
An Automata-Theoretic Model for UNITY 

by 

Magda F. N our 

Submitted to the Departtnent of Electrical Engineering and Computer Science 

in Partial Fulfillment of the Requirements for the Degree of 

Bachelor of Science in Computer Science and Engineering 

at the Massachusetts Institute of Technology 

June 1989 

© Magda F. Nour, 1989 

The author hereby grants to MIT permission to reproduce 
and to distribute copies of this thesis document in whole or in part. 

Author ____ _ 

Certified by __ 

• 

nepartme~t of Electrical Engineering and Computer Science 
May 22,1989 

/ Nancy A. Lynch 
Thesis Supervisor 

Accepted by ________________________________________________________ ___ 

Leonard A. Gould 
AiASSr'HUsms IN~airman, Departmental Committee on Undergraduate Theses 

OFm:tfHOlOGY 

JUN 16 1989 
ARCHIVE~ 

UBRARIES 



An Automata-Theoretic Model for UNITY 

by 

Magda F. Nour 

Submitted to the 
Department of Electrical Engineering and Computer Sdence 

May 22,1989 

In Partial Fulfillment of the Requirements for the Degree of 
Bachelor of Science in Computer Science and Engineering 

Abstract 

UNITY - Unbounded Nondeterministic Iterative Transformations -"is a computational model 
and a proof system to aid in the design of parallel programs developed by K. Mani Chandy and 
Jayadev Misra at the University of Texas. 

The Input / Output Automaton model is a computational model developed by Nancy Lynch 
and Mark Tuttle at MIT that may be used to model concurrent and distributed systems. 

This thesis will connect these two theories. Specifically, it will 

1. define UNITY Automata, a subset of I/O Automata based on the UNITY computational 
model, the UNITY program, 

2. define a mapping from UNITY programs to UNITY Automata, 

3. adapt the UNITY proof concepts to the I/O Automaton comp~tational model in order 
to obtain UNITY style proof rules for I/O Automata, 

4. adapt UNITY composition operators to the I/O Automaton model and obtain composi
tion proof rules for them, and 

5. consider various examples illustrating the above work. 

In addition, this paper introduces an augmentation to the I/O Automaton model which 
facilitates reasoning about randomized algorithms, adapts UNITY concepts to it, and presents 
an example of a UNITY style high probability proof using such a model. 

Thesis Supervisor: Nancy A. Lynch 
Title: Professor, Department of Electrical Engineering and Computer Science 

2 



Contents 

1 

2 

3 

Introd uct ion 

UNITY Proof Concepts for I/0 Automata 

2.1 UNITY-Style Assertions for I/O Automata 

2.2 Unless .. 
2.3 Ensures ..... 

2.4 Leads To 

2.5 Fixed Point 

2.6 Detects 

2.7 Until ... 

2.8 Stable Property. 

2.9 Invariant ..... 

2.10 State Transition Concepts 

UNITY Programs and UNITY Automata 

3.1 UNITY Program . 

3.2 UNITY Automata 

3.3 Mapping from UNITY Programs to Unity Automata .. 

3.4 The Effect of Automaton Mapping on UNITY Properties 

3.5 UNITY Composition. 

3.5.1 Union ..... 

3.5.2 Superposition. 

3 

5 

9 

9 

10 

11 

12 

13 

14 

14 

15 

15 

18 

20 

20 

...... 21 

21 

22 

23 

24 

27 



4 Com.position 

4.1 I/O Automata Union. 

4.2 I/O Automata Superposition 

4.2.1 Example: Global Snapshot 

4.3 I/O Automata Composition ... 

4.4 I/O Automata SAJ-Composition 

5 Random.ized Algorithm.s 

5.1 Randomized I/O Automata 

5.2 UNITY Proofs Concepts for Randomized I/O Automata. 

5.3 A Simple Example: Coin Flip ........... . 

5.4 Rabin-Lehmann's Randomized Dining Philosophers. 

31 

31 

32 

37 

40 

41 

48 

48 

49 

52 

53 

6 Conclusion 61 

6.1 Errors Found In [CM] .............. . . . . . . . . . . . . . . . . . . . 63 

Acknowledgements 

Nancy Lynch has been an inspiration to me as both an excellent professor and a prominent 

researcher. I am especially indebted to her for introducing me to this fascinating field and 

would like to thank her for her suggestions, encouragement, and patience as my thesis advisor. 

4 



Chapter 1 

Introduction 

In [CM], Chandy and Misra introduce a theory - a computational model and a proof system 

- called UNITY: Unbounded Nondeterministic Iterative Transformations. The computational 

model they use is that of a UNITY program which is comprised of a declaration of variables, 

a specification of their initial values, and a set of multiple-assignment statements. A program 

execution starts from any state satisfying the initial conditions and goes on forever. In each step 

of an execution some assignment statement is selected nondeterministically and executed. This 

nondeterministic selection is subject to a fairness constraint that requires that every statement 

be selected infinitely often. The goal of their book is to use UNITY to develop UNITY pro

grams systematically for a variety of architectures and applications from a problem statement. 

Such a program is developed by first defining specifications that insure correctness in terms 

of conditions on variables, then these specifications are translated into a UNITY program. At 

that point the program may be further refined by adding more details to the specifications so 

that it can be mapped to some target architecture efficiently. 

In [LT], Lynch and Tuttle introduce the Input/Output Automaton model, a computational 

model that can be used as a tool for modeling concurrent and distributed systems. It is 

somewhat like a traditional nondeterministic finite state automaton without the restriction of a 

finite set of states. An 1/ ° automaton is defined by its initial states, states, actions, transition 

steps, and partition of local actions. It has three kinds of actions: input, output and internal. 

It generates output and internal actions autonomously and thus these are called local actions. 

Input actions, on the other hand, are generated by the environment and thus must be enabled at 

5 



every step. Every input and output action is instantaneously transmitted to the automaton or 

the environment respectively. An 110 automaton may be made up of any number of primitive 

components. The partition of local actions indicates those actions that may be thought of as 

under the control of some primitive system component and thus a simple notion of fairness is 

defined permitting each of the primitive components of the automaton to have infinitely many 

chances to perform a local action. 110 automata can be composed to yield other 110 automata. 

This composition operator connects each output action of one automaton with input actions 

of other automata resulting in a system where an output action is generated autonomously 

by exactly one component and instantaneously transmitted to those components with that 

action as an input action. Since input actions are always enabled, these actions are executed 

simultaneously with the output step. 

This paper does not discuss the problem of program development but instead defines a 

direct mapping from a UNITY program to a special kind of 1/0 automaton called a UNITY 

automaton. A UNITY automaton is defined based on the concept of a UNITY program. This 

UNITY automaton may be seen as a declaration of variables, a specification of their initial 

values, and a set of multiple-assignment statements just as the UNITY program is, however the 

UNITY automaton is described in the form of an 110 automaton. In the UNITY automaton, 

the variables are defined by the states of the automaton, the initial variable values are defined 

by the initial states, and the set of multiple-assignment statements are defined by the transition 

steps. Using this mapping, all of the program development steps described in [eM] may thus 

be used to develop UNITY automata. The reader is referred to [eM] for further discussion in 

that area. 

In [eM] properties of a UNITY program are expressed in terms of predicates, such as 

"predicate P is always true", and are associated with the entire UNITY program. Most such 

properties are expressed using assertions of the form {p}s{q}, where s is universally or existen

tially quantified over the statements of the program. All properties of a UNITY program can 

be expressed directly using assertions. However, since it is cumbersome to use assertions all 

the time, in [eM] certain kinds of properties that arise often in practice have been given names 

and theorems about them have been derived. We will present analogous properties for 1/0 

automata and will refer to them as UNITY properties. The UNITY approach of using these 

6 



properties to generate proofs about UNITY programs shall be referred to as UNITY proof 

concepts. 

The focus of this paper is to adapt the UNITY proof concepts to 110 automata and to 

use these proof concepts to prove interesting properties for 110 automata. In addition to 

the proof system, the UNITY composition operators are adapted to 110 automata for the 

same purpose. Several basic examples are presented. Additionally an augmentation on the 

110 automaton model is introduced to allow the straightforward representation of randomized 

algorithms. UNITY proof concepts are again adapted to this model and expanded to facilitate 

reasoning about high probability properties and probabilistic proofs. An example of the use of 

these proof concepts is presented. 

Throughout this paper we shall assume that each 110 automaton, A, has a set of associated 

variables, vars(A), that define its states. We shall also assume that each such variable, v E 

vars(A), has associated with it a set of initial values, Iv, and a range of possible values, Xv. 

The states of the 110 automaton are defined by the values of its associated variables. This 

definition can be lnade because any set of states and state transitions may be defined in tenns 

of values of arbitrary variables. We shall use the expression s( v) to denote the value of variable 

v at state s. 

In chapter 2 UNITY proof concepts are described and put in terms of 110 automata prop

erties. Several lemmas are stated about fair executions of 110 automata that satisfy certain 

UNITY properties. In the final section of Chapter 2, we extend some definitions of discrete 

state discrete transition Markov processes to apply to 110 automata. Chapter 3 links UNITY 

programs to UNITY automata. First, UNITY programs are described as they are defined in 

[eM], then UNITY automata are introduced, a mapping from UNITY programs to UNITY 

automata is defined, and the effects of such a mapping on the UNITY properties is discussed. 

In section 3.5, the composition operators for UNITY programs, Union and Superposition, are 

described as they are in [CM] and analogous composition operators are defined for UNITY au

tomata. Chapter 4 expands on section 3.5 and defines Union and Superposition for general 1/0 

automata, then reviews the composition operator defined in [LT] and finally expands upon that 

to define a new composition operator. Chapter 5 introduces a new kind of 110 automata called 

randomized 110 automata and adapts and expands UNITY proof concepts to reason about 

7 



them. The final chapter concludes the paper with some final remarks, possible applications and 

ideas for further research. 

8 



Chapter 2 

UNITY Proof Concepts for I/O 

Automata 

This chapter contains definitions of UNITY properties for 110 automata that correspond to 

those used for UNITY programs. The 110 automaton model, unlike the UNITY program model, 

classifies 1/0 automaton actions as either local or input. The input actions of the automaton 

must be enabled from every state. Due to this requirement, it is often interesting to make a 

distinction between properties of a general execution of an 110 automaton and properties of 

an execution consisting of only local actions. For this reason, in defining UNITY properties for 

110 automata we define define both an analogous general UNITY property and an analogous 

"local" property. 

Specifically, in this chapter we define the three fundamental logical UNITY relations: unless, 

ensures, and leads to. Also defined are two special cases of unless. stable and invariant, the 

notion of a fi~ed point, and two additional properties. The unless properties are safety properties 

and the ensures and leads to properties are progress properties. Lemmas are also presented 

relating satisfaction of some UNITY properties to fair execution characteristics. 

2.1 UNITY-Style Assertions for I/O Automata 

A UNITY program satisfies {p} w {q} if for any state of the program satisfying predicate p, 

after the execution of the statement w the state of the program satisfies q. 

9 



We define an analogous property of I/O Automata. An I/O Automaton A satisfies {P}7r{Q} 

where P and Q are sets of states in states(A) if for all (s,7r,s') E steps(A), s E P =} s' E Q. 

2.2 Unless 

An I/O Automaton A satisfies P unless Q provided A satisfies {P n rvQ}7r{P U Q} for all 

7r E acts(A) 

Lemma 1 If A satisfies P unless Q then in any ezecution a = S0 7r1S 17r2'" of A, if Si E P 

then either there ezists k ~ i such that Sj E P n rvQ for all j such that i :::; j < k and Sk E Q, 

or s j E P n rv Q for all j ~ i. 

Proof: Consider the first occurrence of a state, Sk (k ~ i) in a that is not in P n rvQ. If there 

is no such state then for all j 2: i, Sj E P n rvQ and the lemma holds. If Sk E Q then the lemma 

holds. Let us assume Sk rt Q; then it must be in rvQ n rvP. However by the definition of unless, 

for all steps (s, 7r, s') in steps(A), s E P n rvQ =} s' E P U Q. We know that Sk-1 E P n rvQ 

by our definition of Sk so Sk E P U Q =} Sk tj. rvP n rvQ, a contradiction. Thus Sk E Q and the 

lemma holds. • 

An I/O Automaton A satisfies P local-unless Q provided A satisfies {P n rvQ}7r{P U Q} for 

all7r E local(A) 

Lemma 2 If A satisfies P local-unless Q then in any ezecution a = S07r1S17r2 ... of A, if Si E P 

then either (aJ there ezists k 2: i such that Sj E pnrvQ for all (i:::; j < k) and Sk E Q, (b) there 

ezists k > i such that Sj E P n rvQ for all (i :::; j < k) and 7rk tj. local(A), or (cJ Sj E P n rvQ 

for all (j ~ i). 

Proof: Consider the first occurrence of a state, Sk (k 2: i) in a that is not in P n rvQ. If 

there is no such state then for all j 2: i, Sj E P n rvQ (case (c)) and the lemma holds. If Sk E Q 

(case (a)) then the lemma holds. Otherwise, Sk tj. Q, let us assume this is the case; then Sk 

must be in rvQ n rvP, thus k > i since we know Si E P. By the definition of local- unless, for 

all steps (s, 7r, s') in steps(A) where 7r E local(A), S E P n rvQ =} s' E P U Q. We know that 

Sk-1 E P n rvQ by our definition of Sk so Sk E P U Q =} Sk tj. rvP n rvQ, therefore 7rk tj. local(A) 

and the lemma holds. • 
10 



LeIllIll8 3 If A satisfies P unless Q then A satisfies P local-unless Q. 

2.3 Ensures 

A satisfies P ensures Q iff A satisfies P unless Q and there exists a class C E part( A) such that 

V1r E C, A satisfies {P n "'Q }1r{ Q} and for all states s E P n ",Q some 1r E C is enabled (Le. 

there exists a step (s, 1r, Sf) such that 1r E C). 

LeIllIll8 4 If A satisfies P ensures Q, then in any fair execution a = S01rl Sl1r2 • •• of A, if 

Si E P then there is an index k ~ i such that Sk E Q and Vj, (i ::; j < k), Sj E P n "'Q. 

Proof: If Si is also in Q then i = k and the lemma is true, otherwise if Si is in P but not in Q, 

then since A satisfies P unless Q, by Lemma 1 we know that if there is a state, Sk E Q, (k 2:: i) 

where Sj f/. Q for all k > j ~ i (Le. Sk is the first state in Q after sd, then for all k > j ~ i, 

Sj E P n ",Q. Now we must show that such a state must necessarily exist. We know that there 

exists an class C of local actions of A such that for all states in P n ",Q any action in C will 

yield a new state that satisfies Q. We also know that in every state in P n "'Q there is an action 

in C enabled. 

Case 1: a is finite. The fairness condition states that if a is a finite execution, then no 

action of C is enabled from the final state of a. Therefore a may not end in a state in P n "'Q. 

Thus by Lemma 1 we know that since Sj cannot be in P n ",Q for all j ~ i then there must 

exist some k ~ i such that Sk E Q and for all i ::; j < k, Sj E P n ",Q thus the lemma holds. 

Case 2: a is infinite. By Lemma 1 we know that if it is not the case that Sj E P n ",Q for 

all j ~ i then the lemma holds. The fairness condition states that if a is an infinite execution, 

then either actions from C appear infinitely often in a, or states from which no action of C is 

enabled appear infinitely often in a. If the former is the case, then we know that an action from 

C must be chosen after a finite number of steps if the states of a continue to be in P n '" Q. Let 

us consider the first such action 1rm E C, (m ~ i) in a. We know that Sm-l E P n ",Q by the 

definition of 1r m, so by the definition of ensures Sm must satisfy Q and thus the lemma holds. 

If the other fairness condition holds, then states from which no action of C is enabled appear 

infinitely often in a. If this is the case, then there must be some state Sm m > i such that no 

11 



action of C is enabled which means that Sm is not in P n ("VQ, and so by Lemma 1 the lemma 

holds. • 

A satisfies P local-ensures Q iff A satisfies P local-unless Q and there exists a class C E 

part(A) such that V'Ir E C, A satisfies {P n ("VQ}'Ir{Q}. 

Lemma 5 If A satisfies P local-ensures Q, then in any fair ezecution a = SO'lrI SI'lr2 ... of 

A, if Si E P then either (aJ there is an index k ~ i such that Sk E Q and for all j, (i ::; 

j < k), Sj E P n ("VQ or (bJ there is an index k > i such that 'Irk f/. local(A) and for all 

j, (i ::; j < k), Sj E P n ("VQ. 

Proof: If Si is also in Q then i = k and the lemma is true, otherwise: 

Case 1: a is finite. The fairness condition states that if a is a finite execution, then no 

action of C is enabled from the final state of a. Therefore a may not end in a state in P n ("VQ. 

Thus by Lemma 2 we know that since Sj cannot be in P n ("VQ for all j ~ i then there must 

exist either some k ~ i such that Sk E Q and for all i ::; j < k, Sj E P n ("VQ or some k > i such 

that 'Irk f/. local(A) and for all i ::; j < k, Sj E P n ("VQ and thus the lemma holds. 

Case 2: a is infinite. By Lemma 2 we know that if it is not the case that Sj E P n ("VQ for 

all j ~ i then the lennna holds. The fairness condition states that if a is an infinite execution, 

then either actions fronl C appear infinitely often in a, or states from which no action of C is 

enabled appear infinitely often in a. If the former is the case, then we know that an action from 

C must be chosen after a finite number of steps if the states of a continue to be in P n ("VQ. Let 

us consider the first such action 'lrm E C(m ~ i) in a. We know that Sm-I E P n ("VQ by the 

definition of 'lrm' so by the definition of ensures, Sm must satisfy Q and thus the lemma holds. 

If the other fairness condition holds, then states from which no action of C is enabled appear 

infinitely often in a. If this is the case, then there must be some state Sm m > i such that no 

action of C is enabled which means that Sm is not in P n ("VQ, and so the lemma holds. • 

Lemma 6 If A satisfies P ensures Q then A satisfies P local-ensures Q. 

2.4 Leads To 

A satisfies P 1--+ Q (pronounced P leads to Q) iff there exists a sequence PI," ,Pk, (k ~ 2) of 

sets where PI = P, Pk = Q, and A satisfies Pi ensures Pi+1 for all 1 ::; i ::; k - 1. 

12 



Lemma 7 If A satisfies P H Q then in a fair ezecution a = S07rl SI7r2 ... of A, if Si E P then 

there ezists an m ;::: i, such that Sm E Q. 

Proof: From the Lemma 4 we can say that in a fair execution of A, if P ensures Q, then 

the lemma holds. Otherwise, if ((P ensures P2) /\ (P2 ensures P3) /\ ... /\ (Pk-l ensures Q)), 

then by the same lemma we know that if Si E P = PI then there exists a j2 ;::: i such that 

sh E P2 =} 3j3 ;::: j2 such that sh E P3 =} ••• =} 3jk ;::: jk-l such that sile E Pk = Q, and the 

lemma holds. • 
l A satisfies P H Q (pronounced P local leads to Q) iff there exists a sequence PI,··· Pk, 

(k ;::: 2) of predicates where PI = P, Pk = Q, and A satisfies Pi local-ensures Pi+l for all 

l::;i::;k-l. 

Lemma 8 If A satisfies P ~ Q then in a fair ezecution a = S07rlSI7r2 ••• of A, if Si E P then 

there ezists an m ;::: i, such that Sm E Q or there ezists an m > i such that 7rm rt local(A). 

Proof: Analogous to proof of Lemma 7. • 
Lemma 9 If A satisfies P H Q then A satisfies P ~ Q. 

Let us define further a specific path-defined leads to. In other words, instead of only 

specifying that there exists a sequence of PI, . .. Pk (k ;::: 1) of predicates such that A satisfies 

Pi ensures Pi+l for all 1 ::; i ::; k - 1, the intermediate predicates are listed. Therefore if it is 

known that A satisfies P ensures Q, Q ensures R, and R ensures S then we can write P S! S 

(pronounced P leads to S through QR). This is a useful property to talk about when examining 

the properties preserved in composition. 

2.5 Fixed Point 

A fized point of an I/O Automaton is a state from which any action taken will leave the state 

unchanged. Note that fixed point predicates are not UNITY properties. 

A fized point of an I/O Automaton A is a state s such that for all steps (s, 7r, SI), 8=8'. 

A local fized point of an I/O Automaton A is a state s such that for all steps (s, 7r, s'), s=s' 

if 7r E local(A). 

13 



LeIDID8 10 If A has a fixed point s, then in a fair execution Q = S07rlSl7r2 ••• of A, if Si = s 

then s j = s for all j ~ i. 

Proof: We will prove Sj = S by induction on j. Basis: j=i: by definition of Si, Sj = Si = s. 

Induction Hypothesis : by the definition of fixed point, for any step (sj, 7rj+b Sj+l) E 

steps(A), Sj = S ::::? Sj+l = Sj = s. • 
LeIDID8 11 If A has a local fixed point s, then in a fair execution Q = S07rl Sl7r2 • •• of A, if 

Si = S then either Sj = S for all j ~ i or there exists a k > i such that 7rk f/. local(A) and Sj = S 

for all k > j ~ i. 

Proof: Analogous to proof of previous lemma • 
LeIDID8 12 If S is a fixed point of A then it is also a local fixed point of A. 

The following properties are useful when discussing some compositions of I/O Automata 

with fixed points. 

A variable set fixed point of a set of variables, VFP in I/O Automaton A is a set of states in 

states(A) such that for all steps (s,7r,s') E steps(A), s(v) = s'{v) for all v E VFP. 

A variable set local fixed point of a set of variables, VFP in I/O Automaton A is a set of 

states in states(A) such that for all steps (s,7r,s') E steps(A) where 7r E local(A), s(v) = s'(v) 

for all v E VFP. 

2.6 Detects 

A satisfies P detects Q iff P ~ Q and Q I-t P. 

A satisfies P local-detects Q iff P ~ Q and Q ~ P. 

LeIDID8 13 If A satisfies P detects Q then A satisfies P local-detects Q. 

2.7 Until 

A satisfies P until Q iff P unless Q and P I-t Q. 

A satisfies P local-until Q iff P local-unless Q and P ~ Q. 

LeIDID8 14 If A satisfies P until Q and then A satisfies P local-until Q. 

14 



2.8 Stable Property 

Define P to be stable in A if A satisfies P unless false. 

Lemma 15 In a fair execution Q = S07rOSl7rl ••• of A where P is stable, if Si E P then Sj E P, 

for all j 2:: i. 

Proof: By Lemma 1 if Si E P then Sj E P for all j 2:: i or there exists some k 2:: i such that 

Sk satisfies false. Since we know no state satisfies false, then we know that the former holds 

and the lemma is true. • 
Define P to be locally stable in A if A satisfies P local-unless false. 

Lemma 16 In a fair execution Q = S07rOSl7rl'" of A where P is locally stable, if Si E P 

then either Sj E P, for all j 2:: i or there exists k > i where Sj E P for all i :s j < k and 

7rk-l rf. local(A). 

Proof: By Lemma 2 if Si E P then either Sj E P for all j 2:: i or there exists some k 2:: i 

such that Sk satisfies false or 7rk-l rt local(A). Since we know no state satisfies false, then we 

know that either Sj E P for all j 2:: i or there exists some k 2:: i such that 7rk-l rf. local(A) and 

the lemma is true. • 

Lemma 17 If P is stable in A then P is also locally-stable in A. 

2.9 Invariant 

P is invariant in A iff start( A) ~ P and P is stable. 

Lemma 18 If P is invariant in A then in any execution Q = S07rlSl7r2 ••• of A, Si E P for all 

Proof: In Q, we know that Vso E start(A), So E P because start(A) ~ P. We also know by 

Lemma 15 that if P is stable and Si E P then Sj E P Vj 2:: i and so the lemma holds. • 

Note that the converse of this lemma is not true. This is because the stability of P is defined 

by P unless false, which requires that V(s, 7r, s') E steps(A), S E P => s' E P. The following 

15 



example illustrates the problem. In all reachable states of this automaton, x > 0, however it is 

not an invariant of the automaton. 

states(A) = {(x,allow- decrement): x E N,allow- decrement E {true, false}} 

start(A) = (2,true) 

acts( A) = out( A) = {7r deer, 7riner} 

steps(A) = {{((X,trUe),7rdeer,(x',false)): X, = x -I} 

U{((x, allow - decrement), 7rinen (x', true)) : x, = x + I}} 

part( A) = {{ 7rinen 7r deer} } 

The key here is that 7r deer is only enabled when allow - decrement is true which is only the 

case after at least one increment of x (Le. one execution of 7riner), therefore it is easy to see 

that x is never less than one in any reachable state of A, however, x > 0 is not an invariant 

because x > 0 is not stable since there is a step in steps(A), namely ((1, true), 7rdeer, (0, false)) 

that makes a transition from those states where x > 0 to those states where x :::; o. 
P is local invariant in A iff start( A) ~ P and P is locally stable. 

Lenllna 19 If P is local invariant in A then in any execution a = S07rlSl7r2." of A, either 

Si E P for all i or there exists a k > 0 such that 7rk ~ local(A) and Sj E P for all 0 :::; j < k. 

Proof: In a, we know that Vso E start(A), So E P because start(A) ~ P. We also know 

by the previous lemma that if P is locally stable and Si E P then either Sj E P for all j ~ i or 

there exists a k > i such that 7rk ~ local(A) in which case Sj E P for all i :::; j < k and so the 

lemma holds. • 
Lem.m.a 20 If P is invariant in A then P is also locally-invariant in A. 

A state S' is reachable from a state s (denoted by s ~ Sl) in A iff there exists a finite number 

of (or possibly zero) steps in steps( A) that can be taken from state s to state S'. 

A state s' is locally reachable from a state s (denoted by s ~ Sl) in A iff there exists a finite 

set of local steps in steps( A) that can be taken from state s to state S'. 

Lem.m.a 21 If a state S' is locally reachable from a state s in A then s' is also reachable from 

s in A. 

16 



Recall the discussion about the converse of Lemma 18. It is not true that if for all states of 

any execution of A some property holds that this property is an invariant of A. We would like 

to define a property for which this would be true as well as its converse. We call this property 

virtually invariant. 

P is virtually invariant in A iff for all states s E start( A) if s rv s' then s' E P. 

Lemma 22 If P is invariant then it is virtually invariant. 

Proof: The first clause of the definition of virtually invariant is the same as that of the 

invariant definition. By the definition of stable, we know for all steps (s, 7r, s') in steps( A), if 

s E P then s' E P. By the definition of s rv s', if (s, 71", s') is in steps( A) then s rv s' and by 

the definition of virtually invariant s' must be in P thus the lemma holds. • 
Note that the converse of Lemma 22 is not true. 

Lemma 23 P is virtually invariant in A iff in any ezecution a = S07l"0S171"1 ••• of A, Si E P for 

all i. 

Proof: If P is virtually invariant in A then in any execution a = S07l"0S171"1 ••• of A, Si E P 

for all i follows from Lemmas 18 and 22. 

If in all executions a = S07l"0S171"1'" of A, Si E P for all i, then P is virtually invariant 

follows from the following argument. If in all executions a, So E P then start(A) ~ P. If in all 

executions Si E P for all i then for all s' such that s rv s' and s E start(A), s' E P, thus P is 

virtually invariant. • 

P is virtually locally invariant in A iff start( A) ~ P and for all states s E start( A) if s ~ s' 

then s' E P. 

Lemma 24 If P is locally invariant then it is virtually locally invariant. 

Proof: Analogous to the proof of the previous lemma. 

Note that the converse of Lemma 24 is not true. 

• 

Lemma 25 P is virtually locally invariant in A iff in any ezecution a = S07l"0S171"1'" of A, 

either Si E P for all i or there ezists a k 2: 1 such that 7I"k-1 f/. local(A) and Sj E P for all 

0:::; j < k. 

17 



Proof: Analogous to proof of Lemma 23. • 
LeDlDl8 26 If P is virtually invariant then it is virtually locally invariant. 

2.10 State Transition Concepts 

We shall now define some properties of I/O automata that are analogous to those of discrete

state discrete-transition Markov processes. We shall also extend these to discuss properties 

about sets of states rather than states and transitions from sets of states rather than from one 

state, specifically, we shall relate these to UNITY properties. 

Here we shall classify properties as sets of states and consider the concept of limiting-state 

probabilities with respect to progress. 

A transient state, s, is a state which in any execution a = So 71"1 S171"2 ••• of A, if Si = sand 

3j > i such that Sj f- S then Vk ~ j, Sk f- s. In other words if s was the state at some point in 

the execution, but did not continue to be, then s will not be the state at any later state of the 

execution. It is clear that there either must be some distinction between the states Sh where 

h < i and Sj j > i where Sk = S for all i ~ k < j, if such states exist, otherwise, there would 

be the possibility of repeating the step in steps( A) that lead to state s. We shall refer to this 

distinction as the state S has not held and s has held respectively. 

A recurrent state, s, is one which in any execution a == So 71"1 S171"2 ••• of A, if Si = sand 

3j > i such that Sj f- S then there also exists a k > j such that Sk == s. We may restate this as 

Sf ~ S for all Sf. 

A state chain, S1, S2, S3, ••• , Sm is a chain of states such that for all (s, 71", Sf) E steps(A), 

S = Si ::} Sf = Si+ 1 

We now define analogous traits for properties. 

A transient property, P, is a property which in any execution a == S07l"0S17rl ••• of A, if 

Si E P and 3j > i such that Sj (j. P then Vk ~ j, Sk (j. P. In other words if P held at some 

point in the execution, but did not continue to hold, then P will never hold at any later state 

of the execution. It is clear that there either must be some distinction between the states Sh 

where h < i and Sj j > i where Sk E P for all i ~ k < j, if such states exist, otherwise, there 

would be the possibility of repeating the step in steps(A) that lead to property P. We shall 

18 



refer to this distinction as the property P has not held and P has held respectively. Thus, we 

may put this definition in UNITY terms by stating that P has held n ",P is stable. 

A recurrent property, P, is one which in any execution Q = S07rOSl7rl ••• of A, if Si E P and 

3j > i such that Sj (j. P then there also exists a k > j such that Sk E P. This definition may 

be put in UNITY terms by stating '" P ~ P. 

A property chain, Pl , P2 , P3, ... , Pm is a chain of distinct properties such that Pi ensures 
• Pi+l Pi+2 •.• Pj-l • • 

Pi+I, or In other words Pi f--+ Pj, for alII ~ t < J ~ n. 

Some interesting properties of an 110 automaton can be described in the above terms. I 

state the following lemmas as examples. 

Lemma 27 If there exists a property chain of A, Pl, P2 , P3, ... , Pn , such that Pn unless Pl then 

PI U P2 U ... U Pn is stable. 

Lemma 28 If there exists a property chain of A, PI, P2 , P3, ... , Pn , such that Pn ensures PI 

then Pi is a recurrent property for all 1 ~ i ~ n. 

Lemma 29 If there exists a property chain of A, PI, P2 , P3, ... , Pn, such that Pn ~ Q where 

Q is stable and Q ~ '" Pm then Pi is transient for all 1 ~ i ~ m. 

We shall refer to some of these terms in Chapter 5. 

19 



Chapter 3 

UNITY Programs and UNITY 

Automata 

In this chapter we present the definition of a UNITY program as defined in [eM] and the 

the definition of a UNITY automaton, a special kind of 110 automaton which has the same 

characteristics and properties as a UNITY program. A mapping from UNITY programs to 

UNITY automata is also defined and the effects discussed. Later in this chapter UNITY 

program composition operators are described and corresponding UNITY automata composition 

operators are defined. 

3.1 UNITY Program 

A UNITY Program consists of 

• a set V of variables, declared in the declare section of P, 

• for each v E V, a set Xv of values for v, determined by the domain of the type of v, 

declared in the declare section of P, 

• for each v E V, a subset Iv of Xv of initial values for v, indicated in the initially-section 

of P (those variables not constrained in the initially section have Iv = Xv). 

• a finite set W of assignments in the assign-section of P; each assignment, w, modifies a 

nonempty subset of V, Vw; each assignnlent, w, sets each variable in Vw to a function of 

20 



the values of the variables in V, so each w in W may be represented as a pair (Vw, {fV : 

v E Vw }) where /v is a function from TIuEVXu to Xv. 

In the case of conditional assignments, there is a condition C. The conditional assignment 

may still be represented as a pair (Vw, {fV : v E Vw }). In this case, /v is a function from 

TIuEVXu to Xv such that for all states s ¢ c, /V(s) = s. 

UNITY programs also have always section assignments, each of which define a set of variables 

as functions of other variables in the program. The variables defined in this section are called 

transparent variables. 

3.2 UNITY Automata 

A Unity automaton is an I/O automaton A satisfying the following conditions. 

1. There exists a set vars(A) of variables, where each v in vars(A) has an associated set Xv 

of values and an associated set Iv of initial values, where Iv is a subset of Xv. 

2. All actions of A are output actions. 

3. The set states(A) = TIvEvar6(A)Xv . 

4. The set start(A) = TIvEvar,,(A)Iv . 

5. For all states s and all actions 7r there is a unique state s' having (s, 7r, s') in steps( A). 

6. part(A) = {{7r}: 7r E acts(A)} 

This UNITY automaton is a restricted I/O Automaton with only output actions, state

deterministic actions, cartesian product states, and singleton partition classes. 

3.3 Mapping from UNITY Programs to Unity Automata 

At this point we define a mapping from a UNITY program, P = (Vp, Wp), to a Unity Automaton, 

A = (vars(A), states(A), start(A), sig(A), steps(A), part(A)) . 

• vars(A) = Vp 

21 



• states(A) = TIvEvar6(A)Xv, 

• start(A) = TIvEvar6(A)Iv , 

• sig(A) = (in(A), out(A), int(A)) 

where 

- out(A) = {7rw : W E W} and 

- int(A) = in(A) = 0, 

• steps(A) = {(s,7rw ,s'): s'(v) = s(v) if v ~ Vw , otherwise s'(v) = fv(s) for v E Vw }, 

• part(A) = {{ 7r} : 7r E acts(A)} 

Theorem 30 The mapping as defined above of a UNITY program P yields a Unity Automaton. 

Proof: The yielded Automaton satisfies all the Unity Automaton conditions stated in the 

previous section. • 

Note that for all steps s E steps(A) all statements in the always-section of P are represented 

as implicit variable definitions for all states, although the actual variables defined in the always 

section do not have components in the state vector. For example if x is always twice y then 

there need not be both x and y in the state vector because for each x there can only be one 

value of y. These variables are referred to in [eM] as transparent variables and will not be 

treated explicitly in the UNITY automata. 

3.4 The Effect of Automaton Mapping on UNITY Properties 

All of the UNITY properties for UNITY programs are directly related to those of UNITY 

automata, furthermore if a UNITY property holds for a UNITY program then it must hold for 

the UNITY Automaton that it maps to. This is easy to see since a predicate in UNITY is a 

predicate on the values of the variables of the program which is directly analogous to the state 

of the UNITY automaton. The execution of an assignment statement in a UNITY program 

is directly analogous to the execution of a step in the corresponding UNITY automaton, and 

because of the direct mapping from a UNITY program assignment to a UNITY automaton 

22 



step, the subsequent change of state is exactly the same. All of the definitions from Chapter 2 

are exactly analogous to their UNITY counterparts in the same way and thus those properties 

that hold for a UNITY program hold for its corresponding UNITY automaton. 

Theorem 31 If a UNITY program P satisfies p unless q then the UNITY Automaton A 

Automaton(P) satisfies P unless Q where P is the set of states in states(A) that satisfy predicate 

p and Q is the set of states in states( A) that satisfy predicate q. 

Theorem 32 If a UNITY program P satisfies p ensures q then the UNITY A utomaton A 

= Automaton(P) satisfies P ensures Q where P is the set of states in states(A) that satisfy 

predicate p and Q is the set of states in states( A) that satisfy predicate q. 

Theorem 33 If a UNITY program P satisfies p f-+ q then the UNITY A utomaton A = 

Automaton(P) satisfies P f-+ Q where P is the set of states in states(A) that satisfy predi

cate p and Q is the set of states in states( A) that satisfy predicate q. 

Theorem 34 If a UNITY program P has a Fixed Point, sp, then the UNITY Automaton A 

= Automaton(P) has a Fixed Point, s E states(A) which is its analogous state in A. 

Theorem 35 If a UNITY program P satisfies p is stable then the UNITY Automaton A 

Automaton(P) satisfies P is stable where P is the set of states in states(A) that satisfy predicate 

p. 

Theorem 36 If a UNITY program P satisfies p is invariant then the UNITY Automaton A 

= Automaton(P) satisfies P is invariant where P is the set of states in states(A) that satisfy 

predicate p. 

Theorems 31 through 36 are true by the definition of the mapping. 

3.5 UNITY Composition 

UNITY has two forms of composition: composition by Union (denoted by the operator ~), and 

composition by Superposition (which we shall denote by t> with the lower level program on the 

right). The composition by Union is the more intuitive composition which shall be defined first. 

23 



3.5.1 Union 

We shall investigate the [eM] definition of Union of two UNITY Programs Pl and P2 • It is 

the same as appending their codes together. Union is a commutative, associative operator on 

programs. 

In order for two UNITY programs Pl and P2 to be compatible they must satisfy the following 

requirements: 

Vv E Vl n V2 , XVI = x v2 , 

Vv E Vl n V2 , IVI = I v2 , 

The UNITY definition of the union of UNITY programs Pl and P2 yields a UNITY program, 

P = (V, W), where: 

V = Vl U V2 and 

W = W l U W 2 

We shall now define such a Union operator for UNITY Automata. 

UNITY Automata Al and A2 must satisfy the following compatibility requirements to be 

combined using the Union operator: 

1. Xv must be the same in Al and A2 for all variables v in vars(At} n vars(A2), 

2. Iv must be the same in Al and A2 for all variables v in vars(At} n vars(A2 ), and 

3. acts( A l ) n acts( A 2 ) = 0 

The Union of compatible UNITY Automata Al = (vars(A l ), states(A l ), start(A l ), sig(A l ), 

steps( At}, part( At}) and A2 = (vars( A 2), states( A 2 ), start( A 2), sig( A 2), steps( A 2), and part( A 2)) 

yields A = (vars(A), states(A), start(A), sig(A), steps(A), and part(A)), where: 

• vars(A) = vars(Al ) U vars(A2), 

• out(A) = out(At} U out(A2 ) 

• in(A) = int(A) = 0 

• states(A) = IlvEvars(A)Xv 

• start(A) = IlvEvars(A)Iv 

24 



• steps(A) = {(s,7r,s'): if7r E acts(Ad, (si,7r,SD E steps(Ad, and s(v) = Si(V) for all 

v E vars(Ad then s'(v) = sHv) for all v E vars(Ad and s'(v) = s(v) for all v fj. vars(Ad} 

• part(A) = {{7r}: 7r E acts(A)} 

The Union of two UNITY Programs as described earlier would yield a UNITY Program 

Pcomp' The mapping of this Pcomp would yield a UNITY Automaton, Acomp, defined as: 

• vars ( Acomp) = Vcomp 

• out(Acomp) = {7rw : w E Wcomp} 

= out(At) U out(A2) 

• steps(A) = {(s,7rw ,s'): s'(v) = s(v) if v fj. Vw , 

s'( v) = fV( s) if v E Vw , for all W E Wcomp }, 

• part(A) = {{ 7r} : 7r E acts(A)} 

TheoreIn 37 For any two UNITY programs PI and P21 map(PI ~ P2) = map(PI) ~ map(P2). 

Proof: We have just shown the result of map(PI ~ P2 ). In section 3.3 we show the result 

of a mapping from a UNITY program P to a UNITY automaton A. Here we apply the Union 

operator to the mapping of PI, called AI, and the mapping of P2 , called A 2 • The resulting 

automaton, Aunion we will show is the same as Acomp: 

• states(Aunion) = TIvEVcompXv = states(Acomp), 

• start(Aunion) = TIvEvcomplv = start(Acomp), 

• steps(Aunion) = ((s,7rw ,s'): s'(v) = s(v) if v fj. Vw , 

s'(v) = fV(s) if v E Vw , for all w E WP1 U WP2 } = steps(Acomp), 

25 



• part(Aunion) = {7r : 7r Eacts(Aunion)} = part(Acomp), 

which implies the theorem. • 
The Union Theorem in [eM] (page 155) states the following: 

1. p unless q in PI ~ P2 = p unless q in Pl 1\ P unless q in P2 • 

2. p ensures q in PI ~ P2 = [p ensures q in PI 1\ P unless q in P2 ] V [p ensures q in P2 1\ P 

unless q in PI 

3. (Fixed Point of Pl ~ P2 ) = (Fixed Point of Pl ) 1\ (Fixed Point of P2 ) 

In addition, the following corollaries are stated: 

1. p is stable in Pl ~ P2 = (p is stable in PI) 1\ (p is stable in P2 

2. P unless q in Pl and p is stable in P2 =* p unless q in Pl ~ P2 

3. p is invariant in PI , P is stable in P2 =* P is invariant in PI ~ P2 

4. p ensures q in Pl , P is stable in P2 =* p ensures q in PI ~ P2 

5. if any of the following properties holds in PI, where p is a local predicate of PI, then it 

also holds in Pl ~ P2 , for any P2 : p unless q, p ensures q, p is invariant. 

All of these properties are also true for UNITY Automata: 

1. P unless Q in Al ~ A2 = P unless Q in Al 1\ P unless Q in A 2. 

2. P ensures Q in Al ~ A2 = [P ensures Q in Al 1\ P unless Q in A 2] V [P ensures Q in A2 

1\ P unless Q in Al 

3. (Fixed Point of Al ~ A 2) = (Fixed Point of Ad 1\ (Fixed Point of A 2) 

4. P is stable in Al ~ A2 = (P is stable in A l ) 1\ (P is stable in A2 

5. P unless Q in Al and P is stable in A2 =* P unless Q in Al ~ A2 

6. P is invariant in F , P is stable in A2 =* P is invariant in Al ~ A2 

26 



7. P ensures Q in F, P is stable in A2 =} P ensures Q in Al ~ A2 

8. if any of the following properties holds in AI, where P is a local predicate of AI, then it 

also holds in Al ~ A2, for any A2: P unless q, P ensures q, p is invariant. 

Note that the following is also true for UNITY Automata as well as UNITY programs: 

2. PI P2~~-1 Pk in Al A PiunlessPi+I (for all 1 :::; i :::; k - 1) in A2 =} P P2~~-1 Q in Al ~ 

A2 

All of the above are stated and proven in Chapter 4 for the more general 110 Automata 

case and so are not proven here. 

3.5.2 Superposition 

In [CM] a structuring mechanism called superposition is introduced to structure a program as 

a set of "layers". Each layer implements a set of concerns. A higher layer can access lower 

layer but lower layers do not access higher layers. For example, an application progranl can be 

viewed as a higher layer that calls on the operating system routines. However, the operating 

system, the lower layer in this case, does not call on an application program. The superposition 

composition operator in UNITY allows a higher layer to access the variables of lower layers 

while a lower layer cannot access those variables of the higher layers. 

Given is an underlying program, variables of which are underlying variables, we want to 

transform the underlying program such that all of its properties are preserved and such that 

the transformed program have some additional specified properties. New variables called su

perposed variables are introduced and the underlying program is transformed leaving the as

signments to underlying variables unaffected. This transformation is done by a combination 

of unioning and augmenting (combining) the statements of these two components. The Super

position composition operator does not restrict which statements are unioned and which are 

augmented thus Superposition, unlike Union, does not uniquely determine a resultant program, 

but rather a set of possible resultant programs. Superposition is interesting because there are 

27 



properties shared by all Superpositions of an underlying program and a set of added higher 

level statements, thus eliminating the need to completely define the resultant transformation. 

A superposition in UNITY composes a UNITY program, PL = {VL' WL}, with some "higher 

level" assignment-statements, W H, whose assignments may use but not modify those of the 

lower level program and which may introduce new variables, V H, whose initial values are known. 

The transformation must follow the following two rules: 

1. Augmentation Rule: A statement s E WL of the underlying program may be transfonned 

into a statement s II r, where r E W H, 

2. Restricted Union Rule: A statement r E WH may be added to the underlying program, 

PL· 

Thus the result of a superposition of PL is a UNITY program Paup = {Yaup, W sup } where 

Yaup = VL U VH and Wsup = {w : W E WL V W E WH V W = WL II WH where WL E WL and 

WH E WH} 

We shall now introduce an analogous composition operator for 110 automata. We define a 

new data structure, higher-Level-characteristic, to describe analogous higher level actions and 

variables in an automaton-like form. 

A higher-level-characteristic is made up of a set of higher-level variables, a set of lower level 

variables disjoint from the higher-level variables, an action signature, a set of states, a set of 

steps, and a partition on its local actions. Here we define a higher-level-characteristic, H 

(Vh' Vi, Sig(H), Start(H), States(H), Steps(H), Part(H)) such that: 

• states(H) = TIvEVHXv 

• start(H) = TIVEVH {Xv if v E l'l, Iv if v E Vh }, 

• steps(H) = ((s,7rw ,s'): s'(v) = /(s) Vv E Vh, s'(v) = s(v) '\Iv E Vi } 

We define VH to be Vh U Vi. 

To superpose H on a lower level UNITY automaton AL the following compatibility require

ments must be satisfied: 

28 



• Acts(H) n Acts(AL) = 0, 

• Acts(H) = Out(H), 

• for every state, s E states(H) there is exactly one step (s, 7r, s') for all7r E Acts(H), and 

• Part( H) = {{ n-} : 7r E acts( H)}. 

These requirements ensure that the steps in H do not change any of the variables of AL , that 

AL is not aware of the higher level variables of H, that Hand AL do not share any actions, 

that the actions of H are all output actions, that H is state-deterministic, and that H have 

singleton partition classes. The latter three requirements are to ensure that the result of the 

Superposition be a UNITY automaton. 

A superposition of a higher-level-characteristic, H, on a UNITY Automaton AL can be 

described by applying the following two rules: 

1. Augmentation Rule: An action 7rH in acts(H) with steps (SH, 7rH, sk) E steps(H) may be 

augmented on to an action 7rL in acts(AL) with steps (SL, 7rL, s£) E steps(AL) resulting 

in an action 7r6UP with steps (s,7r,wp,s'),E steps(A6Up), where s'(v) = sk(v),Vv E Vh for 

s(v) = SH(V) and s'(v) = s£(v)Vv E VL for s(v) = SL(V), 

2. Restricted Union Rule: An action 7r: 7r E acts(H)Uacts(AL) may be added to acts(A6UP) 

and the following steps added tosteps(A6UP): if7r E acts(H):{(s,7r,s'): s(v) = sH(v)ands'(v) = 
sn-(v) for all v E VH and s(v) = s'(v) for all v f/. VH for all steps (SH,7r,Sn-) E steps(H)}, 

otherwise if 7r E acts(AL): ((s,7r,s') : s(v) = sL(v)ands'(v) = s£(v) for all v E VL and 

s(v) = s'(v) for all v f/. VL for all steps (SL, 7r, s£) E steps(AL)}' 

The augmentation rule can be extended to enable the augmentation of more than one 

action of acts(H) on to one action of acts(AL) or the augmentation of one action of acts(H) 

onto more than one action of acts(AL), however, this does not add any interesting properties 

since the augmentation of more than one act of either component H or AL would be equivalent 

to replacing those acts in that component with one augmented act. 

29 



It is not determined which acts of H will be augmented and which will be unioned. Therefore, 

the acts of H can be split nondeterministically into two groups: those augmented on to the acts 

of AL and those unioned with the acts of AL' We shall refer to these two groups as actsA(H) 

and actsU(H) respectively. The acts of AL can be similarly split. 

Let us define a mapping, MA, from the set actsA(H) to actsA(AL) which maps input, 

internal, and output actions of H to input, internal and output actions of AL respectively. 

When actsA(H) are augmented onto actsA(AL), the result is a set of acts, actsA(A.mp). 

The result of a superposition of H on AL is an automaton, A.mp , with the following compo

nents: 

• steps(A3Up) = {(s, 7r3UP ' s') : 7r3UP E acts(A3Up), where (s, 7r, s') is as specified by either the 

Augmentation Rule or the Restricted Union Rule, depending on the definition of 7r3Up } , 

By the Superposition theorem in [eM] (page 165) every property of the underlying program 

is a property of the transformed program. This also holds for those properties of the lower-level 

UNITY automata in the superposition of a UNITY automaton with a higher-level-characteristic. 

This shall be stated and proven in the more general 110 Automata case. 

30 



Chapter 4 

Composition 

In this chapter we will examine four kinds of composition of I/O Automata. In the first two 

sections we extend the UNITY composition operators and apply them to lnore general I/O Au

tomata. In the third section we will review the usual I/O Automata definition of Composition. 

Finally, in the fourth section we will define a form of composition that encompasses the three 

previous forms of composition. 

4.1 I/O Automata Union 

In this section we generalize the Union composition operator for UNITY automata presented 

in subsection 3.5.1 to general I/O automata. Recall that a UNITY automaton is a restricted 

I/O automaton with only output actions, state-deterministic actions, cartesian product states, 

and singleton partition classes. The main differences between the Union composition operator 

presented in this section and that presented in for UNITY automata lie in the treatment of I/O 

autonlata that do not meet these restrictions and are therefore not UNITY automata. 

I/O Automata Al and A2 must satisfy the following compatibility requirements to be com

bined using the Union operator: 

1. Xv must be the same in Al and A2 for all variables v in Vl n V2 , 

2. Iv must be the same in Al and A2 for all variables v in Vl n V2 , 

3. acts( Ad n acts( A2 ) = 0 

31 



These compatibility requirements are the same as those for UNITY automata. 

The Union of compatible I/O Automata Al = (vars(A1), states(A1 ), start(At}, sig(At}, 

steps(At}, part(At}) and A2 = (vars(A2), states(A2), start(A2), sig(A2), steps(A2), and part(A2)) 

yields A = (vars(A), states(A), start(A), sig(A), steps(A), and part(A)): 

• vars(A) = vars(At} U vars(A2 ), 

• states(A) = nvEVXV 

• start(A) = nvEvlv 

• out(A) = out(At} U out(A2) 

• in(A) = in(Al) U in(A2) 

• int(A) = int(Al) U int(A2) 

• steps(A) = {(s,7r,s'): there exists an i and a step (Si,7r,Si) E steps(Ad such that s(v) = 
Si(V) for all v E vars(Ad, s'(v) = sHv) for all v E vars(Ad and s'(v) = s(v) for all 

v rt. vars(Ad} 

In subsection 3.5.1 several theorems and lemmas were stated regarding the union of two 

UNITY automata. All of these theorems hold for the general case also. They shall be stated 

and proven for SAJ-Composition in section 4.4, a generalization of union and so are not proven 

here. 

4.2 I/O Automata Superposition 

Recall that Superposition for UNITY automata involves a combination of unioning and aug

menting (combining) the actions (and their steps) of a lower-level UNITY automata and a 

higher-level-characteristic. The Superposition composition operator does not restrict which ac

tions are unioned and which are augmented thus Superposition, unlike Union, does not uniquely 

determine a resultant UNITY automaton, but rather a set of possible resultant UNITY au

tomata. 

32 



In this section we generalize the Superposition composition operator for UNITY automata 

presented in subsection 3.5.2 to general 110 automata. As with the generalization of the Union 

composition operator, the main differences between the Superposition composition operator 

presented in this section and the one presented for UNITY automata lie in the treatment of 

110 automata that are not UNITY automata. 

Recall from subsection 3.5.2 that a higher-level-characteristic is made up of a set of higher

level variables, a set of lower level variables disjoint from the higher-level variables, an action 

signature, a set of states, a set of steps, and a partition of its local actions. Here we refer to a 

higher-level-characteristic, H = (Vh' Vi, Sig(H), Start(H), States(H), Steps(H), Part(H)). We 

define VH to be Vh U Vi. 

To superpose H on a lower level 110 automaton AL the following compatibility requirements 

must be satisfied: 

• Acts(H) n Acts(AL) = 0. 

These requirements ensure that the steps in H do not change any of the variables of AL, that 

AL is not aware of the higher level variables of H, and that they share no actions. 

A superposition of a higher-level-characteristic, H, on a UNITY Automaton AL can be 

described by applying the following two rules: 

1. Augmentation Rule: An action 7rH in acts(H) with steps (SH' 7rH, siI) E steps(H) may be 

augmented on to an action 7rL in acts(AL) with steps (SL' 7rL, s£) E steps(AL) resulting 

in an action 7r6UP with steps (s,7r6up ,s'),E steps(A6Up), where s'(v) = sH(v),Vv E Vh for 

s(v) = SH(V) and s'(v) = s£(v)Vv E VL for s(v) = SL(V), provided that 7rH and 7rL are 

compatible, 

2. Restricted Union Rule: An action 7r : 7r E acts(H)Uacts(AL) may be added to acts(A6Up) 

and the following steps added tosteps(A6Up): if7r E acts(H):{(s,7r,s'): s(v) = sH(v)ands'(v) = 
siI(v) for all v E VH and s(v) = s'(v) for all v (j. VH for all steps (SH' 7r, sH) E steps(H)}, 

33 



otherwise if 11" E acts(AL): {( s, 11", s') : s( v) = SL( v )ands'( v) = s1--( v) for all v E VL and 

s(v) = s'(v) for all v rt. VL for all steps (SL' 11", s1--) E steps(AL)}. 

Here the augmentation rule differs from that for UNITY automata in that there is a com

patibility requirement. Compatibility here is defined as being enabled for all of the same 

states. Formally, 1I"H and 1I"L are compatible if for any step (SL' 1I"L, s1--) E steps(AL) there 

is a step (SH,1I"H,sH) E steps(H) where SH(V) = SL(V) for all v E Vi, and for any step 

(SH' 1I"H, sH) E steps(AH) there is a step (SL' 1I"L, s1--) E steps(L) where SH( v) = SL( v) for all 

v E Vi. 

The augmentation rule can be extended to enable the augmentation of more than one action 

of acts(H) on to one action of acts(AL) or the augmentation of one action of acts(H) onto more 

than one action of acts(AL), however, this does not add any interesting properties since the 

augmentation of more than one action of either component, H or AL, would be equivalent to 

replacing those actions in that component with one augmented act. 

It is not determined which acts of H will be augmented and which will be unioned. Therefore, 

the acts of H can be split nondeterministically into two groups: those augmented on to the acts 

of AL and those unioned with the acts of AL. We shall refer to these two groups as actsA(H) 

and actsU (H) respectively. The acts of AL can be similarly split. 

Let us define a mapping, MA, from the set actsA(H) to actsA(AL). When actsA(H) are 

augmented onto actsA(AL), the result is a set of acts, actsA(A6UP). We will refer to the act 

resulting from an augmentation of an act 1I"H E actsA(H) onto an act 1I"L E actsA(AL) as 

aug( 1I"L) or aug( 1I"H). 

The result of a superposition of H on AL is an automaton, A sup , with the following compo

nents: 

34 



• steps( Asup) = {( s, 7r sup, s') : 7r sup E acts( Asup), where (s, 7r, s') is as specified by either the 

Augmentation Rule or the Restricted Union Rule, depending on the definition of 7rsup } , 

• part(Asup) = {aug(C): C E pal't(AL) U part(H)} 

Here the augmentation of a class C, aug( C), denotes a class equal to C with those actions 7r 

in actsA(AL) U actsA(H) replaced by aug(7r). Note that here part(Asup) is no longer a true 

partition in that there are actions that are in more than one class. This is necessary when 

combining actions, however, because actions of possibly more than one component are being 

combined. An alternative to allowing an action to be in more than one class is to combine these 

classes and thus combine the components. This is not desirable because then the actions of 

one of the original components may be ignored always according to the fairness rule since the 

actions of the combined class disjoint from the actions of the original component may always 

be selected instead and still satisfy the fairness condition. 

By the Superposition theorem in [CM] (page 165) every property of the underlying program 

is a property of the transformed program. This also holds for those properties of the lower-level 

110 automata in the superposition of a 110 automaton with a higher-level-characteristic. 

Theorem. 38 If any of the following properties (or their analogous local properties) is a prop

erty of the lower-level I/O Automaton, it is a property of the transformed I/O Automaton: 

unless, ensures, ~, detects, until, stable, invariant 

Proof: Since none of the variables of the lower-level 110 Automaton can be modified by any 

of the actions of the higher-level-characteristic by definition, there is no way that a property of 

the lower-level 110 Automaton could not be a property of the transformed 110 Automaton .• 

One notable exception to the above theorem is Fixed Point. This is due to the fact that 

Fixed Point involves a particular state in the lower-level 1/0 Automaton. There may be some 

action in the higher-level-characteristic that causes the state of one of its higher level variables 

to oscillate. If the transposed 110 Automaton contains this actions as a result of a restricted 

union, then the transposed 1/0 Automaton would not have a Fixed Point, even though with 

respect to the state of the lower-level variables, there is an effective Fixed Point. For this 

reason we defined a new kind of "Fixed Point" with respect to a subset of the 1/0 Automaton 

35 



variables, the variable set jized point. This is useful in reasoning about a set of states where 

states where certain variables have been fixed (for example, to detect a terminating condition) 

in addition to reasoning about composed automata. 

TheoreIn 39 If the lower-level I/O A utomaton has a fixed point or a local fixed point, the 

transformed I/O Automaton will have a variable set fixed point or a variable set local fixed 

point respectively in the variable set Viower-Ievel. 

Proof: Since none of the variables of the lower-level I/O Automaton can be modified by any 

of the actions of the higher-level-characteristic by definition, if the lower-level I/O Automaton 

has a jized point or local jized point, the transformed I/O Automaton will have a variable set 

jized point or variable set local jized point respectively in the variable set of the lower-level I/O 

Automaton. • 

TheoreIn 40 If any of the following properties (or their analogous local properties) is a prop

erty solely of the variables initialized by the higher-level-characteristic, it is a property of the 

transformed I/O A utomaton: unless, ensures, I---t, detects, until, stable, invariant 

Proof: Since none of the variables initialized by the higher-level-characteristic can be mod

ified by any of the actions of the lower-level I/O Automaton by definition, there is no way that 

a property of those variables in the higher-level-characteristic could not be a property of the 

transformed 110 Automaton. • 

TheoreIn 41 If the higher-level-characteristic has a fixed point or a local fixed point, the 

transformed I/O Automaton will have a variable set fixed point or a variable set local fixed 

point respectively in the variable set Vhigher-Ievel-characteri$tic' 

Proof: Since none of the variables initialized by the higher-level-characteristic can be mod

ified by any of the actions of the lower-level I/O Automaton by definition, if the higher-Ievel

characteristic has a jized point or local jized point, the transformed I/O Automaton will have a 

variable set jized point or variable set local jized point respectively in the variable set initialized 

by the higher-level-characteristic. • 

36 



4.2.1 Example: Global Snapshot 

In [CM] the problem of recording global states of a program is solved using superposition. The 

original program is treated as the lower-level program and the higher-level statements do the 

recording of the states. A similar approach may be used to find an 110 Automata that solves 

this problem. 

Here we propose a higher-level-characteristic for recording the "state" (Le. the values of the 

variables) of a lower-level I/O Automata: 

• Vh = {v.record, v.recorded: v E Vi} 

• Ih = {v.recorded = false} 

• start(H) = TIVEVh nil 

• states(H) = TIvEVH Xv 

• acts(H) = out(H) = {7rrec } 

• steps(H) = ((s,7rrec ,s') : for all v E Vi s'(v.record) 

s( v.recorded) = false} 

s( v), s'( v.recorded) true if 

This solution allows for the simultaneous recording of all the variables in the underlying 

program. However, while this solution is suitable for sequential machines or parallel synchronous 

machines, it is not suitable for distributed machines. 

We may refine our higher-level-characteristic to allow the state to be recorded a bit at a 

time. In this case we want the present record of the state to be part of a possible reachable 

state from the initial conditions of the lower level automaton. Furthermore we want it also to 

be part of a state from which the actual present state of the automaton is reachable. 

Let us consider the example of a distributed system of processors sending messages along 

channels. We may formulate a higher-level-characteristic to record the global state based on 

the solution in [CL] which uses the sending of markers along channels to detertnine when to 

record the state of a process and when and what to record for the state of the channel. 

It is assumed here that the underlying I/O Automaton A is actually distributed which is 

defined as having processors and channels and the following communication actions, comm(A) ~ 

acts(A): 

37 



1. send-message(Pi, Ci,j, msg) 

and 

2. receive-message( Cj,i, Pi, msg) 

A higher-level-characteristic, H, that follows the approach specified in [eLl can be super

posed onto such an 110 Automaton, A. One such higher-level-characteristic may be defined as 

follows: 

• Vi = {v: v E vars(A)} 

• Vh = {v.record, v.recorded, v.tracking : v E vars(A)} 

• Ih = {v.recorded = false} 

• acts(H) = in(H) U out(H) U int(H) 

• in( H) = {record - state} U comm( A) 

• out(H) = {done} 

• int(H) = 0 

• steps(H) = 
{(s, record-state, s') : s'(Pi.record) = s(pd, s'(Pi.recorded) = true, for some i, S'ci,j.tracking = 
s(ci,jllmarker) for all j, S'cj,i.tracking = empty for all j, S'cj,i.record = empty for all j, 

[enabled] if s( v.recorded) = false for all v E Vi} 

record - state indicates the beginning of the recording process. One of the processor's 

present state is recorded and its outgoing channels begin to be "tracked" with the begin

ning of the "tracking" being indicated by a marker and its incoming channels begin to be 

tracked also. 

u {(s, send-message(Pi, Ci,j, msg) E comm(A), s') : s'(ci,j.tracking) = s(ci,j.trackingllmsg) 

38 



} 

When a message is sent by a processor to another the tracking of the channel between 

them continues to be updated. 

u {( s, receive - message( Cj,i, Pi, msg), s') : s'( Cj,i.tracking) = tail( s( Cj,i.tracking)), [en

abled] if Pi.recorded = false /\ head( s( cj,i.tracking)) -:f- marker} 

When a message is received by an unrecorded processor in A the tracking of the incoming 

channel continues to be updated as long as the first element of the tracking is not a marker. 

u {( s, receive-message( Cj,i; Pi, msg), s') : s'( Ci,j.tracking) = tail( s( Ci,j.tracking)), s'( Ci,j.record) = 
s(ci,j.record)llhead(s(ci,j.tracking)), [enabled] ifpi.recorded = true /\ head(s(Cj,i.tracking)) -:f

marker} 

When a message is received by a recorded processor in A the tracking and record of 

the incoming channel continues to be updated as long as the first element of the tracking 

is not a marker. The record of the incoming channel is the sequence of messages received 

since the recording of the recorded processor. Note, however that the incoming channel 

is not recorded until a marker heads its tracking. 

u {( s, receive - message( Cj,i, Pi, msg), s') : s'( Cj,i.record) = empty, s'(Pi.record) = s(pd, 

s'( Cj,i.recorded) = true, s'(Pi.recorded) = true, Cj,i.tracking = empty, Cj,i.record 

empty, [enabled] if Pi.recorded = false /\ head( s( cj,i.tracking)) = marker} 

If the first element of the tracking of the incoming channel to an unrecorded processor is 

a marker, then the state of the unrecorded processor is recorded to be its state before the 

action and the state of the channel to it is recorded to be empty. 

U {(s,receive-message(Cj,i,pi,msg),s'): s'(ci,j.tracking) = tail(s(ci,j.tracking)),s'(ci,j.recorded) 

true, [enabled] if Pi.recorded = true /\ head( s( cj,i.tracking)) -:f- marker} 

39 



j. 

If the first element of the tracking of the incoming channel to a recorded processor is a 

marker then the record of the inconling channel has the sequence of messages received 

from the recording of the processor until the receiving of the marker and thus is complete 

at which time the incoming channel is marked as recorded. 

U {(s,done,s'): [enabled] ifv.recorded= true for allpi,ci,j E vars(A)} 

The recording process is finished (outputs "done").> when all the processors and chan

nels are recorded. 

Here Pi represents a processor i and Ci,j represents a channel from processor i to processor 

4.3 I/O Automata Composition 

This is the composition operator defined in [LT] and described briefly in the introduction. We 

shall represent this I/O Automata composition by the symbol ffi. The I/O Automata compo

sition operator may only compose strongly compatible I/O Automata, Ai with compatibility 

defined as: 

1. out(Ad n out(Aj) = 0, 

2. int(Ad n acts(Aj ) = 0, and 

3. no action is shared by infinitely many Ai 

The definition of the I/O Automata composition of compatible I/O Automata Ai (i E I of 

finite size) to yield A is defined in [LM] as follows: 

1. in(A) = UiElin(Ad - UiElout(Ad, 

2. out(A) = UiElout(Ad, 

3. int(a) = UiElint(Ad, 

4. states(A) = TIiEIstates(Ad, 

40 



5. start(A) = TIiEIstart(Ad, 

6. part(A) = UiElpart(Ai), and 

7. steps(A) ={(Si' 7r, sD : for all i E I, if 7r E acts(Ad then (Si' 7r, sD E steps(Ad, otherwise 

This composition operator may be seen as a generalization of the union operator described 

in section 4.1 if the 110 automata composed have disjoint variables. It is a generalization in 

that it allows input and output actions and shared actions (with some restrictions). However, 

it yields different results than the union composition operator when there the variables of the 

components are not disjoint because of the definition of states( A) of the resultant 110 automata. 

Specifically, if Al and A2 do not have disjoint variables, there will be states in Al (f) A2 that 

are not self-consistent because the cartesian product of the states in Al and A2 have a shared 

variable component. This observation indicates that union may be better suited for reasoning 

about shared-variable systems and this composition operator may be better suited for reasoning 

about distributed systems. 

4.4 I/O Automata SAl-Composition 

The definition of 1/0 automata composition of the previous section has two drawbacks. The 

first is that it does not allow outputs to be shared by components. This may be a desirable 

property. For example if we have a bank account accessible from several ATMs. To use the 

composition operator defined in the previous section, each output action of the ATM automaton 

accessing the account (the account input actions) would have to be distinct to each ATM. A 

more realistic model would be one where each ATM would have a shared output action that 

accesses the account. The second drawback is when trying to represent a shared variable. If for 

some shared action step one automaton increments this variable and the other decrements it, 

in the definition of composition in [LT] described in the previous section, that would be allowed 

and this contradictory state may be reached since the value of the shared variable would be 

recorded in the state twice rather than once. This form of composition guarantees that this 

kind of inconsistency will never occur by requiring that all shared action that may be executed 

by two components simultaneously change all shared variables in the same way. 

41 



We shall represent the Shared Action Join Composition operator by the symbol txl. 

Let us define SAJ-Composition Compatible I/O Automata. Two I/O Automata, Al and 

A2 are compatible if: 

1. Xv must be the same in Al and A2 for all variables v in Vl n V2, 

2. Iv must be the same in Al and A2 for all variables v in Vl n V2, 

3. int(Ad n acts(Aj ) = 0, and 

4. no action is shared by infinitely many Ai 

5. for all 7r E acts( Al ) n acts( A2) for every step (Si' 7r, sD in Ai there must exist a step 

(Sj,7r,sj) in Aj, where Si(V) = Sj(v) and sHv) = sj(v) for all v E vars(At) n vars(A2) 

The last compatibility condition states that shared actions must be enabled the same way 

and act the same way on their common variables in their corresponding states in both automata. 

The SAJ-Composition of compatible I/O Automata Al = (vars(A l ), states(At), start(At), 

sig(At), steps(At), part(At)) and A2 = (vars(A2), states(A2), start(A2), sig(A2), steps(A2)' 

and part(A2)) yields A = (vars(A), states(A), start(A), sig(A), steps(A), and part(A)): 

• vars(A) = vars(At} U vars(A2), 

• start(A) = I1vEvIv 

• out(A) = out(At) U out(A2) 

• in(A) = in(At) U in(A2) - out(A) 

• int(A) = int(Al) U int(A2) 

• steps(A) = {(s,7r,s'): for every (si,7r,SD E steps(Ad (for every Ad where s(v) = Si(V) 

for all v E vars(Ad then s'(v) = sHv) for all v E vars(Ad and s'(v) = s(v) for all 

v f/ vars(Ad} 

• part( A) = I1iEI part( Ai) 

42 



Here again, like in Superposition, we may have a shared action in two different classes in 

the partition of A. This is not a problem since we require that the component actions of this 

shared action be enabled at the same time. Therefore the resulting composed automaton will 

have fair executions that are the interleavings of fair executions of its components. Actions are 

combined here as in the augmentation step of Superposition, however the steps combined are 

not nondeterministically chosen but rather are those actions shared. 

Theorem 42 If Al and A2 have no variables in common, Al EB A2 = Al t><l A 2. 

Proof: Obvious. By definition. 

Theorem 43 If Al and A2 have no actions in common, Al ~ A2 = Al t><l A 2 • 

Proof: Obvious. By definition. 

The following are the proofs of the theorems and lemmas stated in subsection 3.5.1: 

Lemma 44 P unless Q in Al t><l A2 {:} P unless Q in Al 1\ P unless Q in A 2 • 

• 

• 

Proof: By the definition of unless, if P unless Q in Al t><l A2 then for all 7r E acts( Al t><l 

A 2 ), {P n ~Q}7r{P U Q}. Since acts(AI t><l A2) = U jacts(Ad, for all 7r E acts(AI t><l A 2), 

{P n ~Q }7r{ P U Q} iff for all 7r E acts( Ai), {P n ~Q }7r{ P U Q}. SO Al t><l A2 iff Ai satisfies P 

unless Q for all i. • 
Corollary 45 P is stable in Al I><l A2 {:} (P is stable in AI) 1\ (P is stable in A2 ). 

Proof: This follows from the definition of stable and Lemma 44. • 
Corollary 46 P unless Q in Al and P is stable in A2 ::::} P unless Q in Al t><l A 2. 

Proof: By the definition of stable, if A2 satisfies P is stable then it trivially satisfies P unless 

Q for any Q. Thus by Lemma 44, this lemma holds. • 

Corollary 47 P is invariant in Al and P is stable in A2 ::::} P is invariant in Al t><l A2. 

Proof: By the compatibility requirement of SAJ -composition, if start( AI) ~ P then start( A2) ~ 

P. Therefore, if P is invariant in Al and P is stable in A2, then P must be invariant in A2 

also. By the definition of start(AI t><l A2 ), start(AI t><l A 2) ~ P. Thus by the definition of stable 

and by Lemma 44, this lemnla holds. • 
43 



LelDlDa 48 P ensures Q in Al t><I A2 <* [P ensures Q in Al 1\ P unless Q in A 2} V [P ensures 

Q in A2 " P unless Q in AI}. 

Proof: Since acts(Al t><I A 2) = UiEI acts(Ad and part(Al t><I A 2) = UiEI part(Ad then there 

exists a class C E part(Al t><I A 2) such that {P n "'Q}1r{Q} for all1r E C <* for some i E I 

there must exist a class C E part( Ad such that {P n ",Q }1r{ Q} for all 7r E C. By Lemma 44 

we know that P unless Q in Al t><I A2 and there exists a class C E part( Al t><I A 2) such that 

{P n ",Q}1r{ Q} for all7r E C <* P unless Q in Al 1\ P unless Q in A 2. Combining these we have 

P unless Q in Al t><I A2 <* P unless Q in Al 1\ P unless Q in A2 and for some i E I there must 

exist a class C E part( Ad such that {P n ",Q }1r{ Q} for all1r E C. By the definition of ensures, 

P ensures Q in Al t><I A 2, <* P unless Q in Al t><I A2 and there exists a class C E part(Al t><I A 2) 

such that {P n ",Q}7r{Q} for all7r E C. Therefore, P ensures Q in Al t><I A2 <* [P ensures Q 

in Al 1\ P unless Q in A 2] V [P ensures Q in A2 1\ P unless Q in AI]. • 
Corollary 49 P ensures Q in Al and P is stable in A2 ::::::> P ensures Q in Al t><I A2 

Proof: This holds by the definition of stable and Lemma 48. • 
Corollary 50 If any of the following properties holds in AI, where P is a predicate dependent 

only on the variables of Al disjoint from those of A 2, then it also holds in Al t><I A 2, for any 

A 2 : P unless Q, P ensures Q, P is invariant. 

Proof: If P is a predicate dependent only on the (disjoint) variables of Al and P unless Q, 

P ensures Q, or P is invariant in AI, then it trivially holds for A2 and then by either Lemma 

44 or Lemma 48, this lemma holds. • 

LelDlDa 51 (State s is a Fixed Point of Al t><I A 2) <* (Sl is a Fixed Point of AI) 1\ (S2 

is a Fixed Point of A 2) where Sl(V) = s(v) for all v E vars(At) and S2(V) = s(v) for all 

v E vars(A2). 

Proof: By the definition of Fixed Point, state s is a Fixed Point in Al t><I A2 iff for all 

(s, 1r, s') E steps( Al t><I A 2), s = s' if 7r E acts(Al t><I A 2 ). By the definition of (s, 7r, Sf) E steps( Al 

t><I A 2), s = Sf iff for all i E I and for all7r E acts(Ad, (si,7r,SD E steps(Ad::::::> Si = s~ where 

for all v E vars(Ad, s(v) = Si(V). Thus for all i E I, s is a Fixed Point for all Ai • 

44 



Note that although a limitation of composition operators is that a property of the form 

P H Q cannot be asserted in Al I><l A2 even though it holds in both Al and A 2, the following 

is true for 110 Automata: 

L P P2 ••• P1c-l Q . A P P2 ••• P 1c-l Q . A P P2 ... P1c-l Q . A A elllllla 5 2 ~ tn 1 1\ 1---+ tn 2::::} 1---+ tn 1 t><l 2 

Proof: This holds by induction on Pi using Lemma 48. • 
Lelllllla 53 P1 P2 ~~-l Pk in Al 1\ Pi unless Pi+l (for all 1 ~ i ~ k - 1) in A2 ::::} P P2~~-1 Q 

in Al I><l A2 

Proof: This holds by induction on Pi using Lemma 48. • 
Lelllllla 54 {{PmensuresPm+1 in Ai} for some i E I 1\ [Pm unless Pm+1 in Aj] for all j E I}} 

.f II . k 1 P P2 ···P1c - 1 Q. A A Jar a 1 ~ t ~ -::::} ~ tn 1 I><l 2 

Proof: This holds by induction on Pi using Lemma 48. 

These are the analogous local lemmas: 
• 

Lelllllla 55 P local-unless Q in Al ~ A2 ¢} P local-unless Q in Al 1\ P local-unless Q in A 2. 

Proof: Proof is analogous to that of Lemma 44. • 
Corollary 56 P is locally stable in Al I><l A2 ¢} (P is locally stable in A 1 ) 1\ (P is locally 

stable in A2 

Proof: This follows from the definition of locally stable and Lemma 55. • 
Corollary 57 P local-unless Q in Al and P is locally stable in A2 ::::} P local-unless Q in Al 

I><l A2 

Proof: By the definition of locally stable, if A2 satisfies P is locally stable then it trivially 

satisfies P local-unless Q for any Q. Thus by Lemma 55, this lemma holds. • 
Corollary 58 P is local invariant in Al and P is locally stable in A2 ::::} P is local invariant 

in Al I><l A2 

45 



Proof: By the compatibility requirement of SAJ -composition, if start( A l ) ~ P then start( A 2) ~ 

P. Therefore, if P is local invariant in Al and P is locally stable in A 2, then P must be local 

invariant in A2 also. By the definition of start(Al t><l A 2 ), start(Al t><l A 2) ~ P. Thus by the 

definition of locally stable and by Lemma 55, this lemma holds. • 
Lemma 59 P local-ensures Q in Al t><l A2 {:} [P local-ensures Q in Al 1\ P local-unless Q in 

A 2} V [P local-ensures Q in A2 1\ P local-unless Q in A l }. 

Proof: Proof is analogous to that of Lemma 48. • 
Corollary 60 P local-ensures Q in Al and P is locally stable in A2 :::} p local-ensures Q in 

Al t><l A2 

Proof: This holds by the definition of locally stable and Lemma 59. • 
Corollary 61 If any of the following properties holds in A l , where P is a predicate dependent 

only on the (disjoint) variables of AI, then it also holds in Al t><l A 2 , for any A 2 : P local-unless 

Q, P local-ensures Q, P is local invariant. 

Proof: If P is a predicate dependent only on the (disjoint) variables of Al and P local-unless 

Q, P local-ensures Q, or P is local invariant in AI, then it trivially holds for A2 and then by 

either Lemma 55 or Lemma 59, this lemma holds. • 
Lemma 62 (Local Fixed Point of Al t><l A 2) {:} (Local Fixed Point of AI) 1\ (Local Fixed 

Point of A 2 ) 

Proof: By the definition of Local Fixed Point, state s is a Local Fixed Point in Al t><l 

A2 iff for all (s, 7r, Sf) E steps( Al t><l A2 ), s = Sf if 7r E local( Al t><l A 2). By the definition of 

(s, 7r, Sf) E steps(Al t><l A 2 ), s = Sf iff for all i E I and for all7r E local(Ai), (Si' 7r, sD E steps(Ad 

:::} Si = s~ where for all v E vars(Ad, s( v) = Si( v). Thus for all i E I, s is a Local Fixed Point 

for all Ai • 

Proof: This holds by induction on Pi using Lemma 59. • 
46 



Proof: This holds by induction on Pi using Lemma 59. • 
Lemma 65 {{Prnlocal- ensuresPm +1 in Ai] for some i E I 1\ {Prnlocal- unlessPm +1 in Aj] 

for all j E I]] for all 1 ~ i ~ k - 1 => P P2 ;:~-1 Q in At t><l A2 

Proof: This holds by induction on Pi using Lelnma 59. • 

47 



Chapter 5 

Randomized Algorithms 

For randomized algorithms there are times we would like to represent a random choice in 

the component of the I/O autolnaton chosen. This case could be modeled by associating a 

probability with each class in part(A) thus making executions of A fair with probability one. 

More often, we would like to represent a random choice of action in some component. In 

a possible modeling of this case it is the actions within the class that are associated with a 

probability assignment. Here such a modification to the I/O Automaton model is presented 

and analyzed. 

5.1 Randomized I/O Automata 

We augment the 1/0 Automaton model to allow discussion of algorithms in which there is a 

random choice of variable value or chosen action with the probability mass or density function 

known. The probability mass function represents the probability function of a choice of a 

discrete random variable or randomly choosing a transition out of a count ably infinite number 

of possibilities. The probability density function represents the probability function of a choice 

of a continuous random variable or randomly choosing a transition out of an uncountably 

infinite number of possibilities. This randomized 110 automaton is an 110 automaton with 

an additional component, prob(A) which associates a probability mass or density function on 

the set of steps of enabled actions in every class in part( A) to every state in states( A). In 

other words for every state s E states( A) and every class C E part( A) there is an associated 

48 



probability mass or density function on the steps (s, 7r E C, s') E steps(A) thus the probabilities 

of steps with actions from a class in part( A) originating from a state in states( A) sunl to one. 

More formally, a randomized I/O automaton is an I/O automaton with the additional 

component prob(A) = {prob(s, C) : s E states(A), C E part(A)} where 

• prob(s, C) = {Pc (7r, s') : s, s' E states(A), C E part(A), 7r E C,} where Pc is a probability 

mass function and Pc(7r, s') represents the probability of the step (s, 7r, s') E steps(A) 

being executed if component C has been chosen. 

Note that I:7rEC,(s,7r,s')Esteps(A) Pc( 7r, s') = 1. This definition can be extended for the con

tinuous case using a probability density function, however we will concentrate on the discrete 

case. 

We shall use the following notation: p( s, 7r, s') = PC-w (7r, s'). Additionally, it is often easier 

to state the association of the probability of a given step in steps(A). Thus for such cases, 

a step of A will be represented as ((s, 7r, s'),p) where p = p(s, 7r, s') or as (s, 7r, s') where pis 

implied to be 1. 

When composing randomized I/O automata (in any of the composition methods described 

in this paper), the probabilities of the steps of the composition is the same as the probability 

of the analogous step in the component. There will be no conflict due to shared actions for 

the Union composition operator or the Composition as defined in [LT] with this definition of 

the probability since shared actions are local to at most one component for these composition 

methods and thus only one component may specify a probability. For Superposition and SAJ

composition where a local action may be an action of more than one component, it may indeed 

have more than one probability assigned to it. This is not a problem since a step of such an 

action would have a different probability depending on which component executes it and can 

almost be considered to be two different actions with the same effect. 

5.2 UNITY Proofs Concepts for Randomized I/O Automata 

Most randomized algorithms satisfy all the necessary safety properties but only satisfy the 

progress properties with probability one. Therefore in this section we expand UNITY progress 

proof concepts to pertain to randomized I/O automata. We shall concentrate on the discrete 

49 



case in this paper. The ideas presented can be generalized to apply to the continuous case as 

well. 

A randomized I/O automaton A satisfies P ensures Q with probability one iff A satisfies P 

unless Q and there exists a class C such that for every state s in P n r-vQ, there exists a step 

(s, 7r, Sf) E steps(A) where 7r E C, Sf E Q and p 2: E > O. Note that if A is a randomized I/O 

automaton that satisfies P ensures Q then it also satisfies P ensures Q with probability one by 

definition of the latter. 

A satisfies P 1---+ Q with probability one iff there exists a sequence PI, . .. Pk, (k 2: 2) of sets 

where PI = P, Pk = Q, and A satisfies Pi ensures Pi+l with probability one for all I :::; i :::; k - 1. 

The analogous local properties can be sinlilarly defined. 

Le:m:ma 66 If A satisfies P ensures Q with probability one, then in any fair execution 0:: = 
S07rl Sl7r2 ••• of A, if Si E P then with probability one there is an index k 2: i such that Sk E Q 

and Vj, (i:::; j < k), Sj E P n r-vQ. 

Proof: If Si is also in Q then i = k and the lemma is true, otherwise if Si is in P but not in Q, 

then since A satisfies P unless Q, by Lemma I we know that if there is a state, Sk E Q, (k 2: i) 

where Sj ~ Q for all k > j 2: i (Le. Sk is the first state in Q after sd, then for all k > j ~ i, 

Sj E P n ""Q. Now we must show that such a state exists with probability one. We know that 

there exists an class C of local actions of A such that for all states in P n r-vQ there exists some 

action in C with a nonzero probability that will yield a new state that satisfies Q. We also know 

that in every state in P n ""Q there is such an action. 

Case 1: a is finite. The fairness condition states that if 0:: is a finite execution, then no 

action of C is enabled from the final state of 0::. Therefore 0:: may not end in a state in P n r-vQ. 

Thus by Lemma I we know that since Sj cannot be in P n r-vQ for all j 2: i then there must 

exist some k 2: i such that Sk E Q and for all i :::; j < k, Sj E P n r-vQ and the lemma holds. 

Case 2: a is infinite. The fairness condition states that if 0:: is an infinite execution, then 

either actions from C must appear infinitely often in 0::, or states from which no action of C 

is enabled appear infinitely often in a. Since in every state in P n r-vQ there is an action in 

C enabled, we know that the latter cannot be the case if states remain in P n r-vQ. Therefore 

actions from C appear infinitely often in 0::. By the definition of ensures with probability one we 

50 



know that there is a step from every state in P n ,-vQ with nonzero probability that results in 

a state in Q. Therefore from the definition of a randomized I/O automaton we know that the 

probability of choosing an action of C that results in a state in P n rvQ is less than one. Let 

pp~{:VQ~pn"'Q = max{p( s, 7r, Sf) : s, Sf E P n ,-vQ, 7r E C} representing the maximum probability 

of choosing an action of C that results in a state in P n ,-vQ. Thus, in order for the states in a 

to rernain in P n rvQ such actions must be chosen an infinite number of times. The probability 

of such an execution is then less than or equal to (PP~~Q~pn""'Q)n where n is the number of 

times such an action is chosen. Since we know n is infinite, then this probability is zero. Thus 

with probability one an action in C is chosen that results in a state in Q and the lemma holds . 

• 
Lemma 67 If A satisfies P I-t Q with probability one then in a fair e~ecution a = S07r1 S17r2 ••• 

of A, if Si E P then with probability one there e~ists an m ~ i, such that Sm E Q. 

Proof: From the Lemma 66 we can say that in a fair execution of A, if P ensures Q with 

probability one, then the lemma holds. Otherwise, if (P ensures P2 with probability one) 1\ (P2 

ensures P3 with probability one) 1\ ••• 1\ (Pk-l ensures Q with probability one), then by the sanle 

lemma we know that if Si E P = PI then with probability one there exists a j2 ~ i such that 

Sja E P2 =} with probability one ~j3 ~ j2 such that siJ E P3 =} ••• =} with probability one 

~jk ~ jk-I such that sile E Pk = Q, and the lemma holds. • 
Lemma 68 Suppose A satisfies P ensures Q, Q unless (P U R), and there e~ists a class C E 

part(A) such that for all states sEQ there is some step (s, 7r, Sf) E steps(A) such that Sf E R, 

7r E C, and p(S,7r,Sf) ~ E > O. Then for any fair e~ecution a = S07rlSl7r2'" of A, if Si E P 

then with probability one there e~ists an m ~ i, such that Sm E R. 

Proof: From lemma 4 we know that there must be some k ~ i such that Sk E Q. We also 

know that if a is a finite execution, by the fairness condition, no actions may be enabled in the 

final state, and since all the states in Q and P have enabled actions, then the end state must 

be in R. If a is infinite, let us suppose there is no such m. In that case, there are an infinite 

number of states in Q. We show this, by assuming there are only a finite number of states in 

Q. If this is so, then let S[ be the last such state. Since A satisfies Q unless PUR, then if S[+1 

51 



is not in Q it must be in PUR, if Sl+1 is in R, then there is a contradiction in our assumption, 

thus it must be in P, but since P ensures Q, then Sl could not have been the last state in Q 

and so again we find a contradiction, thus if there is no m such that Sm E R then there must 

be an infinite number of states in Q. For each state in Q there is a probability less than one 

of a transition to P. However, in order for there to be no state Sm E R, this transition must 

be made an infinite number of times, (since there must be an infinite number of states in Q) 

thus the probability of such an execution is zero and thus with probability one there exists an 

m 2:: i such that Sm E R. • 
We may use and alter some of the terms presented in section 2.10 to give us tools to reason 

about randomized 110 automata. 

A property chain with probability one, PI, P2, P3 , ... , Pn , is a chain of distinct properties such 

h P P o h b bOZ' • h d P Pi+1 P
i+2 ... 

P
j-l P . h b b'Z' t at i ensures i+l wtt pro a t tty one, or In ot er wor s i I----t j wtt pro a t tty 

one, for all 1 S i < j S n. 

U sing this definition, we may make further observations about randomized automata. 

LeID1D869 Suppose A has a property chain with probability one, PI, P2, P3 , ... , Pn , A satisfies 

Pn unless PI U Q and there ezists a class, C E part(A) such that from every state in Pn there 

ezists a step (s,7r,s') E steps(A) such that s E Pn , s' E Q, 7r E C, and p(s,7r,s') > O. Then in 

any ezecution a = S07rlSI7I"2'" of A, if Si E PI U P2 U ... U Pn then there ezists a k 2:: i such 

that Sk E Q with probability one. 

Actually, Lemma 68 is a special case of Lemma 69 and the proofs are similar. 

5.3 A Simple Example: Coin Flip 

A possible randomized 110 automaton that represents a coin being flipped follows: 

• vars(A) = {coin = {H,T}} 

• acts(A) = out(A) = {flip-heads, flip-tails} 

• start(A) = {H, T} 

• states(A) = {H, T} 

52 



• steps(A) = { ((H, flip-heads, H), .5), ((H, flip-tails, T), .5), ((T, flip-heads, H), .5), ((T, 

flip-tails, H), .5) } 

• part(A) = {{flip-heads, flip-tails}} 

It is easy to see here that A satisfies H unless T, but it does not satisfy H ensures T because 

not all actions 7r in the single class in part(A) satisfy {H n ",-,T}7r{T} even though it is easy to 

see that with probability one if there is some state in a fair execution where H holds, there is 

some later state in that execution where T holds. However, A does satisfy H ensures T with 

probability one, which demonstrates a crucial proof step of progress properties of randomized 

algori thms. 

5.4 Rabin-Lehmann's Randomized Dining Philosophers 

Rabin and Lehmann have a randomized solution to the Dining Philosophers problem. It involves 

each processor deciding at random to decide which fork (left or right) it picks up first. This 

removes the symmetry of the problem that makes it unsolvable. The algorithm as presented in 

[LR] follows: 

WHILE TRUE 

DO think; 

DO trying:=TRUE OR die OD; 

WHILE trying 

DO draw a random element s of {Right, Left}; 

*** with equal probabilities *** 
WAIT until s chopstick is down 

AND THEN lift it; 

IF R(s) chopstick is down 

THEN lift it; 

trying:=false 

ELSE 

put down s chopstick 

53 



FI 

OD; 

eat; 

put down both chopsticks 

*** one at a time, in an arbitrary order *** 
OD. 

where the function R is the reflection function on Right, Left. 

We shall examine a slightly modified version where after eating, both chopsticks are put 

down simultaneously. The following is a randomized 110 automata representation of such a 

process Pi: 

• vars(A) ={ 

state E {thinking, hungry, eating}, 

Ii (left fork), Ii+l (right fork) E {Lelt, Right, Down}, 

draw E {L,R} 

used - draw E {T, F}} 

• states(A) = TIvEvars(A) Xv 

• start(A) = {(thinking, Down, Down, L, T)} 

• in(A) = {pickup -lefti+upickup - righti_1,putdown - lefti+l, putdown-righti_b finish - eatingi+ 

• out( A) = {pickup - lefti, putdown - lefti, pickup - righti' putdown - right i , finish - eatingi} 

• int(A) = {draw} 

• part(A) = {local(A)} 

• steps(A) = { 

* local action steps * 
** steps of action draw from thinking ** 
Effect: set draw to L or R each with probability 1/2, 

54 



reset used-draw to False 

{( (thinking, Ii E {L, D}, li+l E {R, D}, draw, used - draw), draw, 

(hungry, Ii, li+l, R, F), o5)} 

{((thinking, Ii E {L,D},Ii+l E {R,D},draw,used - draw),draw, 

(hungry, Ii, li+b L, F), o5)} 

* * steps of action draw from hungry * * 
Effect: draw = L or R each with probability 1/2 

reset used-draw to False 

U{((hungry, Ii E {L, D}, li+l E {R, D}, draw, T), draw, (hungry, Ii, li+l, L, F), o5)} 

U{((hungry, Ii E {L, D}, li+l E {R, D}, draw, T), draw, (hungry, Ii, Ii+b R, F), o5)} 

** steps picking up first fork ** 
Enabled: if Idraw = Down (fork of draw is down) 

Effect: sets Idraw = 0pp( draw) (picks up fork of draw), 

set used-draw to True 

U{(hungry, D, li+l E {R, D}, L, F), pickup - lefti' (hungry, R, Ii+b L, T)} 

U{(hungry, Ii E {L, D}, D, R, F), pickup - righti' (hungry, Ii, L, R, T)} 

** steps picking up second fork ** 
Enabled: if lopp(draw) = Down (fork opposite of draw is down) 

Effect: sets lopp(draw) = draw (picks up fork opposite draw) 

U{(hungry, R, D, L, T),pickup - righti' (eating, R, L, L, T)} 

U{ (hungry, D, L, R, T), pickup - lefti' (eating, R, L, R, T)} 

** steps putting down first fork ** 
Enabled: lopp(draw) f:. Down (if second fork is not down) 

Effects: Idraw = D (puts down first fork) 

U{ (hungry, R, R, L, T), putdown - lefti' (hungry, D, R, L, T)} 

U{ (hungry, L, L, R, T), putdown - righti' (hungry, L, D, R, T)} 

** steps of action finish - eatingi (puts down both forks) ** 
Enabled: when state = eating 

Effects: li,li+l = D, state = thinking 

55 



U{(eating, Ii, li+l, draw, T),finish - eatingi' (thinking, D, D, draw, T)} 

* input action steps * 
** steps of action pickup - lefti+l ** 
Effects: li+l = R (right neighbor picks up fork) 

U{ (state E {thinking, hungry}, Ii, li+l, draw, used - draw), pickup - lefti+l' 

(state, Ii, R, draw, used - draw)} 

U{( eating, Ii, li+l, draw, used-draw), pickup - lefti+l' (thinking, D, R, draw, used-draw)} 

(should never happen) 

* * steps of action pickup - righti_1 * * 
Effects: Ii = L (left neighbor picks up fork) 

U{ (state E {thinking, hungry}, Ii, li+l, draw, used - draw), pickup - right i_1 , 

(state, L, li+b draw, used - draw)} 

U{(eating, Ii, li+b draw, used-draw ),pickup - righti_1 (thinking, L, D, draw, used-draw)} 

(should never happen) 

** steps of action putdown - righti_1 ** 
Effects: Ii = D (left neighbor puts down fork) 

U{(state, Ii, Ii+b draw, used-draw),putdown - righti_l' (state, D, li+l, draw, used-draw)} 

* * steps of action finish - eatingi_l * * 
Effects: Ii = D (left neighbor puts down fork) 

U{( state, Ii, li+l, draw, used-draw ),finish - eatingi_l' (state, D, Ii+b draw, used-draw)} 

** steps of action putdown - lefti+l ** 
Effects: li+l = D (right neighbor puts down fork) 

U{(state, Ii, Ii+b draw, used-draw), putdown - lefti+l' (state, Ii, D, draw, used-draw)} 

** steps of action finish - eatingi+l ** 
Effects: li+l = D (right neighbor puts down fork) 

U{( state, Ii, li+b draw, used-draw), finish - eatingi+l' (state, Ii, D, draw, used-draw)} 

} 

56 



A fork fi equals R if it is held by the philosopher on its right, Pi, it equals L if it is held by 

the philosopher on its left, Pi-I, and it equals D if it is down (held by neither). Fork Ii = fL for 

processor Pi and fi+l = fR for processor Pi. The expression opp( draw) represents the opposite 

side of the draw. State indicates what state the philosopher is in. Draw holds the value of the 

last draw. Used-draw is a boolean variable that is set to false when the draw is reset and set 

to true when the draw has been "used", in other words, since a new draw indicates what fork 

the philosopher will wait for (and thus eventually pick up) first, used-draw is set to true once 

this fork has been picked up and the draw used. Therefore used-draw could be considered as 

equal to the negation of the predicate "waiting to pick up the first fork". 

We compose N such Pi using the SAJ-composition operator and call the composition Ac. We 

use the SAJ-composition operator rather than the composition operator defined in [LT] because 

we have represented the forks as shared variables and the states of the resulting automaton 

from an SAJ -composition are simpler in the case of shared variables. Note that the i + 1, i-I 

arithmetic is modN so as to form a circle of philosophers. 

Let us call H the set of states where there exists a philosopher that is hungry and let us 

call E the set of states where some philosopher is eating. We would like to show that for any 

execution a = S07rlSl7r2 ••. of Ac Si E H =} there exists a k ~ i such that Sk E E with probability 

one. 

Let Hi be the set of states of Ac where state(pd = hungry. Let Ei be the set of states of 

Ac where state(pd = eating. Let Dr be the set of states of Ac where draw(pd = R. Let Df 
be the set of states of Ac where draw(pd = L. Let U Di = used - draw(pd. 

First we shall present a proof with the same approach as that in [LR] but using the properties 

defined in this paper whenever possible. Let dead be the set of executions where there exists 

an Si E H and for all j ~ i Sj E H n ""E, in other words, the set of executions where someone 

is hungry at some state and at no later state does anyone eat. 

Clahn 10 In any execution in dead, there are infinitely many fork pickups. 

Proof: We will show this claim to be true as a result of the following lemma. 

The following lemma will show that a fork that is held is eventually put down. 

57 



LeDlDl871 In any ezecution of Ac , a = S07l"1S17t"2 ... of Ac , if Si E (fi =I=- D), then there ezists 

a k > i such that Sk E (Ii = D) 

Proof: There are two cases to consider: for the process Pi which has picked up the fork 

either it is the first fork (Le. fi = fdraw) or it is the second fork (Le. fi = fopp(draw»). 

Case 1: The only reachable states where fdraw (the first fork) is picked up are in Hi n U Di n 

(fdraw = opp(draw)). Let us call this set of states Pl. By the definition of Ac , Pl ensures 

(fdraw = D) U Ei. We also know that Ei ensures (fdraw = D). Therefore by Lemma 4, this 

lemma holds. 

Case 2: The only reachable states where fopp(draw) is picked up are in Ei. We know that Ei 

ensures (fdraw = D). Therefore by Lemma 4, this lemma holds. • 

Suppose there are not an infinite number of fork pickups in an execution of dead. After the 

last fork pickup, eventually all the forks get put down by the previous lemma. Since by the 

definition of dead there are processes still in H. Therefore, they will still draw again and thus 

are guaranteed to pick up a fork by the definition of Ac. • 

The following lemma shows that if the draw of a hungry process has not yet been used, it 

will eventually be used (since the processor waits until the fork of the draw is down to pick it 

up) and that fork will be picked up. 

LeDlDl872 In any ezecution of Ac , a = S07l"1S171"2 ... of Ac , if Si E Hi n Dtraw n ",U Di, then 

there ezists a k > i such that Sk E (Hi n Dtraw n UDi n fdraw = opp(draw)) and Sk-l rt. 
(Hi n Dtraw n U Di n fdraw = opp(draw)) (draw E {L, R}). Furthermore,7I"k_l = pickup-draw. 

Proof: By the definition of Ac and the previous lemma, we know that Hi n Dtraw n '" U Di n 

(fdraw =I=- D) ensures Hi n Dtraw n ",U Di n (fdraw = D). By the definition of Ac and ensures, 

Ac satisfies Hi n Dtraw n '" U Din (f draw = D) ensures (Hi n Dtraw n U Din f draw = opp( draw) ). 

We also know that the only action that results in this transition is pickup-draw. By Lemma 

ensures:l1 we know that there exists a k ~ i such that Sk E (Hi n Dtraw n U Di n fdraw = 
opp( draw)). Therefore by the definition of Sk (it is the first state where the fork is picked up), 

7I"k-1 must equal pickup-draw. We know that k =I=- i because the two properties are disjoint. • 

ClaiDl 73 If Pi draws infinitely often, then with probability one it will choose L infinitely often 

and R infinitely often. 

58 



Proof: If Pi draws infinitely often, then Pi must be in H forever since draw is only enabled 

from H. By the definition of Ac, H n Dtraw ensures (H n D:pp(draw») U Ei with probability one. 

This means that if a philosopher is hungry with probability one he will eventually change the 

value of his last draw if he remains hungry. The clahn is implied by the previous statements .• 

Lemma 74 Let P and q be neighbors. If P picks up a fork infinitely often and q down not, then 

with probability one, p eats an infinite number of times. 

Proof: Let us consider the state ,si after which q does not pick up a fork. From Lemma 71 

we know that any fork that q has at state ,si will be put down. Let us define ,sj (j ~ i) to be 

the state where q does not have the fork it shares with P and after which q does not pick up 

forks. Let us assume that q is the right neighbor of p. From the previous claim we know that 

with probability one P draws L infinitely often. When P draws L, since by the definition of A c , 

Hi ensures (Hi n Df n ~U Dd U Ei with probability one and by Lemma 72, we are guaranteed 

of reaching some later state in Hi n Df n U Di n fL = R. In other words, we are guaranteed 

that p will pick up its left fork at some later state. At this later state, since q does not have 

the right fork of p and Hi n Df n U Di n (fL = R) n (fR = D) ensures Ei, p will eat. This will 

happen every time p draws L. • 
Lemma 75 In any e~ecution in dead, every process picks up a fork an infinite number of times 

with probability one. 

Proof: This follows from Lemma 74 and Claim ?? • 
Let us define a good configuration state as one in Df n D~l' 

The following lemma states that from a state that is not a good configuration state, we are 

guaranteed to reach a good configuration state if all processes pick up forks infinitely often. 

Lemma 76 If every process picks up forks infinitely often, then with probability one, there are 

infinitely many occurances of good configuration states. 

Proof: It is easy to see that in a fair execution of Ac, if ,si E Hi n Hi+l n ~(Df n D~l) then 

with probability one there exists a j > i such that ,sj E (Hi n Hi+l n Df n D~l) U Ei U Ei+l 

with probability one. This is a result of Lemma 68 where P is Hi n Hi+l n ~(Df n D~l)' Q is 

59 



(D[l n Df+1 n Hi n Hi+1) U Ei U Ei+1 and R is (Hi n H i+1 n Df n D~1) U Ei U Ei+1. Therefore if 

Pi and Pi+1 are not in a·good configuration and remain hungry at some state in a fair execution 

Si, then we are guaranteed with probability one that there exists some later state Sj j > i such 

that Sj E Hi n Hi+1 n Df n D~1 or 8j E Ei U Ei+1 • 

LeInIn8 17 For any fair ezecution, a = S07r1 S17r2 ... of Ac , if Si E H then with probability one 

there ezists a j ~ i such that S j E E. 

Proof: It is clear that Hi n Hi+1 nDfnD~1 n""U Di n ""U Di+1 H Ei U Ei+1. In other words, 

if Pi and Pi+1 are in a good configuration, are hungry, and have both not yet used their draw, 

one of them is guaranteed to eat. This is easily seen because "" U D ensures U D for all Pi (each 

unused draw will be used) so Hi n Hi+1nDf n D~1n""UDi n ""UDi+1H Hi n Hi+1nDf n 
D~l n( U Di n U Di+dn(fi = R) n (fi+l = L) meaning that a hungry and good configuration 

leads to the left philosopher holding the left fork and the right philosopher holding the right 

fork. Finally, HinHi+1nDfnD~1n(UDinUDi+1)(fi = R)n(fi+1 = L) H EiUEi+1 meaning 

if the left philosopher is holding the left fork and the right philosopher is holding the right and 

they are in a good configuration and they are hungry, then one of them will eat which is obvious 

because there is no way both philosophers can be blocked to the middle fork. 

From our definition of Pi, we know that Hi n Hi+1 n Df n D~1 ensures (Hi n Hi+1 n 

Df n D~1 n ""UDi n ""UDi+d U ",(Df n D~1) U Ei U E i+1 which translates to a hungry 

and good configuration ensures either one philosopher eating or both philosophers still hungry 

and either a nongood configuration or a good configuration with both draws unused (thus 

guaranteeing someone eating from a previous argument). There exists a class such that for 

every state in Hi n Hi+l n Df n D~1 there is a positive probability step which results in a state 

in Hi n Hi+1 n Df n D~1n""U Di n ",U Di+1 U EiUEi+1' Therefore by Lemma 68 we know that 

if we have a state Sl E Hi n Hi+1 n Df n D~1' then with probability one there exists an m ~ I 

such that Sm E Hi n Hi+1 n Df n D~l n ""UDi n ""UDi+1 U Ei U Ei+1' 

From before we know that Hi n Hi+1 n DfnD~1 n ""U Din""U Di+1 U Ei U Ei+1 ensures 

Ei U Ei+1. Therefore the lemma holds. • 

60 



Chapter 6 

Conclusion 

This paper has sought to bring together the concepts of Chandy and Misra's UNITY proof 

system and Lynch and Tuttle's 110 automaton model, a more general computational model 

than that of UNITY due to its classification of actions and local action partition feature. A 

mapping from UNITY programs to UNITY automata, a subset of 110 automata, is defined. 

The UNITY proof concepts and composition operators are generalized and adapted to 1/0 

automata. Furthermore, examples have been presented illustrate this approach to reasoning 

about 110 automata. 

UNITY proof concepts are useful to reason about 110 automata (as well as UNITY pro

grams) because they represent safety and progress properties in a straightforward way. Specif

ically, ensures, leads to, and until are progress properties that can guarantee the existence of a 

future state in a certain set given that the current state is in another particular set of states. 

Such a property of an 1/0 automaton is the essence of progress. It is also easy to see if any of 

these UNITY properties is satisfied by an 110 automaton. Similarly, safety properties, such as 

Fixed Point, invariant, stability, and even unless in certain circumstances are easy to check for 

satisfaction and using some of the lemmas can insure certain characteristics in all fair execu

tions of an 110 automaton. Of course, the UNITY properties are not by any means a complete 

set of the interesting properties of programs or automata. Further work in defining other such 

properties to facilitate progress or safety proofs about 110 automata I feel would be rewarding. 

A set of composition operators were defined here and proofs presented regarding the prop

erties of the composed automata based on the properties of its components. There is a wide 

61 



spectrum of composition operators that can express useful combining of I/O automata, or even 

decomposition of I/O automata. In [eM], often properties of a program were proven using the 

fact that it was a composition of some other programs. Perhaps, some kind of [de]composition 

operator could help prove interesting properties about I/O automata or its components. 

Finally, an augmentation of the I/O automaton model and the UNITY proof system has been 

presented to aid in reasoning about randomized algorithms. I feel even more could be added to 

this model by applying the analysis of discrete-state discrete-transition Markov Processes (and 

continuous transition for the continuous randomized case) to analyze the probabilities between 

sets of states in a randomized I/O automaton. This method could possibly be generalized 

and put in terms of properties similar to ensures and leads to. The biggest problem with 

the properties defined by [eM] is that they are very dependent on the definition of the state 

transitions (or actually, more accurately the assignments). Using limiting state probability 

theory would be useful in avoiding problems due to this and allow reasoning about randomized 

I/O automata at a higher level of abstraction. 

An augmentation to the I/O automaton analogous to that of the randomized I/O automata 

in that it adds one component to "keep track of" the property of interest, in this case time, 

has resulted in the timed I/O automaton model [MMT]. I feel that UNITY proof concepts 

expanded in a way similar to the expansion for the randomized I/O automata can be used to 

aid in some time bounds analyses and proofs about timed I/O automata. I had started on such 

work but had not made sufficient progress to include a chapter in this thesis. The following 

could indicate a starting point for such an application of UNITY proof concepts: 

Lemma 78 If A satisfies P unless Q then in any timed execution Q = so( 71"1, h)Sl (71"2, t2) ... of 

A, if Si E P n I"..JQ and either i = 0 or Si-1 tf- P, then there does not exist a j > i with tj < ti + l 
and 71" j E Q, where l = min( Cl : 3( s, 71", s') E steps ( A) such that 71" E C, s E P, and s' E Q). 

Proof: From definition of Timed I/O automata and the definition of unless. • 
Lemma 79 If A satisfies P ensures Q then in any timed execution Q = so( 7I"l, tds1 (71"2, t2) ... 

of A, if Si E P n I"..JQ, then there exists a j > i with tj ~ ti + Cu such that Sj E Q. 

Proof: From the definition of Timed I/O autolnata and the definition of ensures. • 

62 



Lenuna 80 If A satisfies P H Q then in any timed execution Q = so( 7rt, tt}Sl (7r2' t2 ) ••• of 

A, if Si E P n rvQ, then there exists a j > i with tj ::; ti + Cu such that Sj E Q, where 

Cu = L:7:::-l Cu(Pd where Pi denotes the set of states from the definition of leads to (H): there 

exists a sequence P1 , ••• Pk, (k 2:: 2) of sets where P1 = P, Pk = Q, and A satisfies Pi ensures 

Pi+ 1 for all 1 ::; i ::; k - 1. 

Proof: From the definition of Timed 110 automata and the definition of leads to. • 

Furthermore some of the state definitions (transient, etc) presented in the chapter about 

randomized automata may be useful in determining some execution time bounds. 

6.1 Errors Found In [eM] 

There were two errors in [eM] that I noted during the research phase of this paper: 

1. the error in [eM] in the example of superposition on page 166. They set out to show that 

by applying superposition, a superposed program can be found such that p detects q where 

q is a predicate on the variables of the lower level program. They define a superposition. A 

property W is defined as the number of statement executions in the underlying program. 

This is the q to be detected. However, q is not a predicate on the variables of the lower 

level program. 

2. the error in eM page 257 in their definition of partial. I believe the cases are switched 

for z. done holding and not holding. Their explanation and example is consistent with the 

switch. 

63 



Bibliography 

[CL] Chandy, K.M., Lamport, L. "Distributed Snapshots: Determining Global States of 

Distributed Systems," A GM TOGS, 3:1, February 1985, pp 63-75. 

[CM] Chandy, K.M., and Misra, J. A Foundation of Parallel Program Design. Addison

Wesley, 1988. 

[LR] Lehmann, D. Rabin, "On The Advantages of Free Choice: A Synlmetric and 

Fully Distributed Solution to the Dining Philosophers Problem," A GM 0-89791-029-

X/81/0100-0133, 1981. 

[LT] Lynch, N.A., and Tuttle, M.R. "Heirarchical Correctness Proofs for Distributed 

Algorithms," Master's Thesis, Massachusetts Institute of Technology, April, 1987. 

MIT/LCSjTR-387, April 1987. 

[MMT] Merritt, M., Modugno, F., and Tuttle, M. "Time Constrained Automata." 

Manuscript. 

64 


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064

