56

sensitive functions, 35, 152
set disjointness, 141, 153, 156
similarity graph, 101
simultaneous HF n, 170, 193
simultaneous consensus, 107, 116
simultaneous tasks, 35, 107
single-valued tasks, 35
spanning tree, 152, 181, 194

task allocation, 177, 175–195
task-player expansion, 178, 183, 184
task-player graph, 177
tasks, 34
termination test, 55, 80
timing constraints, 34
token dissemination, 50, 55, 63
token-forwarding algorithms, 86
two-player communication games, 140

vertex growth, 42, 66

209



210



Bibliography

[1] J. Aas. Understanding the Linux 2.6.8.1 CPU scheduler. Unpublished
manuscript, 2005.

[2] Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn. Beep-
ing a maximal independent set. In Proceedings of the 25th international con-
ference on Distributed computing (DISC), pages 32–50, 2011.

[3] Y. Afek, B. Awerbuch, and E. Gafni. Applying static network protocols to
dynamic networks. In Proc. of 28th Symp. on Foundations of Computer Science
(FOCS), pages 358–370, 1987.

[4] Y. Afek and D. Hendler. On the complexity of gloabl computation in the
presence of link failures: The general case. Distributed Computing, 8(3):115–
120, 1995.

[5] D. Angluin, J. Aspnes, Z. Diamadi, M. Fischer, and R. Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, 2006.

[6] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power
of population protocols. Distributed Computing, 20(4):279–304, 2007.

[7] S. Arora and B. Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[8] J. Aspnes and E. Ruppert. An introduction to population protocols. In
B. Garbinato, H. Miranda, and L. Rodrigues, editors, Middleware for Network
Eccentric and Mobile Applications, pages 97–120. Springer-Verlag, 2009.

[9] H. Attiya, D. Hendler, and P. Woelfel. Tight RMR lower bounds for mutual
exclusion and other problems. In Proc. of the 40th Annual ACM Symp. on
Theory of Computing (STOC), pages 217–226, 2008.

[10] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations,
and Advanced Topics. John Wiley and Sons, Inc., 2nd edition, 2004.
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