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Abstract

Over the last years, large-scale decentralized computeonies such as peer-to-peer and
mobile ad hoc networks have become increasingly prevaldrg topologies of many of these
networks are often highly dynamic. This is especially traedd hoc networks formed by
mobile wireless devices.

In this paper, we study the fundamental problem of clock bymmization in dynamic
networks. We show that there is an inherent trade-off batviee skewS guaranteed along
sufficiently old links and the time needed to guarantee alsskalv along new links. For any
sufficiently large initial skew on a new link, there are ext@ans in which the time required to
reduce the skew on the link ©(S) is at least)(n/S).

We show that this bound is tight for moderately small valueS.cAssuming a fixed set of
n nodes and an arbitrary pattern of edge insertions and rdmy@maeak dynamic connectivity
requirement suffices to prove the following results. We @nésn algorithm that always main-
tains a skew of)(n) between any two nodes in the network. For a param@ter Q(,/pn),
wherep is the maximum hardware clock drift, it is further guarantéeat if a communication
link between two nodes, v persists in the network f&d(n/S) time, the clock skew between
u andw is reduced to no more than(S).



1 Introduction

Establishing coordination between participants is at the core of many algoritirailenges in
distributed computing. A fundamental coordination task, and a basic pisttegfor many appli-
cations, is achieving a common notion of time. Typically every node in the netwaslaccess to a
local hardware clock, but the hardware clocks of different nodasat slightly different rates, and
the rates can change over time. In addition, although a bound on the mdstaggein the network
may be known, specific message delays are unpredictable. As a censedqtis generally not
possible for any node in the network to get an accurate estimate of the @hugs\of neighboring
nodes.

Operating under these uncertainties, a distributed clock synchronizdgjorittan computes
logical clocks at every node, with the goal of synchronizing these slasktightly as possible.
Traditionally, distributed clock synchronization algorithms tried to minimize the maxdtifigr-
ence between any two logical clocks in the network. We call this quantitgltiieal skewof a
clock synchronization algorithm. It is well-known that no algorithm can gasee a global skew
better tharf2( D), whereD is the diameter of the network [3].

In many cases it is more important to tightly synchronize the logical clocksarbgenodes in
the network than it is to minimize the global skew. For example, to run a time divisidtiptatac-
cess (TDMA) protocol for coordinating access to the shared communicaigalium in a wireless
network, one only needs to synchronize the clocks of nodes that irgexi¢h each other when
transmitting. The problem of achieving synchronization that depends afistaace between the
two nodes is callegiradient clock synchronizationt was introduced in a seminal paper by Fan
and Lynch, where it is also shown that surprisingly, a clock ske@(dég D/ log log D) cannot be
prevented even between immediate neighbors in the network [8]. The maffaetinice between
the two logical clocks of adjacent nodes in the network is callediaba skewof a clock synchro-
nization algorithm; for static networks, Lenzen et. al. have recently prameasymptotically tight
bound of©(log D) for the best possible local skew an algorithm can achieve [12, 13]otRer
related work on clock synchronization, see Section 2.

Most existing work on clock synchronization considers static networksveder, many mod-
ern networks are inherently dynamic. Typically formed by autonomoustagethout central
control, nodes can join and leave the network in an arbitrary pattern. hoadhetworks where
often the devices are even assumed to be mobile, the resulting network tppalode highly
dynamic even if the set of participating nodes remains stable. Coordinatigmamdc networks
is challenging, and due to the increasing significance of such netwoikslgo particularly im-
portant.

In this paper we study the gradient clock synchronization problem inrdimaetworks. Be-
cause the distance between nodes in the network can change over timeollempbecomes
significantly harder in a dynamic setting. Consequently, unlike the statictb@sesquirements we
make on the skew between the logical clocks of different nodes canlzsge over time. Every
new edge that is formed induces a new and stronger constraint on thdskeeen its endpoints;
the algorithm must adapt by reducing the skew on the edge until the newalahss satisfied.



Hence, we distinguish between two requirementistahle local skewound applies, conceptually,
to edges that exist for a long time. This is analogous to the local skew geaddoy gradient clock
synchronization algorithms for static networks. In practice, we impose &exelgnamic local
skewbound on all the edges, including new ones. The dynamic local skewdbiswanfunction of
how long the edge has existed: the bound starts out weak and growgestrath time, until in the
limit it converges to the stable local skew bound.

The following intuitive example shows that in general, the clock skew on aedg® cannot be
reduced too quickly without violating the stable local skew bound on edgésvdre formed a long
time before. Let, andv be two nodes at distanéefrom each other. As no algorithm can prevent a
skew ofQ2(k) between nodes at distankea newly formed edge between nodeandv can carry
Q(k) local skew. To reduce the skew on the new edge, whichever nodeirglb@hst increase its
logical clock by a large amount. However, a sudden increaseoinu’s clocks will create a large
skew along the edges of the old path that connects them. Specifically, if tritfabg guarantees
a stable local skew af, neitheru norv can instantaneously increase their logical clocks to more
thanS ahead of their next neighbor along the old path. In turn, when this neighbbizes it must
increase its clock, it cannot increase it to more tfahead ofts next neighbor, and so on. It takes
Q(k/S) time until the skew can be reduced, as information about the new edge eatintekto
propagate through the path.

Somewhat surprisingly, the example above is not the worst one possijiestiag the local
skew on a newly formed edge can require even more f@n'S) time, wherek is the previous
distance between the endpoints of the new edge. We show that (almos@ndaep of the initial
skew on a new edge, the time required to reduce the initial sk&hidat least2(n/S) wheren is
the number of nodes in the system. This is shown in Section 4.

In Section 5 we show that this lower bound is asymptotically tight for moderatedyl values
of S by extending a simple gradient clock synchronization algorithm describgai]rto the dy-
namic case. In a static setting, the algorithm of [14] guarantees a localafk@é\w/pD) where
p is the maximum hardware clock drift. When modeling a dynamic network, weresshat the
set of nodes remains fixed, but edges can appear and disappeanpketely arbitrary pattern.
If a weak connectivity requirement is satisfied, the algorithm guarantegsbal skew ofO(n)
at all times. Further, for a parametgr> ,/pn and a sufficiently large constant the algorithm
guarantees a local skew of at méspn all edges that are present for at least /S time. It will be
interesting to see whether techniques used in the recent strong statiagchali& synchronization
algorithms in [12, 13] can be adapted to the dynamic setting, in order to obtainrsigsldts for
smaller values of.

2 Related Work

Being a fundamental problem, it is not surprising that there is a rich literatucéock synchroniza-
tion algorithms and lower bounds. Until recently, the work on clock synmibation focused on
global synchronization, i.e., on minimizing the maximal clock difference betvw@grtwo nodes



in the system. Essentially all lower bounds on distributed clock synchromnizasie theshifting
technique introduced in [15], which exploits uncertainty resulting frornomkn message delays,
the scalingtechnique from [5], which uses uncertainty that arises as a consegjeémifferent
clock rates, or a combination of the two techniques. Using the shifting teakniigis shown in
[3] that even if clocks experience no drift, a clock skew/df2 can not be avoided in a network of
diameterD. In light of this result, the algorithm described in [20] which guarantedsiaadjskew
of O(D) is asymptotically optimal.

A number of related algorithms and lower bounds for varying models and vfiéneht prop-
erties have been described (see e.g. [1, 2, 7, 18, 19]). The algonithsesibed in these papers
do not guarantee a skew between neighboring nodes that is bettep thgn The gradient clock
synchronization problem was introduced in [8], where it is shown tha path of lengthD, no
clock synchronization algorithm can avoid having a skef@bg D/ log log D) between adjacent
nodes. This lower bound has recently been improved(fog D) in [13]. The first algorithm to
guarantee a non-trivial local skew was described by Locher and htiater in [14]. The algorithm
in [14] guarantees a local skew 6f(/pD) between any two neighbors in a network of diameter
D, wherep denotes the maximal hardware clock drift. The algorithm of [14] forms tkeslar the
dynamic gradient clock synchronization algorithm described in this p&pestatic networks, the
upper bound was recently improved to an asymptotically optimal bourie(lfg D) by Lenzen
et. al. [12, 13].

Most closely related to the dynamic clock synchronization problem coregidarthis work
are algorithms that cope with faulty nodes (e.g. [4, 5, 11, 17]). While thisdfngork goes far
beyond studying crash failures and describes algorithms that evennittpByzantine faults, a
topic that is out of the scope of the present paper, none of thesespapesider a truly dynamic
setting. In particular, the results rely on the fact that a considerableop#re network remains
non-faulty and stable. Moreover, all the described algorithms and loagnds focus solely on
global synchronization. To the best of our knowledge, the presqrgrga the first to look at
gradient clock synchronization in dynamic networks.

3 Preliminaries

3.1 Notation

Given an undirected static gragh= (V, E), we denote byP the set of all (undirected) paths in
G. For convenience in notation we regard each patk P as a set of edgeB C E. We use
P(u,v) to denote all paths between two nodes € V. The distance between two nodeandv
is defined by
dist(u,v) := min |P]|.
PeP(u,v)

The definitions above are used only in the context of a static graph. (8\&atsc graphs in the

proof of the lower bound in Section 4). In this work we are often coregmmith dynamic graphs,



which do not have a static set of edges. We U$€ := {{u,v} |u,v € V} to denote the set of
all potentialedges over a static sétof nodes.

3.2 Network Model

We model a dynamic network over a static $eof nodes using Timed I/O Automata (TIOA)
[9]. Each node in the network is modelled as a TIOA, and the environmetgasnzodelled as
a TIOA. The dynamic behavior of the network is modelled using events ofottme §dd ({w, v})
andremove({u,v}) for u,v € V, which correspond to the formation and failure (respectively) of
a link between: andv. It is assumed that no edge is both added and removed at the same time.

The history of link formations and failures in a particular executgogether with an initial
set of edge€¢, induces alynamic graphG = (V, E), whereE® : Rt — V(2) is a function that
maps a time > 0 to the set of edges (links) that existanat timet. We defineE“(t) to be the set
of edges that are added no later than timand not removed between the last time they are added
and timet (inclusive). This includes edges that appeakjh and are not removed by tinte We
say that an edge exists throughout the intervid , ¢2] in « if e € E(t1) ande is not removed at
any time during the intervdt,, ts].

A static executioris one in which no edges are added or removed. Formalig a static
execution if for allt;, to € RT we haveE“(t1) = E*(ts).

We consider a very general model, in which edges can be inserted ovednaobitrarily,
subject only to the following connectivity constraint.

Definition 3.1 (T-interval connectivity) We say that a dynamic graghl = (V, E%) is T-interval
connectedf for all t > 0, the static subgraplt, ;.7 = (V, Ea|[t’t+T}) is connected, where
E?|, .17 Is the set of all edges that exist throughout the inteftal+ 7).

In the sequel we omit the superscriptvhen it is clear from the context.

We assume that nodes do not necessarily find out immediately about edgeomsand re-
movalg. Instead, we assume that there is a paranf@feuch that if an edge appears or disappears
at timet in an execution, and the change is not reversed by timéD, the endpoints of the edge
find out no later than timeé + D. Transient link formations or failures, which do not persist for
D time, may or may not be detected by the nodes affected. We model the disbgveodeu of
a link formation or failureX € {add({u,v}),remove({u,v})|v € V} by an eventliscover(X)
that occurs at node. (A discover(X) event is always preceded by eventitself.)

We also assume reliable FIFO message delf/amth message delays bounded Py This is
modelled using events of the forsand(u, v, m) andreceive(u, v, m) that occur at node. If node

'otherwise reference-broadcast-style synchronization would bépmasing these events [6]. In general, whenever
some event is guaranteed to occur at two nodes at the same (or rduglsigme) time, the nodes can use this event to
synchronize their clocks by exchanging the clock values they each thidi dme the event occurs. This type of
synchronization circumvents shifting and scaling lower bounds of theviggpese in Section 4.

2\We assume FIFO message delivery to simplify the presentation, but thist isenessary. In the algorithm of
Section 5 each message carries a timestamp. If FIFO is not assunded, cam remember the latest timestamp they
have seen from each neighbor, and discard messages that camjimlelstamps.
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u sends a message to nodat timet, the environment guarantees the following. If edaev}
exists throughout the interv@d, ¢ + 77, then node is guaranteed to receive the message no later
than timet+ 7. If edge{u, v} exists at time but is removed at some point in the inter{tak + 77,
there are two possible outcomes: either the message is delivered befedgéhis removed, or the
message is not delivered and naddiscovers the edge removal no later than timeD. Finally,

if edge{u, v} does not exist at timg the message is not delivered, and nadéiscovers that the
edge does not exist no later than time D. These definitions correspond to an abstract version of
MAC layer acknowledgements.

In the sequel we assume thlat> 7, that is, nodes do not necessarily find out about changes
to the network withir/” time units. This is a reasonable assumption because even if nodes transmit
very frequently, as much g5 time may pass without any message being received on a link, leaving
the link formation or failure undiscovered.

3.3 The Clock Synchronization Problem

In the clock synchronization problem, each nade V' has access to a continuduwsrdware clock
H,(t), which may progress at a different rate than real time. The hardwac&scBuffer from
bounded driftp: although they progress at a variable rate, their rate is always betivegnand
1 + p the rate of real time, so that for any nodend timeg; < t; we have

(1= p)(t2 — t1) < Hy(t2) — Hu(t1) < (1 + p)(t2 — 11).

For simplicity we assume that at the beginning of any execution the hardleaievalues are all
0. We also assume for the analysis that the hardware clocks are diffétentia

The goal of a dynamic clock synchronization algorithm (DCSA) is to outplogical clock
L, (t) such that the logical clocks of different nodes are close to each dthparticular we con-
sider two requirements. global skew constraintounds the difference between the logical clocks
of any two nodes in the network at all times in the executiondyf\amic local skew constraint
requires that if an edge exists for sufficiently long, the skew between therdpoints of the edge
should not be too large. These requirements are formally defined asdollow

Definition 3.2 (Global skew) A DCSA guaranteesglobal skew ofG(n) if in any execution of the
algorithm in a network of: nodes, for any two nodes v and timet > 0 we have

Ly(t) — Ly(t) < G(n).

To represent the local skew guaranteed by the algorithm after an edgexisted for some
time, we use a function(n, I, t), wheren is the number of nodeg,is the initial skew on the edge
when it appeared, angdis the time that has passed since the edge appeared. The skew function
must satisfy the following technical requirements.

Definition 3.3 (Skew function) A functions : N x R™ x R* — RT (whereR* are the positive
reals) is said to be akew functionif the following conditions hold.
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1. The functiors(n, I,t) is non-decreasing il and non-increasing im; and
2. Foralln € N, I € RT, the limitlim;_,, s(n, I, t) is defined and finite; and
3. Forall I, I, € RT we have

tll}IEO S(TI,, Ila t) = tll}rlgo S(”a -[27 t)

We note that the third requirement above essentially means that the skewettgaconverges
to the same stable local skew, regardless of the initial skew on that edgeleNas define what it
means for an algorithm to have a local skewsof

Definition 3.4 (Dynamic local skew) A DCSA guaranteesdynamic local skevof s : N x R* x
R+ — RT, wheres is a skew function, if in every execution of the algorithm in a network aver
nodes, for any edge= {u, v} and times; < ¢, such thate exists throughout the intervl, ¢o]

in the execution, we have

[ Lu(t2) = Lo(t2)] < s(n, [Lu(tr) = Lo(t1)] , t2 = t1).

Definition 3.5 (Stabilizing DCSA) A DCSAA is said to bestabilizingif there is a skew function
s such that4 guarantees a dynamic local skewsofin this case we say that guarantees atable
local skewof 5(n) = lim;_,o s(n, I,t) for somel € R* (recall that this limit is the same for all
I € RY).

Finally, logical clocks have to be strictly increasing and are thus not alldweéemporarily
stop. In particular, we require the rate of each logical clock to be atlhedfsthe rate of real time;
that is, for any node: and timest; < ¢, we require

L, (t2) — Ly(t1) > =(t2 — t1).

N

4 Lower Bound

We begin our analysis of dynamic clock synchronization algorithms with a Ieand on the
time needed to adjust the local skew on a newly formed edge. Specificalshavethat for every
sufficiently large initial skew/ (a small constant times the stable local sk&w) suffices), the
time needed to reduce the skew by a facto®of. /G (n)) is Q(n/5(n)). Thus, there is an inherent
tradeoff between the stable skew guaranteed by the algorithm and the timgdtithen requires
to reduce the skew on new edges.

Theorem 4.1. Let A be a stabilizing DCSA that guarantees a global skew (@f) and a dynamic
local skew ofs with a stable local skew of(n) = o(n). Then there exist constanmis¢{ > 0 such
that for all sufficiently large: and for all I > 35(n) we have
n n
s(n,I,A\- ——)>(=—"-1.
ISy = o)



Most static clock synchronization algorithms in the literature guarantee al glkda of O (D)
in networks of diameteD. Moreover, all gradient clock synchronization algorithms of which
we are awareely on having a global skew of)(D) in order to prove their gradient property
[14, 12, 13].

In dynamic graphs the diameter is undefined, and the natural extention iguioer@ global
skew ofG(n) = O(n). This is achieved by the algorithm presented in Section 5, and here, too,
this fact is used to prove the local skew guarantee. It therefore seeménieossting to consider
algorithms with this global skew guarantee. For such algorithms, Theoreshdvis that it takes
Q(n/s(n)) time to reduce the initial skew on a new edge lgoastantactor.

Corollary 4.2. Let A be a stabilizing DCSA that guarantees a global skew @f) = O(n) and
a dynamic local skew of with a stable local skew of(n) = o(n). Then there exist constants
A, ¢ > 0 such that for all sufficiently large and for all I > 3s5(n) we have
n
s(n, I, \- %) > (-1

Note that the lower bound asserts #dstenceof a time \ - n/s(n) after which the skew is
reduced by no more than a constant factgr (It is not necessarily the case tHat all times
t = ©(n/5(n)) we still have a large local skew. Indeed, the algorithm we give in Sectionkesna
a sharp transition after an edge exists fm/s(n)) time: before the transition the algorithm
provides no non-trivial local skew guarantee on the edge (beyorad thk global skew already
guarantees), and afterwards the algorithm guarantees the stablesgkewT he trade-off shows
that this transition can only be made when the edge exisB8 oy s(n)) time; essentially, it asserts
that the algorithm must waé(n/5(n)) time before it acts to drastically reduce the skew on a new
edge.

4.1 Proof overview

The main idea in the proof of Theorem 4.1 is to show that because of thesk®al guarantee,
even nodes that are distant from a new edge may prevent the skewam ibéing reduced. These
distant nodes require time to “find out” about the new edge, and thus they liengpked with
which the algorithm can react.

As an informal overview, consider the network shown in Fig. 1(a), whantsists of two paral-
lel chains,A and B, joined at both endsy andw,,. The two chains exist throughout the execution;
new edges are eventually added alongfhiehain, but no edges are ever removed. We wait until
the algorithm has stabilized to some degree. For the purpose of this oveletiew suppose that
we reach some timé&j such that for allt > T, the local skew guarantee i$n,0,t) < s(n).
(This is an over-simplification, since the local skew guarantee only cgeséos(n) in the limit;
however, we can get arbitrarily closed() by waiting sufficiently long.)

Next we select two sufficiently large tim&s, 7> > T, whereTy, — T1 = A(n/5(n)) (for a
constant\). Our goal is to add new edges at tifig each with a skew of at mosgt(see Fig. 1(b)),



and cause at least one new edge to still have a skéW bf n/G(n)) at timeTs. This is achieved
by
1. AddingO(G(n)/I) new edges at tim&;, and

2. Creating a skew d(n) betweenwy andw,, at timeT.

Theaverageskew on the new edges at tiriie must then bé&2(7 - n/G(n)), which implies that at
least one new edge has a skewt§f - n/G(n)) at timeTs.

First we show how to creat@(n) skew betweeny, andw,, at timeT,. Note that because of
the new edges, the distance betwegnandw,, at time T is reduced taD(G(n)/I). Standard
shifting arguments create a skew proportional to the distance, and thisénooegh in our case.
Hence we must use a more roundabout way. Essentially, we want to shbuwpthndw,, cannot
react quickly enough to the new edges, or they would violate the local gharantee with respect
to some distant nodes v on the A-chain that have not yet discovered the new edges.

To this end, we choose two nodesy on theA-chain such thadist (wg, u) = dist(wy,,v) = k,
wherek = © (n/s5(n)), and wherelist(u, v) = (n). Nodesu andv are “shielded” from events
on the B-chain by large message delays (see Fig. 1(a)). We first consideeant®na in which
the network is static and no new edges are added atfimé&sing a modified shifting argument
(Lemma 4.3 below), we create a skewfn) betweenu andv at timeT; in «, while keeping
delays of at leasT /(1 + p) on all links betweenu, andu and betweem,, andv.

Nodesu, v act as a barrier betwee, andw,,: the local skew guarantee implies that the clocks
of wy andw,, cannot be more thain 5(n) = ©(n) removed from the clocks af andv respectively.
Hence, whenever the skew betweeandv is Q(n), the skew between, andw,, is alsof2 (n)
(see Fig. 1(d)).

Finally, we create a new executigh which is identical too: until time 7. At time T} we
add new edges as shown in Fig. 1(b). Recall that the skew betwgamdw,, is bounded by
G(n) at all times, and at tim&; the skew on each edge of tfizchain is at moss(n). Thus, it is
possible to find a set of edges as shown in Fig. 1(b), such that eaeltadigs a skew in the range
[T —5(n), I], and the skews (in absolute value) sum to at nggsf). WhenI > 25(n), the number
of edges required is at moag (n) /1.

By time 75 in 3, the skew on each new edge must be reduced to at sest, 7o — 71) =
s(n,I,X(n/5(n))), and consequently the total skew between nadgsand w, cannot exceed
(2G(n)/I) - s(n, I, \(n/3(n))) (see Fig. 1(c)).

However, in addition to this upper bound on the skew, we can also shoththakew between
wp andw,, attimeT, in 5 is at least)(n): nodesu andv cannot distinguish betweenand until
time T3, since they are shielded from ti&-chain byt = ©(n/s(n)) edges with large message
delays. At timeTs in 3, nodesu, v have the same skew 6f(n) that they have imv, and as argued
above, this implies thaty andw,, also have2(n) skew between them. Combining the upper and
lower bound on the skew between andw,, we see thak(n, I, A\(n/5(n))) cannot be less than
Q(I - (n/G(n))). This concludes the proof.



, Chain A _
woq'—\\ Skew on each new edge 57, 1] /,—:own
N TN TN TN 7
T A L SXETREER AUTeeY ¥
Chain B
(a) Executionx at timeT5. (b) Executiong at timeT: (new edges shown as dashed
lines)
skew =2 (n) L, (Ty) i
k edges y < ks(n) = O(n)
Sl e e L,(Ty)Y
Chain A ) o) (n) Q(n)
WO @~ ~ Skew on each new edgé s (n, I, A2) - —own
N TN TN T TN 7 LO(T]-)-_ _
¥ o N N < k5(n) = O(n)
Chain B L (T1)
(c) Executions at timeTx: (d) The logical clocks otvo, u, v, w, attimeTs in execu-

tionsa andg (assumingL. (T1) < L,(T1))

Figure 1: lllustrations for the proof of Theorem 4.1

4.2 Formal proof of the tradeoff

As explained above, as part of the proof we create a large skew beteerin nodes, while also
maintaining large message delays in parts of the network. The skew is cusatgdshifting (see,
e.g., [16]). A standard shifting argument shows that two nodes canoit having a large skew
between them, by adjusting message delays so that the nodes cannot tiffiéthaak between an
execution in which the skew is large and an execution in which it is not. In gtieg execution
the message delays on some links are zero, and in the standard consitustiuot possible to
control which links these will be.

In our proof we require large message delays along certain specific lklksraightforward
modification of the argument from [1] and [8] allows us to create large skekile maintaining a
predefined pattern of message delays. The following definitions captsmaton more formally.

Definition 4.1 (Delay pattern) Given a network over a sét of nodes, aelay patterrfor N is
a pair M = (EC, P), whereEC C V(?) is a set ofconstrained linkand P : E¢ — [0,7] is a
delay patterrassigning a message delay to every constrained link.

Definition 4.2 (Constrained executionsfj\n execution is said to h&/-constrained until time, for
adelay pattern\/ = (EC, P), if the delay of messages sent on a kink E© and received by time



tisinthe range[ﬁP(e), P(e)]. We say that an execution g -constrainedf for all timest > 0
the execution ig/-constrained until time.

Definition 4.3 (Flexible distance) Given a delay patterd/ = (E, P), the M-flexible distance
between two nodes, v € V, denoteddist ;s (u, v), is defined as the minimum number of uncon-
strained edges on any path betweeandwv.

Lemma 4.3(Masking Lemma) Let N = (V, E) be a static network, and Iét/ = (E, P) be a
delay pattern forN. For anyu,v € V and for any timely > 7 - distas(u,v)(1 + 1/p), thereis a
timet > T, and anM -constrained static execution in which

Lult) = Lo(0) > {7 distas(u,0).

Proof. The proof is a fairly straightforward application of the scaling and shiftimpptechniques
(see, e.g., [5] and [15]). It is similar to the proof from [1], where it i®wh that the worst-case
skew between any two nodes in the network is proportional to the shog#sdjstance between
them. However, in the current proof we use only unconstrained linksild ipoi the skew, and as a
result we can build up a skew between two nodes that is proportional tdltheledistance.

Definitions and setup. Letd = distys(u,v) and letD = maxy,cy distps(u, w). We partition
the graph into layerdy, . . ., Lp, where each layer is given by, = {w € V| dist s (u, w) = i}.
In particular,Ly = {u} andv € Ly. We define a total ordex on nodes byt < y iff disty/(u, z) <
distar(u,y). We writex = y if distas(u, x) = distas(u,y), andz <y if z < yorz = y.

Note the following properties of the relations defined above: for any ¢dge} € E,

1. If {x,y} € EC thenz = y: if {z,y} € E®, then any path from to = can be extended to a
path fromu to y that has the same number of unconstrained edges, and vice-vectiawsf
thatdist ys (u, x) = distas(u, y).

2. If x < ythendistys(u, z) = distas(u,y) — 1.

We define two executions, and3. In «, all hardware clocks progress at the rate of real time,
and message delays on each edgee defined as follows:

e If ¢ € E€ then messages enare delayed byP(e);

e lfe = {z,9} € F\ E® andz < y, then messages fromto y are delayed byl and
messages from to z are delayed by.

o If e = {x,y} € E\ E® andz = y, then messages fromto y and vice-versa are delayed
by 0.

10



Executionw is M -constrained by definition.

In executions, we slowly increase the skew of the hardware clocks of nodes atatitfeayers,
while keeping the difference small enough that it can be disguised by glt@essage delays. We
begin by keeping/'s hardware clock rate dtand letting nodes in layets,, ..., Lp run at a rate
of 1 + p, until a skew of7 is built up between the hardware clockwfnd any node ird.;. Then
we letu and allL;-nodes run at a rate dfwhile nodes in layeré.,, ..., Lp run at a rate ot + p,
until a skew of7 is built up between nodes iy, and nodes irl.,. At this point the hardware clock
skew between and any node irl. is 27. We continue in this manner until we have built up a
skew ofd - T betweeru and any node in layek , includingv.

More formally, 5 is constructed as a sequence of segmg#ts . . . B4_1 5+, where

o B, := [%7’, oo] is an infinite suffix, and

e Forallo<i<d—1,8 = [%T, %T) is a finite segment of duratigh/p. (This is the
time required to build a skew of between the hardware clocks of nodes in adjacent layers
when one node runs at a ratelodnd the other at + p.)

In 5y and g, all hardware clocks run at a rate bnd all messages are delivered with no delay. In
each middle segme, the hardware clock rate of a noge= L; is given by

d o [1 i<y,
de™®  |1+p otherwise
Message delays throughag@iare adjusted so thatis indistinguishable frona to all nodes. In
particular, ift$, tf, e andtf are times such that
1. Attimet$ in o nodex sends a message that nadesceives at time?, and
2. HO(t2) = HY () and HY (1) = Hy (1)),

then ing, nodex will send the same message at titﬁeand nodey will receive it at timetff.
From the definition of3, at any timet we have

HE (1) = (1+p)t if t € 5; wheredists(u, x) > 1,
P 1t + T - dista(u, ) otherwise.
That is,
HP(t) = t +min {pt, T - distps(u, )} . (4.2)

In o, where all hardware clocks run at a rate ofdl§(t) = ¢ forall z € V.
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[ is an M-constrained execution. Next we claim thap is a legal)/ -constrained execution, that
is, all message delays are in the raf@e7 ], and for alle € E©, message delays anare in the

range[ﬁpP(e), P(e)}. Consider a message sent by nadat timet? and received by nodg at

timet?. Let t¢,t be the send and receive times (respectively) of the same message itie@xecu
«; that is,
HY(t9) = HO(t2) =12 and  HJ(t)) = HO(t2) = 2.

Using (4.1) we obtain
2 — i = () — HOGE) =
=t 4+ min {ptf,T- distM(u,y)} — 1% — min {ptf, T - distyy(u, 1:)} ) 4.2
We divide into cases.
o pt? < T -distar(u,z) andpty < T - distas(u,y). In this case (4.2) implies
(-t = (L4 p)(t — 1),

By the definition ofa we havet® — t ¢ [0, 7], and hence? — 2 € [0, 7] as well. In

s

addition, if {x, y} € EC thent® —t2 = P(e) (again by definition ofy); in this case we have
t? — 17 = P(e)/(1+ p) € [P(e)/(1 + p), P(e)], as required.

o ptP>T. distas(u, x) andpt? > T - distpr(u, y). In this case (4.2) implies
o — & =12 — 7 + T(distps(u,y) — distps(u, z)).

If {x,y} € E€ orz =y, thendistas(u, ) = distys(u,y), and hence’? — 2 = e — 9.
Thus, the message delay fhis the same as in. The delay in« is legal and respects the
delay pattern, and the same holds for the delay.in

Otherwise, either: < y anddists(u,y) — distas(u, x) = 1, ory < = anddists(u,y) —
distyr(u, z) = —1. In the first case we haw§ — ¢ = 1@ — & — T = T — T = 0 (by
definition ofa), and in the second cagd, — 1% = & —t>+T =0+T = T. In both cases
the delays are legal.

. ptﬁj > T - distas(u, x) andptf < T -distas(u, y). In this case (4.2) implies
t — % =t2 — 5 4 pt? — T - distps(u, ).

Sinceptfa < T -distps(u,y) andT - distas(u, z) < ptf, we can write

(14 p)(t2 —t5) <& — 1@ <P — 8 + T(distas(u,y) — distas(u, ).

12



If {z,y} € EC orz =y, thendisty;(u, 2) = dist(u, y), and we obtain
(L+p)(t] —t]) <ty —t3 <t] — ¢,

which is impossible, becausgg — t& > 0 andp > 0.
Otherwise, ifr < y, thendist s (u, y) = distas(u, z) + 1, and we have® — t&¢ = 7 and

(14+p)t2 =ty <T <tl —t0 4 T.

It follows thatt? — ¢ € [0, 7 /(1 + p)) C [0, T].
Finally, if y < x, thendist s (u, x) = distas(u, y) + 1, and we have? — t& = 0 and

(1+p)f —tF)y<o<t? —tf —T.
But this is impossible, because it implies bofh— t2 < 0 andt? — 7 > T
ptf < T - distps(u, x) andptf > T - distas(u, y). In this case (4.2) implies
o — @ =0 — 4 4 T - distar(u,y) — pt?.
This time, we can re-write this to obtain
B — 8 + T (distas (u,y) — distas(u, z)) <& — 1% < (14 p)(t? — 7).
If {x,y} € EC orz = y, then againlist/(u, z) = distys(u,y), and we have

18 <10 —1e < (14 o)t — 10,

If {z,y} € EC then this implies that! — t? € [P(e)/(1 + p), P(e)] C [0, T], as required.
Otherwise, ifr = y but{z, y} ¢ E, then we have bottf — tf <0 andtf —tf > (0, which
is impossible. (Recall that for this case we defingd- t& = 0.)

If x <y anddistas(u,y) = distys(u, x) + 1, then we have
P+ T <T <(1+p)t? -1,

which is a contradiction.
And finally, if y < « anddists(u, z) = distas(u,y) + 1, then

=t =T <0< (A+p)(t 1)

and it follows thatt? — 2 (0, 7.

13



The skew between: and v. It remains to show that in either or 3, the skew between andv
at some time > Ty is large.
LetT) :=To+ T - distar(u,v). SinceTy > (1/p) distas(u, v) - T, at timely we have

HP(Ty) = Ty + min {pTpy, T - distas(u,v)} = To + T - dist s (u, v) =
= H%(Ty + T - distar(u,v)) = HY(T}),

while
HB(Ty) = Ty + min {pTp, T - dist s (u, u)} = Ty = HX(Tp).

No node in the network can distinguish betweerand 5, and consequently, for all nodes
w € V and timeg, to we havelL$ (t1) = L (o) iff Hg(t1) = HL(t2). In particular,

LY(Ty) = LE(Ty) (4.3)

and
L(Ty) = Ly (To). (4.4)

Sinceu increases its logical clock at a rate of at leb&2,
o o 1 43) ;3 1 .
Ly, (Tl) > Ly, (T()) + §(T1 — T()) = LU<T0) + 57- dlStM<u, 1)), (4.5)
and subtracting (4.4) from (4.5) yields

L3(Ty) — L3(Ty) 2 L{(Ty) — L{(Ty) + 5T - distag(u, ). (4.6)

This implies that eithefZ(T1) — L(Ty)| > L7 - distas (u, v), or |Li(Tp) — Lf(Tg)‘ > 17
distas (u, v). SinceTy > Ty and both executions are -constrained, this proves the claim.
O

The following technical lemma is used in the proof of Theorem 4.1 to selectaveedges that
appear along th&-chain.

Lemma4.4.LetX = x4,...,x, be a sequence of numbers whefe< x,, andforalll <i < n,
|z; — x;11| < d for somed > 0. Then for any: > d, there is a subsequenc€ = z;,,...,x;,, C
X such that

1.m< #= +1, and

2. foralll < j <m-—1wehavelz; , — ;| €[c—d,c.
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Proof. We construct a sequencg i», . . . inductively, starting withi; := 1. Giveni;, we define
ij41:=min ({n} U {l|i; < ¢ <nandz, —z; > c—dandz, < z,}) 4.7)

The sequence,, is, . .. is strictly increasing, and eventually it reachesnd remains there. Let
m =max {j | i; < n}. The sequence we return¥ = z; ,...,z;,,.

By constructionz; = x;, <z, < ... <z, < x,,andforalll < i < m — 1 we have
Ti;,, —ri; > c—d> 0. [tremains to prove the following.

1. m < #2=71 +1: because

Ty — T > T, — Tiy = Z (Tij, —xi;) > (m—1) - (c—d).
1<j<m—1

2. Foralll < j <m—1we havelz; ,, — ;| € [c —_d,c]: sincex;,,, —x;, > c—d >0,
we need only to show that;,, — z;; < c. We consider two cases.

l. 741 = i; + 1. in this case we already know that;,,, — z;,| < d. Sincec > d the
claim follows.

Il ij41 > d; + 1: let £ > 4; be the minimal index such tha — z;; > ¢ —d. By
construction;; 1 > 7; is the minimal index that satisfies boyt':lgj+1 — T > Cc— d and
v, < xp;hencejjg > 4, andifijq > £thenx, > x,. Itfollows thatz;, , < .
Since/ is the minimal index for whichr, — z;;, > ¢ — d, for index? — 1 we have
re—1 — z;; < ¢ —d. Inaddition,z; — 2,1 < d. Together we have;, , —z;; <
Tp—xi; =T — Tg-1 + 21 — T; <d+c—d=c asrequired.

O

Now we are ready to prove the tradeoff theorem.

Proof of Theorem 4.1Let§ = Ic andé = 1 + WT,L) and defing: = d 5. We assume that is
large enough that the following requirements are satisfied.

e k> 1:sinces(n) = o(n), we can choose large enough so th&(n) < én andk > 1.

e 5(n) > T:sinces(n) = Q(T -logn) in a network with diametef(n) [13], for sufficiently
largen we haves(n) > T.

e &€ (1, %]: this follows from the previous requirement.

e n/2—2(k+ 1) > 0:itis sufficient to requires(n) > 44, which is implied bys(n) > 7.
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Setup. Consider the network’ shown in Fig. 1(a), over nodds = {wq, w,} U (I4 x {A}) U
(Ip x {B}) (here A and B are merely symbols used to distinguish the nodes of the two chains),
where

I,={1,...,|n/2] — 1}, and
Ip=A{1,...,[n/2] — 1}.

For the sake of convenience we also yseA) and (0, B) to refer to nodewy, and we use
([n/2], A) and([n/2], B) to refer to nodew,,.
Using this notation, the initial set of edges is given by

E={((i,A), (i +1,A)) |i € Iy0ri+1€ I }U
U{((i,B),(i+1,B)) |i € Igori+1¢€ Ig}.

Letu = ([k]|,A) andv = (|n/2 — k], A). The distance betweenandv is at leastn/2 —
2(k + 1), and the distance between nodesandu and between nodesandw,, is at least.

We useEPo%k to denote the set of edges on the shortest path between ngdmsd « and
between nodes andw, (these edges are shown covered by double-sided arrows in Fig. 1(a)
Formally,

EPk — En{((i, A), (j,A)) |j € {i—1,i+ 1}, and eithe) <i < [k] or |n/2 — k| <i<mn}.

Construction of executiona. LetS = £ - 5(n). By definition,s(n) = lim; . s(n,0,%). In
particular, there is some tinig such that for alt > T we haves(n,0,t) < S. In the proof we
focus on the suffix of the execution starting frdm

Consider a delay maskl = (EP°k| P) whereP(e) = T for all e € EP°k, By Lemma 4.3,
there is anV/-constrained execution and a timel, > T, in which

Lu(Ty) — Ly(Ty)| > ifr.disww,v) > iT (5-20+1). (4.8)

DefineTy := Ty — k- T /(1+ p). We will eventually add new edges to the network at tifagand
show that the algorithm cannot reduce the skew on them much bylim&he new edges must
be added “in the pastTi < Ty), as we require a large skew betwaepnandw,, “in the present”
(timeT3) to show that at least one new edge still has a large skew.

The skew between nodes, and w,,. We argue that the large skew betweeandv at timeT;
in o implies a large skew between nodegandw,, at the same point in time (see Fig. 1(d) for an
illustratior®). Let Sy = | Ly, (T5) — Lu, (T%)|. We proceed to boun§, from below.

Note that the figure actually depicts the best-case scenario for the alggititunld be, for example, that the skew
betweenwy andw,, is even larger than the skew betwaeandwv.
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SinceTy > T, we haves(n,0,7>) < S. Because is non-decreasing in the initial skew, this
implies that the skew on each of the edges between nogesidu and between nodesandw,,
is at mostS. There are at mogt + 1 edges between each pair, and hence

| Lo (T2) = Lu(T2)| < 5 - (k+1) = &5(n)(k + 1) (4.9)
and

|Ly(T2) — Ly, (T2)| < S - (k+ 1) =¢&s(n)(k+1). (4.10)
Using (4.8), (4.9) and (4.10) we obtain

S2 = [Lug (T2) = Lu, (T2) 2 [Lu(T2) = Lo(T2)| = |Luwo (T2) = Lu(T2)| = [Lo(T2) = Lu, (T2)]

> %nT— %T(lﬁ? +1)—2¢3(n)(k+1) €5(n) >T)

> énT—S&é(n)(lﬂ—i—l) (k>1,6<4%
1 _ n

> gnT — 8ks(n) (k= 5§(n))

Z(;T—Sé)-n 0= 1L%)
1

= 1—6nT.

Construction of executiong. We now construct another executignin which new edge&™"
appear attimdy; =15 — k - ﬁTp (see Fig. 1(b)). Formally, the network in executiéis defined
by
B {Ea(t) it <,
E*(t)U E™Y ift > Ty.

In 3, adiscover({u, v}) event occurs at tim&; + D at every node: such that{u, v} € E™V
for somev € V. All message delays on edgeshhand all hardware clock rates are the same in
« and in5. Message delays on edgeshfi®V in 5 are chosen arbitrarily. Note that sinaeis
M -constrainedg is M-constrained as well.

The new edge#°" are chosen between nodes on #ehain using Lemma 4.4. For any
adjacent nodes, y on the B-chain we haveL,(71) — L,(T1)| < S. Therefore, by Lemma 4.4,
there is a sequenc€’ = x4, ..., z,, of B-chain nodes such that

1. Foralll <i<m—1wehave|L,, (T1) — Ly, (T1)| € [I — S, 1], and
2. m < [LoT)=La(T] 4
SetEmeY = {{xi,:mq_l} ’ 1< <m-— 1}. Then

|Lo(Th) = Ln(Ty)| _ G(n)
I1-S —I1-5
where in the last step we used the fact that the global skew is boundghby

|EneW‘:m_1§

17



Indistinguishability of o and 5. We show by induction oithat for all0 < i < k, executionsy
andg are indistinguishable up to timg:= Ty + i - ﬁTp + D, exclusive, in the eyes of all nodes in
the set

Yi:={(j,A)|i<j<|n/2] —i}.

e (Base.) Fori = 0 the claim follows from the fact that and 5 are identical up to timé?
(exclusive), and no node finds out about the new edges untilfimeD.

e (Step.) Suppose that up to timg exclusive, executiona and S are indistinguishable in
the eyes of all nodes in the sBt= {(j, A) |i < j < [n/2] —i}. Letu € Y;y;. From the
definition ofY; andY; 1, nodeu and its neighbors are ivi. Thus, at any time < t;, neither
u Nnor its neighbors can distinguish betweeandg.

Since message delays and the hardware clocks of all nodes are the sanaadnin 3,

and no nodes iy; experience link formations or failures, the only way a nodé&jircould
distinguish between executionsandg is by receiving a message from a node that previously
could distinguish between and3. We show that no node il;,; can receive a message
from a node that distinguishesfrom  until time ¢;; (exclusive).

Consider first messages sent by a nodeY; \ Y;,; and received by, € Y;; at some time
t, < tiy1. Letts be the time at whichv sent the message. Because 1 < k, the edge

{u,v} must be inEP% and sinces is M-constrained this means that < ¢, — %p <

tivi— % = t;. Thus, the message was sent prior to timand node could not distinguish
betweeny and 5 when it sent the message.

As for messages sent between nodes;in, it is easy to show by induction on the number
of such messages received that neither sender nor recipient caguiistibetweema andg.

Sinceu,v € Y andTy = T} + k% < T+ k% + D, nodesu andwv cannot distinguish
betweeny and S at any timet < T5. It follows thatu andv will have the same logical clocks at
timeTs in 3 as they do iny, and the skew between them will 15g.

The skew on the new edges at tim&,. At time 75, every edge inE"V carries a skew of no
more thans(n, I,T» — T1), since the initial skew on every edge was no more thand s is
non-decreasing in the initial skew. Consequently, the total skew betweamttpoints at timés,
satisfiesSy < |E™Y| - s(n, I, Ty — T7). However, we have shown thét > %nT, and hence

G(n) T
I_S S(n,[,km)

1
EnT < SQ < |EHGW| : S(n717T2 - Tl) <

Rearranging the terms and substituting: 55(’;), o= % andl > 3s(n) > 2S5 yields

T n n n
s(n, I : T)> —=—TUI-S5)> 326(n)

128(1 4 p) 3(n) 71




This concludes the proof. We note that while the bound applies to any inigal Bk> 35(n), it is
perhaps more meaningful wh%@g(—n)T- I > 3(n), thatis,] > 32g(7r_b)§(n)_ ]

5 A Dynamic Clock Synchronization Algorithm

In this section we give a simple DCSA that achieves the tradeoff demonstrated previous
section. Alg. 1 gives the algorithm in pseudocode, and a detailed descripliows.

5.1 Overview

The algorithm is based on tii&(\/pD)-gradient clock synchronization algorithm from [14]. In the
original algorithm, each node attempts to catch up with the maximum clock among itdboesg
under the following constraint: if is a neighbor of:, thenu’s clock is not allowed to exceeds
estimate fon’s clock by more tharB, whereB = O(y/pD) is a parameter. Intuitively, the value
of B governs how much each node has to wait for its slowest neighbor.

Our dynamic algorithm uses the same general idea; however, insteadatifigrall edges
equally, we use a dynamic weight’ (At) to determine the amount by which nods clock is
allowed to exceed nodes clock when the link{u, v} has existed foAt time. The tradeoff from
Section 4 shows that nodes must not wait for new neighbors as muchyasdhéd wait for old
neighbors; if they tried to do so they might violate the local skew guaranteg alld links. Ac-
cordingly we set an initial value @B (0) = oo, meaning that nodes are allowed to get arbitrarily
far ahead of new neighbors. After edfye v} exists for a “long enough” period of time, the value
of B;, drops down instantaneously to its final valuelf = ©(,/pn), which roughly corresponds
to the stable local skew of the algorithm (see Theorem 6.12 below). Therduwiciime beforeB;)
drops fromoo is ©(n/ By), matching the(n/5(n)) lower bound from Section’

5.2 Events and timing

Throughout the algorithm, nodes send each other periodic updatesnaogittneir own logical
clock value and their estimate for the maximal logical clock in the network. Updaitesent to all
neighbors evenA H subjective time units; that is, if nodesends an update to all its neighbors at
real timet, the next time it will send an update is real titiesuch thatd,, (t') = H,(t) + AH.
During the execution nodes keep track of their dynamic set of neighndstemember how
much time has elapsed since they last received a message from eactondighlong time passes
and a message is not received along an edge, the node concludes tdgemust have failed, and
its endpoint is removed from the set of neighbors. Since all hardwatkfirogress at a rate of at
leastl — p, each node sends updates to all its neighbors at least once/etgtyl — p) real time

“In the conference version of this paper the weight§At) were continuous, starting from a large initial value and
decreasing linearly witt\¢ until reaching the final value aB,. Here we use a simpler function which nevertheless
yields the same local skew guarantee.
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units. Therefore, the longest period of real time that can pass betweeeddipt of two messages
along an edge that does not fail is given by

AH
AT =T + ——.
1—p

Since nodes do not have access to real time, they use their hardwake toconservatively
estimate whe\ 7 time has passed. The amount of subjective time they wait is

AT = (1+p) AT.
Nodes interact with the network using the following primitives and events.
e receive(u, v, m): nodeu receives message from nodev.
e send(u, v, m): nodeu sends message to nodev.

e discover(X), whereX € {add({u,v}), remove({u,v}) | v € V}: nodeu discovers a change
in the status of edggu, v}. (See Section 3.2 for a detailed description of the network model.)

e Timers and alarms: nodes can set a timer to trigger a delayed event usingntité/g
set_timer(At, timer-ID). If nodew callsset_timer(At, timer-ID) at real timet, then at real
timet' such thatd,(t') = H,(t) + At, analarm(timer-ID) event is triggered at node A
timer can be cancelled by callirgncel(timer-ID).

The algorithm uses two types of timers:

e Thetick timer is set to go off every subjectiv® H time. When it goes off, the node sends
updates to all its neighbors.

e For every neighbov of v, thelost(v) timer is set to go ofA7” subjective time units after a
message from is received. If thdost(v) timer goes off and a new message frorhas not
been received, nodeconcludes that the edde:, v} has failed.

5.3 Local variables

Throughout the run of the algorithm each nadmaintains two setf,,, T, such thaf’, C T,,.

The setY,, contains all the nodes such that aliscover(add({u,v})) event occurred ai and
was not yet followed by @iscover(remove({u,v})) event. The criterion for membership I,
is more restrictive: the nodes in, are those nodes of, that v has heard from at mogk7”’
subjective time units ago. A7’ subjective time units pass anddoes not receive a message
from v, thenv is removed froml,, (but not from7Y,). The nodes il", are the only ones used
to determineu’s logical clock value, since they are the ones for whichas an accurate estimate.
However,u sends (or tries to send) periodic updates to all nodés,in

In addition toI',, andY,,, nodeu maintains the following local variables.
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L, Nodew’s logical clock.

Lyax Nodew’s estimate for the maximal logical clock in the network.
Cyforvely, The value of node’s hardware clock when was last added tB,.
LY forvel, Nodeu’s estimate for node’s current logical clock.

The local variables are modified upon processing the various evertis\aa &1 Algorithm 1. Be-
tween events, the variablés, L)'** andL; for all v € I',, are increased at the rate«d$ hardware
clock.

5.4 Updating the logical clock

Nodeu uses its local estimatg!, to estimate the skew on every edge v} for v € T',,. A function

B :RT — R*U{oo} governs how much perceived skew nadis willing to tolerate on any edge.
The argument to the functioB is (H, — C)), the subjective amount of time that has passed since
u discovered edgéu, v}. Given parameter8,, W andW’ := (1 + p)W, the function is defined

by

oo if At < W/,

By otherwise

B(At) := {

The parameteB, corresponds roughly to the stable skew of the algorithm: for sufficiently old
edges, nodes try to maintain a perceived skew of at lBpsHowever, the real skew may be larger
than By, in part because the node’s estimates for its neighbors’ clocks areerfetfly accurate.
We bound the real skew in Section 6.

An edge is considered to be “sufficiently old” if the node discovered it @dtld” real time
units ago, where

W = <4Q(n) + 1) T and T = 1jAT-l— T+ D, (5.1)
BO 1-— P

and whergj(n) = ©(n) is the bound on the global skew derived in Theorem 6.9 in Section 6.3.
The waiting timelV corresponds to th@(n/s(n)) lower bound shown in the previous section. As
with AT andA7’, nodes us&/’ = (1 + p)WW to conservatively estimate the subjective time they
must wait to ensure thdt” real time units have passed.

We defer the choice of a value fd, until Section 6, and note only that for correctness we
require

By > 2(1+ p)T. (5.2)

The logical clock of each node is adjusted after every event. In egaobtagknt, node: in-
creased, to the largest value that it can, subject to the following constraints:

(1) L, is never decreased,

(2) L, cannot exceed)'®*, and

21



(3) The perceived skew on every edfge v} such that € I',, cannot exceed the value &f for
that edge. That is, for all € ", we requireL,, — L}, < B (H, — C}).

If the constraints cannot be met (e.g.uihas a neighbor that is very far behind), nadeannot
make a discrete increase to its logical clock. However, the logical cloctincms to increase at
the rate ofu’s hardware clock. The update rule is given by

Procedure Adj ust d ock
1 Ly < max { Ly, min { L min,ep, {L, + B(H, — C2)}}}
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Algorithm 1: Responses to events that occur at nede

1 whendiscover(add({u, v})) occurs atu
send(u, v, (L, L))

T, < T, U{v}

Adj ust d ock()

end

when discover(remove({u, v})) occurs at
Ly« T\ {v}

Ty < Yo\ {v}

9 Adj ust d ock()

10 end

11 whenalarm(lost(v)) occurs atu

12 Iy« Ty\ {v}

13 Adj ust d ock()

14 end

15 whenreceive(u, v, (L,, L1**)) occurs at
16 cancel(lost(v))

17 if v & T, then

0w N o o b~ W N

18 r, «I'y,u{v}

19 Cy + Hy,

20 end

21 LY < L,

22 Ly max { L', L}

23 Adj ust d ock()

24 | set_timer(AT,lost(v))

25 end

26 Whenalarm(tick) occurs atu
27 forall v € T, do

28 ‘ send(u, v, (L, L))
29 end

30 Adj ust C ock()

31 set_timer(AH, tick)

32 end

We assume that all nodes know (upper bounds on) the maximum hardwekedcift p, the
propagation delay, as well as the boun® on the time between topology changes and the nodes
discovering these changes. Depending on how edge insertions atidrdekre discovered)
typically is a function ofp, T, as well as the parameté&tH. Throughout the remainder of the
paper, we assume th@at > max{7,AH/(1 — p)}. We also assume that all nodes knawthe
number of nodes participating in the system. With these assumptions, each kode&s enough
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to compute the value @B; for everyv € I',. In particular, all nodes can compute the bogi{d)
on the global skew. Note that the same asymptotic results can be achievenbifled known up
to a constant factor. This would allow to generalize the setting and also adapdes joining and
leaving the system as long aonly changes at a constant rate.

6 Analysis of the Algorithm

In this section we show that when the paramdigis set appropriately, the DCSA from Section 5
achieves)(n) global skew and)(,/pn) stable local skew.

6.1 Basic properties

We begin by establishing several simple properties of the algorithm, most ohwhitcern the
quality of information that nodes have about their neighbors.

Lemma 6.1. If edge{u, v} exists throughout the interv@d,, to] wherety, > t; + AT + D, then
for any timet such thatt; + AT + D <t < 1o,

1. ue'y(t) andv € T',(2),
2. Nodeu receives at least one message froin the intervallt — AT, ¢t], and

3. Nodev receives at least one message fromn the intervallt — AT, ¢].

Proof. Since the edgéu, v} exists throughout the intervith, t2] wheret, > ¢; + D, it is discov-
ered byu andv at timest?, t? respectively such thaf , 1) < ¢, + D.

Upon discovering the edge nodesand v add each other t&,, and T, respectively. No
discover(remove(u, v)) event can occur at or atv between timeg_, t0 (respectively) and time,,
because the edge exists throughout the intdtyats]. Therefore, for alk € [t; + D, t2] we have
v e T,(t) andu € T,(t). It follows that nodes: andv send each other updates every subjective
AH time units at most throughout the interyal + D, t5]. This in turn implies that. andv send
each other updates every object@_@ time units at most throughout this interval.

Let ¢ be a time such thgt — A7 ,¢] C [t1 + D, t2]. Sincev sendsu a message at least once
everyf_—lf) time units throughout the intervh +D, t5], there is some; € [t — AT, t—AT + IAT};]
such that sendsu a message at time. The message is received byt timet, such that

AH
t=AT <t <t St+T <t AT+ ——+T=t.

Therefore, condition 2 of the lemma is satisfied. Condition 3 is similar.
Condition 1 of the lemma follows from Conditions 2 and 3: from lines 6-23 of ige-a
rithm, if « received a message fromat time ¢, such thatH, (¢t) — H,(t,) < (1 + p)AT
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and nodiscover(remove({u,v})) event occurs during the intervdl., t], thenv € I',(t), as de-
sired. Lett be a time such thdt — A7, t] C [t; + D,ty]. Condition 2 of the lemma shows
that nodeu receives a message from nodeat some timet, € [t — AT,t]. In particular,
H,(t) — Hy(ty) < A 4+p)(t—t) < 1+ p)(t—(t—AT)) = (1 + p)AT. Finally, we
know that nodiscover(remove({u,v})) event occurs during the intervgl., t], because the edge
{u,v} exists throughout the interv@dl;, t5] and[¢t,,t] C [t — AT,t] C [t1 + D, t2]. This shows
thatv € T',,(¢), andu € T',(t) is proven in a similar manner. O

Lemma 6.2. If v € T',(t), then by time nodeu has received at least one message that nosient
attimet, >t —r.

Proof. If v € T',(t) thenu has received a message framat some time,. such thatH,,(t) —
H,(t,) < (14 p)AT, otherwiseu would have removed from I',, prior to time¢. Since the
hardware clock rate af is at leastl — p,

Hy(t) — Hy(ty) > (1= p)(t — ).

Thus,t—t, < %AT. The message was sent at some tige ¢, —7 > t—%{’jAT—T > t—T,
so the lemma holds. m

Lemma 6.3(Max estimates)For all © € V and times > 0,

Ly (t) = Lu(t).

Proof. The variabled}'** andL,, are modified in three circumstances: in line 22 of the algorithm,
which is executed when receives a message; in procedddj ust d ock( ), which is called
after every event; and in between discrete events. It is sufficient t@ stat all of these preserve
the invariantL}®* > L,,.

Between processing discrete everits?* andL,, are both increased at the rate.s hardware
clock, and the invariant is preserved. Suppose ther/tfi&t > L,, prior to the execution of line 22
or of procedureAdj ust Cl ock() . In line 22 the value of_}'** can only be increased, so the
invariant is preserved. IAdj ust d ock( ), nodeu sets

L, < max {L,,min {L;*, ... }}.

Since we assume that>* > L, prior to the execution ofdj ust C ock() , both terms in the
max are no greater thah!;'**. Following the assignment we still havg, < LI'#*.
O

Lemma 6.4 (Estimate quality) If v € T',,(t) thenL,(t — 7) < L (t) < L,(t) + 2p7.
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Proof. Lett, be the latest time that nodesends a messadé, (ts), L;"**(ts)) which is received
by v at some time,. < ¢t. From Lemma 6.2 we hawg > ¢t — 7. Upon receiving the message, node
u setsLy < L, (ts) (line 21).

Since messages are delivered in FIFO fashion, nodees not receive another message from
v during the intervalt,., t]; during this intervalL!, is increased at the rate afs hardware clock,
and in particularL;, is not decreased. Thus,

Ly (t) > Ly(tr) = Ly(ts) > Lo(t — 7),

giving us the first side of the inequality. In addition, since the rate'®hardware clock is always
at most(1 + p),

Ly(t) < Ly(tr) + (8 =) (1 + p) < Lo(ts) + (t = ts)(1 + p). (6.1)

During the intervalts, t], nodev also increases its logical clock: even if no discrete changes are
made, the logical clock increases at least at the ratésdfiardware clock, which is no less than
(1 —p). Thus,

Ly(ts) < Ly(t) — (t — ts)(1 = p). (6.2)

Combining (6.1) and (6.2) yields
Ly(t) < Ly(t) + 2p(t — ts) < Lo(t) + 2p7. (6.3)

O

6.2 Discrete updates and blocked nodes

To analyze the algorithm it is important to understand what conditions praeeles from making
discrete changes to their logical clocks. These conditions are captytkd following definitions
and properties.
Let

By (t) := B(Hu(t) — C,(t))

be the amount of perceived skew nades willing to tolerate on edgéu, v} at real timer.
Definition 6.1 (Blocked nodes)We say that a node is blocked by node at timet if

1. L7*(t) > Ly(t), and

2. veTly,(t),and

3. Ly(t) — LU(t) > BY(t).

In this case we also say that noddlocks node: at timet and that node: is blocked at time.
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It is easy to see that being blocked prevents nodes from increasindaijiesl clock value in
Proceduréddj ust O ock() . The next lemma shows that being blocked is in factathly reason
that can prevent a node from increasing its logical clock to its max estimate.

Lemma 6.5. If L***(t) > L, (t), then node: is blocked at time.

Proof. Let¢ < t be the most recent time a discrete event occurs at nageto (and including)
timet.

Between time’ and timet nodeu increased.};** and L,, at the rate of its hardware clock, and
thereforeL™#*(¢') — L, (t') = L™*(t) — L, (t). Since we assume that"®*(¢) > L,,(t) it follows
that L2 (¢') > L, (t').

Nodeu must be blocked following the last event that occurs at tinetherwise it would have
setL,(t') + L™*(¢") in Proceduréddj ust C ock( ) after processing the last event. Thus, there
is some neighbor € T, (¢') such thatL,,(t') — LY (t') > BY(t').

Between time’ and timet nodev was not removed from,,, because nodes are only removed
from I',, following discrete events, and no discrete event occurs at ndzkween the last event
that occurs at time’ and timet. Thus,v € T',(t). Also, between time¢' andt, the values
L, and L! were both increased at the rate6$ hardware clock, and hende,(t) — L% (t) =
L,(t") — Ly(t") > B.(t') > By(t). This shows that node blocks node: at timet. O

Each node: decides whether or not to increase its clock based on its estimates of itsorsighb
clocks, aiming to keep the skew on edfye v} no greater tharB.. Since the estimate may be
larger than the real value of the neighbor’s clock, nedeay overshoot the mark, but the following
lemma shows that it does not overshoot it by much.

Lemma 6.6. If u's logical clock made a discrete jump at timethen immediately following the
jump, for allv € T, (¢t) we haveL,,(t) — L,(t) < BX(t) +2p - T.

Proof. If u's logical clock made a discrete jump at timethen following the jump in Procedure
Adj ust C ock() we have

Lu(t) < min (Ly () + By(t)) < Ly (t) + By (?).

Applying Lemma 6.4 we obtain

Ly (t) < LU(t) 4+ BU(t) < Ly(t) + BL(t) + 2pr.

6.3 Global Skew

The basic strategy to bound the global skew of our dynamic clock synizaten algorithm is the
same as the one used in a static network (see [14]). We first show thatyfdwo nodes: and
v, the estimated)}**(¢) and L;"**(¢) of the maximum clock value in the system are not too far
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apart. Second, we show that if the global skew exceeds a certain valoeed, the nodev with
the smallest logical clock valug,(t) cannot be blocked at time By Lemma 6.5, we then have
L,(t) = L»*(t) and thus the bound on the maximal difference between two estimgtEst)
andL**(t) also yields a bound on the global skew.
For anyt > 0, define
L™M¥(t) = L (t). 6.4
(t) = max L,/™() (6.4)
Lemma 6.7 (Rate of L™#*). The value ofL™2* increases at a rate at most+ p. That is, for all
to > t1 > 0 we have
L™™(ty) — L™ (t1) < (1+ p)(t2 — t1).

Proof. Informally, we wish to argue that any node that has the largest max estimgtiacneases
it at the rate of its hardware clock, because it never hears larger e#deks from its neighbors.
Thus, the overall maximum of the max estimates in the network increases atrageavate of at
most(1 + p), the rate of the fastest hardware clock. However, this argument is catgaliby the
fact thatL™#* is not differentiable everywhere. We require the following easy lemma.

(x) LetF' = {f1,...,fa} C RE be a set of functions and léte R be a bound such that for all
f € Fandforallz € R, if f(z) = maxser g(x), thenf is differentiable atr and f'(z) < b.
Then for allzy, 22 € R we have

1}13;{ flz2) < I?Ga;( f(z1) + b(xe — 21).

The proof is technical and is not included here. To apply the lemma we most thiat for all
nodesu and timeg, if L' (t) = L™**(¢) thenL}** is differentiable at anddL}'** /dt < 1+ p.
Let u be a node such thdt}'**(¢) = L™**(¢). Between discrete updates nodencreases
L7 at the rate of its hardware clock, which is differentiable and has a raterabsat1 + p;
thus, it is sufficient to show that does not make a discrete update/f** at timet¢. The only
place where: might make a discrete update £§'** is line 22 of the algorithm, which is executed
upon receiving a message from a neighbor. Thus, suppose that at tiote v receives a mes-
sage(L,(ts), L'**(ts)) that nodev sent at timef; < t. SinceL;"™™ is non-decreasing, we have
L (ts) < LX(t) < L¥**(t); hence the value of}** does not change upon execution of
line 22, and a discrete update does not occur. O

The accuracy of the estimatég'**(¢) can be bounded by applying the interval connectivity
property of the dynamic network graph. Informally, suppose we “ge#me value of.™* at some
time ¢, and let us track the propagation of this value throughout the networtk)MLe- L™*(t).
Consider the cutS(¢),V \ S(t)), whereS(t) := {u € V| L*(t) > M} is the set of nodes
that have heard o or a greater clock value. Th& + D)-interval connectivity of the graph
guarantees that there is some edge in the cut that persists long enolighefaipoints to get at
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least one message across. Thus, at every “step”, at least onmriogé (¢) learns a value that is at
least)/, and increases its max estimate accordingly. This node will then be addéttd + D).

After at mostO(n) such steps we will reach a time(= ¢+ O(n)) such thatS(t') = V/, that s,
forallu € V we haveL’**(¢') > M. In other words, afte®(n) time, all nodes catch up to théd
value M = L™ (¢). But Lemma 6.7 shows thdi™** does not “run away” during this interval:
Lmax(t') < L™**(t) 4+ (1 + p)(t — t') = M + O(n). Therefore the difference betwe&f*(t')
and the max estimate#*(¢') of any nodeu is at mostO(n). This argument is formalized in the
following lemma.

Lemma 6.8(Max Propagation Lemma)f the dynamic grapldz(¢) is (7 + D)-interval connected,
then for all¢ > 0 and allu € V' it holds that

LM () — L) < (1+p) - T +2p-D) - (n—1).

Proof. All hardware clocks and max-estimates are initialized to O at time 0, and Hewt€0) —
L7**(0) = 0. The max clockL™* increases at a rate of no more thar- p, and the max-
estimateL**(t) of any nodeu increases at a rate of at ledst- p. Consequently, the difference
L™ (t) — L™*(t) grows at a rate of no more thah + p) — (1 — p) = 2p, and becausg < 1,
the claim holds at least until time

(L+p)T+2p-D
2p

Thus, it is sufficient to consider timesuch that > (7 + D) - (n — 1).
Fori € {1,...,n}, define

t =

(n—1)>(T+D)-(n—1).

ti:==t—(n—1i)(T +D)

and
Vii={v e V| LE™(t;) > L™(t;) + (i — 1)(1 - p)D}.

We prove by induction onthat for alli € {1,...,n} we havelV;| > i.

e (Base) By definition}; = {v € V' | L***(t;) > L™**(¢1)}. There exists some nodesuch
that L"**(t,) = L™**(¢;1), and consequently/;| > 1.

e (Step) Suppose thél;_,| > i — 1. By definition, for allv € V;_; we have
Ly (tioy) = LM (t1) + (i — 2)(1 — p)D. (6.5)

The max estimate of each node increases at least at the rate of its hactiveirteConse-
quently, for allv € V;_1,

Ly (ti) > Ly (ti-1) + (ti — ti1)(1 — p)
% Emax(ty) 4 (i = 2)(1 = YD+ (6 — i 1)(1 - p)
> L™™(t1) + (i — 1)(1 — p)D,
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and hencé/;_; C V.

If V'\ Vi_y =0, then|V;| > |V;_1| = n and we are done. Otherwise By + D)-interval
connectivity ofG(¢) there exists an edge= {v, w}, wherev € V;_; andw € V\V,_1, such
thate exists throughout the intervél,_;, ¢;]. By Lemma 6.1, there are timésq > ¢;,—; and
trev < t; such that node sends nodev a message containing)'**(ts,q) at timetg,q, and
nodew receives the message at timg, and updates its max estimate. Thus we have

L™ (t) 2 L3 (ter)
> L™ (tsna)
> L™ (ti—1)

> L0 (t;y)
= L™ (ti—1)

(6.5)
> L™%(t)) + (i — 1)(1 — p)D.

1= p)(ti — trey)

= p)(ti — trev)

(1= p)(ti — trev) + (1 = p)(tsna — ti-1)
(1=p)(ti—tia—T)

(1-p)D

(
(1

—+
-+
-+
-+
—+

It follows thatw € V;. Sincew ¢ V;_1 andV;_; U{w} C V; we haveV;| > |V;_1]| +1 > i.
The claim we proved implies th&f, = V; that is, for allv € V, at timet,, = t we have
LI (t) > L™ (1) + (n — 1)(1 — p)D. (6.6)
From Lemma 6.7,
L™(t) < L™ () + (1+ p)(t — 1) = L™ (1) + (1 + p)(n—1)(T+D), (6.7
and combining (6.6) and (6.7) yields
L™ (t) — L) < (n — 1) (1 +p)T +2p- D).

O]

Using the approach sketched above, Lemma 6.8 allows us to prove the fgltwénrem,
which bounds the global skew of our algorithm.

Theorem 6.9(Global skew) The algorithm guarantees a global skew of
Gn):=(1+p)-T+2p-D)-(n—1).
Proof. We show the stronger statement that at all ties
YoeV o L™(t) — Ly(t) < G(n)

and the claim then follows from Lemma 6.3 and the definitiod Bf=,
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For the sake of contradiction, assume that this is not the case. Then tsereadimet, node
v € V ande > 0 such that
L™(t) — Ly(t) > G(n) +¢ (6.8)

Let ¢ be the infimum of times when (6.8) holds for some nadeBy Lemma 6.8, we have
Lmax(p) — Lax(3) < G(n) and thusL, () < L2**(t). Hence, as a consequence of Lemma
6.5, v is blocked at timef. Therefore by Definition 6.1, there is a nodec T',(t) such that
L,(t) — L%(t) > BY(t) > By. By Lemma 6.4, it therefore holds that,(t — 7) < L,(t) — Bo.

By Lemma 6.7, we havé™?*({ — 1) > L™**(¢) — (1 + p)7. We therefore obtain

L™ — 1) — Ly(f — 1) > L™(&) — Ly(f) — (1 + p)7 + Bo.

Because we assume thBf > (1 + p)r, this is a contradiction to the assumption thas the
infimum of times when (6.8) is satisfied for the first time for some nade O

6.4 Local Skew

The local skew guarantee of the algorithm hinges on the fact that forgatiore after an edge
appears, the skew on it is unconstrained and its endpoints do not neealttiomeach other.
Specifically, we can show that at ledsf real time units must pass before two newly adjacent
nodes can block one another.

Lemma 6.10. If nodewv blocks node: at timet, thenv € T, (¢') forall ¢ € [t — W, ¢].

Proof. Let t5 < t be the last time in which node added nodey to I';,. (Such a time must
exist, because at timenodewv blocks nodeu, and in particulaw € T',(t).) From the algorithm,
CY(t) = Hy(to), and by choice oty we havev € T',(t') for all ¢’ € [to,t]. Our goal now is to
show thattg < ¢t — W.

From the definition of blocked nodes, if noddlocks node: at timet then By (t) < oo. This
implies thatH,,(t) — Cu(t) > W', that is, H,(t) — H,(to) > W’. Since the hardware clock
progresses at a rate Of + p) at most, we can write

(1+ W = W' < Hy(t) - Hu(to) < (1+ p)(t — to).
Thus,ty <t — W, as desired. O

We use the lemma above to show that by the time two nodablock each other, they have
been in communication for a long time, and have up-to-date information abcubdaer. Specif-
ically, the node that lags behind has a max estimate that reflects the clock /ledaster node.
We will later argue that if there is a large skew between the nodes, then ter siode must itself
be blocked, otherwise it would have increased its clock to match its max estinsater(& 6.5).

Lemma 6.11(Edge reversal)lf nodev blocks node: at timet then for allt’ € [t—W +AT,t—D]
we haveL®*(t') > LMt/ — 1).
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Proof. From Lemma 6.10, iD blocksu at timet, then for allt’ € [t — W, t] we havev € T, (t').
Sincel', (') € Y,(¢), this implies thaw € T, throughout the interval. Hence, throughout the
interval[t — W, t], nodeu sends node an update everﬁ\_ﬂp real time units at most.

The model guarantees that if a message sent by v at timet’ is not delivered, node:
experiences discover(remove({u,v})) event no later than timé& + D, which would leadu to
removev from I',, (line 7). Sincev € T', throughout the intervalt — W, t], all messages sent
from w to v during the intervalt — W, ¢ — D] are delivered. It follows that during the interval
[t — W + AT,t — D], nodev receives a message fromat least once everA7 time units, and
hence throughout the interval we haves T',. Lemma 6.2 implies thak®*(¢") > L**(¢' — 1)
forallt’ € [t — W + AT, ¢t — D]. O

The local skew guarantee of the algorithm is as follows.
Theorem 6.12. For any two nodes, v and timet such thatw € T, (¢),

de_LAwgzﬁa—w0+2mv_3mt—wq+mn(fg?+1>

Proof. Suppose by way of contradiction that at tich¢here are two nodes,v € V such that
v e I'y(t), but
L, (t) — Ly(t) > B(t — W) + 2pW.

We will show that this implies a contradiction to the global skew guarantee (€he6.9) at some
earlier time in the execution.

There are two parts to the proof. First, we show that since the skew betwaied v is very
large,u has been blocked for a long time, and its logical clock has not increasatibly. More
formally, sinceBY, is non-increasing, for alf € [t — W, ¢] we have

BY() < BU(t— W), (6.9)

From Lemma 6.6 and Lemma 6.10, at any tithe [t — W, ¢] nodeu’s logical clock cannot jump
to a value that exceeds, (t') + BL(t') + 2pT < L,(t') + BL(t — W) + 2p71. Thus, the excess
skew of2pW — 2p7 was built up by increasing’s logical clock at the rate af's hardware clock,
which is at most + p, while v's clock increased at a rate of at ledst p. In other words, as long
as the skew is greater thaf(t — W) + 2pr it increases at a rate of at maxst, which implies
thatw’s clock cannot make a discrete jump throughout the inteftval W + 7, ¢]. Thus, for all
t' € [t — W + 7,t] we have

Lu(t') = Lu(t) = (L + p)(t — t'). (6.10)

In the second part of the proof we argue that nodeould not have fallen so far behind node
u unless it was itself blocked until very recently by some other nagevhich lags far behina.
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And sinceus lags far behind,, it mustalsohave been blocked recently, and so on. In this way we
construct a chaimg, u, ..., us+1 Of nodes, wherey = u, u; = v, and each node in the chain is
blocked by the next node.

Formally, we define a sequence of decreasing tithes, . . ., t,+1, where

W —r
2T
We construct the chainy, . .., us1 SO that each node; satisfies the following properties.

tit=t—i-7 and 0= | (6.11)

(1) Ifi #0thenLy(t) — Ly, (t;) > i- Bo.
(2) Forallt’ € [tap_iy1,t:] we haveL ™ (t') > L (t' —iT).
(3) If ¢ < £ then nodey; is blocked at time;.

The first property is the one we are truly interested in: we will use it to obt&@ircomtradiction to
the global skew guarantee. The other two properties are necessthrg foductive construction of
the chain. We use property (2) to show thais “aware” of a large clock value in the network, by
bounding its max estimate from below. Then we combine properties (1) and $Bpw thatu;'s
clock value is smaller than its max estimate, which means it must be blocked (Lemmdbe5)
node that blocks; will be chosen as; 1.

Before showing the construction of the chain in detail, let us show how weheschain to
derive a contradiction. Suppose we already have a ahain . , u,. 1 that satisfies properties (1)—
(3). In particular,

Lu(t) — Lup,, (ter1) > (+ 1)Bo = (0 +1) - 2(1 + p)r. (6.12)

In order to obtain a contradiction to the global skew, we must relate the cldokvofu andu,,
at the same timeNow the first part of the proof comes into play: it shows tlaatclock value at
timet, is not much less than it is at tintespecifically,

Lu(tesr) > Lu(t) = (14 p)(t = tesr) = Lu(t) — (1 + p) (£ + D). (6.13)

(We use the fact thaty,; = ¢t — ({ +1) -7 > t — W + 7, which allows us to apply (6.10).)
Combining (6.12) with (6.13), we obtain

Lu(tes1) = Lugy, (ter1) > 20+ p)(U+ )7 = (1 + p) (0 + D)7
a4 )7 <LW2_ e 1)

.
> (L4 p)7-
o1 4 p)r ggz) > G(n)



This is the contradiction we sought.

It remains to show how the chaim,...,us; IS constructed. The base cas®, = u, is
immediate. Suppose that we have constructed the chain up taupodbere; < ¢ andu; satisfies
properties (1)—(3). If = 0, we chooseu; = v. (We know thatv blocksu at timety = t.)
Otherwise, from property (3) we know that is blocked at timet;. Thus, there is some node
Uit+1 € Fui (tl) such that

Lui (tl) — LZE+1 (tz) > Bﬁ:+1 (tl) > Bo.

We show thats; 1 satisfies properties (1)—(3).

Property (1). Sinceu;1 € I'y,(t;), Lemma 6.4 shows thdt, ™" (t;) > L.,,, (ti+1) (recall that
ti+1 = t; — 7 by definition). Thus we have

Lui (tl) - Lui+1 (ti-i-l) > BO' (6.14)

Now there are two cases. 4f> 0, then property (1) gives ub,,(t) — L., (t;) > i - By, which
together with (6.14) yields
Lu(t) — Lui+1 (ti+1) > (Z + l)Bo. (6.15)
If « = 0, the property we must show &5,(t) — L,(t — 7) > By. We assumed that and
v violate the local skew guarantee at timeand in particular.L,(t) — L,(t) > By. But L, is
non-decreasing, and therefatg(t) — L,(t — 7) > L, (t) — L,(t) > By, as desired.

Property (2). Lett' € [toy_i,tit1]. Sincetyy ; = top_s41 + 7 andt; 11 = t; — 7, we have
t' — 1 € [tar—is1,t; — 27], and property (2) applied to; at timet’ — T gives us

Ly (t' — 1) > Ly(t' — (i 4+ 1)7). (6.16)
In addition we also hav€ € [t; — W + AT, t; — 7], and sinceu;;+1 blocksu; at timet;, we can
apply Lemma 6.11 to obtain

(6.16)
Ly () > Ly™ (' —7) > Ly’ — (i +1)7), (6.17)

Ui+1

as required.

Property (3). It remains to verify that node; is blocked at time,;_, ;.
Recall that by definitiod; = ¢t — i - 7. In particular,

(6.11) W-—r

top=t—20r > t—27- =t—W+4r.
T
Thus, we can apply (6.13) to any tinfec [to, t], obtaining
Lu(t) = Lu(t') < (1 +p)(t — t'). (6.18)
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Applying (6.17) witht’ = ¢;,1 yields

L (tig1) 2 Ly(tiv — (0 + 1)7) = Lu(ta@is1))
(6.18) .
> Ly(t) = (1 +p)(t = taginy) = Lu(t) = (1 +p)(2i + 1)7

(6.15) . .
> Lui+1 (tiJrl) + (7“ + 1)B0 - (1 + p)(27“ + 1)7—

5.2)
> Luz‘+1 (ti+1)'

From Lemma 6.5, node;, 1 is blocked at time; . .

(

O]

Theorem 6.12 describes the local skew guarantee from a point of vagvwstbubjective to node
u: the statement of the theorem assumes thatI',, and the value of3;, depends on the local
variablesC! and H,,. The following corollary states the “objective” local skew guarantee ef th
algorithm.

Corollary 6.13. The algorithm guarantees a dynamic local skew of
s(n,I,At) := s(n, At) := B (max {(1 — p)(At — AT — D — W),0}) + 2pW,
regardless of the initial skewon the edge.

Proof. Lete = {u, v} be an edge that exists throughout an inteftal-+ At]. If At — AT —D —
W <0, thens(n, At) = B(0) 4+ 2pW = oo, and all edges carry less thafn, At) skew. Suppose
then thatAt — AT —D - W > 0, thatis,t + At — W >t + AT + D.
Since the edge exists throughout the intefval + At], from Lemma 6.1, at any timé €
[t + AT + D,t + At] we havev € T',(t'). Thus, the last time was added td",, prior to time
t+Atissometime; <t+ AT +D < t+ At—W, and from the algorithm? (t + At — W) =
H,(t1) < H,(t+ AT + D). SinceB is non-increasing,
Bi(t+ At —W)=B(H,(t+At—W)—-Cy(t+ At —W))
< B(Hy(t+ At —W) — H,(t+ AT + D))
<B((1-p)(t+At—t—AT —D-W)) =
=B((1—-p)(At—AT —D-W)).
Now we can use Theorem 6.12 to obtain
Ly (t + At) — Ly(t + At) < BY(t + At — W) + 2pW < s(n, At),

and similarly we can show thdt, (¢t + At) — L, (t + At) < s(n, At) as well. Together we have
|Ly(t + At) — L, (t + A)| < s(n, At), as required. O

<
<

Corollary 6.14. If the parameterB, is chosen as3y > \,/pn for a constant\ > 0, the stable
local skew of the algorithm i©(By). Further, the time to reach this stable skew on a new edge
is O(n/By). Hence, for this choice aBy, the trade-off achieved by the algorithm asymptotically
matches the trade-off established by the lower bound in Theorem 4.1.
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7 Conclusion

We have established fundamental trade-offs for gradient clock syniziation algorithms in dy-
namic networks. First, the time to adjust the skew on a newly formed edge iséfv@roportional
to the skew one is willing to tolerate on well-established edges. Hence, hastngnger skew re-
quirement in stable conditions impairs the ability to adapt to dynamic changesndgamontrary
to what one might initially think, reducing the skew on edges with a small initial skems out to
be as hard as reducing the skew on edges with a large initial skew. The tadechim both cases
is linear in the global skew bound of the algorithm and is thus at least linear in

The algorithm we gave in Section 5 achieves a stable local skeéW gfon) and has optimal
stabilization timeO(y/n/p). In subsequent work [10], we showed that it is possible for a DCSA
to achieve a stable skew GT(logl/p n), matching the best possible local skew of a static algorithm
(in light of the lower bound from [13]). The improved stable skew neaglyscomes at the cost
of adaptability; the stabilization time of the algorithm in [10](8~). Note that the tight lower
bound we give in the current paper would show that no algorithm with dessbw ofO(log, /, n)
can have a stabilization time better th@(n/log, /,n), seemingly indicating that the algorithm
of [10] has sub-optimal stabilization time. However, in [10] we refine the tdvaeind and show
that for “true gradient” algorithms — algorithms that guarantee a skew smaderttie global
skew betweerany two nodes at distance less than the diameter of the graph — the stabilization
time cannot be better th&i(n). Thus the algorithm in [10] is optimal in both the stable skew and
the time until that stable skew is reached. (We note that the algorithm from S&d8aot subject
to the refined lower bound from [10], because for nodes at dist@iggn/p) from each other,
the only skew guarantee it provides(¥+/n/p - \/pn) = Q(n), no better than the global skew
guarantee. In this sense this algorithm is not a “true gradient” algorithm. projserty allows it,
however, to achieve a stabilization time@f/n/p) instead of2(n).)

An interesting generalization of these results would be to incorporate neeigions and dele-
tions in the dynamic graph model. As long as nodes join and leave at a corstgrit might be
possible to adapt all the parameters used sufficiently quickly in order to séilbgtee the same
basic results. The details of such a protocol as well as possible limitationsveotialst one can
adapt to changes of the network size remain open questions.
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