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Abstract

Over the last years, large-scale decentralized computer networks such as peer-to-peer and
mobile ad hoc networks have become increasingly prevalent.The topologies of many of these
networks are often highly dynamic. This is especially true for ad hoc networks formed by
mobile wireless devices.

In this paper, we study the fundamental problem of clock synchronization in dynamic
networks. We show that there is an inherent trade-off between the skewS guaranteed along
sufficiently old links and the time needed to guarantee a small skew along new links. For any
sufficiently large initial skew on a new link, there are executions in which the time required to
reduce the skew on the link toO(S) is at leastΩ(n/S).

We show that this bound is tight for moderately small values of S. Assuming a fixed set of
n nodes and an arbitrary pattern of edge insertions and removals, a weak dynamic connectivity
requirement suffices to prove the following results. We present an algorithm that always main-
tains a skew ofO(n) between any two nodes in the network. For a parameterS = Ω(

√
ρn),

whereρ is the maximum hardware clock drift, it is further guaranteed that if a communication
link between two nodesu, v persists in the network forΘ(n/S) time, the clock skew between
u andv is reduced to no more thanO(S).



1 Introduction

Establishing coordination between participants is at the core of many algorithmicchallenges in
distributed computing. A fundamental coordination task, and a basic prerequisite for many appli-
cations, is achieving a common notion of time. Typically every node in the networkhas access to a
local hardware clock, but the hardware clocks of different nodes run at slightly different rates, and
the rates can change over time. In addition, although a bound on the messagedelays in the network
may be known, specific message delays are unpredictable. As a consequence it is generally not
possible for any node in the network to get an accurate estimate of the clock values of neighboring
nodes.

Operating under these uncertainties, a distributed clock synchronization algorithm computes
logical clocks at every node, with the goal of synchronizing these clocks as tightly as possible.
Traditionally, distributed clock synchronization algorithms tried to minimize the maximaldiffer-
ence between any two logical clocks in the network. We call this quantity theglobal skewof a
clock synchronization algorithm. It is well-known that no algorithm can guarantee a global skew
better thanΩ(D), whereD is the diameter of the network [3].

In many cases it is more important to tightly synchronize the logical clocks of nearby nodes in
the network than it is to minimize the global skew. For example, to run a time division multiple ac-
cess (TDMA) protocol for coordinating access to the shared communication medium in a wireless
network, one only needs to synchronize the clocks of nodes that interfere with each other when
transmitting. The problem of achieving synchronization that depends on thedistance between the
two nodes is calledgradient clock synchronization. It was introduced in a seminal paper by Fan
and Lynch, where it is also shown that surprisingly, a clock skew ofΩ(logD/ log logD) cannot be
prevented even between immediate neighbors in the network [8]. The maximal difference between
the two logical clocks of adjacent nodes in the network is called thelocal skewof a clock synchro-
nization algorithm; for static networks, Lenzen et. al. have recently provenan asymptotically tight
bound ofΘ(logD) for the best possible local skew an algorithm can achieve [12, 13]. Forother
related work on clock synchronization, see Section 2.

Most existing work on clock synchronization considers static networks. However, many mod-
ern networks are inherently dynamic. Typically formed by autonomous agents without central
control, nodes can join and leave the network in an arbitrary pattern. In adhoc networks where
often the devices are even assumed to be mobile, the resulting network topology can be highly
dynamic even if the set of participating nodes remains stable. Coordination in dynamic networks
is challenging, and due to the increasing significance of such networks, itis also particularly im-
portant.

In this paper we study the gradient clock synchronization problem in dynamic networks. Be-
cause the distance between nodes in the network can change over time, the problem becomes
significantly harder in a dynamic setting. Consequently, unlike the static case,the requirements we
make on the skew between the logical clocks of different nodes can also change over time. Every
new edge that is formed induces a new and stronger constraint on the skew between its endpoints;
the algorithm must adapt by reducing the skew on the edge until the new constraint is satisfied.

1



Hence, we distinguish between two requirements: astable local skewbound applies, conceptually,
to edges that exist for a long time. This is analogous to the local skew guaranteed by gradient clock
synchronization algorithms for static networks. In practice, we impose a weaker dynamic local
skewbound on all the edges, including new ones. The dynamic local skew bound is a function of
how long the edge has existed: the bound starts out weak and grows stronger with time, until in the
limit it converges to the stable local skew bound.

The following intuitive example shows that in general, the clock skew on a newedge cannot be
reduced too quickly without violating the stable local skew bound on edges that were formed a long
time before. Letu andv be two nodes at distancek from each other. As no algorithm can prevent a
skew ofΩ(k) between nodes at distancek, a newly formed edge between nodesu andv can carry
Ω(k) local skew. To reduce the skew on the new edge, whichever node is behind must increase its
logical clock by a large amount. However, a sudden increase inu or v’s clocks will create a large
skew along the edges of the old path that connects them. Specifically, if the algorithm guarantees
a stable local skew ofS, neitheru nor v can instantaneously increase their logical clocks to more
thanS ahead of their next neighbor along the old path. In turn, when this neighbor realizes it must
increase its clock, it cannot increase it to more thanS ahead ofits next neighbor, and so on. It takes
Ω(k/S) time until the skew can be reduced, as information about the new edge can take time to
propagate through the path.

Somewhat surprisingly, the example above is not the worst one possible: adjusting the local
skew on a newly formed edge can require even more thanΩ(k/S) time, wherek is the previous
distance between the endpoints of the new edge. We show that (almost) independent of the initial
skew on a new edge, the time required to reduce the initial skew toS is at leastΩ(n/S) wheren is
the number of nodes in the system. This is shown in Section 4.

In Section 5 we show that this lower bound is asymptotically tight for moderately small values
of S by extending a simple gradient clock synchronization algorithm described in[14] to the dy-
namic case. In a static setting, the algorithm of [14] guarantees a local skewof O(

√
ρD) where

ρ is the maximum hardware clock drift. When modeling a dynamic network, we assume that the
set of nodes remains fixed, but edges can appear and disappear in a completely arbitrary pattern.
If a weak connectivity requirement is satisfied, the algorithm guarantees aglobal skew ofO(n)
at all times. Further, for a parameterS ≥ √ρn and a sufficiently large constantλ, the algorithm
guarantees a local skew of at mostS on all edges that are present for at leastλ ·n/S time. It will be
interesting to see whether techniques used in the recent strong static gradient clock synchronization
algorithms in [12, 13] can be adapted to the dynamic setting, in order to obtain similar results for
smaller values ofS.

2 Related Work

Being a fundamental problem, it is not surprising that there is a rich literatureon clock synchroniza-
tion algorithms and lower bounds. Until recently, the work on clock synchronization focused on
global synchronization, i.e., on minimizing the maximal clock difference betweenany two nodes
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in the system. Essentially all lower bounds on distributed clock synchronization use theshifting
technique introduced in [15], which exploits uncertainty resulting from unknown message delays,
the scaling technique from [5], which uses uncertainty that arises as a consequence of different
clock rates, or a combination of the two techniques. Using the shifting technique, it is shown in
[3] that even if clocks experience no drift, a clock skew ofD/2 can not be avoided in a network of
diameterD. In light of this result, the algorithm described in [20] which guarantees a global skew
of O(D) is asymptotically optimal.

A number of related algorithms and lower bounds for varying models and with different prop-
erties have been described (see e.g. [1, 2, 7, 18, 19]). The algorithmsdescribed in these papers
do not guarantee a skew between neighboring nodes that is better thanO(D). The gradient clock
synchronization problem was introduced in [8], where it is shown that ona path of lengthD, no
clock synchronization algorithm can avoid having a skew ofΩ(logD/ log logD) between adjacent
nodes. This lower bound has recently been improved toΩ(logD) in [13]. The first algorithm to
guarantee a non-trivial local skew was described by Locher and Wattenhofer in [14]. The algorithm
in [14] guarantees a local skew ofO(

√
ρD) between any two neighbors in a network of diameter

D, whereρ denotes the maximal hardware clock drift. The algorithm of [14] forms the basis for the
dynamic gradient clock synchronization algorithm described in this paper.For static networks, the
upper bound was recently improved to an asymptotically optimal bound ofO(logD) by Lenzen
et. al. [12, 13].

Most closely related to the dynamic clock synchronization problem considered in this work
are algorithms that cope with faulty nodes (e.g. [4, 5, 11, 17]). While this lineof work goes far
beyond studying crash failures and describes algorithms that even copewith Byzantine faults, a
topic that is out of the scope of the present paper, none of these papers consider a truly dynamic
setting. In particular, the results rely on the fact that a considerable partof the network remains
non-faulty and stable. Moreover, all the described algorithms and lower bounds focus solely on
global synchronization. To the best of our knowledge, the present paper is the first to look at
gradient clock synchronization in dynamic networks.

3 Preliminaries

3.1 Notation

Given an undirected static graphG = (V,E), we denote byP the set of all (undirected) paths in
G. For convenience in notation we regard each pathP ∈ P as a set of edgesP ⊆ E. We use
P(u, v) to denote all paths between two nodesu, v ∈ V . The distance between two nodesu andv
is defined by

dist(u, v) := min
P∈P(u,v)

|P |.

The definitions above are used only in the context of a static graph. (We use static graphs in the
proof of the lower bound in Section 4). In this work we are often concerned with dynamic graphs,
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which do not have a static set of edges. We useV (2) := {{u, v} | u, v ∈ V } to denote the set of
all potentialedges over a static setV of nodes.

3.2 Network Model

We model a dynamic network over a static setV of nodes using Timed I/O Automata (TIOA)
[9]. Each node in the network is modelled as a TIOA, and the environment is also modelled as
a TIOA. The dynamic behavior of the network is modelled using events of the form add({u, v})
andremove({u, v}) for u, v ∈ V , which correspond to the formation and failure (respectively) of
a link betweenu andv. It is assumed that no edge is both added and removed at the same time.

The history of link formations and failures in a particular executionα, together with an initial
set of edgesEα

0 , induces adynamic graphG = (V,Eα), whereEα : R+ → V (2) is a function that
maps a timet ≥ 0 to the set of edges (links) that exist inα at timet. We defineEα(t) to be the set
of edges that are added no later than timet, and not removed between the last time they are added
and timet (inclusive). This includes edges that appear inEα

0 and are not removed by timet. We
say that an edgee exists throughout the interval[t1, t2] in α if e ∈ Eα(t1) ande is not removed at
any time during the interval[t1, t2].

A static executionis one in which no edges are added or removed. Formally,α is a static
execution if for allt1, t2 ∈ R

+ we haveEα(t1) = Eα(t2).
We consider a very general model, in which edges can be inserted or removed arbitrarily,

subject only to the following connectivity constraint.

Definition 3.1 (T -interval connectivity). We say that a dynamic graphG = (V,Eα) is T -interval
connectedif for all t ≥ 0, the static subgraphG[t,t+T ] = (V, Eα|[t,t+T ]) is connected, where
Eα|[t,t+T ] is the set of all edges that exist throughout the interval[t, t+ T ].

In the sequel we omit the superscriptα when it is clear from the context.
We assume that nodes do not necessarily find out immediately about edge insertions and re-

movals1. Instead, we assume that there is a parameterD, such that if an edge appears or disappears
at timet in an execution, and the change is not reversed by timet + D, the endpoints of the edge
find out no later than timet + D. Transient link formations or failures, which do not persist for
D time, may or may not be detected by the nodes affected. We model the discovery by nodeu of
a link formation or failureX ∈ {add({u, v}), remove({u, v}) | v ∈ V } by an eventdiscover(X)
that occurs at nodeu. (A discover(X) event is always preceded by eventX itself.)

We also assume reliable FIFO message delivery2, with message delays bounded byT . This is
modelled using events of the formsend(u, v,m) andreceive(u, v,m) that occur at nodeu. If node

1Otherwise reference-broadcast-style synchronization would be possible using these events [6]. In general, whenever
some event is guaranteed to occur at two nodes at the same (or roughlythe same) time, the nodes can use this event to
synchronize their clocks by exchanging the clock values they each had at the time the event occurs. This type of
synchronization circumvents shifting and scaling lower bounds of the typewe use in Section 4.

2We assume FIFO message delivery to simplify the presentation, but this is not necessary. In the algorithm of
Section 5 each message carries a timestamp. If FIFO is not assumed, nodes can remember the latest timestamp they
have seen from each neighbor, and discard messages that carry older timestamps.
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u sends a message to nodev at timet, the environment guarantees the following. If edge{u, v}
exists throughout the interval[t, t + T ], then nodev is guaranteed to receive the message no later
than timet+T . If edge{u, v} exists at timet but is removed at some point in the interval[t, t+T ],
there are two possible outcomes: either the message is delivered before theedge is removed, or the
message is not delivered and nodeu discovers the edge removal no later than timet+D. Finally,
if edge{u, v} does not exist at timet, the message is not delivered, and nodeu discovers that the
edge does not exist no later than timet+D. These definitions correspond to an abstract version of
MAC layer acknowledgements.

In the sequel we assume thatD > T , that is, nodes do not necessarily find out about changes
to the network withinT time units. This is a reasonable assumption because even if nodes transmit
very frequently, as much asT time may pass without any message being received on a link, leaving
the link formation or failure undiscovered.

3.3 The Clock Synchronization Problem

In the clock synchronization problem, each nodeu ∈ V has access to a continuoushardware clock
Hu(t), which may progress at a different rate than real time. The hardware clocks suffer from
bounded driftρ: although they progress at a variable rate, their rate is always between1 − ρ and
1 + ρ the rate of real time, so that for any nodeu and timest1 < t2 we have

(1− ρ)(t2 − t1) ≤ Hu(t2)−Hu(t1) ≤ (1 + ρ)(t2 − t1).

For simplicity we assume that at the beginning of any execution the hardware clock values are all
0. We also assume for the analysis that the hardware clocks are differentiable.

The goal of a dynamic clock synchronization algorithm (DCSA) is to output alogical clock
Lu(t) such that the logical clocks of different nodes are close to each other.In particular we con-
sider two requirements. Aglobal skew constraintbounds the difference between the logical clocks
of any two nodes in the network at all times in the execution. Adynamic local skew constraint
requires that if an edge exists for sufficiently long, the skew between the two endpoints of the edge
should not be too large. These requirements are formally defined as follows.

Definition 3.2 (Global skew). A DCSA guarantees aglobal skew ofḠ(n) if in any execution of the
algorithm in a network ofn nodes, for any two nodesu, v and timet ≥ 0 we have

Lu(t)− Lv(t) ≤ Ḡ(n).

To represent the local skew guaranteed by the algorithm after an edge has existed for some
time, we use a functions(n, I, t), wheren is the number of nodes,I is the initial skew on the edge
when it appeared, andt is the time that has passed since the edge appeared. The skew function
must satisfy the following technical requirements.

Definition 3.3 (Skew function). A functions : N × R
+ × R

+ → R
+ (whereR+ are the positive

reals) is said to be askew functionif the following conditions hold.
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1. The functions(n, I, t) is non-decreasing inI and non-increasing int; and

2. For all n ∈ N, I ∈ R
+, the limit limt→∞ s(n, I, t) is defined and finite; and

3. For all I1, I2 ∈ R
+ we have

lim
t→∞

s(n, I1, t) = lim
t→∞

s(n, I2, t).

We note that the third requirement above essentially means that the skew on any edge converges
to the same stable local skew, regardless of the initial skew on that edge. Now let us define what it
means for an algorithm to have a local skew ofs.

Definition 3.4 (Dynamic local skew). A DCSA guarantees adynamic local skewof s : N×R
+ ×

R
+ → R

+, wheres is a skew function, if in every execution of the algorithm in a network overn
nodes, for any edgee = {u, v} and timest1 ≤ t2 such thate exists throughout the interval[t1, t2]
in the execution, we have

|Lu(t2)− Lv(t2)| ≤ s(n, |Lu(t1)− Lv(t1)| , t2 − t1).

Definition 3.5 (Stabilizing DCSA). A DCSAA is said to bestabilizingif there is a skew function
s such thatA guarantees a dynamic local skew ofs. In this case we say thatA guarantees astable
local skewof s̄(n) = limt→∞ s(n, I, t) for someI ∈ R

+ (recall that this limit is the same for all
I ∈ R

+).

Finally, logical clocks have to be strictly increasing and are thus not allowedto temporarily
stop. In particular, we require the rate of each logical clock to be at leasthalf the rate of real time;
that is, for any nodeu and timest1 ≤ t2 we require

Lu(t2)− Lu(t1) ≥
1

2
(t2 − t1).

4 Lower Bound

We begin our analysis of dynamic clock synchronization algorithms with a lowerbound on the
time needed to adjust the local skew on a newly formed edge. Specifically, weshow that for every
sufficiently large initial skewI (a small constant times the stable local skews̄(n) suffices), the
time needed to reduce the skew by a factor ofΘ(n/Ḡ(n)) isΩ(n/s̄(n)). Thus, there is an inherent
tradeoff between the stable skew guaranteed by the algorithm and the time the algorithm requires
to reduce the skew on new edges.

Theorem 4.1. LetA be a stabilizing DCSA that guarantees a global skew ofḠ(n) and a dynamic
local skew ofs with a stable local skew of̄s(n) = o(n). Then there exist constantsλ, ζ ≥ 0 such
that for all sufficiently largen and for all I ≥ 3s̄(n) we have

s(n, I, λ · n

s̄(n)
) ≥ ζ

n

Ḡ(n) · I.
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Most static clock synchronization algorithms in the literature guarantee a global skew ofO(D)
in networks of diameterD. Moreover, all gradient clock synchronization algorithms of which
we are awarerely on having a global skew ofO(D) in order to prove their gradient property
[14, 12, 13].

In dynamic graphs the diameter is undefined, and the natural extention is to require a global
skew of Ḡ(n) = O(n). This is achieved by the algorithm presented in Section 5, and here, too,
this fact is used to prove the local skew guarantee. It therefore seems most interesting to consider
algorithms with this global skew guarantee. For such algorithms, Theorem 4.1shows that it takes
Ω(n/s̄(n)) time to reduce the initial skew on a new edge by aconstantfactor.

Corollary 4.2. LetA be a stabilizing DCSA that guarantees a global skew ofḠ(n) = O(n) and
a dynamic local skew ofs with a stable local skew of̄s(n) = o(n). Then there exist constants
λ, ζ ≥ 0 such that for all sufficiently largen and for all I ≥ 3s̄(n) we have

s(n, I, λ · n

s̄(n)
) ≥ ζ · I.

Note that the lower bound asserts theexistenceof a timeλ · n/s̄(n) after which the skew is
reduced by no more than a constant factor (ζ). It is not necessarily the case thatfor all times
t = Θ(n/s̄(n)) we still have a large local skew. Indeed, the algorithm we give in Section 5 makes
a sharp transition after an edge exists forΘ(n/s̄(n)) time: before the transition the algorithm
provides no non-trivial local skew guarantee on the edge (beyond what the global skew already
guarantees), and afterwards the algorithm guarantees the stable skew,s̄(n). The trade-off shows
that this transition can only be made when the edge exists forΘ(n/s̄(n)) time; essentially, it asserts
that the algorithm must waitΘ(n/s̄(n)) time before it acts to drastically reduce the skew on a new
edge.

4.1 Proof overview

The main idea in the proof of Theorem 4.1 is to show that because of the localskew guarantee,
even nodes that are distant from a new edge may prevent the skew on it from being reduced. These
distant nodes require time to “find out” about the new edge, and thus they limit the speed with
which the algorithm can react.

As an informal overview, consider the network shown in Fig. 1(a), whichconsists of two paral-
lel chains,A andB, joined at both endsw0 andwn. The two chains exist throughout the execution;
new edges are eventually added along theB-chain, but no edges are ever removed. We wait until
the algorithm has stabilized to some degree. For the purpose of this overview, let us suppose that
we reach some timeTs such that for allt ≥ Ts, the local skew guarantee iss(n, 0, t) ≤ s̄(n).
(This is an over-simplification, since the local skew guarantee only converges tos̄(n) in the limit;
however, we can get arbitrarily close tos̄(n) by waiting sufficiently long.)

Next we select two sufficiently large timesT1, T2 ≥ Ts whereT2 − T1 = λ(n/s̄(n)) (for a
constantλ). Our goal is to add new edges at timeT1, each with a skew of at mostI (see Fig. 1(b)),
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and cause at least one new edge to still have a skew ofΩ(I · n/Ḡ(n)) at timeT2. This is achieved
by

1. AddingO(Ḡ(n)/I) new edges at timeT1, and

2. Creating a skew ofΩ(n) betweenw0 andwn at timeT2.

Theaverageskew on the new edges at timeT2 must then beΩ(I · n/Ḡ(n)), which implies that at
least one new edge has a skew ofΩ(I · n/Ḡ(n)) at timeT2.

First we show how to createΩ(n) skew betweenw0 andwn at timeT2. Note that because of
the new edges, the distance betweenw0 andwn at timeT2 is reduced toO(Ḡ(n)/I). Standard
shifting arguments create a skew proportional to the distance, and this is notenough in our case.
Hence we must use a more roundabout way. Essentially, we want to show thatw0 andwn cannot
react quickly enough to the new edges, or they would violate the local skewguarantee with respect
to some distant nodesu, v on theA-chain that have not yet discovered the new edges.

To this end, we choose two nodesu, v on theA-chain such thatdist(w0, u) = dist(wn, v) = k,
wherek = Θ(n/s̄(n)), and wheredist(u, v) = Ω(n). Nodesu andv are “shielded” from events
on theB-chain by large message delays (see Fig. 1(a)). We first consider an executionα in which
the network is static and no new edges are added at timeT1. Using a modified shifting argument
(Lemma 4.3 below), we create a skew ofΩ(n) betweenu andv at timeT2 in α, while keeping
delays of at leastT /(1 + ρ) on all links betweenw0 andu and betweenwn andv.

Nodesu, v act as a barrier betweenw0 andwn: the local skew guarantee implies that the clocks
of w0 andwn cannot be more thank·s̄(n) = Θ(n) removed from the clocks ofu andv respectively.
Hence, whenever the skew betweenu andv is Ω(n), the skew betweenw0 andwn is alsoΩ (n)
(see Fig. 1(d)).

Finally, we create a new executionβ, which is identical toα until time T1. At time T1 we
add new edges as shown in Fig. 1(b). Recall that the skew betweenw0 andwn is bounded by
Ḡ(n) at all times, and at timeT1 the skew on each edge of theB-chain is at most̄s(n). Thus, it is
possible to find a set of edges as shown in Fig. 1(b), such that each edge carries a skew in the range
[I− s̄(n), I], and the skews (in absolute value) sum to at mostḠ(n). WhenI ≥ 2s̄(n), the number
of edges required is at most2Ḡ(n)/I.

By time T2 in β, the skew on each new edge must be reduced to at mosts(n, I, T2 − T1) =
s(n, I, λ(n/s̄(n))), and consequently the total skew between nodesw0 andwn cannot exceed
(2Ḡ(n)/I) · s(n, I, λ(n/s̄(n))) (see Fig. 1(c)).

However, in addition to this upper bound on the skew, we can also show thatthe skew between
w0 andwn at timeT2 in β is at leastΩ(n): nodesu andv cannot distinguish betweenα andβ until
time T2, since they are shielded from theB-chain byk = Θ(n/s̄(n)) edges with large message
delays. At timeT2 in β, nodesu, v have the same skew ofΩ(n) that they have inα, and as argued
above, this implies thatw0 andwn also haveΩ(n) skew between them. Combining the upper and
lower bound on the skew betweenw0 andwn we see thats(n, I, λ(n/s̄(n))) cannot be less than
Ω(I · (n/Ḡ(n))). This concludes the proof.
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(a) Executionα at timeT2.

w0 wn

u bv

Chain A

Chain B

Skew on each new edge∈ [ 1
2
I, I]

(b) Executionβ at timeT1 (new edges shown as dashed
lines)

w0 wn

k edges u b k edgesv

skew =Ω (n)

Chain A

Chain B

Skew on each new edge≤ s
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n, I, λn
s

)

(c) Executionβ at timeT2

Ω (n)

Lu(T1)

Lv(T1)

|
|

L0(T1)

Lw(T1)

≤ ks̄(n) = O(n)

≤ ks̄(n) = O(n)

Ω(n)

(d) The logical clocks ofw0, u, v, wn at timeT2 in execu-
tionsα andβ (assumingLu(T1) ≤ Lv(T1))

Figure 1: Illustrations for the proof of Theorem 4.1

4.2 Formal proof of the tradeoff

As explained above, as part of the proof we create a large skew between certain nodes, while also
maintaining large message delays in parts of the network. The skew is createdusing shifting (see,
e.g., [16]). A standard shifting argument shows that two nodes cannot avoid having a large skew
between them, by adjusting message delays so that the nodes cannot tell the difference between an
execution in which the skew is large and an execution in which it is not. In the resulting execution
the message delays on some links are zero, and in the standard constructionit is not possible to
control which links these will be.

In our proof we require large message delays along certain specific links. A straightforward
modification of the argument from [1] and [8] allows us to create large skews while maintaining a
predefined pattern of message delays. The following definitions capture this notion more formally.

Definition 4.1 (Delay pattern). Given a network over a setV of nodes, adelay patternfor N is
a pair M = (EC, P ), whereEC ⊆ V (2) is a set ofconstrained linksandP : EC → [0, T ] is a
delay patternassigning a message delay to every constrained link.

Definition 4.2 (Constrained executions). An execution is said to beM -constrained until timet, for
a delay patternM = (EC, P ), if the delay of messages sent on a linke ∈ EC and received by time
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t is in the range[ 1
1+ρP (e), P (e)]. We say that an execution isM -constrainedif for all timest ≥ 0

the execution isM -constrained until timet.

Definition 4.3 (Flexible distance). Given a delay patternM = (EC, P ), theM -flexible distance
between two nodesu, v ∈ V , denoteddistM (u, v), is defined as the minimum number of uncon-
strained edges on any path betweenu andv.

Lemma 4.3(Masking Lemma). LetN = (V,E) be a static network, and letM = (EC, P ) be a
delay pattern forN . For anyu, v ∈ V and for any timeT0 > T · distM (u, v)(1 + 1/ρ), there is a
timet ≥ T0 and anM -constrained static execution in which

|Lu(t)− Lv(t)| ≥
1

4
T distM (u, v).

Proof. The proof is a fairly straightforward application of the scaling and shifting proof techniques
(see, e.g., [5] and [15]). It is similar to the proof from [1], where it is shown that the worst-case
skew between any two nodes in the network is proportional to the shortest-path distance between
them. However, in the current proof we use only unconstrained links to build up the skew, and as a
result we can build up a skew between two nodes that is proportional to theirflexibledistance.

Definitions and setup. Let d = distM (u, v) and letD = maxw∈V distM (u,w). We partition
the graph into layersL0, . . . , LD, where each layer is given byLi = {w ∈ V | distM (u,w) = i}.
In particular,L0 = {u} andv ∈ Ld. We define a total order≺ on nodes byx ≺ y iff distM (u, x) <
distM (u, y). We writex ≡ y if distM (u, x) = distM (u, y), andx � y if x ≺ y or x ≡ y.

Note the following properties of the relations defined above: for any edge{x, y} ∈ E,

1. If {x, y} ∈ EC thenx ≡ y: if {x, y} ∈ EC, then any path fromu to x can be extended to a
path fromu to y that has the same number of unconstrained edges, and vice-versa. It follows
thatdistM (u, x) = distM (u, y).

2. If x ≺ y thendistM (u, x) = distM (u, y)− 1.

We define two executions,α andβ. In α, all hardware clocks progress at the rate of real time,
and message delays on each edgee are defined as follows:

• If e ∈ EC then messages one are delayed byP (e);

• If e = {x, y} ∈ E \ EC andx ≺ y, then messages fromx to y are delayed byT and
messages fromy to x are delayed by0.

• If e = {x, y} ∈ E \ EC andx ≡ y, then messages fromx to y and vice-versa are delayed
by 0.

10



Executionα isM -constrained by definition.
In executionβ, we slowly increase the skew of the hardware clocks of nodes at different layers,

while keeping the difference small enough that it can be disguised by altering message delays. We
begin by keepingu’s hardware clock rate at1 and letting nodes in layersL1, . . . , LD run at a rate
of 1 + ρ, until a skew ofT is built up between the hardware clock ofu and any node inL1. Then
we letu and allL1-nodes run at a rate of1 while nodes in layersL2, . . . , LD run at a rate of1+ ρ,
until a skew ofT is built up between nodes inL1 and nodes inL2. At this point the hardware clock
skew betweenu and any node inL2 is 2T . We continue in this manner until we have built up a
skew ofd · T betweenu and any node in layerLd, includingv.

More formally,β is constructed as a sequence of segmentsβ0β1 . . . βd−1β∗, where

• β∗ :=
[

d
ρT ,∞

]

is an infinite suffix, and

• For all 0 ≤ i ≤ d − 1, βi :=
[

i
ρT , i+1

ρ T
)

is a finite segment of durationT /ρ. (This is the

time required to build a skew ofT between the hardware clocks of nodes in adjacent layers
when one node runs at a rate of1 and the other at1 + ρ.)

In β0 andβ∗ all hardware clocks run at a rate of1 and all messages are delivered with no delay. In
each middle segmentβi, the hardware clock rate of a nodex ∈ Lj is given by

d

dx
Hβ

x =

{

1 if i ≤ j,

1 + ρ otherwise.

Message delays throughoutβ are adjusted so thatβ is indistinguishable fromα to all nodes. In
particular, iftαs , t

β
s , tαr andtβr are times such that

1. At time tαs in α nodex sends a message that nodey receives at timetαr , and

2. Hα
x (t

α
s ) = Hβ

x (t
β
s ) andHα

y (t
α
r ) = Hβ

y (t
β
r ),

then inβ, nodex will send the same message at timetβs and nodey will receive it at timetβr .
From the definition ofβ, at any timet we have

Hβ
x (t) =

{

(1 + ρ)t if t ∈ βi wheredistM (u, x) > i,

t+ T · distM (u, x) otherwise.

That is,
Hβ

x (t) = t+min {ρt, T · distM (u, x)} . (4.1)

In α, where all hardware clocks run at a rate of 1,Hα
x (t) = t for all x ∈ V .
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β is anM -constrained execution. Next we claim thatβ is a legalM -constrained execution, that
is, all message delays are in the range[0, T ], and for alle ∈ EC, message delays one are in the

range
[

1
1+ρP (e), P (e)

]

. Consider a message sent by nodex at timetβs and received by nodey at

time tβr . Let tαs , t
α
r be the send and receive times (respectively) of the same message in execution

α; that is,
Hβ

x (t
β
s ) = Hα

x (t
α
s ) = tαs and Hβ

y (t
β
r ) = Hα

y (t
α
r ) = tαr .

Using (4.1) we obtain

tαr − tαs = Hβ
y (t

β
r )−Hβ

x (t
β
s ) =

= tβr +min
{

ρtβr , T · distM (u, y)
}

− tβs −min
{

ρtβs , T · distM (u, x)
}

. (4.2)

We divide into cases.

• ρtβs ≤ T · distM (u, x) andρtβr ≤ T · distM (u, y). In this case (4.2) implies

tαr − tαs = (1 + ρ)(tβr − tβs ).

By the definition ofα we havetαr − tαs ∈ [0, T ], and hencetβr − tβs ∈ [0, T ] as well. In
addition, if{x, y} ∈ EC thentαr − tαs = P (e) (again by definition ofα); in this case we have
tβr − tβs = P (e)/(1 + ρ) ∈ [P (e)/(1 + ρ), P (e)], as required.

• ρtβs > T · distM (u, x) andρtβr > T · distM (u, y). In this case (4.2) implies

tαr − tαs = tβr − tβs + T (distM (u, y)− distM (u, x)).

If {x, y} ∈ EC or x ≡ y, thendistM (u, x) = distM (u, y), and hencetβr − tβs = tαr − tαs .
Thus, the message delay inβ is the same as inα. The delay inα is legal and respects the
delay pattern, and the same holds for the delay inβ.

Otherwise, eitherx ≺ y anddistM (u, y) − distM (u, x) = 1, or y ≺ x anddistM (u, y) −
distM (u, x) = −1. In the first case we havetβr − tβs = tαr − tαs − T = T − T = 0 (by
definition ofα), and in the second case,tβr − tβs = tαr − tαs + T = 0+ T = T . In both cases
the delays are legal.

• ρtβs > T · distM (u, x) andρtβr ≤ T · distM (u, y). In this case (4.2) implies

tαr − tαs = tβr − tβs + ρtβr − T · distM (u, x).

Sinceρtβr ≤ T · distM (u, y) andT · distM (u, x) < ρtβs , we can write

(1 + ρ)(tβr − tβs ) < tαr − tαs ≤ tβr − tβs + T (distM (u, y)− distM (u, x)).
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If {x, y} ∈ EC or x ≡ y, thendistM (u, x) = distM (u, y), and we obtain

(1 + ρ)(tβr − tβs ) < tαr − tαs ≤ tβr − tβs ,

which is impossible, becausetαr − tαs ≥ 0 andρ ≥ 0.

Otherwise, ifx ≺ y, thendistM (u, y) = distM (u, x) + 1, and we havetαr − tαs = T and

(1 + ρ)(tβr − tβs ) < T ≤ tβr − tβs + T .

It follows thattβr − tβs ∈ [0, T /(1 + ρ)) ⊆ [0, T ].
Finally, if y ≺ x, thendistM (u, x) = distM (u, y) + 1, and we havetαr − tαs = 0 and

(1 + ρ)(tβr − tβs ) < 0 ≤ tβr − tβs − T .

But this is impossible, because it implies bothtβr − tβs < 0 andtβr − tβs ≥ T .

• ρtβs ≤ T · distM (u, x) andρtβr > T · distM (u, y). In this case (4.2) implies

tαr − tαs = tβr − tβs + T · distM (u, y)− ρtβs .

This time, we can re-write this to obtain

tβr − tβs + T (distM (u, y)− distM (u, x)) ≤ tαr − tαs < (1 + ρ)(tβr − tβs ).

If {x, y} ∈ EC or x ≡ y, then againdistM (u, x) = distM (u, y), and we have

tβr − tβs ≤ tαr − tαs < (1 + ρ)(tβr − tβs ).

If {x, y} ∈ EC then this implies thattβr − tβs ∈ [P (e)/(1 + ρ), P (e)] ⊆ [0, T ], as required.
Otherwise, ifx ≡ y but{x, y} 6∈ EC, then we have bothtβr − tβs ≤ 0 andtβr − tβs > 0, which
is impossible. (Recall that for this case we definedtαr − tαs = 0.)

If x ≺ y anddistM (u, y) = distM (u, x) + 1, then we have

tβr − tβs + T ≤ T < (1 + ρ)(tβr − tβs ),

which is a contradiction.

And finally, if y ≺ x anddistM (u, x) = distM (u, y) + 1, then

tβr − tβs − T ≤ 0 < (1 + ρ)(tβr − tβs )

and it follows thattβr − tβs ∈ (0, T ].
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The skew betweenu and v. It remains to show that in eitherα or β, the skew betweenu andv
at some timet ≥ T0 is large.

Let T1 := T0 + T · distM (u, v). SinceT0 ≥ (1/ρ) distM (u, v) · T , at timeT0 we have

Hβ
v (T0) = T0 +min {ρT0, T · distM (u, v)} = T0 + T · distM (u, v) =

= Hα
v (T0 + T · distM (u, v)) = Hα

v (T1),

while
Hβ

u (T0) = T0 +min {ρT0, T · distM (u, u)} = T0 = Hα
u (T0).

No node in the network can distinguish betweenα andβ, and consequently, for all nodes
w ∈ V and timest1, t2 we haveLα

w(t1) = Lβ
w(t2) iff Hα

w(t1) = Hβ
w(t2). In particular,

Lα
u(T0) = Lβ

u(T0) (4.3)

and
Lα
v (T1) = Lβ

v (T0). (4.4)

Sinceu increases its logical clock at a rate of at least1/2,

Lα
u(T1) ≥ Lα

u(T0) +
1

2
(T1 − T0)

(4.3)
= Lβ

u(T0) +
1

2
T · distM (u, v), (4.5)

and subtracting (4.4) from (4.5) yields

Lα
u(T1)− Lα

v (T1) ≥ Lβ
u(T0)− Lβ

v (T0) +
1

2
T · distM (u, v). (4.6)

This implies that either|Lα
u(T1)− Lα

v (T1)| ≥ 1
4T · distM (u, v), or

∣

∣

∣
Lβ
u(T0)− Lβ

v (T0)
∣

∣

∣
≥ 1

4T ·
distM (u, v). SinceT1 ≥ T0 and both executions areM -constrained, this proves the claim.

The following technical lemma is used in the proof of Theorem 4.1 to select the new edges that
appear along theB-chain.

Lemma 4.4. LetX = x1, . . . , xn be a sequence of numbers wherex1 ≤ xn and for all1 ≤ i < n,
|xi − xi+1| ≤ d for somed > 0. Then for anyc > d, there is a subsequenceX ′ = xi1 , . . . , xim ⊆
X such that

1. m ≤ xn−x1

c−d + 1, and

2. for all 1 ≤ j ≤ m− 1 we have
∣

∣xij+1
− xij

∣

∣ ∈ [c− d, c].
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Proof. We construct a sequencei1, i2, . . . inductively, starting withi1 := 1. Givenij , we define

ij+1 := min
(

{n} ∪
{

ℓ | ij < ℓ < n andxℓ − xij ≥ c− d andxℓ ≤ xn
})

(4.7)

The sequencei1, i2, . . . is strictly increasing, and eventually it reachesn and remains there. Let
m = max {j | ij < n}. The sequence we return isX ′ = xi1 , . . . , xim .

By construction,x1 = xi1 ≤ xi2 ≤ . . . ≤ xim ≤ xn, and for all1 ≤ i ≤ m − 1 we have
xij+1

− xij ≥ c− d > 0. It remains to prove the following.

1. m ≤ xn−x1

c−d + 1: because

xn − x1 ≥ xim − xi1 =
∑

1≤j≤m−1

(

xij+1
− xij

)

≥ (m− 1) · (c− d).

2. For all1 ≤ j ≤ m − 1 we have
∣

∣xij+1
− xij

∣

∣ ∈ [c − d, c]: sincexij+1
− xij ≥ c − d > 0,

we need only to show thatxij+1
− xij ≤ c. We consider two cases.

I. ij+1 = ij + 1: in this case we already know that|xij+1
− xij | ≤ d. Sincec > d the

claim follows.

II. ij+1 > ij + 1: let ℓ > ij be the minimal index such thatxℓ − xij ≥ c − d. By
construction,ij+1 > ij is the minimal index that satisfies bothxij+1

− xij ≥ c− d and
xij+1

≤ xn; hence,ij+1 ≥ ℓ, and if ij+1 > ℓ thenxℓ > xn. It follows thatxij+1
≤ xℓ.

Sinceℓ is the minimal index for whichxℓ − xij ≥ c − d, for index ℓ − 1 we have
xℓ−1 − xij < c − d. In addition,xℓ − xℓ−1 ≤ d. Together we havexij+1

− xij ≤
xℓ − xij = xℓ − xℓ−1 + xℓ−1 − xij ≤ d+ c− d = c, as required.

Now we are ready to prove the tradeoff theorem.

Proof of Theorem 4.1.Let δ = T
128 andξ = 1 + T

3s̄(n) , and definek = δ n
s̄(n) . We assume thatn is

large enough that the following requirements are satisfied.

• k ≥ 1: sinces̄(n) = o(n), we can choosen large enough so that̄s(n) ≤ δn andk ≥ 1.

• s̄(n) ≥ T : sinces̄(n) = Ω(T · log n) in a network with diameterΩ(n) [13], for sufficiently
largen we havēs(n) ≥ T .

• ξ ∈ (1, 43 ]: this follows from the previous requirement.

• n/2− 2(k + 1) > 0: it is sufficient to requirēs(n) > 4δ, which is implied bys̄(n) ≥ T .
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Setup. Consider the networkN shown in Fig. 1(a), over nodesV = {w0, wn} ∪ (IA × {A}) ∪
(IB × {B}) (hereA andB are merely symbols used to distinguish the nodes of the two chains),
where

IA = {1, . . . , ⌊n/2⌋ − 1} , and

IB = {1, . . . , ⌈n/2⌉ − 1} .

For the sake of convenience we also use〈0, A〉 and 〈0, B〉 to refer to nodew0, and we use
〈⌊n/2⌋, A〉 and〈⌈n/2⌉, B〉 to refer to nodewn.

Using this notation, the initial set of edges is given by

E = {(〈i, A〉, 〈i+ 1, A〉) | i ∈ IA or i+ 1 ∈ IA}∪
∪ {(〈i, B〉, 〈i+ 1, B〉) | i ∈ IB or i+ 1 ∈ IB} .

Let u = 〈⌈k⌉ , A〉 andv = 〈⌊n/2− k⌋ , A〉. The distance betweenu andv is at leastn/2 −
2(k + 1), and the distance between nodesw0 andu and between nodesv andwn is at leastk.

We useEblock to denote the set of edges on the shortest path between nodesw0 andu and
between nodesv andwn (these edges are shown covered by double-sided arrows in Fig. 1(a)).
Formally,

Eblock = E∩{(〈i, A〉, 〈j, A〉) | j ∈ {i− 1, i+ 1} , and either0 ≤ i ≤ ⌈k⌉ or ⌊n/2− k⌋ ≤ i ≤ n} .

Construction of executionα. Let S = ξ · s̄(n). By definition, s̄(n) = limt→∞ s(n, 0, t). In
particular, there is some timeTs such that for allt ≥ Ts we haves(n, 0, t) ≤ S. In the proof we
focus on the suffix of the execution starting fromTs.

Consider a delay maskM = (Eblock, P ) whereP (e) = T for all e ∈ Eblock. By Lemma 4.3,
there is anM -constrained executionα and a timeT2 ≥ Ts in which

|Lu(T2)− Lv(T2)| ≥
1

4
T · distM (u, v) ≥ 1

4
T
(n

2
− 2(k + 1)

)

. (4.8)

DefineT1 := T2− k · T /(1+ ρ). We will eventually add new edges to the network at timeT1, and
show that the algorithm cannot reduce the skew on them much by timeT2. The new edges must
be added “in the past” (T1 < T2), as we require a large skew betweenw0 andwn “in the present”
(timeT2) to show that at least one new edge still has a large skew.

The skew between nodesw0 and wn. We argue that the large skew betweenu andv at timeT2

in α implies a large skew between nodesw0 andwn at the same point in time (see Fig. 1(d) for an
illustration3). LetS2 = |Lw0

(T2)− Lwn(T2)|. We proceed to boundS2 from below.

3Note that the figure actually depicts the best-case scenario for the algorithm; it could be, for example, that the skew
betweenw0 andwn is even larger than the skew betweenu andv.
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SinceT2 ≥ Ts we haves(n, 0, T2) ≤ S. Becauses is non-decreasing in the initial skew, this
implies that the skew on each of the edges between nodesw0 andu and between nodesv andwn

is at mostS. There are at mostk + 1 edges between each pair, and hence

|Lw0
(T2)− Lu(T2)| ≤ S · (k + 1) = ξs̄(n)(k + 1) (4.9)

and
|Lv(T2)− Lwn(T2)| ≤ S · (k + 1) = ξs̄(n)(k + 1). (4.10)

Using (4.8), (4.9) and (4.10) we obtain

S2 = |Lw0
(T2)− Lwn(T2)| ≥ |Lu(T2)− Lv(T2)| − |Lw0

(T2)− Lu(T2)| − |Lv(T2)− Lwn(T2)|

≥ 1

8
nT − 1

2
T (k + 1)− 2ξs̄(n)(k + 1) (ξs̄(n) ≥ T )

≥ 1

8
nT − 3ξs̄(n)(k + 1) (k ≥ 1, ξ ≤ 4

3 )

≥ 1

8
nT − 8ks̄(n) (k = δ n

s̄(n) )

=

(

1

8
T − 8δ

)

· n (δ = T
128 )

=
1

16
nT .

Construction of executionβ. We now construct another executionβ, in which new edgesEnew

appear at timeT1 = T2 − k · T
1+ρ (see Fig. 1(b)). Formally, the network in executionβ is defined

by

Eβ(t) =

{

Eα(t) if t < T1,

Eα(t) ∪ Enew if t ≥ T1.

In β, adiscover({u, v}) event occurs at timeT1 +D at every nodeu such that{u, v} ∈ Enew

for somev ∈ V . All message delays on edges inE and all hardware clock rates are the same in
α and inβ. Message delays on edges inEnew in β are chosen arbitrarily. Note that sinceα is
M -constrained,β is M -constrained as well.

The new edgesEnew are chosen between nodes on theB-chain using Lemma 4.4. For any
adjacent nodesx, y on theB-chain we have|Lx(T1) − Ly(T1)| ≤ S. Therefore, by Lemma 4.4,
there is a sequenceX ′ = x1, . . . , xm of B-chain nodes such that

1. For all1 ≤ i ≤ m− 1 we have
∣

∣Lxi
(T1)− Lxi+1

(T1)
∣

∣ ∈ [I − S, I], and

2. m ≤ |L0(T1)−Ln(T1)|
I−S + 1.

SetEnew = {{xi, xi+1} | 1 ≤ i ≤ m− 1}. Then

|Enew| = m− 1 ≤ |L0(T1)− Ln(T1)|
I − S

≤ Ḡ(n)
I − S

,

where in the last step we used the fact that the global skew is bounded byḠ(n).
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Indistinguishability of α and β. We show by induction oni that for all0 ≤ i ≤ k, executionsα
andβ are indistinguishable up to timeti := T1 + i · T

1+ρ +D, exclusive, in the eyes of all nodes in
the set

Yi := {〈j, A〉 | i ≤ j ≤ ⌊n/2⌋ − i} .

• (Base.) Fori = 0 the claim follows from the fact thatα andβ are identical up to timeT1

(exclusive), and no node finds out about the new edges until timeT1 +D.

• (Step.) Suppose that up to timeti, exclusive, executionsα andβ are indistinguishable in
the eyes of all nodes in the setYi = {〈j, A〉 | i ≤ j ≤ ⌊n/2⌋ − i}. Let u ∈ Yi+1. From the
definition ofYi andYi+1, nodeu and its neighbors are inYi. Thus, at any timet < ti, neither
u nor its neighbors can distinguish betweenα andβ.

Since message delays and the hardware clocks of all nodes are the same inα and inβ,
and no nodes inYi experience link formations or failures, the only way a node inYi could
distinguish between executionsα andβ is by receiving a message from a node that previously
could distinguish betweenα andβ. We show that no node inYi+1 can receive a message
from a node that distinguishesα from β until time ti+1 (exclusive).

Consider first messages sent by a nodev ∈ Yi \ Yi+1 and received byu ∈ Yi+1 at some time
tr < ti+1. Let ts be the time at whichv sent the message. Becausei + 1 ≤ k, the edge
{u, v} must be inEblock, and sinceβ is M -constrained this means thatts ≤ tr − T

1+ρ <

ti+1− T
1+ρ = ti. Thus, the message was sent prior to timeti, and nodev could not distinguish

betweenα andβ when it sent the message.

As for messages sent between nodes inYi+1, it is easy to show by induction on the number
of such messages received that neither sender nor recipient can distinguish betweenα andβ.

Sinceu, v ∈ Yk andT2 = T1 + k T
1+ρ < T1 + k T

1+ρ + D, nodesu andv cannot distinguish
betweenα andβ at any timet ≤ T2. It follows thatu andv will have the same logical clocks at
timeT2 in β as they do inα, and the skew between them will beS2.

The skew on the new edges at timeT2. At time T2, every edge inEnew carries a skew of no
more thans(n, I, T2 − T1), since the initial skew on every edge was no more thanI and s is
non-decreasing in the initial skew. Consequently, the total skew between the endpoints at timeT2

satisfiesS2 ≤ |Enew| · s(n, I, T2 − T1). However, we have shown thatS2 ≥ 1
16nT , and hence

1

16
nT ≤ S2 ≤ |Enew| · s(n, I, T2 − T1) ≤

Ḡ(n)
I − S

· s(n, I, k · T
1 + ρ

).

Rearranging the terms and substitutingk = δ n
s̄(n) , δ = T

128 andI ≥ 3s̄(n) ≥ 2S yields

s(n, I,
T

128(1 + ρ)
· n

s̄(n)
T ) ≥ n

16Ḡ(n)T (I − S) ≥ n

32Ḡ(n)T · I.
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This concludes the proof. We note that while the bound applies to any initial skew I ≥ 3s̄(n), it is

perhaps more meaningful whenn
32Ḡ(n)

T · I > s̄(n), that is,I > 32Ḡ(n)s̄(n)
T n .

5 A Dynamic Clock Synchronization Algorithm

In this section we give a simple DCSA that achieves the tradeoff demonstratedin the previous
section. Alg. 1 gives the algorithm in pseudocode, and a detailed description follows.

5.1 Overview

The algorithm is based on theO(
√
ρD)-gradient clock synchronization algorithm from [14]. In the

original algorithm, each node attempts to catch up with the maximum clock among its neighbors,
under the following constraint: ifv is a neighbor ofu, thenu’s clock is not allowed to exceedu’s
estimate forv’s clock by more thanB, whereB = Θ(

√
ρD) is a parameter. Intuitively, the value

of B governs how much each node has to wait for its slowest neighbor.
Our dynamic algorithm uses the same general idea; however, instead of treating all edges

equally, we use a dynamic weightBv
u(∆t) to determine the amount by which nodeu’s clock is

allowed to exceed nodev’s clock when the link{u, v} has existed for∆t time. The tradeoff from
Section 4 shows that nodes must not wait for new neighbors as much as they would wait for old
neighbors; if they tried to do so they might violate the local skew guarantee along old links. Ac-
cordingly we set an initial value ofBv

u(0) = ∞, meaning that nodes are allowed to get arbitrarily
far ahead of new neighbors. After edge{u, v} exists for a “long enough” period of time, the value
of Bv

u drops down instantaneously to its final value ofB0 = Θ(
√
ρn), which roughly corresponds

to the stable local skew of the algorithm (see Theorem 6.12 below). The amount of time beforeBv
u

drops from∞ isΘ(n/B0), matching theΩ(n/s̄(n)) lower bound from Section 44.

5.2 Events and timing

Throughout the algorithm, nodes send each other periodic updates containing their own logical
clock value and their estimate for the maximal logical clock in the network. Updates are sent to all
neighbors every∆H subjective time units; that is, if nodeu sends an update to all its neighbors at
real timet, the next time it will send an update is real timet′ such thatHu(t

′) = Hu(t) + ∆H.
During the execution nodes keep track of their dynamic set of neighbors,and remember how

much time has elapsed since they last received a message from each neighbor. If a long time passes
and a message is not received along an edge, the node concludes that the edge must have failed, and
its endpoint is removed from the set of neighbors. Since all hardware clocks progress at a rate of at
least1− ρ, each node sends updates to all its neighbors at least once every∆H/(1− ρ) real time

4In the conference version of this paper the weightsBv
u(∆t) were continuous, starting from a large initial value and

decreasing linearly with∆t until reaching the final value ofB0. Here we use a simpler function which nevertheless
yields the same local skew guarantee.
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units. Therefore, the longest period of real time that can pass between the receipt of two messages
along an edge that does not fail is given by

∆T := T +
∆H

1− ρ
.

Since nodes do not have access to real time, they use their hardware clocks to conservatively
estimate when∆T time has passed. The amount of subjective time they wait is

∆T ′ := (1 + ρ)∆T .

Nodes interact with the network using the following primitives and events.

• receive(u, v,m): nodeu receives messagem from nodev.

• send(u, v,m): nodeu sends messagem to nodev.

• discover(X), whereX ∈ {add({u, v}), remove({u, v}) | v ∈ V }: nodeu discovers a change
in the status of edge{u, v}. (See Section 3.2 for a detailed description of the network model.)

• Timers and alarms: nodes can set a timer to trigger a delayed event using the primitive
set timer(∆t, timer-ID). If nodeu calls set timer(∆t, timer-ID) at real timet, then at real
time t′ such thatHu(t

′) = Hu(t) + ∆t, analarm(timer-ID) event is triggered at nodeu. A
timer can be cancelled by callingcancel(timer-ID).

The algorithm uses two types of timers:

• The tick timer is set to go off every subjective∆H time. When it goes off, the node sends
updates to all its neighbors.

• For every neighborv of u, thelost(v) timer is set to go off∆T ′ subjective time units after a
message fromv is received. If thelost(v) timer goes off and a new message fromv has not
been received, nodeu concludes that the edge{u, v} has failed.

5.3 Local variables

Throughout the run of the algorithm each nodeu maintains two setsΓu,Υu such thatΓu ⊆ Υu.
The setΥu contains all the nodesv such that adiscover(add({u, v})) event occurred atu and

was not yet followed by adiscover(remove({u, v})) event. The criterion for membership inΓu

is more restrictive: the nodes inΓu are those nodes ofΥu that u has heard from at most∆T ′

subjective time units ago. If∆T ′ subjective time units pass andu does not receive a message
from v, thenv is removed fromΓu (but not fromΥu). The nodes inΓu are the only ones used
to determineu’s logical clock value, since they are the ones for whichu has an accurate estimate.
However,u sends (or tries to send) periodic updates to all nodes inΥu.

In addition toΓu andΥu, nodeu maintains the following local variables.
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Lu Nodeu’s logical clock.
Lmax
u Nodeu’s estimate for the maximal logical clock in the network.

Cv
u for v ∈ Γu The value of nodeu’s hardware clock whenv was last added toΓu.

Lv
u for v ∈ Γu Nodeu’s estimate for nodev’s current logical clock.

The local variables are modified upon processing the various events as shown in Algorithm 1. Be-
tween events, the variablesLu,Lmax

u andLv
u for all v ∈ Γu are increased at the rate ofu’s hardware

clock.

5.4 Updating the logical clock

Nodeu uses its local estimateLv
u to estimate the skew on every edge{u, v} for v ∈ Γu. A function

B : R+ → R
+∪{∞} governs how much perceived skew nodeu is willing to tolerate on any edge.

The argument to the functionB is (Hu − Cv
u), the subjective amount of time that has passed since

u discovered edge{u, v}. Given parametersB0,W andW ′ := (1 + ρ)W , the function is defined
by

B(∆t) :=

{

∞ if ∆t < W ′,

B0 otherwise.

The parameterB0 corresponds roughly to the stable skew of the algorithm: for sufficiently old
edges, nodes try to maintain a perceived skew of at mostB0. However, the real skew may be larger
thanB0, in part because the node’s estimates for its neighbors’ clocks are not perfectly accurate.
We bound the real skew in Section 6.

An edge is considered to be “sufficiently old” if the node discovered it at leastW real time
units ago, where

W :=

(

4
G(n)
B0

+ 1

)

τ and τ :=
1 + ρ

1− ρ
∆T + T +D, (5.1)

and whereG(n) = Θ(n) is the bound on the global skew derived in Theorem 6.9 in Section 6.3.
The waiting timeW corresponds to theΩ(n/s̄(n)) lower bound shown in the previous section. As
with ∆T and∆T ′, nodes useW ′ = (1 + ρ)W to conservatively estimate the subjective time they
must wait to ensure thatW real time units have passed.

We defer the choice of a value forB0 until Section 6, and note only that for correctness we
require

B0 > 2(1 + ρ)τ. (5.2)

The logical clock of each node is adjusted after every event. In each adjustment, nodeu in-
creasesLu to the largest value that it can, subject to the following constraints:

(1) Lu is never decreased,

(2) Lu cannot exceedLmax
u , and
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(3) The perceived skew on every edge{u, v} such thatv ∈ Γu cannot exceed the value ofB for
that edge. That is, for allv ∈ Γu we requireLu − Lv

u ≤ B (Hu − Cv
u).

If the constraints cannot be met (e.g., ifu has a neighbor that is very far behind), nodeu cannot
make a discrete increase to its logical clock. However, the logical clock continues to increase at
the rate ofu’s hardware clock. The update rule is given by

ProcedureAdjustClock

Lu ← max {Lu,min {Lmax
u ,minv∈Γu {Lv

u +B(Hu − Cv
u)}}}1
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Algorithm 1 : Responses to events that occur at nodeu

whendiscover(add({u, v})) occurs atu1

send(u, v, 〈Lu, L
max
u 〉)2

Υu ← Υu ∪ {v}3

AdjustClock()4

end5

whendiscover(remove({u, v})) occurs atu6

Γu ← Γu \ {v}7

Υu ← Υu \ {v}8

AdjustClock()9

end10

whenalarm(lost(v)) occurs atu11

Γu ← Γu \ {v}12

AdjustClock()13

end14

when receive(u, v, 〈Lv, L
max
v 〉) occurs atu15

cancel(lost(v))16

if v 6∈ Γu then17

Γu ← Γu ∪ {v}18

Cv
u ← Hu19

end20

Lv
u ← Lv21

Lmax
u ← max {Lmax

u , Lmax
v }22

AdjustClock()23

set timer(∆T ′, lost(v))24

end25

whenalarm(tick) occurs atu26

forall v ∈ Υu do27

send(u, v, 〈Lu, L
max
u 〉)28

end29

AdjustClock()30

set timer(∆H, tick)31

end32

We assume that all nodes know (upper bounds on) the maximum hardware clock drift ρ, the
propagation delayT , as well as the boundD on the time between topology changes and the nodes
discovering these changes. Depending on how edge insertions and deletions are discovered,D
typically is a function ofρ, T , as well as the parameter∆H. Throughout the remainder of the
paper, we assume thatD > max{T ,∆H/(1 − ρ)}. We also assume that all nodes known, the
number of nodes participating in the system. With these assumptions, each nodeu knows enough
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to compute the value ofBv
u for everyv ∈ Γu. In particular, all nodes can compute the boundG(n)

on the global skew. Note that the same asymptotic results can be achieved if allnodes known up
to a constant factor. This would allow to generalize the setting and also adaptto nodes joining and
leaving the system as long asn only changes at a constant rate.

6 Analysis of the Algorithm

In this section we show that when the parameterB0 is set appropriately, the DCSA from Section 5
achievesO(n) global skew andO(

√
ρn) stable local skew.

6.1 Basic properties

We begin by establishing several simple properties of the algorithm, most of which concern the
quality of information that nodes have about their neighbors.

Lemma 6.1. If edge{u, v} exists throughout the interval[t1, t2] wheret2 ≥ t1 + ∆T + D, then
for any timet such thatt1 +∆T +D ≤ t ≤ t2,

1. u ∈ Γv(t) andv ∈ Γu(t),

2. Nodeu receives at least one message fromv in the interval[t−∆T , t], and

3. Nodev receives at least one message fromu in the interval[t−∆T , t].

Proof. Since the edge{u, v} exists throughout the interval[t1, t2] wheret2 ≥ t1 +D, it is discov-
ered byu andv at timest0u, t

0
v respectively such thatt0u, t

0
v ≤ t1 +D.

Upon discovering the edge nodesu and v add each other toΥu andΥv respectively. No
discover(remove(u, v)) event can occur atu or atv between timest0u, t

0
v (respectively) and timet2,

because the edge exists throughout the interval[t1, t2]. Therefore, for allt ∈ [t1 + D, t2] we have
v ∈ Υu(t) andu ∈ Υv(t). It follows that nodesu andv send each other updates every subjective
∆H time units at most throughout the interval[t1 + D, t2]. This in turn implies thatu andv send
each other updates every objective∆H

1−ρ time units at most throughout this interval.
Let t be a time such that[t −∆T , t] ⊆ [t1 + D, t2]. Sincev sendsu a message at least once

every∆H
1−ρ time units throughout the interval[t1+D, t2], there is somets ∈ [t−∆T , t−∆T + ∆H

1−ρ ]
such thatv sendsu a message at timets. The message is received byu at timetr such that

t−∆T ≤ ts ≤ tr ≤ ts + T ≤ t−∆T +
∆H

1− ρ
+ T = t.

Therefore, condition 2 of the lemma is satisfied. Condition 3 is similar.
Condition 1 of the lemma follows from Conditions 2 and 3: from lines 6–23 of the algo-

rithm, if u received a message fromv at time tr such thatHu(t) − Hu(tr) ≤ (1 + ρ)∆T
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and nodiscover(remove({u, v})) event occurs during the interval[tr, t], thenv ∈ Γu(t), as de-
sired. Lett be a time such that[t − ∆T , t] ⊆ [t1 + D, t2]. Condition 2 of the lemma shows
that nodeu receives a message from nodev at some timetr ∈ [t − ∆T , t]. In particular,
Hu(t) − Hu(tr) ≤ (1 + ρ)(t − tr) ≤ (1 + ρ)(t − (t − ∆T )) = (1 + ρ)∆T . Finally, we
know that nodiscover(remove({u, v})) event occurs during the interval[tr, t], because the edge
{u, v} exists throughout the interval[t1, t2] and[tr, t] ⊆ [t − ∆T , t] ⊆ [t1 + D, t2]. This shows
thatv ∈ Γu(t), andu ∈ Γv(t) is proven in a similar manner.

Lemma 6.2. If v ∈ Γu(t), then by timet nodeu has received at least one message that nodev sent
at timets ≥ t− τ .

Proof. If v ∈ Γu(t) thenu has received a message fromv at some timetr such thatHu(t) −
Hu(tr) ≤ (1 + ρ)∆T , otherwiseu would have removedv from Γu prior to time t. Since the
hardware clock rate ofu is at least1− ρ,

Hu(t)−Hu(tr) ≥ (1− ρ)(t− tr).

Thus,t−tr ≤ 1+ρ
1−ρ∆T . The message was sent at some timets ≥ tr−T ≥ t− 1+ρ

1−ρ∆T −T ≥ t−τ ,
so the lemma holds.

Lemma 6.3(Max estimates). For all u ∈ V and timest ≥ 0,

Lmax
u (t) ≥ Lu(t).

Proof. The variablesLmax
u andLu are modified in three circumstances: in line 22 of the algorithm,

which is executed whenu receives a message; in procedureAdjustClock(), which is called
after every event; and in between discrete events. It is sufficient to show that all of these preserve
the invariantLmax

u ≥ Lu.
Between processing discrete events,Lmax

u andLu are both increased at the rate ofu’s hardware
clock, and the invariant is preserved. Suppose then thatLmax

u ≥ Lu prior to the execution of line 22
or of procedureAdjustClock(). In line 22 the value ofLmax

u can only be increased, so the
invariant is preserved. InAdjustClock(), nodeu sets

Lu ← max {Lu,min {Lmax
u , . . .}} .

Since we assume thatLmax
u ≥ Lu prior to the execution ofAdjustClock(), both terms in the

max are no greater thanLmax
u . Following the assignment we still haveLu ≤ Lmax

u .

Lemma 6.4(Estimate quality). If v ∈ Γu(t) thenLv(t− τ) ≤ Lv
u(t) ≤ Lv(t) + 2ρτ .
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Proof. Let ts be the latest time that nodev sends a message〈Lv(ts), L
max
v (ts)〉 which is received

by u at some timetr ≤ t. From Lemma 6.2 we havets ≥ t− τ . Upon receiving the message, node
u setsLv

u ← Lv(ts) (line 21).
Since messages are delivered in FIFO fashion, nodeu does not receive another message from

v during the interval(tr, t]; during this intervalLv
u is increased at the rate ofu’s hardware clock,

and in particular,Lv
u is not decreased. Thus,

Lv
u(t) ≥ Lv

u(tr) = Lv(ts) ≥ Lv(t− τ),

giving us the first side of the inequality. In addition, since the rate ofu’s hardware clock is always
at most(1 + ρ),

Lv
u(t) ≤ Lv

u(tr) + (t− tr)(1 + ρ) ≤ Lv(ts) + (t− ts)(1 + ρ). (6.1)

During the interval[ts, t], nodev also increases its logical clock: even if no discrete changes are
made, the logical clock increases at least at the rate ofv’s hardware clock, which is no less than
(1− ρ). Thus,

Lv(ts) ≤ Lv(t)− (t− ts)(1− ρ). (6.2)

Combining (6.1) and (6.2) yields

Lv
u(t) ≤ Lv(t) + 2ρ(t− ts) ≤ Lv(t) + 2ρτ. (6.3)

6.2 Discrete updates and blocked nodes

To analyze the algorithm it is important to understand what conditions prevent nodes from making
discrete changes to their logical clocks. These conditions are captured by the following definitions
and properties.
Let

Bv
u(t) := B(Hu(t)− Cv

u(t))

be the amount of perceived skew nodeu is willing to tolerate on edge{u, v} at real timet.

Definition 6.1 (Blocked nodes). We say that a nodeu is blocked by nodev at timet if

1. Lmax
u (t) > Lu(t), and

2. v ∈ Γu(t), and

3. Lu(t)− Lv
u(t) > Bv

u(t).

In this case we also say that nodev blocks nodeu at timet and that nodeu is blocked at timet.
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It is easy to see that being blocked prevents nodes from increasing theirlogical clock value in
ProcedureAdjustClock(). The next lemma shows that being blocked is in fact theonly reason
that can prevent a node from increasing its logical clock to its max estimate.

Lemma 6.5. If Lmax
u (t) > Lu(t), then nodeu is blocked at timet.

Proof. Let t′ ≤ t be the most recent time a discrete event occurs at nodeu up to (and including)
time t.

Between timet′ and timet nodeu increasesLmax
u andLu at the rate of its hardware clock, and

thereforeLmax
u (t′)−Lu(t

′) = Lmax
u (t)−Lu(t). Since we assume thatLmax

u (t) > Lu(t) it follows
thatLmax

u (t′) > Lu(t
′).

Nodeu must be blocked following the last event that occurs at timet′, otherwise it would have
setLu(t

′)← Lmax
u (t′) in ProcedureAdjustClock()after processing the last event. Thus, there

is some neighborv ∈ Γu(t
′) such thatLu(t

′)− Lv
u(t

′) > Bv
u(t

′).
Between timet′ and timet nodev was not removed fromΓu, because nodes are only removed

from Γu following discrete events, and no discrete event occurs at nodeu between the last event
that occurs at timet′ and timet. Thus,v ∈ Γu(t). Also, between timest′ and t, the values
Lu andLv

u were both increased at the rate ofu’s hardware clock, and henceLu(t) − Lv
u(t) =

Lu(t
′)− Lv

u(t
′) > Bv

u(t
′) ≥ Bv

u(t). This shows that nodev blocks nodeu at timet.

Each nodeu decides whether or not to increase its clock based on its estimates of its neighbors’
clocks, aiming to keep the skew on edge{u, v} no greater thanBv

u. Since the estimate may be
larger than the real value of the neighbor’s clock, nodeu may overshoot the mark, but the following
lemma shows that it does not overshoot it by much.

Lemma 6.6. If u’s logical clock made a discrete jump at timet, then immediately following the
jump, for allv ∈ Γu(t) we haveLu(t)− Lv(t) ≤ Bv

u(t) + 2ρ · τ .

Proof. If u’s logical clock made a discrete jump at timet, then following the jump in Procedure
AdjustClock()we have

Lu(t) ≤ min
v∈Γu

(Lv
u(t) +Bv

u(t)) ≤ Lv
u(t) +Bv

u(t).

Applying Lemma 6.4 we obtain

Lu(t) ≤ Lv
u(t) +Bv

u(t) ≤ Lv(t) +Bv
u(t) + 2ρτ.

6.3 Global Skew

The basic strategy to bound the global skew of our dynamic clock synchronization algorithm is the
same as the one used in a static network (see [14]). We first show that forany two nodesu and
v, the estimatesLmax

u (t) andLmax
v (t) of the maximum clock value in the system are not too far
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apart. Second, we show that if the global skew exceeds a certain value at time t, the nodev with
the smallest logical clock valueLv(t) cannot be blocked at timet. By Lemma 6.5, we then have
Lv(t) = Lmax

v (t) and thus the bound on the maximal difference between two estimatesLmax
u (t)

andLmax
v (t) also yields a bound on the global skew.

For anyt ≥ 0, define
Lmax(t) := max

u∈V
Lmax
u (t). (6.4)

Lemma 6.7(Rate ofLmax). The value ofLmax increases at a rate at most1 + ρ. That is, for all
t2 ≥ t1 ≥ 0 we have

Lmax(t2)− Lmax(t1) ≤ (1 + ρ)(t2 − t1).

Proof. Informally, we wish to argue that any node that has the largest max estimate only increases
it at the rate of its hardware clock, because it never hears larger clockvalues from its neighbors.
Thus, the overall maximum of the max estimates in the network increases at an average rate of at
most(1 + ρ), the rate of the fastest hardware clock. However, this argument is complicated by the
fact thatLmax is not differentiable everywhere. We require the following easy lemma.

(⋆) Let F = {f1, . . . , fn} ⊆ R
R be a set of functions and letb ∈ R be a bound such that for all

f ∈ F and for allx ∈ R, if f(x) = maxg∈F g(x), thenf is differentiable atx andf ′(x) ≤ b.
Then for allx1, x2 ∈ R we have

max
f∈F

f(x2) ≤ max
f∈F

f(x1) + b(x2 − x1).

The proof is technical and is not included here. To apply the lemma we must show that for all
nodesu and timest, if Lmax

u (t) = Lmax(t) thenLmax
u is differentiable att anddLmax

u /dt ≤ 1+ ρ.
Let u be a node such thatLmax

u (t) = Lmax(t). Between discrete updates nodeu increases
Lmax
u at the rate of its hardware clock, which is differentiable and has a rate of at most1 + ρ;

thus, it is sufficient to show thatu does not make a discrete update toLmax
u at timet. The only

place whereu might make a discrete update toLmax
u is line 22 of the algorithm, which is executed

upon receiving a message from a neighbor. Thus, suppose that at timet nodeu receives a mes-
sage〈Lv(ts), L

max
v (ts)〉 that nodev sent at timets ≤ t. SinceLmax

v is non-decreasing, we have
Lmax
v (ts) ≤ Lmax

v (t) ≤ Lmax
u (t); hence the value ofLmax

u does not change upon execution of
line 22, and a discrete update does not occur.

The accuracy of the estimatesLmax
u (t) can be bounded by applying the interval connectivity

property of the dynamic network graph. Informally, suppose we “freeze” the value ofLmax at some
time t, and let us track the propagation of this value throughout the network. Let M = Lmax(t).
Consider the cut(S(t), V \ S(t)), whereS(t) := {u ∈ V | Lmax

u (t) ≥M} is the set of nodes
that have heard ofM or a greater clock value. The(T + D)-interval connectivity of the graph
guarantees that there is some edge in the cut that persists long enough forits endpoints to get at
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least one message across. Thus, at every “step”, at least one nodein V \S(t) learns a value that is at
leastM , and increases its max estimate accordingly. This node will then be added toS(t+T +D).

After at mostO(n) such steps we will reach a timet′ (= t+O(n)) such thatS(t′) = V , that is,
for all u ∈ V we haveLmax

u (t′) ≥M . In other words, afterO(n) time, all nodes catch up to theold
valueM = Lmax(t). But Lemma 6.7 shows thatLmax does not “run away” during this interval:
Lmax(t′) ≤ Lmax(t) + (1 + ρ)(t − t′) = M + O(n). Therefore the difference betweenLmax(t′)
and the max estimateLmax

u (t′) of any nodeu is at mostO(n). This argument is formalized in the
following lemma.

Lemma 6.8(Max Propagation Lemma). If the dynamic graphG(t) is (T +D)-interval connected,
then for allt ≥ 0 and allu ∈ V it holds that

Lmax(t)− Lmax
u (t) ≤ ((1 + ρ) · T + 2ρ · D) · (n− 1).

Proof. All hardware clocks and max-estimates are initialized to 0 at time 0, and henceLmax(0)−
Lmax
u (0) = 0. The max clockLmax increases at a rate of no more than1 + ρ, and the max-

estimateLmax
u (t) of any nodeu increases at a rate of at least1 − ρ. Consequently, the difference

Lmax(t) − Lmax
u (t) grows at a rate of no more than(1 + ρ) − (1 − ρ) = 2ρ, and becauseρ < 1,

the claim holds at least until time

t =
(1 + ρ)T + 2ρ · D

2ρ
· (n− 1) > (T +D) · (n− 1).

Thus, it is sufficient to consider timest such thatt > (T +D) · (n− 1).
For i ∈ {1, . . . , n}, define

ti := t− (n− i)(T +D)
and

Vi := {v ∈ V | Lmax
v (ti) ≥ Lmax(t1) + (i− 1)(1− ρ)D} .

We prove by induction oni that for alli ∈ {1, . . . , n} we have|Vi| ≥ i.

• (Base) By definition,V1 = {v ∈ V | Lmax
v (t1) ≥ Lmax(t1)}. There exists some nodev such

thatLmax
v (t1) = Lmax(t1), and consequently|V1| ≥ 1.

• (Step) Suppose that|Vi−1| ≥ i− 1. By definition, for allv ∈ Vi−1 we have

Lmax
v (ti−1) ≥ Lmax(t1) + (i− 2)(1− ρ)D. (6.5)

The max estimate of each node increases at least at the rate of its hardwareclock. Conse-
quently, for allv ∈ Vi−1,

Lmax
v (ti) ≥ Lmax

v (ti−1) + (ti − ti−1)(1− ρ)

(6.5)
≥ Lmax(t1) + (i− 2)(1− ρ)D + (ti − ti−1)(1− ρ)

≥ Lmax(t1) + (i− 1)(1− ρ)D,
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and henceVi−1 ⊆ Vi.

If V \ Vi−1 = ∅, then|Vi| ≥ |Vi−1| = n and we are done. Otherwise by(T + D)-interval
connectivity ofG(t) there exists an edgee = {v, w}, wherev ∈ Vi−1 andw ∈ V \Vi−1, such
thate exists throughout the interval[ti−1, ti]. By Lemma 6.1, there are timestsnd ≥ ti−1 and
trcv ≤ ti such that nodev sends nodew a message containingLmax

v (tsnd) at timetsnd, and
nodew receives the message at timetrcv and updates its max estimate. Thus we have

Lmax
w (ti) ≥ Lmax

w (trcv) + (1− ρ)(ti − trcv)

≥ Lmax
v (tsnd) + (1− ρ)(ti − trcv)

≥ Lmax
v (ti−1) + (1− ρ)(ti − trcv) + (1− ρ)(tsnd − ti−1)

≥ Lmax
v (ti−1) + (1− ρ)(ti − ti−1 − T )

= Lmax
v (ti−1) + (1− ρ)D

(6.5)
≥ Lmax(t1) + (i− 1)(1− ρ)D.

It follows thatw ∈ Vi. Sincew 6∈ Vi−1 andVi−1 ∪{w} ⊆ Vi we have|Vi| ≥ |Vi−1|+1 ≥ i.

The claim we proved implies thatVn = V ; that is, for allv ∈ V , at timetn = t we have

Lmax
v (t) ≥ Lmax(t1) + (n− 1)(1− ρ)D. (6.6)

From Lemma 6.7,

Lmax(t) ≤ Lmax(t1) + (1 + ρ)(t− t1) = Lmax(t1) + (1 + ρ)(n− 1)(T +D), (6.7)

and combining (6.6) and (6.7) yields

Lmax(t)− Lmax
v (t) ≤ (n− 1) ((1 + ρ)T + 2ρ · D) .

Using the approach sketched above, Lemma 6.8 allows us to prove the following theorem,
which bounds the global skew of our algorithm.

Theorem 6.9(Global skew). The algorithm guarantees a global skew of

G(n) := ((1 + ρ) · T + 2ρ · D) · (n− 1).

Proof. We show the stronger statement that at all timest,

∀v ∈ V : Lmax(t)− Lv(t) ≤ G(n)

and the claim then follows from Lemma 6.3 and the definition ofLmax.
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For the sake of contradiction, assume that this is not the case. Then there issome timet, node
v ∈ V andε > 0 such that

Lmax(t)− Lv(t) ≥ G(n) + ε (6.8)

Let t̄ be the infimum of times when (6.8) holds for some nodev. By Lemma 6.8, we have
Lmax(t̄) − Lmax

v (t̄) ≤ G(n) and thusLv(t̄) < Lmax
v (t̄). Hence, as a consequence of Lemma

6.5, v is blocked at timēt. Therefore by Definition 6.1, there is a nodeu ∈ Γv(t̄) such that
Lv(t̄) − Lu

v (t̄) > Bu
v (t̄) ≥ B0. By Lemma 6.4, it therefore holds thatLu(t̄ − τ) < Lv(t̄) − B0.

By Lemma 6.7, we haveLmax(t̄− τ) ≥ Lmax(t̄)− (1 + ρ)τ . We therefore obtain

Lmax(t̄− τ)− Lu(t̄− τ) > Lmax(t̄)− Lv(t̄)− (1 + ρ)τ +B0.

Because we assume thatB0 ≥ (1 + ρ)τ , this is a contradiction to the assumption thatt̄ is the
infimum of times when (6.8) is satisfied for the first time for some nodev.

6.4 Local Skew

The local skew guarantee of the algorithm hinges on the fact that for a long time after an edge
appears, the skew on it is unconstrained and its endpoints do not need to wait for each other.
Specifically, we can show that at leastW real time units must pass before two newly adjacent
nodes can block one another.

Lemma 6.10. If nodev blocks nodeu at timet, thenv ∈ Γu(t
′) for all t′ ∈ [t−W, t].

Proof. Let t0 ≤ t be the last time in which nodeu added nodev to Γu. (Such a time must
exist, because at timet nodev blocks nodeu, and in particularv ∈ Γu(t).) From the algorithm,
Cv
u(t) = Hu(t0), and by choice oft0 we havev ∈ Γu(t

′) for all t′ ∈ [t0, t]. Our goal now is to
show thatt0 ≤ t−W .

From the definition of blocked nodes, if nodev blocks nodeu at timet thenBv
u(t) <∞. This

implies thatHu(t) − Cv
u(t) ≥ W ′, that is,Hu(t) − Hu(t0) ≥ W ′. Since the hardware clock

progresses at a rate of(1 + ρ) at most, we can write

(1 + ρ)W = W ′ ≤ Hu(t)−Hu(t0) ≤ (1 + ρ)(t− t0).

Thus,t0 ≤ t−W , as desired.

We use the lemma above to show that by the time two nodescanblock each other, they have
been in communication for a long time, and have up-to-date information about each other. Specif-
ically, the node that lags behind has a max estimate that reflects the clock value of the faster node.
We will later argue that if there is a large skew between the nodes, then the slower node must itself
be blocked, otherwise it would have increased its clock to match its max estimate (Lemma 6.5).

Lemma 6.11(Edge reversal). If nodev blocks nodeu at timet then for allt′ ∈ [t−W+∆T , t−D]
we haveLmax

v (t′) ≥ Lmax
u (t′ − τ).
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Proof. From Lemma 6.10, ifv blocksu at timet, then for allt′ ∈ [t −W, t] we havev ∈ Γu(t
′).

SinceΓu(t
′) ⊆ Υu(t

′), this implies thatv ∈ Υu throughout the interval. Hence, throughout the
interval[t−W, t], nodeu sends nodev an update every∆H

1−ρ real time units at most.
The model guarantees that if a message sent byu to v at time t′ is not delivered, nodeu

experiences adiscover(remove({u, v})) event no later than timet′ + D, which would leadu to
removev from Γu (line 7). Sincev ∈ Γu throughout the interval[t − W, t], all messages sent
from u to v during the interval[t − W, t − D] are delivered. It follows that during the interval
[t −W + ∆T , t − D], nodev receives a message fromu at least once every∆T time units, and
hence throughout the interval we haveu ∈ Γv. Lemma 6.2 implies thatLmax

v (t′) ≥ Lmax
u (t′ − τ)

for all t′ ∈ [t−W +∆T , t−D].

The local skew guarantee of the algorithm is as follows.

Theorem 6.12.For any two nodesu, v and timet such thatv ∈ Γu(t),

Lu(t)− Lv(t) ≤ Bv
u(t−W ) + 2ρW = Bv

u(t−W ) + 2ρτ

(

4
G(n)
B0

+ 1

)

Proof. Suppose by way of contradiction that at timet there are two nodesu, v ∈ V such that
v ∈ Γu(t), but

Lu(t)− Lv(t) > Bv
u(t−W ) + 2ρW.

We will show that this implies a contradiction to the global skew guarantee (Theorem 6.9) at some
earlier time in the execution.

There are two parts to the proof. First, we show that since the skew between u andv is very
large,u has been blocked for a long time, and its logical clock has not increased bymuch. More
formally, sinceBv

u is non-increasing, for allt′ ∈ [t−W, t] we have

Bv
u(t

′) ≤ Bv
u(t−W ). (6.9)

From Lemma 6.6 and Lemma 6.10, at any timet′ ∈ [t−W, t] nodeu’s logical clock cannot jump
to a value that exceedsLv(t

′) + Bv
u(t

′) + 2ρτ ≤ Lv(t
′) + Bv

u(t −W ) + 2ρτ . Thus, the excess
skew of2ρW − 2ρτ was built up by increasingu’s logical clock at the rate ofu’s hardware clock,
which is at most1 + ρ, while v’s clock increased at a rate of at least1− ρ. In other words, as long
as the skew is greater thanBv

u(t −W ) + 2ρτ it increases at a rate of at most2ρ, which implies
thatu’s clock cannot make a discrete jump throughout the interval[t −W + τ, t]. Thus, for all
t′ ∈ [t−W + τ, t] we have

Lu(t
′) ≥ Lu(t)− (1 + ρ)(t− t′). (6.10)

In the second part of the proof we argue that nodev would not have fallen so far behind node
u unless it was itself blocked until very recently by some other nodeu2, which lags far behindv.
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And sinceu2 lags far behindv, it mustalsohave been blocked recently, and so on. In this way we
construct a chainu0, u1, . . . , uℓ+1 of nodes, whereu0 = u, u1 = v, and each node in the chain is
blocked by the next node.

Formally, we define a sequence of decreasing timest0, t1, . . . , tℓ+1, where

ti := t− i · τ and ℓ := ⌊W − τ

2τ
⌋. (6.11)

We construct the chainu0, . . . , uℓ+1 so that each nodeui satisfies the following properties.

(1) If i 6= 0 thenLu(t)− Lui
(ti) > i ·B0.

(2) For allt′ ∈ [t2ℓ−i+1, ti] we haveLmax
ui

(t′) ≥ Lu(t
′ − iτ).

(3) If i ≤ ℓ then nodeui is blocked at timeti.

The first property is the one we are truly interested in: we will use it to obtain the contradiction to
the global skew guarantee. The other two properties are necessary for the inductive construction of
the chain. We use property (2) to show thatui is “aware” of a large clock value in the network, by
bounding its max estimate from below. Then we combine properties (1) and (2)to show thatui’s
clock value is smaller than its max estimate, which means it must be blocked (Lemma 6.5). The
node that blocksui will be chosen asui+1.

Before showing the construction of the chain in detail, let us show how we use the chain to
derive a contradiction. Suppose we already have a chainu0, . . . , uℓ+1 that satisfies properties (1)–
(3). In particular,

Lu(t)− Luℓ+1
(tℓ+1) > (ℓ+ 1)B0

(5.2)
> (ℓ+ 1) · 2(1 + ρ)τ. (6.12)

In order to obtain a contradiction to the global skew, we must relate the clock values ofu anduℓ+1

at the same time. Now the first part of the proof comes into play: it shows thatu’s clock value at
time tℓ+1 is not much less than it is at timet, specifically,

Lu(tℓ+1) ≥ Lu(t)− (1 + ρ)(t− tℓ+1) = Lu(t)− (1 + ρ)(ℓ+ 1)τ. (6.13)

(We use the fact thattℓ+1 = t − (ℓ + 1) · τ > t − W + τ , which allows us to apply (6.10).)
Combining (6.12) with (6.13), we obtain

Lu(tℓ+1)− Luℓ+1
(tℓ+1) > 2(1 + ρ)(ℓ+ 1)τ − (1 + ρ)(ℓ+ 1)τ

(6.11)
= (1 + ρ)τ ·

(

⌊W − τ

2τ
⌋+ 1

)

≥ (1 + ρ)τ · W − τ

2τ
(5.1)
= 2(1 + ρ)τ · G(n)

B0
> G(n).
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This is the contradiction we sought.
It remains to show how the chainu0, . . . , uℓ+1 is constructed. The base case,u0 = u, is

immediate. Suppose that we have constructed the chain up to nodeui, wherei ≤ ℓ andui satisfies
properties (1)–(3). Ifi = 0, we chooseu1 = v. (We know thatv blocksu at time t0 = t.)
Otherwise, from property (3) we know thatui is blocked at timeti. Thus, there is some node
ui+1 ∈ Γui

(ti) such that

Lui
(ti)− L

ui+1

ui (ti) > B
ui+1

ui (ti) ≥ B0.

We show thatui+1 satisfies properties (1)–(3).

Property (1). Sinceui+1 ∈ Γui
(ti), Lemma 6.4 shows thatLui+1

ui (ti) ≥ Lui+1
(ti+1) (recall that

ti+1 = ti − τ by definition). Thus we have

Lui
(ti)− Lui+1

(ti+1) > B0. (6.14)

Now there are two cases. Ifi > 0, then property (1) gives usLu(t) − Lui
(ti) > i · B0, which

together with (6.14) yields
Lu(t)− Lui+1

(ti+1) > (i+ 1)B0. (6.15)

If i = 0, the property we must show isLu(t) − Lv(t − τ) > B0. We assumed thatu and
v violate the local skew guarantee at timet, and in particular,Lu(t) − Lv(t) > B0. But Lv is
non-decreasing, and thereforeLu(t)− Lv(t− τ) ≥ Lu(t)− Lv(t) > B0, as desired.

Property (2). Let t′ ∈ [t2ℓ−i, ti+1]. Sincet2ℓ−i = t2ℓ−i+1 + τ and ti+1 = ti − τ , we have
t′ − τ ∈ [t2ℓ−i+1, ti − 2τ ], and property (2) applied toui at timet′ − τ gives us

Lmax
ui

(t′ − τ) ≥ Lu(t
′ − (i+ 1)τ). (6.16)

In addition we also havet′ ∈ [ti −W +∆T , ti − τ ], and sinceui+1 blocksui at timeti, we can
apply Lemma 6.11 to obtain

Lmax
ui+1

(t′) ≥ Lmax
ui

(t′ − τ)
(6.16)
≥ Lu(t

′ − (i+ 1)τ), (6.17)

as required.

Property (3). It remains to verify that nodeui+1 is blocked at timeti+1.
Recall that by definitionti = t− i · τ . In particular,

t2ℓ = t− 2ℓτ
(6.11)
≥ t− 2τ · W − τ

2τ
= t−W + τ.

Thus, we can apply (6.13) to any timet′ ∈ [t2ℓ, t], obtaining

Lu(t)− Lu(t
′) ≤ (1 + ρ)(t− t′). (6.18)
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Applying (6.17) witht′ = ti+1 yields

Lmax
ui+1

(ti+1) ≥ Lu(ti+1 − (i+ 1)τ) = Lu(t2(i+1))

(6.18)
≥ Lu(t)− (1 + ρ)(t− t2(i+1)) = Lu(t)− (1 + ρ)(2i+ 1)τ

(6.15)
> Lui+1

(ti+1) + (i+ 1)B0 − (1 + ρ)(2i+ 1)τ

(5.2)
> Lui+1

(ti+1).

From Lemma 6.5, nodeui+1 is blocked at timeti+1.

Theorem 6.12 describes the local skew guarantee from a point of view that is subjective to node
u: the statement of the theorem assumes thatv ∈ Γu, and the value ofBv

u depends on the local
variablesCv

u andHu. The following corollary states the “objective” local skew guarantee of the
algorithm.

Corollary 6.13. The algorithm guarantees a dynamic local skew of

s(n, I,∆t) := s(n,∆t) := B (max {(1− ρ)(∆t−∆T − D −W ), 0}) + 2ρW,

regardless of the initial skewI on the edge.

Proof. Let e = {u, v} be an edge that exists throughout an interval[t, t+∆t]. If ∆t−∆T −D−
W ≤ 0, thens(n,∆t) = B(0)+2ρW =∞, and all edges carry less thans(n,∆t) skew. Suppose
then that∆t−∆T − D −W > 0, that is,t+∆t−W > t+∆T +D.

Since the edge exists throughout the interval[t, t + ∆t], from Lemma 6.1, at any timet′ ∈
[t + ∆T + D, t + ∆t] we havev ∈ Γu(t

′). Thus, the last timev was added toΓu prior to time
t+∆t is some timet1 ≤ t+∆T +D < t+∆t−W , and from the algorithm,Cv

u(t+∆t−W ) =
Hu(t1) ≤ Hu(t+∆T +D). SinceB is non-increasing,

Bv
u(t+∆t−W ) = B (Hu(t+∆t−W )− Cv

u(t+∆t−W )) ≤
≤ B (Hu(t+∆t−W )−Hu(t+∆T +D)) ≤
≤ B ((1− ρ)(t+∆t− t−∆T − D −W )) =

= B ((1− ρ)(∆t−∆T − D −W )) .

Now we can use Theorem 6.12 to obtain

Lu(t+∆t)− Lv(t+∆t) ≤ Bv
u(t+∆t−W ) + 2ρW ≤ s(n,∆t),

and similarly we can show thatLv(t +∆t) − Lu(t +∆t) ≤ s(n,∆t) as well. Together we have
|Lu(t+∆t)− Lv(t+∆)| ≤ s(n,∆t), as required.

Corollary 6.14. If the parameterB0 is chosen asB0 ≥ λ
√
ρn for a constantλ > 0, the stable

local skew of the algorithm isO(B0). Further, the time to reach this stable skew on a new edge
is O(n/B0). Hence, for this choice ofB0, the trade-off achieved by the algorithm asymptotically
matches the trade-off established by the lower bound in Theorem 4.1.
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7 Conclusion

We have established fundamental trade-offs for gradient clock synchronization algorithms in dy-
namic networks. First, the time to adjust the skew on a newly formed edge is inversely proportional
to the skew one is willing to tolerate on well-established edges. Hence, having astronger skew re-
quirement in stable conditions impairs the ability to adapt to dynamic changes. Second, contrary
to what one might initially think, reducing the skew on edges with a small initial skewturns out to
be as hard as reducing the skew on edges with a large initial skew. The time needed in both cases
is linear in the global skew bound of the algorithm and is thus at least linear inn.

The algorithm we gave in Section 5 achieves a stable local skew ofO(
√
ρn) and has optimal

stabilization time,O(
√

n/ρ). In subsequent work [10], we showed that it is possible for a DCSA
to achieve a stable skew ofO(log1/ρ n), matching the best possible local skew of a static algorithm
(in light of the lower bound from [13]). The improved stable skew necessarily comes at the cost
of adaptability; the stabilization time of the algorithm in [10] isO(n). Note that the tight lower
bound we give in the current paper would show that no algorithm with a stable skew ofO(log1/ρ n)
can have a stabilization time better thanΩ(n/ log1/ρ n), seemingly indicating that the algorithm
of [10] has sub-optimal stabilization time. However, in [10] we refine the lower bound and show
that for “true gradient” algorithms — algorithms that guarantee a skew smaller than the global
skew betweenany two nodes at distance less than the diameter of the graph — the stabilization
time cannot be better thanΩ(n). Thus the algorithm in [10] is optimal in both the stable skew and
the time until that stable skew is reached. (We note that the algorithm from Section 5 is not subject
to the refined lower bound from [10], because for nodes at distanceΩ(

√

n/ρ) from each other,
the only skew guarantee it provides isΩ(

√

n/ρ · √ρn) = Ω(n), no better than the global skew
guarantee. In this sense this algorithm is not a “true gradient” algorithm. Thisproperty allows it,
however, to achieve a stabilization time ofO(

√

n/ρ) instead ofΩ(n).)
An interesting generalization of these results would be to incorporate node insertions and dele-

tions in the dynamic graph model. As long as nodes join and leave at a constantrate, it might be
possible to adapt all the parameters used sufficiently quickly in order to still guarantee the same
basic results. The details of such a protocol as well as possible limitations on how fast one can
adapt to changes of the network size remain open questions.
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