Virtual Stationary Timed Automata for Mobile Networks
by
Tina Ann Nolte

Submitted to the Department of Electrical Engineering anth@uter
Science
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2009
(© Massachusetts Institute of Technology 2009. All righteresd.

Department of Electrical Engineering and Computer Science
October 24, 2008

Certified DY . ..o e
Nancy Lynch
NEC Professor of Software Science and Engineering
Thesis Supervisor

Accepted by.
Terry P. Orlando
Chair, Department Committee on Graduate Students

Virtual Stationary Timed Automata for Mobile Networks

by
Tina Ann Nolte

Submitted to the Department of Electrical Engineering anth@uter Science
on October 24, 2008, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis, we formally define a programming abstradtbwmobile networks called the
Virtual Stationary Automat@rogramming layer, consisting of real mobile clients, wait
timed I/O automata called virtual stationary automata ($5And a communication ser-
vice connecting VSAs and client nodes. The VSAs are locatpdespecified regions that
tile the plane, defining a static virtual infrastructure. ¥esent a theory of self-stabilizing
emulation and use this theory to prove correct a self-stang algorithm to emulate a
timed VSA using the real mobile nodes that are currentlydiagiin the VSAs region. We
also specify two important services for mobile networks:tiom coordination and end-
to-end routing. We split the implementation of the end+oeouting service into three
smaller pieces, consisting of geographic routing and lonahanagement services with an
end-to-end routing service built on top of them. We provi@dgizing implementations of
each of these services using the VSA abstraction, and grdorthal correctness analyses
for each implementation.

Thesis Supervisor: Nancy Lynch
Title: NEC Professor of Software Science and Engineering

Acknowledgments

The years | spent at MIT were filled with interactions with pkothat | will never forget.

Their support is what made this thesis possible.

First, | would like to thank my thesis advisor, Nancy Lyncht @urse, her technical
guidance was necessary and invaluable, but, just as immqpontaenever | felt as though the
light at the end of the tunnel was a little faint, a conversaivith her would put me back
on my feet. She was always able to help me remember that pnshileat | was thinking
about were both interesting and of interest. | would neveelieeen able to write this thesis

without that.

| would also like to thank the other members of my thesis cotte®j Shiomi Dolev

and Madhu Sudan, for their time and feedback.

Next, | would like to acknowledge the people that | had thedrari collaborating with
on work that led up to this thesis. A visit by Shlomi Dolev ante®f his students, Limor
Lahiani, was the spark for this work. Shlomi is a bottomleg#l wf interesting ideas and
guestions, and this initial visit created too many ideasubifto one paper. The first two

VSA papers [29, 37] came from this visit.

Seth Gilbert was an indispensable sounding board, on theVi$é paper [29] and
others [45], [12]. If | had difficulty figuring out how to explasomething in my head, |
would often talk to Seth. Somehow he could peer in and see Whas trying to say. We
also had the opportunity to work together on some of the matmordination work that
appears in this thesis [45]. This motion coordination wodsyoint work with Sayan Mitra
and was based on an earlier paper that Sayan and | worked privid8king with Sayan
on that earlier paper was the most fast-paced paper-wetipgrience | have ever had; it

was a ton of fun, and the meal at his house when it was done vea®tws of fun.

| also enjoyed working with Seth Gilbert and Calvin Newpartell-read conversation-
alist who often came to my aid when nontechnical diversioasewequired) on a project
with Matt Brown and Mike Spindel on implementing some of thgual infrastructure
ideas [12].

| had the pleasure of working with people outside the scopeyothesis as well. These

5

collaborators and friends include Mandana Vaziri, Ling @tngg Rui Fan, Murat Demirbas,
and Elad Schiller. I would also like to thank my master’s thasipervisor, Daniel Jackson,
for helping me complete my first big technical work.

| need to thank my family and friends for their support. Withony family 1 would
not be here, on planet Earth, let alone finishing an undergagkuch as this. Without my
friends, | would not have (most of) my sanity intact today.dAmithout Stangelaliana and
the Al/ Logan/ Nick/ Junior team in particular, | would prdiha have starved to death in
my last months in Boston.

Finally, I have to particularly thank my husband, Jason, ahays disagreed with me
whenever | said that | was never going to finish, even if it waly because he wanted me
to start working so that he could quit his day job and join ti@ARour (just you try it,
buddy). Since Jason often complains that he has no recartiseftimes when | admit that

he was right and | was wrong, here it is:

“Jason, you were right, and | was wrong”.

Contents

1 Introduction 15
1.1 Mobileadhocnetworks. 6 1
1.1.1 Point-to-point based algorithms 16
1.1.2 Location aware algorithms 71
1.2 Virtual programminglayerso L. 18
1.2.1 \Virtualobjects 18
1.2.2 Virtual MobileNodes 19
1.2.3 Our approach — Timed Virtual Stationary Automata 19
1.3 Theory of stabilization and emulation for timed systems. 20
1.4 Astabilizing VSA layer emulation algorithm 22
1.5 Thesisoverview 24
1.6 Researchacknowledgments. 28
| Theory of stabilization and VSA layer emulation 30
2 Mathematical preliminaries 33
2.1 Basic mathematical preliminaries 33
22 Timedl/OAutomata i 34
3 Self-stabilization 41
4 Emulations o1
4.1 Emulation 51

4.2 Emulation stabilization 53

Failure transform 57
Layers: Physical layer model 61
6.1 Networktiling 61
6.2 Mobile physicalnodes 36
6.3 RWRealWorld 64
6.4 PbcastLocal broadcastservice 69
6.4.1 PropertiesdPbcast oL 70
6.4.2 Reachable statesllbcast. 72
6.4.3 Reachable statesR¥M|Pbcast 74
6.5 P-algorithmsanBLayers. 78
Layers: Virtual Stationary Automata layer model 79
7.1 Networktilingan®RW 80
7.2 \Virtual time and failer servicé Wo 80
7.3 Mobileclientnodes L 18
7.4 Virtual Stationary Automata (VSAS) 0. 82
7.5 VBDelaydelay buffers L 83
7.5.1 ClientvBDelay. 83
7.5.2 VSAVBDelay 85
7.6 Vbcast Virtual local broadcastservice 85
7.7 V-algorithmsan&Layers 90
VSA layer emulations 93
VSA layer emulation algorithm 96
Totally ordered broadcast service 99
9.1 TOBspecSpecification of totally ordered broadcast 99
9.1.1 TObcast. 101

9.1.2 TOBDelay e
9.1.3 TOBFilter. e
9.1.4 TOBSPEC v o i e e

9.2 TOBiImpt Implementation

9.3 Correctness of the implementation
9.3.1 Legalsets
9.3.2 Simulationrelation

9.3.3 Self-stabilization

10 Leader election service
10.1 LeadSpecSpecification of the leader election service
10.1.1 LeadMain.
10.1.2 LeadCl
10.1.3 LeadSpec.

10.2 Leadlmpl Implementation L.

10.3 Correctness of the implementation
10.3.1 Legalsets e
10.3.2 Simulationrelation L.

10.3.3 Self-stabilization

11 Implementation of the VSA layer
11.1 Clientimplementation
11.2 VSAimplementation
11.3 Correctness of the implementation
11.3.1 Legalsets e
11.3.2 Simulationrelation L.
11.3.3 Self-stabilization Lo
11.3.4 Stabilizingemulations
11.3.5 Messagecomplexity,

11.4 Extending the implementation to allow more failures

9

175
175
.51
182

Il VSA layer applications 230

12 GeoCast 233
12.1 Specification e A28
12.2 Properties of executions of the geocastservice 237
12.3 Legalsets e 239

1231 Legalsel),, 239
1232 Legalsel?,, 241
12.4 Self-stabilization e 246

13 Location Management 251

13.1 Location service specification. 253
13.1.1 Clientalgorithm 255
13.1.2 VSAalgorithm 256

13.2 Properties of executions of the location service 257

13.3 Legalsets e 259
13.3.1 LegalSel),, - . .« v v 260
13.3.2 Legalsef?,, 261
13.3.3 Legalsel?,, 262
1334 Legalsef;,, o oo 263
13.35 Legalsefy, 264

13.4 Self-stabilization e 266

135 EXIENSIONS o 127

14 End-to-end Routing 273

14.1 Client end-to-end routing specification273

14.1.1 Clientalgorithm 274

14.1.2 VSAalgorithm 276
14.2 Properties of executions of the end-to-end routingeser. 277
143 Legalsets e 280

1431 Legalsefl,, 281

15

16

14.3.2 Legalsef?, 282
14.3.3 Legalsef?, 283
14.3.4 Legalsetd, 284
14.4 Self-stabilization e 285
145 EXIENSIONS o e 029
Motion Coordination 293
15.1 Background e 293
15.2 Motion Coordination using Virtual Nodes 296
15.2.1 Problem Statement 297
15.2.2 Overview of Solution using the VSA Layer 297
15.2.3 RW: modifiedRW 298
15.2.4 CN: Client Node Algorithm 299
15.2.5 VN: Virtual Stationary Node Algorithm 300
15.2.6 MC: Complete System 303
15.3 Correctness of the Algorithm 304
15.3.1 Approximately Proportional Distribution 305
15.3.2 UniformSpacing 315
15.4 Self-stabilization of the Algorithm 317
1541 LegalSets e 318
15.4.2 Relationship betwedn,- and reachablestates 320
15.4.3 Stabilizationtd. ;e Lo 326
15.5 Conclusion 329
Conclusions 331
16.1 Contributions 313
16.2 Evaluation 333
16.3 Open questions and avenues forresearch 335

11

12

List of Figures

Executiomp forLemma3.6. 43
P 63
RWUmazs €sample] - « « « + v v v e e e e 65
RWderived variables. 65
Pbcastd,nys, Treat]: « « « « o v e 69
Virtual Stationary Automata layer. VSAs and clients coumicate locally

usingVbcast VSA and client outputs may be delayedMBDelaybuffers.

VW provides timing and failure information to VSAs, afiV provides

timing and mobile node location information. 79
VWI(esampie] » Virtual time and failer service. 80
Ve o 82
VBDelay,, Message delay service forclients. 83
VBDelay[e],, Message delay serviceforVSAs. 85
Vbcast[d] 86

Totally ordered broadcast service. Client outputs negddayed inTOB-
Delaybuffers, and messages are filtered out based on region aedlive

information in TOBFilter buffers. RW provides timing and mobile node

location information. ao

TObcast[d] Message ordering service. 101
TOBDelay, Message delay service. 105
TOBFilter[d],, Message filtering service. 106

13

9-5 TOBiImpler, providing ordered broadcast. 117

10-1 Leader election service. BeadClfor a client performs grefer’(f) to
indicate that its client should be consideredl®adMainas the leader of
its client’'s region. LeadMaindetermines the winners of the leader com-
petition for each region and communicates the results tbh baadCl A

winning process’d eadClmight then produce kader output to its client,

indicating the clientisaleader. 148
10-2 LeadMain, electingaleader. 149
10-3 LeadCl,, client portion for electingaleader. 511
10-4 Leadey, electingaleader.. 160

11-1 VSA layer implementation. Each process runs a cotiaai algorithms:

LeadCl, TOBDelay, andTO B Filter, defined previously, together with

CFElalg] andV SAE][alg], the client and VSA emulator algorithms. 176
11-2 VSAHalg|,, emulator ap of alg € VAlgs. 179
11-3 Relationship between virtual and real time. A virtdat& behind real time

runs faster until itcatchesup.o 180
11-4 Functions for use in correctness proofs.184
12-1 VSA geocast automaton at region/“«. 234
13-1 ClientC*%[ttl,], periodically sends region updates to its local VSA. . . . 253
13-2 VSAVHL[ttlyy, h : P — U], automaton. 254
14-1 ClientC?" automaton. 275
14-2 VSAVE2E[t],, hl, automaton. 276
15-1 RW[Unmaz, Esample]- « « « o o o o e 299
15-2 Clientnode” N (0), automaton. 300
15-3 VN(6, k, p1, p2). TIOA, with parameters: safetly, and damping, p.. . . 301
15-4 VN(k, p1,p2). TIOAfunctions. 302

14

Chapter 1

Introduction

In this thesis, we focus on mobile ad-hoc networks, whereilagvocessors attempt to
coordinate despite minimal infrastructure support. Thek taf designing algorithms for
constantly changing networks is difficult. Highly dynamietworks, however, are becom-
ing increasingly prevalent, especially in the context at/psive and ubiquitous computing,

and it is therefore important to develop and use techniduessimplify this task.

In addition, nodes in these networks are often unrelialpie paay suffer from crashes or
corruption faults, which cause arbitrary changes to theigam states. Self-stabilization
[26, 27] is the ability to recover from an arbitrarily cortugtate. This property is impor-
tant in long-lived, chaotic systems where certain evemntsreault in unpredictable faults.
For example, transient interference may disrupt wirelessmunication, violating our as-

sumptions about the broadcast medium.

In this thesis, | develop new techniques to cope with thisaglyic, heterogeneous, and
chaotic environment. We mask the unpredictable behavioraidile networks by defining
and emulating a stablizingirtual fixed infrastructure, called theirtual Stationary Au-
tomata layey consisting otiming-awareandlocation-awaremachines at fixed locations,
that mobile nodes can interact with. The static virtualasfructure allows application
developers to use simpler algorithms — including many nesiy developed for fixed
networks. In order to facilitate the reasoning about thygiain this thesis | also define a

formal model for stabilization and stabilizing emulationtimed systems.

15

1.1 Mobile ad hoc networks

Mobile ad hoc networks are made up of mobile nodes (devited)dan be deployed in
an ad hoc way over some deployment space. These networke ¢caade up of machines
ranging from small sensors such as Berkeley motes [86], 5 call phones, and laptop
computers. The nodes making up these networks are equipfe@ireless communica-
tion, rather than access to a fixed “landline”. They can mtexiommunication or coordina-
tion services in situations where it is too costly or impieadtto build a fixed infrastructure.
Commonly cited examples of places where mobile ad hoc nésiare especially useful
are ones from search and rescue operations or battlefietdination.

Direct communication in these networks is between devicasdre close enough to
each other to receive broadcasts. Since the devices aréenaoloi long distance commu-
nication requires multiple transmission hops, it can béatilt to ensure reliable commu-
nication between devices that are not within broadcasteange assume for this thesis
that mobile nodes enjoy reliable communication with othebite nodes that are within a
certain broadcast radius.

The machines making up these networks are also commonlidearie, since they
are often small battery-powered devices, making them gtibte to crashes or sudden
displacement. Also, their power constraints feed into tanmgs on broadcast power, im-
plying the possibility of unexpected interruption or irfe@ence in communication. In this
thesis, the mobile nodes are susceptible to crash failmesestarts, as well as corruption
failures.

Increasingly, it is common for mobile devices to be equipp#thi access to a reason-
ably reliable time and location service that can provideiaks/with synchronized time
updates and real-time location information. We assumeigttiesis that mobile nodes

have access to such amcle

1.1.1 Point-to-point based algorithms

Many of the initial algorithms for mobile ad hoc networks centrated on achieving re-

liable point-to-point routing [56, 78, 79], one of the mastgortant services in traditional

16

wired networks. This can be used to handle the dynamic natiutiee networks by re-
moving the concepts of geography and location from the denation; a wireless network
could be forced to appear as some wired network, obliviodsefocation of its nodes.
Unfortunately, while such an approach might be sufficiepbiht-to-point communica-
tion is the only service that is desired, there are many mstances where communication
and coordination tied to actual geographic location isqradfle in a mobile network. For
example, in a traffic coordination scenario, safety woultbést served by having cars near
the same intersection coordinate with one another to awigion, rather than coordinate

with the particular vehicles it has in their “car-phonebsibk

1.1.2 Location aware algorithms

In contrast to the point-to-point approach, there are a raunal prior papers that take
advantage of geography to facilitate the coordination obmeonodes. For example, the
GeoCast algorithms [14, 73], GOAFR [59], and algorithms*“fouting on a curve” [72]
route messages based on the location of the source andafiestjrusing geography to
delivery messages efficiently. Other papers [51,62,82pesgraphic locations as a repos-
itory for data. These algorithms associate each piece afwlih a region of the network
and store the data at certain nodes in the region. This datéhem be used for routing
or other applications. All of these papers take a relatiaglyhoc or application-specific
approach to using geography and location. We suggest a ristensatic approach; we
believe that the algorithms presented in these papers wmenéfit from using a fixed,
predictable timing-enabled infrastructure to simplifyocdination.

In industry there have been a number of attempts to provideialized applications for
ad-hoc networks by organizing some sort of virtual infrasture over the mobile nodes.
PacketHop and Motorola envision mobile devices coopegatinform mesh networks to
provide communication services in areas with wirelessaticast equipped devices but not
a lot of fixed infrastructure [64]. These virtual infrasttues could allow on-the-fly net-
work formation that can be used at disaster sites, or otleasawhere fixed infrastructure

does not exist or has been destroyed. BMW and several othenaraufacturers are de-

17

veloping systems that allow cars to communicate with onéham@bout local road or car
conditions, aiding in accident avoidance [87].

Another approach is that of Persistent Nodes [9]. Perdisteties are virtual objects
that move in a static sensor network, taking advantage aigihg network conditions to
try to ensure availability of data. While mobile, a persmdtaode only provides a non-
atomic read/write object.

However, each of the above examples tackles very specifiston applications, like
routing or distribution of sensor data. We believe a moreegarpurpose virtual infrastruc-
ture, that organizes mobile nodes into general programeretilties, can make a richer set
of applications easier to provide. For example, with theeatiof autonomous combat
drones [85], the complexity of algorithms coordinating tirenes can make it difficult
to provide assurance to an understandably concerned phbatithese firepower-equipped
autonomous units are coordinating properly. With a formatsl of a flexible and easy-
to-understand virtual infrastructure available, it wobkleasier to both provide and prove

correct algorithms for performing sophisticated coortloratasks.

1.2 Virtual programming layers

In this thesis | describe a different approach to taming heokd hoc networks— virtual

programming layers. Virtual programming layers do not jte\a specific service; instead,
they are a programming abstraction that allows applicadievelopers to design simpler
algorithms for mobile networks. Several virtual programgiayers have previously been

proposed for mobile ad-hoc networks.

1.2.1 Virtual objects

The GeoQuorums algorithm [32] was the first to use virtualespthis algorithm defined a
Focal Point Abstraction where mobile nodes in fixed, desgphgeographic regions of the
network, calledocal points would cooperate to emulate atomic read/write shared mgmor
Atomicity is a strong property for a shared memory object tlaa be accessed concurrently

by multiple processes; it requires that the invocationsrasgdonses of the object look as if

18

the object was only being accessed one at a time, and in anardsistent with the order
of actual invocations and responses [65]. The focal pomthé Focal Point abstraction
were allowed to fail, but could not subsequently recovetis Hibstraction utilized a local
broadcast service and a GeoCast communication serviceitibatie communication be-
tween mobile clients and focal points. Quorums (sets) dadlfpoints were then used in the

paper to provide a fault-tolerant atomic memory service.

1.2.2 Virtual Mobile Nodes

More general virtual mobile automata were suggested in [Blthis Virtual Mobile Node
(VMN) abstraction, the virtual nodes are discrete I/O awtarj65] that move on a prede-
fined path through the network. The implementation of a VMihgs$he network’s mobile
nodes offered fault-tolerance through finite state repbbceamong the mobile nodes em-
ulating the VMN. A VMN is capable of recovery after failurenda utilizes just a local
broadcast communication service to communicate with realigénts, rather than both the

local broadcast and GeoCast services used in the GeoQuuororks

1.2.3 Our approach — Timed Virtual Stationary Automata

In Part | of this thesis, | present a new theoretical programgnabstraction for mobile

networks that consists of a static infrastructure of fixedet virtual machines with an ex-
plicit notion of real time, called/irtual Stationary AutomatéVSAs), distributed at known

locations over the plane, and emulated by the real mobilemodthe system. Each VSA
represents a predetermined geographic area and has sbeadpabilities similar to those
of the mobile nodes, though perhaps suffering from an aafthtiadditive broadcast delay,
allowing nearby VSAs and mobile nodes to communicate withamother. This program-
ming layer provides mobile nodes with a virtual infrasturet with which to coordinate

their actions. Many practical algorithms depend signifilyaon timing, and it is reason-

able to assume that many mobile nodes have access to relseyabthronized clocks.

In the VSA programming layer, the virtual automata also haveess tovirtual clocks,

guaranteed to not drift too far from real time.

19

VSAs are machines whose computational model is more poéidn those in [31],
in that ours include timing capabilities, which are impattéor many applications. How-
ever, our automata are stationary, and are arranged in &ctathpattern that is similar to
a traditional wired network. This allows application deygrs to reuse a number of pre-
viously designed algorithms for stationary networks. Nbtg the virtual nodes described
in [31, 32] could all be implemented using the infrastruetue describe here.

We present several applications in part Il of this thesiogéhimplementations are
significantly simplified by the VSA infrastructure. We cathai both low-level services,
such as routing and location management, as well as moréssiopted applications, such
as motion coordination. The key idea in all cases is to lodate and computation at
timed virtual automata throughout the network, thus rejyom the fixed, predictable in-
frastructure to simplify coordination in ad-hoc networksis interesting to note that this
infrastructure can be used to implement services such éisgdhat are oftentimes thought

of as the lowest-level services in a network.

1.3 Theory of stabilization and emulation for timed sys-

tems

One contribution of this thesis is the formal modeling andlgsis of the VSA program-
ming layer, its implementation, and the implementationsasfous applications using the
layer. In this thesis, we model systems using the timed |/@raata (TIOA) formal-
ism [58]. These formal specification models provide unambig and simple descriptions
of system behaviour and allow us to formally reason abouegsy®ehaviour. Formal spec-
ifications also make clear those hidden system assumphahsdn derail deployment of a
distributed system.

As part of the project to formally model and analyze algarnighto provide the VSA
programming layer, this thesis presents a formal semafiatiesmulation of a system. This
provides proof obligations required to conclude that orstesy successfully emulates an-

other system. An emulation is a kind of implementation refahip between two sets of

20

timed machines. Intuitively, one set of machin@®mulates another set of machings
if each machine (progrant) in C is mapped to a machine (emulation of the program) in
B that has externally observable traces that look like sonmstcained set of externally

observable traces of.

Another significant contribution of this thesis is a theofystabilization in TIOA sys-
tems, which we had to develop to explain the stabilizatiapprties of our algorithm for
emulating the VSA layer. Self-stabilization [26, 27] is thigility to recover from an arbi-
trarily corrupt state. This property is important in lorigeld, chaotic systems where cer-
tain events can result in unpredictable faults. For exant@esient interference may dis-
rupt the wireless communication, violating our assumpgiabout the broadcast medium.
This might result in inconsistency and corruption in the &tan of the VSA. Our self-
stabilizing implementation of the VSA layer, however, cataver after corruptions to

correctly emulate a VSA.

Prior work in self-stabilization for TIOA systems was infieal. Our formal theory of
stabilization in TIOA systems is based bybrid sequencesequences consisting of trajec-
tories (modeling the evolution of a collection of variabtegr a time interval) interleaved
with discrete actions. One set of hybrid sequenges said tostabilize in time to another
set of hybrid sequencé&sif each suffix of3 startingt time after the beginning gf happens
to be in the seC. In this thesis, we demonstrate that these definitions wgromcocting
a “formula” that we use throughout the thesis for reasonimgua the stabilization of an

implementation of one system by another (described in tgebexg of Section 9.3).

Our definition of stabilization using hybrid sequences isagal enough to not only
allow us to talk about executions (or traces) of one timedesysstabilizing to executions
(or traces) of another timed system, but also to talk abaginfrents of executions or traces
starting in a certain set of states stabilizing to some sdtagiments starting in another
set of states. This generality is very useful in stabil@agproofs for two reasons: (1) it
makes it easy for us to break stabilization of an algorithmmmto multiple phases, where
one phase takes fragments starting in one set of stategtadras starting in a second set,
another phase takes fragments starting in the second $eis®e in a third, etc.; (2) it makes

it easy to talk about stabilization of algorithms with accesreliable external oracles; and

21

(3) it provides a way to talk about stabilization of algonits for which there is no obvious
“reset” state. By the last | mean that our definition of stiahtion allows us to talk about
stabilization of long-lived services with an invocatioresponse or send / receive behavior.
In execution fragments of implementations of these sesyité possible for there to never
be a point where there is no outstanding invocation or sewsveder, the implementation
might be guaranteed to reach a point where it behaves jesstikne suffix of an execution
of the service. Our definition of stabilization allows us tealiss these kinds of algorithms.

This thesis also presents a formal semantics for stalgliemulation of timed systems.
Since one part of this thesis is providing an emulation algor that implements a VSA
layer but is also stabilizing, it is necessary to consideatvguch an emulation algorithm
can guarantee. Hence, this thesis also presents a formahgsiesifor stabilizing emulation
of timed systems. Say one set of machifesmulates another set of machings We
want to define the idea that for any programin C, the emulation of the program can
be started in an arbitrary state but eventually producerrexlig observable behaviors that
are related to those @f. What kind of behaviors of’ should be the emulation produce?
Intuitively, after a period where the emulation producessemse, it should manage to
produce traces that look like traces of the progranthough not necessarily starting from
an initial or reachable state of that programNotice that this means that if corruption
failures or arbitrary initial states are a possibility atwgators, then not only should the
emulation algorithm be a stabilizing emulation, but thegpamns being emulated should be
stabilizing.

These contributions are useful outside the scope of virtades, potentially aiding in
the specification of emulations of other systems or simjlgythe reasoning about stabi-

lizing timed systems in general.

1.4 A stabilizing VSA layer emulation algorithm

In part I of this thesis, | present an algorithm for implertieg a VSA layer using a mobile
ad hoc network consisting of mobile nodes that may suffenfocoash failures and restarts.

In order to provide this implementation, | first implemenbtather services over the mo-

22

bile nodes: totally ordered broadcast and leader electitath mobile node is assumed
to have access to a GPS service informing it of the regiongursently in. The totally
ordered broadcast service ensures that processes in teaasgion receive the same mes-
sages in the same order. Under the assumption of reliabéglbast communication, this
service is easily implemented using a technique similah&dne used in [61] to imple-
ment replicated state machines. The leader election seunges a round-based algorithm

to periodically elect a new leader in each geographic area.

Given these two services, our clock-equipped VSA layer ban be emulated by the
real mobile nodes in the network. A VSA for a particular gegairic region is emulated by
a subset of the mobile nodes currently populating its regibe VSA state is maintained
in the memory of the real nodes emulating it, and the real sipaeform VSA actions on
behalf of the VSA. If no mobile nodes are in the region, the \f&8ifs; if mobile nodes later
arrive, the VSA restarts. The emulation is shared by the si@dele one node designated
as leader is responsible for performing the outputs of th& ¥&d keeping the other nodes

consistent in their VSA state.

An important property of our implementation is that it isfssthbilizing. Traditionally,
studies of self-stabilizing systems are concerned withelsystems that can be started from
arbitrary configurations and eventually regain consistevithout external helpHowever,
mobile clients often have access to some reliable extenf@mation from a service such
as GPS. Our algorithms use an external GPS service as de@rable providing periodic
real time clock and location information to base stabil@aupon. For example, our algo-
rithms often use timestamps and location information toedagnts. In an arbitrary state,
recorded events may have corrupted timestamps. Corruptegtamps indicating future
times can be identified and reset to predefined values; nevtenexeive newer timestamps
than any in the arbitrary initial state. This could everiyuallow nodes in the system to
totally order events. We use the eventual total order toigeowonsistency of information

and distinguish between incarnations of activity (suchetimnsmissions of messages).

23

1.5 Thesis overview

Here we provide an overview of the thesis. The thesis is dividto three main parts. The
first part of the thesis focuses on introducing the theoryroéd stabilization, stabilizing

emulation, and VSA layers. The second part of the thesisstegon a stabilizing emula-
tion algorithm for the VSA layer. The third part of the thepi®vides some examples of

applications for the VSA layer.

Part |

The first part of the thesis provides the theoretical foulodator the rest of the thesis.
It describes definitions and results for stabilization med systems, failures, stabilizing
emulations, and the VSA layer.

| first provide some mathematical tools for talking aboub8ization, system failure,
and emulation in timed I/0O automata systems. | also deseribgstem model for GPS-
equipped mobile ad-hoc networks, and then describe a fofid@A model of the VSA

programming layer.

Chapter 2

| begin by reviewing the Timed I/O Automata model of [58] fasclssing timed systems.

Chapter 3

| then provide some mathematical definitions and tools flkirtg about stabilization in
timed systems. The definition of stabilization for timedteyss is based on hybrid se-
guences; we define stabilization as being from one set ofidhglequences to another. In
this chapter | also show some useful results about statidizaincluding results about
transitivity andlegal sets Legal sets are sets of states that are closed under executio

fragments; they are used often in this thesis to descrilbesstath desirable properties.

24

Chapter 4

In this chapter, | define the concept of an emulation and aligialg emulation. Emulations
define a kind of implementation relationship between tws sétmachines. The definition
of emulation is followed with a definition of a stabilizing elation. An algorithm is a
stabilizing emulation if an emulation of a program can betsthin an arbitrary state but
eventually behave as though it is the emulated programgtinbom a potentially arbitrary

State.

Chapter 5

This chapter discusses a model for node failure and redtadiescribes a general crash
stop and restart transformation for TIOA programs. Suclamasfiormation is useful in that

it removes ambiguity about the semantics of failures anthres

Chapter 6

Here |l introduce a model of a mobile ad hoc network physigaiaThis layer consists of
mobile physical nodes, a GPS oracle, and a broadcast coroatiom service. Communi-

cation is local in this model.

Chapter 7

In this chapter, | consider the Virtual Stationary Automktyger model. The VSA layer
consists of mobile client nodes (analogous to mobile playsiodes), a GPS oracle, a
virtual broadcast communication service, a virtual timeviee (a GPS time service for
the Virtual Stationary Automata), and Virtual Stationarytdmata. A VSA is a TIOA
with a real-time clock, restricted external interfacepwaiing it to only send and receive
messages using the virtual broadcast service; its bromdcas be delayed for up to a

constant amount of time.

25

Chapter 8

Here the results and definitions of Chapter 4 are specialaetie case of an emulation of

the VSA layer by the physical layer.

Part Il

We provide an implementation of that layer using the undieglynobile ad-hoc system, and
prove that the implementation provides a stabilizing etnhaof the VSA programming
layer. This implementation is in three parts: totally oetebroadcast, leader election, and

a main emulation component.

Chapter 9

It is useful to have access to a totally ordered broadcasicgethat allows nodes in the
same region to receive the same sets of messages in the sdene The totally ordered
broadcast service is intended to allow a non-failed notleat knows it is in some region
u to broadcast a message via tocast(m),, and to have the message be received exactly
d,d > d,pn,s, time later viatorcv(m),, by nodes that are in regianor a neighboring region

for at leastd time.

Chapter 10

It is also useful to have access to a leader election serateatiows nodes in the same
region to periodically compete to be named sole leader oféb®n for some time. Our
leader election service is a round-based service thatatsllaformation from potential
leaders at the beginning of each round, determines up teceadet per region, and performs

leader outputs for those leaders that remain alive and in theioretpr long enough.

Chapter 11

We describe a fault-tolerant implementation of a VSA by n®lniodes in its region of
the network. At a high level, the individual mobile nodes inegion share emulation of

the virtual machine through a deterministic state replcatlgorithm while also being

26

coordinated by a leader. Each mobile node runs its portigheofotally ordered broadcast
service, leader election service, and a Virtual Node Erandtl’SA E) algorithm, for each
virtual node.

In this chapter we also prove that the implementation is bilstaeng emulation of the

VSA layer.

Part Il

We conclude with a description of two applications that welement using the VSA
layer. In the thesis, each implementation, whether of thé ¥8gramming layer or of
applications built on the layer, is proved correct usingTheA formal framework.

The first VSA application, end-to-end routing, is implenezhin three pieces: a region-
to-region geocast service, a location management seean end-to-end routing ser-
vice built on the geocast and location management servities.second application is a

motion coordination service.

Chapter 12

We describe a stabilizing region-to-region communicaservice in this chapter. The al-
gorithm is based on a shortest path procedure. When a regpeives a geocast message
it has not previously seen from regiarto regionv for which it is on a shortest path from
u to v, it forwards the message closer to regiomhe program described in this chapter is

a part of a VSA layer program to provide end-to-end routing.

Chapter 13

This chapter describes how to provide the location managepiece of the end-to-end
routing service on the VSA layer. The solution is based orctirecept ofhome location
servers where each mobile client identifier hashes to a home locatoregion of the
network that is periodically updated with the location of ttlient and that is responsible
for answering queries about the client’s location. Thequid location updates and the

forwarding of queries and responses are done using the gfeseraice of Chapter 12.

27

Chapter 14

We describe a simple self-stabilizing algorithm over theAV8yer to provide a mobile
client end-to-end routing service. A client sends a messag@other client by forward-
ing the message to its local VSA, which then uses the homeidocaervice to discover
the destination client’s region and forwards the messagbabregion using the geocast

service.

Chapter 15

In this chapter, we study how the VSA layer can help us soleeptioblem of coordinat-
ing the behavior of a set of autonomous mobile robots (playsiades) in the presence of
changes in the underlying communication network as welhasges in the set of partic-
ipating robots. Each VSA must decide based on its own lodalimation which robots
to keep in its own region, and which to assign to neighboragjans; for each robot that
remains, the VSA determines where on the curve the robotlgheside. Unlike in the
prior three applications (Geocast, location managemeudt.ead-to-end communication),
the client motion in the motion coordination protocol is trotlable by the client, allowing

the client to change its motion trajectory based on insioastfrom a VSA.

1.6 Research acknowledgments

Much of the research presented in this thesis has been damdiatoration with others,
particularly: Shlomi Dolev, Seth Gilbert, Limor LahianiaNcy Lynch, and Sayan Mitra.

The content in this thesis has been partially drawn from éllewing papers:

e Self-stabilization and Virtual Node Layer Emulatidi@$]. This paper is a prelimi-
nary version of some of the results in Chapters 3, 4, and &.Ilimiroduced a set of
formal definitions for stabilization in timed systems, adlas a formal definition of
stabilizing emulation for the VSA layer. However, the ddfoms in this thesis are
different; the thesis generalizes some of the stabilipagiod emulation results, and

introduces a new formal model for process failures and mssta

28

e Timed Virtual Stationary Automata for Mobile Netwof[Rk9, 30]. These papers pre-
sented preliminary models of the physical layer describedhapter 6 and the VSA
layer described in Chapter 7, though the failure modelinthese papers difffers

from the modeling in this thesis.

The initial impetus for these papers came from work with 8filDolev and Limor
Lahiani about their ideas on how mobile nodes in predefinexyigghic regions
could share responsibility for implementing a messageangugervice. These papers
were joint work in which we generalized these ideas into apl@mentation of an
early version of a VSA layer, where mobile nodes in predefgeagraphic regions

could share responsibility for general emulation of altjons.

e Self-Stabilizing Mobile Node Location Management and igsfRouting37]. This
paper contains early versions of algorithms for implenmengeographic broadcast,
location management, and message routing services uging3A layer. It is based
on some of the ideas from the same work with Shlomi Dolev amdadtiLahiani
mentioned above, and was the first paper demonstratingcagiphs of the VSA

layer.

In Chapters 12-14 of this thesis | use a different set of VSgeitaalgorithms to
implement versions of these services. However, the bremkdo[37] of the message

routing problem into three pieces is preserved in this thesi

e Self-Stabilizing Mobile Robot Formations with Virtual N®J45]. This paper is a
preliminary version of Chapter 15 in this thesis. It is ifd@hsed on work in [66],
where a simplified virtual node layer was used to coordinfa¢enhotion of mobile
nodes. The technical definition of the problem of motion dawation (a variant of
which appears in this thesis in Section 15.2) and the ruled by the virtual nodes
for allocating / directing mobile nodes (Figure 15-4 of tthiesis) are primarily the
work of Sayan Mitra, as is the proof that these rules lead ttianaoordination
(reproduced in this thesis in Section 15.3). My contribaitio this work is in the
VSA layer modeling of the algorithm, as well as the design idf of stabilization

of a self-stabilizing version of the algorithm.

29

Part |

Theory of stabilization and VSA layer

emulation

30

In Part | of this thesis, | introduce the theory that the réshis thesis is built on. | open
with a brief review in Chapter 2 of the Timed I/0O Automata mibaolie[58] for discussing
timed systems.

In Chapter 3, | then provide some mathematical definitiorstanls for talking about
stabilization in timed systems. The definition of stabtifi@a for timed systems is based
on hybrid sequences; we define stabilization as being froenseh of hybrid sequences to
another. In this chapter | also show some useful resultstabalilization, including results
about transitivity andiegal sets Legal sets are sets of states that are closed under executio
fragments; they are used often in this thesis to descrilbesstath desirable properties.

Next, in Chapter 4, | define the concepts of an emulation andkalizing emulation.
An emulation defines a kind of implementation relationshepAeen two sets of machines.
The definition of emulation is followed with a definition of &abilizing emulation. An al-
gorithm is a stabilizing emulation if an emulation of a pragrcan be started in an arbitrary
state but eventually behave as though it is the emulatedgmghough from a potentially
arbitrary state.

Chapter 5 is where | discuss a model for node failure andnte$taescribes a general
crash stop and restart transformation for TIOA programshSutransformation is useful
in that it removes ambiguity about the semantics of failaed restarts.

In Chapter 6, | introduce a model of a mobile ad hoc networkspdal layer. This layer
consists of mobile physical nodes, a GPS oracle, and a bmeadommunication service.
Communication is local in this model.

Chapter 7 is where | describe the Virtual Stationary Autarayer model. The VSA
layer consists of mobile client nodes (analogous to molikessjzal nodes), a GPS oracle,
a virtual broadcast communication service, a virtual tireevise (a GPS time service for
the Virtual Stationary Automata), and Virtual Stationarytémata. A VSA is a TIOA
with a real-time clock, restricted external interfacepaiing it to only send and receive
messages using the virtual broadcast service; its bromdcas be delayed for up to a
constant amount of time.

Finally, Chapter 8 is where the emulation results and dedimstof Chapter 4 are spe-

cialized for the case of an emulation of the VSA layer by thegotal layer.

31

32

Chapter 2

Mathematical preliminaries

Here we introduce some terminology and notation for exjmgsmathematical properties

in this thesis.

2.1 Basic mathematical preliminaries

If f is a function, we refer to the domain and rangefoés domain(f) andrange(f)
respectively. IfS is a set, we can restrigt to S, written f[S, defined to be the function
with domain equal t&' N domain(f) where for eacl in its domain, it maps tgf(c). If f
is a function mapping to a set of functions afids a set, thery | S is the function with

domain equal talomain(f) and such that for eachin its domain, it maps tg(c)|S.

If Sis a set, then a sequene®verS is a function with a domain either equal to the set
of all positive integers or the sé¢t, - - - | £} for some positive integek, and with a range
equal toS. We use|o| to be the cardinality oflomain(c). The set of finite sequences
over S are denoted bys*. The empty sequence is denoted hy The concatenation of
two sequences ando’ is writtenoo’. We say thav is a prefix ofo’, writteno < o, if
eithero = ¢’ or o is finite ando’ = op for some sequence If o is a nonempty sequence,
thenhead(o) refers to the first element of andtail(o) refers too with its first element
removed.insert(o, s, i), fors € S and0 < i < |o| is a new sequence equaldpexcept

with elements inserted after the element at position

33

2.2 Timed I/O Automata

Here we describe Timed I/O Automata (TIOA) terminology usedhis thesis. TIOAs
are nondeterministic state machines whose state can cirahge ways: instantaneously
through a discrete transition, or according to a trajectlascribing the evolution, possibly
continuous, of variables over time. The TIOA framework carulsed to carefully specify
and analyse timed systems. (Additional details can be faufsB].) Each algorithm and
specification in this thesis is expressed using this frannewo

The type of a variable describes the values that a variablea&a on, while the dynamic

type of a variable describes how a variable’s values cangdhawer time.
Definition 2.1 For each variablev we have the following:

e type(v), thestatic typeof v, is a nonempty set of values.

e dtype(v), thedynamic typeof v, is a set of functions from left-closed intervals of time

starting at O totype(v) satisfying the following:

— For each f € dtype(v) andt € R, f shifted forward byt time is also in
dtype(v).

— Foreachf € dtype(v) and each left-closed subintervabf domain(f), f[J €
dtype(v).

— Consider any sequence of functiorfs, f1,---, each in dtype(v) such
that for each f; except the last, the domain of, is right-closed and
max(domain(f;)) = min(domain(f;+1)). Then the functiory, defined so

that f(t) = f;(t) wherei is the minimum index such that domain(f;), isin

dtype(v).

Variablev is constanbver a left-closed interval of time if its mapping to a valaeonstant
over that interval. Variable is a discretevariable if for every left-closed interval of time,

v IS constant over the interval.

Definition 2.2 A valuationfor a setV of variables is a function mapping each variable

v € V to avalue intype(v). The set of such valuationsisi(V').

34

A trajectory models the evolution of a collection of variebbver a time interval.

Definition 2.3 A trajectory 7, for V' is a function mapping a left-closed interval of time
starting at O to the set of valuations fof, such that forv € V, 7 restricted tov is in the

dynamic type of.

e 7 isclosedf domain(7) is both left and right-closed.

7. f state is the first valuation of, and, forr closed,r.Istate is the last.

The limit time ofr, 7.ltime, is the supremum afornain (7).

The concatenation,7’, of trajectoriesr and7’, T closed, is the trajectory resulting

from the pasting of’, shifted byr.ltime, to the end of. The valuation at.itime is

the one inr7/, overwriting the value of’. ftime.

A trajectory forV with a domain equal to the point O is calledpainttrajectory for

V. If v is a valuation forV/, thenp(v) is the point trajectory fol” mapping tov.

Atimed I/O automaton is a state machine with some set of bsadescribing its state.
It also has a set of discrete actions, some internal, soneemattinputs and some external
outputs. Its state can change either through discretdtiars which result in atomic state
changes, or through trajectories, which describe the &oolof the state variables over the

time when discrete transitions do not occur.

Definition 2.4 A Timed I/O Automaton (TIOA) A = (X,Q,0,1,0,H,D,T), consists

of:

SetX of internal variables.

Set@ C val(X) of states.

SetO C (@ of start states, nonempty.

Sets/ of input actions(of output actions, and/ of internal actions, each disjoint.

A=1U0OUH isallactions.E = I U O is all external actions.

35

e SetD C Q x A x @ of discrete transitions.
We say action is enabled in state if (z,a,2’) € D, for somer’ € X. We require

A be input-enabled (every input action is enabled at everieita
e Set7 C trajectories of(). We require:

— For every stater, the point trajectory forr must be in7Z,
— For everyr € 7, every prefix and suffix afis in 7,

— For every sequence of trajectories T, where for everyr; but the last,r; is
closed andr;.lstate = 7;,1.fstate, the concatenation of the trajectory se-

guence is also iff, and

— Time-passage enabling: for every state there exists ar € 7 where
T.fstate = z, and eitherr.ltime = oo or 7 is closed and somee H U O is

enabled inr.lstate.

Definition 2.5 Two TIOAsA and B are compatiblef they share no internal variables, and

their internal actions are not actions of the other.

Composition, described in the following definition, is udefor describing the be-
haviour of complex systems. It allows us to describe theesysts a collection of separate

components that can then be run together after composition.

Definition 2.6 Two compatible TIOAsl and B can becomposednto a new TIOAA| B,
which hasA and B as components where an action performed in one componehistha
an external action of the other component is also performetié other component. Each
external action of the composition is an output if it is anputof one of the component
automata, and an input otherwise. Each internal action efitidividual automata remains

an internal action.

The following definition allows us to perform output actioidimg on TIOAs, reclassi-
fying a designated set of output actions as internal actiohss is especially useful when
we later consider implementation relationships, where eqgiire that the sets of external

actions for machines be the same.

36

Definition 2.7 Let.A be a TIOA andD be a subset ab 4. ThenActHide (O, A) is a TIOA
equal toA except thaOActHide(QA) =04—0Oand HActHide(O,A) =H,UO.

Hybrid sequences are described in the next definition. Teegeences are often used

to describe an execution or a trace (observable behavibarTDA.

Definition 2.8 Given a setd of actions and a sét” of variables, an A, V')-sequencés an
alternating sequence = mya;mas7 - - - Where: (a) Eachy; is an action inA, (b) Eachr;
is a trajectory forV/, (c) If « is finite, it ends with a trajectory, and (d) Eaehbut the last

is closed.

« is closedif it is a finite sequence and its final trajectory is closed.

The limit time ofw, a.ltime, is the sum of limit times af’s trajectories.

The concatenationyc’, of two (A, V')-sequences and«’/, « closed, isx followed

by o/, where the last trajectory af is concatenated to the first trajectory of

For sets of actionst and A’, and sets of variableg and V", the(A’, VV')-restriction

of an (A, V')-sequencey, written [(A’, V'), is the sequence that results from pro-
jecting the trajectories ofv on variables inV’, removing actions not i/, and

concatenating all adjacent trajectories.

In the following definition, an execution fragment of a TIO# defined to be a hy-
brid sequence where each trajectory is a trajectory of tiATdnd for each action in the
sequence, the last state of the trajectory preceding #&fstithe precondition of the ac-
tion, and the first state of the trajectory following it is thtate that should result from that

discrete transition.

Definition 2.9 An execution fragmentof a TIOA A is an (A,V)-sequencea =
Toa1T1a2T2 - - -, Where eachr; is a trajectory in7, and if r; is not the last trajectory of
a, then(r;.lstate, a; 11, 7i11.f state) € D. We refer to the set of execution fragmentsiof

starting from a state in somg C Q) as frags?.

37

The following definition of an execution just says that ancex®sn is any execution
fragment where the very first state of the first trajectoryheffragment is an initial state of
the TIOA.

Definition 2.10 An execution fragment o4, «, is anexecutionof A if «. fstate is in ©.

We refer to the set of executionsdfaserecs 4.

Definition 2.11 A state ofA is reachablef it is the last state of some closed execution of

A. We refer to the set of reachable statesdofisreachable 4.
Definition 2.12 Aninvariantfor A is a property that is true for all reachable states.éf

A trace, defined below, is the external observable behawabafTIOA. The only infor-
mation it imparts is the length of an execution, whether dithe execution is right-closed,

and the timing and order of the external actions of the TIOfat execution.

Definition 2.13 A trace(external behaviour) of an execution fragmenof A, trace(a),
is « restricted to external actions ofl and trajectories over the empty set of variables.
traces 4 1S the set of traces of executions.4f We refer to the set of traces of execution

fragments ofA starting from a state in somg& C @ astrace frags3.

The nextlemma (Lemma 5.2 in [58]) says that execution fragsef composed TIOAs

project to fragments of the components:

Lemma 2.14 Let A = A,||.A, and leta be an execution fragment gof.
Thena[(A;, X1) is an execution fragment of;, anda[(As, X5) is an execution fragment

of A,. Also,«a is an execution iff bothv[(A;, X;) anda|(Ay, X,) are executions.

The next theorem (Theorem 7.3 in [58]) says that traces ofpos@d TIOAs are ex-
actly those empty-variable hybrid sequences whose restricto the external actions of

component TIOAs are traces of the components:

Theorem 2.15 Let A = A, || As.
Thentraces, = {4 | fisan(E,0)-sequence and[(E;,) € tracesy,,i € {1,2}}.

38

The following two results on execution pasting are from [434y that we are given two
compatible TIOAsA; and.A,, and executions; anda, of A; and.A, respectively. The
first result says that if there is a hybrid sequenceith the same type as a trace. df ||.A,
and such that is consistent with the traces of executiansandas in that 3 restricted to
external actions of4, is equal to the trace af; (and similarly for.A,), then we can paste
together the executions, anda, to get an execution ofl;||.4, whose trace is equal .

The second result is just a generalization for a finite nuroberachines.

Lemma2.16 Let A = A;|lA,, and leta; and a, be executions ofd; and A, re-
spectively. Lets be an (Ey4,0) sequence such that[(E4,,0) = trace(a;) and
B[(E4,,0) = trace(asy). Then there exists an executienf A such thatv; = o[(A, X1),
as = af(Ag, Xy), andtrace(a) = 3.

Corollary 2.17 Let A = A;||A,]| ... A, for some finitek, and lete; be an execution
of A; for everyi. Let 3 be an(E 4, () sequence such that[(E4,,0) = trace(q;) for
eachi € {1,...,k}. Then there exists an executiorof A such thattrace(a) = 5 and
a; = af(A4;, X;), foreachi € {1,... k}.

The following definitions describe the concept of one TIOAlamenting another. The
intuition is thatA implements5 if for each execution of4, its externally visible behaviour

happens to be the same as the externally visible behavidgir of

Definition 2.18 Two TIOAsA and B are comparablef they have the same external inter-

face.

Definition 2.19 If A and B are comparable, then we say thdtimplements3, written

A < B, iftraces, C tracesg.

The next definition describes properties of a special kincetztion that is useful for

showing that one TIOA implements another.

Definition 2.20 Let .4 and B be comparable TIOAs. forward simulationfrom A to 5
is a relationR C Q4 x Qg satisfying the following for all states, andxz of A and B

respectively:

39

1. If x4 € © 4 then there exists a staig; € O such thatr 4 Rxg.

2. Ifx 4Rz anda is an execution fragment of consisting of one action surrounded by
two point trajectories, withv. fstate = x4, then5 has a closed execution fragment

B with 3. fstate = xp, trace(3) = trace(a), anda.lstate Rf3.lstate.

3. Ifx4Rxp anda is an execution fragment gf consisting of a single closed trajectory,
with «. fstate = x4, thenB has a closed execution fragmemntwith (. f state =

xp, trace(3) = trace(a), anda.lstate Rf.Istate.

A useful theorem, shown in [58], is that if there is a forwanmtiglation from machine
A to B then the trace of an execution fragment4ftarting in some state related via the
simulation relation to a state i is a trace of an execution fragment Bfstarting in the

related state:

Theorem 2.21 Let A and B be comparable TIOAs and It be a forward simulation
relation from.A to 5. Letx 4 andxp be states ofd and 3, respectively, such that, Rxj.

Thentracefragsa(za) C tracefragss(xp).

One immediate corollary is the following, which extends #imve result to sets of

states the execution fragments may start in:

Corollary 2.22 Let.A and B be comparable TIOASR be a simulation relation fror to
B, L4 be a subset of states g, and Lz be a subset of states Bf Suppose that for each

x € L4 there exists somg € Ly such thatr Ry. Thentracefragsi(‘ C tmcefmgsés.

Another useful corollary of Theorem 2.21, shown in [58],his following, which says
that if a forward simulation relation from one machine to anparable machine exists,

then the first machine implements the second:

Corollary 2.23 Let A and B be comparable TIOAs and Idt be a forward simulation
relation fromA to 5. ThenA < B.

40

Chapter 3

Self-stabilization

We define stabilization in terms of sets(of, V')-sequences. This is general enough to talk
about stabilization of traces and execution fragments 6fAH, and about stabilization of
transformed versions of thesd, V')-sequences.

First we define the concept oftesuffix of a hybrid sequence. This is just a suffix of

a such that its corresponding prefix has a limit time .of

Definition 3.1 Let « and o’ be (A, V')-sequences, antlbe a non-negative reala’ is a

t-suffix of « if a closed(A, V')-sequence.” exists where\”.ltime = t anda = o/

By the definition of concatenation for hybrid sequences aajgdtories, if sequences’
ando’ are concatenated to produce sequencthe first state ofY’ is overwritten by the
last state ofy” in the concatenation. This means that any sequence thatsegh some
arbitrary value of the variables af but otherwise equals’ could also be concatenated
to o’ to geta. In the following definition, we define atate-matched-suffixto be at-
suffix with the additional constraint that its first state paps to match the last state of its

associated prefix.

Definition 3.2 Leta = oo’ be an(A, V')-sequence antlbe a non-negative real.

o’ is astate-matcheétsuffix of « if it is a ¢-suffix ofa, andd’. fstate = o .Istate.

As long as ar{A, V')-sequence either has a limit time greater than soorés closed with

a limit time equal ta, we know that a state-matcheduffix of the sequence exists.

41

Lemma 3.3 Let « be an(A, V')-sequence andbe a non-negative real where eitherx

a.ltime, ort = «.ltime anda is closed. A state-matchedsuffix ofa exists.

Proof: In the case where= «.ltime, the point trajectory(«.lstate) is a state-matched
t-suffix of a; a = ap(a.lstate).

If t < a.ltime, then consider any closed prefix of « such thato'.ltime = t. By
Lemma 3.5 in [58], there exists somé& such thath = o'a”. Consider any such” with

o” . fstate changed ta/ .[state. This modifieda” is a state-matchedsuffix of . |

Definition 3.4 Let B be a set of A”, V)-sequences and be a set of A“, V)-sequences,
where A and A are sets of actions and is a set of variables. Letbe inR=°,
B stabilizes in timef to C' if each state-matchettsuffixa of each sequence i is a

sequence iid'.

Since executions and traces of TIOAs arg V')-sequences, the above definition can be
used to talk about executions or traces of one TIOA stahiizo executions or traces of
some other TIOA. The following lemma is a general result taat be used to show, for
example, that if executions of one TIOA stabilize to thoseubther then its traces also

stabilize to traces of the other.

Lemma 3.5 Let B be a set of A”, V)-sequences and' be a set of A°, V)-sequences,
whereA® and A¢ are sets of actions and is a set of variables. Letl be a set of actions
and V'’ a set of variables. I8 stabilizes toC' in timet, then{ag[(A,V’) | ap € B}
stabilizes to{ac [(A, V') | ac € C} in timet.

Proof: Say B stabilizes toC' in time t. Consider any sequeneec {ag[(A, V') | ap €
B}, and state-matchedsuffix o’ of o. We must show that’ € {ac[(A4, V") | ac € C}.
By definition of a state-matchedsuffix, there must exist some’ such thatv = oo’
andco’. fstate = «o.lstate. By definition of o, there must exist somez € B such that
ag[(A, V') = a and some prefixy}, of ap such that;[(A, V) = o anda’.ltime =
o".Itime = t. Sincea;; is a prefix ofa g, there is some/; such thatvy = o/;a/;. Consider
any suchy/; and replace its first state witht;.lstate. Thisa/; is a state-matchedsuffix

of ap.

42

Lemma 3.9 of [58] tells us that/;a/z[(A, V) = o3[(A, V) a5[(A, V). This means
thata o’ = o”"a/5[(A, V). Sincea’y. f state is equal too}.Istate, (/5[(A, V). fstate =
(L1(A, V). Istate, meaningvz [(A, V) = /.

Since B stabilizes toC' in time ¢t and o/ is a state-matchettsuffix of a sequence
in B, /5 is in C. This implies thato/z[(A, V") € {ac[(A, V') | ac € C}, and hence
o € {ac[(A, V) | ac € C}. n

Lemma 3.6 (Transitivity) Let B be a set of A”, V)-sequences; be a set of A, V)-
sequences, anf) be a set of AP, V)-sequences, wheré? A, and AP are sets of ac-
tions, andV is a set of variables. IB stabilizes taC' in timet;, andC stabilizes toD in

timet,, thenB stabilizes taD in timet; + t-.

Proof: AssumeB stabilizes toC' in time ¢;, andC stabilizes toD in time t,. Consider
any sequencepg in B such thatvg.ltime > t, + t, and any state-matched + ¢,-suffix

o3, of ap. By our definition of stabilization (Definition 3.4), we mustow thatn?, € D.

ap

Figure 3-1: Executiom s for Lemma 3.6.

By our definition of a state-matched+ ¢,-suffix, there must exist some, such that
ap = dgad, o, fstate = og.Istate anda’y.ltime = t; + ts.

Sinceay.ltime > t;, by Lemma 3.3 there must exist some state-mateheadffix a2
of o;. This means that there must exist sonjesuch that, = aba%, ak.ltime = ty,
anda?,. fstate = aj;.Istate. This also implies thatz = apa%ay;, as in Figure 3-1.

Sinceak.ltime = t; andasas. fstate = o%. fstate = ak.lstate, a%a% is a state-
matched-suffix of az. SinceB stabilizes toC in time ¢t; anda%a3, is a state-matched
t-suffix of ap, ahad; isin C.

Also, sincea?,. fstate = oz.lstate = a%.lstate, o is a state-matchet}-suffix of
a%as,. SinceC stabilizes taD in timet, anda?, is a state-matched-suffix of a sequence
inC,a%isinD.

We conclude thaB stabilizes taD in timet; + t,.]

43

We can generalize the transitivity lemma to a sequence sfafeltybrid sequences.
The proof follows by induction om, where the inductive step simply applies the above

transitivity lemma:

Lemma 3.7 Let Ay, Aq,..., A, be a sequence of sets of actions, andlebe a set of
variables. LetBy, B, ..., B, be a sequence where for eachuch that) < i < n, B; is

a set of(A;, V)-sequences. Lét, o, ..., t, be a sequence of non-negative reals where for
each: such thatl < i < n, B;_; stabilizes in time; to B,.

ThenDB, stabilizes in time to B,,, fort = £, 1<i<,t;.

The following definitions capture the idea of a TIOA beingfsgabilizing when com-
posed with another TIOA, allowing us to write algorithmsttban be started in an arbitrary
state but take advantage of separate oracles or even othstaddizing TIOAS, in order
to eventually reach some legal state of the composed aubomahe idea of a TIOA sta-
bilizing relative to another TIOA can be thought of as simtlathat of fair composition,
described in [27], showing that under certain conditiohgou have a self-stabilizing im-
plementationA of a service that’s used by a self-stabilizing implementats of a higher
level service, the3 using A is still stabilizing.

We begin by defining a function that takes a TIOA and a statd.sand returns the

same TIOA with its start state set changed.to

Definition 3.8 Let.4 be any TIOA and. be any nonempty subset®f;.
ThenStart(A, L) is defined to bed except WithO g;q,¢(4,2) = L.

We then define some shorthand that we will use often in thsigshe

Definition 3.9 We use notatiort/(.A) for Start(A,Q4) (or A started in an arbitrary
state), andR(.A) for Start(.A, reachable 4) (or A started in a reachable state).

Lemma 3.10 Let © and. A be compatible TIOAY, C Q 4, andL’ C Q. Then:

1. Start(A, L)|Start(O, L") = Start(A||O, L x L').
This says that one can change two automata’s start statesremdcompose them,
or compose two automata and then change the resulting autorsastart state, and

still get the same result.

44

2. fmgsﬁ = eTECSStari(A,L)-
This says that any execution fragmentd4starting in L is an execution of4 after

its start states are updated to be the setind vice versa.

3. ForanyM C @ 4, fragsémrt(A’M) = fragsh.
This says that it does not make a difference if an automastars states are changed
from its original start states when you consider executragrnents that are allowed

to start in any state irl.

Proof: 1. The only thing that might differ between the two is the tsshates, but it is

easy to check that the start states of both/are L'.

2. By definition of an execution and definition dftart(A, L), an execution of

Start(A, L) is an execution fragment of starting with a state ik, and vice versa.

3. Since A and Start(A, L) are the same except for start states, then an execution
fragment of either machine starting with a statd.irs an execution fragment of the

other machine starting in a state/in

The following corollary simply states that it does not makditference if two au-
tomata’s start states are changed from their original states when you consider execu-

tion fragments of their composition that are allowed totstaany state in some sét’.

Corollary 3.11 Let O and.A be compatible TIOAY, C Q4,L" C Qo, andL” C Q 4j0.

L” . L//
ThenfragSStart(A,L)HStart(O,L’) - fra'gS-A”O'

Proof: By Lemma 3.10, part Y7ags .. 4 1y stario.0) = 47098 Srarajo.L 1) BY PaIt

3, lettingM = L x L, this equalsfrags’ - m

In the following definition, we describe a legal set for a TI@é a subset of its states

that is closed under steps and closed trajectories of th& TIO

Definition 3.12 Let. A be a TIOA, and. C @ 4. L is alegal seffor A if:

45

1. Forevery(x,a,z’) € Dy, ifxz € Lthenz’ € L.
2. Forevery closed € 74, if 7. fstate € L thenr.lstate € L.

This definition implies the following trivial lemma sayingat a legal set for a TIOA is

a subset of its states that is closed under execution fraigmen

Lemma 3.13 Let A be a TIOA, andL C Q4. L is alegal setfor A iff for every closed

execution fragment of A such thato. f state € L, a.lstate is alsoinL.

The following result is trivial and follows almost immedgdy from the definition of a

legal set.

Lemma 3.14 Let A be a TIOA,L be a legal set for4, andt € R=°.

Then for anyx in frags’ and any state-matcheesuffixs of o, 3 is in frags’.
This immediately implies the following result about tracagments:

Lemma 3.15 Let.A be a TIOA and. be a legal set forA.

Then for anyx in trace fragsh and any suffis of o, 3 is intrace frags’.

Another simple observation is that the set of all states of@ATis a legal set for the
TIOA:

Lemma 3.16 Let. A be a TIOA. Therd) 4 is a legal set fotA.

A marginally more ambitious result is that the set of reathaiates of a TIOA is a
legal set for the TIOA:

Lemma 3.17 Let A be a TIOA. Themeachable 4 is a legal set fotA.

Proof: Consider any execution fragmemtsuch thato. f state is a reachable state of.
We must show that./state is a reachable state of.

By definition of reachability, itv. f state is a reachable state gfthen there exists some
closed execution’ of A such that'.[state = «. fstate. Since the extension af with o

is an execution o4, we have thatv.lstate is a reachable state of. n

46

The definition of composition makes the following lemmaittlv The lemma says that
given two TIOAs and two legal sets, one for each TIOA, theesaan product of the two

legal sets is itself a legal set of the composition of the T$OA

Lemma 3.18 Let O and A be compatible TIOAs, and Iét, be a legal set fo and L 4
be a legal set ford. ThenLy x L4 is a legal set foiO||A.

The following lemma is the simple observation that the legalfor some TIOA is also

a legal set for the TIOA with some set of its output actionslkit, and vice versa.

Lemma 3.19 Let A be a TIOA,L C @ 4, andO be a subset ab 4. ThenL is a legal set
for ActHide (O, A) iff L is a legal set forA.

The following result is a core result for substitutivity. days that if one machine’s
traces stabilize to the traces of a second machine, therattestof a third machine started
in some legal set and composed with the first stabilizes tér#oes of the third machine
started in the same legal set and composed with the secoralin@the third machine
start in a legal set translates into an execution suffix epuoperty, where each suffix of
an execution of the machine composed with the first or secamthime above is still an

execution of the machine.)
Theorem 3.20 Let A, B, andC be TIOAs and. be a legal set fo€ such that:

e Ais comparable with3, andC is compatible with4 and compatible witlB.

e traces Stabilizes in time to tracesg.

Thentracessiaric,r)4 Stabilizes in timé to tracessiarc,r)|5-

Proof: We must show that for any’a in tracessiaric,n)4 Wherea is the state-matched
t-suffix of o' a, avis intracesgiare(c,r)|5-

By Theorem 2.15, this is the same as showing thas a hybrid sequence with an
empty variable set (which is obvious since it is a trace) ghelr (1)o[(Estaric,r), D) is
in tracessiaryc,r), and (2)a[(Eg, D) is in tracesg.

For the first condition, since[(Esari(c,r), ?) is a suffix ofo’a [(Esaric,r). 0), itself a

trace ofStart(C, L), Lemma 3.15 implies that [(Esiari(c,r), D) IS intracessiaric,r)-

47

For the second condition, sine€ (E 4, () is a state-matchedsuffix of o’a[(E 4, 1),
which is intraces 4, the definition of stabilization tells us that{(E 4, D) is in tracesg.
SinceFE 4 = Eg by assumption, we have shown the second condition.

We conclude thatracessiq(c,z).4 Stabilizes in time to traces siaric,1)|5-]

The following result shows that saying that some sulsset execution fragments of a
TIOA stabilizes in timet to a set of fragments starting in some set of legal statissthe

same as saying that any statéhat occurs at timeéin a fragment inS is in L.

Lemma 3.21 Let A be a TIOA,L be a legal set ford, S C frags, andt € R=°.
ThenS stabilizes in time to frags’ iff for eacha € S and each closed prefix of « such

thato'.ltime = t, o’.lstate € L.

Proof: (=) : Say thatS stabilizes in time to frags’. We must show that for eache S
and each closed prefiX of « such that'.ltime = t, o/.Istate € L. For any such prefix’
there is some” such thaty = o’«”. Choose such an” such that”. fstate = o’.lstate.
By definition of a state-matchedsuffix, o” is a state-matchedsuffix of a. By definition
of stabilization,a” is in frags. This implies that”. fstate € L. Sinced’.lstate =
o’ fstate, o Istate € L.

(«) : Say that for eaclv € S and each closed prefix of « such that'.ltime = t,
o .Istate € L. We must show thaf stabilizes in timel to frags’i. This means that
we must show that for anyg € S and state-matchedsuffix o of «, o is in fragsh.
By definition of state-matchettsuffix, there must exist some prefiX of « such that
o ltime = t, /o’ = «, anda”. fstate = o' .Istate. By assumptiong/.[state € L,

meaningy”. fstate € L, and hence that” € frags’. m

The following lemma says that if you consider an executiohef composition of a
machine started in an arbitrary state together with a macstarted in a reachable state, a
suffix of that execution is still an execution of the compiositwith one component started

in an arbitrary state together with a machine started in ehaale state.

Lemma 3.22 Let O and.A be compatible TIOAs andbe a nonnegative real.

If o € execsy(ayro) and3 is a state-matchettsuffix ofa, thens € execsy)| ro)-

48

Proof: This follows immediately from Lemmas 3.14, 3.16, 3.17, arkB3 |

This immediately implies the following corollary aboutdes:

Corollary 3.23 Let O and.4 be compatible TIOAs.

If a € tracesy () ro) @and g is a suffix ok, thens € tracesyayro)-

The next definition describes self-stabilizatiofi.is some TIOA that can be started in
an arbitrary initial state, whil€® is an oracle TIOA that is composed with. The legal
setL can be thought of as some set of good target states for theasitiop. A is said to
self-stabilize in timet to L relative toO if within ¢ time, any execution of|/O with A

started in an arbitrary state reaches a legal state.

Definition 3.24 Let © and.A be compatible TIOAs, antl be a legal set for4|| O.

A self-stabilizes in time to L relative toO if execsy o Stabilizes intime to frags’ .

Notice in the definition above that whéh = R(O’) for some TIOAO', we are effec-
tively describing the capability of a self-stabilizing TAQA to recover from a corruption
fault, whereA'’s state can be changed arbitrarily at some point in an ei@tuConsider an
execution of4]|O in which a corruption fault occurs &, changing the state o4 to some
arbitrary state. Call the resulting state4ffO states. That states is in () 4 X reachablee.
Any execution fragment starting fromis in ezecsyayo. By our definition,execsy)0
stabilizes tofragsﬁwo, meaning that after a corruption fault, the system stadslip a legal

State.

49

50

Chapter 4

Emulations

In this chapter, we introduce a formal theory of emulatidfe.start by giving the definition
of an emulation. Then we describe emulation stabilizatma, show a simple result stating
that a stabilizing emulation of a self-stabilizing progrhaas traces that eventually look like

those of the self-stabilizing program started from a le¢gtiesof that program.

4.1 Emulation

Here we define the concept of emulation, a kind of implemenatlationship between
two sets of TIOAs B andC. Say we have some functiammu that maps machines i@
to machines in3. We would like to say, intuitively, that the set of machir@emulates
the set of machines if for eachC € C, the machinemu(C) in B has externally visible
behaviors that can be restricted so as to be in some coredra@t of the externally visible
behaviors ofC.

Our definition of an emulation exposes a little more inforioatn that we allow the
designation of two automata’ andC"” that will be composed with each of the machines in
B andC respectively.B’ andC’ are system components that always run the same program,
and hence don’t change based on which element sfbeing emulated. Pulling out these
special automata will prove to be very useful when we disstessilization of emulations
(see Section 4.2)B then emulate€ in the context ofB’ andC" if for any C' in C, each

trace ofemu(C)|| B’ is atrace in a constrained set of trace€'gf"", subject to some action

51

hiding.

The constraints on traces 6f|C” are expressed in the definition using théunction,
which maps eacli’ to some subset of the execution fragment§'§f”’. (We map to exe-
cution fragments o€’||C", rather than executions 6f||C’, in order to allow us to use the
sames later when we consider stabilizating emulations.) We canSut describe prop-
erties of or relationships between the state§'@ndC’. For exampleS might describe a
consistency condition between statesb&ndC’, requiring that certain state components
in C' andC” have the same value. These kinds of conditions can be dificuédious to

describe otherwise.

Definition 4.1 Let B andC be sets of TIOAs;nu be a function of typ€ — B, B’ and(C’

be TIOAs, andbz and £ be sets of actions such that:
e ForeachB < B, B is compatible with3" and Ez C Opp'.
e ForeachC € C, C'is compatible withC" and £z € O¢c-

Let S be a function that maps eachin C to a suffix-closed subset ¢f agsacthide(r.,c|c7)-
We say thatBB, B', Ez) emulateqC, ', E¢) constrained t& with emu if for eachC'

in C, tracesacthide(Eg,emu(c)|B) © {trace(a) | a € S(C) N erecsactide(Ee,cc7) }-

In the special case wher® maps eaclC to the entire set of execution fragments of
C|C" after action hiding, we actually are not constraining thiecderaces ofC||C’ that
traces of the emulation are supposed to correspond to.diodlse, we drop the “constrained

to S” phrase:

Definition 4.2 Let (B, B', Eg) emulate(C, C’, E¢) constrained ta5 with emu, wheresS'is
the function that maps eadhiin C to the setfragsacttide(re,c|c7)-

Then we say thatB, B', Ez) emulatesC, C’, E¢) with emu.

We then conclude that for this special cas&pbur emulation definition unrolls to give

an implementation result:

Lemma 4.3 Let(B, B, Eg) emulate(C, C’, E¢) with emu.
Then for every” in C, ActHide(Ez, emu(C)||B’) < ActHide(E¢, C||C").

52

4.2 Emulation stabilization

Now we define emulation stabilization, a concept closelgtesl to self-stabilization. Let’s
say that(B, B’, Eg) emulate§C, C’, E¢) constrained t&5' with emu. We want to define
the idea that for any’' in C, the machinemu(C') started in an arbitrary state and com-
posed withR(B’) (B’ started in a reachable state) has traces that are eventeiallgd to
constrained traces ¢f and(C"’.

What sorts of constrained traces @fand C’ should they be related to? Think 6f
as the oracle piece; we want to ensure thats always in a reachable state. Intuitively,
after stabilization an emulation should manage to prodrazes that are related to traces
of constrained execution fragments of the compositiot’@nd Z(C’). However, a state
of C' corresponding to the state at the beginning of such a fragmggyit be arbitrary; an
emulation could stabilize to a point after which it looksdik is running the same program
as C' but not necessarily starting from an initial or reachabktest Hence, we require
that the emulation’s traces should stabilize to constrhtreces ofU/ (C') (C' started in an

arbitrary state) composed with(C"), subject to some action hiding.

Definition 4.4 Let(B, B, Eg) emulate(C, C’, E¢) constrained ta5' with emu, and lett be
in R=°. We say that3, B’, E5) emulation stabilizes in timeto (C, C’, E¢) constrained
to .S with emu if tracesacitidge(zs,u(emu(c))|rp)) Stabilizes in time to {trace(a) | a €

S(C) N execs actHide(Be,U(C)|[RC) }-

As before with our definition of emulation, we introduce anefor the special case

whereS maps eacld’ to the entire set of execution fragment(gfC” after action hiding:

Definition 4.5 Let (B, B', E) emulation stabilize in timeto (C, C’, E¢) constrained ta5
with emu, whereS is the function that maps eachin C to the setfragsacthide(e,c|c)-

Then we say that3, B’, Eg) emulation stabilizes in timeto (C, C’, E¢) with emu.

Lemma 4.6 Let (B, B', Eg) emulation stabilize in timeto (C, C’, E¢) with emu.
Then for everyC in C, tracesactide(Es,Uemu(c))|r(p)) Stabilizes in timet to

IracespctHide(Ee,U(C)| R(CT)) -

53

Finally, if (B, B’, Eg) emulation stabilizes toC, C’, E¢) constrained t&5 with emu,
and somé” in C self-stabilizes to some legal sktelative toR(C"), we can easily conclude
that the traces ofmu(C) started in an arbitrary state and composed Wit#3’) stabilize to
the constrained traces 6f||C’ started inL, subject to some action hiding. In other words,
a stabilizing emulation of a self-stabilizing program heeces that eventually look like

constrained traces of the self-stabilizing program stiiriea legal state.

Theorem 4.7 1. Let (B, B, Ei) emulation stabilize in time, to (C,C’, E¢) con-

strained toS with emu.

2. LetC be an element a, L be a legal set for”’||C’, andt, € R=° be chosen so that
C self-stabilizes td. relative to R(C") in timet,.
Then traceSActHide(EB,U(emu(C))||R(B’)) stabilizes in t|met1 + to to {trace(oz) | o €

S(C) N execs actide(Ee,Start(CC7,L) } -

Proof: By definition of emulation stabilizationy aces acttide(zs,0 (emu(c)) | r(B)) Stabilizes
intimet; to {trace(a) | a € S(C) N execsacthide(Ee,U(C)|R(C)) }-

Since C' self-stabilizes toL relative to R(C’) in time t,, the definition of self-
stabilization says this means thatecsy) r(c) Stabilizes in time, to execssiari(c|cr,1)-
Since S(C) is suffix-closed, this and Lemma 3.5 imply thdtrace(a) | a €
S(C) N execsactHide(Ee,UC)rR(cry } Stabilizes in timet, to {trace(a) | o € S(C) N
6$€C$ActHide(Ec,Stm«t(CHC/,L))}-

Sincetracesactide(Es,U (emu(c))|r(5)) Stabilizes in time; to {trace(a) | o € S(C) N
exeCS ActHide(Ee,U(C)||R(C?)) » Which in turn stabilizes in time, to {trace(a) | o € S(C) N
ETECS ActHide(Ee,Start(C|C7,1)) }» LE€MMa 3.6 implies thatracesaceride (£s, U (emu(c))||r(B')) Sta-

bilizes in timet; + ¢, to {trace(a) | o € S(C) N execsactHide(Ee,Start(C|C7 L)) } n

This immediately implies the following result for the sp@ataseS that maps each’

to the entire set of execution fragment(gfC” after action hiding:

Corollary 4.8 1. Let(B, B', Es) emulation stabilize in timg to (C, C’, E¢) with emu.

2. LetC be an element df, L be a legal set for”||C’, andt, € R=° be chosen so that

C self-stabilizes td. relative to R(C") in timet,.

54

Then lracesactHide(Eg,U (emu(C))|R(B')) stabilizes in time ¢ + t; to

LT acCeSpctHide(Ee,Start(C||C7,L))-

55

56

Chapter 5

Failure transform

This chapter describes a general transformation of a TI@& annew TIOA that can be
crashed and restarted. This is done with the additidaibaAndrestart actions and &ailed
variable indicating if the automaton is in a failed statetHis definition, a failed machine
is one where no locally-controlled action is enabled, isgld not change its state, and the
values of the variables do not change while time passes.lédfaaachine can be restarted
with arestart action, making the machine non-failed and initializing ttagiables of the
original machine to a start state of that machine.

After we present the definitions, we present several resutts respect to theFail
transform.

The first definition describes a TIOA that we daail transform.

Definition 5.1 Let A = (X,Q,0,1,0, H,D,T) be a TIOA such thaffail, restart} N (1 U
OUH) =0and failed ¢ X. ThenA is Fail-transformable

Now we present the definition of th&il transformation of d&ail-transformable TIOA.

Definition 5.2 Let A = (X, Q,0, 1,0, H, D, T) be aFail-transformable TIOA.
ThenFail(A)! is defined to be the structure:

e X' = X U{failed : Bool,a discrete variablé.

In a system with multiple components wigail transforms we employ the appropriate renaming to keep
thefailed variable andail andrestart actions unique between the transforms. For example, gil@AI A
and B, we refer to theailed variable inFail(A) asfailed 4, and thefailed variable inFail(B) asfaileds,
etc.

57

o) ={zxcvd(X')|z[X € Q}.

O ={x e Q| failed Vv z[X € O}.

e H'=H O =0,I'=1U/{fail, restart}.

D' equals the set dfr, a,2’) € X' x A x X’ such that one of the following holds:

—x =2 Nz(failed) Na € 1.

— (2] X, a,2' [X) € DA —a(failed) N —2'(failed).
— 2'(failed) N a = fail.

— 2'[X € O Ax(failed) N =/ (failed) N\ a = restart.

— x =2’ N —x(failed) A\ a = restart.
e 7' equals the set of trajectoriese trajs(Q’) such that one of the following holds:

— =7(0)(failed) NT | X € T.

— 7(0)(failed) A T is any constant trajectory.

In this definition, a TIOAA is transformed intd-ail(.4). The new automaton has one
additional state variabldailed, indicating whether or not the machine is failed, and two
additional input actiondail andrestart. The variabldailed is a discrete variable (defined
in Section 2.2), meaning it does not change over the couraérajectory. The states of the
new automaton are states of the old automaton, togetheramtiiuation of the Boolean
flag failed. The start states of the new machine are defined to be oneg ¥ailed is
arbitrary, but iffailed is false then the rest of the variables are set to values stensiwith
a start state ofd.

The definition of D’ describes the new set of valid transitignsa, 2’). First, the set
includes the transitiong, a, =) where theailed flag is set inz anda is an input action of
A. This basically addresses input-enablindrail (.4) by saying that if a machine is failed,
then an input action that occurs results in no change to #te.sbecond, the set includes
“normal” transitions of A when the machine is not failed— if the machine is not failed in

stater anda is in the set of actions aofl, then the resulting staté is still nonfailed, and

58

(] X, a,2'[X) is a valid transition ofD. Third, we describe the failing of a machine— if
a =fail, thenz'(failed) is true and the rest of the state can be changed arbitradlyrtif,
we describe the restarting of a failed machinex(ifailed) is true anda =restart, then
2'(failed) is false and the rest of the variables are initialized to #airstate of A. Fifth,
we describe the no-op that results if we restart a non-failedhine— ifa = restart and
—z(failed), then stater equalsy’.

The set of trajectories of ' can be divided into two sets of trajectories based on the
value of thefailed variable. In both sets, the value of theled variable is constant. If
failedis false over the course of the trajectarythenr is such that | X is a trajectory of
the machined. In other words, while the machine is not failed its trajeies basically look
like those of the original machine. féiled is true over the trajectory, then all variables
are constantim. This means that if the machine is failed, then its stateatdes are frozen.

This does not constrain time from passing— any constamdi@jy is allowed.

Results about theFail transform

Here we present several results about the failure transfttomthat will prove useful later
in the thesis. The first two results show a relationship betwibe failure transformation
applied to a composition of two TIOAs and the failure tramsfation of the individual
component TIOAs. Then we describe a relationship betweerf'thl and U operators
(useful when considering self-stabilizing algorithms).

The following theorem is an execution projection resultt thays that performing a
Fail-transform on the compositiod, ||.4, of two automata results in a machine whose
executions constrained to actions and variableS@f(.A,) or Fail(.A;) are executions of
Fuail(Ay) or Fail(Ay) respectively. It follows immediately from the definition B&il and

Lemma 2.14.

Theorem 5.3 Let A; and A, be compatible TIOAs that are eadha:l-transformable,
and leta be an execution fragment éfail(A,||Az). Thena|(A; U {fail, restart}, X; U
{failed})is an execution fragment éfa:l(A;), anda[(A U{fail, restart }, XoU{ failed})

59

is an execution fragment dfail(A,). Also,«a is an execution of'ail(A;||As) iff « re-

stricted in the manner above is an executiorfafl(.A;) for eachi € {1, 2}.

The following theorem is an execution pasting result sintbtaLemma 2.16. Say that
we are given two compatiblBail-transformable TIOAsA; and .A,, and executionsy,
anday of Fail(A,) and Fail(As) respectively, where each execution starts with the same
value for failed. The result says that if there is a hybrid sequeficeith the same type
as a trace of'ail(A;||.A;) and such that is consistent with the traces of executians
andas in that 5 restricted to external actions éfail(.A,) is equal to the trace af; (and
similarly for A,), then we can paste together the executiepanda, to get an execution
of Fail(A;|.As) whose trace is equal 1o.

It follows immediately from the definition dfail and Lemma 2.16.

Theorem 5.4 Let A = A,||.A,, and leta; anda, be executions df'ail(A;) and Fail(A,)
respectively such that,. fstate(failed) = . fstate(failed). Let 3 be an(Epqia),0)
sequence such thal (Epqia,), 0) = trace(a;) and B[(Epqia,), 0) = trace(as).

Then there exists an executiarof Fail(.A) such thaty, = of (Araia,), Xraica))s
s = o[(Apai(as): Xrail(Az)), andtrace(a) = 8. (Notice that this implies that thgailed
flag in the first state afi; is equal to thefailed flag in the first state of, and similarly for
the first state ofv,.)

The last result is the following, stating that we can intardpe the'ail andU operators

on an automaton and get the same result:

Theorem 5.5 Let .4 be a TIOA such thatil andrestart is not an action of4 and failed
is not a variable. The#ail(U(A)) = U(Fail(A)).

Proof: This follows immediately from the definitions dfail andU. In both cases, the
resulting automaton igl started in an arbitrary state, only with néail andrestart actions

and with a newailed variable started with an arbitrary value. |

60

Chapter 6

Layers: Physical layer model

Here we describe the formal theoretical system model for bilmaetwork that we will be
working with in this thesis.

The physical layer consists of a bounded, tiled region optaae, where mobile phys-
ical (real) nodes are deployed. These nodes are TIOAs dilsleefo crash failures and
restarts, and with access to local clocks. They also havesado a local broadcast ser-
vice Pbcast which models broadcasts and receives of messages, aableeleal world
automatonRW, which models movement of the physical nodes and real-tileewill use

this layer to emulate the VSA layer (we define emulation infiiéa4).

6.1 Network tiling

The network tiling describes the geography of the network:

e R is the deployment space of the network. It is a fixed, closedntded connected

portion of the two-dimensional plane.
e dist : R? — R="is the Euclidean distance between two point&in

e [is the finite totally ordered set of region identifiers.

A regionis a set of connected points i, with a unique identifier froni/. R is divided
into closed regions. The only overlap of points permittedistinct regions is at the shared

boundaries.

61

e points : U — 2% is a function mapping from region ids to pointsih points(u) is

defined to be the set of points in the region correspondinddntifieru.

e region : R — U is a function from points ink to region ids. For a point € R,
region(l) is defined to benin({u € U | [€ points(u)}), that is, the minimum id of

any region containing

e nbrs : 2V*U is a neighbor relation on ids froii. nirs holds for any two distinct
region idsu andv whose regions share any points. More formally,v) € nbrs <
(u # v A points(u) N points(v) # (). Recall that if two distinct regions share any
points, these must be boundary points of both regions. Téfimition implies that

diagonally adjacent neighbors in a grid are neighbors,Xangle.
o nbrst(u) : U — 2V refers to the sefu} U nbrs(u).

e regDist : U?> — N is the region distance between two regions. For regioasd
v, regDist(u,v) is defined to be the hop count of the shortest path betwesmd
v in the neighbor graph induced by thér relation. For example, it = v then

regDist(u,v) = 0, and if (u, v) € nbrs thenregDist(u,v) = 1.

e D, a natural number, is the network diameter in terms of registances. It is

defined asnax,, ,ev regDist(u, v).

e 1, @ non-negative real, is an upper bound on the Euclideaamndistbetween two
points in the same or neighboring regions. More formally,require that for every
u,v such thatv € nbrs*(u) and for everyl; € points(u) andly € points(v),
dist(ly,ly) <.

Example: Grid tiling Tilings are not required to be regular, though this is oftseful. One
example of a regular tiling is a bageb € R>°, grid whereR is divided into squaré x b
regions. Squares that share edges or are diagonal from otteegrsharing a single border
point, are neighbors. This means that each non-borderesguarhas eight neighbors. In

such a base grid, » could be any value greater than or equat{® b.

62

1 Signature: Trajectories: 12

Input GPSupdate(l, t),, | € Rt € RZ0 if clock# Lthen

3 Input brcv(m),, me Msg d(clock) =1 14
Output beast(m),, me Msg else constantlock

5 Arbitrary additional norfail, nontestart actions. Additional variables develop as specified. 16

7 State:
analogclock R=0U { L}, initially L
9 Finite set of additional noryailed variables, each initially
set to a unique initial value.

Figure 6-1:P,.

Example: Hexagonal tilingAnother example of a regular tiling is a hexagonal, or heney
comb, tiling with edges of length, b € R>°. In this case, each interior hexagonal region

has six neighbors, one for each edgeould be any value greater than or equai/Ao3 b.

6.2 Mobile physical nodes

Here we describe our model of the mobile physical nodes. Mioidel describes the soft-
ware aspects of the physical nodes, but does not addressttla mobility of the nodes;

mobility is modelled by the “Real World” automatd®il’, described in Section 6.3.

e P is the set of mobile node ids.

e For eachp € P, we assume a mobile physical nodt from a set of TIOAs,

P Program,. Each physical nod&), is modeled as a timed 1/O automaton.

e Msg is the set of messages that a process may broadcast.

We provide an outline of the allowable structure f in Figure 6-1. Each mobile
physical nodeP, has a local clock variablelock. We assume that each nodel®ck
progresses at the rate of real-time, and is initidlly

We assume that a physical noflghas at least the following external interface, which

includes the ability to broadcast and receive messageaedeiveR11 updates.

e Output bcast(m),, m € Msg:

A nodep may broadcast a message usitigrastthroughbcast(m),.

63

e Input brev(m),, m € Msg:

A nodep receives a message from Pbcastthroughbrcv(m),.

e Input GPSupdate(l,t),,l € R,t € R=":
Such an update frolRW indicatesP, is currently at locatiord and the current time
ist. If the node adopts the values its local clock valuelock, then since the local
clock’s value progresses at the rate of real-time, the valuécwef: will generally be
equal to that of real time. Howevefpck might not be equal to real-time if the node
has just recovered from a failure or started in an arbitréages In these cases, the

periodicGPSupdate can correct the clock value.

We allow additional arbitrary nofail and nonrestart actions and local nofailed
state. Our restrictions ofail and restart actions andfailed variables makes’, Fail-
transformable, which allows us to use thail transformation described in Chapter 5 to

getFail(P,).

6.3 RW: Real World

RW models system time and mobile node locations. It is an eatesource of reliable
time and location knowledge for physical nodes. RWTIOA in Figure 6-2 maintains
location/ time information and updates physical nodes Wittt information. Its outputs
are also inputs to thBbcastservice, allowing the broadcast service to guarantee efgliv
of messages sent between nodes that are located geoghigptiase to each other.

RW is parameterized by the following constants:
® U, : RZY, a maximum velocity magnitude for mobile node motion.
® coumple : R=Y, @ maximum amount of time between updates for each node.

RW maintains a variablejow, that is considered the true system time, and two map-

pings from the set of physical node i#s loc andupdates:

e now iS a non-negative real representing the current true systeen

64

Signature:
2 Output GPSupdate(l, t),,| € R p€ P, t € R0

4 State
analognow. R=9, initially 0

6 updategp): 28*%=° for eachp € P, initially 0
loc(p): R, for eachp € P, initially arbitrary

Trajectories:
evolve
d(now) =1
|d(loc(p))| < Vinaaz, for eachp € P
stop when
dp € P:V(l, t) € updategp): NoW> t+ €;qmpie

Transitions:
Output GPSupdate(l, t),
Precondition:
| =loc(p) At=nowAV(u,t') € updategp): t # t’
Effect:
updategp) < updategp) U {(I, t)}

10,

12

14

16

18

20

Figure 6-2:RWv 4z, €sampie) -

prevUpd(p: P, t: RZ0): R=0U { 1}
2 if 3(1, ') € updategp): t' < tthen
return max ({t'e R=°|3(I,t') € updategp):t' < t})
4 else return L

regt (p: P, RZ9): U U {1}
if 31 € R (I, t) € updategp) then

else returnreg—(p, t)

12

return min ({ve U|3le points(v):(l,t)€ updategp)}) 14

16
reg(p: P): UuU {L}

6 reg”(p: Pt RZO):UU{L}
return regt (p, now) 18

if 3(1, t') € updategp): t' < tthen
8 return min ({v € U|
3l € points(v): (I, prevUpdp, t)) € updatesp) })
10 else return L

Figure 6-3:RWderived variables.

e loc : P — R maps each physical node id to a point in the plane indicatieg t
node’s current location. Initially this is arbitrary. Wesasne that the magnitude of

the change irhoc for eachp € P is bounded by speed,,...

e updates : P — 2R 'maps the set of physical node id3, to a set of pairg/, ¢),

indicating that s5PSupdate(l, t),, occurred. Initially, this set is empty.

When RW outputs aGPSupdate(loc(p), now), at a mobile node’,, informing the
node of the node’s locatiolec(p) and the current time, the p&jfoc(p), now) is stored in
updates(p) as a record of the update. @PSupdate is required to occur at a mobile node
P, at time 0 (guaranteed by the stopping condition on line 14thadact thatupdates(p)
starts out empty for eachin P) and at least every,,,,,,.. time thereafter (guaranteed by
the stopping condition expressed on line 14). GRSupdate is allowed to occur only
once at any particular timeand particular process, (Quaranteed by the precondition that
Y(l,t') € updates(p) : t' # t on line 19). This precondition is useful later in preventing

certain race conditions from occurring when a node ressdies a failure.

65

We also define several derived function variables that valluseful throughout this

thesis (see Figure 6-3):

e prevUpd : (P x R) — R U {L} maps a physical node id and timet to the
timet’ of the lastGPSupdate,, that occurred before time This is calculated to be

max({t' | I([,t') € updates(p) : t' < t}). If no such time exists, it returns.

e reg” : (P xR) — U U{L} maps a physical node id and timet to the region
indicated by the lagBPSupdate, before timet. Itis defined as the € U such that
there is a locatiori in region(v) such that(l, prevUpd(p,t)) € updates(p). If no

such region exists, it returns.

This function is useful for referring to the region that agess is in, as indicated
by the history ofGPSupdates stored inRW.updates, at the beginning of some
time. A processP, can be considered to be in two different regions at the same
time ¢ in an execution. For example, a process’s region in someuéracat timet
might be a region. Then aGPSupdate(/,t), could occur, changing the region to

u = region(l). This means that the variablelV.reg(p) at timet is set tov at the
beginning of timet, and set ta: at the end of time. The functionreg™ returns the

first region,v.

e regt : (P xR) — U U {L} maps a physical node id and timet to the region
indicated by theGPSupdate, that occurs at time if it exists, and to the result of

reg—(p, t) if it does not.

Similarly toreg, this function is useful for referring to the region that agess is
in at some time, though in this case it refers to the region at the end of iha.t

For example, in the scenario describeddg—, reg™(p, t) would returnu.

e reg: P — U U{L} maps a physical node jdto the region of the node as indicated
by the lastGPSupdate,. This is the last reported region of the node, and is defined

to bereg™ (p, now).

66

Reachable states oRW

Here we characterize the reachable stateR1df by providing a list of properties exactly
describing those states. We show that (1) the list of praggers an invariant foi1/ and
(2) any state satisfying the list of properties is indeedszin@ble state aRV.

First we describe the reachable state&oi .

Definition 6.1 Define/nvgy to be the set of statesof RIW such that the following prop-

erties hold:

1. Vt € (0,now],Vp € P,3(l,t") € updates(p) : [t —t'| < €sampie-
This means that for any timeafter O and up to the clock time in for eachp € P

there is somél, ¢') pair in updates(p) wheret’ is within €4, time oft.

2. Vp € P,Y(l,t) € updates(p) : t € [0, now].
This means that there are no update records that indicatepatate occurred before

time O or after the current time.

3. Vpe PY(,t),(l',t') € updates(p) : [t =t =1 =1].

This means that there is at most one update record for a pdati¢ime and process.
4. There exists a functidlncAt : (P x R=) — R such that for allp € P:

(@) Y(l,t) € updates(p) : locAt(p,t) = L.

(b) locAt(p, now) = loc(p).

[locAt(p,t1)—locAt(p,t2)

|
‘tl —t2| S Umax-

(C) th,tQ:OStl <ty < now :

This means that there is a function that can describe for eaehP a location
at any time between 0 and the current time that is consistéhttive update
histories stored inupdates(p), the current location, and the maximum speed

restriction ofv,,,q,..

We now show that the set of properties describingzy, is an invariant forRWW. We do

this by showing that every reachable statd?oV is in Invgy .
Lemma 6.2 reachablegy C Invgy .

67

Proof: Consider a state ineachablery,. We must show that it satisfies the properties of
a state inflnvgy, . This is the same as showing that the last state of any clossaliton of
RW isin Invgy . We proceed by induction on closed execution&of .

First, we check that the initial state &fi1 satisfies the list of properties above. Since
updates(p) are empty for each € P, the properties are trivially satisfied.

Next we check that if the properties hold in some statnd an action is performed

that leads to state, then the properties hold in stateé We break this down by action:

e GPSupdate(l,t),: Itis easy to see that Properties 1 and 2 still hold. Progdgn
only be violated in there exists some pdirt) € updates(p) wherel # I'. However,
by Property 4 in state, [= locAt(p, now). Sinceloc(p) does not change in 0 time,
thenloc(p) = locAt(p, now), meaning that = I’. For Property 4, théoc At function

that exists for state would still satisfy our requirements in staté

Finally we check that for any closed trajectargtarting with a state where the prop-
erties hold and ending in a statg§ the properties hold in staté. The only interesting
properties to check are 1 and 4. Property 1 will still hold doehe stopping condition
expressed in line 14. For Property 4, simply adopt the fondtic At that must exist at the
beginning of the trajectory and extend the mapping:fer «(now) for eachp € P to be
loc(p) attimet in 7. The resulting function will satisfy 4(a) and 4(b). 4(c) Wibld due to

the trajectory restriction described on line 12. [|

Now we show the opposite direction, namely that any stateniryy is a reachable
state of RWW. We do this by showing how, given a staten Invgy,, we can construct an

execution ofRWW that ends ine.

Lemma 6.3 Invgy C reachablegy .

Proof: Consider a state in Invgy. We must show that is a reachable state @tiV.
We do this by constructing an executiarof RW such thatv.lstate = x. This execution
describes the motion of the physical nodes and contains@RIyupdate events.

By property 4 in the description dihvgy,, there exists some functidnc At to describe

the location of each process from time Ouow). We use this to describe an execution

68

Signature: Input bcast(m),,

2 Input GPSupdate(l, t),,| €R pe P, t€ RZ0 Effect: 24
Input bcast(m)y, me Msg, q € P if V(m', t, P’) € pbcastdp): [m # mV t # now] then
4 Output brev(m),, me Msg p € P pbcastdp) < pbcastdp) U {(m, now, P)} 26
Internal drop(m, t, g, p), m€ Msg t € R2%,p,qe P
6 Output brev(m), 28
State Local:
8 analognow R0, initially 0 p P, RZ0, P2 30

d QRXRZO ¢ initiall Precondition:
updategp): 2 ,>Oor e}?chp € P, initially 0 (m, t, P") € pbcastdp) Aq e P’ At now 32
10 pbcastqp): 2Ms9xR="x2" ‘for eachp € P, initially ¢ | Effect:

pbcastdp) < pbcastdp) -{(m,t, P)} U {(m t,P’-{q})} 34
12 Trajectories:

evolve Internal drop(m, t, g, p) 36
14 d(now) =1 Local:
stop when LR <t t':R20 P 2P 38

16 Jpe P:3(mt,P’)e pbeastdp):[t= now-d,;, s A P'# 0] | Precondition:
(I,t'ye updategp) AV (I*, t*)€ updategp):[t* < t'Vt*>t] 40

18 Transitions: (I, t")e update$q)AV (I*, t*) € updategq): t* <t/
Input GPSupdate(l, t)p (m, t, P") e pbeastdp) A ge P’ At nowAdist(l, I')> Freq; 42
20 Effect: Effect:
updategp) — updategp) U {{I, t)} pbcastqp) — pbcastdp)-{(m,t, P)}u {(m t, P’-{q})} 44

Figure 6-4:Pbcastd, s, 7real)-

a, where the evolution of the variablec in « from time 0 tonow is defined as follows:
for eachp € P and timet, loc(p) at timet in « is equal tolocAt(p,t). In addition, for
eachp € P and(l,t) € updates(p), we add aGPSupdate(l, t), action at timef in o. If
more than on&PSupdate occurs at any time, order theGPSupdates by the process for
which the update is occurring (recall that by property 3 ehisrat most on&PSupdate

per process at a particular time). It is easy to seedhatain execution oR1V: by Property

4 and our construction of the evolution ok, the change in location of processes satisfies
the requirements for an execution 8¥/. By Properties 2, 3, and 4, eaG@PSupdate is
enabled. By Property GPSupdates occur often enough to satisfy the stopping conditions

of RW inline 14. Itis also easy to see thatstate is equal tar. [|

The preceding two lemmas directly imply the following chaesization theorem:

Theorem 6.4 Invpw = reachablegryy .

6.4 Pbcast: Local broadcast service

Each node has access to the local broadcast communicatiaoesebcast modelled in

Figure 6-4. The service is parameterized with the following

69

e ..., & NON-negative real representing the minimum broadcdsigaf the nodes.

We require that,c.; > 7 + €sampieVmaz -
e d,,,s, @ NON-negative real representing the message delay uppedb

The service described in Figure 6-4 allows each cliétio broadcast a message to all
nearby clients throughcast(m),, and receive messages broadcast by other clients through
brcv(m),.

The main variable of this service j#castq(p) for eachp € P, storing information
about broadcasts performed By. When abcast(m), input occurs at some timg if no
bcast(m), already occurred at timee Pbcastadds &m, ¢, P) tuple topbcastq(p). The set
of process ids in the third component of the tuple repredémetset of processes that might
still potentially receive the message. Some positive arhofitime after the broadcast
(guaranteed by the precondition thtag now on line 32 and 42), a proces3 in the set
can either receive the message (lines 28-34), By'sflast reported locatio (as described
on line 41) is farther than,.,; from the last reported locatidnof the sender at time(as
described on line 40), the transmission may faiFq(lines 36-44). In either case, theq¢d
is removed from the set of ids of processes that might stire the message. We require
that once a message is broadcast, for every node the messageived or the transmission
fails by at mostd,,, time later (guaranteed by the stopping condition expresselihe
16). Our requirement that a non-0 amount of time pass betiwexadcast and the possible
receiving or dropping of the message is utilized later tos@né race conditions that can

result when a process changes regions or failure modes.

6.4.1 Properties ofPbcast

The service guarantees that in each executioh Pbcast there exists a function mapping

eachbrcv(m), event to theédcast(m), event that caused it such that the following hold:

e Integrity. If a brcv(m), eventr is mapped to &cast(m), eventr’, thenn’ occurs

beforer.

70

e Non-duplicative deliverylf a brcv(m), eventr is mapped to &cast(m), eventr’
which occurs at a timg then there do not exist any othiercv(m), events that map
to abcast(m), event at timeg. (Notice that this is slightly stronger than the normal
non-duplicative delivery property. Here, if some processds the same message
more than once at some timgthis property implies that at most one copy of the
message is received by any process. This is enforced thithegtheck on line 25

for whether the sender has already sent a copy of the messtigetame.)

e Bounded-time deliverylf a brcv(m), eventr is mapped to dcast(m), eventr’

wheren’ occurs at time, then evenir occurs in the intervalt, ¢ + dppys).

e Reliable local delivery This guarantees that a transmission will be received by
nearby nodes: If &cast(m), eventr’ occurs at time where the last recorded loca-
tion of p by the end of time is [anda.ltime > t + d s, and for each last recorded
location!’ of ¢ in the entire intervalt, t + dppys, dist(l,1") < r,cq, then there exists
abrcv(m), eventr such thatr is mapped to somlecast(m),, event (not necessarily
7') attimet. (This property is enforced through the preconditionsliedrop action
in lines 38-42. A process fails to receive a message tratesrdgtt timet only if at
some point during the transmission interval it is too fameggmrted byGPSupdates,

from the last reported location of the transmitter at time

Notice that we are not concerned with the failure status gal nodes in our model
of Pbcast Messages are delivered entirely based on the locatiorteaidades. If dail-
transformed physical node is failed whebrav event occurs for it, then by our definition
of theFail transform, théorcv event is a no-op.

Clearly, this is a theoretical abstract model of broadcastraunication available to
mobile nodes. In real mobile network deployments, relidbbal delivery can be difficult
to achieve. While the abstract model assumed here does atwdate the possibility of
bounded-time retransmission to tackle wireless broadssises such as message collisions,
it does not handle the reality of having orligh probabilitybounded-time retransmission.
There is ongoing work towards providing reliable commuti@ain wireless networks

with collision failures [16, 17], but coping with such setis is beyond the scope of this

71

thesis.

6.4.2 Reachable states d?bcast

Here we characterize the reachable statéxbahstoy providing a list of properties exactly
describing those states. We show that (1) the list of prasers an invariant foPbcast
and (2) any state satisfying the list of properties is ind@eelachable state &fbcast

First we describe the reachable statePlotast

Definition 6.5 Definelnvp,...: 10 be the set of statesof Pbcastsuch that the following

properties hold:

1. Vp € P,¥{(m,t, P') € pbcastq(p) : t € [0, now].
This means that the timestamp attached to a message brdaadcasd is not for a

time before 0 or after the current time.

2. Vp € P,Y(m,t, P') € pbcastq(p) : [t < now — dypys = P' = 0].
This means that for any record of a message broadcast frone thand,,;,,s time

ago, the set of processes yet to either receive the messalyeit is empty.

3. ¥p € P,Y(m,t, P') € pbcastq(p) : [t = now = P = P'].
This means that for any record of a message broadcast thairmztat the current

time, no process has yet received or dropped the message.

4. ¥p € P,Y(m,t, Py, (m/,t', P") € pbcastq(p) : [(m,t) = (m/,t') = P' = P"].
This means that for any two distinct records of message lwastd from the same

timet in pbcastq(p) for somep € P, the messages must be different.

We now show that the set of properties describing p,...; IS an invariant folPbcast

We do this by showing that every reachable statBlwfastis in I1vppcqs:-

Lemma 6.6 reachableppegst S INUppeqst-

Proof: Consider a state ireachable py..s:. We must show that it satisfies the properties of
a state infnvpy..s. This is the same as showing that the last state of any clossmliton

of Pbcast 1S in Invpy.qs:. We proceed by induction on closed executionPbtast

72

First, we check that the initial state Bbcastsatisfies the list of properties above. Since
pbeastq(p) is empty for eachy € P, the properties are trivially satisfied.
Next we check that if the properties hold in some statnd an action is performed

that leads to state/, then the properties hold in state We break this down by action:
e GPSupdate(l,t),: It is easy to see that the properties still hold.

e bcast(m),: It is easy to see that all properties except 1 are not affled®operties
1 and 3 are satisfied by the structure of the tuple addegdastq(p) in line 26.

Property 4 will still hold because of the test on line 25.

e brcv(m),: The only possibly nontrivial property verification to bersis for Prop-
erty 3. However, the precondition foraicv on line 32 states that# now. Hence,

Property 3 will continue to hold.

e drop(m,t,q,p): The only possibly nontrivial property verification for ghaction is
for Property 3. By the precondition on line 42, we know that now. Hence, the

property still holds.

Finally we check that for any closed trajectargtarting with a state where the prop-
erties hold and ending in a staté the properties hold in staté. The only interesting
property to check is 2. Property 2 will still hold due to thembing condition expressed in

line 16.]

Now we show the opposite direction, namely that any stateiry,...; is a reachable
state ofPbcast We do this by showing how, given a statén /nvp..s;, We can construct

an execution oPbcastthat ends inc.

Lemma 6.7 Invppeas: reachablepyeqst-

Proof: Consider a statein Invpy..s:. We must show that is a reachable state Bbcast
We do this by constructing an executiarof Pbcastsuch thatv.lstate = .
The construction is done in two phases. First, we constmaxacutiona; which

describes th&PSupdates that occurred. Then we construcby adding abcast event

73

to a; for each message tuplejncastq(p), p € P, together withbrcv events for processes
whose ids do not appear in the tuple’s set of process ids. \8&ritde this construction in
more detail below.

For executiony,, for eachp € P and(l,t) € updates(p), we add aGPSupdate(l, 1),
action at timet in «4. If more than oneGPSupdate occurs at any time, we order the
updates by the process for which the update occurs. It istease thaty; is an execution
of Pbcast sinceGPSupdate is an input it is always enabled. It is also easy to see that
aq.lstate restricted to the value of theow andupdates variables is equal to the value of
x restricted in a similar manner;.lstate, however, has an emppbcastq(p) for each
peP.

We then creater by addingbcast andbrcv events toa; in the following way: For
eachp € P and(m,t, P') € pbcastq(p), add abcast(m), event at time, and for every
g notin ', add abrcv(m), after thebcast action at timemin(t + d,p,s, z(now)). Since
bcast is an input action, it is always enabled. Since the timgenotz(now) in any of the
records and properties 3 and 4 hold, any of bhev events is enabled. We also need to
check that the stopping conditions in line 16 are not vi@ageviolation can only occur in
our construction if sombcast event is added ta more thand,;,,s time beforex(now) and
there is some process for which a correspondiroy event does not occur. By property 2,
any tuple from more thad,,,, time beforez(now) has an empty s€t’, meaning that our
construction added an associabedv for each process, and the stopping condition was not
violated. Henceg is an execution oPbcast

The only thing remaining to be checked is that the value.b6ftate(pbeastq) is equal

to that ofx. This is easy to see by the constructiomadnd property 1.]

The preceding two lemmas directly imply the following chaesization theorem:

Theorem 6.8 Invppeast = reachable ppeqst -

6.4.3 Reachable states &®W/||Pbcast

Here we characterize the reachable stateRWf{Pbcastby providing a list of properties

exactly describing those states. We show that (1) the lipraperties is an invariant for

74

RW|Pbcastand (2) any state satisfying the list of properties is indeeeachable state of
RW|Pbcast We then show a useful result about the relationship betweeadcast and
receive events and the regions of nodes.

First we describe the reachable stateR@f|Pbcast

Definition 6.9 Definelnuvgw |pucas: t0 e the set of statesof RW || Pbcast such that the

following properties hold:

1. JJ[XRW € Invgw.

This means that th&1V -related elements of state satisfy the propertiesafzy .

2. x [XPbcast c]n'UPbcast-

This means that thePbcast-related elements of state satisfy the properties of

InUPbcast .

3. Pbcast.now = RW.now N\ Pbcast.updates = RW.updates.
This means that the clock values and update records are tine $eetweerPbcast
and RW.

We now show that the set of properties describing ry | picqs: IS @n invariant for

RW|Pbcast We do this by showing that every reachable stateRu¥|Pbcastis in

InURWHPbcast .

Lemma 6.10 reachablery | ppcast S INVRW | Phcast -

Proof: Consider a state incachable gy | prcast- WE Must show that it satisfies the proper-
ties of a state il nvgw | pecase- This is the same as showing that the last state of any closed
execution ofRW|Pbcastis in Invgw | picast- By Lemma 6.2, property 1 ofnv gy | pcast
holds throughout such an execution. By Lemma 6.6, propey 2nv gy pycas: holdS
throughout such an execution. That leaves only propertysBiéov. We proceed by induc-
tion on closed executions &\ |Pbcast

First, we check that the initial state BiM|Pbcastsatisfies property 3. Singécastq(p)
andupdates(p) are empty for eachp € P and both start witmow = 0, property 3 is

trivially satisfied.

75

Next we check that if property 3 holds in some stat@nd an action is performed that

leads to state’, then property 3 holds in staté. We break this down by action:

e GPSupdate(/,t),: The pair(l,t) is added taupdates(p) in both RV andPbcast

so since property 3 holds in statgit still holds ina’.

e bcast(m),, brev(m),, drop(m,t, q, p):
These do not impaatpdates(p) or now, so property 3 still trivially holds.

Finally we check that for any closed trajectargtarting with a state where property
3 holds and ending in a statg property 3 holds in stat€. Theupdates variable does not
change over a trajectory and thew variables develop at the same rate. Hence, property 3

holds in stater’. m

Now we show the opposite direction, namely that any stat@iny | pycas: IS @ reach-
able state oRW|Pbcast We do this by showing how, given a statén Invgw | ppcast: We

can construct an execution BiM|Pbcastthat ends inc.

Lemma 6.11 Invgw | pocast € Teachablery | ppcast-

Proof: Consider a state in Invgw|puas:- W must show that is a reachable state of
RW|Pbcast We do this by taking an executiarngy,, of RIW and an execution py.qs; Of
Pbcast and pasting them together to get an executiaf RW|Pbcastwherea.lstate = x.
Let agw be the execution oRW with agy .Istate = x| X gy constructed in Lemma
6.3, which exists becausesatisfies property 1. Letp,...; be the execution oPbcast
With appeasi-Istate = x| X ppeas: CONStructed in Lemma 6.7, which exists becausatisfies
property 2. Let3 betrace(appeast). Obviously,3[(Eppeast, §) = trace(appeqst). Because
of property 3 and the construction of the two executiong d@hvious thatrace(agrwy) =
trace(B)[(Erw, D). Hence, by Lemma 2.16, there exists an executiasf RW|Pbcast
such thatory = of (Arw, Xew) and appeast = @[(Appeast; X poeast)- BY CONstruction,

a.lstate must equal.]

The preceding two lemmas directly imply the following chaeasization theorem:

Theorem 6.12 Invgw | pycast = reachable gy | pycast -

76

We now present a result that will be used later in the thessndgJTheorem 6.12, our
upper bounds on region sizes allow us to conclude that ateoadcast at timeé from a
proces® whoseGPSupdates indicate it starts in a regian(equal toreg—(p, t)) and ends
in a regionv (equal toreg™(p, t)) at timet, abrcv for the message will be output IRBRbcast
for each process who&&PSupdates indicate it is inu, v, or neighboring regions (equal to

nbrs*(u) andnbrs™(v)) for the entire duration of the message broadcast interval:

Lemma 6.13 Let o be an execution oRkW || Pbcast and letmap be a function mapping
from eachbrcv(m), event to abcast(m), event such that the Integrity, Non-duplicative
delivery, Bounded-time delivery, and Reliable local datwproperties hold.

Suppose dcast(m), eventr’ occurs at time and a.ltime > t + dp,s. Consider any

¢ such that for all¢* in the interval [t,t + dynys|, reg™(q,t*) € nbrst(reg=(p,t)) U

nbrst(reg®(p,t)). Then there existslarcv(m), eventr such thatr is mapped tor'.

Proof: If a GPSupdate, event occurs at timg then let/ be the associated location, else
let [be the associated location of the |&PSupdate, event before time. Let ¢ be
an id such that for alt* in the interval(t, t + d,,s], reg™ (¢, t*) € nbrs*(reg=(p,t)) U
nbrst(reg™(p,t)). We must show that there existsbacv(m), eventr such thatr is
mapped tar’. By the Reliable local delivery property &bcast(Section 6.4), this result
would be implied if we could just show that for each tinfeand location’ such that’ is
the most recent location record @fn Pbcast.updates(a@t timet*, dist(1,1') < ryeqr-

We consider cases for the regionlbfif its region is innbrs™ (reg~(p, t)), then by our
upper bound on region size, the distance betwéand any point imbrs™(reg=(p, t)) is
at mostr. If point [is inreg—(p,t), then this implies thatfist(,1') < r. If point [is not
in reg~(p, t), then aGPSupdate, occurred at time. By property 1 of/nvgy, the last
update before timeoccurred for some poirit in reg~ (p, t) no more tha,,,,,,. beforet,
and by property 4 of nvgyy, the maximum distance that could have been travelled in that
time IS €sample Umaz, Mea@NIng point is o more thawr . vmaq from the point”. Hence,
dist(l,1") < dist(l,1") + dist(l",1') <r+ €sampieVmaz < Treal-

If the region ofl’ is in nbrs*(reg™(p,t)), then by our upper bound on region size, the

distance betweethand any pointimbrs*(reg*(p,t)) is at most-. Since point is located

77

inregt(p,t), dist(l,l') <1 < Trear- u

6.5 P-algorithms andPLayers

Here we define a physical layer algorithm and the completsiphllayer.
First, we define a physical layer algorithm. A physical lagigorithm is just an assign-

ment of a TIOA program to each physical node.

Definition 6.14 A P-algorithm,palg : P — P Program,, is @ mapping from each mobile
node idp € P to some TIOAP, € PProgram,. The set of all P-algorithms is referred to
asPAlgs.

Since we are interested in considering failure-prone maysiodes, given a physical
layer algorithm, the physical layer is then the composivdbiR11 and Pbcastwith Fail-
transformed programs for all the physical nodes, as inditay the physical layer algo-

rithm.
Definition 6.15 Letpalg be an element aP Algs.

e PLNodes|palg|, the Fail-transformed physical nodes parameterizegddy, is the
composition off'ail(palg(p)) for all p € P.

e PLayer[palg], the physical layer parameterized kpyulg, is the composition of
PLNodes|palg] with RW || Pbcast.

78

Chapter 7

Layers: Virtual Stationary Automata

layer model

fail,restart, & Fail
Fail
vrev(m), vrcv(m),
-~
V BDelay, V BDelaylel,,
vcast (m), vcast’ (m,), vecast' (m, tryeys vcast (m),
‘ ‘ Vbcast
‘ GPSupdat e(l, now), ti ne(now),

R . . fail, restart,

RW

Vvw

fail,restart,

‘ GPSupdat e(!’, now), ti me(now),

vcast (m), | vcast’ (m, '/1 vcast’ (m,try
j/\ = V BDelay, .S (
C,
Ca

vrcv(m), vrev(m),

vcast (m),

Fail
fail,restart, ? Fail

Figure 7-1: Virtual Stationary Automata layer. VSAs ancenlis communicate locally
usingVbcast VSA and client outputs may be delayed\ViBDelaybuffers. VW provides
timing and failure information to VSAs, ariRW provides timing and mobile node location
information.

Here we describe our formal theoretical model for the virtuale abstraction layer.
The Virtual Stationary Automatabstraction layer [29] includes the network tiling and
RW of the physical layer, client nodes that correspond to miaysiodes, virtual stationary

automata (VSASs) at predefined regions of the networl{\atime and failer service for

79

Signature: Transitions: 16,

2 Output time(t),, t e R2%,ue U Output time(t),,
Output fail,,uec U Precondition: 18
4 Output restart,,,uec U t = now
Effect: 20
6 State: last(u) « t

analognow. R=9, initially 0 22

_— Output fail
last(u): R=0U {_L}, for eachu € U, initially L o
8 (u) {4} € Y Precondition: 24
. . None
10 Trajectories: .
evolve Effect: 26
None

12 d(now) =1
stop when
14 Jue U:last(u) € {L, NOW-€sqmpie }

28
Output restart,,

Precondition: 30
None

Effect: 32
None

Figure 7-2:VW(egampie] , Virtual time and failer service.

VSAs, and a local broadcast service between client node¥ 8Ag, calledvbcast similar
to the Pbcastof the physical layer (see Figure 7-1). In addition, the @usion layer
containsvBDelaybuffers that delay the broadcasts of clients and VSAs.

In the rest of this chapter, we describe all of the above corapts in more detail. The
entire VSA layer is then defined to be just the compositio®df, VW, andVbcast to-
gether with thd-=ail-transform for each client and VSA of the composition of {hia@icess’s

machine with its correspondingB Delay buffer.

7.1 Network tiling and RW

The network tiling, describing the geography of the netw@khe same as in Section 6.1.

The reliable location and time oracl&V is the same as in Section 6.3.

7.2 Virtual time and failer service VW

The virtual time and failer servicé/ 1V serves both as a time oracle for VSAs and a fail
and restart service for VSAs. A TIOA descriptiond#1 is in Figure 7-2. Similar taRW/
for clients,VIW performs gime(t),, output at time O and at least evety,,,,,.. time for each

u € U. Also, VIV nondeterministically issudail, andrestart, outputs for each € U.

80

Reachable states offW

Here we characterize the reachable stategWwfby providing a list of properties exactly

describing those states.

Definition 7.1 Definelnuvyy to be the set of statesof VIV such that the following prop-

erties hold:

1. Yu € Uynow # 0 = last(u) # L.

This means that after time 0, there must be a dotime stored for each € U.

2. Yu € U,last(u) # L = last(u) € [now — €sgmpie, nOW).
This means that for any € U, any non-L last(u) stores a time at most, ;.. old

and no larger thamouw.

We do not show thafnuvyy describes the set of reachable stated’of since it is

trivial.

7.3 Mobile client nodes

Here we describe our model of the mobile client nodes; thidehis very similar to the

model for P, in Section 6.2.

e For eaclp in the set of physical node id3, we assume a mobile client nodg from

a set of TIOAs(C Program,.

As for P, C,, has a local clock variable/ock that progresses at the rate of real-time,
and is initially L. As before, additional arbitrary local ndaHed variables are allowed. Its
external interface is also assumed to at least includ&t®update inputs of £,, as well
asvcast(m), outputs andircv(m), inputs, corresponding tocast andbrcv actions atp,.

Additional arbitrary norfail and nonrestart actions are again allowed.

81

1 Signature: Trajectories: 12

Input time(t),, t € R=0 if clock# L then
3 Input vrev(m),, m € Msg d(clock) =1 14
Output vcast(m),, m € Msg else constantlock -
5 Arbitrary additional norfail, non+estart internal actions. Additional variables develop as specified. 16
7 State: Transitions: 18

Input time(t).
Effect: 20
if clock# t then
Optional state changes may occur. 22
clock — t

analogclock R=0U { L}, initially L
9 Finite set of additional noryailed variables, each initially
set to a unique initial value.

24
Additional transitions as allowed by the signature.
Changes to clock are not permitted in ntime transitionss

Figure 7-3:V,,.

7.4 Virtual Stationary Automata (VSAS)

Here we describe VSAs. A VSA is a clock-equipped abstrati&imachiné/, associated

with a regionu in the network.

e For eachu in the set of region identifier§, we assume an abstract virtual machine

V,, from a set of TIOASY Program,,.

We provide an outline of the allowable structurelgf in Figure 7-3. Each abstract
virtual machineV,, has a local clock variablelock. We assume that each nodelsck
progresses at the rate of real-time, and is initiallybefore being updated with @me
input.

We assume that an abstract virtual machipéas only the following external interface,

which consists of the ability to receive time updates anétcast and receive messages.

e Input time(t),,t € R=°:
This input reports the current time We require that in the state that results from
this input, node:’s clock equalst. Also, we require that no other state changes occur

unlessclock was not equal te when the action occurred.

e Output vcast(m),, m € Msg:

A nodeu may broadcast a message throwghst(m).,.

e Input vrev(m),, m € Msg:

A nodeu receives a message throughvrev(m),.

82

Signature: Transitions: 14

2 Input GPSupdate(l, t),,| € R t € R0 Input GPSupdate(l,t),
Input vcast(m),, m e Msg Effect: 16
4 Output vecast’(m, f),, me Msg, f € Bool to_send~ « to_send"
to_send" « \ 18
6 State: updated«— true
to_send", to_send": Msg*, initially \ 20
8 updated Bool, initially false Input vcast(m),
Effect: 22
10 Trajectories: if updatedthen
stop when to_send" « append(to_send", m) 24

12 to_send" # A Vto_send™ # A
Output vcast’(m, f),, 26
Precondition:

m = head(to_send" to_send") A (f & to_send™ = \)2s
Effect:

if fthen 30
to_send" « tail (to_send")
elseto_send™ < tail (to_send") 32

Figure 7-4:VBDelay,, Message delay service for clients.

We allow additional arbitrary nofailed variables and noffail and nonrestart internal
actions. We also require that each action be deterministtbat for each state and each

actiona of V,,, there exists at most one statesuch that(s, a, s’) is a transition of/,,.

7.5 VBDelay delay buffers

As mentioned previously, there are outbound delay buffiens fclients and VSASs to the
broadcast servicébcast For each client or VSA node, its associatéBDelaybuffer takes

as input thevcast(m) outputs of the node, tags each messageith a Boolean that is later
used by thé&/bcastservice to help determine what region the node was in wheméssage
was produced, and passes the tagged message on\tbc¢hstservice. In this section we

first describe the client delay buffer, and then the VSA délafyer.

7.5.1 ClientVBDeay

The delay buffer for a clientyBDelay,,p € P (see Figure 7-4), tagecast messages
from the client with a Boolean indicating if the message watsnsitted before the latest
GPSupdate at the client, and submits the tagged message t&/buastservice before

any time passes. (Hence, the delay buffer has a delay of timksOstate consists of the

83

following variables:

e to_send™ € Msg*: This is a queue of messages to be passed drbtmst It is

initially empty.

e to_send” € Msg*: This is also a queue of messages to be passed Whdast It
contains messages that were submitted before the @RSupdate at the client. It

is initially empty.

e updated : Bool: This is a Boolean indicating whether the node has expestiac

GPSupdate since starting. It is initially false.
Its interface consists of the following three kinds of anto

e Input GPSupdate(l,t),,l € R,t € R=°,p € P: This input indicates that procegs
is at location, and results in the process movingtitssendt messages ttw_send™~

and then clearingo_send™. It also updatespdated to true.

e Input vcast(m),,m € Msg,p € P: This input is a broadcast of a message

resulting in the addition ofn to to_send™.

e Output vecast'(m, f),,m € Msg, f € Bool,p € P: This output is the passing on
of avcast message t&/bcast The Booleanf indicates whether the message was

submitted to the process after its |&®PSupdate.

When avcast of a message occurs at a process that has received at ledSP&up-
date, the message is appended to a local queue-nd™ of messages the sender wants
to communicate to other processes (lines 21-24). I{QRSupdate has occurred, the
message is dropped. WhenevebBSupdate occurs at the client, the quete send™ is
overwritten withto_send™, to_send™ is erased, andpdated is set to true (lines 15-19).
(Notice that, with our Section 6.3 restriction thaG&®Supdate occurs at most once per
time per particular client, the queue_send~ will generally be empty at the time of a
GPSupdate.) Wheneverto_send~ - to_send™ is not empty (line 12), the first message
in to_send~ - to_send™ is removed, tagged with a Booleagnequal to true ifto_send™ is
empty and false otherwise (line 28), and outputwdast’, passing the tagged message on

to theVbcastservice (lines 26-32).

84

Signature:
2 Input vcast(m),, me Msg
Output vcast’(m, true),,, m € Msg
4
State:

6 analogrtimer: R=0, initially 0

Transitions:
Input vcast(m),,
Effect:
to_send«— append(to_send (m, rtimer))

Output veast’' (m, true),,

16

18

20|

to_send (Msg xR=09)* initially X Precondition:
8 3t € R20: (m, t) = head(to_send 22)
Trajectories: Effect:
10 evolve to_send«— tail (to_send 24

d(rtimer) =1
12 stop when
3(m, t) € to_send rtimer -t ¢ [0, €)

Figure 7-5:VBDelay[e],, Message delay service for VSAs.

7.5.2 VSAVBDelay

For each VSA, the delay buffer is slightly simpler than thaacclient in that the VSA
always knows its region (it does not recei&@Supdate inputs), and is slightly more
complicated in that it does not have to immediately forwanthoing messages. Instead,

VBDelay, is parameterized by the following constant:
e c:R2° a maximum output delay time.

VBDelayfor a VSA is almost the same &BDelayfor a client, except that the Boolean
attached to each message is always set to true, and VilBBelay, receives ascast(m),
input, it saves the message and the local time in the lecatnd queue (lines 16-18) for
some nondeterministically-chosen timgne] (enforced by the stopping condition on line
13), and then broadcasts the message threaght’(m, true) (lines 20-24).

Any program written for the VSA layer must take into accoanas it would message

delay.

7.6 Vbcast: Virtual local broadcast service

Each client and virtual node has access to the virtual laoadrast communication service

Vbcast modelled in Figure 7-6. The service is parameterized vhighfollowing:

e d:R=? the message delay upper bound. We requiredhatd, .

85

1 Signature:
Input GPSupdate(l, t),,| € R p€ P, t € R0

3 Input vecast’'(m, f);, me Msg, f € Bool,i € PUU
Output vrev(m);, me Msg je PUU

5 Internal drop(n,j),n€ Nat,je PUU

7 State:
analognow: R=9, initially 0
9 reg(p), oldreg(p):UuU {_L}, for eachp € P, initially L
vbeastq (Msg xU xRZ0x2PVUU)* initially
11
Trajectories:
13 evolve
d(now) =1
15 stop when
3(m, u, t, P’) € vbcastq [t =now-d AP’ # 0]
17
Transitions:
19 Input GPSupdate(l, t),
Effect:
21 oldreg(p) < reg(p)
reg(p) < region(l)

Input vcast’ (m, f); 24
Effect:

if i € U then 26
vbcastg— append(vbcastq (m, i, now, P U U))

else if (f Areg(p) # L) then 28
vbcastg— append(vbcastq (m, reg(p), now, P U U))

else if (= f Aoldreg(p) # L) then 30

vbcastg— append(vbcastq (m, oldreg(p), now, P U U)
32
Output vrev(m) ;

Local: 34
nell,..., |vbcastd], u: U, t: RZ0, p/; 2PVU

Precondition: 36
vbcastgn]= (m,u,t, P’y Aj € P’ At# now

Effect: 38

vbeastdn] < (m,u, t, P’ -{j})
40,
Internal drop(n, j)

Local: 42
m: Msg, u: U, t: R=0, p/; 2PVU
Precondition: 44

vbcastgn] = (m,u, t, P’y Aj € P’ At# now

(j e PAreg(j) ¢ nbrst(u)) v (j € UAj ¢ nbrst(u)) 46
Effect:

vbcastgn] — (m,u, t, P’ -{j}) 48

Figure 7-6:Vbcast[d]

The service described in Figure 7-6 takes eachst' (m, f); input from client and

virtual node delay buffers and delivers the messagga vrcv(m) at each client or virtual

node that is in some regiom or a neighboring region for the time after broadcast of

the message. If thecast’ was from a VSA at region, then the region: is equal to.

Otherwise, if thevcast’ was from a client, we use the Boolean tdgo determine the

regionu; if f is true then regiom is the region of when thevcast’ occurs, and iff is false

then regionu is the region of before the lasGPSupdate ati occurred.

Vbcasts interface consists of the following three kinds of acton

e Input GPSupdate(l,t),,l € R,t € R=°,p € P: This input indicates that procegs

is at location/, and results in the update of records storing a client'stfestregions.

e Input vcast'(m, f);,m € Msg,f € Bool,i € P U U: This input is a broadcast

of a message: by some nodé wherei is either the id of a client or a VSA. The

Booleanf indicates for clients whether the client’s |&PSupdate occurred before

the clientvcast the message.

e Output vrev(m);,m € Msg,j € P U U: This output represents the delivery of a

messagen at processy.
The state variables are:

e now : RZY: This variable is a real-time clock. It is initially O.

e reg(p) : UU{L} for p € P: This is the region of each client. It is initially for

eachp € P, and is set whenever@PSupdate, occurs.

e oldreg(p) : U U {L} forp € P: This is the region of each client before the client’s
lastGPSupdate. It is initially L for eachp € P, and is updated to the old value of

reg(p) whenever &5PSupdate, occurs.

o vbcastq : (Msg x U x R20 x 2PYU)*: This is the record of all outstandingast’
events, structured as an initially empty queue of tupleschBaple consists of a
vcast’ message and its attached region, the time at which the messsyinput,
and a set of ids of nodes (clients and VSAs) for which the ngeskas not yet been

delivered or lost.

The main variable of this service tgcastq, storing information about all previous
virtual broadcasts. Whenwast'(m, f); input occurs at some timg the action first cal-
culates a regiom to associate with the message. Regiois equal toi if 7 is a region id
(lines 26-27). Ifi is a client id andf is true, thenu is set toreg(p). If i is a client id and
f is false, then is set tooldreg(p). If uwis L the message is dropped, otherwise the tuple
(m,u,now, P UUY) is then appended tacastq. The set of ids in the tuple represents the
set of processes that might still potentially receive thesage. This set starts as all mobile
node and region ids. Some positive amount of time after tbadwrast (guaranteed by the
precondition that # now on line 37 and 45), a procegsn the set can either receive the
message (lines 33-39), orjifis a mobile node id with a region not equal to or neighboring
u or if j is a region id not equal to or neighboringthe transmission may fail tp (lines
41-48). In either case, the idis removed from the set of ids of processes that might still
receive the message. We require that once a message is&stddcevery node the mes-

sage is received or the transmission fails by at midshe later (Quaranteed by the stopping

87

condition expressed on line 16). Our requirement that alhamount of time pass between
broadcast and the possible receiving or dropping of the agesis utilized later to prevent

race conditions that can result when a process changesisagidailure modes.

Properties of Vbcast

The service guarantees that in each executionVVbcast there exists a function mapping

eachvrcv(m); event to avcast'(m, f); event such that the following hold:
e Integrity: If a vrcv eventr is mapped to acast’ eventr’, thenn’ occurs beforer.

e Non-duplicative deliverylf a vrcv(m), eventr is mapped to &cast’ eventr’, then

there do not exist any othercv(m); events that map to’.

e Bounded-time deliverylf a vrcv eventr is mapped to acast’ eventr’ wheren’

occurs at time, then eventr occurs in the interva(t, ¢t + d).

e Reliable local delivery This guarantees that a transmission will be received by
nearby nodes: Say\aast'(m, f); eventr’ occurs at timg¢ anda.ltime > t + d.
Letwu be: if ¢ € U, otherwise bereg™(i,t) if f is false orreg(i) at the time ofr’
if fistrue. Ifuis not L, then for eachj € P U U such that eithej € P and
regt(j,t') € nbrs*(u) forall ¢’ in the intervallt, ¢ + d] or j € nbrs™(u), there exists

avrev(m); eventr such thatr is mapped tor'.

TheVbcastservice is very similar to thBbcastservice described in Section 6.4. The
most obvious difference is that thébcastservice is extended to a larger id set, consisting
of region ids as well as physical node ids. Comparing theantaes for both services, we
also note that thBlon-duplicative deliverproperty and th&eliable local deliverproperty
are both slightly different.

The Non-duplicative deliverproperty ofVbcastsays that at most ongcv event at a
particular process is mapped to a singbast’ event. The property iPbcastsays some-
thing more stringent, namely that iftacv(m), event is mapped to lacast(m), event at

time ¢, then there are no othercv(m), events that map to arycast(m), event at time

88

for the samen andp. With the more restrictive non-duplication propertyRijcastwe can
easily build avbcastservice with this more common definition of non-duplicatietivery.
TheReliable local deliveryroperty ofVbcastdiffers in that it is expressed in terms of
regions, unlike irPbcastwhere it is expressed in terms of locations. Here, we redhat
messages that originate from some regidye received by all nodes that are in regioar
neighboring regions for the transmission period. Pbcast we require that messages that
originate from some locatiohbe received by all nodes within some distancé fur the

transmission period.

Reachable states o¥/bcast[d]

Here we characterize the reachable state¥hafast[d] by providing a list of properties

exactly describing those states.

Definition 7.2 Definelnuvy .. 10 be the set of statesof Vbcast such that the following

properties hold:

1. Vp € P,oldreg(p) # L = reg(p) # L.
This means that for eaghe P, the value of-eg(p) can only bel if oldreg(p) is L.

2. Y(m,u,t, P") € vbcastq,t < now A (P'# (0 =t > now —d) A (t = now = P' =
PUU).
This means that for each message tupletitustq, the timestamp of the message is
not afternow, if there are still processes that have not either lost onaeed the
message then the message is no older thamd if the message was sent at this time
then P’ is full.

3. The tuples inbcastq are in order of their timestamp.

We do not show thaknvy..s: describes the set of reachable stateBlafust since it is

trivial.

89

7.7 V-algorithms andVLayers

Here we provide definitions for a VSA layer algorithm and a ptete VSA layer.
A VSA layer algorithm is just an assignment of a TIOA prograsmetich client and

VSA.

Definition 7.3 A V-algorithm,alg : P UU — CProgram U V Program, iS a map-
ping such that for eaclp € P, alg(p) € CProgram, and for eachu € U, alg(u) €
V Program,. The set of all V-algorithms is referred to &Algs.

Since we are interested in providing this layer using fadprone physical nodes, we
then define &Layer, a VSA layer with failure-prone clients and VSAs. Given a Viager
algorithmalg, a fail-transformed node (either a client or a VSA) of the VB&er is the
Fail-transformed version of the composition of the TIOA for thegla as indicated bylg
with the node’s delay buffer. ThéLayeris then the composition aRW ||V ||V bcast

with all the fail-transformed nodes of the VSA layer.
Definition 7.4 Letalg be an element df algs.

e VLNodeslalg|, thefail-transformed nodes of the VSA layer parameterizedilay
is the composition of ail(V B Delay;||alg(i)) forall i € PUU.

e VLayer[alg], the VSA layer parameterized byilg, is the composition of
V LNodes[alg] with RW ||V W ||V bcast.

Reachable states oRW/||VW/||Vbcast

Here we characterize the reachable statd®Wwiff\VW||Vbcastby providing a list of proper-

ties exactly describing those states.

Definition 7.5 Definelnuvgrwvw vocas: t0 be the set of statesof RW ||V ||V bcast such

that the following properties hold:

1. x[XVbcast € Invypeast N JJ[XRW € Invgw A Jf(XVW € Invyy.
This says that a state of the composition restricted to tde&vidual components is in

the corresponding set of reachable states for that componen

90

2. RW.now = VW.now = Vbcast.now.

This says that the clock values of the components are the same

3. Vp € P, RW.reg(p) = Vbcast.reg(p).

This says that the region for a process matches betwéenst and RV .

4. Vp € P, if |[RW.updates(p)| > 1 then let(u,, t,) be the tuple with second highest
in RW.updates(p), else letu, be L. ThenVbcast.oldreg(p) = u,.
This says that theldreg(p) for anyp € P matches the region associated with the

next-to-lastGPSupdate at process.

We do not show that/nvrwvwivbcast describes the set of reachable states of
RW|VW||Vbcastsince it is trivial.

91

92

Chapter 8

VSA layer emulations

Here we describe what it means for a mapping from V-algor#thorP-algorithms to be an
emulation algorithm for the VSA layer, using the language #reory of Chapter 4. If such
a mapping is an emulation algorithm for the VSA layer, therapplication programmer
could write programs for the VSA layer and then run those @ on the physical layer.

First we define the concepts of an emulation and a stabilenglation of a VSA layer.
Then we conclude that a stabilizing emulation of a selfifitalhg VSA layer program has
traces that eventually look like those of the VSA layer pawgrstarting in some legal
state. This separates the reasoning about stabilizatopepres of a VSA layer emulation
algorithm from those of the VSA layer program.

We define an emulation algorithamap of the VSA layer to be a function mapping V-
algorithms to P-algorithms, where for aniy in V' Algs, a trace ofP LN odes[amap[alg]]
composed withRW|Pbcastis related to some trace dof LNodes[alg] composed with
RW||VW||Vbcast. For a particulamlg, amaplalg] could be defined so that each phys-
ical node’s program is a composition of the client prograrthenVSA layer for that node,
and a VSA emulator portion where the physical node helps a®uis current region’s
VSA.

First, for use throughout this thesis, we introduce two @$eaf notation that describe

actions to be hidden in the physical layer and the virtuagitay

Definition 8.1 DefineH p,, to be{bcast(m),, brcv(m), | m € Msg,p € P}.

93

Definition 8.2 DefineHy , to be{vcast(m);, vrcv(m);, vcast’(m, f);, time(t),, fail,, restart, | m €

Msg, f € Bool,t e R=",i e PUU,u e U}.
Now we can define our concepts of VSA layer emulation.

Definition 8.3 e Letamap be a function of typ& Algs — P Algs, and lett be inR=Y.
e LetPL be{PLNodes|amaplalg]] | alg € V Algs}.
o LetVL be{VLNodes[alg] | alg € V Algs}.

e Let emu be the function of typ& L — PL such that for eachulg € V Algs,
emu(V LNodes|alg]) = PLNodes|amap|alg]].

e Let S be a function that maps each eleméntof PL to a suffix-closed subset of

fmgSActHide(HVL,V|\RW||VW||Vbcast) .

Then we define the following two terms:

1. amap is an S-constrained VSA layer emulation algorithmif
(PL, RW||Pbcast, Hp,) emulates (VL, RW | VW ||Vbcast, Hy) constrained
to S with emu.

Recall from Definition 4.1 that this means thatu maps each elememtL of VL to
an element’ L of PL such that each trace d? L|| RW || Pbcast with actions inHp/,
hidden is a trace of an execution ®fL||RW||VW ||V bcast with actions inHy

hidden that also happens to be$fiV' L).

2. amap is an S-constrained t-stabilizing VSA layer emulation algo-
rithm if (PL, RW| Pbcast, Hp;) emulation stabilizes in timet¢ to
(VL, RW||[VW||Vbeast, Hy) constrained taS with emu.

We can now combine a stabilizing VSA layer emulation with H-s&bilizing VSA
layer algorithm and conclude that the appropriately retgtd traces of the result stabilize
to appropriately restricted trace fragments of the VSA talgorithm started from legal

states of that algorithm. This is a simple corollary of Tresor4.7.

94

Corollary 8.4 1. Letamap be anS-constrained;-stabilizing VSA layer emulation al-

gorithm.

2. Letalg € VAlgs,t, € R=% and legal setl for V Layer[alg] be chosen so that
V LNodes|alg] self-stabilizes td. relative to R(RW||VW ||Vbcast) in timet,.

Thentracesactide(Hpr,,U(PLNodeslamaplalgl])| R(RW || Pbeast)) Stabilizes in timety; + t, to
{trace(a) | o € execsacthide(Hy 1, Start(V Layerlaig),L)) (N S(V LNodes|alg])}.
In other words, consider the composition/of || Pbcast started in a reachable state with
PLNodes[amaplalg]] (the physical nodes running an emulation of the virtual fgye-
gramalg) started in an arbitrary state. Hide the actions ihp;,. The set of traces of the
resulting machine stabilizes in tinte + ¢, (the time for the VSA layer emulation to stabi-
lize, followed by the time for the virtual layer program talsilize to legal sef) to the set
of traces of executions allowed Syof the virtual layer started in legal sdt, after hiding

actions inHyy..

95

Part |l

VSA layer emulation algorithm

96

Part Il describes an implementation of the VSA layer usirgguhderlying mobile ad-
hoc system, and proves that the implementation providealaligtng emulation of the
VSA programming layer. This implementation is in three patotally ordered broadcast,
leader election, and a main emulation component.

Chapter 9 is where | describe the totally ordered broadeasice. It is useful to have
access to a totally ordered broadcast service that allodssio the same region to receive
the same sets of messages in the same order. The totallyedrbevadcast service is
intended to allow a non-failed nodethat knows it is in some region to broadcast a
messagen, via tocast(m),, and to have the message be received exaltly> d,,s,
time later viatorcv(m),, by nodes that are in regianor a neighboring region for at least
d time.

In Chapter 10, | describe the leader election service thawalnodes in the same region
to periodically compete to be named sole leader of the refgiopaome time. Our leader
election service is a round-based service that collectsnmdition from potential leaders at
the beginning of each round, determines up to one leadeegem, and performieader
outputs for those leaders that remain alive and in theiorefpr long enough.

Finally, in Chapter 11, | describe a fault-tolerant implenation of each VSA by mo-
bile nodes in its region of the network, and prove that thel@mgntation gives us a stabi-
lizing emulation of the VSA layer. At a high level, the indiial mobile nodes in a region
share emulation of the virtual machine through a deterringsate replication algorithm
while also being coordinated by a leader. Each mobile nods its portion of the totally
ordered broadcast service, leader election service, anduimMNode Emulation SAFE)

algorithm, for each virtual node.

97

98

Chapter 9

Totally ordered broadcast service

In order to simplify later algorithms, it is useful to havecass to a totally ordered broadcast
service that allows nodes in the same region to receive tme s&ts of messages in the
same order. The totally ordered broadcast service is ietétal allow a non-failed node
p that knows it is in some region to broadcast a message via tocast(m),, and to
have the message be received exaétly > d,,,, time later viatorcv(m),, by nodes that
are in regionu or a neighboring region for at leagttime. In this chapter, we start by
introducing a specification for the service. We then show tmwnplement this service
using the physical layer. Finally, we show that our impleta&an is correct and that it is

self-stabilizing.

9.1 TOBspec: Specification of totally ordered broadcast

We describe the specification of totally ordered broadcsest Figure 9-1) in three parts:
TObcast TOBDelay, andTOBFilter,, for eachp € P. The specification of the totally
ordered broadcast service is the@Bspec which is equal toTObcaslj RIW composed
with Fail(T'O B Delay,||TOBFilter,) for all p € P, with certain actions hidden.
TObcastis the main message ordering and delivery service, takipgténof message
and Boolean pairs, tagging the message with a regioalculated based on the Boolean
and theGPSupdate history of the sender of the message, and holding the reggged

messages for exacttytime before deliveringm, u) at each process that has been in region

99

fail ,restart, $

Fail
torcv(m), TOBFz[terl,J torcv' (m,v'),

(IO BDelay, —‘
“_ tocast(m), L tocast’ (m, f),

‘ TObcast

‘ GPSupdat e(l, now),

RW

GPSupdat e(l’, now),

tocast (m)y _[rOBDelay,
I

[TOBFilter,
L "1

tocast’ (m, f),

T

torcv(m), torcv’ (m,v"),

Fail

fail,restart, ?

Figure 9-1: Totally ordered broadcast service. Client otgpnay be delayed ifOBDe-
lay buffers, and messages are filtered out based on region ardative information in
TOBFilter buffers.RW provides timing and mobile node location information.

u or a neighboring region for the appropriate time. The orddghese deliveries at each
process is consistent with a global ordering of all broatlicgits toTObcast

TOBDelay is an outgoing delay buffer that sits between progessdTObcast taking
inputs of messages to be sent via the totally ordered breadeavice from the process,
tagging each with a Boolean indicating if the message wamitdd to the automaton
since the client’s lasEPSupdate, and submitting the tagged message$@bcast This

mechanism is similar to the one usediB Delay (see Figure 7-4) for the virtual layer.

TOBFilter, also sits betweeifObcastand a user of th@Obcastservice, but in the
opposite direction. WhemObcastdelivers a message tagged with some regida TO-
BFilter,, TOBFilter, determines whether or not procgsseceived aGPSupdate after
starting and at least time ago, and if so passes the message along to be receivesl at t
user. This prevents from receiving messages that it was not alive and in the relging
enough to receive.

Notice that thefTOBDelayand TOBFilter machines are for individual processes. In this
thesis we are interested in considerkajl-transformed mobile nodes. In the presence of
process failures, it is apparent that allowable tracesefdtally ordered broadcast service

will be dependent on the history of tHails andrestarts of a mobile node. Separating

100

1 Signature: Transitions:
Input GPSupdate(l,t)p, ! € R,t € R=0 Input GPSupdate(l, t), 36
3 Input tocast’'(m, f),, me Msg, f € Bool, p € P Effect:
Output torcv’(m, u),, me Msg ue U,pe P updatesp) < updategp) U {(region(l), t)} 38
5 Internal drop(p),p € P
Input tocast’(m, f), 40
7 State: Effect:
analognow: R>9, initially 0 choosaeirﬁ {j/e EO,/|sent]| VI?(G (j,/|sent]:) 42
o updategp): 2V <®=" for eachp € P, initially 0 if (f A r<eg(’p;l #pj_; zhensen() (p #p AL =now} 4
procs 2%, initially P sent— insert(sent (m, reg(p), p, now, i)
11 sentoldsent (Msg xU xP xR=9)* initially if (~fAreg™(p) # L) then 26
. . sent— insert(sent (m, reg~ (p), p, now), i)
13 Derived variables: 8
reg- (p: P):UU {1} Output torcv’ (m, u),
15 if 3(u, t) € updategp): t < nowthen Precondition: 50
return min ({u € U |3t" < now (u, ') € updategp) 3q € P: (m, u, g, now-d) = head(seny A p € procs
17 AV(u*, t*) € updategp): (t* <tV t* =now)}) regSpartp, u, now -d) 52
else return L Effect:
19 procs« procs-{p} 54
reg(p: P): UuU {1} if procs=) then
21 if Jue U: (u, now) € updategp) then oldsent— append(oldsent head(sent) 56
return min ({u € U |{u, now) € updatesp)}) sent— tail (sen}
23 else returnreg— (p) procs«— P 58
25 regSparp: P, r: U, t: R=°): Bool Internal drop(p) 60
return 3(u, t’) € updategp): [t' <t Local:
27 AV(v, ") € updategp): ('’ >t/ = r € nbrst(v))] m: Msg u: U 62
Precondition:
29 Trajectories: dq € P: {(m, u, g, now-d) = head(sen) Ap € procs 64
evolve — regSpaip, u, now -d)
31 d(now) =1 Effect: 66
stop when procs«— procs-{p}
33 3(mu,pt) = headsend: t = now-d if procs= { then 68
oldsent— append(oldsent head(sen))
sent« tail (sen) 70
procs<— P
Figure 9-2:TObcast[d] Message ordering service.

the TOBDelayand TOBFilter machines fronTObcastallows us toFail-transform portions
of TOBspec This separation makes it easier to describe a main sereitganent that
is Fail-oblivious, making it easier to usBail-transform related theory from Chapter 5.
If a component not corresponding to a particular mobile nedee to not be oblivious to
mobile node failures, it would introduce complicationslatvhen we use totally ordered
broadcast in conjunction with other services (in Chaptgr 11

We describe thdOBDelay, TOBFilterandTObcastpieces in more detail below.

9.1.1 TObcast

Here we provide a description dObcast(Figure 9-2), the message ordering and region-

based delivery service. The interfacel@bcastconsists of three kinds of actions:

101

Input GPSupdate(l,t),,l € R,t € R=", p € P: This input indicates that a process

p is currently located at positian

Input tocast'(m, f),,m € Msg, f € Bool,p € P: This input is a broadcast of
a messagen from a process. The Booleahindicates whether the message was
submitted top’s delay buffer aftep’s last GPSupdate, and is used byrObcastto

determine the appropriate source region for the message.

Output torcv'(m,u),, m € Msg,u € U, q € P: This output represents the delivery
of a messagen at process;. The message: corresponds to an earli¢ocast’
message. The regianis the region of sender of the message at the time the message

wastocast.

The state variables are:

e now : R=Y: This variable is the real-time. It is initially 0.

updates(p) : 2V°%° p e P: This variable is a history of the reported regions for
each process. For ea@PSupdate(/,t), input, the pair(region(l),t) is stored in

updates(p).

procs : 2F: This is a bookkeeping variable, used to keep track of whidtgsses

have not had the first messagesimt delivered or dropped. It is initially.

sent : (Msg x U x P x R=%)*: This is the queue of all outstanditgcast’ events,
initially empty. For eacltocast'(m, f), input, a tuple(m, u, p, now) is stored in

sent, whereu is calculated based on the valuefodndupdates(p).

oldsent : (Msg x U x P x R=%)*: This is the queue of all processtmtast’ events,

initially empty. Each entry in this queue was previously atrgin sent.

The code also uses three derived variables:

e reg : P — U U {L} maps a physical node igd to the region indicated by the
lastGPSupdate,,. If no such region exists, the function returihs The function is

calculated in a similar manner to theg function in Section 6.3.

102

e reg” : P — U U{L} maps a physical node jdto the region indicated by the last
GPSupdate, before the current time. If no such region exists, the fuarcteturns

L. The function is calculated in a similar manner to the— function in Section 6.3.

e regSpan : (P x U x R=%) — Bool maps a physical node ig, region idu, and
timet to a Boolean indicating whether the procgssas in region. or a neighboring
region from the end of timeup to the current time. This is calculated by examining
all the pairs inupdates(p) and seeing if there exists some pair with a timest&mp
larger thant such that for each pair with a timestamp at least as large th& region

in that pair is either: or a neighbor of..

Whenever gocast’(m, f), input occurs (line 40), the action calculates a regioio
associate with the messagefIis true, then. is set toreg(p), elseu is set toreg=(p). If u
is L, then the message is dropped, el§€¥hcastinserts the tuplém, u, p, now) into sent
(lines 44-47) at some position such that all tuples after s&ht were also sent at timeow
and not sent by (lines 42-43). This means that the tuples are orderedrin with respect
to the real-time at which they arrived, and that tuples thafimate from the same process
are ordered with respect to the order in which the processistga them.

Whenever the head tuplen, u, p,t) of the sent queue has a timestantpequal to
now — d, meaning the tuple was addé€dime ago, aorcv'(m,), or drop(q) output is
performed (ensured by the stopping condition on line 33)efehg in P, and the tuple
is moved fromsent to oldsent. The action istorcv'(m,u), if ¢ was in regionu or a
neighboring region from the end of timeintil the current time (expressed in line 52 as the
condition thatregSpan(q, u, t)). The action igdrop(q) otherwise (line 65). This prevents

g from receiving the message.

Properties of TObcast

In each execution of TObcast there exists a function mapping edaancv’(m, u), event

to atocast’(m, f), event such that the following hold:

e Region-based integritylf a torcv'(m, u), eventr is mapped to a@ocast'(m, f),

eventr’ at some time, then(f Au = reg(p)) V (—f Au = reg—(p)) when eventr’

103

occurs and-egSpan(q, u, t) is true whenr occurs.

e Non-duplicative deliverylf a torcv; eventr is mapped to @ocast’ eventr’, then

there do not exist any oth&srcv'(m), events that map to’.

e Exact-time deliveryIf a torcv’ eventr is mapped to docast’ eventn’ wherer’

occurs at time, then eventr occurs at time + d.

¢ Reliable local delivery This guarantees that a transmission will be received by
nearby nodes: Saytacast'(m, f), eventr’ occurs at time anda.ltime > t + d.
Letu bereg(p) whenz' occurs if f is true orreg~(p) whenn' occurs otherwise. If
w is not_L, then for eacly € P such thatregSpan(q,u,t) in all states ofv at time

t + d, there exists #orcv; eventr such thatr is mapped tor'.
e There exists a total order dacast’ events such that the following hold:

— Sender-order preservatioriFor anytocast, eventsr; andms, if 7 occurs be-

fore 7}, thenw] <).

— Consistent delivery ordefor anytocast’ eventsr; andr, wherer| < 7, and
anytorcv’ eventsr; andm, wherer; maps tor]; andm, maps tor,, we have

thatm; occurs beforer,.

— No gap deliveryLet 7| be atocast'(m, f), event at time, u bereg(p) when
71 oceurs iff is true orreg™(p) whenr] occurs otherwise, and, be atocast’
event such that; < m;. Letm, be someorcv;, event such that, maps tor;.
If wis not L andregSpan(q,u,t) whenm, occurs, then there existstarcv;,

eventr; such thatr; maps tor;.

It is easy to define the mapping and total ordering referred the properties above.
The mapping frontorcv’ events tdocast’ events is the one that matches etmioyv’ event
that occurs when some tuplen, u, p, t) is at the head ofent to thetocast’ event that
added that tuple teent. Thetocast’ events are ordered by the order of their respective

tuples inoldsent sent

104

Signature: Transitions: 14

2 Input GPSupdate(l, t),,| € R t € R0 Input GPSupdate(l,t),
Input tocast(m),, m € Msg Effect: 16
4 Output tocast’(m, f),,, m € Msg, f € Bool to_send~ « to_send"
to_send" « \ 18
6 State: updated«— true
to_send", to_send": Msg*, initially \ 20
8 updated Bool, initially false Input tocast(m),
Effect: 22
10 Trajectories: if updatedthen
stop when to_send" « append(to_send", m) 24

12 to_send" # A Vto_send™ # A
Output tocast’ (m, f),, 26
Precondition:

m = head(to_send" to_send") A (f & to_send™ = \)2s

Effect:
if fthen 30
to_send" « tail (to_send")
elseto_send™ < tail (to_send") 32

Figure 9-3:TOBDelay, Message delay service.

9.1.2 TOBDelay

Figure 9-3 describes the TIOA fGiOBDelay,, which tagstocast messages from process
p with Booleans indicating if the message was submitted dinedastGPSupdate, and
then passes the pair T@bcastto handle. This TIOA is identical, except for the names of

the broadcast actions, WBDelay, (see Figure 7-4) for the virtual layer.

9.1.3 TOBFilter

Figure 9-4 gives a TIOATOBFilter, that acts as an intermediary betwégdbcastand a
user of the service, filterintprcv messages based on the amount of time since the first
GPSupdate received by the process after the process was started; wevank a process

p to receive a message sent from a regiahtime ago if we know that procegswas alive

and knew it was in: or a neighboring region of from d time ago until it receives the
message. This certainty is useful later (in Section 11.3)rtplify our reasoning that all
emulators of a virtual node receive exactly the same se@serfanessages.

TO BFilter’s state consists of the following variables:

e rtimer : [0,d] € R=0U {L}: This variable is a timer. Itis initially, but it is set to
0 at the firsiGPSupdate the process receives, after which it progresses at thefrate o

real-time until it hitsd.

105

Signature:
2 Input GPSupdate(l, t),,1 € R t € R
Input torcv’(m, u),, me Msg ue U
4 Output torcv(m),, me Msg

6 State:
analogrtimer: [0,d] € R20U { L}, initially L
8 to_rcv: (Msg xU)*, initially A

10 Trajectories:
if rtimer ¢ {_L, d} then
12 d(rtimer) =1
else constanttimer
14 stop when
to_rcv # A\

Transitions:
Input GPSupdate(l, t)p
Effect:
if rtimer = _L then
rtimer — 0
for each (m, u) € to_rcv: region(l) ¢ nbrs* (u)
to_rcv «— to_rcv -{(m, u) }

Input torcv/(m, u),
Effect:
if rtimer = d then
to_rcv < append(to_rcv, (m, u))

Output torcv(m),
Precondition:

18|

20|

22|

24

26

28

30

Ju € U: (m, u) = head(to_rcv) 32
Effect:
to_rcv «— tail (to_rcv) 34

Figure 9-4:TOBFilter[d],, Message filtering service.

e torcv : (Msg x U)*: This is the queue of message and region pairs ff@hcast

of messages to ercved. It is initially empty.
Its interface consists of the following three kinds of anto

e Input GPSupdate(l,t),,l € R,t € R=°,p € P: This input indicates that procegs

is at locationl.

e Input torcv'(m,u),,m € Msg,u € U,q € P: This input is the passing on of a
message fromObcast The region: indicates the region of the sender at the time it

tocast the message.

e Output torcv(m),,m € Msg,q € P: This output represents the delivery of a mes-
sagem at procesg. The message: is the message from some pair received through

torcv'.

When aGPSupdate(l, t) occurs at the process, if the process@ner is L (meaning
this is the firsilGPSupdate since it started), thertimer is set to O (lines 20-21) so that the
process can keep track of how long it has been since it firdestaeceiving updates. For
each pair{m, u) in its to_rcv queue such that is not equal to or neighboringgion(l),
the pair is removed fromo_rcv (lines 22-23); this prevents the process from receiving a
message that originated from a region that the process hageo in or neigboring for the

pastd time.

106

When atorcv'(m, u) input occurs, if the process’s firlPSupdate after it was started
was at least time ago (line 27), then the pajm, u) is appended to th&_rcv queue (line
28). If to_rcv is not empty (line 15) then the hedch, v) of the queue is removed and the

messagen is torcved (lines 30-34).

9.1.4 TOBSpec

As mentioned earlier, the full specificatioMmOBspe¢ for the totally ordered broadcast
service is equal to the composition of the message ordeengce and RW, TOb-
cast| RW, composed with the fail transformed filter and delay seryareeach process,
Fail(TOBFilter,| TOBDelay) for all p € P, with certain actions hidden. (Remember, the
Fail transform from Chapter 5 takes an automaton and adds a nisch&or modeling
crash failures and restarts of the automaton.) In particthhe hidden actions are the set
Hrospee = {tocast’(m, f),, torev'(m,u), | m € Msg, f € Bool,u € U,p € P}. This
means thaT OBspeds equal toActHide(Hrospe., TObcas RW || [] . »Fail(TOBFilter,||
TOBDelay)).

Reachable states o1 OBspec

Here we characterize the reachable state3@Bspecby providing a list of properties
exactly describing those states. We show that (1) the liprgperties is an invariant for
TOBspecand (2) any state satisfying the list of properties is indeedachable state of
TOBspec

Definition 9.1 Definelnvropspe. t0 be the set of statassuch that the following properties
hold:

1. JJ[XRW € Invgw.

This says that th&1} component state is a reachable statddi .

2. ¥p € P : TObcast.updates(p) = {(region(l),t) | (I,t) € RW.updates(p)} A
TObcast.now = RW.now.
This says that real-time angpdates should correspond bewedtiV andT'Obcast.

107

. procs # P = 3(m,u,p,t) = head(sent) : t = now — d.
This says that if the bookkeeping variablecs is not full, then there must be some

exactlyd old message at the head @fnt.

. ¥{m,u,p,t) € oldsent : t < now — d, and tuples are in order of

This says that tuples inldsent are at least/ old and are ordered by their timestamps.

. Y{m,u,p,t) € sent : t € [now — d, now|, and tuples are in order of
This says that tuples igent are at mosti old, not sent from a future time, and are

ordered by their timestamps.

.Vp € PVt € R=Y consider the subsequender, uy,p,t), -+, (My, Un, p, t)
of oldsent sent (the concatenation obldsent and sent). Thenuy,---,u, €
RW.reg=(p,t)* RW.reg™(p, t)*.

This says that the regions attached to messageédisent sent are consistent with

the GPSupdates for the senders.
. Vp € P:—failed, :

(@) —updated, = rtimer, = L A\to_send, = to_send) = torcv, = \.
This says that ifupdated, does not hold, then the rest of the state of
TOBDelay, andTOBF'ilter, is set to initial values.

(b) updated, = 3(l,t) € RW.updates(p) : t + rtimer, = now V d = rtimer, <
now — t.
This says thatpdated, implies there was &PSupdate,, eitherrtimer, ago

if rtimer, < d, else at least/ time ago.

(¢) to_send, # X\ = [rtimer, > 0 A 3(l,t) € RW.updates(p) : t = now A
Y{m,u,p,now) € sent : u = RW.reg™(p, now)].
This says that a non-empty_send,, indicates thap was first updated before
now, and updated atow. Also, any messages Hant from p at the current

time are from the’s region before its lasGPSupdate.

108

(d) Letproced, be append(oldsent, head(sent)) if p ¢ procs and oldsent oth-
erwise. Let(my,uq, p1,now — dy, -, (my,, u,, pn, now — d) be the subse-
quence ofproced, such thatvi € [1,n] : regSpan(p,u;, now — d). Then
i € [0,n] : [torcv, = (Mygr, Wigr), - -+, (M, un) A(rtimer, < d =i = n)].
This says that iftimer, < d, thento_rcv, is empty, elséo_rcv, is the (mes-
sage, region) restriction of a suffix of the sequence of suppland time ago,
tagged with regions: that passregSpan(p,u, now — d), and processed by

T Obcast for p.

We now show that the set of properties describing;o ssp.. is an invariant folrOB-

spec We do this by showing that every reachable stat€@Bspeds in Invropspec-
Lemma 9.2 reachableropspec © INUT0Bspec-

Proof: Consider a state incachableropsye.. WWe must show that it satisfies the properties
of a state infnvropspe.. This is the same as showing that the last state of any closed
execution of’OBspec is in Invropspe.. By Lemma 6.2, property 1 is true throughout
such an execution. This leaves properties 2-7 to check. Wbé&epd by induction on closed
executions of 'O Bspec.

First, we check that the initial state 610 Bspec satisfies the list of properties above.
This is easy to see.

Next we check that if the properties hold in some statnd an action is performed

that leads to state, then the properties hold in state We break this down by action:

e GPSupdate(/,t),: The only relevant properties are 2, 6, and 7. Of these, the on

interesting case is for property 7(c).

For property 7(c), ifp is non-failed ando_send, is non-empty in state’, it must
be thatto_send, was non-empty in state. By the fact that properties 1, 7(a), and
7(b) held in state:, we know that-timer, > 0 in statex, and hence in state. An
update fomow is added taRW.updates(p) as a result of this action, so we know that
3(l,t) € RW.updates(p) : t = now. Finally, by properties 1 and 6, we know that
in statez, all messages sent yat the current time imldsent sent must have been

tagged with a region equal ®W.reg~(p, now).

109

e torcv'(m,u),: The relevant properties are 3-5 and 7. The only interestimg to
check is property 7(d). Consider the case wheis not failed (the only case we
have to consider). Sincesatisfied property 7(d) in state by the precondition for
this action to occur, it must have been the case pthafs inprocs in statex. If
rtimer, < d, then the action results in no addition of a tuplegdo-cv, and we are
done. If not, then the action results in an addition of thdeup:, «) to the end
of to_rcv,. Sincex'(proced,) = append(x(proced,), head(x(sent,))), the result

follows.

e torcv(m),, m € Msg: The only relevant property is 7, 7(d) in particular. It ivial

to check.
e tocast(m),: The only relevant property is 7, but it is trivial to check.

e tocast'(m, f),: The only relevant properties are 5-7. The only interesting to
check is property 6. Let be RW.reg(p) if f is true, andRW.reg~(p, now) other-
wise. Ifu is L, then nothing happens tent, and property 6 still is true. Otherwise,
in statex’, we know that a tuplém, u, p, now) is added taent after any other mes-
sages sent by and not before any messages sent before time. We must show
that if the region. is not RW.reg(p), then there is no tuplén’, RW.reg(p), p, now)
in z(sent). If uwis not RW.reg(p), then it must be the case thais false, meaning
thatto_send,; was non-empty in state. By property 7(c), this implies that all tuples
in sent from p at timenow are labelled with a region equal ®W.reg~ (p, now),

and we are done.

e drop(p): The only relevant properties are 3-5 and 7. They are trivigheck.

Finally we check that for any closed trajectargtarting with a state where the prop-
erties hold and ending in a staté the properties hold in staté. The only continuous
variables arewow andrtimer,, and it is easy to check that all properties will hold in state

2’ due to trajectory stopping conditions. |

Now we show the opposite direction, namely that any staf@inoss.. iS a reachable

state of 'O Bspec. We do this by showing how, given a staten Invropgspe., We can

110

construct an execution @ftO Bspec that ends inc.

Lemma 9.3 Invropspec C reachableropspec-

Proof: Consider a state in Invropspe.. We must show that is a reachable state of
T O Bspec. We do this by constructing an executiomf 70O Bspec such thatv.[state = .
This construction is done in phases. Each phase is constirbgt modifying the exe-
cution constructed in the prior phase to produce a new vakdwion ofTOBspec After
the first four phases, the constructed execution leads ttathstatus, region setting, and
rtimer for each process that is consistent with that of stat€he fifth phase add®cast
andtocast’ events foroldsent sent message tuples. It then adscv’ anddrop events
for each tuple ildsent. The phase finally addsrcv’ events for messages sent more than
d time ago. The sixth phase adscv’ anddrop events for processes notifiproc). The
seventh phase adtlsrcv events for messages seftime ago, but not in a process&s rcv
gueue. The final phase adigxast events foroutgoing queue messages in statethese

are messages that wdapeast but not yet successfully propagated vitbaast'.

1. Construction ofa;: By Theorem 6.12 and the fact thatsatisfies property 1 of
Invrosspee, It is possible to construct an executiap,, of RV ending in a state of
RW consistent with that of. «; is the execution oTOBspecsuch thatx. f state’s
nonfailed TOBspectate is the unique initial onéailed, is false for eachp € P,
anda; restricted to the actions and variablesfof” is equal toazy restricted in a

similar manner.
Validity of execution: It is easy to observe that; is an execution oTOBspec

Relation to z: Let y be a«j.lstate. Let X; be Xpy U
{TObcast.updates, TObcast.now}. It is obvious that sincer satisfies proper-
ties 1 and 2 oflnvropspee, ©[X1 = y[Xi1. Also, for eachp € P such that

—x(failed,), we have-y(failed,).

2. Construction ofv,: To constructy,, for eachp € P if z(failed,) then we add &ail,

event at timex(now) in «y, after any other events at timg¢now).

111

Validity of execution: Sincefail events are input actions, it is easy to observedhat

is an execution oTOBspec

Relation toz: Let y be ay.lstate. Let X, be Xy U {failed, | p € P}. The
relationship from step 1 still is true. In addition, we nowéahat for allp € P,

x(failed,) = y(failed,), meaning that [X, = y[Xs.

3. Construction ofaz: To constructas, for eachp € P if —x(failed,) and
—z(updated,), then we add dail, immediately followed by arestart, at time

x(now) in ay, after any other events.
Validity of execution: Since these are input actions, is an execution oTOBspec

Relationtar: Lety beas.lstate. The relationship from step 2 still is true. Also, for
eachp € P thatis non-failed inc and has-updated,, we have thay(rtimer,) = L
since arestart, event resets thetimer, variable to_L. Together with the fact that
x satisfies property 7(a) ofnvropsye. and that properties of step 2, and hence
of step 1, still hold fory, we have that for alp € P such that—z(updated,),
x(TOBDelay,) = y(TOBDelay,) andx(TOBFilter,) = y(TOBFilter,).

4. Construction ofay: To constructay, for each non-failep € P with now #
rtimer, < d, we add dail, followed immediately by aestart, immediately be-

fore theGPSupdate, at timenow — rtimer, in as.
Validity of execution: Since these are input actions, is an execution ofOBspec

Relation toz: Lety beay.lstate. The relationship from step 3 still is true. Also, it
is easy to see that the construction forcg@sner, to be equal ta(now) — rtimer,
for those non-faileg for whichrtimer, is less thanl and not equal taow. Hence,
by the fact that: satsifies property 7(b) dfnvrosspe., in addition to the relationship
in step 3, we have that for all non-failede P, x(updated,) = y(updated,) and

x(rtimery,) = y(rtimery).

5. Construction ofvs: To constructys, there are three substeps.

112

(a) First, for eachp € P,;t < z(now), andu € U, consider the sub-
sequence(my,u,p,t),--- € z(oldsent) xz(sent). We construct an alter-
nating sequence of eventstocast(m,),, tocast'(my, true),, tocast(ms),,
tocast’(mo, true),,---. We add events i in order and immediately after

each other at timein a4 such that the following hold:

e The addition of a tuple teent in thetocast’ action inserts the tuple so that

the ordering is the same asfoldsent) x(sent).

o If u = xz(RW.reg (p,t)), then events ins are added before any

GPSupdate, or fail, event at time.

o If u# x(RW.reg—(p,t)), then events in are added immediately after any

GPSupdate, event at time.

(b) Then, for eacht < z(now) — d, consider the subsequen¢e.;, vy, p1,t),
(Mg, v, P2, t), -+ + (M, Uy, P, t) Of z(0ldsent). We construct a sequengeof
torcv’ anddrop events to add tey;, consisting of exactly ontrcv'(my, v1),
or drop(p) event for eactp € P, followed by exactly ongorcv’(may, vs), Or
drop(p) event for eaclp € P, etc. We add this sequengeof events in order
and immediately after each otherdg at timet + d, after all other events at that

time. We selectorcv’ or drop based orupdates(p).

(c) Finally, for eachtorcv'(m;, v1), event that occurs at some tirtie< z(now), if
p is non-failed withrtimer, = d in our constructed execution at the time of the
torcv’ event, then inserttrcv(m), eventimmediately after thercv’ eventin

the execution.

Validity of execution: To check thatys; is an execution, we consider each substep.

(a) Sincetocast is an input and hence always enabled, we just need to chetk tha
the tocast’ events are enabled. What we need to check is that the agsbciat
Booleans paired with the messages inttheast’ actions are “correct” and that
eachtocast’ occurs while the process is alive. To see that the Booleare\al

true is always appropriate, notice that the constructicgsdwt allow there to

113

be any carryover of messages wheBRSupdate occurs. Hence, all messages
that are passed along are from thesend queue, meaning the Boolean is

always true.

Next we note that for any < now, if a fail, occurs at time, only one can
occur and it occurs before@PSupdate, (by our construction in steps 1-4).

Fort = now, afail, occurs at most once and occurs aftéRSupdate,,.

We consider cases in this step of our construction. The fasé places mes-
sages sent from the first region of the process at tibefore anyGPSupdate,,
or fail, event at time. Since it is ordered before affgil,, the process is alive.

We conclude that thecast’ event is enabled.

The second case places messages sent from the ending rétlierpoocess at
time ¢ after anyGPSupdate for the region. The associated region on the mes-
sage would obviously be for the ending regionz K now and afail, occurs

at timet, it is immediately followed by aestart and then theGPSupdate,
implying the process would be alive for these actionst # now, then any

fail event is after th&sPSupdate, and sinces is squeezed in between tkdP-
Supdate and thefail, then the process again must be alive. In either case, we

conclude that théocast’ event is enabled.

(b) Exactly one of d@orcv'(m,v), or drop(p) action is enabled for a message sent
at some time < z(now)—d if the head ofsent is d old and its message has not
yet been delivered or droppedpoSince this is our precondition for adding one
of the actions in our construction, and because of the wayhichwve select
which of the actions to perform based @miates(p), we can can conclude that

these actions were enabled for each of their correspondpied inz(oldsent).
(c) Itis obvious that théorcv actions are enabled.
It is easy to check that no trajectory stopping conditiores\aolated inas; since

messages io_send andto_rcv queues are immediately processed, and messages

added tosent are removed exactly time after their addition.

Relation tox: It is easy to see that this construction preserves the prepesf

114

step 4. Lety be as.lstate. It is clear, by the fact that satisfies property 6 of
Invropspee @nd our condition in step (a) that tuples be addesete in a way that
reflects the ordering of tuplesirioldsent) x(sent), thaty(oldsent) y(sent) is equal
to x(oldsent) x(sent). It is also clear by the fact that satisfies properties 4 and 5
of Invropsye. and by step (b) that(oldsent) = y(oldsent) andz(sent) = y(sent).
By step (c) we can see that in both statand statey, for all non-failedp € P,
to_rcv, can only contain pairs correspondinga(ldsent) tuples with timestamps

equal tonow — d.

. Construction ofag: To constructag, let (m,u, q,t) be head(xz(sent)). For each
p ¢ x(procs), we add gorcv'(m, u), or drop(p) action based on theegStart test

at timex(now) in «y, after all other events.

Validity of execution: To check that this is an execution, note that sincec
InvroBspee, Property 3 ofl nvro pspe. Means that ifc(procs) is not equal taP, then
it must be the case that= now — d, meaning one of eitha@orcv’ or drop is enabled

for eachp € P.

Relation tox: It is easy to see that the construction preserves the giep@f step
5. Lety beag.lstate. Itis clear thate(T'Obcast) = y(T'Obcast). Sincex satisfies
property 7(d) oflnvropspec, it should also be clear that for every non-failed P,

x(to_rcv,) is a suffix ofy(to_rcv,).

. Construction ofa;: For each non-failegp € P, leti be |ag.Istate(to_rcv,)| —

|z(to_rcu,)|. Let (my,uq),--- (mp,u,) be ag.lstate(torcv,), and let
(Mit1, Wig1), - -+, (M, u,) be x(to_rcv,). We construct a sequence of ac-
tionstorcv(m),, - - - , torcv(m;),. We then add this sequensef actions in order

and immediately after each otherdn at timez(now), after all other events.

Validity of execution: Note that sincer(to_rcv,) is a suffix ofag.lstate(to_rcv,),
there must be some prefix of pairsdg./state(to_rcv,). Since removal of these pairs

viatocast is always enabled at a non-failed process, this is a validugian.

Relation toz: Lety beay.lstate. It is easy to see the construction preserves the

115

properties of step 6. It is also that for every non-failed P, =(TOBUFilter,) =
y(TOBPFilter,).

8. Construction ofo: For each non-failegg € P, we modify a; by addingtocast

events at time:(now):

e Let s— be a sequence of eventecast(m;),, tocast(m),,---, where
my,my,--- is z(to_send;). The events ins~ are added in order and im-
mediately after each other after any othecast, events and before any

GPSupdate, event at timer(now).

e Let sT be a sequence of eventscast(m]),, tocast(mj),, --, where
my,my,--- isxz(to_send}). The events in* are added in order and immedi-

ately after each other immediately after any other evertisatz(now).

Validity of execution: Since the added events are inputss an execution.

Relation tox: The properties of step 7 still hold. Lgtbe «.lstate. It is easy to see
thatz(to_send,) = y(to_send,) andz(to_send)) = y(to_send]) if eachtocast

occurs while the process is alive. We check that now.

By our construction, the only way for fail, event to occur at time(now) for a
non-failed process with non-region is in step 4— it would be followed immediately

by arestart, andGPSupdate,,.

We consider the two cases of ands™ in this step of our construction. The first
case places™ before anyGPSupdate, event at timer(now). By our observation
in the paragraph above and the fact thagtisfies property 7(b) and 7(c), the process

would have to be alive.

The second case places after anyGPSupdate,, for the process. Again, by our

observation about step 4, the process would be alive.
We can conclude that = «.lstate. |
The preceding two lemmas directly imply the following chaesization theorem:

Theorem 9.4 Invropspec = reachableropspec-

116

1 Signature: (Mtup = Msg xP xR=%xBool xNxU)
Input GPSupdate(l,t),,! € R, t € R0
3 Input tocast(m),, me Msg
Input brev(mtup),, mtupe Mtup
5 Output torcv(m),, me Msg
Output becast(mtup),,, mtupe Mtup
7
State:
9 analogclock R=0U {1}, initially L
updates 2V *E=° initially 0
btime R=9, initially O
bseq N, initially 0
outgoing™, outgoing™: Msg*, initially X
incoming 2Mtup initially ¢

11
13

15
Derived variables:
reg-:UU{Ll}
if 3(u, t) € updatest < clockthen
return min ({u € U |3t’ < clock (u, t’) € updates
AY(U*, t*) € updates (t* <tV t* =clock)})
else return L

17

19

21

N

3 reg UU{L}
if 3u € U: (u, clock € updatesthen

return min ({u € U |(u, clock) € updateg)
else returnreg™

25

27
regSpaur: U, t: R=29): Bool
return 3{u, 'y € updates[t’ <t A
V(v,t'") € updates (t'’ > t' = r € nbrst (v))]

29

31
Trajectories:
d(clock) =1
stop when
Any precondition is satisfied.

33
35

37 Transitions:
Input tocast(m),,
Effect:

outgoingt «— append(outgoing®, m)

39

Input GPSupdate(l, t),
Effect:
if (clocks# tv updates= (v 3(u, t')€ updates|t’ > t|V btime> t 44
vI(m, st f,b,r) €incoming t’ ¢ [t -d, t)) then
clock, btime«— t
bseq— 0
updatesincoming«— 0
outgoing® « X
updates— updatesJ {(region(l), t) }
outgoing~ < outgoing™
outgoing”™ «— A
for each(m, s, t', f, b, r) € incoming — regSparr, t")
incoming<— incoming-{(m, s, t’, f, b, r)}

42

46
48

50

52
54

Input brev((m, s, t,f, b, 1)),
Effect:

if (t € [clock-d,py s, clock) AregSparr, t)) then
incoming«— incomingu {{m, s, t,f, b, r)}

56
58

60,
Output becast((m, p, t, f, b, 1)),
Precondition: 62
m = head(outgoing~ outgoing’) A [f<3ue U:{(u, t) }= updateg
r # LA (outgoing = X =r=reg)A (outgoing"# X\ =r=reg g4
t= clock# LA [(btime#t Ab= 1) V (btime=t Ab = bseq1)]
Effect: 66
if outgoing™ # A then
outgoing~ « tail (outgoing™)
elseoutgoing™ « tail (outgoing™)
btime — clock
bseq— b

68
70

72

Output torcv(m),
Local:

s P, t: RZ0,f: Bool, b: N, r: U
Precondition:

updates# OA (m, s, t, f, b, r) € incomingAt < clock-d

v(m', s, t',f,b',r") € incoming (t, s f,b) < (t',s,f,b)
Effect:

incoming«<— incoming-{(m, s, t,f, b, r)}

74

76|

78

80

Figure 9-5:TOBimplet,, providing ordered broadcast.

9.2 TOBimpl: Implementation

Here we present a self-stabilizing implementionT@Bspeaising the physical layer. For

each physical node id € P, the corresponding physical node has a TIOA call@&Bim-

pler,, which we describe in this section. The implementation efehtire totally ordered

broadcast servicd,OBimpl is then the composition ¢fail(TOBimpletr,) for all thep € P
andPbcasf| RW, with thebcast andbrcv actions ofPbcasthidden. Recall that thEail-

transform of an automaton takes an automaton and adds a m&chfor allowing crash

failures and restarts.

117

Our technique is loosely based on one originally suggesyeldaimport [61]. In that
work, Lamport presented an ordering technique to ensuat dodering of messages. We
extend that technique here to accommodate both multiphsinassions of the same mes-
sage by the same process at the same time (allowing us toissethice to help emulate
the virtual layer broadcast service where such multiplestnaissions are allowed) and pro-
cess failures. Eactocast message is tagged by the sender with the time of transmjssion
the id and region of the sender, and a Boolean and sequendsenusnd then sent using
Pbcast Received messages from nearby regions are stored untilyexdime has passed
since the message was sent. They are tbetved in lexicographic order of sender id,
Boolean flag, and sequence number, in that order. In thedgsaphic order, a false value
is ordered before a true value, according to the conveniianfalse is equal to 0 and true
is equal to 1.

The sequence number allows us to order messages sent byegpaidthe same time.
The Boolean value is an indication of whether or not the sehds received its firs6P-
Supdate since starting at the time of the broadcast. This is impottaensure that, when
we allow failures and restarts of the physical nodes, if &gss broadcasts a message, fails,
restarts, and broadcasts a new message, all at some, ttheemessage sent after the fail
and restart is ordered after the one sent before the failestdnt: Any message sent before
the failure would be tagged with a false Boolean flag. Afteestart, a processtscast is
only sent out if aGPSupdate occurs before théocast. Hence, any message sent after a
process restarts would have a true Boolean flag, orderirftgitthe pre-failure messages.
Now we describd OBimplerin more detail.

The state variables GtOBimpler, are as follows:

e clock : R=9U {L}: This is the local clock time. It is initiallyL, but after the first

GPSupdate,, after initialization, it should be equal to the current regdtem time.

e updates : 2V*B": This is the set of region and time pairs that correspond thi¢h

GPSupdates received at the process. It is initially

e btime : RZ%: This is a time at least as large as the broadcast timestartie dést

message sent by the process but no larger than the currentitim initially 0.

118

e bseq : N: This is a message sequence number, initially 0. It is usdtelop order

messages sent at the same time by the process.

e outgoing™ : Msg*: This is a queue ofocast messages yet to be broadcast via

Pbcast initially empty.

e outgoing™ : Msg*: This is also a queue abcast messages yet to be broadcast via
Pbcast initially empty. It contains messages that were submiktefibre the latest

GPSupdate at the process.

e incoming € 2Ms9xPxR=0xBoolxNxU: This is an initially empty set of messages, each
tagged by sender, broadcast time, a Boolean, a sequenceenuanid a broadcast
region. It is the set of messages received by the processghRbcast but not yet

processed in torcv event.

We also define two derived variables, both calculated in ragsmilar to that of their

counterparts in Section 9.1.1:

e reg : U U {L} maps to the region indicated by the |&PSupdate,. If no such

region exists, the function returns

e reg” : U U{L} maps to the region indicated by the l&PSupdate, before the

current time. If no such region exists, the function retutns

e regSpan : (U x R=Y) — Bool: This function takes a region and a timet, and
returns a Boolean indicating whether or not the process hiaigeg inupdates con-
sistent with the process having been in or neighboring regfoom some time before

or equal to time and through the present time.

When a node receives@PSupdate (line 42) when itsupdates is), indicating that
the GPSupdate is the first since it started, or when there is some local isit@ncy in
state (lines 44-45), then it initializes its nefeck and nonbtime variables (lines 47-49),
and setslock andbtime to the time indicated bsPSupdate (line 46). Otherwise, and
after the above initialization, the current region and tim@dded toupdates (line 50),

outgoing™ is replaced withoutgoing™ (line 51),outgoing™ is cleared (line 52), and each

119

entry inincoming that is tagged with a region and time that does not passthepan test

is removed fromncoming (lines 53-54).

When a node receivegacast(m), input (line 38), it appends: to its localoutgoing™
sequence (line 40). Whenevertgoing outgoing™ is nonempty for a process with a non-
1L clock and non< r = reg if outgoing™ is empty orr = reg~ otherwise, @cast, action
occurs (lines 35 and 63-65). In this action, theat the head obutgoing outgoing™ is
expanded into a larger message tupte p, clock, f, b, r), which includes the process id,
current time, valueg andb to help order its messages sent at a particular time, and the
regionr of the message. The tuple is broadcast usthgast f is true exactly when the
process’sipdates = {(r, clock)} (line 63), indicating whether the process had received its
first GPSupdate since initialization at this timeb is a message sequence number, either
equal tobseq+1 if btime = clock (incrementing the sequence numbétrtiine was already
updated to the current time, either through a message haeieig sent at the current time
or aGPSupdate having updated the process’s state), or 1 (resetting theeseg number)
if this is the first message sent at this time sihtiene was last updated (line 65). As a
result of the action, ibutgoing~ is nonempty, the head otitgoing~ is removed, else the
head ofoutgoing™ is removed (lines 67-69). Then theme andbseq numbers are updated

to match the timestamp and numibesf the message tuple that was sent (lines 70-71).

When a node receives such a message tuple (line 56) from risoow neighboring
regionr such that the message was sent at a ftirtiet is not too soon or too late by the
broadcast service requirements and such ithabpan(r,t) is true (line 58), it adds the
the message tuple t@mcoming (line 59). Message tuples imcoming with timestamps
that are exactly/ old are removed fromincoming andtorcved in order of sender id and

sequence number (lines 35 and 73-80).

As mentioned in the beginning of the section, the complef@ementation of the to-
tally ordered broadcast service is the compositioRledasf| RWW and Fail(T'O Bimpler,)
for all p € P. Hence, in addition to the variables and actions descrilyedey for each
p € P, there is afailed, Boolean flag indicating whether or not the process is faited,
well as afail, andrestart, input action for eaclp € P. Sincebrcv andbcast actions do

not exist in theTOBspegwe also hide those actions in the implementation.

120

9.3 Correctness of the implementation

In this section we describe aspects of the correctness ahmalementation of the totally
ordered broadcast service. Defil@Bimplerto be the composition dfail(TOBimpler,)
for all p € P, and let Hrojmy, be {bcast(m),,brcv(m), | m € (Msg x P x
R=% x Bool x N x U),p € P}. The implementation of the service is th&®Bimpl
= ActHide(Hz7oimpr, Pbcast| RW || TO Bimpler), the composition ofPbcastRW and
TO Bimpler with thebcast andbrcv actions for implementation messages hidden.

To show correctness, we first describe a legal $@bpimu Of TOBimpl
(Section 9.3.1). Then, we show thattart(T’OBimpl, Lropimp) implements
Start(T'OBspec, Invropspe)- We do this in the following way: using the legal set defini-
tion (Definition 3.12) and a simulation relation (Definiti@r20), we show in Section 9.3.2
that our implementationfOBimpl implementsTOBspe¢ meaning that traces of the im-
plementation are contained in traces of the specificatibe. sSimulation relation is defined
only for states of 'O Bimpl in the legal sefLropimp; We then show a separate result that
each of these states is related to some reachable state Btpec (Lemma 9.18).

Next, we argue in Section 9.3.3 thBOBimpleris self-stabilizing toL o gim, relative
to R(RW || Pbcast), which allows us to finally conclude in Theorem 9.25 that aunplie-
mentation eventually reaches a state that is related tachabe state of'O Bspec.

We use this approach in future chapters to describe cogsstand stabilization of an

implementation of a system. To summarize the strategy:

1. Define a legal sett; for the implementatiod, and show that the set is a legal set.
2. Define a legal sett s for the specificatiort, and show that the set is a legal set.

3. Show thatStart(I, L;) < Start(S, Ls), meaning that traces of the implementation
started in legal sek; are traces of the specification started in legallsetThis can

be shown in the following way:

(a) Define a simulation relation between states of the imptgation inZ; and

states of the specification. Show the relation is a simulatdation.

121

(b) Show that for each state ity, there exists a state ihg of states of the specifi-
cation such that the simulation relation holds betweentdtes. (In the case of
totally ordered broadcast, we define the invariant set ofgeeification as the
reachable states, which happens to be a set of invariagsstiat general, this
is not necessary. It is done simply for convenience heregsiris obvious that
the trace of the service starting from a reachable stateufia sf some trace

of the specification that satisfies the properties desciibb&ection 9.1.1.)
4. Show that the implementation self-stabilized.to

5. Conclude that the set of traces of the implementationlsted to the set of traces of
execution fragments of the specification starting.in (This follows immediately

from points 3 and 4.)

For the rest of the section, we refer to a state variabdé Fail(TOBimpl,) asv,. We

also refer to a state variableof RW|Pbcastsimply asv.

9.3.1 Legalsets

Here we describe a legal set’ B Bimpl by describing four legal sets, each a subset of the
prior one. Recall from Lemma 3.13 that a legal set of statea flOA is one where each
closed execution fragment starting in a state in the set enastate in the set. We break
the definition of the legal set up into four legal sets in otdesimplify the proof reasoning

and more easily prove stabilization later, in Section 9.3.3

Legal state SetLi o p;,-

The first set of legal states describes some properties dtainte true at an alive process

at the time of the firsGPSupdate for the process.

Definition 9.5 Li gy, 1S the set of states of O Bimpl where all of the following hold:

1. x(XRWHPbcast € InvRw| Pbcast-

This says that the state restricted to the variableBWf | Pbcast are reachable states

of RW{| Pbcast (Theorem 6.12 showed thBtv gy | pycast = Teachable pw | pocast)-

122

2. Foreachp € P: (=failed, N updates, # 0) :

(@) clock, = now A btime, < clock,,.
This says that a non-failed process with a fbmpdates must have a local
clock that matchesRW || Pbcast’s now, and abtime variable that is not set in

the future.

(b) V(m,s,t, f,b,r) € incoming, : [regSpan,(r,t) ANt € [clock, — d, clock,)].
This says that the message tuples ind#he@ming set of a non-failed process
with a non$ updates are labelled with timestamps that are not set in the future
or befored before the current time. It also says that each such tuple seas
from a region at a time such that procgsfas been in range for the transmis-

sion period.

(c) 3, t) € updates(p) : [(region(l),t) € updates,
AY(a,t') € updates(p) Uupdates, — {(l, 1), (region(l),t)} : t' < t].
This says that the latest update fomatches betweeRW andT'O Bimpler,

and that the latest update is unique.
(d) outgoing= # X\ =
[3(v, t) € updates, : t < clock, N Ju € U : (u, clock,) € updates,).
This says that theutgoing~ queue of a non-failed process with a nonempty
updates is nonempty only if there is some recorded update that oeduvefore

the current time and an update that occurred at the currengti
Lemma 9.6 Li g, 1S @ legal set fofl"O Bimpl.

Proof: Letx be any state il p,,,,- By Definition 3.12 of a legal set, we must verify

two things for state::

e For each state’ of 7O Bimpl and actiom: of 7O Bimpl such tha{z, a, z’) is in the

set of discrete transitions GfO Bimpl, stater’ is in Lio g,

e For each state’ and closed trajectory of 7O Bimpl such thatr. f state = x and

.lstate = 2/, stater’ is in L}, Bimpl-

123

By Theorem 6.4, we know that if satisfies the first property df;. s, then any

discrete transition of’O Bimpl will lead to a stater’ that still satisfies the first property,

and any closed trajectory starting with statevill end in some state that satisfies the first

property. This implies that we just need to check that in the tases of the legal set

definition, the state’ satisfies all parts of the second property'6f, 5,,,,,.-

For the first case of the legal set definition, we consider eatibn:

drop((m, s, t, f,b,u),t, q,p), tocast(m),: These don’t impact property 2.
fail,: This action trivially preserves property 2.

restart,: Since this action setspdates, to) if it makes any state changes at all,

property 2 would still trivially hold.

torcv(m),: This could impact property 2(b). However, since the onlpact of the
action is the removal of a tuple imcoming,, then if property 2(b) holds in state

it continues to hold in state'.

GPSupdate(l,t),: Letv beregion(l). If the conditional on lines 44-45 holds, then
this action first setslock, andbtime, to now, bseg, to 0, updates, andincoming,

to), andoutgoing,” to A. Then, regardless of whether the conditional holds, the
action adds(/, t) to updates(p) and (v, t) to updates,, overwritesoutgoing, with
outgoing,, clearsoutgoing,”, and removes any elementafcoming, whose region
and time does not passgSpan,,. It is easy to see that the resulting statsatisfies

properties 2(a)-2(c).

For property 2(d), it is obvious that the only thing to veri§ythat if outgoing, is
not empty, then there exists some pfeck, timestamped pair inpdates,. We con-
sider the cases for whether the if conditional on lines 4hdfls. If it held, then
outgoing, is empty in state’, meaning property 2(d) holds. If the conditional did
not hold, then by the fact thatpdates, must have contained a présck, times-

tamped pair inz, property 2(d) still holds.

brev((m, s, t, f,b,r)),: The only property this might impact is 2(b). However, the

124

conditional on line 58 ensures that if a new tuple is addeéhtoming,, then it

satisfies the property.

e bcast((m,q,t, f,b,r)),. Properties 2(b) - 2(d) are obviously not impacted. Since

this action setétime, to clock,, property 2(a) still holds.

For the second case of the legal set definition, we now conaideclosed trajectory
such thatr = 7. fstate. Leta’ ber.Istate. We must show that’ € Li g, It iS €asy to
see that because the only evolving variables referencée iproperties aréock, andnow
which evolve at the same rate, property 2(a) holds. Withrdgedtory stopping conditions
of TOBimpleron line 35, if an entry in somé:.coming, has a timestamp from more than
d time ago, then it igorcved. This means that property 2(b) remains true throughout a
trajectory. Property 2(c) is not impacted in a trajectorgogerty 2(d) holds throughout a
trajectory because of the stopping conditions on line 3faremg that no time passes until

any entries inutgoing, andoutgoing, are cleared. |

Legal state setl7. s,

The next legal set describes a subset of states;fy,,,, that satisfy some additional

properties with respect to thécastq, outgoing, updates, andbtime variables.

Definition 9.7 L7, is the set of states of 7’0 Bimpl where all of the following hold:
1.z € L%FOBimpl.
2. ¥p € P,Y ((m,s,t, f,b,r),t', P')in pbcastq(p) : t' = now:

@ s=pAt=t'AN(f=3le€R:(l,t) € updates(p) N region(l) =r)
Ar € {reg™(p,t),reg™ (p.t)}.
This says that any message tuplepiiaastq(p) for somep € P has a source
tag equal to the process id, a timestamp equal to the timetiigatnessage was
actually sent, and a region tag consistent with the updatebat time. It also
says that if a message tuple has a true Boolean tag then i@régthe ending

region of the process at transmission time.

125

(b) V{(m/, s, ", f. 0, r"), t', P") € pbeastq(p) — {((m, s, t, f,b,r), ', P')} :
(F# FVOAV) AL < (FL0) AT #17) = 1 = reg™(p,t)].
This says that any two message tuple records for messagewdna sent by
the same process at the same time and with the same Booleandagquence
number are actually the same tuple. It also says that if twesage tuples
with the same correct timestamp have different region tdugs) the one whose
Boolean tag paired with message sequence number is lowarttieaother’s
has a region tag equal to the sender’s region at the beginoingmet. Re-
member that the Boolean value is an indication of whetherairthe sender
has received its firsGPSupdate since starting at the time the message was
originally submitted; any message with a false Boolean s thrat was origi-
nally submitted before angPSupdate for the period occurred at the process,
while any message with a true Boolean is one that was sulhafter. Hence,
the region associated with a false Boolean is the regiontiergrocess at the
beginning of time, while a region associated with a true Boolean is the region
for the process after &PSupdate occurred at the process at time

(¢) (=failed, Nr = reg, # reg,) = outgoing, = .
This says that if some message was sent by a non-failed prattsa non-
region at the current time and with a region tag equal to therent local region

of the process which differs from the prior region, themgoing~ is empty.

(d) Let f, be a Boolean such that, < 3u € U : {(u,clock,)} = updates,,.
Let seqnum, be a natural such thateqnum, = 0 if btime, # clock, and
seqnum,, = bseq, otherwise.

Then(—failed, N updates, # 0) = (clock,, f,, seqnum,) > (t, f,b).
This says that any message ordering tags that might be addad butgoing

message will be larger than any previously broadcast taghiattime.
Lemma 9.8 L7 p,,,,; IS @ legal set fofl"'O Bimpl.

Proof: Letx be any state il7,p,,,,- By Definition 3.12 of a legal set, we must verify

two things for state::

126

e For each state’ of 7O Bimpl and actior: of TO Bimpl such tha{z, a, z) is in the

set of discrete transitions GfO Bimpl, statex’ is in L7, g,-

e For each state’ and closed trajectory of 7O Bimpl such thatr. f state = x and

T.Istate = 2/, statex’ is in L%“OBimpl'

By Lemma 9.6, we know that if satisfies the first property af?, ., then any
discrete transition of'O Bimpl will lead to a stater’ that still satisfies the first property,
and any closed trajectory starting with statevill end in some state that satisfies the first
property. This implies that we just need to check that in the tases of the legal set
definition, the state’ satisfies all parts of the second property8f, 5,,,,,.-

For the first case of the legal set definition, we consider eatibn:

drop(<m7 S? t? f) b7 u)? t? q7 p)’ tocaSt(m)p’ torcv(m)p’ brcv(<m7 87 t? f? b7 T))p
These don’t impact property 2.

fail,: This action doesn’t affect properties 2(a) and 2(b). Wally preserves proper-
ties 2(c) and 2(d).

restart,: This action doesn't affect properties 2(a) and 2(b). Sithig action sets
updates, to () if it makes any state changes at all, properties 2(c) andsi{ttyivially
hold.

GPSupdate(l,t),: Letv beregion(l). Itis trivial to see that properties 2(a) and
2(b) are still satisfied in staté.

The only way for this action to change any state relevantéamther parts of property

2 is if = failed,. If the conditional on lines 44-45 holds, then the resulStafe triv-
ially satisfies property 2(c). For property 2(d), we knowtthdock,, f,, seqnum,,)

is equal to(clock,, true, 0) in statez’. This is at least as great as the correspond-
ing tags ofpbcastq(p) messages sent at timéck, if we can show that any such
pbeastq(p) message tags hayelse in their second field. This follows from the fact
that stater’ satisfies property 3 dfnvzy, (see Definition 6.1), meaning that no more
than one update occurred at the current time, and becaugerpy@(a) held in state

x, implying that no messages withue flags were sent at the current time fay

127

If the conditional on lines 44-45 does not hold, then the ltagy state is one for
which property 2(d) obviously still holds. More interegito show is property 2(c).

By property 3 of/nvgy,, we know that no other update could have occurred at this
time. Hence, since property 2(a) held in stafall messages ipbcastq(p) must be
tagged withreg~(p, now), which is either equal to, meaning we are done, or equal

to some other region, also meaning we are done.

e bcast((m,q,t, f,b,r)),: Examination of the attached tags in lines 63-65 show us
that property 2(a) still holds. Butgoing, was empty in state, then this action sets
outgoing, to its tail and broadcasts a message with the current reBimmerty 2(c)
still holds. If outgoing, was not empty in state, then this action setsutgoing,
to its tail and broadcasts a message with a region corregppitmthe node’s prior
update. Since property 2(c) held in stateit must still hold in state:’. Since inz,
(clock,, f,, seqnum,,) is at least as large as any corresponding tagsdastq(p) for
this time, then this new message’s tuple is strictly largethe precondition for the
action, andbtime, andbseq, are updated by the action to match this messaga'sl
b, preserving property 2(d). Since the tags are strictlydgrgxamination of the tags

attached to the message imply that property 2(b) still holds

For the second case of the legal state definition, we conaigerlosed trajectory such
thatz = 7. fstate. Leta’ ber.lstate. We must show that’ € L7z, It is €asy to see
that because the only evolving variables referenced ingutg@ areclock, andnow, with
the trajectory stopping conditions ®OBimplerin line 35, messages itgoing queues
will be removed through bcast, preserving properties 2(a), 2(b), and 2(c). Property i&(d)
easily seen to remain true throughout a trajectory sincetlherelevant variable iglock,,
and any messages in transit that previously satisfied 2(a tags that continue to satisfy

2(d) when time passes. [|

Legal state setLi p;,,,:

The next legal set is a subset of stated.9f, 5,,,,., that satisfy some additional properties

with respect to the set of messages in transit and the historgd inupdates.

128

Definition 9.9 L}, 5,,..,, IS the set of states of 'O Bimpl where all of the following hold:
1. ze LCZZ"OBimpl'
2. Yt' > now — d,¥p € P,¥ ({(m,s,t, f,b,r),t', P") in pbcastq(p):

@ s=pAt=t'Arefreg (pt),reg”(p 1)}
A(f=3leR:(lt)€updates(p) A region(l) = r).

This is property 2(a) of.7 p;,,,,,» €xtended to alt’ > now — d.

(b) Y((m/, s, t", [0, 1), t', P") € pbcastq(p) — {{({(m, s, t, f,b,r), ', P")}:
(f # [VOAV) NS0 < (f V) Ar#r') = r=reg(p,1)].
This is property 2(b) of.7 s;,,,,,» €xtended to alt’ > now — d.

) (r € {reg(p,t),reg™(p,t)} Nt =t')=Vqe P—P":
[((m, s,t, f,b,r) & incoming, N\ —~failed, N (', t') € updates(p) : [t' <t A
V(l,t") € updates(p) : t" >t = region(l) € nbrs™(r)] AregSpan,(r,t)) =
(t <now—dAV(m', ¢t f,0,r") €incoming, : (s, f',0') > (s, f,b))].
In other words, consider any message tuple in a procegggstq such that
the tuple’s region tag- is a region of the process at broadcast time, and the
attached timestampis the time when the message was broadcast. Now con-
sider any non-failed procegswhereq has been in range of the broadcast and
has localupdates that indicate this (meaning should receive the message).
This property says thakWW || Pbcast has yet to deliver the messagegtor, if it
has delivered the message, the message tuple is eithetdming, (meaning
q received the message froRbcast and has the tuple stored locally to pro-
cess) or the timestamp is at lealsbld and all tuples inincoming, have larger
timestamp/ source/ Boolean flag/ sequence number tagshkandssage tuple
(meaning that; received the message fraRbcast and processed the tuple lo-
cally and in order with respect to the other message tuplesg supposed to

receive).

3. Foreachp € P : (—failed, A updates, #) :
A(u, t) € updates, : [(t < now—dVt=min({t' | 3v e U : (v,t") € updates,})) N

129

V' >t {u | (u,t') € updates,} = {region(l) | (I,t") € updates(p)}|.
This says that for any non-failed procgssthere is some timesuch thatupdates,
corresponds withupdates(p) for all entries with timestamps starting gtand such

thatt is either the minimum timestampapdates, or is at leastd old.
Lemma 9.10 L3 g, iS @ legal set fofl'O Bimpl.

Proof: Letz be any state i}, p;,,,,- By Definition 3.12 of a legal set, we must verify

two things for state::

e For each state’ of 7O Bimpl and actiom: of 7O Bimpl such tha{z, a, z’) is in the

set of discrete transitions GfO Bimpl, statex’ is in L}, g,-

e For each state’ and closed trajectory of 7O Bimpl such thatr. f state = x and

T.Istate = 2/, statex’ is in L%“OBimpl'

By Lemma 9.8, we know that it satisfies the first property df?,, ;... then any
discrete transition of'O Bimpl will lead to a stater’ that still satisfies the first property,
and any closed trajectory starting with statevill end in some state that satisfies the first
property. This implies that we just need to check that in the tases of the legal set
definition, the state’ satisfies all parts of the second and third property.gf s;,,,,,- BY
simple extension of the reasoning in Lemma 9.8, we can algkigusee that properties
2(a) and 2(b) hold. It is also simple to see that property 3malg be affected by the
GPSupdate action. Hence, for each ndaPSupdate action we consider only property
2(c), and fortGPSupdate we consider property 2(c) and 3.

For the first case of the legal set definition, we consider eatibn:

e drop({(m, s,t, f,b,u),t,q,p): This action is only enabled in stateif there is some
set of idsP’ such thatP’ containsy, ((m, s, t, f,b,u),t, P’y € pbcastq(p), t # now,
and the distance between the last reported locatigrabtimet and the last reported
location ofq is greater tham,.,;. The action results in the removal gffrom P’.
However, by the precondition, we know thgs only removed fronP’ if the distance
above is more than,.,. By Lemma 6.13yeg(q) must not be imbrs™(u), so the

property remains true.

130

o fail,, restart,, bcast((m,q,t, f,b,7)),: These actions trivially preserve properties 2
and 3.

e tocast(m),: This doesn’t impact properties 2 and 3.

e torcv(m),: For property 2(c), note that the precondition for the atgaarantees that
in statex there must be somen, s, t, f,b,r) € incoming, such that < clock, — d
and (¢, s, f,b) is ordered before all other similar tuple componentsricoming,,.
Since property 2(b) oL}, holds in stater, we know thatt > clock, — d.
This implies that = clock, — d. Hence, the two conditions on the right of the last

implication in property 2(c) both hold.

e GPSupdate(l,t),: Letv beregion(l). For this action, we must consider both prop-

erty 2(c) and 3.

For 2(c), consider what happenspifis not failed. If the conditional on lines 44-
45 holds, then state’ will have updates, = {(v,t)}. This means thategSpan,
will only be true for messages with= now. By property 3 in the description of

Invpyeqst, the attached in the pbcastq record containg, satisfying property 2(c).

If the conditional on lines 44-45 does not hold, then we justdto be sure that
no message tuples that previously should not b&wiaming, suddenly should be.
However it is obvious that the addition of a paintpdates, does not suddenly allow

prior disallowed tuples. Property 2(c) is still satisfied.

For property 3, we are only interested in the case wheienot failed in stater.

If the conditional on lines 44-45 holds, then it is obviouattproperty 3 holds in
statex’, sinceupdates, = {(v,t)} in statez’. If the conditional does not hold, then
we know thatr(updates,) # () andupdates, in =’ equalsupdates, in z, with an
additional (v, t) element. Since state satisfied property 3 andpdates, was not
empty, there was some pair irpdates, such that the property held relative to the

pair. If we select the same pair, it is obvious that the prgpstill holds in stater’.

e brev((m,s,t, f,b,r)),: Property 2(c) could only be a problem if this action does not

add this tuple tancoming, or if it adds the tuple but = clock, — d and(s, f,b) is

131

smaller than that of other entries with the same timestarhp.SEcond can’t happen
by property 2 oflnvpy..s: @nd the if condition on line 58. We examine the first. By
the if condition on line 58 in the action, if the tuple is notdad it must mean that
either—regSpan,(r,t) ort > clock, ort < clock, — dp,s. By properties 1-3 of
Invpieqs: @and since is equal to the actual time the tuple is broadcast, thertlock,
andt > clock, — d,,s. Hence, for the tuple not to be addeehegStart,(r,t). In
either case, one of the conditions on the left of the lasticagbn in property 2(c)

fails, so property 2(c) still holds.

For the second case of the legal state definition, we conaiteclosed trajectory such
thatz = 7.fstate. Leta’ ber.lstate. \We must show that’ € L} p,,,,- It is easy to
see that because the only evolving variables referencetbpepy 2 areclock, andnow,
with the trajectory stopping conditions of boff\\||Pbcast forcing updates at nodes and
delivery of messages or drops of those messages withintime, andTOBimpleron line
35, forcing processing of messages fromeoming whenever exactlyl time has passed

since broadcast, properties 2 and 3 will remain true through trajectory. |

Legal state setLropimpi:

The final legal set is a subset 6f,,,,,, that satisfies an additional property about the

entries of anyincoming set with respect to the state R#\|Pbcast

Definition 9.11 Lyopim, IS the set of states of 7O Bimpl where all of the following
hold:

3

2. Foreachp € P : (= failed, N\ updates, # 0) = Y(m,s,t, f,b,r) € incoming, :
AP" C P —{p}: ((m,s,t, f,b,r),t, P") € pbcastq(s).
This says that any tuple in a process's.oming must be a tuple that was actually
handled for the process bW || Pbcast and sent by the process whose id is the

source tag in the message at the time indicated by the timmgstd the message.

Lemma 9.12 Lyopim,y IS @ legal set fofl’O Bimpl.

132

Proof: Letz be any state ilLopimy. By Definition 3.12 of a legal set, we must verify

two things for state::

e For each state’ of 7O Bimpl and actiom: of 7O Bimpl such tha{z, a, z’) is in the

set of discrete transitions @GfO Bimpl, statex’ iS in Lo pimpi-

e For each state’ and closed trajectory of 7O Bimpl such thatr. f state = x and

T.lstate = o', stater’ is in Lo pimgpi-

By Lemma 9.10, we know that if satisfies the first property diropimp, then any
discrete transition of'O Bimpl will lead to a stater’ that still satisfies the first property,
and any closed trajectory starting with statevill end in some state that satisfies the first
property. This implies that we just need to check that in the tases of the legal set
definition, the state’ satisfies the second property Bfo gimpi-

For the first case of the legal set definition, we could consedeh action, but the only

non-trivial one to examine isrcv:

e brev((m,s,t, f,b,r)),: For this action to occur, by the precondition for this outpu
in RW|Pbcastand property 2(a) oL%OBimpl, an appropriately tagged version of this
tuple must have been pbcastq(s). Hence, if the tuple is added tacoming, in this

action, then by the above observation, property 2 will hold.

For the second case of the legal state definition, we conaiterclosed trajectory
such thatr = 7. fstate. Itis easy to see that because the only evolving variabfesareced

in property 2 areslock, andnow, property 2 will remain true throughout a trajectory. m

A trivial observation is that an initial state 3OBimplis in L1o gimpi:

Lemma 9.13 An initial state of’O Bimpl is in L1o gimgpi-

9.3.2 Simulation relation

Here we show that Start(TOBimpl, L1opimp) implements
Start(T'OBspec, reachableropspec) (Lemma 9.19). We do this by first describing a

simulation relationRrog from our implementation of the totally ordered broadcast

133

service, TOBimp| to the TIOA specification of the totally ordered broadcasitvice,
TOBspecWe prove thaR o is a simulation relation in Lemma 9.15, and then conclude
that TOBimplimplementsTOBspedTheorem 9.16). In other words, we conclude that
the traces of our implementation are traces of totally eddaroadcast. We then show in
Lemma 9.18 that for each state in-o iy, there exists some reachable stat§ 0Bspec
that is related to it undeR o 5.

You may notice in the definition below that folR o sy to hold, state: must be a state
in the legal seLropimp- This constrains the simulation relation to only be conedrwith
implementation states which we will later show are relategtachable states 610 Bspec

(see Lemma 9.18).

Definition 9.14 Rrop is a relation between states 610 Bimpl and states of 'O Bspec
such that ifx is a state of’O Bimpl andy is a state ofl’'O Bspec, thenzRropy exactly

when the following conditions are satisfied:

1.z € LTOBimpl andl'(RW) = y(RW)
This says that our relation only holds for state pairs whdre state of our imple-

mentation is in the legal sétroimy, and theRW state is equal i andy.

2. y € Invropspec N\ y(procs) = P.
This says thay must be a reachable state 60 Bspec, and thaty(procs) is full.

3. Foreachp € P, z(failed,) = y(failed,).

This says that the failure status of each process is the satheitwo states.

4. Foreachp € P, —x(failedy,) = [(z(updates,) = O A y(rtimer,) = L)
V3I(u,t) € x(updates,) : ([t < x(now) — d A y(rtimer,) = d|
V [V(v,t") € x(updates,) : t' >t Nt = z(now) — y(rtimer,)])].
This says that the stored updates for each non-failed psocesresponds to the
rtimer. In particular, rtimer is L whenupdates, is empty, and eithertimer is

as old as the first pair inipdates, or both are at least! old.

5. Foreachp € P, (—x(failed,) A\ x(updates,) #)

134

= [z(outgoing,) = y(to_send,) N x(outgoing,) = y(to_send;)].

This says that correspondingitgoing andto_send queues are equal.

6. Let((my,p1,t1, f1,01,u1),t1, P1), -+ (M, Dn, tn, [y b, Un), tn, P) be the subset
of J,cp x(pbeastq(p)) witht; > now — d, ordered by(t;, pi, fi, bi).
Theny(sent) = (my, uy, p1,t1), -+, (Mp, Un, Py tn)-
This says that the sequengent in T'O Bspec is the same as the sequence of re-

stricted message tuplesihcastq that are less thar old and then sorted by tags.

7. Foreachp € P, let (mq, p1,t, f1,b1,u1), -+, (Mp, P, ty fr, bn, uy) bE the subset of
x(incoming,) With t = now — d, ordered by(p;, f;, b;).
If —x(failed,) A z(updates,) # 0, theny(to_rcv,) = (my,ur), -+, (My,).
This says that for a non-failed process with a nomegion, the sequence of message
and region pairs into_rcv in TO Bspec is the same as the sequence of message and

region pairs from tuples ifncoming, that are exactly/ old and then sorted by tags.
Now we show thalR 1o 5 is a simulation relation fromfOBimplto TOBspec
Lemma 9.15 Ry o5 is a simulation relation fromI"O Bimpl to TO Bspec.

Proof: By definition of a simulation relation we must show three gsrior all states of

the two automata:

1. We must show that for any € Orogimp there exists a statg € O7opspe. SUCh
thatzRrory. There is one unique initial nofailed and nonloc state for both the
first and the second automaton, and any valudaitégd andloc for eachp € P is
possible for either automaton. It is easy to check ®at 5 holds between any two

such states.

2. Say thatr € Qrogimpiandy € Qropspec, and thattRyopy. Then for any action &
Arogimps If TOBimplperforms actiorn and the state changes fromto 2/, we must
show that there exists a closed execution fragnieat TOBspeaowith (. fstate =

y,trace(3) = trace(p(x)ap(x')), andx'Rropf.Istate.

By Lemma 9.12, Property 1 02 o5 holds inx’.

135

For the other properties, we consider each action:

e drop: Let 3 be the point trajectory(y). Itis trivial to see that'Rropy and

that the trace of botfy anda are empty.
o fail, andrestart,: These are trivial.

e tocast(m),: Let 3 be p(y) tocast(m), p(y'). It is easy to see the trace is
the same. lfx(updates,) # () then since the same message is added to the
end ofoutgoing; in TOBimpland toto_send; in TOBspecthenz'Rropy'.

Otherwisex(updates,) is empty and we can trivially conclude théR oy’

e torcv(m),: Let 3 be p(y) torcv(m), o(y'). We need to check that this action
is enabled iny. If the action is enabled in the implementation, then there i
an associated tuple imcoming, with timestampt < clock, — d and with a
tag which is smaller than the tags of all others in the set. Byperty 2(b) of
Liropimp:» t IS at leastclock, — d, implying it is equal toclock, — d. Since
xRy, this must mean that the tuple is the headc«fcv,. Hence, this action is
enabled in the specification.

We now note thatrace(a) = trace(3) and that it is easy to see thédR o gy’
sincezRropy and the associated tuple is removed fromoming, and the

corresponding tuple is removed frofto_rcv,), 2’ Rropy’ must hold.

e GPSupdate(l,t),: Let 5 bep(y) GPSupdate(l,t), o(y'). Letv beregion(l).
It is easy to see that the tracescofind 3 are equal. To see thatRropy’, we
first note that properties 1-3 and 6 are easy to see hold. Wadmnseveral
cases for the other properties:alffailed,), then checking that the properties
hold is trivial. So we consider wherer(failed,).
Say the conditional on lines 44-45 holds. Since propertyldd)ave know that
the only way for the conditional to hold isif(updates,) = (). SincexRrogy,
we know by property 4 oR o thaty(rtimer,) = L, which by property 2 of
Rrop means that'O B Delay,.updated = false andto_send, = to_send,;; =
A = to_rcv,. In statex’, outgoing, = outgoing, = A, () = incoming, and

updates, = {(v,t)}. In statey’, to_send, = to_send = \ = to_rcv, still,

136

satisfying properties 5 and 7. Also, in statertimer, = 0, satisfying property
4.

Now we check the other case, where the conditional on line4Xdoes not
hold. We know that in state, updates, is not empty. In this case, the only
changes betweenandz’ are thatupdates, in =’ also contains the paiw, ¢),
and any tuples inncoming, that don't satisfyregSpan are removed, it is easy
to see that these will simply be those with region tags noakpu or a neigh-
boring region. It is trivial to see that property 5 still heldFor property 4,
notice that in statg’, rtimer, is not different from what it was in state Also,
we can choose the sane, t') in z(updates,) to satisfy property 4 in state'.
Finally, to check property 7, notice th&tD B Delay, removes any pair without

a region that is the same or neighboringHence, property 7 still holds.

brev((m, s, t, f,b,r)),: Let 5 bep(y). It is easy to see that the traces are the
same, and that the possible addition of an elemenidoming, doesn't affect
any properties since by property 2(a) 6§, Bimp @Nd property 3 of nvppcqst,

t > x(clock,) — d.

bcast((m,q,t, f,b,7)),: Let 3 be p(y) tocast'(m, c), p(y'), wherec is true

iff y(to_send,) is empty, and the tuple is added 4ent so that any other tu-
ples for timet from p or any smaller id process is before the point of addi-
tion, and any tuples for timefrom a larger id process is after the point. We
first check thatocast’ is enabled iny. SincexRropy andbcast is enabled

in z, ~y(failed,).Also, x(outgoing,) = y(to_send,) andz(outgoing,) =
y(to_send), meaning the same message is transmitted. Heocast' is en-
abled.

Now we check that’Rropy’ holds. This is easy for property 5 since the heads
of two corresponding equal queues will be removed to leaweaaoeresponding
equal queues. The only other property to check is 6. We mustkcthat the
tags in the tuple added bcastq(p) are the largest in the set, ordering the tuple

after previously sent tuples by This is ensured through the fact thagatisfies

137

property 2(d) ofL%OBimpl. By our condition on the way in which the tuple is

added tosent, we know that order is preserved between different senders.

3. Say thatr € Qrogimpl ¥ € QroBspec; ANATRropy. Leta be an execution fragment
of TOBimplconsisting of one closed trajectory, withf state = .
We must show that there is a closed execution fragmerdf TOBspecwith

B.fstate = y, trace(f) = trace(a), anda.lstateRropf.Istate.

Let p; be the first id in P, p, be the second, etc. Letmi,uq,q,t1),
(Mo, us, qa, ta), -+ (My, un, qn, t,) be they(sent) prefix containing all tuples with

t; < a.lstate(now) — d.

; H 1 1 1 2
Then § is the execution fragmenty a, 7.1 a,, T2 - a,, T2
A y Totls where §.ltime = «.ltime, t; + d = 7;.lstate(now), and a;j €

{torev'(my, u;),,, drop(p;)}, for all i from 1 ton andj in 1 to |P|. We selecta,

to betorcv' if 3(v,t) € 7.updates(p;) : t < now — d AV (U, t') € updates(p) :
(t' >t =" € nbrst(u)), anddrop otherwise.

In other words 3 is an execution fragment whetercv, anddrop events are added
in order of process id for each message in ¢het queue that is exactly old. In
order to satisfy properties 2, 6 and 7 of the relatidp, 3, our construction ensures

that in the last state gf no actiontorcv’ or drop is enabled.

It is obvious that the traces ot and 3 are the same. It is also easy to
see that by construction, eatbrcv’ and drop action will be enabled, and that

a.lstateRropf.lstate.

The following theorem concludes that our implementatiotheftotally ordered broad-

cast service implemeniSO Bspec.

Theorem 9.16 TO Bimpl < T O Bspec.

Proof: This follows directly from the previous lemma and Coroll&rg3.]

138

One useful observation about the proof thato s is a simulation relation is the fol-
lowing, which says that, given any execution fragmerf 70 Bimpl started in the legal
set Lropimp @nd a state of 7O Bspec that is related to the first state of there is an
execution fragment of' O Bspec starting in statg that not only has the same tracevalsut
also has the samelV and Fail-related projections as those®@{This is very useful later,
when reasoning about théail-transformed composition of the totally ordered broadcast

implementation pieces with pieces of other services):

L1oBimpt

Lemma 9.17 Leta be in frags;opy,,, andy be a state inveachableropspe. SUCh that

a.fstateRropy. Then there exists’ in fragsropspe. SUch that:
1. o . fstate = y.
2. trace(a) = trace(a/).
3. If ais a closed execution fragment, therstateRropa’ Istate.

4. Oé[(ARw, VRW) = O/[(ARI/V, VRW)
5. Foreachp € P, af({fail,, restart, }, { failed, }) = o[({fail,, restart, }, { failed, }).

The first three properties of the lemma follow from the faetttR o5 is a simulation rela-
tion, while the last two properties follow from the constiioa of the matching execution
of TOBspec in the proof thatR oz is a simulation relation, which preserves the actions
and variables oR1/ and each of the processdsail-transform variables and actions.
Now, as mentioned previously, we tie the legal stdtes s, t0 reachable states of
TOBspec In particular, we show that each statelino sin IS related to some reachable

state ofl’"O Bspec.

Lemma 9.18 For any stater € Lyopimyi, there exists a state € reachablero pspec Where

TRropy.

Proof: We prove this lemma by showing how, given a stat€ L;opgimy, We can con-
struct a state; of TOBspecsuch thattRropy. We do this by describing the state of
the components of state We then check that the constructed statis one such that

y € Invropspec aNdxRropy holds.

139

. Y(RW) = xz(RW).
This says that th&W component is the same in bathandy.

. For eachp € P : y(TObcast.updates(p)) = {(region(l,t)) | (I,t) €
x(RW.updates(p))}.
This says that thepdates should correspond betwe&il” andT Obcast.

. y(T'Obcast.now) = x(RW.now), andy(procs) = P.
This says that the realtime should correspond betwig@hcast and RW and that

procs should always be full.

. Foreaclpy € P, x(failed,) = y(failed,).

This says that the fail status of the processes should matefebn the states.

. For eactp € P, if z(failed,) theny(TOBFilter,) andy(TOBDelay,) are arbi-
trary.
This says that for failed processes the state off the3 Filter andTO B Delay com-

ponents are arbitrary.

. For eachp € P, if —x(failed,) and z(updates,) = 0, then: —y(updated,),
y(to_send,) = y(to_send}) = y(to_rcv,) = A, andy(rtimer,) = L.

This says that if a process is not failed and has an empfyites in z, then in state
y updated is false,rtimer is L, and theto_send ™, to_send™, andto_rcv queues are

empty.
. Foreacty € P, if —z(failed,) andz(updates,) # 0, then:

o y(updated,).
This says that if a process is not failed amgtlates is not empty inz, then

updated is true for the process .

e y(to_send,) = x(outgoing,) andy(to_send;’) = x(outgoing,).
This says that if a process is not failed andlates is not empty inz, then the

process’sutgoing queues correspond to their counterpartend queues iny.

140

o Lett =min({t* € R=°| Ju € U : (u,t*) € z(updates,)}).
Theny(rtimer,) = min(d, z(now) — t).
This says that if a process is not failed ametlates is not empty inz, then
rtimer in y is as old as the first pair in the processjglates in stater, or both

are at least old.

o Let (my,p1,t, fi,b1,u1), -, (M, Dns b, fr,bnuwy,) be the subset of
x(incoming,) with t = z(now) — d, ordered by(p;, fi, b;).
Theny(to_rcv,) = (my,ur), -+, (M, up).

This is the same as property 7 of Definition 9.14.

8. Let<<m1,p1, t1, fl; b1, U1>, t1, P1>, cey <<mn,pn, tn, fn; by, Un>, tn, Pn> be the subset
of U, p z(pbeastq(p)) with t; > xz(now) — d, ordered by(t;, pi, fi, bi).
Theny(sent) = (my,uy, p1,t1), -+, (My, Up, Pry tn)-

This is the same as property 6 of Definition 9.14.

9. Let<<mlap17 t, f17 bla U1>, t, P1>7) <<mn7pn> t, fn> bna un>7 bn, Pn> be the subset of
U,ep z(pbeastq(p)) with t = z(now) — d, ordered byp;, fi, b;).
Theny(oldsent) = (mq, uy, p1,t), -, (My, Up, D, t).

This says thabldsent in y is calculated fromi-old pbcastq messages.

Next we show thay € Invropspe.. We check each property ¢fivropspe. (Definition
9.1) in statey. Properties 1-5 and 7(a) dinvropspe. are trivial to check. Property 6
of Invropse. holds iny because state satisfies properties 2(a) and 2(b) b} gy,
and because of properties 8 and 9 in the construction abovesed this, notice that by
properties 8 and 9 above, the concatenationl@$ent andsent in statey is the sequence
of pbcastq messages in state with timestamps up t@ old, in order of the timestamp,
sender, attached Boolean, and sequence number of the ree¢spbey Properties 2(a) and
2(b) of L%OBimpl guarantee that those tuples in statgatisfy the region ordering property
described in property 6 dfnvropspec-

For the remainder of property 7 @huropspe., We provide pointers to the properties
of statex and the construction that imply the property. Property Bf)nvrosspye. holds

in y because state satisfies property 3 ot} ,,,,, and because of the third bullet in

141

property 7 in the construction above. Property 7(cJ®frozspy. holds iny because state

x satisfies property 2(d) af7. z,,,,,, @nd because of property 7 in the construction above.
Property 7(d) off nvropspe. holds iny because state satisfies property 2(c) af3., Bimpl

and because of properties 7-9 in the construction above.

All that remains is to show thatR o zy. We check each property & o 5. Properties
1-3, 6, and 7 are trivial to check. Property 4®%,5 holds because of property 6 and the
third bullet of property 7 in the construction above. Prapérof Rrop holds because of
the second bullet of property 7 in the construction above.

By Theorem 9.4, we know thdtvrogspee = reachableropspyee, @and we conclude that
for any stater in Lrogimpi, there is some reachable statef TOBspesuch thattRropy.

Now we can pull together the results in this section to finatlynclude that

Start(TOBimpl, L1opimp) implementsStart(T'O Bspec, reachablerogspec)-

Lemma 9.19 Start(TOBimpl, Lropimp) < Start(TO Bspec, reachableropspec)-

Proof: By Lemma 9.15R o3 is a simulation relation fronTOBimplto TOBspec By
Lemma 9.18, we know that for each statec Lyopimp, there is some reachable state

y of TOBspecsuch thattRropy. Hence, by Corollary 2.22trace fmgs%giﬁjg‘” C

reachableTo Bspec

trace fragsropspec , Which implies the result. n

9.3.3 Self-stabilization

We've seen thal.ropimp IS a legal set foll’O Bimpl, and that each state ibyo pimy 1S
related to a reachable state™® Bspec. Here we show thatOBimplerself-stabilizes to
L1opimp relative toR(RW || Pbcast) (Theorem 9.24), meaning that if certain program por-
tions of the implementation are started in an arbitraryestaid run withR(RW || Pbcast),
the resulting execution eventually gets into a staté i si,. This is done in phases,
corresponding to each legal S8t 5,00 L0 Bimptr Lo pimpr» @Nd finally Lo gimpi -

After we show thafTOBimplerself-stabilizes ta o gimy: relative toR(RW || Pbcast),

we use the fact thaR o5 (see Definition 9.14) is a simulation relation that relatietes

142

iN Lropimp With reachable states GfO Bspec to conclude that after an execution -
Bimplhas stabilized, the trace fragment from the point of stadiiion withbcast andbrcv
actions hidden is the suffix of some tracel@Bspedsee Theorem 9.25).

The first lemma describes the first phase of stabilizatianigigal setl p;,,,,:

Lemma 9.20 Lett;, be anyt such thatt > €umpie-
TOBimpler self-stabilizes in time;,, to L p;,,,,, felative to R(RW || Pbcast).

Proof: By definition of self-stabilization, we must show that

Lk)
HH H H 1 TO Bimpl
eXECSY(TO Bimpler)| R(RW || Pheast) StAbIlizes in timet, , to fmgSTOBim;zer||R(RW|\Pbcast)-
1

%—'OB’L"HLpl
O Bimpler||R(RW || Pbcast)

. L im
is the same agrags,gamy -

By Corollary 3.11, the Sefrags:LF
By Lemma 3.21, we just need to show that for any lengthprefix o of an element of
CLECSY(TOBimpler) | R(RW | Pbeast), -lstate i in Lpop,.,. \We examine each property of
L%“OBimpl'

By Theorem 6.4, since the stateR¥\||Pbcastin the first state ofv is a reachable state
of RW|Pbcast we know that property 1 ok, z,,,,,; holds in each state af.

By the proof of Lemma 9.6, we know that for eaghe P, if property 2 of Lo g,
holds forp in some state, it continues to hold fein subsequent states. Consider the first
GPSupdate,, in o for somep and the state in o immediately after the event. Itis easy to
see that property 2 holds fprin statex. Sincea.ltime = t},, andt;,, > €sumpic, We know
that for eactp € P at least on€&sPSupdate,, action occurs inv. Hence, for each € P,
property 2 ofLj¢ g, Olds atov.Istate.

We conclude thatr.Istate IS iN Lio -]

Lemma 9.21 Lett?, be anyt such that > 0.

2
TOBimpl

Ll ; - .. L
frags oo Stabilizes in time?, to frags gz -

Proof: By Lemma 3.21, we just need to show that for any lengjthprefix o of an element
of fmgsfg%i;’;;;, a.lstate isin Lo .- We examine each property 6f. ;.-

By Lemma 9.6, since the first state @fis in L} g;,,,;» We know that property 1 of
L70pimp: OIS in each state of.

Notice that there must be some statef « such thate(now) = «.fstate(now) and

all actions that occur after in « occur at a state withow > z(now). Consider any

143

statey in « such thaty occurs a non-0 amount of time afterf state and no actions occur
betweenr andy. This means that there are no tuplegipbcastq(p)) that were sent at the
time y(now) and no tuples iny(outgoing,) or y(outgoing,), meaning that property 2 is
trivially satisfied. This allows us to conclude that prope2tof L7, z,,,., holds aty and
hence, by Lemma 9.8, atistate.

We conclude thadr.Istate IS iN L7 -]

Lemma 9.22 Lett}, be anyt such that > d.

3
TOBimpl

L2, 5 - .. L
frags oo Stabilizes in time}, to frags gz -

Proof: By Lemma 3.21, we just need to show that for any lengjthprefix« of an element
of fmgsii%i;;g, a.lstateis in Lo g, We examine each property 6%, z;,,,..-

By Lemma 9.8, since the first state @fis in L7 z,,,,;» We know that property 1 of
L6 imp NOlds in each state af.

For property 2, based on the proof of Lemma 9.10, the promentybe considered as
a conjunction of separate statements, one for each possitde It is also not difficult to
see that for any state in o and timet larger thana. f state(now), property 2 holds for
messages sent at time Hence, in order to ensure that property 2 as a whole holds at
statea.lstate, we need that property 2 holds@t/state for all times up tod time before
a.lstate(now). This is satisfied becauseltime > d.

For property 3, we know that in. fstate, any non-failed process with non-empty
updates, has its latest update impdates, correspond to its latest update &tV. After
d time passes, that particular latest update satisfies thereegents of theu, ¢) in prop-
erty 3, if the process has not failed in the meantime. If thecess has been failed in the
meantime or was failed in. f state, then it will have anupdates, set consistent with the

updates ofRIV starting from after it awakens.

We conclude thatr.Istate IS in L - -
Lo i, L Lo me
Lemma 9.23 frags,op,my Stabilizes in timel to frags;g g -

Proof: By Lemma 3.21, we just need to show that for any lengfirefix o of an element

3
LTOBimpl

of frags, Bimpl » -lstate IS IN Lo pimpr- We examine each property 6fo gimpi-

144

By Lemma 9.10, since the first state @fis in L}, z,,,,,,» We know that property 1 of
Lropimp holds in each state of.

It is plain that for any state in,, any new tuple added to @ncoming queue for a pro-
cess will satisfy property 2 ofropimp. Consider any € P and tuple(m, s, t, f,b,r) €
incoming, in a. f state. By property 2(b) of.1., Bimpt» WE KNOWthat < a. fstate(clock,).
By our stopping conditions on line 35, this tuple will be rerad whenclock, = t + d.
Hence, the tuple will be removed in less thatime. This holds for any procegsand any
tuple ina. f state(incoming,). This implies that inv./state, property 2 will hold.

We conclude that.lstate IS iN Lo pimpi-]

Theorem 9.24 Lett,,, be anyt such that > 2d + €;umpie-
TO Bimpler self-stabilizes in time,,;, t0 L1o pim,y relative to R(RW || Pbcast).

Proof: We must show thatexecsy(roBimpier)|R(rW|[Pheast) StabIlizes in timet,,, to
frag SchgE;TﬁWHR(RW||Pbcast)- By Corollary 3.11.f TagS;TOOB]j;T};lerHR(RWHPbcast) is the same
asfmgs%%ig‘ﬁ. The result follows from the application of Lemma 3.7 to tberflem-
mas (Lemmas 9.20-9.23) above. L&t = cmpie + (tiob — 2d — €sampie) /3, 12, =
(tioh — 2d — €sampie)/3, and e, = d + (tiop — 2d — €sampie)/3. (These terms are cho-
sen so as to satisfy the constraints tHat> esumpie, ti, > 0, @ande;, > d, as well as the
constraint that,, + ¢, + t3, + d = top.)

Let By beexecsy roBimpier)| R(RW || Pbeast)s B1 € f mgs;@%@%ﬁ B, be f ragsfé%’i;zﬁ,
B; be fmgsfg‘gi;’f;;, and B, be frags%‘gj;’:;’; in Lemma 3.7. Lett; bet},, ¢, be
2., t3 betl andt, bed in Lemma 3.7. Then by Lemma 3.7 and Lemmas 9.20-9.23,
ELECSY(TO Bimpler)| R(RW | Pbeast) StAbIlizes intime,, +t7, +t3 +d = t; t0 frags:];g%ﬁ:;’ﬁ.

We conclude thatl’OBimpler self-stabilizes in timet;,, 10 Lyopim,y relative to

R(RW /|| Pbcast). [

As promised, we can now conclude that an executiom@Bimpleventually reaches
a point such that the trace of the execution from that poinsdhe same as the suffix of

some trace of the specification.

Theorem 9.25 Lett,,, be anyt such that > 2d + €;4mpie-

traceSActHide(HTOimpl,U(TOBimpler)HR(RW”Pbcast)) stabilizes in tirnetob to traceSR(TOBspec)-

145

Lo Bimpt reachablero Bspec

Proof: By Lemma 9.19, we know thdtace fragsiogmpl” < tracefragsropgpee :
By Theorem 9.24, we know that execsy(roimpier)|R(RW|Pbeast) — Stabi-
lizes in time ¢, to frags;gOB}iZ;ﬁerHR(RW”Pbcast)' By Lemma 3.10,
fragS;gOB}i:;;leerHR(RW”Pbcast) is the same asfrags%giﬁjgl‘”. By Lemma 3.5, this

implies that T aCeS ActHide(Hroimp1,U(TOBimpler)| R(RW || Pbeast)) stabilizes in timet;,; to

L1oBimpt
trace fragstogimpl
H L im habl spec
Sincetracefragstopmp’ S tracefragspopa.. ', we conclude that the set of

traces ofActHide(Hroimpr, U(T'OBimpler)||R(RW || Pbcast)) stabilizes in timet;,, to

reachableTo Bspec

trace fragsropspec , Which is the same aacesrroBspec)- n

146

Chapter 10

Leader election service

In order to simplify the implementation of the VSA layer, s$tuseful to have access to a
leader election service that allows nodes in the same regiperiodically compete to be
named sole leader of the region for some time. In this chaptedescribe the specifica-
tion and implementation for a stabilizing round-based ézaelection service used in our
emulator implementation. We then show that our implemeénas correct and that it is

self-stabilizing.

10.1 LeadSpec: Specification of the leader election service

We describe the specification of our leader election seragcan algorithm in two parts:
LeadMain and LeadCl,,p € P (see Figure 10-1). The specification of the leader
election service is theheadSpec, which is equal toLeadMain||RW composed with
Fail(LeadCl,) for all p € P, with certain actions hidden.

Notice that thel.eadC'l machines are for individual processes. In this thesis wénare
terested in consideringail -transformed mobile nodes. Separating flkedC'l machines
from LeadMainallows us toFail-transform portions of.eadSpec As with TO B Delay
andTOBFilter in Chapter 9, separating the leader election service irfailaoblivious
central component arféhil-transforming individual components makes it easier toHasle
transform theory from Chapter 5.

Our leader election service is a round-based service thlact®information from po-

147

fail ,restart, $

Fail

| eader, | eader’ (f),

LeadCl,

prefer,) prefer’ (f),

‘ LeadMain

GPSupdat e(l, now),

RW

GPSupdat e(l’, now),

prefer, prefer’ (f),

LeadCl,

| eader, | eader’ (f),

Fail

fail,restart, ?

Figure 10-1: Leader election service. L&adClfor a client performs grefer’(f) to in-
dicate that its client should be consideredlU®adMainas the leader of its client’s region.
LeadMaindetermines the winners of the leader competition for eagioneand communi-
cates the results to eatkradCl A winning process'teadClmight then produce kader
output to its client, indicating the client is a leader.

tential leaders at the beginning of each round, determipde one leader per region, and
performsleader outputs for those leaders that remain alive and in theioregup to when
the round is exactly old. We assume that rounds are of lengih,., wheret ;.. > 2d +e.
Rounds begin on multiples of;;... A new leader competition for each region begins fresh
(remembering none of the prior round’s leaders or nomingjiat the start of each round.
This simple round-based structure, with little informati@membered from one round to
the next, is helpful when discussing stabilization in Setti0.3.3.

LeadMainis the central decision-making portion of the leader etecservice, collect-
ing nominations from processes for leadership, and detengnileaders for each region
from these nominationsLeadCl, sits betweerhLeadMainand a procesg. At the start of
each round, it communicates witleadMainto nominate its process as the current round’s
leader for its region by providing Boolean priority inputs teadMain letting it know
that the process it represents is an alive process with leuwel of its region, and hence
competing for leadership. If it received an indication framprocess that its entry should
be favored, the Boolean it communicates is true. OtheniiseBoolean is false. These

Boolean priorities are later used by the emulation algori(Bection 11.2) to communicate

148

1 Signature:
Input GPSupdate(l, t),, | € Rt € RZ0, pc P
3 Input prefer’(val),, val € Bool, p € P
Internal reset
5 Output leader’(val),, val € Bool, p € P

7 State
analognow: R=9, initially 0
9 reg P—UU{L}, initially L forallp € P
pref. P — Bool, initially false for allp € P
11 cand U — (P xBool) U {_L}, initially L forallu € U
serviced 2%, initially 0
13
Trajectories:
15 evolve
d(now) =1
17 stop when
(nowmod tice = dppys A Serviced# P)
19 V (nowmod tgjice = Aphyst2e Aserviced ()

21 Transitions:
Input GPSupdate(l, t),,
23 Effect:

reg(p) < region(l)

Input prefer’(b),
Effect:
pref(p) — b
if 3q € P: (g, b) = candreg(p)) then
candreg(p)) — choosgcandreg(p)), (p, b) }
else ifb vV candreg(p)) = _Lthen
candreg(p)) — (p, b)

Output leader’(val),,

Precondition:
nowmod tg;ce € (0,dpnys | AP ¢ serviced
val < (p, pref(p)) = cand(reg(p))

Effect:
serviced— servicedU {p}

Internal reset
Precondition:
nowmod tice > ppyste A serviceds ()
Effect:
forall ue U
candu) «— L
forall pe P
pref(p) < false
serviced— ()

26

28

30

32

34

36

38|

40|

42|

44

46

48

Figure 10-2:Lead M ain, electing a leader.

whether the submitting process is currently emulatingoital region’s VSA.

LeadMaintakes Boolean priority inputs at the beginning of the rounditheLeadCk,
and each time such an input occuksad M ain decides whether to replace whoever is the
current winner for the input process’s region with the newcess, always selecting a
process that submits a true value over one that submitseavalse.

By the time the round ig old, LeadMainsubmits an input to eacheadC1, saying
whether its processis the round’s leader for its region. If the input says it isldradCl,
has a record of participating in the latest leader compaetitihen it performs an output to
let its process know that it is the leader.

We describe thé.cad M ain and LeadC'l components in more detail below.

10.1.1 LeadMain

Here we provide a description beadMain(Figure 10-2), the central leader-deciding ser-

vice. The interface of eadMainconsists of three kinds of actions:

e Input GPSupdate(l,t),,l € R,t € R=% p € P: This input indicates that a process

p is currently located at positian

149

e Input prefer’(val),,val € Bool,p € P: This input indicates that procegsis
proposing itself as a candidate to be leader of its curregibne The Booleanal
indicates whether the process should have priority in leadkection. (Later, we
use this mechanism to give priority to processes in a rediahdre participating in

emulation of their region’s VSA (Section 11.2).)

e Output leader'(val),,val € Bool,p € P: This output indicates to procegs
whether or not it was chosen as the leader for its currenbnegA truewval indi-

cates yes, while a false:/ indicates no.
The state variables are:
e now : R=Y: This variable is the real-time. It is initially 0.

e reg(p) : UU{L},p € P: This variable is the last reported region for each process,

initially L. For eactGPSupdate(l, t), input, the value-egion(l) is stored inreg(p).

e pref(p) : Bool,p € P: This variable is the priority for the procegs For each

prefer’ (val), input, the valueval is stored inpref(p).

e cand(u) : (P x Bool) U {L},u € U: This variable communicates who the current
leader of the region is. Itis initially_, but when grefer’(b),, occurs whemreg(p) =
u, it is updated tdp, b) if cand(u) was_L or b is true and the current pair is false. If
b matches the Boolean of a pair already-imd(u) thencand(u) may or may not be
updated tap, b).

e services : 2F': This is a bookkeeping variable usedlbgadMainto keep track of the

processes for whichprefer’ output has not yet occurred.

Whenever grefer’(b),, occurs (line 26) at the start of a rourilcadMainstoresb as

pref(p) (line 28). Then it checks to seeyifs region has a current candidate for leader. If

not or if b is true and the current candidate tuple is false, the t(pl® is stored asand(u)

(lines 31-32). Ifb matches the Boolean in the current candidate tuple, teauMain

nondeterministically decides whether or not to replacedineent candidate tuple with
(p,b) (lines 29-30).

150

1 Signature:
Input GPSupdate(l, t),, | € Rt € RZ0

3 Input prefer,
Input leader’(val),, val € Bool

5 Output prefer’ (val),, val € Bool
Output leader,

7

State:

9 analogclocke RZOU { L}, initially L
reg: U U {L}, initially L

11 pref, participated Bool, initially false

13 Trajectories:
evolve
15 if clock# Lthen
d(clock) =1
17 else constantlock
stop when
19 (clockmod t ;.. = 0 A — participated)
V (clockmod t;;ce = dppys + € A participated
21
Transitions:
23 Input GPSupdate(l, t),
Effect:
25 if reg # region(l) Vv clock# t then
reg < region(l)
27 clock«—t
pref, participated« false

Input prefer,
Effect:
if clockmod ¢4;;.. = Othen
pref « true
participated« false

Output prefer’(val),
Precondition:

clockmod t4;;.. = 0 A — participated A val = pref
Effect:

participated«— true

Input leader’(val),,
Effect:
if clock# LA (= val Vv — participated) then
pref, participated« false

Output leader,
Precondition:

clockmod ticc = dpnys + € A participated
Effect:

pref, participated— false

30|

32

34

36

38

40|

42|

a4

46|

48

50

Figure 10-3:LeadC1,, client portion for electing a leader.

After some non-zero amount of time into the round and no lt#tan d,,; into a
round, LeadMainservices processes. For each proges®t in serviced, it performs a
leader’(val), output, whereval is true exactly wherand(reg(p)) is equal to the tuple
(p,pref(p)) (lines 34-37). It then updatesrviced to containp, indicating that it has been
serviced (line 39).

After more thand into a round,LeadMainperforms areset, initializing pref, cand,

andserviced for the next leader election round (lines 41-49).

10.1.2 LeadCl

Here we provide a description dfeadC1,. This piece communicates high priorities for
leader election from a processlteadMainand acts as an intermediary for communicating
leadership decisions froireadMainto a process. This piece is also the portioh@hdSpec
that allows us to model the impact of failures. For examipbedMainmay choose as leader

a process that has failed since the beginning of a roueagiClprevents that process from

151

becoming a leader.

Its interface consists of five kinds of actions:

e Input GPSupdate(l,t),,l € R,t € R=Y p € P: This input indicates that a process

p is currently located at positian

e Input prefer,,p € P: This input indicates that the process is to have priority in
leader election. (As mentioned earlier, this is used iniBectl.2 by processes
currently emulating their local VSA to indicate that theyshd be chosen as leader

over processes that are not yet participating in VSA enana)i

e Input leader’ (val),, val € Bool,p € P: This input indicates whether or nbead-
Main has chosen this process as the winning candidate for leadefsf current

region.

e Output prefer’(val),,val € Bool,p € P: This output is the process putting itself
up for consideration as leader. The valué is true if aprefer has occurred in this

round at the process.

e Output leader,,p € P: This output communicates that a process is the leader for

its current region.
Its state variables are the following:

e clock : R=°U{L}: Thisis the process’s local clock. Itis initially, but is set to the

system’s real-time when@PSupdate occurs at the process.
e reg: U U{L}: Thisis the last reported region of the process since lizi&gon.

e pref : Bool: This value indicates priority of the process. Ipeefer occurs at the
beginning of a round, this value is set to true and trigggneéer’ output. Otherwise,

this value is false.

e participated : Bool: This indicates whether the process has participated icuits
rent region’s leader election viamefer’ action. It can be reset after it has partici-

pated if aprefer input occurs.

152

At the start of a round.eadC',, performs grefer’ (pref), output, settingarticipated
to true so as to prevent additional such outputs (lines 3644tay also receive prefer,
input (indicating that its client wants process have higher priority in the leader election
competition), resulting in the setting pfef to true andparticipated to false, triggering
a(nother)prefer’ output (lines 30-34). Whenever@PSupdate occurs at the process that
changes its region or clockref andparticipated are set to false, preventing the process
from later performing deader output in the region it left (line 28).

Later, if it receives deader’(val), input (line 42), ifval is false (meaning it was not
chosen as leader for its region) orcibck = L (meaning it has restarted and has not yet
received aGPSupdate) or participated is false (meaning it has moved or restarted since
the beginning of the round), thdreadCl, setspref andparticipated to false, initializing
those values for the next round (lines 44-45). Otherwisdodés nothing.

If, at exactlyd into the roundparticipated is still true (meaning that it did not receive
aleader’ input reporting it was not leader for its region) theendC',, performs deader,

output (lines 47-49), and initializesef andparticipated for the next round (line 51).

10.1.3 LeadSpec

As mentioned earlier, the full specificatiobeadSpecfor the leader election service is
equal to the composition of the central leader-choosingicerand R/ composed with

the Fail-transformed.eadC' portion for each process, with certain actions hidden:

Definition 10.1 Let H uqspec b€ {leader’ (val),, prefer’(val), | val € Bool,p € P}. Then
defineLeadSpec to beActHide(H eaaspee, | [, p Fail(LeadCly)|| Lead Main||RW).

peEP

Legal states ofleadSpec

Here we characterize a set of legal states/fesdSpec by providing a list of properties
describing those states. We then show that the set of stdsgail.
Properties 1, 2, and 5 ensure that the statB16f is reachable and consistent with the

state ofLeadMain Properties 3 and 4 describe some basic facts about th@statadMain

153

based on the age of a round. The remaining properties dedeaits about states based on

the value of eacheadCl

Definition 10.2 Define Invecqaspec 10 be the set of states of LeadSpec such that the

following properties hold:

1. JJ[XRW € Invgw.

This says that th&W components are in a reachable state.

2. RW.ow = LeadMain.now N RW.reg = LeadMain.reg.
This says that the clock time and region mapping is the sarmeelea RV and
LeadM ain.

3. RWonow mod tgice > dppys + 2€
= (serviced =) AVu € U : cand(u) = L AVp € P : —pref(p)).
This says that if the current round is greater th@p,,; + 2¢ old, thenLead M ain’s

serviced, cand, andpref variables are initialized.

4. RW.now mod tgiee = 0= serviced =) and RW.now mod tgice € (dpnys, d] =
serviced = P.
This says that when a round startgyviced must be empty. Also,when the round is

more thand,;,s old and up tad old, all processes must have been serviced.

5. VueU:Vp e P :Vbe Bool : Vt = tgice| RW.now/tgice| : cand(u) = (p,b) =
u € {RW.reg™(p,t), RW.reg™(p,t)}.
This says that itand(u) is set to a pair containing some process, then that process

was in regionu at the start of the current round.
6. Vp € P: ~failed, N clock, # L:

(@) reg, = RW.reg(p) # L A clock, = RW.now.
This says that an alive process withock, # L has areg variable and time

corresponding to its region iR} and the time aRR1V.

154

(b) pref, = (participated, V clock mod tg;ce = 0).
This says that an alive process witlack, # L andpref, set to true either has

a participated variable set to true, or the round has just started.

7. Vp € P: —failed, N clock, # L N participated,:

(@) clock, mod tg;c < d.
This says if there is an alive process wiflack, # L andparticipated,, then

the round is at mos{ old.

(b) Vt > tyice|clock, [tsiice| - RW.reg™ (p,t) = reg,.
This says that an alive process wittock, # L andparticipated, has been in

its current region since the time at the start of the currentnd.

(€) cand(reg(p)) # L A (pref, = 3q € P : cand(reg(p)) = (q, true)).
This says that if there is an alive process withck, # L and participated,,
then its current region has a candidate for leaderpit f, is true in addition,
then the process’s current region has a candidate for ledat is tagged with

“true” value.

(d) pref(p) = pref,.
This says that if a process is alive and hdsck, # L andparticipated,, is
true, then its locapre f, value is the same preference value as that recorded in
LeadM ain.

(e) p ¢ serviced V (RW.now mod tg;.e > 0 A cand(reg(p)) = (p,prefy,)).
This says that an alive process witlock, # L and participated, equal to
true is either not already serviced ibead M ain or the round is older than O
and the process’s current region has a candidate leader theit is equal top

paired withpref,,.

We now show that the set of properties describig..qs,.. IS @ legal set for

LeadSpec. (Together with the fact that the initial state of the systenm Invyc.aspecs

this means thatnvqqs,c. iS @ set of invariant states.)

Lemma 10.3 Invpcqaspec IS a legal set forLead Spec.

155

Proof: Letxz be any state ifnv c.qspe.. By Définition 3.12 of a legal set, we must verify

two things for state::

e For each state’ of LeadSpec and actiom of LeadSpec such tha{z, a, z’) is in the

set of discrete transitions @feadSpec, statez’ is in Invycaaspec-

e For each state’ and closed trajectory of LeadSpec such thatr. fstate = x and

T.Istate = o', statex’ is in Invicadspec-

We previously showed that property 1 always holds. Thisdsalie remaining properties
to verify.

For the first cast of the legal set definition, we check thdtéfproperties hold in some
stater and some action is performed that leads to stgtthen the properties hold in state

x'. We break this down by action:

o fail,, restart,, reset, prefer,, leader,: The properties are trivial to verify with these

actions.

e GPSupdate(l,t),: The only relevant properties are 2, 6, and 7. The propesties

trivial to check.

e prefer'(val),: The only relevant properties are 5 and 7.

For property 5, consider ifand(reg,) is updated as a result of the action. If not,
then property 5 still holds since it did in state If cand(reg,) is updated, then it is
updated tap, val). Since property 7(b) held in state then property 5 holds in’.

For property 7, we know that' (participated,) is true. Also, properties 7(a), 7(b),
7(d), and 7(e) obviously still hold. For the first part of 7(a)e need to check that
cand(reg(p)) # L. If prefer did not updaterand(reg(p)), it must have been that
cand(reg(p)) was not equal talL. If it did updatecand(reg(p)), it updated it to
(p,val). Either way, the first part of 7(c) holds. For the second phmi(c), we need
to check that ifz’(pref,) is true thencand(reg(p)) is set to some tuple with a true
boolean. Ifprefer’ did not updateand(reg(p)), it must have been thatind(reg(p))

was already set to a tuple with a true tag sineé = pref, and the post-state only

156

fails to adopt a true tag if it already has oneptéfer’ did updatecand(reg(p)) then
it was updated tdp, true), satisfying the property.

e leader'(val),: The only interesting property to check is 7(e). Considerttto cases
for val. If val is false, then' (participated,) does not hold, and we are doneuwtfl
is true ande(participated,) is false, then' (participated,) is also false, and we are
again done. lbal is true ande(participated,) is true, then’ (participated,) is also
true andp is in serviced, so we have to verify thaR\W.now mod ty;.. > 0 and
cand(reg(p)) = (p,pref,). That RW.now mod tg;.. > 0 is easy to see by virtue
of the precondition for the action. To see thatd(reg(p)) = (p,pref,), notice
that the precondition for the action implies thatand(reg(p))) = (p, z(pref(p))).
Sincecand andpref(p) are not updated by the action, we have thatd(reg(p)) =
(p,xz(pref(p))). Since stater satisfies property 7(d), we know thatpref(p)) =
x(pref,). Sincepref, is not changed wheuul is true andvarticipated, is true, we

have our result.

For the second case of the legal set definition, we checkahaiy closed trajectory
starting with a state where the properties hold and ending in a stat¢he properties hold
in statex’. The most interesting properties to check for this are 3), @id 7(a). Property 3
is preserved by the stopping conditions on line 19.eid M ain, forcing areset action to
occur byd,,;,s + 2¢ into a round. Property 4 is preserved by the stopping camtton line
18 of Lead M ain, forcing aleader’ output to occcur for any unserviced processes. Property
6(b) is preserved by the stopping conditions on line 18@fdC, forcing aprefer’ output
to occur to updatearticipated. Property 7(a) is preserved by the stopping conditions on

line 20 of LeadC', forcing aleader output to occur to updateurticipated. |

Properties of LeadSpec

In each execution of LeadSpesuch thatv. fstate € Invreaaspec, WE €an show that the
following properties hold for each regiane U:
For each state in « and process ig € P, we definenware(u, j, x) to be true exactly

when —z(failed;), z(clock,) # L, andxz(reg(j)) = w. (This is a way of saying that

157

procesg is alive and knows it is in region in stater.) Then for eacht € R=":

1. Say thatt mod tg.e = 0, a.fstate(RW.now) < t < a.lstate(RW.now), and
there exists some € P and state: in o wherez(RW.now) = t andaware(u, p, x)
is true. Then there exists someec P and stater’ in o wherez'(RW.now) =
t, aware(u,q,z’') is true, and there exists a staté after ' where either (a)
z*(RW.now) = t+d and there existslaader, at state:* or (b)z*(RW.now) < t+d
andaware(u, q, z*) is not true.
In other words, if there are processes in regiat the start of the timeslice and none
of those processes fail or leave the region until after thadasd old, then deader,

output occurs when the rounddsold at one of those processes.

2. Foreaclp € P, if aleader, event occurs i at stater wherez(RW.now) = ¢ and

x(reg(u)) = u then:

(@) t mod tyee = d.

This says thaleader outputs can only occur when a round is exaatlyid.

(b) If a. fstate(RW.now) < t—d, then there exists a statewherez’(RW.now) =
t — d and for all states” in « from 2’ until z, aware(u, p, x”) is true.
This says that if d&eader, occurs then it must be that procgseas aware that

it was in regionu from the beginning of the round until theader output.

(€) If a.fstate(RW.now) < t — d and there exists a procegandprefer, at time
t — d whereaware(u, ¢, z") is true for all states’ from theprefer, until some
state whereRW.now > t —d, then there exists sonmeefer, at a state:” where
2" (RW.now) =t — d andaware(u, p, x*) is true for allz* from 2" until z.
This says that &eader output will not occur at a process that did not experience
aprefer input at the beginning of the round unless no other proceis iagion
experienced arefer at the beginning of the round and remained aware it was in
the region for some non-0 time. In other words, if there exashigher priority
process that remains aware it is in the region past the vginbiag of a round,

then no lower priority process will become leader of thewagn that round.

158

Verification of these properties is relatively trivial umdbe assumption that starts in a
state in/nvi.qaspec (Quaranteeing that appropriate regions and clock timep@sent in
all components and that rounds begin fresh). For propergny process that is aware it
is in some region at the start of a round will participate ia kbader competition for that
round unless it fails or moves before getting a chance to ddf sm such process fails or
moves from the region until the round is more thaold, thenLeadMairis cand for the
region will be set to a pair consisting of one of those proadsgogether with its submitted
Boolean. Thd.eadClfor this process will then not reset itgrticipated variable until the

round is exactlyl old, when it performs éeader output.

Property 2(a) holds because of the precondition on line 49eafdCl Property 2(c)
holds because priority nominations are preferred_bgdMain and high priority nomi-
nees that manage to fail, restart and be renominated withphavity will not receive a

leader’(true) input.

Property 2(b) is the most interesting to show. It holds bee@PSupdates that indi-
cate a region change mstarts after a process has failed both resetticipated to false at
alLeadCl If participated is set to false after the round is more than 0 old, then it doés n
get reset to true again in the round, preventingaaer output at the process from being
enabled if a region change mstart happens when a round is more than 0 old. This means
that the only situation we need to examine is the one whereaeps is nominated for more
than one region.We need to verify that in this case, the gowegll not perform deader
because it won the competition in the old region. The key nMagi®on here is that for this
case to occur, &PSupdate must have occurred that changed the process’s region. If the
process does not revert to the old region, theadMainwill perform aleader'(false)
for the process, preventingleader output. If the process does revert to the old region,
it must be when the round is more than 0 old (since at mosiGiP8update per process
is permitted per real-time value), implying thairticipated is false, as described in the

discussion of property 1.

159

Signature: Input prefer,

2 Input GPSupdate(l, t),,1 € R t € R Effect: 32
Input prefer, if clockmod ¢4;;.. = Othen

4 Input brcv(m),, me {candidate} xBool xP xU pref — true 34
Output bcast(m),, m € {candidate} xBool xP xU participated— false

6 Output leader, 36,

Output bcast((candidate, val, p, u)),

8 State: Precondition: 38

analogclock RZ%U {1}, current real time, initiallyL clockmod ¢;;c. = 0 A — participated
val = prefAu=reg# L 40

10 reg: U U {_L}, current region, initiallyL

pref, participated Bool, initially false Effect:_)
12 participated« true 42|
Trajectories: _

14 evolve Input brev((candidate, val, g, v)), 44
if clock# Lthen Effect:

16 d(clock) =1 if v=regA clockmod t;;ce € (0,dpnys] then 46
else constantlock if (val A — pref) v (val = pref A q < p) then

18 stop when pref, participated« false 48
(clockmod t;;..= 0 A — participated A reg# L)

20 V (clockmod t,;ce = dppys + € A participated) Output leader, 50

Precondition:
clockmod t ;.. = dpnys + € A participated 52

22 Transitions:
Input GPSupdate(l, t),, Effect: N
24 Effect: pref, participated— false 54
if reg=# region(l)V clock tv (t mod t;;ce > dpny s +eA participated)
26 V (tmod tgy;c. > OA prefA — participated) then
clock—t
28 reg < region(l)

pref, participated«— false

Figure 10-4: Leadgr electing a leader.

10.2 Leadlmpl: Implementation

Here we describe our implementation@adSpe¢Figure 10-4) LeadSpecs implemented
by Leader, automata with access BW|Pbcast At the beginning of each round, a process
tosses its hat into the ring as a possible leader for its nelgyobroadcasting aandidate
message, together with its id and priority. Each process toéects these messages until
d time into the round. Whenever such a message for its regiteceved, if the process
is still participating then it compares the id and Booleaioniy to its own local id and
priority. If the message’s priority does not have priorityeo the process’s local priority
and the message’s process id is not lower, then the processnohing. Otherwise, the

process ceases participating and readies itself for thieraerd.

The interface of.eader, consists of the following five kinds of actions:

e Input GPSupdate(l,t),,l € R,t € R=% p € P: This input indicates that a process

p is currently located at positian

160

Input prefer,,p € P: This input indicates that the process is to have priority in

leader election. (This is therefer input for LeadCl,,.)

e Input brev((candidate, val, ¢, v)),,val € Bool,v € U,q,p € P: This is the receipt

of acandidate message from some process.

e Output bcast((candidate, val, p, u)),, val € Bool,u € U,p € P: This output is
the process putting itself up for consideration as leadeit$aegionu = reg,. The
valuewal is true if pref is true, indicating grefer has occurred in this round at the

process.

e Output leader,,p € P: This output communicates that a process is the leader for

its current region.
Its state variables are the following:

e clock : R=°U{L}: Thisis the process’s local clock. Itis initially, but is set to the

system’s real-time when@PSupdate occurs at the process.
e reg: UU{L}: Thisis the last reported region of the process since lizétion.

e pref : Bool: This value indicates priority of the process. Ipeefer occurs at the
beginning of a round, this value is set to true and triggdysast output. Otherwise,

this value is false.

e participated : Bool: This indicates whether the process has or needs to paticip

in its current region’s leader election vidaast action.

At the start of a roundLeader, performs abcast((candidate, pref, p, reg)), output,
settingparticipated to true so as to prevent additional such outputs (lines 374 2nay
also receive @refer, input (indicating that its client wants to have priority imetleader
election), resulting in the setting giref to true andparticipated to false, triggering
a(nother)bcast output (lines 31-35). Whenever@PSupdate occurs at the process that
changes its region or clockye f andparticipated are set to false, preventing the process

from later performing deader output in the region it left (line 29).

161

Later, if it receives drcv((candidate, val, ¢, reg)), input (line 44), then if it is no later
thand,,, into the round and eitheral is true whilepref is false (meaning the sender
had a higher priority) opal andpre f are the same byt < p (lines 46-47), therLeader,
setspref andparticipated to false, initializing those values for the next round (8r83).
Otherwise, it does nothing.

If, at exactlyd into the roundparticipated is still true (meaning that it did not receive
a candidate message for its region from a higher priority or same piyobiait lower id
process) therLeader, performs aleader, output (lines 50-52), and initializgs e f and

participated for the next round (line 54).

10.3 Correctness of the implementation

In this section we describe aspects of the correctness ahmplementation of the leader
election service. We define the complete implementatioteay$o be the composition of
theFail-transformed.eader automata together witRbcast and RW, with certain actions

hidden:

Definition 10.4 Let H . cqdimp D€ {bcast(m),,brcv(m), | p € P,m € {candidate} x
Bool x P x U}, and letLeadImplerbe [] _p Fail(Leader,). Then defineleadImpl
to beActHide(H eadimpr, LeadImpler||Pbcast|| RW).

To show correctness, we use the strategy described in 8&c8o

1. Describe a legal sdt;..q., Of Leadlmp] and show that it is a legal set (Definition
10.8).

2. Define a legal setnvy,cqqspe. for the specificationLeadSpec, and show that the set

is a legal set. (This was done in Section 10.1.3.)

3. Show thatStart(LeadImpl, Licader) < Start(LeadSpec, Inviecaaspe) (LEMMA
10.14). We show this in the following way:

(a) Define a simulation relatioR ;..q.- betweerLeadimplandLeadSpeésee Def-

inition 10.9). Show the relation is a simulation relatioretbma 10.10).

162

(b) Show that for each state ih;..4.., there exists a state in the invariant set

Invreaaspec SUCh thatR 1c.q4. hoOlds between the states (Lemma 10.13).

4. Show that.eadlmpleris self-stabilizing tal ; .4, relative toR(RW || Pbcast) (The-
orem 10.17).

5. Conclude that the set of traces of the implementationlsted to the set of traces of

executions of eadSpestarting in/nvycqaspec (Theorem 10.18).

10.3.1 Legal sets

Here we describe a legal setlofadimplby describing two legal sets, one a subset of the
other. Recall from Lemma 3.13 that a legal set of states fofGATis one where each
closed execution fragment starting in a state in the set enalstate in the set. We break
the definition of the legal set up into two sets in order to diiyphe proof reasoning and
more easily prove stabilization later.

The first set of legal states describes some propertiesebatioe true at an alive process

at the time of the firsGPSupdate for the process.

Definition 10.5 DefineL’ ., to be the set of statesof LeadImpl such that each of the

following properties hold:

1. l'[XPbcastHRW €]n'UPbcastHRW-

This says that the state restricted #bcast||RW is a reachable state of the

Pbcast||RW .
2. Vp € P:~failed, N clock, # L:

(@) reg, = RW.reg(p) # L A clock, = RW.now.
This says that alive processes wiflck, # L have a local clock variable and

region setting that matches the clock and region settingin.

(b) participated, = clock, mod tg;. < d.
This says that if there is an alive processes witlek, # L andparticipated,,

then the round is at mosgtold.

163

(c) pref, = (participated, V clock, mod tg;. = 0).
This says that if there is an alive processes wiiitk, # L andpref, then

eitherparticipated, is true or the round has just started.

It is easy to check that’ is a legal set fot.eadImpl.

Leader

Lemma 10.6 L/

Leader

is a legal set forLeadImpl.

Next we define a set of “reset” states for the algorithm. Tisetrstates correspond
to states ofLeadIimplafter the leader election competition for one round has detrag
and before the competition for the next round begins (wherdhder competition state is
“reset”). It also turns out that it is relatively simple tocstrthat an execution fragment of
Leadimplreaches a reset state. When we define our final set of legas staDefinition
10.8 as states reachable from reset states, it makes theftaslowing stabilization of

Leadimplin Section 10.3.3 much simpler.

Definition 10.7 DefineReset 1.4 t0 be the set of statasof LeadImpl such that each of

the following properties hold:

l.zel’

Leader*

This says that is a state inl/

Leader*

2. RWnow mod tgice = 0V RW.now > dppys + €.

This says that is either at the beginning of a round or more thés,,; + € into one.

3. Vp € P: (—failed, A clock, # L) : =pref,.

This says that each alive process withck, # L haspref, set to false.

4. Vp € P :V{{candidate, b, q,u), t, P') € Pbcast.pbcastq(p) : P' = 0.

This says that there are rmandidate messages in transit.

The reset states are used to define our final set of legal dtatgs, for LeadImpl.

L;..qer 1S the set of states reachable from a reset state.
Definition 10.8 DefineL cqqer t0 bereachablesiari(readimpt, Resetyopger)-
It is obvious thatl; ..., IS a legal set fot.eadImpl.

164

10.3.2 Simulation relation

Here we show thabtart(LeadImpl, Licqder) implementsStart(LeadSpec, Invieadspec)
(Lemma 10.14). We do this by first describing a simulatioratieh R ;..q4.. from our
implementation of the leader election serviceadimp] to the TIOA specification of the
leader election servicéeadSpecDefinition 10.9). We prove thaR ;..q.- iS @ simulation
relation, and then conclude tha¢adimplimplementd.eadSpecin other words, we con-
clude that the traces of our implementation are traces alelealection. We then show
that for each state ith.,.q.,, there exists a state in the invariant $et;.,qs,.. such that
R reader holds between the states (Lemma 10.13).

You may notice in the definition below that fafR ; ...,y to hold, stater must be a
state in the legal sét;..4... This constrains the simulation relation to only be conedrn
with implementation states which we will then show are eatio states of.cadSpec in
I NV LeadSpect

Now we define the simulation relation for our algorithm.

Definition 10.9 R ;..q.. IS @ relation between states btadImpl and LeadSpec such for
any states: andy of the two machines respectivelyR ; ...,y €xactly when the following

conditions are satisfied:
1. Stater satisfies the following:

(a) MRS LLeader-

This says that is a state inL.qqe; -
(b) Vp € P :V({candidate, b, q,u),t, P') € Pbcast.pbcastq(p):

i. P'=0Vt=tgie| RWnow/tsc]-
This says thatandidate messages submitted ihcast have either been
processed for each process or were sent at the beginningeofuhrent

round.

pAu€ {RWreg=(p,t), RW.reg*(p,1)}).

ii. (RWnow mod tgice < dphys + € At = tgice| RWnow/tyice]) = (¢ =

165

This says that if the current round is not more thénold, then anycan-
didate messages sent at the beginning of the round are tagged wath th

correct source and region for the process that sent it.
(c) Vp € P : —failed, A clock, # L A participated,:

i. 3P C P : ({(candidate,pref,, p,reg,), tsice| RW.now /tgic |, P') €
Pbcast.pbeastq(p).
This says that each nonfailed process with nontock andparticipated
set to true sent @andidate message at the beginning of the round for its
current region ancpre f variable.

i. V¢ € P : V((candidate,b,q,reg,), tsice| RW.now /tgic|, P') €
Pbcast.pbcastq(q) : (p € P'V [pref, =bAp <q|V [pref, A —b]).
This says that for each nonfailed procegswith non-L clock and
participated set to true and for eacbandidate message sent for the pro-
cess’s region at the beginning of the current timeslice armtgssed for
p, either thecandidate message’s Boolean was false and f,, is true or

pref, is equal to the message’s Boolean ang id ordered beforg.
2. Statey satisfies the following:

(@) RW.now = LeadMain.now N RW.reqg = LeadMain.regq.
This says thateadMairis clock is the real-time, and that its stores regions for

processes is consistent wiil’’s.

(b) Vp € P : (=failed,Nclock, # L Aparticipated,) = (pref(p) = pref,Ap ¢
serviced V (RW.now mod tg,e.. > 0 A cand(reg(p)) = (p, prefy))]).
This says that for each nonfailed process with nortock and participated
set must havere f(p) matchpref,, and eitherp has not yet received leader’
input or the round is more than 0 old and the process is thedeaflits current

region.

() RW.now mod tgice > dppys + € = (serviced = 0 AVu € U : cand(u) =
L AVp e P:—pref(p)).

166

This says that when a round is more thdrold, serviced must be empty,
cand(u) must be initialized for each region, apde f (p) must be false for each

peP.

(d) RW.now mod tyi.. =0 = serviced = ().

This says that at the beginning of a rourdyviced must be empty.

3. z(RW) = y(RW).
This says thakRI/ matches in both states.

4.¥p € P:ax(Fail(Leader,)) = y(Fail(LeadCl,)).

This says that each process’s failure status is the sameaimd y.

5. Let leadCand : (U x Bool) — P U {L} be a function that takes a re-
gion © and Booleanb, and returns the lowest i¢p such thatidP’ C P
((candidate, b, p, u), tice |2 (RW.now) /tsice |, P') € x(Pbcast.pbcastq(p)), or L if

no suchp exists.

Let leader : U — P U {Ll} be a function that takes a regiom and returns
(p,truey if leadCand(u,true) = p # L, (p, false) if leadCand(u,true) =
1 and leadCand(u, false) = p # L, or L if leadCand(u,true) =
leadCand(u, false) = L.

ThenVu € U : y(RW.now) mod tyce < dppys + € = y(cand(u)) = leader(u).

This says thatand(u) in statey is set to the process, if it exists, with the lowest id
amongst the process tags foandidate messages with the same Boolean value for
the region sent at the beginning of the current round, andamboich the Boolean was

either true or there were no such true Boolean-tagged messigthe round.

Now we show thalR ;..q.- iS @ simulation relation fronheadimplto LeadSpec

Lemma 10.10 R ;.04 IS @ simulation relation between states dfeadI/mpl and

LeadSpec.

Proof: By definition of a simulation relation (Definition 2.20) we stishow three things

for all states of the automaton:

167

1. We must show that for any € © rcqqrmp there exists a state € O q45,c Such that
xRLeadery'

The corresponding statgof the specification is the one with the samé/ asz,
with z(Fail(Leader,)) = y(Fail(LeadCl,)) for all p € P, and with the variables

of LeadMain set to their unique initial values. It is easy to check thRt, e, y.

2. Say thatr andy are states such thai ;...q..y. Then for any action € Apcaarmpr, if
LeadImpl performs actior and the state changes frano z’, we must show there
exists a closed execution fragmehdf LeadSpec with 3. fstate = y, trace(f3) =
trace(p(x)ap(x’)), anda’R peqaqer O-Istate. For this proof we should consider each

actiona.

e fail,, restart,, GPSupdate(l,t),, prefer,: The corresponding execution frag-
ment isp(y)ap(y'). The traces of andj are the same, and checking that the

relation holds betweer’ andy/’ is trivial.

e brcv((candidate, b, q,u)),: The corresponding execution fragment is either:
o(y) or p(y)leader’(false),p(y'). It is obvious that in each of these cases,
the traces ofv and 5 are both empty.

We select the corresponding execution fragment in theviatig way: If p is
alive andclock, # L, uw = x(reg,), z(participated,) and[(b A ~z(pref,)) V

(b = z(pref,) A q¢ < p)] then the fragment is(y)leader'(false),o(y').

To see that thdeader'(false), action is enabled, we need to check that
p ¢ x(serviced) and thatz(cand(reg(p))) # (p,z(pref(p))). To see that
2’ andy’ are related, since statesatisfies property 2(b) of the simulation rela-
tion, we know that eithep ¢ z(serviced) or x(cand(reg(p))) = (p, z(pref,)).
Sincez also satisfies property 5 of the relation, we know that x(serviced)
and thatr(cand(reg(p))) # (p, x(pref(p)))-

Otherwise the fragment is(y). To see that’andy’ are related, the only prop-

erties we need to recheck are properties 1(c)(ii) and 4. & aeseasy to check.

e bcast((candidate, b, p,u)),: The corresponding execution fragment is

o(y)prefer’' (pref,),0(y'), where state’(LeadMain.cand(reg(p))) is selected

168

in the following way: If cand(reg(p)) = L Vv 3(q,b') = cand(reg(p)) :
[(bA=D)V (b =10V Ap < q)], then updateand(reg(p)) to be(p,b). Oth-
erwise, leaveand(reg(p)) the same.

The traces otv and 5 are both empty. To see that tipeefer’ action is en-
abled, note that the two actions basically have the samepdéon. To see
thatz’ andy’ are related, it is trivial to check that properties 1-4 of g@-
ulation relation hold. For property 5, notice thatiifcand(reg(p))) = L,
then y'(cand(reg(p))) = (p,b). This obviously satisfies property 5. If
y(cand(reg(p))) # L then since property 5 holds in stateit must be that
there is soméq, V') = y(cand(reg(p))) such that there is an associatsh-
didate message imbcastq in = for the current round andeg(p). Since we
updatey’(cand(reg(p))) exactly when(p, b) is such thab is true and’ is not,
orp < g andb =V, then we know thateader(reg(p)) in statez’ is equal to

cand(reg(p)) in statey’.

e leader,: The corresponding execution fragmenpig/)ap(y’). The traces ofv
andg are the same, and checking that the action is enabled anhéheiation

holds between’ andy/’ is trivial.

e drop((candidate, b,p’,u),t,q,p): The corresponding execution fragment is
o(y). The traces ofx and 3 are both empty. To see that andy’ are re-
lated, since property 1 holds in statewe know that the message was for a
different region than’s, meaning it has no bearing on the properties covered

by the simulation relation.

3. Say thatrR..ry. Let a be an execution fragment dfeadImpl consisting of
one closed trajectory, with. fstate = x. We must show that there is a closed
execution fragment of LeadSpec with . fstate = y, trace() = trace(«), and
a.lstateR 1 eqder3-1state.

Let ¢y be a.fstate(RW.now) andt; be a.lstate(RW.now). Let t; be dpypys +
tslice Lto/tslicej- If t3 mod tgice > dphys + € then |ett2 be min(tg, dphys + 2¢ +
tslice LtO/tsliceJ)a else lettZ be dphys + 2e + tslice LtO/tsliceJ .

169

Letpy,- -, p, be an ordering of the set of € P such thatp ¢ y(serviced) and
(p,y(pref(p))) # y(cand(reg(p))). Let pyi1,-- -, p, be an ordering of the set of
p € P suchthap ¢ y(serviced) and(p, y(pref(p))) = y(cand(reg(p))).

If &4 € [to,t3) and to € (to,t3] then § is the execution fragment
Tileader’(false),, 11 1leader’(false),,T1 2, - - - leader'(false),,, T1.m, leader’ (true),, .,
Timi1, " ,leader’(true),, m1.,, T2, resetrs, where (B.ltime = a.time and

7;.Istate(RW.now) = t;.

If t, € [to, t3) butts & (%o, t3] then is the same as above, except that it ends with
andry.lstate = ts.

If t1 ¢ [to,t3) andty € (to, 3], thens is muresetrs.

If t1 ¢ [to, t3) andty ¢ (to, t3] thens is justrs.

In other words, we fill inleader’ actions for processes that have not been ser-
viced when the time isl,;,, after the start of the round after other actions have
been completed, so as to not violate the trajectory stopgnglitions on line 18 of
LeadMain. We also fill inreset actions at timeg,,,,; + 2¢ into a round, or at time

ts if t5 is befored,;,s + 2¢ and afterd,;,s into a round, so as to not violate the trajec-
tory stopping conditions on line 19 dfead M ain and to satisfy property 2(c) of the

simulation relation.

It is easy to check that.lstateR eqqer3-Istate.

The following theorem concludes that our implementatiothefleader election service

implementd_eadSpec

Theorem 10.11 LeadImpl < LeadSpec.

Proof: This follows directly from the previous lemma and Coroll&rg3.]

One useful observation about the proof tRat, ... is a simulation relation is the fol-

lowing, which says that for any execution fragmentlefadimplstarting in a state: in

170

Licader and for any statg in Invicqaspec SUCh thatt R 1eqq4e-y, there is some fragment of
the leader election specification starting in stathat not only has the same trace but also
has the sam&W1 and Fail-related projections. (This is very useful later, when os@sg
about theF ail-transformed composition of the leader election impleratom pieces with

pieces of other services):

Lemma 10.12Let o be in frags;icadr and y be a state iNInvreuspee Such that

a.fstateR readery. Then there exists aw in fmgsizggga;;m such that:
1. o/.fstate = y.
2. trace(a) = trace(d).
3. If ais a closed exectuion fragment, therstateR 1 cqqer . Istate.

4. Oé[(ARw, VRW) = O/[(ARI/V, VRW)
5. Foreachp € P, of({fail,, restart, }, { failed,}) = o[({fail,, restart, }, { failed, }).

The first three properties of the lemma follow from the faeitR ..q.. iS @ simulation re-
lation, while the last two properties follow from the consttion of the matching execution
of LeadSpec in the proof thatR ;..4. IS @ simulation relation, which preserves the actions
and variables oI/ and each of the processdsuil-transform variables and actions.
Now, to show that each state in...q4.. is related to a legal state of the specification, it is

enough to show that each statefinset;..q4.. IS related to a legal state of the specification.

Lemma 10.13 For each stater € Ly qq4, there exists a statg € Invicqaspec SUCh that

X RLeader Y.

Proof: Letz be a state il c.q4..- By definition of L; .4, x IS a state reachable from a
state inReset.q.q.-. HENCE, We just need to show that for any staie Resetrcoder, WE
can construct a statebased on state such thatt’R ; .4..-y holds.

Let state y(RW) = «o(RW), y(LeadMain.now) = x(RW.now),
y(LeadMain.reg) = xz(RW.reg), y(serviced) = 0, Yu € U : y(cand(u)) = L,
Vp € P :y(prob(p)) = false, andy(Fail(LeadCl,)) = x(Fail(Leader,)).

171

It is trivial to verify both that states satisfies the properties dfvycqaspec @and that

TR [eadery holds. []

We can now conclude that a trace of an executioheddimplstarted in a state in
Li.qqer 1S the same as the trace of some execution fragmdmeadSpestarting in a legal
state.

LLe(Lde" InvLeadSpec
Lemma 10.14 trace fragsyceiimm S tracefragspo,ispe -

Proof: This follows from Lemma 10.13 and Lemma 10.12.]

10.3.3 Self-stabilization

We've seen thal ;... (Definition 10.8) is a legal set fakeadImpl, and that each state
N Licader IS related to a state itnvycqaspe. (Lemma 10.13). Here we show thagadim-
pler self-stabilizes talcqq. relative to R(RW || Pbcast) (Theorem 10.17), meaning that
if certain program portions of the implementation are sthih an arbitrary state and run
with R(RW || Pbcast), the resulting execution eventually gets into a staté ... This

is done in two phases, corresponding to each legal’set,., and L cqder -

After we show that.eadlmplerself-stabilizes tal..q.. relative to R(RW || Pbcast),
we use the fact thaR ; ..q. (See Definition 10.9) is a simulation relation that relateses
iN Lpcader With states ofLeadSpec in Inveq.aspec 10 cONclude that after an execution of
Leadimplhas stabilized, the trace fragment from the point of stadiion withbcast and
brcv actions hidden is the suffix of some tracel@adSpestarting in/nvcqaspe. (Theo-
rem 10.18).

Itis easy to check thdi[., Fail(Leader,) is self-stabilizing tol} ., in timet;,,,
relative toR(Pbcast|RW), wheret}, , is anyt such that > €410 (TO See this stabiliza-
tion result, just consider the moment after each node hasvest aGPSupdate, which

takes at most,,,,,;. time to happen.)

Lemma 10.15 Lett;. , be anyt such that > € qmpie-

[1,cp Fail(Leader,) is self-stabilizing ta’; .., in imet;, ,, relative toR(Pbcast||[RW).

172

We show that starting from a state Ir} Leadlmplends up in a state i .qqer

eader?

within ¢2,, time, wheret?_, is anyt such that > 2d,,,s + €.

Lemma 10.16 Lett?,, be anyt such that > 2d,,s + e.

!

LLe(Lder' il 1 I 2 Lpcader
fragsptaag , stabilizes in timey, , to frags o .

Proof: We just need to show that for any length-, prefix a of an element of

/

fragsfgggf};;pl, a.lstate € Lieqqer- By the definition ofL;..q.., We just need to show
that there is at least one stateRaset ..q4.- that occurs ino.

Let ¢, be equal tax. fstate(RW.now), the time of the first state in. In a.fstate,
there may be messagesibcast.pbcastq that can take up td,;,, time to be dropped or
delivered at each process. We'll call any of these above agess‘bad” messages. We
know that all “bad” messages will be processed (dropped lbreted at each process) by
some state in « such thate(RW.now) = t; = tg + dppys-

Code inspection tells us that for any statelif

eader

and hence for any state im,
any newbcast transmissions otandidate messages will occur exactly whéeiV.now
mod t4;.. = 0, and will be processed (dropped or delivered at each prpbgss,,, s later.
Notice that in each of these cases, dmast transmission is processed by, into a
round. This implies that any state after staté@ o whereRW.now mod tgce > dppys OF
RW.mnow mod ty;.. = 0 satisfies properties 1, 2, and 48set 1 .qqer-

Notice that any state afterin o where RW.now mod tg;c. > d,nys + € also satisfies
property 3 of Reset.q.qe-- This means that to complete our proof we just need to bound
the amount of time that could be required to get from siate a stater* such that, =
¥ (RW.now) mod tgce > dpnys + € andz*(RW.now) > z(RW.now).

We consider three cases for tithe First, ift; mod e > dpnys + €, then for anyt,
such thatty; — t; € (0, tgce — (81 mod tgc)), We're done. Second, #fi mod tg;.. <
dyhys + € but does not equal O, then for = t1 + dppys + €, to mod tgice > dppys + €, and
we're done. Last, ift; mod ¢4, = 0, then for anyt, such that, —t1 € (dpnys + €, tsiice)s
ty mod tgice > dpnys + €, @and we're done.

This implies the total time for stabilization is ahy> 2d,,s + €, which¢?, , satisfiesm

Now we can combine our stabilization results to conclude thal(Leader,) compo-

173

nents started in an arbitrary state and run vidttPbcast|| RWW') stabilizes tal ;cqqe, in time

Licad, Wheret,.,q is anyt such that > 2d,p,s + € + €sample-

Theorem 10.17 Lett,.,q be anyt such that > 2d,,,s + € + €sampie-
LeadImpler is self-stabilizing ta 1 cqqe- iN timet,.,q relative to R(Pbcast||RW).

Proof: We must show thatxecsy (readrmpier)|R(rW|Pbeasty Stabilizes in timet;.,q to

Lpcader Lpcader H
fragSLeadlmplerHR(RWHPbcast)' By Coronary 3'11lfragSLeadlmplerHR(RWHPbcast) is the same

as fragsfé;ﬂj;ml. The result follows from application of transitivity of fdization

(Lemma 3.6), applied to the two lemmas above. Lel, = €sampie + (tread — 2dpnys —
€ — 6sam;z)le)/2 andt?ead = 2dphys +e+ (tlead - dehys —€—- 6sam;z)le)/z-

!

. Lo
First, let B be execsy(readrmpier)|rR(rW | Pbeast), C D€ fragsy et and D be

fragsiteade in Lemma 3.6. Then by Corollary 3.11 and Lemmas 10.15 and6]@vé
have thaExeCSU(Leadlmpler)||R(RW|\Pbcast) stabilizes in timet}ead + tl25ad fo fragséé;zl‘}%pl,
Sincetjeug = ti.,q + ti.q We conclude thateadImpler self-stabilizes in time;.., to

L cader relative toR(RW || Pbcast).]

We can finally pull our results together to conclude thatesaof LeadImpl with
Fail(Leader,) components started in an arbitrary state and run WitRbocast|| RW) sta-

bilize in timet,.,, to traces ofLead Spec starting from a state ithnv,cqaspec-

Theorem 10.18Lett;.,, be anyt such that > 2d,,,s + € + €sampie-

traceSU(LeadImpler)HR(PbcastHRW) stabilizes in timelead to traceSStart(LeadSpec,InvLeadSpec)-

Proof: By Theorem 10.17 and the definition of self-stabilizationg vinave that

age . . L cader .
tracesy(Leadimpier)|R(Poeast| rw) Stabilizes in timef;qqq to trace fragsy eiimy- Since we

showed in Lemma 10.14 thai’acefragsfggﬂj%pl C {racessiart(LeadSpec, vy cagspec)r WE

have our result. n

174

Chapter 11

Implementation of the VSA layer

Here we describe an implementation of the VSA layer (defingghapter 7) by the mobile
nodes in a network. This implementation ugdd’, the totally ordered broadcast service,
and the leader election service.

We present the implementation as a trivial client impleragah, together with a more
involved VSA implementation. We then reason that this impaatation describes a stabi-

lizing VSA layer emulation algorithm.

11.1 Client implementation

Recall the VSA abstraction consists not just of VSAs andast, but also client au-
tomata, corresponding to mobile nodes in the network. Thaldmentation of client
automata is almost trivialC' Efalg], is equal toalg(p), except that thescast andvrcv
actions are replaced hycasts andtorcvs of message tuples. ®cast(m) becomes a
tocast((vmsg, false,m)). A vrcv(m) input becomes #orcv({vmsg,b,m)), b € Bool,

action. The effect on local state is the same for both actions

11.2 VSA implementation

We describe a fault-tolerant implementation of a VSA by n®lniodes in its region of

the network. At a high level, the individual mobile nodes inegion share emulation of

175

fail, restart, ‘
| eader'(f) | eader Fail
) i LeadCl, L:.&‘ VSAE[alg], torcv(m), TOBFilter, | torcv’ (m,v'),
prefer’(f), prefer,
CElalg), tocast (m), OBDelay, J‘
tocast’ (m.f),
‘* ‘ TObcast
GPSupdat e(l, now),
LeadMain RW
I GPSupdat e (!, now),
[[
CElalg), TOBDelay D
| LeadCl, |=——_{VSAElalg], roBFier, |
Fail
fail,restart, T

Figure 11-1: VSA layer implementation. Each process runslieation of algorithms:
LeadCl,TOBDelay, andTOBZFilter, defined previously, together with'E[alg] and
VS AFElalg], the client and VSA emulator algorithms.

the virtual machine through a deterministic state replcatlgorithm while also being
coordinated by a leader. Each mobile node runs its portigheofotally ordered broadcast
service, leader election service, and a Virtual Node Erandtl’SA E) algorithm, for each
virtual node. The TIOA implementation f&f SAE,, is in Figure 11-2.

For eachulg € V ALgs, VSAFE[alg], has five kinds of interface actions:

e Input GPSupdate(l,t),,l € R,t € R=% p € P: This input indicates that a process

p is currently located at positian

e Input leader,,p € P: This input communicates that a process is the leader for its

current region.

e Input torcv(m),,m € VM,p € P: This input is either of aymsg containing a
virtual node layer message to be received by the regionvstate, which contains
the state of a VSA.

e Output tocast(m),,m € VM,p € P: This output is either of amsg containing
a virtual node layer message from the current region’s VSA ustate message

containing the state of the current region’s VSA.

176

e Output prefer,,p € P: This input indicates that the process is an emulator of its

current region’s VSA.
It also has the following state variables:

e clock : R=°U{_L}: This variable isL initially, and then updated to real-time through

aGPSupdate input. Once set, it progresses at the rate of real-time.

e reg : U U {L}: This variable isL initially, but it is updated ta-eg(l) whenever a
GPSupdate(/, t), input occurs.

e part : Bool: This Boolean indicates whether the process is attempbipgtticipate

in the virtual machine emulation in the current round.

e [eader : Bool: This Boolean indicates whether the process is currenéyeader of

its region.

o vstate : UyepQaigwy U{-L}: This variable stores the local copy of the emulator state,

if it is known by the emulator. Otherwise, it is.

e savedq : (Msg x R=%)*: This queue stores timestamp-tagged messages to be re-
ceived by the VSA. Whenevenansg is received via @orcv, the included message

is stored together with the current time at the endwiedy.

e outq : Msg*. This queue is a queue of outgoing messages for the locansgi
VSA.

Mobile nodes in a regiom use a leader-based emulation algorithm to implement the
regionu’s virtual node. At a high level, a leader is periodicallyesg#kd in a zone by
the leader election service (described in Chapter 10). Ade#s responsible for both
broadcasting the messages that would have been sent byrtill whachine in its region
in the laste time, wheree is theV B Delay buffer delay parameter, and broadcasting an
up-to-date version of the VSA state. This broadcast is ugdabth stabilize the state of
the emulation algorithm, forcing all emulators in the saegion to have the same virtual

machine state, and to allow newly joining emulators (thbséhave just restarted or moved

177

into the region) to start participating in emulation. Thistval machine state is frozen
from the point of the sending of this virtual machine statessage, until the mobile nodes
again participate in the leader election service. Durirgj time, the virtual machine runs
at an accelerated pace, simulating the receipt of messagesed from70OBcast while
doing so, until the machine is caught up with real-time arertext leader is chosen. Any
broadcasts that this emulation of the virtual machine pcedare stored in a local outgoing
gueue for broadcast if the emulator becomes a leader.

We now describe the emulation algorithm in more detail.

Round-based virtual machine emulation. Our VSA emulation algorithm follows a
round-based structure. As in the leader election servioes is divided into rounds of
lengtht,;.. = e, where each round begins at a multiple gf...

All active simulation of VSA actions is done only in the fikgtime of a round, after
which the VSA state is frozen until the next round. Duringttih@eriod, each emulator in
a region stores and updates the state of the VSA (includmy 8A's clock value) locally,
simulating all actions of the VSA based on it. To guaranteeMBA emulation satisfies
the specifications from Chapter 7 (bounding the time thewdutpce of the emulation may
be behind that of the VSA being emulated), the virtual cloakstrcatch up to real time.
This is done by having the virtual clock advance at a ratedhavs it to simulate an entire
timeslice’s worth of the VSA inl time. This is illustrated in Figure 11-3, where the virtual
clock proceeds in fits and starts relative to real time, docadly falling behind and then
catching up. Itis formally described in lines 34-36.

At any time, when an emulator receives a TObcast messagawitisg tuple (contain-
ing aVbcast message), it places the message in a local saved message(lijueu150-52)
from which it later simulates the VS#rcving (processing) the message (lines 72-78). If
the VSA is to perform a local action, the emulator simulatesifect on the VSA state
(lines 80-87). If the VSA action is tecast a message, the emulator places the message in
an outgoing VSA queue (lines 86-87), to be removedtandsted in avmsg message as a
VSA message by the leader, in the VSA's stead (lines 89-%3s queue starts each round
empty.

Leader responsibilities. For fault-tolerance and load balancing reasons, it is rscgs

178

Signature:
2VM= ({vstate} xUxU , e Quiq(u))U ({vmsg} xBoolx Msg)
Input GPSupdate(l,t),,l e RtER
4 Input leader,
Input torcv(m),, me VM
6 Output tocast(m),, me VM
Output prefer,
8 Internal participate,
Internal VSArcv(m),, me Msg
10 Internal VSAlocal(act)p, act€ Uuet (Haig(u) Y Oaig(u))
Internal resetRound,,
12
State:
14 analogclock RZOU { L}, initially |
reg: U U {_L}, initially L
16 part, leader. Bool, initially false
vstate Uy e Qaig(w) U {1}, initially L
18 savedq(Msg xRZ0)* initially A
outg Msg*, initially A\
20
Derived variable: legal: Bool= = clock# L=
22 [(leader-clockmod ty;;..= d)A (part=-clockmod tg;.. < 2d+¢)
Areg# LA sorted savedgA V(mt)e savedet< clock
24 A (vstate£ L= [vstatee Qqig(req)A V(Mt) € saveddt> vstateclock
A Vt= clockmod ¢ ;.. :([t> d=-clock-vstateclock= t-d A [te

26 (0,2d)=-part] A [t< d=-clock-vstateclock= (t—d)(l—tsl%))]
28 Trajectories:
evolve
30 if clock# Lthen
d(clock) =1

32 else constantlock
7(clock).vstate= 7,4y q) (T (clock).vstateclock)
34 if vstateclock < clock A clockmod ¢4;;.. < dthen
d(vstateclock) = tg;;c. / d
36 else constantstate
stop when
38 Any precondition is satisfied.

40 Transitions:
Input GPSupdate(l, t),,
42 Effect:
if clock t \VV reg # region(l) v — legal then

44 clock«t

reg < region(l)
46 part, leader— false

vstate«— L
48 savedgoutg«— A

50 Input torcv((vmsg, b, m)),
Effect:
52 savedg— append(savedq (m, clock))

54 Output prefer),
Precondition:

56 clockmod t4;;.. = 0 A — part A vstate# L
Effect:
58 outg«+— A
part — true

Internal participate,,
Precondition:

clockmod t4;;.. = 0 A — part Avstate= |
Effect:

part < true

Input leader),
Effect:
if clockmod t¢4;;.. = dthen
leader— true

Internal VSArcv(m),
Precondition:

62

64

66

68

70

72

vstateclock < clock A next(vstate d,1g(req))= L 74

part A (m, vstateclock) = head(savedq
Effect:

vstate« 414 (req) (VState vrev(m))

savedg— tail (savedq

Internal VSAlocal(act),
Precondition:

vstateclock < clock A part

act= next(vstate d,1q(req)) 7 L
Effect:

vstate« d,;4(req) (VState act)

if act= vcast(m) then

outq < append(outg, m)

Output tocast((vmsg, true, m)),
Precondition:

76

78

80

82

84

86

88

90

clock# LA leaderA vstate# LA m = head(outq)

Effect:
outq « tail (outq)

Output tocast((vstate, u, vstaté)),,
Precondition:

clock# L Areg=u Aleader

vstate= vstaté A [vstate= LV outq= |
Effect:

leader— false

Input torcv((vstate, u, vstaté)),,
Effect:
if clockmod ¢, = 2d A (part v vstate## L)
Areg= uthen
vstate— vstaté
if vstate¢ Qu14(regq) then
vstate«— start,;¢ (yeq) (clock-d)

vstateclock < clock -d
savedg— savedg— {(m, t): t < clock-d}
part < false

Internal resetRound,
Precondition:

clockmod t4;;.. = 2d + € A part
Effect:

vstate— L

part < false

92

94

96

98

109

102

104

104

10§

119

112

114

114

11§

Figure 11-2: VSAEulg|,, emulator ap of alg € V Algs.

179

TN

real clock AN

Figure 11-3: Relationship between virtual and real time.irdual clock behind real time
runs faster until it catches up.

to have more than just one process maintaining a VSA. In atwalimachine emulation,
at the beginning of a round, each process already emuldimy A performs grefer
output, and! later at most one of the mobile nodes in a VSA's region is ch@sea leader
by the leader election service. Recall from Section 10.4a8 processes that perform a
prefer output are chosen over processes that do not by the leadépbelservice. Hence,
a process that is already participating in the emulationsabical region’s VSA is chosen
as a leader over a process that is not already participatirigei emulation. The leader
has primary responsibility for performing VSA outputs arading new emulators join the
virtual machine emulation. In our multiple emulator apmtoga VSA is maintained by sev-
eral emulators, including at most one leader. However, amisocess that is leader actually
performs the sending of the stored messages:in, preventing multiple transmission of

messages from the VSA.

To keep emulators consistent, each emulator must devetop/8A variables in the
same way, and choose the same discrete actions to perfoima aane points in a VSA
execution and with the same results. We assume that eachtemciooses the same VSA
trajectory from any particular VSA state and uses the santerméistic functionnext,

mapping a state and a transition set to a next action to perfdhe results of a transition

180

are also determinized; if more than one state is possiblerasudt of a transition, then

some deterministic method for selecting one of the statem@oyed by each process. In
addition, emulators continue to simulate locally congdIVSA actions until no more are
possible before simulating receipt of received messages &3), also helping to ensure

that local emulator state remains consistent.

Emulation details. There are several complications in VSA emulation that atise to
both message delays and process failure:

Joining: When a node discovers it is in a new region, it sets its logibreand clock to
match that fronGPSupdate, and initializes its remaining variables (lines 41-48).tA¢
beginning of the first full round it is alive for, the proces#lwerform aparticipate action,
setting its locapart variable to true (lines 61-65), indicating that the prodeas been in
the region since the beginning of the round, allowing us tocbtade that the process expects
to receive allTObcast messages sent since the beginning of the roddime later, when
any process in the region withurt set to true or already emulating the VSA receives a
vstate message for its region, it computes its region’s VSA's stiaten the information in
the message and stores it as the frozen VSA state for use mextheound (lines 102-111).
The clock in the resulting VSA state is set to be the time winenMSA state was current,
d into the current round. It also removes any messages frolociés saved message queue

that were sent before the beginning of the round (line 110).

If no suchvstate message arrives in the round (meaning the leader of the railad
or left the region before sending such a message), then eacbss withpart set to true,
regardless of whether or not the process is emulating the, 8®&part to false and erases

its local VSA state (lines 113-118).

Restarting a VSA:If a process is leader and has no value for the VSA state (imgply
that all processes that entered the leader competitiorh&drregionu in that round were
not emulating the VSA), it restarts the emulation (95-99)ddes this by sending @s-
tate message with attached statelof Let©;, ., be a designated element ®f, ., and

startaigu)(t) D€ da1g(u)(© ,time(t)). When a process in the region that is either em-

alg(u)
ulating the VSA or hagart set to true receives suchvatate message, it computes and

stores the stat€art 4. (clock — d) as its local VSA state (lines 107-108), corresponding

181

to having restarted the VSAtime ago and immediately having it receivérae(clock —d)
input.

Self-stabilization. In order to make the implementation self-stabilizing, we lecal cor-
rection duringGPSupdate actions and the receipt of the periodi&tate messages sent by
leaders. Therstate messages sent by a leader contain state information whistwotes
any VSA state information at other emulators, bringing etark into agreement about
VSA state.

11.3 Correctness of the implementation

Here we discuss several aspects of the correctness of olanmaptation of the VSA layer.
Each process runs tHeaail-transformed composition of its local E[alg], V.SAFE[alg],
TOBDelay, TOBFilter, and LeadC'l automata (see Figure 11-1). We define our imple-
mentation system as the composition of these automata®Vith| 7' Obcast|| Lead M ain,

with certain actions hidden.

Definition 11.1 For eachalg € V Algs, defineV Emulalg] to be
ActHide(Hrospee U Headspee, RW || T Obcast|| Lead M ain
| [1,ep Fail(CElalgl, ||V SAEalgl,||LeadCl,||TO B Delay,|TO B Filter,)).

Before continuing, we will first present several definitiamseful in our discussion.
Then, to show correctness, we use the strategy describegttios 9.3, tweaked slightly
to account for the fact that we are building on self-stalnizmplementations of services

in our implementation:

1. For eachulg € V Algs, describe a legal sét;, l of VEmul[alg], and show that

Emulalg
itis a legal set (Lemma 11.8).

2. Define a legal set for the specification, and show that this selegal set. (The legal
setis the relatively trivial one,wher@lV | VIV ||V bcast is started in a reachable state,

and all other state is arbitrary.)

182

3. Show that the implementation startedifiy, , ., implements/ Layer[alg] started

alg|

in a reachable state @tV ||V W ||Vbcast (Lemma 11.15). We show this in the fol-

lowing way:

(a) Define a simulation relatioR g, betweenVEmu[alg] and VLayer[alg]
(see Definition 11.9). Show the relation is a simulationtrelg after some

action hiding (Lemma 11.10).

(b) Show that for each state iy ,,,1,,,;» there exists a state in the invariant set

alg)’
{ZE € QVLayer[alg] | x[XRW||VW||Vbcast € [anWHVWHVbcast} such thaREmu[alg]

holds between the states (Lemma 11.14) (Recall thaty v |vecest the

reachable states of the composition, is defined in DefinitiGi.

4. Show that the set of executions of the implementatioriestan invariant states of
TOBspec and LeadSpec stabilizes to the set of executions BiEmu[alg] started
in L%/Emu[alg] (Lemma 11.19). Notice that this differs slightly from theaségy de-
scribed in Section 9.3, since we will ultimately be using iempentations of the to-
tally ordered broadcast and leader election services thhilige themselves so that
they appear to be starting in invariant states of the twoisesv As we mention be-
low, we add an additional set of results to the strategy ini@ed1.3.4 that allows us
to conclude that these stabilizing implementations togretyith the main emulation

algorithm self-stabilize to reach states related to statés, ..., -

5. Conclude that the set of traces WiEmulalg] stabilizes to the set of traces of
executions ofVLayer[alg] starting in{z € Qviayerfatg] | T[Xrw|vw|vocast €

Invgw vw|veeast} (Theorem 11.20).

We also conclude another result (Theorem 11.21), whichtcains the execution frag-
ments ofV Layer that implementation fragments correspond to after stadiibn. We then
add one more set of results, connecting the implementatibtiee totally ordered broad-
cast and leader election services to conclude that we actumle a stabilizing emulation

of the virtual node layer (Section 11.3.4).

183

procVstate, (t: R=Y, sentseq(MsgxUxPxRZ%)*): Quyq(uy)U {L} | torcvVmsgéto_rcv:(Msgx U)* tR=0):(MsgxR=0)*= =

2 == rSeq (Msg xRZ0)* «— X 46
rvstate Qug(y) U {L} « L while to_rcv # A
4 while sentseg# A if head(to_rcv) = ((vmsg, u, m), v) then 48
if head(sentsefi= ((vstate, u, vstate v,p,t) A v€ nbrs* (u) then rSeq— append(rSeq (m, t))
6 rVstate— vstate to_rcv — tail (to_rev) 50
if rVstated Q) then return rSeq
8 rVstate«— star t 52
— Stamlagu) (1 lookAheadu: U, vstate vstaté: Qg (4. Savedq
rVstateclock < t NP gt
10 sentseq— tail (sentsej (MsgxR=")* outqto_sendMsg*):Boolean== 54
return rVstate return 3riaimas T € fragsvalg "
12 1.71.fstate = vstate A T,.lstate = vstate’ 56
procVmsgéu:U,t:R=0 sentseq Msgx U x PxRZ0)*):(Msgx R=0)* 2. neat(mn Istate, baig(u)) = L
14 == 3.Ya;: a; = next(r;.Istate, dq1g(u)) # L 58
rSeq (Msg xRZ0)* «— X V (next(r;.lstate, dq19(u)) = L
16 while sentseg# A Adm € Msg : a; = vrev(m)) 60
if head(sentseg= ((vmsg,v,m),w,p,t') A we nbrst (u)At'>t 4. Let(mi,t1), -, (mm,tm)= sequence
18 then of received messages anstate.clock 62
rSeq«<— append(rSeq (m, t’ +d)) values for thevrcv actions inay, - - - , an.
20 sentseg— tail (sentseg Thensavedq = (m1,t1), -, (Mm,tm). 64
return rSeq 5. Letmy, - - - m;= sequence of sent messages
for thevcast actions inai, -« ,an. 66

Thento_send= append(outq, (m1,--- ,my)).

Figure 11-4: Functions for use in correctness proofs.

Now, we'll describe several functions and definitions helor the rest of the chap-
ter (Figure 11-4). This next definition is simply shorthawod the queue of messages in
T Obcast.oldsent followed by the head of'Obcast.sent if the message has already been

processed b¥' Obcast for the input process.

Definition 11.2 Define procSent(p) to be oldsent if p ¢ procs or
append(oldsent, head(sent)) if p € procs.

The functions in Figure 11-4 are described in more detadwel

o procVstate, : (RZ0 x (Msg x U x P x RZ%)*) — Qugq U{L},u € U: Consider
procV state, (t, sentseq). This function takes a timeand a sequence of message
tuplessentseq, and returns a state for the VSA in regiaon It finds the lastvstate
tuple, of the form((vstate, u, vstate), v, p, t) in the sequence. A state for the VSA
in regionw is then calculated based on the tupleidate: if vstate € Quqeu) then
the function returngstate after replacingustate.clock with ¢, and if not then the
function returnsstart,, ., (t). (We later use this function to calculate the state of a

region’s VSA based omstate messages that have been sent (Section 11.3.2).)

e procVmsgs : (U x RZ0 x (Msg x U x P x R2%)*) — (Msg x R=%)*: Consider

procVmsgs(u, t, sentseq). This function takes a regiom, time ¢, and sequence of

184

message tuplesentseq, and returns a sequence of timestamped messages. It takes
all tuples insentseq of the form ((vmsg, v, m), w, p, '), wherew € nbrs*(u) amd

t" > t, and returns the sequence projected ontandt’, after adjusting’ up by

d. (We later use this function to calculate the list of messagebe received by a
VSA based on information ii'Obcast (Section 11.3.2). The timestamp indicates

the virtual time at which the VSA should receive the mesgage.

torcoVmsgs : ((Msg x U)* x R2%) — (Msg x R=%)* Consider
to_rcvVmsgs(to_rcv,t). This function takes a sequengercv of messages tagged
with regions and a time, and returns a sequence of timestamped messages. It se-
lects the messages tn_rcv of the form ((vmsg, u, m), v), and returns the sequence
projected onton and then paired with. (This function is used for a reason similar

to the one for why we usgrocVVmsgs. It calculates messages to be received by a

VSA based on information ii’O B Filter. (See Section 11.3.2.))

lookAhead : (U X Quigu) X Quigu) X (Msg x RZY)* x Msg* x Msg*) — Bool:
Considerlook Ahead(u, vstate, vstate', savedq, outq, to_send). This function takes

a regionu, an early state of. calledvstate, an ending state aof calledvstate’, a
gueue of timestamped messages to process calledlq, and queues of outgoing
messages calleghitq andto_send, and returns a Boolean indicating whether there

exists some execution afg(u) such that:
1. The execution begins imstate and ends instate’.

2. There are no locally controlled actions enabledsdtute’.

3. Each locally controlled action in the execution is the aréved at from use of
the functionnext, and novrcv actions occur unless no locally controlled action

is enabled.

4. Consider the sequence wafcv actions in the execution, and construct a se-
guence of tuples corresponding to the messages wrtlveactions, paired with
the value ofvstate.clock when the action occurred. This sequence is equal to

savedq.

185

5. Consider the sequence wtast actions in the execution, and construct a se-
guence corresponding to the messages intlst actions. Thewutq followed

by this sequence is equal ta_send.

In other words, this function takes a VSA in statéate and with a queue of outgoing
messagesutq and indicates whether the VSA can then consume the messages i
savedq in a carefully prescribed way and end in statéate’ with a new sequence

of outgoing messages_send. (We later use this function to verify that the frozen
state of a VSA emulation is consistent with a future abstv&A state. (See Section

11.3.2.)

11.3.1 Legal sets

Fix somealg € V Algs. Here we describe a legal set dEmulalg]. Recall from Lemma
3.13 that a legal set of states for a TIOA is one where eacledlesecution fragment start-
ing in a state in the set ends in a state in the set. We break ttmnagal set definition into
three legal sets in order to simplify the proof reasoning miode easily prove stabilization

in Section 11.3.3.

Legal state setLy, 01"

The first set of legal states describes some properties dtaie true at an alive process

at the time of the firsGPSupdate for the process.

Definition 11.3 Ly, 5,1, 1S the set of states of V Emulalg] where each of the following

properties hold:

1. x[XLeadSpec € InULeadSpec andx[XTOBspec € InUTOBspec-
This says that the state is such that when restricted to thalas of LeadSpec or

the variables off'O Bspec, the result is in the respective invariant set.

2. For eachp € P : —failed, A clock, # L (nonfailed client with a nont clock

value):

186

(@) reg, = reg(p) A clock, = LeadCl,.clock = now A updated,, A rtimer, # L.

This says that the client'seg matches its actual region, its clock is set to the
real time as is its clock inLeadC1, and itsrtimer in T'OBcast has started

running.

(b) [leader, = clock, mod tg;.. = d] A [part, = clock, mod tgic < 2d + €.

(©)

This says that if thécader bit is set, then it igl into the current round. Also, if

part is set, then it is at mogid + ¢ into the current round.

sorted(savedg,) AV (m,t) € savedg, : t < clock,.
This says that the elements @fvedq are ordered with respect to timestamp,

and that the highest timestamp the can be observed is therdume.

3. Foreachp € P : —failed, N clock, # L A vstate, # L (nonfailed client with a

non-L clock value and a nont vstate):

(@)

(b)

(©)

(d)

It is easy to observe thdl,

vstate, € Qaig(req,) N V(m,t) € savedq, : t > vstatey.clock.
This says that the client’sstate must be a state of the client’s current region
VSA, and that all messagesdimedq must have timestamps that are not smaller

than thevstate’s clock value.

clock, mod tg;. € (0,2d) = part,,.
This says that if the round is greater than O but less thdrold, thenpart is

true.

clock, mod tg;.. > d = clock, — vstate,.clock = (clock, mod t;..) — d.

This says that when the round is at ledsild, then the virtual clock’s value is

set to equal what the real time wadsnto the current round.

clock, mod tgce < d =

clock, — vstate,.clock = (d — clock, mod tslice)(t“% —1).
This says that when the round is at mdsild, then the virtual clock’s value is
behind the real time by exactly the amount of time remainimtg the round is
d old, times(t ;.. — d)/d.

Emulalg] is a legal set for the implementation.

187

Lemma 11.4 Ly, 5, .1 1S @ €@l SEt fOl Emulalg).

alg|

Legal state setLy, ., u4"

The next legal set describes a subset of statelslv%tmu[al o that satisfy some additional
properties with respect to the relationship between statése leader election algorithm

and the core emulation algorithm.

Definition 11.5 L?.,
hold:

alg) 1S the set of states of V Emulalg] where each of the following

1. 2 € Ly

This says thaf? . is a subsetofi 1, ...
2. Foreachp € P : —failed, A clock, # 1 (nonfailed client with nont clock value):

(@) part, = rtimer, > min(d, clock, mod t;c.).
This says that ipart is set, theri’O Bcast’s rtimer is eitherd or is at least as

large as the age of the current round.

(b) [pref, = vstate, # L| A [vstate, # L = rtimer, = d|.
This says that ipref is set in the leader election service, theftate is not L.

Also, ifvstate is not L thenrtimer must be equal td.

(¢) participated, = (part, V clock, mod tg;c. = 0).
This says that ibarticipated is set, then eithepart is set or the round has just

begun.

(d) [clock, mod tgce < d A party)
= [(clock, mod tg;.. = 0 A —participated, A [pref, < vstate, # L])
V ([participated, V p € serviced] N\ [pref(p) < vstate, # LA
cand(reg,) # L A [vstate, # L = 3q € P : cand(reg,) = (q, true)])|.
This says that ipart is set and the round is at mogtold, then either: (a) the
round has just begumyre f, indicates whethevstate is not_L, and aprefer’ is

about to occur; or (bparticipated is set orp is in serviced, pref(p) indicates

188

whethervstate, # L, some process is the leader candidate feg,, and if

vstate is not L then that leader candidate’s pair is a “true” pair.

(e) leader, = [—participated, N cand(reg,) = (p, pref(p))].
This says that iteader is set, themparticipated is not set andp, pref(p)) is

the leader tuple foreg,.
3. Foreachp € P : —failed, : Yu,u' € U:

@ [(u = reg=(p) N I{vmsg,true,m) € tosend;) V (u = reg, A
I({vmsg, true, m) € to_send’)]
= [now mod tg;.e =d A 3b € Bool : (p,b) = cand(u)].
This says that if a non-failed client has(amsg, true, m) tuple in one of its
TOBDelay buffers then the round is exactdyold, and the process is the one

that won the leader competition for the region of thesg tuple.

(b) [(u = reg™(p) A Hvstate,u', q) € to_send,) V (u = reg, N\ I(vstate, ', q) €
to_send;)] = [now mod ty.e = d A —leader, N\ —participated, N u =
u' A 3b € Bool : (p,b) = cand(u) A Vi € [1,[to_send to_send]|] :
[to_send, to_send; [i] = (vstate,u,q’) = Vj > i : to_send,to_send[j] ¢
{(vstate, u, q) | ¢ € Top} U{{vmsg, true,m) | m € Msg}|].
This says that if a non-failed client has \sstate message in one of its
TO B Delay buffers then the region tag on the message corresponds te-the
gion it was broadcastin, the client is the one that won theégaompetition for
that region, the process will not be performing more lead#ated actions, and
no vmsg or vstate messages for the region’s VSA were sent afteivgiate

message.

4. Yu € U : Yv € nbrs™(u) : [(now mod tg;e = d A [I((vstate, u, q), v, p, now) €
sent : v € nbrst(u) V I({vmsg, true, m), u, p,now) € sent : Ab € Bool : (p,b) =
cand(u)]) = Vp € P : ¥b € Bool : [(—failed, N cand(u) = (p,b)) = (ju =
reg, = (—participated, A —leader, NVm € Msg : (vmsg, true, m) ¢ to_send.’)]

A[u=reg™(p) = Vm € Msg : (vmsg, true,m) & to_send,]

189

AYq € Top : (vstate, u, q) ¢ to_send, to_send})]].

This says that if asstate message for a region exists or ifvansg for the region
exists but was sent by a process that did not win the regi@aiddr competition,
then the process that won the region’s leader competitidihnot be producing any
vstate or vmsg messages for the region, and does not have any such messaiges i
TOBDelay buffers. (In other words, anystate and vmsg messages in existence
are not going to be second-guessed by another process gemadire messages, and
we can find a single virtual layer state to map to that won’t bargyed based on
leader actions. Non-leader messages might have been sdrhdy are not prob-

lematic if the leader won't be performing any more emulatielated broadcasts.)

5. Foreachp € P : —failed, : [clock mod tg;.. = d N\ —leader, N —participated, N
part, A cand(reg,) = (p,pref(p))] = 3Jq € Top : ((vstate,reg,,q) €
to_send to_send} \ ((vstate, reg,, q), reg,, p, now) € sent).

This says that if the round i€ old, leader and participated are not setpart is
set, and(p, pref(p)) is the leader pair (meaning the client has completed its éead

duties), then arstate message for the region has been sent by the client.
Lemma 11.6 L} 5, 1 1S @ l€Qal set fof” Emulalg).

Proof: Letx be any state i{,,,,...,- By Definition 3.12 of a legal set, we must verify

two things for state::

e For each state’ of V Emulalg] and actioru of V Emulalg] such thatz, a, 2') isin

the set of discrete transitions fEmulalg], stater’ is in L{, 101

e For each state’ and closed trajectory of V Emulalg] such thatr. f state = x and

T.lstate = 2/, stater’ is in L%/Emu[alg}'

By Lemma 11.4, we know that if satisfies the first property dff, ;,,,1,,,» then any
discrete transition o¥’ Emu|alg] will lead to a state:’ that still satisfies the first property,
and any closed trajectory starting with statevill end in some state that satisfies the first

property. This implies that we just need to check that in the tases of the legal set

190

definition, the state’ satisfies all parts of the remaining propertie<.f, Since the

mulalg]”
state ofC' Ealg], is not constrained in the legal set definition, we considéy tire tocast
outputs of those automata while checking the legal set ptiege

For the first case of the legal set definition, the proof is @ngd, rather simple, case

analysis for each action. For each action, most propenteesigial to verify:

e fail,, restart,, drop(p), resetRound,, VSArcv(m),, VSAlocal(act),,

torcv'(m, u),: All properties will still hold in state:’ after any of these actions.

o GPSupdate(l,t),: Sincex is in Ly g1, We know that the only time a state
change could occur that might affect any of the propertiésh® process is changing
regions. However, in that case, local boolean variableslaaged to be mostly false,
making properties 2 and 5 trivially hold. Properties 3 andelaso easy to verify in

this case.

e tocast(m),: The cases of interest to check are where the message bein se

true-tagged/msg message or @state message.

When the message is a true-taggmalsg message, the only interesting properties
to check are properties 3 and 4. For property 3(a), we needheokcthatnow
mod ty;.. = d andp is the winner of the leader competition for its current regio
Thatnow mod tg,.. = d follows from the fact that the precondition specifies that
leader, must hold, which implies thatow mod ¢4,.. = d because property 2(a)
and property 2(b) OL%/Emu[alg] held in statec. That the process is the winner of the
leader competition follows from the fact that property 2¢e)ds in stater.

For property 3(b) , we need to check that there were not ajraaglvstate messages
for the region in &'O B Delay queue. However, the fact thatuder, was a precon-
dition for the action implies that in statethere could have been no such messages in

aTOBDelay queue. Similar reasoning reveals that property 4 also ntill$tad.

When the message isvatate message, the interesting cases to check are for prop-
erties 3(b), 4, and 5. Property 5 is easy to immediately semsavstate message
is added to &'OBDelay queue. Property 3(b) and 4 hold for reasons similar to

reasons they held in thensg case.

191

e tocast'(m, f),: The interesting cases to check are for properties 4 and 5.

For property 4, the main thing to check is that if the messegyesterred td"Obcast

is avstate for some region or if it is a vmsg purportedly for the region’s VSA but
not sent by the leader, then there wasn’t alreadgtate or vmsg for the regionin a
process’d’O B Delay buffer and that the leader of the region would not be subngjtti
any. The case where the messagevsag follows from the fact that property 3(a)
held in stater, making thevmsg case impossible. Thestate case follows from the
fact that property 3(b) held in state meaning that the leader must be done doing
work for the round and there are no otlstate or vmsg messages for the region in

its TO B Delay buffers.

For property 5, it is trivial to see that sincerstate message tuple is only transferred
viatocast' if the vstate tuple was in &o_send queue. Also, since property 3(b) held
in stater, the region attached to the message was the correct oneesjtkat to the
to_send queue it was in. As a result of thecast’ action, the tuple is decorated with
the same region as in the_send tuple and put intagent, implying property 5 holds

in statez.

e torcv(m),: The only interesting case to check is that of the receipt\sitate tuple
message. The property that is interesting to check is thenslemonjunct of property
2(b). We need to show that ifstate, # L, thenrtimer, = d. If vstate, is not
updated by this action, then the fact that this property hrektatex implies it still
holds in stater’. If vstate, is updated by this action, then it must be that either
vstate, # L in statex or part, was true. Ifvstate, was notL in statex, then
the fact that this property held in stateamplies thatrtimer, is still equal tod. If
part, was true, then by the fact that property 2(a) held in stateve know that
rtimer, > min(d, clock, mod tg;.). FOrvstate, to have been updated, we know

thatclock, mod tg;.. = 2d, implying thatrtimer, = d.

e reset: Since the precondition for this leader election actiorctjes that a round is

more thand old, all properties will hold in’.

192

o prefer,: The properties that must be checked are 2(a)-2(d).

For property 2(a), notice that the action sgist, to true. Since the precondition for
the action says thatock, mod tg4,.. = 0, we must show thattimer, > 0. In other
words, we need to check thatimer, is not_L. This follows from property 2(a) of

Ll

V Emulalg]”

For property 2(b), notice that the precondition for the@ctays thatstate, # L,
and that one of the results of the action is the settingreff, to true. This implies
that the first conjunct in property 2(b) holds. To see thatsta@ond conjunct holds,
we need to check thatimer, = d. However, sincestate, was notL in statex and
this property held in state, we know that-timer, = d in statez. Sincertimer,

andwstate, are not changed by this action, we can concludeithater, = d.

For property 2(c), notice that a result of the action is fhaticipated, is set to false,

making property 2(c) trivially true.

For property 2(d), notice that since a precondition of th&oacis that clock,
mod tg;.e = 0, and a result of the action is thatrticipated, is set to false and

pref, is set to true, property 2(d) holds.

e prefer'(val),: The properties that must be checked are 2(c) and 2(d).

For property 2(c), since one of the preconditions for theoacts that clock,

mod tg,.. = 0, this property trivially holds.

For property 2(d), sincgarticipated, is set to true by this action, we must show that
if part, is true, thervand(reg,) is set to a nont value,pre f(p) indicates whether or
notustate, # L, and ifustate, # L then some true-tagged processdsad(reg,).
Since two of the preconditions for this action are thatticipated, is not true and
val = pref,, if part, is true then since property 2(d) held in stat& must have
been the case thatef, indicated whethevstate, # L. As a result of this action,
we know then thapre f (p) would also indicate this. Also as a result of this action, we
know thatcand(reg,) will not be set tol, and that ifustate, # L thencand(reg,)

would be set to some “true” pair.

193

e leader,: The properties to verify are properties 2(e), 3(b), and #hc&the two
preconditions of this action are thabck, mod ty;,.. = d and thatparticipated,
be set, we know that properties 3(b) and 4 trivially stillchoFor property 2(e), we
need to verify thaparticipated, is false and thatand(reg,) = (p,pref(p)). That
participated, is false is a result of the action. Thaind(reg,) = (p,pref(p)) is

true is because properties 4 and 7(eJ @b .qqs,.. hold in stater.

e leader’(val),: The only nontrivial check is for property 2(d). Howeveristis also
easy to check since the property is assumed to have heldéxsiad a precondition

for this action is thakow mod t ;.. # 0.

e participate,: The properties that must be checked are 2(a)-2(d). Themessfor
property 2(a) is the same as forefer,,.

For property 2(b), since one precondition of the action & thtate, = L, we must
show thatpref, does not hold. This follows from the fact that this propergjchin
stater, whenvstate, also was equal td., andpre f,, is not updated as a result of this

action.

For property 2(c), since one precondition of the actiona ¢tock, mod tg;.. =0,

the property trivially holds.

For property 2(d), we must verify that eithparticipated, is false andpref, is
false, or thaparticipated, is true,pre f(p) is false, and:and(reg,) is not_L. Since
property 2(c) held in state andpref, is not changed by this action, we know that
pref, is false in state’. This means we just have left to show thapdf-ticipated,

is true, therpref(p) is false andtand(reg,) is not_L. However, since property 2(c)
held in stater and this action does not change the valugwfticipated,, we know
thatparticipated, must have been true in stateas well. By property 7(c) and 7(d)
of InVLeadspec, WE Know thatpref(p) is false andcand(reg,) is not L in statex.
Since none of these variables were modified by this actianptbperty must still

hold in stater’.

For the second case of the legal set definition, we now conaideclosed trajectory such

194

thatz = 7. fstate. Leta’ ber.lstate. We must show that’ € L ,1.,- The interesting
cases to verify are for properties 2(a), 2(c), 2(d), and ®perty 2(a) is preserved by the
fact thatrtimer and clock variables both increase at the same rate utitiher hits d.
Property 2(c) is preserved because of stopping conditionknes 56 and 63 that force
the part variable to be changed to true whelvck mod t,;.. = 0. Property 2(d) is
preserved because of leader election service stoppingtmorsdforcing a process with
falseparticipated to perform aprefer’ action whenmow mod ty;.. = 0. Property 3 is
preserved because stopping conditionsifarB Delay force messages itv_send buffers

to immediately be sent.]

Legal state setL?, ;

Emulalg]

The final legal set describes a subset of statdg9f,,,, from which the system demon-

strates consistency for the emulated state of a VSA.
Definition 11.7 L3, ,,,.., is the set of states of V Emu where each of the following hold:

2
1.z € Ly g

This says thal.} . is a subsetof? .
2. Foreachp € P : —failed, Aclock, # L (non-failed client with nont clock value):

(@) [part, Vv clock, mod ty;ce = 0] =
procVmsgs(regy, tsiice|NOW [tsice |, procSent(p)) = append (savedq, —
{{m,t) |t —d < tgiice [nOW/tg1ice] }, torcvVmsgs(to_rev,, now)).

This says that ifpart is set, then each message sent since the beginning of
the current round that can be received by the client’s curmegion will be

received by the client or has been stored in the clieat's=dq.

(b) part, = V((vstate,reg,, vstate’),v,q.d + tgce|clocky/tgice|) €
procSent(p) : (v & nbrs™(reg,) V ((vstate, reg,, vstate'), v) € to_rcv,).
This says that ipart is set then it has not yet receivedsstate message sent

at d into the current round for its current region.

195

(C) [vstate, # L A —part)] = [procVmsgs(reg,,vstate,.clock —
d, procSent(p)) = append(savedq,, to_rcvVmsgs(to_rcv,, now))
N(vstate, = procV state(d + tce([now /tsice | — 1), procSent(p))

V [clock, mod tg. = 2d N 3({vstate, reg,, vstate'),v) € to_rcvy])].

This says that ibstate is not L and part is not set, then each message sent
sinced before the client’s virtual clock time that can be receivedlie client’s
current region will be received by the client or has beenestian the client’s
savedq, which contains no other messages but these. Also, eitbeclignt's
vstate is equal to the one from the lagstate message for the region, or the

round is2d old and the client is about to receive such a message.

(d) [vstate, # L A part, A clock, mod tge. = 0] =
dseq = (my,vstate,.clock), (mq, vstate,.clock) - - -, (my,, vstate,.clock)
[look Ahead(reg,, procV state(reg,, vstate,.clock, procSent(p)), vstate,, seq, A, outqy)
AprocVmsgs(reg,, vstate,.clock — d, procSent(p)) =
append(seq, append(savedq,, to_rcvVmsgs(to_rcv,, now)))|.
This says that if the round has just begunfate is not 1, and the process
has already performed prefer output, then there is a tagged sequenreg of
messages such thatq followed bysavedq and thevmsg messages about to be
received fromil’O B F'ilter is equal to the sequence winsg tagged messages
sentd beforevstate.clock for receipt in the current region and processed for
by T'Obcast. Also,vstate andoutq are consistent with the state and outgoing
buffer that would result if the virtual machine ran startifgm the attached
virtual state of the lasvstate message for the region in the prior round, and

performedvrcv actions based on the messages and timestamgg in
Lemma 11.8 L 1,1 1S @ l€gal set fol” Emulalg].

Proof: Letx be any state itl§,,,,,.,,- By Definition 3.12 of a legal set, we must verify

two things for state::

e For each state’ of V Emulalg] and actioru of V Emulalg] such thatz, a, 2') isin

the set of discrete transitions fEmulalg], stater’ is in Ly, 101,

196

e For each state’ and closed trajectory of V Emulalg] such thatr. f state = x and

T.lstate = 2/, stater’ isin L%/Emu[alg}'

By Lemma 11.6, we know that if satisfies the first property dff,;,,,,1.,,» then any
discrete transition oV Emu|alg] will lead to a stater’ that still satisfies the first property,
and any closed trajectory starting with statevill end in some state that satisfies the first
property. This implies that we just need to check that in the tases of the legal set

definition, the state’ satisfies all parts of the remaining propertiedf, [Since the

mulalg]”
state ofC Ealg], is not constrained in the legal set definition, we only coessttietocast
outputs of those automata while checking the legal set ptiege

For the first case of the legal set definition, we consider eatibn:

e fail,, restart,, reset, prefer(val),, leader,, leader' (val),, tocast(m),,
tocast'(m, f),, drop(p): All properties will still hold in stater’ after any of these

actions.

e GPSupdate(l,t),: The only interesting case is wheBPSupdate changes the re-
gion of a process. However, in that case, emulation-relBterlean variables are all
set to falsesavedq is cleared, andstate is set toL, making property 2 trivially
hold.

e torcv(m),: If the message is @amsg message, then the interesting properties to

check are properties 2(a), 2(c), and 2(d).

For property 2(a), it is easy to see that jitirt is true, it must have also
held in statex and that the property holds because the message at the head of
to_rcvVmsgs(x(to_rcv,), now) is now moved to the end clivedq, preserving the

property. The reasoning for properties 2(c) and 2(d) islaimi

If the message is wcast message for the process’s current region and the round is

exactly2d old, then the interesting properties to check are propefib) and 2(c).

For property 2(b), ifpart, was set in state;, then a result of this action is that
part, is set to false, making this property hold. For property 2(leis action only

changesstate or part if part held in stater or vstate was notL. The result of the

197

action is then to setstate to a non-L value consistent with the one in the, strip
savedq of messages sent before the start of the round, angageétto false. That
procV'msgs has the appropriate relationship ¢avedq andto_rcv holds because
in statex eithervstate was not_L, implying that this statement held in that state,
or part, held, implying property 2(a) held in state and hence still holds in this
one. For the second conjunct we must show Hsitate message was the one that
procV state uses to calculate the virtual state it returns or that thatsage is still in
to_rcv. We know by property 7(d) of nvrogspe. thatto_rcv contains a suffix of the
messages that the process was to receiyeinSent(p). Hence, if there exists no
othervstate message for the region ta_rcv we know thatn must have been the
one consistent with the result pfocV state. (This is partly because properties 2(a)

and 2(b) ofL{, 1,1, tells us thattimer must bed and hence that the process will

alg]
receive any messages that should be received by procesteregion.)

torcv'(m, u),: The reasoning for this action is very similar to the reasgnior

torcv(m),.

prefer,: The reasoning for properties 2(a) and 2(b) mirror thoséeparticipate,
action. The only additional property to check for this actis property 2(d).
Since a precondition of the action is thattate, # L andclock, mod tsc =

0 and a result is thapart, is set to true, we note that since property 2(c)
held in stater, it must be thatwstate, = procVstate(d + tgice([now/tsce] —
1),procSent(p)) and procVmsgs(reg,, vstate,.clock — d,procSent(p)) =
append(savedgy,, to_rcvVmsgs(to_rcv,, now)). We also know thabutq is set to

A by this action. Hence, it is apparent that by selecting=), the condition holds.

participate,: Since a precondition of this action is thattate = L and the result is
thatpart gets set to true, the only properties we need to verify arpgotes 2(a) and
2(b). Property 2(b) trivially holds since no suegstate messages could yet exist. To
show property 2(a) holds, notice that the left hand side efettuality consists of no
messages, due to properties 4 and 51af;o pspe.. Also property 7(d) of nvropspec

implies that the result ofo_rcvV'msgs is also empty. Hence, all that remains is to

198

show thatsavedq contains no messages tagged with the current time. Thisasll
from the fact that a precondition is thdbck mod t,;.. = 0 and this property held

in statex, which implies thatavedq then contained no such tagged messages.

VSArcv(m),: Since a precondition of this action is that-t is true and that the mes-
sage at the head efivedq is timestamped less thahinto the round, the only inter-
esting property we need to check is property 2(d). Sinceptuperty held for some
seq andustate in statex, we simply extendseq by appendingm, vstate,.clock),
which gives the second conjunct. Also, since the result isfdbtion is exactly the
same change instate as with avrcv(m) action, we have that the first conjunct must

also hold.

VSAlocal(act),: Since a precondition of this action is thairt is true, the only
interesting property we need to check is property 2(d). &thes property held for
someseq and thevstate in stater, we keep the sameq, which preserves the second
conjunct. For the first, notice that since the result of thuisom is exactly the same
change inustate as with a locally controlled action, andvaast message will be

added twutg, we have that the first conjunct must also hold.

resetRound,,: Since a result of this action is thattate, is set toL andpart is set

to false, property 2 will trivially hold.

For the second case of the legal set definition, we now conaideclosed trajectory such

thatz = 7. fstate. Let’ ber.Istate. We must show that’ € L, ;. 1., The interesting

properties to check are properties 2(c) and 2(d). Propédytblds becaus€O B Delay

stopping conditions force the processing of messagés #and queues, guaranteeing re-

ceipt of anyvstate messages before time moves beyarddnto a round. Also, the local

copies ofvstate cannot be updated at time O ungitr¢ is updated through prefer ac-

tion, which line 56 guarantees. Property 2(d) holds becatis®pping conditions on lines

74-75 and 82-83, restricting the order in which simulatettbas are performed on virtual
VSA state. |

199

11.3.2 Simulation relation

Here we show that the implementation started in/sgf,,,,i,,; implements thé/ Layer

alg]
started in a reachable state ®V ||V V|| Vbcast. We do this by first describing a simula-
tion relationR gujag) for eachalg € V Algs from our implementation of the VSA layer to
the VSA layer. We prove thaR ;.44 iS @ simulation relation in Lemma 11.10, and then
conclude that’ Emulalg] implements the VSA layer (Theorem 11.11). In other words, we
conclude that the traces of our implementation are tracéseo¥SA layer. We then show
in Lemma 11.14 that for each state i ,,,,,.,,, there exists some state ULayer[alg]
where RW||VW||Vbcast is in a reachable state that is related to it under the sinoulat
relation. We also show another result, that ties tracesefrtiplementation to traces of a
constrained set of execution fragments of the VSA layer (ipem. 1.13).

The definition is structured in the following way: Propertgdnstrains the relation so

that for R pmuagy to hold, stater must be a state in the legal sk} ;.- This con-

alg)*
strains the simulation relation to only be concerned witplementation states which we
will show are related to certain desirable state¥ dluyer|alg] (see Lemma 11.14). Prop-
erty 2 states some consistency properties of gtatethe virtual layer. Property 3 relates
the value ofRWW between the implementation and the specification. Progectynstrains
the value ofvbcastq in the specification based on messages sent in the impletioenta
Properties 5 and 6 relate the failure status and state ofigdlysodes in the implementa-
tion to the state of client nodes in the specification. Priypéidescribes the failure status
and state of the virtual nodes based on the state of the ingpition. One of the other
things to note in property 7 is the relationship between #ilerfe status of a VSA and the
state of the emulation in a region. Intuitively, a VSA is &llwhen there are no emulators
in a region that will be able to continue or perform emulatidnthe VSA. The conditions

describing exactly when a VSA for some region is failed iscdiégd in property 7(a).

Definition 11.9 For eachalg € V Algs, defineR g,..jqq t0 be a relation between states
of VEmulalg] and stateg of V Layer|alg] such thatrR g,,.jaqy if €ach of the following
holds:

1. ze L%/Emu[alg]'

200

This says that state must be a state in the legal sé@Emu[alg].

2. Statey satisfies the following properties:

(@) Y[Xew|vw|vecast € INVRW | VW ||Vbeast-
This says that th&W ||V W ||V bcast components of are in Invrw |jvw |vicast-
(b) Yu € U : [(=failed, = clock, = RW.now)Alast(u) > max({t € R=° |3l €
R:3pe P:(l,t) € updates(p)})].
This says that any non-failed VSA haslack equal to the real-time and that
VW has updated each region withtane action no longer ago than the last
GPSupdate.
(€) Yu € U : ~failed, : ¥{m,t) € to_send, :
[now mod tgee > d = e+t —rtimer, > d—now mod tyice + tsice)
A [now mod tgce < d = e+t —rtimer, > d—now mod tgjc).
This says that at any nonfailed VSA, the oldest messagelildiBelay buffer

is one that will not be older thaa by the next time a round iold.

3. z(RW) = y(RW).

This says that thé&1l” component in both states is the same.

4. Let<<vmsgv bzlna m;f)) uzln’pl’ tzln>7 T ((vmsg, bfw mf)v ufmpnv tfz) be the SUbsequence
of z(oldsent)x(sent) of vmsg messages where¢? > now — d. Let
(my,uf, ¢, Py, - (m¥ u¥ tY P} be the subsequence @fvbcastq) such that

tY > now — d. Then there exists a bijection between elements of the tuesees

such that for any two related tuplésymsg, b, m§), uf, p;, t7) and (mj, uj, 5, P}):

(@) mi =mj Auf =uj Nt} =1,
This says that the related tuples match with respect to thesage sent, the
region they were sent from, and the time they were sent.

(b) Vu e U :u ¢ P} < [i <n—|z(sent)|V(i = 14+n—|z(sent)|A|procs| < [P])].
This says that a region is not in the set of “to-be-processetd’ in Vbcast
exactly when th&Obcast tuple it is associated with is either in(oldsent) or

is the head of:(sent) and the message was processed for some process.

201

(c)VpeP:pg P&

(i <n—|z(sent)| V (i =14+ n — |z(sent)| Ap & x(procs))] A [failed, V
((vmsg, b7, mif), ui’) & x(torcvp)]) V (£ # now A —regSpan(p, uf, t))].

This says that a client id is not in the set of “to-be-procesds in Vbcast
exactly when either (a) the process fails tleg Span test and the timestamp for
the message is nabw or (b) theT' Obcast tuple it is associated with is either
in z(oldsent) or is the head ofc(sent) and p was processed, and either the
client is failed or has already processed the message tumeits 7O B F'ilter

queue.

5.Vp € P:ua(failed,) = y(failed,).

This says that the fail status matches between the statesébrclient.
6. Vp € P: —failed,:

(@) z(updated,) = y(updated,) N\ x(CElalgl,) = y(alg(p)).
This says that theupdated variable matches between tHéBDelay and
TOBDelay automata in the two states. It also says that the state oflteetc

algorithm for the virtual layer being run is the same.

(b) Let (vmsg, false,my),---(vmsg, false,m,) be the subsequence of
x(to_send) of (vmsg, false, m) tuples. Themny, - -, m, = y(to_send,).
This says thato_send~ delay buffer inV’ B Delay corresponds to the sequence

of false-taggedmsg tuples in theto_send~ delay buffer in['O B Delay.

(c) Let (vmsg, false,my),---(vmsg, false,m,) be the subsequence of
x(to_send|) of (vmsg, false, m) tuples. Themny, - - -, m, = y(to_sendy).
This says thato_send™ delay buffer inV’ BDelay corresponds to the sequence

of false-tagged@msg tuples in theto_send™ delay buffer inT"O B Delay.

7. Foreachu € U: Let (my,t1),- -, (mp,t,) bey(to_send,).
For eachp € P, let (vmsg, true,n?),--- , (vmsg, true,n?,) be the subsequence of

x(to_send,) x(to_send}) of (vmsg, true, m) tuples.
(@) y(failed,) < each of the following holds in state

202

i. Ap € P:[~failed,\([u = reg™(p)A\I(vmsg, true, m) € x(to_send,)|V

[u = reg, A I(vmsg, true, m) € x(to_send.’)])].

il. now mod tyce > d=
(Ap € P:[~failed, A clock, # L Nreg, = u A (part, V vstate, # L)]
V(procV state,(d + tgice|now /tsice |, oldsent sent) = LA Ap € P :
[~ failed, N J(vstate, u, vstate) € x(to_send)z (to_send})])).

ii. /3p € P : [~failed, A clock, # L A reg, = u A (—part, V
—participated,) A\ vstate, # L Anow mod tg. = 0].

iv. /3p € P : [=failed, A clock, # L A reg, = u A part, A
cand(u) = (p,pref(p)) A (participated,\ leader,) A (vstate, # LVmnow
mod tgjice = d)].

This property describes exactly when a VSA is failed. Thesepfoperties are
basically the negation of the preconditions that will beatésed in part(c)(ii)-
(V). In part(c)(ii)-(v), we describe how to determine thatetof non-failed VSAs
based on a case analysis of the state of the implementatmnedeh region,

property 7(a) makes the region be failed if it doesn't fit iatty of the cases in
part(c)(ii)-(v).

(b) Vp € P: ~failed, : [(u = reg™(p) A3({vmsg, true, m) € z(to_send,)V (u =
reg, A 3(vmsg, true, m) € x(to_send)))] = (nf,--- 0k) = (my, -+, mp).
This says that true-taggaansgs in a non-failed process’80 B Delay buffers
correspond to a prefix of the sequence of messages in the@gisoregion’s

VSAV BDelay buffer.

(c) If there exists &m,now — d) = head(sent) and|z(procs)| < |P| then let
procSent = append(oldsent, head(sent)), else letorocSent = oldsent.
Then—y(failed,) = Jvstate € Qug(u) : Fsavedq € (MsgxR=")* : Joutq €
M sg* such that each of the following holds:

i. lookAhead(u,vstate, y(vstate,), savedq, outq, (my, -+ ,my)).
ii. Yo € Top: [now mod tgce =d
Adp € P : (—failed, A clock, # L A reg, =u A [part, V vstate, # L])

203

Adp € P : (—failed, N I({vstate, u,v)) € x(to_send,)x(to_send}))| =
o [V € Qugu) = V[(Xagw) —{clock}) = vstate[(Xagw) —{clock})] A
[V & Qaigu) = vstate = start 4w (now)] A vstate.clock = now.

o savedq = procVmsgs(u, tgice|now /tsce |, procSent).

e outq = (nf,--- nh).

This is the case where a rounddsold and there exists a process in the
region that is eligible to process an incomiungtate message for the region
in that round, and some alive process hagstate message for the region
in aT'O B Delay buffer. (In other words, the case where/state message
for a region has been queued for sending and some processrenty
eligible to receive it and continue the emulation.) Thgastate,) and
y(to_send,) are consistent with the state that would result if the VSA at
region u were to start at the state calculated from thagtate message,
process messages that were sent starting in the beginnithg edund and
that would be received in the region, and add messages geudogvcast
actions to the end of the true-taggenhsgs in the process'd’O B Delay
buffer.

[now mod tgee > d
Adp € P : (—failed, A clock, # L A reg, =u A [part, V vstate, # L])
AprocV state, (d + tice|nOW [tgiice |, ldsent sent) # 1] =

o vstate = procV state, (d + tsice |[nOW [tiice], Oldsent sent).

o savedq = procVmsgs(u, tgice| now /tsce |, procSent).

e outq = \.
This is the case where there isvatate message for the region sent in this
round and there exists a process in the region that is elgiblprocess it.
(In other words, the case wherevatate message has successfully been
transmitted and some process is currently eligible to reeéi and con-

tinue the emulation.) They(vstate,) andy(to_send,,) are consistent with

the state that would result if the VSA at regionvere to start at the state

204

calculated from the'state message, process messages that were sent start-
ing in the beginning of the round that would be received inrtdggon, and

add messages generatedvmast actions to an initially emptyo_send,,.

[now mod tgiee = 0Adp € P : (—failed, N clock, # L A reg, =
u A vstate, # L A [-part, V —participated,))] =

e vstate = procV state,(now — tg;.. + d,oldsent).

e savedq = procVmsgs(u, now — tgjee, procSent).

e outq = \.
This is the case where it is the beginning of the round andetliestill
some process in the region with a ndnestate that has not yet competed
in the leader election service. (In other words, the caserevaeound has
just begun and some emulator has yet to participate in thedealection
service, meaning it is still possible that an emulator wdhtinue the VSA
emulation.) Theny(vstate,) andy(to_send,,) are consistent with the state
that would result if the VSA at regianwere to start at the state calculated
from thevstate message for the region in the last round, process messages
that were sent starting in the beginning of the last round tlvauld be
received in the region, and add messages generateddmst actions to an
initially emptyto_send,,.
If head(x(sent)) is equal to somé(vmsg, b, m),v,p’,now — d) where
v € nbrst(u) and |z(procs)| < |P|, then lety = (m,now), else let
it be \. ThenVp € P : [~failed, A clock, # L A reg, = u A part, A
(participated, V leadery,) Acand(u) = (p,pref(p)) A(vstate, # LV now
mod tgice = d)] =

o [z(vstate,) # L A wvstate = x(vstate,)]

V(z(vstate,) = L Avstate = start gy (now)).
e savedq = append(savedq, — {(m/'.t) | t' < now — d},
append(to_rcvVmsgs(to_rcv,, now), x)).

o [x(vstate,) # L A outq = append((n},---nk), x(outqy))]

205

V]z(vstate,) = L A outq = Al.
This says that if a non-failed process is in a region, has set, and is go-
ing to send asstate message (it won the leader competetion for the region
and has not yet switched both figrticipated andleader bits off) then:
(a) if its vstate is not L theny(vstate,) andy(to_send,,) are consistent
with the state that would result if regiaris VSA were to start at the pro-
cess’s currenwbstate, process messages that were sent starting in the be-
ginning of the round that would be received in the region, add mes-
sages generated bycast actions to the end of the concatenation of the
true-taggedvmsgs in the process’d’O B Delay buffer with the process’s
outq,
(b) if its vstate is 1. (meaning the leader was not previously an emula-
tor) and the round is/ old theny(vstate,) andy(to_send,) is consistent
with the state that would result if regiom's VSA were to start at state
startqqq) (now), process messages that were sent starting in the begin-
ning of the round that would be received in the region, and a$sages

generated bycast actions to an initially emptyo_send,,.

Now we show thaR g4 IS @ Simulation relation frony Emu|alg] to V Layer[alg],

both with some actions hidden.

Lemma 11.10 DefineHy gy, be{tocast(m),, torcv(m),, leader,,, prefer, | m € Msg,p €
P}. Then for eachalg € VAlgs, Remuag IS @ simulation relation from
ActHide(Hy g, V Emulalg]) to ActHide(Hy 1, V Layer|alg]).

Proof: By definition of a simulation relation we must show three gsirior all states of

the two automata:

1. We must show that for any € Oy gyujag there exists a state € Oy rqyerfarg) SUCh
thatzR g y- There is one unique initial nofailed and nonloc state for mobile
nodes in both the first and the second automaton, and anyswvailtegled andloc for
eachp € P is possible for either automaton. Have each VSA be failets éasy to

check thatR g,,.(a1) hOlds between any two such states.

206

2. Say thatr € Qv emufatg @ANAY € Qv Layer(atg), AN thatt R grujaigy- Then for any ac-
tiona € Ay gmufag), If ActHide(Hy g, V Emulalg]) performs actiom and the state
changes fromx to 2/, we must show that there exists a closed execution fragment
of ActHide(Hy 1, V Layer|alg]) with 3. f state = y, trace(3) = trace(p(x)ap(x')),
andz'R prmufag) B-Istate. The interesting thing to note in this portion of the proof is
the failures of VSAs. There are several actions that caritredine failure of a VSA:
afail of a process in its region,@PSupdate that indicates that a process has left its
region, atocast’ of avmsg message for the region by a process not in the region, or
aprefer'(true) at a process that will not win the leader election competitia each
case, the VSA fails in the abstract level only if the resigjtstate in the implementa-
tion is one that satisfies property 7(a)®R{ gujag, Which describes the conditions

corresponding to VSA failure.
By Lemma 11.8, Property 1 ® gp,ujaq) holds inz’.

For the other properties, we consider each action:

e Internal actiona of C'Efalg],: Let 3 be p(y) a p(y'). Itis trivial to see that

'R Emujaigy @nd that the trace of bothanda are empty.

e reset, participate,, resetRound,, prefer,, leader’(val),, or leader,: Let 3
be the point trajectory(y). It is easy to check that'R g,ujagy for each of

these cases and that the trace of bpanda are empty.

e fail,: If the conditions in property 7(a) hold foteg, in statez’, then letg be
o(y) fail,p(y*) fail.g, 0(y'). Otherwise, lets be p(y) fail,qq, o (y'). Itis trivial
to see that the traces afand are the same in both cases. It is obvious that all

properties of the simulation relation hold between statesdy’.

e restart,: Let 3 be p(y) restart, p(y'). Itis trivial to see that'R gpujagy and

that the traces of and« are the same.

e GPSupdate(l,t),: Let u---u, be some ordering of the region ids.
Let (ni,ji1), -, (nk, jr) be an ordering of the indices; of tuples

(my, u;, t;, P) in y(vbecastq) and process idg; such thatt; # z(now),

207

ji € P, and —x(regSpan(j;, ui,t;)). If x(reg,) # '(reg,)
and the properties in 7(a) hold for(reg,) in state 2/, then let g3
be o(y) GPSupdate(l,t), @©(y*) time(t),, p(yul)-utime(t)u‘m p(yu‘m)

drop(ny, j1) ©(y1) - - -drop(ng, ji) ©(yx) fail.eg, p(y'). Otherwise, let3 stop
after p(yx). Itis trivial to see that the traces afand/ are the same in both

cases.

The only interesting properties to check are propertiesaid 7(a). For prop-
erty 4(c), it is obvious that if the property held betweerntestaandy, then it
will also hold between’ andy,.lstate since theGPSupdate removes the as-
sociated message tuple 0O B Filter or will drop the message i Obcast

when exactlyl time has passed since it was sent.

For property 7(a), th&PSupdate only affects the property if the process has
changed regions from some regian If it has, then if the conditions in 7(a)
hold in stater’, the simulation relation implies that thg(failed,) must be

true. This is obviously the case after the addition offtikeevent.

tocast(m),: If there exists anm’ such thatn = (vmsg, false,m’), then let
B be p(y) veast(m'), p(y'). It is obvious that the properties of the simulation
relation hold between’ andy’. It is obvious that the traces efandg are the

same.

If there is no suchr’, then lets be the point trajectory(y). It is obvious that
the traces oty and 5 are the same. The only interesting properties to check
are property 7(b) if the message was a true-taggesg message or property

7(c)(ii) if the message was\state message.

In the case of a true-taggedmsg, we need to verify that the resulting
TOBDelay buffer of such messages corresponds to a prefix of the VSAs
V BDelay messages. This follows from the fact that property 7(c)@da
between state andy, implying that when the head afoutg,) is removed and
decorated to sit at the end of tli& B Delay buffers, the resultingutq com-
puted by the property for staiéis the same as in statg implying the property

208

still holds.

In the case of gvstate, u,q) message, we look at two cases, wheris in
Qagw) @and wherey is not. Notice that for this action to occur, it must be that

—failed,, clock, # L, reg, = u, andleader,.

If ¢ is in the set of states, then since statandy satisfied property 7(c)(v)
and a precondition for the action is thattq, = A and no changes tostate,,
savedq,, to_rcv,, Or outq, are made by the current action, then thek Ahead

statement over the same arguments most hold between staies;’.

If ¢ is not in the set of states, then since stasndy satisfied property 7(c)(v)
and a precondition for the action is thatate = 1 and no changes tostate,,
savedg,, to_rcv,, Or outq, are made by the current action, then thek Ahead

statement over the same arguments most hold between staiedy’.

tocast'(m, f),: If m is not avmsg tuple then let3 be the point trajectory
o(y). It is obvious that the traces ef and $ are the same. The only in-
teresting property to check in this case is property 7{&)(iiln order for
a tocast’ of a vstate message for a region to occur it must be that the
message was in @0 BDelay buffer, and by property 3(b) OL%/Emu[al J
there can be no othermsg or vstate messages after it iff’OBDelay.
This implies that thexz(procVmsgs(u,tsice|now/tsice], procSent)) =
@' (procVmsgs(u, tgice|now [tgice |, procSent)), x(nf,--- ,nP) = X and
' (procV state(d + tgice | nOw /tg;ce |, oldsent sent)) is equal to the calculated
vstate in statex for property 2(c)(ii). All this implies that the result of ¢h

look Ahead function between’ andy is still true.

If there exists anm’ € Msg such thatm = (vmsg, false,m’)
then let 5 be p(y) vcast'(m’, f), ©(y'). If there exists anm’ €
Msg such thatm = (vmsg,true,m’) then we have four cases. If
f is true and statex’ satisfies the conditions in property 7(a) then
let 3 be p(y) vcast'(m/,true),e, @(y*)faileg,@(y). If f is true and

state 2/ does not satisfy the conditions in property 7(a) then (etbe

209

©(y) veast'(m/, true),.q, ©(y'). The remaining two cases are for whgns
false, and where we replaceg, with reg~(p). The most interesting property
to check is property 7(c)(v). However, since this same ptydeeld between
x andy and the only difference is that the tuple’iftO B Delay that is associ-
ated withz(nf) is removed both fronT'O B Delay and the VSASV B Delay,

preserving the property between statandy’.

torcv(m),: If there exists ann’ € Msg and ab € Bool such thatm =
(vmsg, b, m') then letd be p(y) vrev(m’), p(y'). Otherwise, lets be the point
trajectoryp(y). It is obvious that the properties of the simulation relathwld
between:’ and the either of the final states©@f It is obvious that the traces of

o and/ are the same.

torcv/(m, u),, drop(p): If there exists a(vmsg, b, m'), u, q, z(now) — d) =
head(z(sent)) and |x(procs)| = |P|, then letn be the index of the el-
ement ofy(vbcastq) associated with the tuple at the headadkent), let
uy, - -u be an ordering of the elements irbrs™(u) and letug 1, - - ug
be an ordering of the elements iy — nbrs™(u). Then let 5 be
o(y) vrev(m/)y, By -+ -vrev(m'),, Brdrop(n, ugi1) Brgr - - - drop(n, wpir) Bt
where for each € [1, k], j; reflects the maximal local computation of the VSA
in regionu; after receipt of the message. Otherwiseglée the point trajectory

o(y). Itis obvious that the traces afand are the same in either case.

In the case where the message 181@sg message, the interesting properties to
check are properties 4(b) and 7(c)(ii-iv). Property 4(bpssince all region ids
are removed from the associatelitastqg message tuplesB’ variable exactly

whenprocs in TObcast goes from being full to having processed a member.

The portions of property 7(c) of interest will hold betwegrand 3.lstate be-
cause the only difference in the computedate, savedq, andoutq for the
look Ahead function is in the possible extension of thevedq from statex by
the appropriate receivednsg. The message is added to the compuieckdg

for the implementation exactly when it is processed by th&W6reg,, imply-

210

ing that if property 7(c) held between statendy then it also holds between

2/ andf.lstate.

e prefer' (val),: If val is true and the properties of 7(a) hold in stat¢hen lets
be p(y) fail,ey,(y'). Otherwise let? be the point trajectory(y). Itis obvious
that the traces ot andj are the same. It is obvious that the simulation relation

holds between staté and the final state of.

e VSArcv(m),: Let 5 be the point trajectory(y). Itis obvious that the traces of
« andg are the same. The only interesting property of the simulatdation
to check is property 7(c)(v). We know that the only differema the calculated
vstate, savedq, andoutq is that thevstate is the result of receiving mesasge
and performing local computations until no more are possabithe VSA, and
removing the first element of the calculatetbedq. Inspection of the function
look Ahead reveals that since property 7(c)(v) held between stasady, it

must hold between staié andy.

e VSAlocal(act),: Let 3 be the point trajectory(y). It is obvious that the traces
of o and(are the same. The only interesting property of the simulagtation

to check is property 7(c)(v), but the reasoning is similathiat of VSArcv.

3. Say thatt € Qv emujag) ¥V € Qviayerfalg, ANATR Emuagy- LEt o be an execution
fragment ofActHide(Hy g, V Emulalg)) consisting of one closed trajectory, with
a.fstate = x.

We must show that there is a closed execution fragment of
ActHide(Hy 1,V Layer[alg]) with (.fstate = vy, trace(f) = trace(a), and
a.lstateR pmuaig) 3-1state. The interesting thing to note in this portion of the proof
is the VSArestarts in the abstract level. They occur when rounds @&d and
certain conditions are satisfied. They are added to exewutbthe abstract layer
based on trajectories of the implementation that straddigobint where a round is
d old.

If there exists a time such thatz(now) < ¢t < 2'(now) andt mod ty.. = d

then letu,,--- ,u;, be some ordering of the region ids for which for eache

211

[1, k] there exists a process such that—failed,,, clock,, # L, reg, = u;,
participated,, V leader,,, and cand(u;) = (p;,pref(p;)). If such at exists
then lets be Gyrestart,,, (v})time(t),, p(v1) - - - restart,, p(y;.)timed(t),, , yx, Where
Bo.lstate(now) = t. Otherwise, lets consist just ofy,. Both 3, andy, are required
to provide maximal ordered local computation at the VSAs @btions performed at
each VSA are the ones as indicated byrtle&t function for the VSA and there exist

no locally controlled actions for any VSA in stajg.lstate).

Finally, if z(now) < a'(now) then y, contains adrop(n,j) action at time
yr-lstate(now) for each tuple/m, u, t, P") = vbcastq[n] and process ig such that

j € P and—z'(regSpan(j,u,t)). This ensures that for property 7(c) the calculated
savedq for each subpart corresponds to the messages that havedoeéred by the
VSA.

Since each of the actions possibly added above are interrhktabstract system,
it is apparent that the traces efandj are the same. To check that the simulation
relation holds between stateand statey,.lstate, we note that the most interesting

properties to check are properties 7(a) and 7(c).

For property 7(a), notice that by construction/aénto a round, if there is a process
that will perform send asstate message, then the VSA of the process’s region is
alive, tacking the fourth part of property 7(a). Since theA/&nnot fail until a
discrete action occurs to change a variable referencecdpepty 7(a)(iv), we know

that property 7(a) holds between statéandy,.lstate.

For property 7(c), notice that in statg, each alive VSA performs an ordered se-
guence of locally controlled events until no more are erabl8incex andy are
related and each VSA has simply developed its state forwamd f in a manner
consistent with théook Ahead function, it is obvious that property 7(c) holds be-

tween states’ andy,..[state.
|]

The following theorem concludes that for eadly € V Algs, our implementation of

the VSA layer implement¥ Layer|alg], after the hiding of several actions.

212

Theorem 11.11For each alg € VAlgs, ActHide(Hygmu, VEmulalg]) <
ActHide(Hy 1, V Layer|alg]).

Proof: This follows directly from the previous lemma and Coroll&rg3.]

One useful corollary of this result and the construction bé tmatching ex-
ecution in the proof of the simulation relatioRR g, IS that fragments of
ActHide(Hy i, V Emulalg]) starting in states iy, ..., COrrespond to fragments of
ActHide(Hy 1, V Layer(alg]) started in states ity € Qv rayeratg) | Y| Xaw|vw|vecast €
Invew|vw|vicast) that are also in the set defined below.S describes execution frag-
ments of the virtual layer that satisfy certain propertiéghwespect to the failure status of
a VSA. In particular, it describes wherfail or restart for a VSA is allowed to occur, and

when arestart of a VSA is guaranteed to occur.

Definition 11.12 Define S to be the function that maps, for eaalig € V Algs,
V LNodes|alg] to the suffix-closed set of execution fragmentsf V' Layer[alg] where

for eachu € U:

1. If arestart, occurs ina at timet thent mod t,;.. = d and nofail or GPSupdate
actions occur iny at timet beforerestart,,.
This says that a VSA can only restart exaetlinto a timeslice, before anfail or

GPSupdate actions have occurred.

2. For eacht € R=° such thatt mod t,;.c = 0 and a.fstate(RW.now) < t <

a.lstate(RW.now) we define the following:

e For each stater in « and process ig € P, we defineiware(u, j, x) to be true
exactly wherz(failed;), x(V BDelay;.updated) = true, andz(reg(j)) = u.
(This is a way of saying that procegss alive and knows it is in region in

statex.)

e DefineJ, to be the set of process igsuch that there exists a statan « with

x(RW.now) = t such thawware(u, j, x) is true.

213

For eachj € J,, definex; to be the first state il such thate(RW.now) =t

andaware(u, j, x) is true.

Then

(@)

(b)

(©)

(d)

Letz be the first state iv such thatRW.now = t. If —x(failed,), then there
exists some procegssuch thatuware(u, j,).

This says that at the beginning of a new timeslice, if a VSAtdsailed then it
must be the case that there is some alive process that knasvithe VSA's

region.

If a.lstate(RW.now) > t +d, |J,| > 0 and aware(u, j, 2') is true for each
Jj € J, and each state’ in « starting from stater; and ending with the first
state such thakRW.now = ¢+ d, then there exists @estart, action in« at time
t+d.

This says that if the set of processes alive and aware theyaegionu at the
beginning of a timeslice is nonempty and none of the prosdsasihe set fail
or leave the region beforé into the timeslice, then gestart, action will occur

for the region’s VSA.

If there exists #ail,, action at stater in o attimet’ such that’ —¢ mod tge =

t and—xz(failed,), then there exists a € J, and a stater’; in « afterz; and
no later thanr such that~aware(u, j, r’;).

This says that if an alive VSA fails, then there must have besre process that
was alive and aware it was in the VSA's region at the beginpirte timeslice

but that has failed or left the region in the meantime.

If there exists dail,, action at state: in o attimet’ such that’ € (t+d, t+tc.)
and—z(failed,), then for eacly € J,, there exists a state; in o afterz; and
before thefail, such that~aware(u, j, 2}).

This says that if an alive VSA fails when the round is more thatd, then
it must be the case that each process that was alive and awarasi in the
VSA's region at the beginning of the timeslice has faileceéirthe region in the

meantime.

214

As mentioned before Definition 11.12, the following reswlys that for any exe-

cution fragment ofV Emulalg] starting in a state in.y,,, ..., and for any state in

alg
1y € Qvrayeriag) | Y[Xrw|vw|vicast € InVrw|vw|vicast} SUCh that the two states are
related, there is some fragmentWfayer(alg] that not only has the same trace but also
has the sam&WV and Fail-related projections. In addition, that fragment is a fragin

allowed bysS.

3
VEmulalg]

. . L
Lemma 11.13Let alg be in V Algs and o be in fragsa ety povemufasg): €LY

be a state In{y € QVLayer[alg] | y[XRW|\VW||Vbcast €]n'URWHVWHVbcast} such that

. f stateR pmujagy- Then there exists ai in fragsactride(my 1.,V Layerfalg)) SUCH that:
1. o . fstate = y.
2. trace(a) = trace(d).
3. If ais a closed execution fragment, therstateR prufag o Istate.
4. af(Apw, Vaw) = o/ [(Agw, Vaw).
5. Foreachp € P, a[(Arai(cEBlag),), VFaiCElagl,) = [(AFai(agp)), VEail(agwm)))-

6. o/ € S[VLNodes[alg]).

The first three properties of the lemma follow from the fa@tttR .14 is @ simulation
relation, while the fourth and fifth follow from the consttion of the matching execution
of V Layer[alg] in the proof thatR ;.4 is @ simulation relation in Lemma 11.10, which
preserves the actions and variableg:0¥ and each of the processédsail-transform vari-
ables and actions. The only interesting property to showapgrty 6, and in particular,
property 2(b) of the definition of. This can be shown by noting that this property follows
immediately from use of the leader election service, whigargntees that in the circum-
stance described in property 2(b)eader output will be ready to be performed exacily
into the timeslice (see Property 1 of Section 10.1.3), aedctinstruction of thé” Layer
execution will add aestart action for the region at that time.

The following result ties the legal staté$ 1., tO certain states of Layer|alg].

215

Lemma 11.14 For anyalg € V Algs and stater € L}, there exists a statg €

QVLayer[alg] such thaty [XRW|\VW|\Vbcast S InURWHVWHVbcast andeEmu[alg}y-

Proof: We prove this lemma by showing how, given a state= L3, .., We can
construct a statg of VLayer[alg] such thaty [X zw vw vicest € INVRW|[VW |Vbcast @ND
TR Emulalg)y- This construction is relatively trivial given the mannemhich R gy,ufaig) 1S
defined; the relation mostly describes what the sgatall be. The only components in

statey for which the relation does not dictate the state valuestgxare as follows:

o VW.last: We require that for each € U, last(u) is no older than the most recent

of the GPSupdates that occurred or the last time that a round waxd.

e Vbcast.vbcastq: Property 4 of the simulation relation constrains the mgssaent
no more thani beforex(now). We havevbcastq contain no messages before that

time. This obviously satisfies property 4.

It is not difficult to check that such a state is one wherez is related toy and

Y Xrw | vw | Vicast € INVRW |vw||[Vicast-

We conclude that for any statein L3, Emulalg]’ there is some statg of VLayer[alg]

such thatrREmu[alg}y andy’VXRWHVWHVbcast S InURWHVWHVbcast- u

Lemma 11.14 and Theorem 11.11 immediately imply:

Lemma 11.15 Start(ActHide(Hy g, V Emulalgl), L:{’/Emu[alg}) <
St(LTt(ACtHidG(H\/L, VLayeT[algD? {.T S QVLayer[alg} | x ’VXRWHVWHVbcast €

InURWHVWHVbcast})-

11.3.3 Self-stabilization

We've seen thaLy ..., 1S & legal set for the emulation, and that each state}ig,,,, (..,

alg]
is related to some desirable state/bfayer[alg]. Here we show that for amylg € V Algs,
V Emulalg] started in any state such that theLeadSpec component states are in

Invpeqaspec aNd thel'O B Spec component states are Imvropsye. Stabilizes to execution

216

fragments whose states arefif} ,,,,,;,) (Leémma 11.19). This is done in phases, corre-
sponding to each legal set: we show that we stabilize to egicfran the one before it.
After we show this stabilization result, we conclude thataan execution o¥YEmu[alg]
has stabilized, the trace fragment from the point of stadiiion is a trace of a fragment of
V Layer|alg], with certain actions hidden and with the centralized congmts started in a
somewhat consistent state (Theorem 11.21).

The first lemma describes the first phase of stabilizationr fegal set

L%/Emu[alg} Recall that this legal set is one that is arrived at afeP-
Supdate actions have occurred at each process. It is easy to chedk tha
fragséggxﬁgf[alg]‘:B’—XLeadSpeceanLeadSpec ’—XTOBspeceanToBspeC} StablhzeS tO

VEnLu[(Ll] 1 H
fragsy pomiag N time tt ooy Wheretl . . is anyt such thatt > egmpe. (TO See

this stabilization result, just consider the moment aftache node has a received a

GPSupdate, which takes at most,,,.,;.. time to happen.)

Lemma 11.16 Letalg be inV Algs andt! be anyt such thatt > egqmpie-

vestab

{ eC)VErnu[ang] ‘:L’ (XLeadSpecelnvLeadSpec/\x (XTOBspeceanTOBspec}

fragSVEmu[alg] stabilizes to

VEmu[alg]
fragSVEmu[lg] in tlmetvestab

We now show that execution fragments startingZifi,,,,...,; Stabilize to execution
fragments starting ih5, ,,,,,...,- Recall thatl} (., describes states that satisfy certain
properties with respect to the relationship between thédealection service state and the
emulation algorithm state. The proof of this lemma takesaathge of the fact that when
a round is more thad old, a large number of the properties bf, .., are trivially

satisfied.

Lemma 11.17 Letalg be inV Algs andt? be anyt such that > d.

VE'nLu [alg]
V Emulalg|

vestab

VErnu[alg]

V Eralote] in time¢?

Thenfrags stabilizes tofrags

vestab*

Proof: By Lemma 3.21, we just need to show that for any length-, prefix o of

VEmu[alg]

an element offrags, "'

aulstate is in L, 0 We examine each property of

alg]”
LVEmu[alg} :

By Lemma 11.4, since the first state®fs in Ly, ;,,,,,,» W€ know that property 1 of

L3 Emulalg] holds in each state ef. That property 2(a) and the second conjunct of property

217

2(b) hold afterd time passes is immediately obvious. It is also easy to cheakthese
properties do not affect the other properties, and so catabdized independently.

For the remaining properties, consider a state « such that:(now) mod tg.. > d.
Such a state must exist in sincea is of length#?,,,., > d. We just need to show that
the remaining properties hold in stateand we are done. The crux of this part of the

proof is that whern:(now) mod t;.. > d, the properties of;, Bmul make many of the

alg]
remaining cases trivially satisfied. Properties 2(d), 41 atrivially hold in stater.

For property 2(b)’s first conjunction, fref, is true at a non-failed process then prop-
erty 6(b) OfLVEmu lalg] implies that either:(now) mod ty;.. = 0 Or participated, is true.
Since we are assuming thatnow) mod ty;.. > d, thenparticipated, is true, which by
property 7(a) oflnvicaaspe. implies thatz(now) mod ty;.. < d. Hence, we know that
property 2(b)’s first conjunct is trivially true. Propertyaj of Invycqqspec @lsSo implies that
property 2(c) trivially holds.

For property 2(e), notice that by property 2(b) WEmu[alg], if leader, is true then
x(now) mod tg.. = d, SO property 2(e) also trivially holds in state

Finally, for property 3, notice that true-taggethsg messages andstate messages
are only sent by a process for whittuder, is true. As just established, this does not hold
for any process in state. Any such messages that were previously in the queue will be
removed before time passes.

We conclude that Istate is in L}, 5, n

alg]"

We now show that execution fragments startingiry,,,,,...,; Stabilize to execution frag-
Recall thatZ}

VEmulalg deScribes

ments starting in the final set of legal staté$,;, ..., -

states that can be related to certain states of the VSA |ayerproof of this lemma takes
advantage of the fact that when a round is more than O oldebstthanl old, many of the

properties of.}, ;... @re satisfied.

Lemma 11.18 Letalg be inV Algs andt3 be anyt such thatt > ;.. — d.

LVE’HLLL alg]
VEmu[alg}

vestab

LVErnu[alg]

V mlolg] in time¢?

Thenfrags stabilizes tofrags

vestab*

Proof: By Lemma 3.21, we just need to show that for any length-, prefix o of

VErnu[alg]

an element offrags p, i

aulstate is i Ly, .0 We examine each property of

alg]”

218

L%/Emu[alg}

By Lemma 11.6, since the first state®fs in L{, ;. 1., We know that property 1 of
LY, pmuarg NOlds in each state of.
For the remaining properties, consider a staie « such thatr(now) mod tg;e. €

(0,d). Such a state must existinsincet? ., , > tqic. — d. We just need to show that all

vesta

the properties hold in stateand we are done. Properties 2(a) and 2(d) trivially hold.in
For property 2(b), notice that properties 4 and 5/0b1opspe. imply that no such
vstate message could exist, since the timestamp on the message efrom the future.
Hence, property 2(b) is trivially satisfied.
For property 2(c), property 3(b) dEVEmu lalg] implies part, is true, making property
2(c) trivially satisfied.

We conclude that.Istate is N LY, g, 01

We've shown that executions dfEmulalg] started in a consistent leader election and

totally ordered broadcast state stabilize to executiort$Bulalg] started inLy, .01,

which stabilize to executions started It} ,,,,1,,;;» Which in turn stabilize to executions

started inLy ., Now we can combine these stabilization results to concthde

alg]”
executions ol Emu[alg] started in consistent leader election and totally ordereddrast

states stabilize to executions BfEmulalg] started inLi”/Emu[in time t,cst05, Where

alg]
Lvestap 1S @NYE SUCh that > €zqmp1e + Lstice-

Lemma 11.19Let alg be an element ofi’ Algs, and t,... be anyt such that

t> €sample + tslice-

{xEQVE'nLu[alg] |SC [XLeadSpecelnvLeadSpec Az [XTOBspecejnUTOBspec}

Then fragsy g ey stabilizes to

5
VEmulalg]
fmgsVEmu[al;] intimet,estap-

Proof: This result follows as a direct application of Lemma 3.7 torlmeas 11.16, 11.17,

and 11.18. Letyesmb Esample + (tvestab - tslice - 6sample)/3’ tgesmb = d+ (tvestab - tslice -

Esample)/s andtyesmb slzce d + (vestab tslice - 6sample)/g-

{ EQVEn’Lu[al]‘:B’—XLeadS ec€INVLeads ec/\"E{XToBs ec€EIMVTOBS ec}
Let By, be fragsVEmu[alg} g ! ? ! P’ By be

VErnu[alg] VErnu[alg]

fragsVEmu lalg] B; be fragsVEmu[alg and B; be fragsv‘éix[zlgg]] in Lemma 3.7. Let

t, bet! ty bet? andt; bet?

vestab? vestab?

, InLemma 3.7. Then by Lemma 3.7 and Lemmas

vesta

219

11.16-11.18. we have thﬁnags{erVEmu[alg]‘x’—XLeadSpecelnvLeadSpec/\m[XTOBspeceanTOBspec}

V Emulalg] .
stabilizes in timetljestab + t?}estab + t%esmb to f T@gsééiﬁﬁﬁ.
Since tyestap = trostay T trestay T tooways We conclude that
fragsx{jgg;/ﬁ;;f[alg] |2[X LeadsSpec€EIMVLeadspec AT XTOBspec EINVTOBspect stabilizes to
fragsézm"[zlggf in time t,estap - -

We can now conclude from Lemma 11.19 and Lemma 11.15 that ecuggn of
V Emulalg] eventually reaches a point such that the trace of the execfrom that point
on is the same as the trace of an execution fragmehtlafyer|alg| starting an arbitrary

state of its nodes, both after some action hiding.

Theorem 11.20Let alg be an element ot/ Algs, and t,..:,, be anyt such thatt >

Esample + tslice-
{wEQVEmu[alg]‘w’—XLeadSpeceanLeadSpec/\x’—XTOBspeCEInUTOBspec} HH H
Then trace fragside(ty pon. v Emulaly) stabilizes in

timet,cstap 10 traces acttide(Hy 1, U (V LNodes[alg)) || RGRW|[V W ||Vbcast))

As promised at the beginning of Section 11.3.3, we can dgtaahclude even more
than the above result; we can conclude that an executiditofiu[alg] eventually reaches
a point such that the trace of the execution from that poins ¢imne same as the constrained

trace of certain execution fragmentsiofLayer|alg], both after some action hiding.

Theorem 11.21Let alg be an element of" Algs, and t,....y b€ anyt such that

t> Esample + tslice-

{2€Qv Emulalg)|#[X Leadspec€EINVLeadSpec ANE[XTO Bspec EIMVTO Bspec}
Then tracef TAGS pctHide(Hy g,V Emulalg])

stabilizes in time t,eqw to {trace(a) | « € S[VLNodes[alg]] N
€$€CSActHide(HVL,U(VLNodes[azg])||R(RW|\VW|\Vbcast))}-

f T]]] 'TEQ VEmulalg z ‘(LeadSpecel”vl/eadSpec/\"E ‘<'1 ()Bspecel T O Bspec
VEmulalg

stabilizes in imetestap 10 fragsy g i

. By Lemmas 3.5 and 3.10, this implies that

traceSStart(VEmu[alg} 7{"E€QVEmu[alg] ‘.CB ’—XLeadSpecelnvLeadSpec/\m |VXTO BspecEInUTO BspeC}) Stablllzes In

. LY Emulatg)
timet,cstqp 1O tracefragsVEmu[al;] .

3

. . L
Since Lemmas 11.13 and 11.15 imply thatice f1agsx et g v Emufala) <

{trace(a) | a € S[VLNodes[alg]] N fragsactide(Hy 1,0V LNodeslalg))| RGRW |[VW || Vbeast)) }

220

we conclude that the traces ofActHide(Hy gy, Start(V Emulalg),{z €

QVEmu [alg] |Ilf [XLeadSpec S [n'ULeadSpec N x [XTOBspec S InUTOBspec}))
stabilize in time {tu,gw t0 {trace(a) | « € S[VLNodes[alg]] N
€L ECSActHide(Hy 1,,U(V LNodes[alg]) | R(RW ||V W ||V bcast)) } u

11.3.4 Stabilizing emulations

Now we finally tie all this back to the concept of VSA layer e@atitns and stabilizing VSA
layer emulations. We've describédEmulalg], which is a system that emulates the VSA
layer for any VSA layer algorithmig. However, a VSA layer emulation (Definition 8.3)
is concerned with physical layer programs, which don'tuile leader election services
or totally ordered broadcast services, that emulate \litayar programs. Here we relate
our emulation algorithm to the implementations of the leaaection and totally ordered
broadcast services, which allows us to talk about an impteatien of the VSA layer using
the physical layer. We do this by defining our VSA layer emuolaalgorithm based on our
implementations of leader election and totally orderedtoast, together with S A E[alg]

for eachalg € V Algs; we replace the leader election and totally ordered braadgzec-
ification automataX'Obcast, Lead M ain, and LeadC'L,,, TO B Delay,, andT'O B Filter,
for eachp in P) in V Emulalg] with the physical layer implementation§'Q BImpler,
and Leader, for eachp in P) of these automata (Lemma 11.22). We then show that this

also defines a stabilizing VSA layer emulation algorithmgdtem 11.24).

Lemma1l1l.22 e Letamap:V Algs — PAlgs be defined as follows:
For each alg € VAlgs, amaplalg] is the function from P —
PProgram, such that for each p € P, amaplalg|(p) =
ActHide(Hy gy, TOBImpler,|| Leader,||C Elalg],||V SAE[alg],).
This describes the mapping of VSA layer algorithms to phy$ayer algorithms
that map each process to the composition of its totally eddiroadcast and leader
election implementation pieces and theé’ and V SAFE pieces for the particular
VSA algorithm.

o Lett,,, be anyt such that > 2d + 2€4mpie + Lsiice-

221

o LetB be{PLNodes|amaplalg]] | alg € V Algs}.
These are programmable components of the emulating systanely the physical

nodes.

e LetC be{V LNodeslalg] | alg € V Algs}.
These are programmable components of the emulated systnglynthe virtual

nodes and client nodes.

e Let emu be the function of typ€ — B such that for eachulg € V Algs,
emu(V LNodes|alg]) = PLNodes|amap|alg].

e Let S be the function in Definition 11.12.

Thenamap is an S-constrained VSA layer emulation algorithm. (In other wsyrtbr
eachalg € V Algs, having each process run théuil-transform ofamap|alg](p) together
with the RW and Pbcast produces traces that look like traces of executions of thHeali

layer runningalg and in S, after some action hiding.)

Proof: By Definition 8.3 of a VSA layer emulation algorithm, we mushosv
that (B, RW || Pbcast, Hpy) emulates (C, RW ||VW||Vbcast, Hy) constrained toS
with emu. By Definition 4.1 of emulation, this means that we must show
that for eachC € C, tracesactide(tp, emu(©)|rW|Pbeasty < {trace(a) | o €
S(C) N execsactHide(Hy 1,0 RW|[VW | Vbeast) } - Substituting for the components in

this expression, we must show that for eaaly € VAlgs and each «

IN eXECSActHide(Hy prmuUHpL [,c p Fail(TOBImplery|| Leadery || C Elalgly||V SAE[algly) | RW || Pbeast) s there

exists am’ in execs actHide(Hy .,V Layer(alg)) SUCH that:
1. trace(a) = trace(a’).
2. o/ € S(VLNodes[alg]).

(In other words, we must show that for each VSA layer algamitilg, an execution of the
emulation algorithm at the physical layer shares the saaue tas that of an execution of

the virtual layer that also satisfied the properties pafter some action hiding.)

222

Consider executioa. We first show how to break down the execution into compo-
nent executions that are related to executions of compsreit Emulalg|, rather than
the physical layer. We then paste these executions toggitearive at an execution of
V Emulalg], which we have shown (Lemma 11.13) to behave as desired ixesof the
virtual layer.

By Lemma 2.14 and Theorem 5.3, we know thét Ao grmpi, Vrosrmp) iS an execu-
tion of TOBImpl We also know, by Lemma 9.15, that there must exist an irstetey ;o 5
of TOBspecsuch that. f state[XropimpRrosyros. By Lemma 9.17, this implies that

there exists some executionro of TOBspedhat starts in statg;oz such that:
o trace(arop) = trace(o|(AroBimpls VroBimpt))-
® QTOB [(ARVW VRW) = CY[(ARW> VRW)-

e For each p € P, af ({fail,, restart, }, { failed,}) =
arop| ({fail,, restart, }, { failed, }).

Similar reasoning folLeadImpl and LeadSpec gives us an executiof, .., of Lead-

Specsuch that:
L trace(aLead) = trace(a[(ALeadlmpla VLeadImpl))-
® Orcad| (Arw, Vaw) = a[(Arw, Vaw).

e For each p € P, af ({fail,, restart, }, { failed, }) =
QLeqaa| ({fail,, restart, }, { failed,}).

- - T B
Consider executions, 9B = arop [(AFail(TOBDelaypHTOBFilterp)7 VFail(TOBDelay,|TOBFilter,)),

aéead = ALead ((AFail(LeadClp)) VFail(LeadC’lp))) and agV =
o[(AFail(CElalg),|VSAEalgly)s VFail(CElalgly|[VSAE[algly))- Since each of these ex-

ecutions begins with the same value of th&iled, variable, we have that
Theorem 5.4 implies that for each € P there exists an executiomy, of
Fail(TOBPFilter,||TOBDelay,| LeadCl,||C Elalgl,||V SAFE|alg],) that is the re-

sult of pasting thex] 9", a/*!, anda$" component executions. (This follows from two

223

applications of Theorem 5.4.) This and Corollary 2.17 thaply that there exists an
execution” of V Emulalg| such thatrace(a) = trace(a”).

Lemma 11.10 implies that there exists some initial statef V Layer|alg] such
that o”. fstateR pmujagy, @and Lemma 11.13 implies that there exists sondein
eXECS ActHide(Hy 1,V Layer(alg)) SUCH thattrace(a) = trace(a’) anda’ € S(V LNodes|alg]).

Now we have shown that we have a VSA layer emulation. Beforecaveuse this
result to show that we havesdabilizingVSA layer emulation (Theorem 11.24), we need
to also show the following result, which says that our lowelephysical layer algorithm
stabilizes to a point after which it looks liKé Emulalg] started from a legal state. This
connects the states of the implementatiorVdfmulalg] with the legal stateg, .11,
of VEmulalg]. Since we have results showing that fragment¥ é&fmu|alg| starting in
LY puarg @T€ related to desirable execution fragment$/dfayer(alg] (Lemma 11.13),
this will allow us to conclude the final stabilizing VSA layemulation result. (It is worth
noting that this proof would be improved if a general staiily composition result that
takes into accounkail-transforms was available. | discuss this point in the Casions
(Chapter 16).)

Lemma 11.23 Letalg be an element df Algs.
Let Impler|alg] be]],.p Fail(TOBImpler,||Leader,||C Elalgl, ||V SAE[alg],).

Let L{alg] be the set of states € Q pier{aig]| rw | Pocast SUCh thaBy € L}, Emufalg)’

1.z [XTOBImleTOBy [XTOBspec-
2. x [XLeadImleLeadery ’VXLeadSpec-

3. Foreachy € P, 2[Xcgjag),|vsaEag), = Y] XCElag,|vsAEalg),-

ThenImpler|alg] self-stabilizes td.[alg] relative to R(RW || Pbcast) in timet .

Proof: Consider any executioap;, = ab,a% a3, of the emulation algorithm at
the physical layer such that};.istate = o%;.fstate, a%;.Istate = o3, .fstate,

appltime = 2d + €sampie + (tstab — 2d — 2€sample — tstice) /2, @NAa%, ltime = tgap —

224

ab; .Itime. Notice that this makes?,; a state-matchet];,;-suffix of ap;. We must show
thata?,; . fstate is in L[alg]. The proof proceeds by showing that; a?, (the execution
after the underlying leader election and totally orderemhbdcast service implementations
have stabilized) is related to an executiof,,,i.i % gmujag OF V Emulalg] started in
invariant states of the leader election specification arddtally ordered broadcast speci-
fication. It then shows thatf, ,,,) (the execution o Emulalg] after it has stabilized)
is related to an execution of the virtual layer starting frarstate with reachable states of
RW ||VW{|Vbcast.

By Lemma 2.14, Corollary 2.17, and Theorem 5.3 (pro-
jection and pasting lemmas), we have the trivial result that
Oé}: L [(ATOBImpla VTOBImpl) Oé%: L [(ATOBImpla VTOBImpl) Oé?js L [(ATOBImpla VTOBImpl)
is an execution of/(T'OBimpler)||R(RW || Pbcast). Sinceap,.ltime > 2d + €sampie,
Theorem 9.24 implies that?; . fstate[X7opimpr iS IN Lropimp. Lemma 9.18 implies
there exists some reachable statd'6f Bspec such thain?; . fstate[X710 pimp IS related
to it Lemma 9.17 then implies that there exists an executi®pp,,..070pspec Of
R(TOBspec) such that:

2 _ 1
1. a70pspec-f State = aropgpe.-state.

2 1 3 9
2. app.fstateRropQropepec-f state anday . f stateRropaito papec- f state.
3. ako Bspec-J State € reachableropspec anda?,, Bspee-J State € reachableropspec-

4. trace(Qpopgpe.) = trace(app[(Aropimpr, Vrosmmp) and trace(popgpe.)

trace(ab . [(AroBrmpls VTOBImpL)-

Lemma 2.14 then implies that there exists executigis a gy, Of RW, AFopeast @robeast OF
TObcast, andabi i pa oo prape Of Fail(TOBFilter,||TOBDelay,) for eachp € P

such that:

1 apw = opepeel (Arw,Vaw) = b [(Arw,Vaw), and afy =

70 pspec| (Arw, Vaw) = @b [(Arw, Vaw).

1 1 2
2. AT Obcast - AT0Bspec [(ATObCCLSt? VTObCCLSt) and QT Obcast -

a%Ongec [(ATObcast 3 VTObcast) .

225

3. Foreaclp € P, aTOBleDel = aTOBspec [(AFail(TOBFilter,||TOBDelayy) > VFail(TOBFilter,|TOBDelay,))

andago e fstate(failed,) = ap . fstate(failed,).

p,2 _ 2
4. Foreachy € P, a%oppipea = OFoBspec| (AFail(TOBFitter,|TOBDelay,)> VFail(TOBFilter,| TOBDelay,))

andago g fstate(failed,) = o . fstate(failed,).

Similar reasoning forLeadSpec and LeadImpl tells us that there exist executions
O cadspectecadspec OF LEAASPEANd €XECULIONSY] 000 /0in ¥ cadirain Of LEADMain and

abl ab? o of Fail(LeadCl,) for eachp € P such that:

1. 0fcaaspeel (Arw, Vew) = app[(Arw, Vaw), and of geecl (Arw, Vaw) =

b [(Arw, Vaw).

1 1 2 _
2. AL eadMain - O eadspec [(ALeadMain) VLeadMain) and T cadMain -

2
aLeadspec ’V(ALeadMain) VLeadMain) .

p,1

3. For eachp € P, o 00 = QLegaspec| (Arait(Leadct,), Viail(Leadct,)) anNd

OéLeadspec‘fSta'te(.fafz.ledp) - Osz.fState(failedp).

4. For each p € P, OK%EadCl = a%eadspec ’V(AFail(LeadClp)u VFail(LeadClp)) and
Oz%eadspec.fstate(failedp) = a3 . fstate(failed,).

Since for eaclp € P andi € {1, 2}, the value offailed, is the same in the first state

of opriper Veaacr AN O [(Apai(Crialgl, Vs ABlalgl,): VFel(C Blatgly VS ABiaigly))s
Theorem 5.4 (applied twice) implies that for eaghe P there exists an execution

fragment o, of Fail(LeadCl,||TOBFilter,||TOBDelay,||CElalgl,||V SAE|alg],)

1 _

such that o, [(ArairoBFilter, | TOBDelay,)s VFail(TOBFilter, | TOBDelay,)) =
p71 1 _ p,l

QX ToBFilDel Oép [(AFail(LeadC'lp)v VFail(LeadClp)) - QT cadCl

1 _

and [(AFail(CElalgly |V SAE algly)» VFail(CElalgly |V SAE[alg]y)) =

aPL RAFazl(CE[azg} |VSAE[alg],)> VFail(Celalgl,|VSAE[alg],)) Corollary 2.17 then implies
that there exists an execution fragmeity,, ., Of V Emulalg] that is the result of
pasting executions, iy, V% cadnsain: &N, @nd hiding actions it ;.. We arrive

atay g, SIMilarly.

226

Notice thatory g, 410 OV Bmularg) 1S IN the set of executions ftart(V Emulalg), {x €

alg
QVEmu[alg] | x[XLeadSpec €]nvLeadSpech[XTOBspec €]n'UTOBspec})a and thah%/Emu[alg}
is the state-matchet,, — apy.ltime-suffix of ay 00OV Emujarg: SINCE tstab —
ab; . ltime > €sampie + tsiice, LEMMa 11.19 implies that%/Emu[alg} is in the set of exe-
cution fragments o’ Emulalg| starting in a state i}, , ., 1.1,1-

Sety to bea%/Emu[alg].fstate. All that remains to show is that the three conditions of

the lemma hold betweemn?,; . fstate andy. This follows immediately from construction

2
of aVEmu[alg}' .

Now we can conclude the final result, namely thatap is an S-constrained:-
stabilizing VSA layer emulation algorithm. The proof is aetit consequence of Lemmas
11.22,11.23, and 11.13- Since we have already shownihat is anS-constrained VSA
layer emulation algorithm (Lemma 11.22), Definition 4.4 nf$%constrained-stabilizing
VSA layer emulation algorithm implies that all that remaiago show that the traces of
the emulation algorithm at the physical layer stabilizesré@es of execution fragments
of the virtual layer that both satisfy the propertiessoind that start in reachable states
of RW||VW||Vbcast. Lemma 11.23 gives that the executions of the emulationrigtgo
at the physical layer stabilize to executions beginningtétes inL[alg], which we show
to be related to executions &fEmulalg] with the same trace and that begin in states in
LY pujarg- LEMMa 11.13 gives that these executions are in turn retatedecutions of

the virtual layer with the same trace and that start in relalerstates oR1WW || VW ||V beast.

Theorem 11.24 amap is an S-constrainedt;,,-stabilizing VSA layer emulation algo-

rithm.

Proof: By Definition 8.3 of a stabilizing VSA layer emulation algihmn, we
must show that (B, RW || Pbcast, Hp;,) emulation stabilizes in timety,, to

(C, RW||VW||Vbcast, Hy) constrained ta5 with emu. By Definition 4.4, this means
that we must show that3, RW || Pbcast, Hpy) emulates(C, RW||VW ||Vbcast, Hyr,)
constrained taS with emu (which we have already shown in Lemma 11.22) and that

traceSACtHide(HpL,U(emu(c))IIR(RWHPbC(ISt)) stabilizes in timetg,, to {trace(a) ‘ [N

S(C) N execsactide(Hy 1, U(C)|RERW |V W]||Vbeast)) }

227

By Lemma 11.23 we know thatrecsacttide(Hp U (emu(C))||R(RW || Pbeast)) Stabilizes in
time ¢4 to fragSIA/k:f-lgi}de(HpL,emu(C)||RWHPbcast)' By reasoning similar to that in the proof
of Lemma 11.22, following the same tedious process of brepkiown executions of
the physical layer algorithm into component executiong ttem be related to execu-

. Llal
tions of V Emulalg], we know that for anyo’ < fmgsALt,fi]de(HPL,emu(c)” RW || Pbeast)®

3
VEmulalg]

. L .
there exists some” € fragsa ety g vEmulag) With the same trace as’. Be-
L?/Emu[alg]

CaUSeA” € [Tagsaciide(Hy pV Emulalg) -€MMa 11.13 implies that there exists some

a € S(C) N execsacthide(Hy 1,UC)|R(RW VW |[Vbeast)) SUCH thatrace(a) = trace(a’).]

In other words, consider any VSA layer prograthg, and the physical nodes running
their emulation of the VSA layer running g (consisting of totally ordered broadcast and
leader election implementations and the main emulatiognaras for VSAs and their local
clients). Traces of this system where the physical nodesistan arbitrary state and are run
with RW || Pbcast in a reachable state stabilize in timhg,, to traces of execution fragments
of the VSA layer runningilg (and satisfying properties ¢f), only from arbitrary states of
the clients and VSAs.

Given this result, an application programmer can now writgpams for the VSA layer

without reasoning about the implementation of the VSA layer

11.3.5 Message complexity

The message overhead introduced by this algorithm cordithe extra messaging gener-
ated for the leader election service (one message per pgloeesl the onévstate|-sized

message communicated every.. time.

11.4 Extending the implementation to allow more failures

Rather than considering a VSA failed immediately aftesstate message fails to be sent
by a leader, we can extend the emulation to allow some finitelbuk of such rounds
to pass before failing the VSA. This extension potentiallskes the VSA more fault-

tolerant, though it does introduce some additional coragibo. If a leader is supposed to

228

perform broadcasts on the VSA's behalf, but fails or leawdste sending them, the next
leader needs to transmit the messages. Since emulatoesostigoing VSA messages in
a local outgoing queue but clears that queue at the begimfiaghew round, an extended
algorithm must allow all emulators to carry their outgoingege forward into subsequent
rounds. A new leader then just transmits any messages storedoutgoing queue and
removes them. To prevent messages from being rebroadcéstuny leaders, emulators
that receive a VSA message broadcast by the leader remona@ittheir own outgoing
queues.

Stabilization of an extended algorithm would also take aliotimes the amount of

time of the original algorithm.

229

Part |l

VSA layer applications

230

Part 11l of this thesis describes applications that we imp@at using the VSA layer. In
the thesis, each implementation, whether of the VSA prograrg layer or of applications
built on the layer, is proved correct using the TIOA formalfrework. The first three chap-
ters describe a suite of three algorithms that together el@fiprogram for the VSA layer
that offers end-to-end routing; Chapters 12 and 13 desgebeast and location manage-
ment automata that are parts of a larger end-to-end routitapeaton at each region. The

last chapter describes a motion coordination application.

In Chapter 12, | describe the first piece of the end-to-entinguwapplication, a stabi-
lizing region-to-region communication service. The altfon is based on a shortest path
procedure. When a region receives a geocast message it thaewniously seen from re-
gion u to regionwv for which it is on a shortest path fromto v, it forwards the message
closer to region.

Chapter 13 describes the second piece of the end-to-endga@plication, a location
management service built over the geocast service of ChapteThe solution is based
on the concept ohome location serveravhere each mobile client identifier hashes to a
home location, a region of the network that is periodicappgated with the location of the
client and that is responsible for answering queries altautlient’s location. The periodic
location updates and the forwarding of queries and resgoagedone using the geocast
service of Chapter 12.

In Chapter 14, | describe a simple self-stabilizing progfanthe VSA layer to provide
a mobile client end-to-end routing service. A client senasegssage to another client by
forwarding the message to its local VSA, which then uses tiraéhlocation service to
discover the destination client’s region and forwards tlessage to that region using the
geocast service.

Finally, in Chapter 15, we study how the VSA layer can help aisesthe problem
of coordinating the behavior of a set of autonomous mobib®t® (physical nodes) in the
presence of changes in the underlying communication n&tagwell as changes in the set
of participating robots. Each VSA must decide based on its lmeal information which
robots to keep in its own region, and which to assign to neaghlg regions; for each robot

that remains, the VSA determines where on the curve the silmotld reside. Unlike in the

231

prior three algorithms (Geocast, location management,esmadto-end communication),
the client motion in the motion coordination protocol is trotlable by the client, allowing

the client to change its motion trajectory based on insimastfrom a VSA.

232

Chapter 12

GeoCast

In this chapter, we describe a self-stabilizing algorithmattuseskRW, VW, Vbcast, and
V BDelay,,u € U automata to provide geographic routing between regionbehet-
work, allowing communication between regions of the virtuérastructure. In order to
route location information between geographic regionsysea shortest path algorithm.

GeoCast algorithms [14,73], GOAFR [59], and algorithms‘fouting on a curve” [72]
route messages based on the location of the source andafiestjrusing geography to
delivery messages efficiently. GPSR [57], AFR [60], GOAFR9][polygonal broad-
cast [35], and the asymptotically optimal algorithm [60¢ algorithms based on greedy
geographic routing algorithms, forwarding messages toénghbor that is geographically
closest to the destination. The algorithms also addressif'ilminimum situations”, where
the greedy decision cannot be made. GPSR, GOAFR+, and ARBvachinder reasonable
network behavior, a linear order expected cost in the digtdretween the sender and the
receiver.

In [37], we used a variant of the VSA layer to simplify the iraplentation of the
geocast routing service. There we used a simple variant oéedg depth first search
algorithm to communicate messages between VSAs. Here wlenment the geocast por-
tion of a larger VSA program (the end-to-end routing progm@escribed in Chapter 14)
using a simple shortest path routing algorithm that runsopnaf the VSA layer’s fixed
infrastructure.

In the rest of this chapter, we describe the service (Sedtibh), then describe a set

233

1 Signature: Input geocast(m, v),,
Input time(t).,, t € R=0 Effect: 30
3 Input geocast(m, v),,, me Msg v e U if (ledgerm, u, v, clock) = nullv u= v)A clock# Lthe
Input vrev({geocast, m, w, v, t))., me Msgw,ve U,te R=0 ledger(m, u, v, clock) false 82
>0
5 83;23: \é(;%sr(t:g(gni;ﬁa;t,eml\,ﬂ\évéw t))u, me Msgw,ve Ute R Output ygast_((geocast, WV, 1) 2
>0 Precondition:
7 Internal ledgerClean({mw,v,t))., me Msgw,ve U te R= ledger((m, w, v, t)) = false A v # u 36
] Effect:
o State: o ledger((m, u, v, t)) «— true 38
analogclock RZ0U { L}, initially L
11 ledger (Msg xU xU xRZ9)— Bool, initially null Input vrev((geocast, m, w, v, t))., 40
Effect:
13 Trajectories: if ledger({(mw,v,t))= null A t+(e+d)dist(w, u)> clock42
evolve A t< clocka dist(w, v)= dist(w, u)+dist(u, v)
15 d(clock) =1 AV #w## uthen 44
stop when ledger({m, w, v, now)) — false
17 Im: Msg 3w, v: U, 3t: R=0: [ledger (m, w, v, t)) # null 46
A (ledger((m, w, v, t))= falseV [u # w A clock= t] Output georcv(m)s,,
19 V clock < t V t+(e+d)dist(w, u)< clock-¢ Local: v: U, t: R=0 8
v dist(w, v) # dist(w, u) +dist(u, v))] Precondition:
21 ledger((m, v, u, t)) = false 50,
Transitions: Effect:
23 Input time(t). ledger({m, v, u, t)) « true 52
Effect:
25 if clock# t then Internal ledgerClean({m, w, v, t)), 54
ledger<— null Precondition:
27 clock—t t+ (e+d) dist(w, u) < clockV (u# wAclock=t) 56
V clock < t v dist(w, v) # dist(w, u) + dist(u, v)
Effect: 58
ledger((m, w, v, t)) < null
Figure 12-1: VSA geocast automaton at regioi/,“<.

of legal states of the service and properties of executitarsirgy in legal states (Section

12.3), and finally argue that our service is self-stabitiziSection 12.4).

12.1 Specification

Our geocast service allows a regian to broadcast a message to region v
via geocast(m,v),. It allows a region to receive such a broadcast message via
georcv(m),, under certain conditions. The TIOA specification algaritifor individ-
ual regions is in Figure 12-1. The complete serviGepCast, is the composition of
[T.cy Fail(V,Ee||V BDelay,) with RW||[VW||Vbcast. In other words, the service con-
sists of aF'ail-transformed automata at each region of the geocast maahtié B Delay
machine for that region, as well &V ||V W ||V bcast.

VSA-to-VSA communication is based on a shortest path preeedWe assume that

each VSA can calculate its hop count distance in the stagiomegraph to other VSAs.

234

When a VSA receives a geocast message it has not previoeslyreen region to region
v for which it is on a shortest path fromto v, it forwards the message, tagged with a
geocast label, via avcast output. Whenever the destination VSA receives such a messag

it performs ageorcv of the message.

Note: Notice that for eachu € U, V¢ is technically not a valid VSA since its external
interface contains noweast, vrcy, time actions. However, we will later (in Chapters
13 and 14) be composing this automaton with other automatdiming these actions to
produce new automata that are VSAs. In the meantime, we mentoghese almost-VSAs
as VSAs, with the understanding that this technical detdilbe resolved later. None of

the results in this chapter require thét be a VSA.

In this thesis),%“° happens to be part of a specific VSA that is the compositidicf
with specific other automata, namely a location managemeatreaton and an end-to-end
routing automaton. However, tHE““> automaton can be part of other VSAs as well,
as long as it is composed with automata that allow us to hidgéocast and georcv
actions. For example, consider the following variant ofgkecast service, — Geocast:
TheC — Geocast service allows a client’, to broadcast a messageto clients in region
v via C-geocast(m, v),. It allows each client’, in regionv to receive such a broadcast

message vi&-georcv(m),, under certain conditions.

TheC — Geocast application can be implemented using the VSA layer in thievahg
way: Each region's VSA is composed of two subprograijs:® and a new automaton
V.O=Ceo that interacts with.%« and has an external interface consisting onlytiofe,
vbcast, vrcv, geocast, andgeorcv actions; thegeocast and georcv actions are hid-
den in the composition oF““> and V.¢~%°, resulting in a new machine that is a valid
VSA. Whenever a client in a region receives aC-geocast(m,v), input, it vcasts a
(C-geocast, m, v, u) message to its local VSA. When the local VSKS ~““° subprogram
vrcvs such a message from a client in its region, it submg@s@cast(m, v), input to the
local V%> VSA subprogram. When suchgeorcv(m), later occurs at thé’ &« VSA
subprogram in region, the output goes to the local VSAS®~“¢> subprogram. This sub-
program then performscast((C-georcv, m, v)), output. Any clientC, in regionv that

receives this message througiev performs aC-georcv(m), output.

235

Detailed VSA code description

The following code description refers to the TIOA code fag thachine at region, V.5,

in Figure 12-1.

The state variabléedger keeps track of information with respect to each non-expired
geocast-tagged message (one for whit}¥> might still receive messages) that the VSA
has heard of. The message is storedeifyer together with its source, destination, and
timestamp. For each such unique tuple of message informadkie table stores a Boolean
indicating whether the region has yet processed the messtilger by forwarding it in a
geocast broadcast or by receiving it. If the Boolean is false, them Y8A has not yet

processed the message.

WhenV.““ receives dime(t) input (line 23, supplied by the virtual time servigal’),
it checks its locatlock to see if it matches. If not (line 25),V.9< resets itdedger values
(line 26). Either way).“< sets itsclock to t (line 27). (Notice that in normal operation,
once an alive VSA has received its fitshe input itsclock should always be equal to the

real time since itglock variable advances at the same rate as real time.)

When V¢ receives ageocast(m,v), input at some time and either it is the
first occurrence ofgeocast(m,v), at timet or u = v (lines 29-31), V¢ sets
ledger({m,u,v, clock)) to false (line 32), indicating the geocast tuple must be ggeed

so that the message can be forwarded to region

Whenever any/,“<° has a falséedger entry for some tuplém, w, v,t) whereu = v,
the message has reached its destination,1&nd performs ageorcv(m), output (lines
47-50) and sets thizedger entry to true (line 52). If, on the other hand,# v (line 36,
meaningV.“* has heard of a particular geocast it should forward but hageiodone
anything about it),V.¢ sends a message consisting afecast tag and the tuple via

vcast (line 34), and sets thiedger entry to true (line 38).

Wheneverl.“<° receives a/geocast, m, w,v,t) message (line 40), it checks the fol-
lowing in lines 42-44: (1) it does not yet have a non-néllger entry for the tuple,
(2) u is on some shortest path betweerand v (equivalent to saying thatist(w,v) =

dist(w,u)+dist(u,v)), and (3) the current tim&ock is not more tham+ (e+d)dist (w, u)

236

(meaning that/““ received the message no later than the maximum amount ofaime
shortest region path trip froma would have taken to reaal). If the three conditions hold
thenV.“¢ setsledger ((m,w, v, t)) to true (line 45).

The internal actionedgerClean((m, w, v, t)), (line 54) serves to cleatedger of tu-
ples that correspond to geocasts that® no longer will be involved with (line 59). In
particular it clears entries for whicht (e + d)dist(w, u) < clock (line 56), corresponding
to geocasts that are too old foj“ to forward. This action is also used for local correc-
tion, removingledger entries for geocast messages between regions that regsonot
on a shortest path between and for geocast messages thahestatmped in the future
(lines 56-57). Self-stabilization of the system as a whekhén accomplished by the clear-
out of older geocast records based on their timestamps, yatitelscreening of incoming
messages in lines 42-44. Too old forwarded messages aneaied from the system and

newer forwarded messages do not impact the treatment ofdbeanes.

12.2 Properties of executions of the geocast service

We say that geocast by a regionu to a regiorw, at timet is serviceableif there exists at
least one shortest path fromto v of regions that are nonfailed and haveck values equal
to the real-time for the entire intervgl ¢t + (e + d)dist(u, v)].

With this definition, we can show the following result:

Lemma 12.1 The service guarantees that in each executiast GeoCast, there exists a
function mapping eacbeorcv(m), event to theeocast(m, v), event that caused it such

that the following hold:

1. Integrity: If a georcv(m), eventr is mapped to @eocast(m, v), eventr’, thenrn’

occurs beforer.

2. Same-time self-delivery:If a georcv(m), eventr is mapped to aeocast(m, v),

eventr’ wheren’ occurs at time, then eventr occurs at time-.

3. Bounded-time delivery: If a georcv(m), eventr is mapped to aeocast(m,v),

237

eventr’ wherer’ occurs at time andu # v, then eventr occurs in the interval

(t,t+ (e + d)dist(u,v)].

4. Reliable self-delivery:This guarantees that a geocast will be received if sent &ifits
and no failures occur: If ageocast(m,v), eventr’ occurs at time, a.ltime > t,
and regionv does not fail at time, then there exists geocv(m), eventr such that

7 is mapped to somgeocast(m, v), event (not necessarily) at timet.

5. Reliable serviceable deliveryThis guarantees that a geocast will be received if it
is serviceable: If ageocast(m,v), eventr’ occurs at timet, a.ltime > t + (e +
d)dist(u,v), andr’ is serviceable, then there existgaorcv(m), eventr such that

7 is mapped to somgeocast(m, v), event (not necessarily) at timet.

Proof sketch: It is easy to define the mapping frogeorcv to geocast events described
above as follows: For eadeorcv(m), event, there is some regierand timet where the
tuple (m, v, u, t) is in aledger that changes from being mapped to false to being mapped to
true (lines 50-52). We map thgeorcv event to the firsgeocast(m,), event that occurs
at timet.

It is easy to see that most of the properties hold. We show tietethe most in-
teresting properties, Bounded-time delivery and Reliaaesiceable delivery, hold. To
see that Bounded-time delivery holds, notice that fogemrcv(m), to happen, there
must be somex € U andt € R=2° such thatiedger({m,u,v,t)) = false. This
can only occur if ageocast(m,v), occurred (trivially satisfying the property), or if a
vrev({geocast, m, u, v, t)), occurred at some timé to set theledger entry to false. For
the second case, by the conditional on lines 42-43,/d4tiger entry is only changed if
t + (e + d)dist(w,v) < t'. By the stopping conditions on line 18, tgeorcv(m), must
have occur at timé& as well, giving the result.

To see that the more interesting Reliable serviceable etgligroperty holds, assume
that ageocast(m, v), eventr’ occurs at time andr’ is serviceable. Let one of the shortest
paths of VSAs that satisfy the serviceability definitionihe: - - | wgist(u,0)—1, v, Wherew,
is a neighbor ofu and each region in the sequence neighbors the regions #ade or

follow it in the sequence. We argue that there existeacv(m), eventr such thatr is

238

mapped to the firsgeocast(m, v), event at timet. Since the first sucheocast(m, v),

event occurs at an alive process that does not fail at tinitewill immediately vcast a
geocast-tagged(m, u, v, t) message. Such a message takes more than 0, but no more than
e + d time to be delivered at neighboring regions, one of whichis Vucfeo will then
immediatelyvcast a geocast-tagged(m, u, v, t) message, since the conditional on lines
42-43 will hold. Such a message takes more than 0, but no rharect4 d time to be
delivered at neighboring regions, one of whichujs Either the same case as for holds

or us received the earlier transmission and immediately trattechor is about to transmit.

This argument is repeated untijaocast-tagged(m, u, v, t) message is received at region

v. This process will then immediately perforngaocast(m), event. This event is mapped

to the firstgeocast(m, v),, event at time, and we are done. u

12.3 Legal sets

Here we describe a legal set@toCast by describing two legal sets, the second a subset
of the first. Recall from Lemma 3.13 that a legal set of stateafTIOA is one where each
closed execution fragment starting in a state in the set enastate in the set. We break
the definition of the legal set up into two legal sets in ordesitmplify the proof reasoning
and more easily prove stabilization later, in Section 12#the end of this section, we

discuss properties of execution fragments:ebCast that start in our set of legal states.

12.3.1 Legalsef’!

geo
The first set of legal states describes some propertiesrd#i@ally checkable at a region

and that become true at an alive process at the time of theifirstinput for the process

and possibly dedgerClean action.

Definition 12.2 Let L} be the set of statesof GeoCast where all of the following hold:

geo

1. 2[Xaw|vw | Vicast € TNVRW v W |[Vbcast-

This says that the state restricted to the variables of thepmsition ofRW, VIV,

andVbcast are reachable states of their composition.

239

2. Foreachu € U : [—failed, = ¥(m,t) € to_send,, : rtimer —t € [0, ¢]].
This says thal’ BDelay messages queued for a region have been waiting in the

buffer at least 0 and at mosttime.
3. Foreachu € U : (= failed, A clock, = L):

(a) There are ngeocast tuples inV B Delay,.to_send.
This says that non-failed regions that have not yet receavjgie input do not

have anygeocast messages queued up for sending.

(b) Foreach(m,w,v,t) : ledger({m,w,v,t)) # false.
This says that non-failed regions that have not yet receavihe input do not

have anyiedger entries that need to be processed.
4. Foreachu € U : (= failed, N clock, # 1):

(@) clock, = now.
This says that non-failed regions that have a nbwntock have a clock time that

is the same as the actual time.

(b) For each{m,w,v,t) : ledger,((m,w,v,t)) # null (For each non-failed re-

gion with a non4. clock, each non-nulledger entry satisfies the following):

i. t+ (e + d)dist(w,u) > clock, — e A (t + (e + d)dist(w,u) > clock, V
ledger,({(m,w,v,t)) = true).
This says the entry has not expired too long ago— if we add tremum
amount of time for a message to follow a shortest path froimour region
to the time when the geocast message originated, the resuit less than
¢ before the current time. Also, if the tuple’s expirationmidias passed
thenledger maps it to true.

ii. clock, #tVu=w.
This says that if is equal to the current time, then the source of the geo-
cast message must be the current region. (Recall\tbasts, such as of
geocast-tagged messages, take non-0 time to be delivered, impilyatg

the only current-timéedger entries must be from seffeocasts.)

240

iii. (clock, >t ANu=w)= ledger,({m,w,v,t)) = true.
This says that self-geocasts are processed at the time ticey. o
iv. clock, > t.
This says that entries itedger can’'t be for geocast messages sent in the
future.
V. dist(w,v) = dist(w,u) + dist(u,v).
This says that: must be on a shortest path between the sender of the geo-

cast and the destination.

It is trivial to check thatl.!, is a legal set fot7eoCast:

geo

Lemma12.3 L}

geo

is a legal set foiGeoClast.

12.3.2 Legalset?,,

The next legal set],?.,, is a subset of.; , that satisfies additional properties with respect
to the state of each?*> andVbcast. The properties are concerned wgaocast tuples,

whether they are in a regionadger or in transit in the communication service.

Definition 12.4 Let L2 be the set of statesof GeoCast where all of the following hold:

geo

1. x e L}

geo*

This says thal?,, is a subset of.;,.

geo

2. For eachu € U : (—failed, A clock, # 1), and for each(m,w,v,1)
ledger,((m,w,v,t)) # null:

@ [u # v A ledger,((m,w,v,t)) = true] = I € R
({(geocast,m,w,v,t),t') € tosend, vV It" > t : IP" C PUU
((geocast, m, w, v, t),u,t” P'") € vbcastq.

This says that if théedger of an alive region with nont clock, maps a tu-
ple (m,w, v, t) to true andu is not the destination, then the tuple tagged with
geocast is either inV B Delay, or in vbcastq. (Recall thatvbcastq contains a

record of all previouslycast messages.)

241

() u#w= 3t e€t,t+e]: IP" C PUU : ((geocast,m,w,v,t),w,t', P") €
vbcastq.
This says that if a non-sourcesdger maps the tuple to a non-null value, then
there exists a record of the original broadcast of tieocast tuple invbcastq

within e time of the tuple’s timestamp.

3. For eachu € U : —failed,: 3((geocast,m,w,v,t),t') € to_send, = [t +
(e + d)dist(w,u) > now — rtimer, +t' N 3t" € [t,t +¢] : IP" C PUU :
({(geocast, m, w, v,t),w,t", P') € vbcastq].

This says that if a nonfailed regionis B Delay queue contains geocast message,
then the timestamp on the message is such that it was sene bggion before it
expired, and there exists a record of the original broadaEshegeocast tuple in

vbcastq within e time of the tuple’s timestamp.

4. For each((geocast, m, w, v, t),u,t’, P') € vbcastq : [P’ # 0 = " € [t,t + €] :
dP" C P : ({geocast,m,w,v,t),w,t", P") € vbcastq|.
This says that if ggeocast tuple with timestamp is in transit in Vbcast (meaning
the tuple has yet to be either delivered or dropped by eacbgs®), then acast of
the tuple happened between titrend timet 4 ¢ and was either received or dropped
by at least one process. (In other words, ifj@ocast tuple is still in transit, then
there exists a record of the original broadcast of feocast tuple invbcastq within

e time of the tuple’s timestamp.)

Next we check thaf?

geo

is a legal set fol7eoCast.

Lemma 12.5 L2 is a legal set foiGeoCast.

geo
Proof: Let z be any state irl?_ . By Definition 3.12 of a legal set, we must verify two

geo*

things for statex:

e For each state’ of GeoCast and actioru of GeoCast such that(z, a, z’) is in the

set of discrete transitions 6feoCast, stater’ is in Lio ;.-

e For each state’ and closed trajectory of GeoCast such thatr. fstate = x and

r.lstate = 2/, stater’ isin L%,

242

By Lemma 12.3, we know that if satisfies the first property dff]eo, then any discrete
transition of GeoC'ast will lead to a stater’ that still satisfies the first property, and any
closed trajectory starting with statewill end in some state that satisfies the first property.
This implies that we just need to check that in the two caséleofegal set definition, the
statex’ satisfies all parts of the second property.6f, .

For the first case of the legal set definition, we consider eatibn:

e GPSupdate(l,t),, drop(n,j), fail,, restart,, geocast(m,v),, georcv(m),,

ledgerClean({m,w,v,t)),: These are trivial to verify.

e time(t),: If failed, holds in stater, then none of the properties are affected. Let’s
consider the case wherefailed,. Since property 4(a) holds in state eithert =
clock,, meaning all properties still hold since no changes to regis state occur,
or clock, = 1 and the action initializegedger,. In the second case, property 2
becomes trivially true, and property 4 is not affected. Sipcoperty 3(a) oTL}]eO

holds in stater, we know that n@eocast tuples are irto_send,,, making property 3

o e
of L, trivially true.

e vrcv((geocast, m, w, v, t)),: The only non-trivial property to verify is property 2(b).
Assume that: # w, meaning that the region receiving the message is not the re-
gion that received the associatgdocast. We must show that there exists some
t' € [t,t + e : 3P" ¢ P UU such that the received tuple, tagged witht’, and
P'is invbcastq. By the precondition for this action, we know that there exgme
({(geocast, m,w, v, t),w',t", P") in xz(vbcastq) such thatP” is non-empty. Since
statex satisfies property 4, we know that there exists soime [t,¢ + ¢] and P’ a
proper subset aP U U such that(geocast, m, w, v, t), w, ', P)is in vbcastq, Show-

ing the property.

e vcast((geocast, m, w, v, t)),: The only non-trivial properties to verify are properties
2(a) and 3. To check property 2(a) we consider two cases: tween = w and
one where it does not. i # w, then property 2(a) follows from the fact that

property 2(b) held in state. Otherwise, it follows from the fact that an effect of

243

the action is the addition of an appropriate tupletéosend,. To check property

3 we need to check that the tuple addeddoend, has a timestamp such that

t + (e + d)dist(w,u) > now and there is a record of the original broadcast of the
geocast tuple. The first follows from the fact that property 4(b)i. bjeo holds in

statex. The second follows from the fact that property 2(a) holdstatex.

e vcast'((geocast, m, w, v, t), true),: The only non-trivial properties to verify are
properties 2(a) and 4. Property 2(a) is easy to see sincefert ef this action is
moving a tuple fromo_send, into vbcastq. To check property 4, we need to show
that there is & (geocast, m, w, v, t), w,t”, P") in z(vbcastq) = x'(vbcastq), where

t" € [t,t + e], which follows from the fact that property 3 held in state

For the second case of the legal set definition, we now conaiteclosed trajectory
7 such thatr = 7. fstate. Leta’ ber.lstate. We must show that’ € L, by verifying
that each property oLf]eo holds. It is easy to see that because the only evolving Vasab
referenced in the properties atkck,,, rtimer,, andnow which evolve at the same rate,
properties 2 and 4 hold.

The only interesting property to check is property 3. In jgatar, the only thing of
interest to check is that if a regiom is not failed and itsl’ BDelay buffer contains a
geocast tuple from regionw with timestampt andV B Delay timer tagt’, thent + (e +
d)dist(w,u) > now — rtimer, + t'. However, sinceiow andrtimer evolve at the same
rate, the value on the right of the inequality remains theesawer a trajectory. The values
on the left of the inequality remain the same over a trajgchmcause they are discrete
variables.]

Properties of execution fragments starting inL?

geo

One thing to note is that execution fragmentstdfoC'ast that begin in a state ian]eo
satisfy a set of properties very close to the ones descritreeiecutions in Section 12.2.
Recall that in Section 12.2, we showed tliatoCast guarantees that for every execution
there exists a function mapping eagborcv(m), event to thegeocast(m, v), event that

caused it such that five properties (Integrity, Same-tintfedadivery, Bounded-time deliv-

244

ery, Reliable self-delivery, and Reliable serviceablevéey) hold.

Now we consider execution fragments@ioC ast rather than executions and show that
properties similar to those in Section 12.2 still hold. Thistfproperty basically says that
the properties of an execution GleoC'ast also hold for execution fragments 6foC ast
that begin in a state iﬂgeo, provided that we are allowed to consider a function thatsnap
only a subset ofjeorcv events inc. The second property constrains the segebrcv
events that we don’t map to be ones that occur early enoudeiaxecution fragment that

there is not required to be a correspondyegpcast event.

Lemma 12.6 GeoC'ast guarantees that for every execution fragmeibieginning in a state

in L2_, there exists a subsét of thegeorcv(m), events inx such that:

geo

1. There exists a function mapping eagorcv(m), event inll to thegeocast(m, v)
event that caused it such that the five properties (Integgame-time self-delivery,
Bounded-time delivery, Reliable self-delivery, and Rxdiaserviceable delivery)
hold.

2. For everygeorcv(m), eventr notinII wherer occurs at some timg it must be the

case that — a. fstate(now) < (e + d) * max,ep dist(u, v).

Proof sketch: The two properties together say that execution fragmen€seot ' ast that
begin in a state inL?,, demonstrate behavior similar to that of executiongZebCast,
modulo several orphageorcvs that can be viewed as events that would have been mapped
to geocast events that occur before the startofln particular, consider the same mapping
described in Section 12.2. We can show the same results &iin® 12.2 forgeocasts

and thoseeorcvs that are mapped geocasts. Now consider eaceorcv(m), that oc-

curs at sometime after the start of the execution fragment and is not redpp ageocast.

We just need to show that there exists some regisnch that < (e + d)dist(u,v), im-
plying that thegeorcv could be viewed as being mapped tgeocast(m, v), that occurs
before the start of the execution fragment. Each sgebrcv corresponds to &edger

Taking the source region in the entry as

eo"

entry that satisfies property 4(b) (ﬁ;

we know that the associated timestarhgatisfied the property that it was no more than

245

(e + d)dist(u,v) old when thegeorcv occurred. Since this tuple must have been in the
system (either in transit or in &dger) at the beginning of the execution fragment, this

implies thatt < (e + d)dist(u,v). u

12.4 Self-stabilization

We've seen thatL? is a legal set for GeoCast. Here we show that

geo

[1.cy Fail(VBDelay,|V,S<) self-stabilizes toL2,, relative to R(RW||[VW |Vbcast)
(Theorem 12.9), meaning that if certain program portionthefimplementation are started
in an arbitrary state and run witR(RW ||V W ||V beast), the resulting execution eventually
gets into a state imgeo. This is done in two phases, corresponding to the Iegal[sﬁ];s
andL?,,.

Using Theorem 12.9, we then conclude that after an execofi@gicoCast has sta-
bilized, the execution fragment from the point of stabiliaa on satisfies the properties
described in Section 12.3.2.

The first lemma describes the first phase of stabilizatiom, légal setL;,,. It

says that[],., Fail(VBDelay,||V,) self-stabilizes in timet),, to L;,, relative to
R(RW ||[VW||Vbcast), wheret!

geo

is any time greater thad ;e

Lemma 12.7 Lett,,, be anyt such thatt > €,qmpie-

[1.cv Fail(VBDelay,|V,C«) self-stabilizes in timet), to L], relative to
R(RW||VW||Vbcast).

Proof sketch: To see this result, just consider any time after each nodeslcas/ed dime

input, which takes at most,,,,,;.. time to happen. []

The next lemma shows that starting from a statéjg, GeoCast ends up in a state in

L? within t2__time, wheret?

geo geo geo

is any time greater than+ (e + d)(D + 1). (Recall that
D is the network diameter in region hops.) This result takesathge of the timestamping

of geocast tuples as a way to prevent data from being too old.

Lemma 12.8 Lett? , be anyt such that > € + (e + d)(D + 1).
1 2
fragséi@‘bast stabilizes in time?_, to fmgség;%ast.

geo

246

Proof: By Lemma 3.21, we just need to show that for any lengthprefix o of an ele-

1
ment of fragsc2.,.., lstate is in L2, We examine each property of,,.

geo*

By Lemma 12.7, since the first state @fis in L!__, we know that property 1 of 2

geo! geo

holds in each state af.

For property 2(a) it is plain that for any state dn any new tuple added to a region
u's ledger will satisfy the property since the tuple will initially map false, making the
property trivially hold with respect to that tuple. Also,jatuple that maps to false will
continue to satisfy the property even when it changes tagomiapped to true, since such a
change only occurs when tigeocast-tagged tuple is added to_send. The tuple is then
only removed fronto_send if the process fails or a similar tuple is added/teastq, either
or which would have property 2(a) continue to hold.

This leaves tuples with a nomdestination that a regiom's ledger maps to true in the
first state ofa. Sincea.fstate € L}, and hence satisfies property 4(b)i., we know that
such a tuple will have a timestamp no smaller than — e — (e + d) D. This means that in
a.lstate, the entry will have been removed, giving us that the algaristabilizes to satisfy
the property.

For property 3, consider what happens when a nonfailed melggs ageocast tuple
in its to_send buffer. The first thing we would like to show is that the tuglémestamp
is consistent with what it would have been if the tuple werealkicast before it expired.
Sincea. fstate € L}, and hence satisfies property 4(b)i., we know that any new agess
added toto_send will satisfy this requirement. This leaves only problemadtiples that
were present iio_send in a. f state. However, we know that each tupletin.send spends
at moste time there. Since this is less thtagrgo we are done with this portion of property 3.

The remainder of property 3, together with property 2(b) aragberty 4 are very similar
in their proof obligations. Hence, we only discuss the pafgiroperty 4 here.

For property 4, notice that for eageocast tuple added for the first time in the system
to ato_send queue and then propagated withitime to vbcastq, the property will hold
and continue to hold as the message makes its way througlystens The only thing
we need to consider are the tuples throughout the systemyitate. Consider the worst

case of a “bad” tuple in &_send queue. The tuple could, at worst, take maximum time

247

to be propagated tobcastq and delivered at a client (which works out ¢o+ d time),

and could contain a timestamp just under d ahead of real-time in. fstate. The tuple
will eventually stop being forwarded when it stops beingegted forledger entries, up to
(e+d)(D —1) later. Its entries iedgers can take up to an additional- d + € time before
being removed biedgerClean actions. This total time of + (e + d)(D + 1) is less than
t2

geo?

and we are done. m

Now we can combine our stabilization results to conclude khal (V B Delay,, || V,.5°)
components started in an arbitrary state and run WitRW ||V W ||Vbcast) stabilizes to
L2, intimet,.,, Wheret,, is anyt such that > €gympie + €+ (e+d)(D+1). Theresultis

geo

a simple application of the transitivity of stabilizatidoefnma 3.6) to the prior two results.

Theorem 12.9 Let t,., be anyt¢ such thatt > egmpe + € + (e + d)(D +
1). [,y Fail(VBDelay,||V,7*) self-stabilizes in timet,, to L2, relative to
R(RW||VW||Vbcast).

Proof: We must show thatillj'6CSU(HueU Fail(V BDelay,||V.G))|| R(RW ||V W ||Vbcast) stabilizes
1.2

o 2,
in time ¢4, to fT’agSHueUFm'l(vBDelayuHVf“)l\R(RWHVWHmest)- By Corollary 3.11,
L? . L?
geo geo
fmgSHueU Fail(V BDelaya |V.9eo) | RGRW [VIV||[Vbeasr) 1S (NE SAME agrags i, The result

follows from the application of transitivity of stabilizah (Lemma 3.6) on the two lemmas
(Lemmas 12.7 and 12.8) above. I&t, = € ampie + (tgeo — Esampte — € — (e +d)(D +1)) /2
andt?,, = e+ (e+d)(D+1) + (tgeo — €sampte — € — (e +d)(D +1))/2. (These terms are

geo

chosen so as to satisfy the constraints that> €,qmpe andt;,, > e+ (e + d)(D + 1), as

well as the constraint thaf,, + t7., = tgeo.)
Ll

First, let B be ETECSY([], oy Fail(V BDelayy|[V.Ge0))|| RGRW|[V W |[Vbeast) C be frags iocast:
2
andD befragség;"cast in Lemma 3.6. Then by Lemma 3.6 and Lemmas 12.7 and 12.8, we

have thatexech(HueU Fail(VBDelayuHVuGCO))HR(RWHVWHVbcast) Stabi|izeS in t|m61 + tgeo to

geo
f,r.agsL%eoCast
GeoCast *

Sincetye, = t},, +t2,, We conclude thaf], ., Fail(V BDelay,||V,"*) self-stabilizes

geo

intimet,., to L2, relative toR(RW ||V ||V bcast).]

geo
With Lemma 12.6, this allows us to conclude that after an etten of GeoCast has

248

stabilized, the execution fragment from that point on $iasthe properties in Section
12.3.2:

Lemma 12.10 Let?,., be anyt such that > ¢,qmpe + € + (e + d)(D + 1).
Thenexech(HueU Fail(V BDelay,||V,G0))||R(RW ||V W ||V beast) stabilizes in tim&geo to a setA of
execution fragments such that for eaeke A, there exists a subsét of thegeorcv(m),

events i such that:

1. There exists a function mapping eagorcv(m), event inll to thegeocast(m, v)
event that caused it such that the five properties (Integame-time self-delivery,
Bounded-time delivery, Reliable self-delivery, and Rxdiaserviceable delivery)
hold.

2. For everygeorcv(m), eventr notinll wherer occurs at some timg it must be the

case that — a. fstate(now) < (e + d) * max,ep dist(u, v).

249

250

Chapter 13

Location Management

In this chapter, we describe a self-stabilizing algoritlmmthe location management part of
the end-to-end routing service in Chapter 14. The algorithbuilt on the Geocast service
and the VSA layer and provides a location service that allo\B&s in the network to
find relatively recent information about the region locas®f clients. Each mobile client
identifier hashes to a home location, a region of the netwek it periodically updated
with the location of the client, and that is responsible foswering queries about the
client’s location.

Finding the location of a moving client in an ad-hoc netwaldifficult, much more
so than in cellular mobile networks where a fixed infrasuetof wired support stations
exist (as in [54]), or in sensor networks where some appration of a fixed infrastructure
may exist [6]. Alocation servican ad-hoc networks is a service that allows any client to
discover the location of any other client using only its itiiéer. The basic paradigm for
location services that we use here is that dfcane location serviceHosts callechome
location serversare responsible for storing and maintaining the locationtbér hosts in
the network [1, 48, 62]. Several ways to determine the set®ofe location servers, both
in the cellular and entirely ad-hoc settings, have beenestgg.

The locality aware location service (LLS) in [1] for ad-hoetworks is based on a hier-
archy of lattice points for destination nodes, publishetihwacations of associated nodes.
Lattice points can be queried for the desired location, witjuery traversing a spiral path

of lattice nodes increasingly distant from the source untiéaches the destination. An-

251

other way of choosing location servers is based on quorunset Af hosts is chosen to be
awrite quorum for a mobile client and is updated with the clientsation. Another set
is chosen to be aad quorum and queried for the desired client location. Eaefte and
read quorum has a nonempty intersection, guaranteeing thatdfi@quorum is queried,
the results will include the latest location of the clienité@n to awrite quorum. In [48],

a uniform quorum system is suggested, based on a virtuabbaekof quorum representa-

tives.

Location servers can also be chosen using a hash table. Saeesd51, 62, 82] use
geographic locations as a repository for data. These usslatbassociate each piece of
data with a region of the network and store the data at cemtadies in the region. This data
can then be used for routing or other applications. The Gudtion service (GLS) [62]
maps each client’,’s id to some geographic coordinates A client C,’s location is then

saved by clients located closest to the coordinajes

The location managment scheme we present here is based baghdable concept
and built on top of the VSA layer and the Geocast service. V&#Ad mobile clients are
programmed to form a self-stabilizing, fault-toleranttdisuted data structure for location
management, where VSAs serve as home locations for molgletsl Each client’s id
hashes to a VSA region, the client's home location, whose &S sponsible for main-
taining the location of the client. Whenever a VSA wants tcale a client nod€’,, the
VSA computes the home location 6f, by applying a predefined global hash function to

C,’s id, and queries the region represented by the result ohish forC),’s location.

In the rest of this chapter, we describe the service (Sedisoh) and properties of the
service (Section 13.2), then describe a set of legal stdtdseservice and properties of
executions starting in those legal states (Section 13n8)fiaally argue that our service is
self-stabilizing (Section 13.4). As a wrap-up we also mamsome possible extensions to

this work.

252

Signature: Transitions: 16,
2 Input GPSupdate(l, t),,1 € R t € R Input GPSupdate(l, t)p
Output veast({update, p, u, t))p, u€ U, t € R0 Effect: _ 18
4 if reg # region(l) Vv clock# t then
State: clock« t 20
6 analogclocke RZ0U { L}, initially L L?Tg re%lon(l)
reg € U U {_L}, the current region, initiallyL - 22
& NbTOE N, initially 0 Output vcast((update, p, u, t)), 24
; ina- Precondition:
10 Tre:}]\(leglt\?enes. t=clockAu=reg# L 26
12 d(clock) = 1 hbTOxttly, < clockV hbTOxttly, > clock+ ttly,
N Effect: 28
stop when
14 Any precondition is satisfied. hbTO«— [clocKttly,] +1
Figure 13-1: ClientC#~[tt1,,], periodically sends region updates to its local VSA.

13.1 Location service specification

Our location service allows a VSAto submit a query for a recent region of a client node
p via aHLquery(p),, action. It allows the region to receive a reply to this quemicating
thatp was recently in a region though aHLreply(p, v), action, under certain conditions.
In our implementation, called théome Location Service (HLS)e accomplish this using
home locationsRecall that the home location of a client nqdis the region whose VSA
is periodically (at least eversti;, time) updated wittp’'s region. The home locations are
calculated with a hash functidn mapping a client’s id to a VSA region, and is known to
all VSAs. These home location VSAs can then be queried byr MBés to determine a

recent region op.

The H LS implementation consists of two parts: a client-side poraod a VSA-side
portion. CI{{L is a subautomaton of clieptthat interacts with VSAs to provide HLS. It is

responsible for notifying VSAs in its current and neighlbgrregions which region it is in.

For the VSA-side}/, /'L is a subprogram of the VSA at regiarthat takes a request for
some client node’s region, calculateg’s home location using the hash function, and then
sends location queries to the home location using Geochsth@®me location subprogram
at the receiving VSA responds with the region informatidmas forp, which is then output
by VAL, VHL also is responsible both for informing the home location adteclientp
located in its region op’s region, and maintaining and answering queries for theoreyy

of clients for which it is a home location.

253

1 Signature:
Input time(t), t € R=°

3 Input vrev((update, p, v, t))u, p € P,ve U, t € RZ0
Input HLQuery(p) .

5 Input georcv(m),, me ({hlquery} xP xU)
U ({update, hireply} xP xU xR=0)

7 Output geocast(m, v),, v e U, me ({hlquery} xP x{u})
U ({update, hireply} xP xU xR=9)

9 Output HLreply(p, V)u,p€P,ve U
Internal clean,,

11

State:

13 analogclock RZ0U {1}, initially L
local, lastreq P — R=Z0U { L}, initially L

15 dir, lastLoc P — U xR=9, initially null
req: P — Bool, initially false

17 answer P — 2U initially ¢

19 Trajectories:
evolve
21 d(clock) =1
stop when
23 Any output precondition is satisfied
V 3dp € P: [lastreq(p) < clock-2(e+d) dist(u, h(p)) -€
25 V v, t) =dir(p): t < clock -ttl,, -d -(e +d) dist(V/, u) -¢
V (v, t) = lastLodp): t < clock -ttl,;, -d
27 -(e+d) (dist(v, h(p)) +dist(h(p), u)) -€]

29 Transitions:
Input time(t) .
31 Effect:
if clock# t Vv 3p € P: (local(p) ¢ [clock-d, clock) U {_L}
33 V lastreq(p) > clockV [req(p) A lastreq(p) = L]
V [3(v, t) € {dir(p), lastLoqp) }: t > clock]
35 V [= v, t) =dir(p): t > clock-ttl,; -d -
(e+d) dist(V/, u)
Aanswetp) # 0]V [h(p) # u Adir(p) # L])then
37 clock—t
foreachpe P

39 local(p), lastreq(p) <« L
dir(p) < null
41 req(p) < false

answerp) « 0
43
Input vrev({update, p, Vv, t))«
45 Effect:
if v=uAt e [clock-d, clock) then
47 local(p) <t

49 Output geocast((update, p, u, t), V)
Precondition:

51 local(p) € [clock-d, clock) A v = h(p)
Effect:

53 local(p) « L

Input georcv((update, p, v, t))«
Effect: 56
if h(p) =uAte [clock-d -(d + e) dist(u, v), clock)
A (dir(p) = null v [dir(p) = (v, t') At < t]) then 58

dir(p) < (v, t)
60
Input HLQuery(p) .
Effect: 62
if clock# Lthen
lastreq(p) < clock 64
req(p) < true
66
Output geocast((hlquery, p, u), V).
Precondition: 68
clock# LA req(p) = true Av=h(p)
Effect: 70
req(p) < false
72

Input georcv((hlquery, p, V)«
Effect: 74
if h(p) = uA 3V, t) =dir(p):
t € [clock -ttl;,, -d -(e+ d) dist(V/, u), clock) then 76
answe(p) < answe(p) U {v}

78
Output geocast((hlreply, p, v, t), V')
Precondition: 80
clock# LAV € answefp) Au=h(p) Adir(p) = (v, t)
Effect: 82
answe(p) — answefp) — {V'}
84
Input georcv((hlreply, p, v, t))w
Effect: 86
if te [clock-ttl;,;, -d-(et+d) (dist(v,h(p))+dist(h(p),u)),clock)
A[(3V € Ut lastLodp) = (V, t') At < 1) 88
V lastLoqp) = null] then
lastLodp) < (v, 1) 90
Output HLreply(p, V)« 92

Precondition:
[3te [clock-ttlp-d-(etd) (dist(v,h(p))+dist(h(p),u)),clockya
lastLoqp)= (v,t) |A lastreq p)> clock-2(etd)dist(u,h(p))
Effect: 96
lastreq(p) — L
98
Internal clean,,
Precondition:
Jp € P: [lastreqp) < clock -2(e+d) dist(u, h(p))
Vv (v, t) =dir(p): t < clock-ttl,, -d -(e+d) dist(V/, u) 102
Vv 3y, t) = lastLodp): t <
clock-ttl,, -d -(e+d) (dist(v, h(p)) + dist(h(p), u))1o4

109

Effect:
for eachp € P

if lastreqp) < clock-2(e+d) dist(u, h(p)) then
lastreq(p) «— L

if 3(v,ty= dir(p):t< clock-ttl;,;, -d-(e+d)dist(v',u) then
dir(p) « L

if 3(v, t) = lastLodp): t < clock -ttl;,, -d

-(e+d) (dist(v, h(p)) + dist(h(p), u)) then

lastLodp) « L

104

10§

119

112

Figure 13-2: VSAVHL(ttl,,, h : P — U], automaton.

254

The TIOA specification for the the individual clients is ingbre 13-1. The specifi-
cation for the individual regions is in Figure 13-2. The cdetp service,H LS, is the
Fail(V,"H|[V.E||V BDelay,), [1,ep Fail(C}*||V BDelay,), and

RW||[VW ||Vbcast. In other words, the service consists of ail-transformed automata

composition of[[,
at each region of the home location machine, geocast machm#/ B Delay machine; a
Fail-transformed automata at each client of the geocast maahith& B Delay machine;
and RW ||V ||V bcast.

Just as with the geocast autom&g* in Chapter 12, we note that for eashe U,
VHL||y/Geo s not technically a valid VSA since its external interfacasists of nonscast,
vrcv, andtime actions. However, we will later (in Chapter 14) compose ghitomaton
with other automata and hide these actions to produce newnath that are VSAs. In the
meantime we map refer to these almost-VSAs as VSAs, with tlienstanding that the
technical detail will be resolved later.

Again, just as with the geocast service, thé" subprograms can be used in other VSA
layer programs, as long as eacfi” is composed with other VSA subprograms that allow
us to hide theHLQuery andHLreply actions. For example, we could defin€a- H LS
service that allows clients to query for the region of othients, and to subsequently
receive replies. We could implement this service in the saragas we implemented the
C — Geocast service at the end of Section 12.1: have clients broadcasieguto and
receive replies from their local regiaris VSA subprogram folC' — H LS, which in turn
interacts with the region’d /L subprogram to have those queries answered.

We now describe the pieces of thel.S service in more detail.

13.1.1 Client algorithm

The code executed by clieps C}'* is in Figure 13-1.

Clients receivé&sPSupdates everye ;.. time from the GPS automaton (lines 17-22),
making them aware of their current region and the time. Ifientk region or local clock
changes as a result, the variahld"O is set to O (line 22), forcing the immediate send of an

update message, with its id, current time and region informatiame@ 24-29). The client

255

also periodically (at every multiple ati;;, time) reminds its current VSA of its region by

broadcasting an additionapdate message.

13.1.2 VSA algorithm

The code for automatovi”’* appears in Figure 13-2.

First, the VSA knows which clients are in its or neighboriegions throughupdate
messages. If a VSArcvs anupdate message from a clieptclaiming to be in its region
(lines 44-47), the VSA sends aipdate message fop, with p’'s heartbeat timestamp and
region, through Geocast tdp), the VSA home location of client (lines 49-53).

When a VSA receives one of thegpdate messages for a cliept it stores both the
region indicated in the messagezéscurrent region and the attached heartbeat timestamp
in its dir table (lines 55-59). This location information fpris refreshed each time the
VSA receives arupdate for client p with a newer heartbeat timestamp (line 58). Since
a client sends aopdate message everitl;,;, time, which can take up td time to arrive
at and trigger its local VSA: to send arupdate message through Geocast, which can
take (e + d)dist(u, h(p)) time to be delivered at the home location, an entry for client
indicating the client was in regiomis erased by its home location if its timestamp is older
thanttl,, + d + (e + d)dist(u, h(p)) (lines 102 and 109-110).

The other responsibility of the VSA is to receive and resptmdequests for loca-
tion information on clients. A request for a cliepis location comes in to region via a
HLquery(p), input (line 61). This setéustreq(p), the time of the last query fgr's loca-
tion (used later to clean up expired queries), to the cutier®, and updates the flagq(p)
to true, indicating that a query should be sent’sohome location (lines 63-65). This trig-
gers the geocast ofalquery, p, u) message tp's home location (lines 67-71). Any home
location that receives such a message and has an unexpirgdarp’s region responds
with a hlreply to the querying VSA with the region and the timestamp of tHerimation
(lines 79-83).

If the querying VSA atu receives dlreply for a clientp with newer information than

it currently has, it stores the attached regionand timestamp iastLoc(p) (lines 84-

256

90). This information stays ifust Loc(p) until replaced with newer information or until
the entry’s timestamp is older than the maximum time for antlito have sent the next
update, had theupdate received by its local VSA, and had the information propag&te
its home location and from the home location to V&Aflines 99, 103-104, and 111-113).
If there is an outstanding request fpis location (indicated by the condition that
lastreq(p) > clock —2(e+d)dist(u, h(p)) in line 95), the VSA performs BlLreply(p, v),
output and clear&istreq(p), indicating that all outstanding queries fgs location are sat-
isfied (lines 92-97). If, howeveg(e + d)dist(u, h(p)) time passes since a request fi&
region was received and there is no entry;fsrregion,lastreq(q) is just erased (lines 99,

101, and 107-108), indicating that the query has expired.

13.2 Properties of executions of the location service

A location service answers queries for the locations ofntéie A VSA v can submit a
query for a recent region of client nogevia aHLquery(p), action. Ifp’'s home location
can be communicated with andhas been in the system for a sufficient amount of time,
the service responds within bounded time with a recent refgicationv of p through a
HLreply(p, v), action.

More formally, we say that a procegss findableat a timet if there exists a time,,,.;

such that:
1. tsens mod ttly, = 0 and procesg has been alive since tinte.,,; — €sampie-
2. Foreachi € {reg=(p, tsent), 79T (D, tsent) }s tsent + d + (e + d)dist(u, h(p)) < t.

3. For eacht’ € [tsent,t] @andv € {reg=(p,t'),reg*(p,t')}, there exists at least one
shortest path from to h(p) of regions that are nonfailed and haveck values equal

to the real-time for the intervél’, ¢’ + (e + d)dist(v, h(p))].

(Notice that this amounts to saying that a process is find&lle can be assured that its
home location will have some information on the whereabofitee process.)

We say that &lLQuery by a regionu for a proces® at timet is serviceabldf:

257

1. Procesy is findable at time’ for eacht’ € [t,t + (e + d)dist(u, h(p))].

2. There exists at least one shortest path fraim/i(p) of regions that are nonfailed and

haveclock values equal to the real-time for the inter\ak + 2(e + d)dist(u, h(p))].
Then we can show the following result:

Lemma 13.1 The H LS service guarantees that in each executionf H LS, there ex-
ists a function mapping eadHLreply(p, v),, event to aHLQuery(p), event such that the

following hold:

1. Integrity: If a HLreply(p, v),, eventr is mapped to &LQuery(p), eventr’, thenzn’

occurs beforer.

2. Bounded-time reply If a HLreply(p,v), eventr is mapped to eHLQuery(p),
eventr’ wherern’ occurs at time, then eventr occurs in the intervalt, t + 2(e +
d)dist(u, h(p))].

3. Reliable reply This guarantees that a query will be answered if it is sezgigle: If a
HLQuery(p),, eventr’ occurs at time, a.ltime > t + 2(e + d)dist(u, h(p)), andr’
is serviceable, then there exist$dareply(p, v), eventr such thatr occurs at some

timet’ € [t, ¢ + 2(e + d)dist(u, h(p))).

4. Reliable information If a HLreply(p,v), event occurs at some tintethen there
exists atime’ € [t — ttly, — d — (e + d)(dist(v, h(p)) + dist(h(p),w)), t] such that

v e {reg-(p,t'),regt(p,t)}.

Proof sketch: Itis easy to define the mapping frafL.Query to HLreply events described
above as follows: For eacHLreply(p,v), event, there is some time # L such that
t = lastreq(p), (line 95). We map théiLreply event to the firsHLQuery(p), event that
occurs at time.

It is very easy to check that the first two properties hold. @e that Reliable reply
holds, we note that for &LQuery(p),, event the properties of the underlying Geocast

service make the property easy to check. (Due to properti€eocast, the only thing

258

that really needs checking is thatyifis findable, then when anghlquery, p, u) message
sent because of thdLQuery is received byp's home location, the home location will
have information om’s location. We can see that this holds becaugei# findable, the
properties of Geocast ensure that some recent-enopddite message aboutwill have

been received by’'s home location.)

To see that the Reliable information property holds, assiwaeaHLreply(p, v), event
7 occurs at some time We must show that there exists a titiec [t — ttl,, — d —
(e + d)(dist(v, h(p)) + dist(h(p),u)),t] such that € {reg=(p,t'),regt(p,t')}. By the
precondition for theéHLreply event on lines 94-95, we know that there exists a pait”)
equal tolast Loc(p) such that” > t — ttly, — d — (e + d)(dist(v, h(p)) + dist(h(p),u)).
We now argue that’ satisfies the properties of tifewe are looking for. The only way that
lastLoc(p) is set to(v,t") is by the receipt of ghlreply, p, v, ") message (lines 85-90).
Such a message is only sent fig home location if the home location&r(p) is set to
(v,t") (lines 79-81). The home location&r(p) is only set to(v,t”) by the receipt of
an (update, p, v, t”) tuple (lines 55-59). Such ampdate tuple is only sent by the region
v if its local(p) is set tot” (lines 49-51). Itslocal(p) is only set tot” if it received an
(update, p, v, t") message through the Vbcast service (lines 44-47). Such sagesnust
have been sent by a procesat timet. Since the message is only sent by the progats

its latest region update by tintevas for regiorv, we have our result. |

13.3 Legal sets

Here we describe a legal set &fLS by describing a sequence of five legal sets, each a
subset of the prior. Recall from Lemma 3.13 that a legal setates for a TIOA is one
where each closed execution fragment starting in a statieeirsét ends in a state in the
set. We break the definition of the legal set up into multiplgal sets in order to simplify
the proof reasoning and more easily prove stabilizaticer|at Section 13.4. Because the
proofs in this section are routine, we omit them. At the endhis section, we discuss

properties of execution fragments BfLS that start in our set of legal states.

259

13.3.1 Legal set;,,

The first set of legal states describes some propertiesrd&i@ally checkable at a region
or client and that become true at an alive VSA at the time offiiseétime input for the
VSA andGPSupdate input at a client, assuming the underlyi6GgoCast system is in a

legal state.
Definition 13.2 Let L;,, be the set of statesof H LS where all of the following hold:

1. 2[XceoCast € L2,
This says that the state restricted to the variablegzedCast is a legal state of
GeoCast.

2. Foreachp € P : ~fuailed, (nonfailed client):

(@) clock, # 1 = [clock, = now A reg, = reg(p)].
This says that if the local clock is ndt, then it is set to the current real-time

andreg, is p’s current region.

(b) [WTO « ttly, = clock, + ttly, A (update,p,reg,,clock,) &
to_send to_send’] = ((update,p,reg,, clock,),regy, clock,, P U U) €
vbcastq.

This says that ihdT'O indicates that the client should have just sent an update
and there is no such message in the cliemMB Delay, then theupdate has

already been propagated 6bcast.

(€) Bq € Pu € Ut € R : (update,q,u,t) € to_send; to_send}] = [q =
pAt=mnowAu € {reg-(p,now),reg*(p,now)}|.
This says that if an update message is in one of a clianBDelay queues,
then the message correctly indicates a region that the thas been in at this

time.

3. Foreachu € U : —failed, A clock, # L (nonfailed VSA that has receivedime
input):

260

(@) clock, = now.

This says that the local clock should be equal to the rea¢tim

(b) —3p € P : (local(p) ¢ [clock —d, clock) U LV lastreq(p) > clock V [req(p) A
lastreq(p) = L]V [F{v,t) € {dir(p),lastLoc(p)} : t > clock] vV [F(v,t) =
dir(p) : t > clock — ttly, — d — (e + d)dist(v', u) A answer(p) # 0] V [h(p) #

u A dir(p) # L1]).
This just says that a non-failed VSA'’s state must satistyayiof local consis-

tency conditions, none of which is very interesting.
It is trivial to check that’.},, is a legal set fo/ LS.

Lemma 13.3 L;,, is a legal set for LS.

13.3.2 Legal sef.?,,

The second set of legal states describes some properttasoldaafter any spurious VSA

messages are broadcast and spuridhs.st messages are delivered.

Definition 13.4 Let L7,, be the set of statesof H LS where all of the following hold:

1. x € Ly,

This says thaf.?,, is a subset of.},...

2. For each((update, p, u,t), q,v,t', Py € vbcastq:
' >now—d=[¢g=pAt=t ANue€ {reg(p,t),reg(p,t)}].
This says that anypdate tuple invbcastq sent in the last time must correctly

indicate a region of the sender at the time the message was sen
3. Foreachu € U : —failed, (nonfailed VSA):

(@) A{{update, p,v,t),t') € to_send,.
This says that a VSA should natast an update tuple. (VSAs onlgeocast
update tuples.)

261

(b) Foreachp € P :local(p) =t # L = u € {reg—(p,t),reg™(p,t)}.
This says that ifocal(p) is set tot, then the VSA's region is a region of the

process at timet.

(c) Foreachv,v' € U, p € P,t € R : [ledger({(update, p, v, t),u, v, now)) #

null vV ((geocast, (update, p, v, t), u, v', now), rtimer,) € to_send,] = [u
v AV = h(p) ANu € {reg=(p,t), reg™ (p,t)}].

This says that if ampdate message fop has beergeocast but not yet been
turned over toVbcast, then it is beinggeocast to the home location of the
process and correctly indicates one of the regiong af the timet included in

the message.

(d) For eachp € P, (v,t) = lastLoc(p) : t > clock, — d
J((geocast, (hlreply, p, v, t), v’ u, t'),v" t", P’y € vbcastq : t" > t.
This says that ifast Loc(p) is set to somév, t) wheret > now — d, then there
exists ageocast of anhlreply tuple no older thart that indicates thav is a

region ofp at timet.

4. For each((geocast, (update, p, v, t), u,v',t'), v/, now, P U U) in vbcastq:
e (t,t+d Au=v=u ANV =h(p) Aue {reg—(p,t),reg™(p,t)}].
This says that anypdate tuple for a procesg and timet that has just beegeocast
and whose record is i bcast correctly indicates a region of the procesat timet.

It also says that the message is begepcast to the process’s home location.

For the sake of brevity and reader sanity, we do not includeptbof of the following
lemma here. The proof is a tedious but not difficult case amslpased on the actions and

trajectories of thed LS system.

Lemma 13.5 L2, is a legal set forH LS.

13.3.3 Legal set.?,,

The third set of legal states describes some propertiettihdafter any spuriougeocast

messages are delivered.

262

Definition 13.6 Let L}, be the set of statesof H L.S where all of the following hold:

2
l.zely,.

This says thal.},, is a subset of .2, ..

2. For each(geocast, ((update, p, v, t), u, ', t'),u', t", P") in vbcastq: t" > now — (e +
d)D = [t e (t,t+dANu=v=u ANV =h(p) ANu e {reg—(p,t),regt(p,t)}].
This says that geocast of anupdate for a process at timet that was passed to
Vbcast at some time” > now — (e + d) D was sent tg’s home location by the VSA

at a region of the process at time

This lemma is also easy to check:

Lemma 13.7 L3, is a legal set for LS.

13.3.4 Legal set;,,

The fourth set of legal states describes some propertieéshtid after any bad location

information stored at home locations of processes is ctéape

Definition 13.8 Let L;,, be the set of statesof H L.S where all of the following hold:

3
l.zely,.

This says thal},, is a subset of 3, ..

2. For each(geocast, ((update, p, v, t), u, v, t'), u,t", P") in vbcastq : t" > now — d —
ttly —2(e+d)D: [t € (t,t+d|Au=vAv = h(p)Au € {reg—(p,t),reg™ (p,t)}].
This is similar to property 2 of3, ., only extended fat’ > now—d—ttly,—2(e+d)D.

3. Foreachu € U : = failed,: Vp € P : ¥(v,t) = dir(p) : t > clock, — ttl, — d —
(e+d)dist(v,u) = J(geocast, ((update, p, v, t),v,u,t'),v,t", P') € vbcastq : t" >
now — d — ttly, — (e + d)D.

This says that at a nonfailed VSA, if the VSA is storing thation of a procesg as
regionwv at timet, then ift > clock, — ttly, — d — (e + d)dist(v,u), there was a

geocast of anupdate tuple indicating the same region and time information.

263

4. For each v € U : =failed,, v,/ € Up € Pt €
R=0 : [ledger(((hlreply, p, v, t),u, v, now)) + null Vv
({geocast, (hlreply, p, v, t), u,v’, now), rtimer,) € to_send,] = [u = h(p) Nv €
{reg™(p,t),reg™(p,1)}].

This says that if alreply message for a procegshas beergeocast but not yet
turned over toVbcast, then the VSA is the home location foland the attached

regionw is a region ofp at timet.

5. For each (geocast, ((hlreply, p, v, t),u,v',t'), v, now, P U U) in vbcastq: [u =
h(p) Nv € {reg™(p,t),reg™(p, 1)}].
This says that angeocast of anhlreply that has just been turned over t0hcast
correctly names a region that a procesw/as in at a timg and was sent by's home

location.

6. Foreachu € U : —failed,, for eachp € P, (v,t) = lastLoc(p):
t > clock, — d — ttlhy, — (¢ + d)D =
J(geocast, ((hlreply, p,v,t), h(p),u,t'), h(p),t", P') € wvbcastq : [t" > t Nv €

{reg=(p,t),reg*(p,1)}].
This says that ifast Loc(p) is setto somev, t) wheret > now —d—ttl,, — (e+d)D,
then there exists geocast of anhlreply tuple no older than that indicates that

is a region ofp at timet. In addition,v was a region op at timet.
The proof of the following lemma is again omitted becauss routine.

Lemma 13.9 L}, is a legal set forH LS.

13.3.5 Legal sef.},,

The fifth set of legal states describes some properties thaidfter any bad location infor-

mation stored at location queriers is cleaned up.
Definition 13.10 Let L}, be the set of statesof H LS where all of the following hold:

4
1.z e Ly,

This says thal.}, is a subset of.},..

264

2. For each(geocast, ((hlreply, p, v, t), u,v',t'), u,t”, P') in vbcastq: t" > clock, —
(e+d)D = v € {reg=(p.t),reg*(p,t)}.
This is similar to property 5 of4,_, only extended fot’ > clock, — (e +d) D, rather

than justt” = now.

3. Foreachu € U : —failed, and foreachp € P : (v, t) = lastLoc,(p) A\t > clock, —
ttlyy — d — 2(e + d)D : F(geocast, ((hlreply, p,v,t), h(p),u,t'), h(p),t", P') €
vbeastq : [t" >t ANv € {reg(p,t),reg™(p,t)}].

This is similar to property 6 of.}, , only extended fot” > clock,ttl, — d — 2(e +
d)D.

It is trivial to see that since the second two properties arly properties ofL},.

observed for longer periods of time, the following resulli ¥allow:

Lemma 13.11 L}, is a legal set forH LS.

Properties of execution fragments starting inL?, .

As with the Geocast service, we can describe propertieseaxution fragments off .S
that start inL;,, as properties of executions &fL.S, as described in Section 13.2. As be-
fore, the difference is in the mapping of some subséilafeply events that occur towards
the beginning of the execution fragment.

More formally, we can say the following:

Lemma 13.12 H LS guarantees that for an execution fragmenstarting in L;,,, there

exists a subsdt of theHLreply events im such that:

1. There exists a function mapping eadhbreply event inll to a HLquery event such
that the four properties (Integrity, Bounded time replyli&dge reply, and Reliable

information) hold.

2. For everyHLreply(p), eventr not inII wherer occurs at some time it must be the

case that — «. fstate(now) < 2(e + d)dist(u, h(p)).

265

This concept and proof is similar to the material in Secti@r812, where we described the
properties of execution fragments of Geocast as a variahegbroperties of executions of

Geocast, adjusting for a subset of receive events towaedsehinning of a fragment.

13.4 Self-stabilization

We've seen thatL;, is a legal set for HLS. Here we show that
[L.cv Fail(V BDelay,||V.7(|V,I5) T]ep Fail(V BDelay,||CI'*) self-stabilizes to
L3, relative to R(RW||[VW||Vbcast) (Theorem 13.19), meaning that if certain pro-
gram portions of the implementation are started in an antyitrstate and run with
R(RW||VW||Vbcast), the resulting execution eventually gets into a staté;jn. Using
Theorem 13.19, we then conclude that after an executio bt has stabilized, the
execution fragment from the point of stabilization on dassthe properties described in
Section 13.3.5.

The proof of the main stabilization result for the chaptdredrem 13.19, breaks sta-
bilization down into two large phases, corresponding twiBiation of the lower level
Geocast service, followed by stabilization of tHd.S service assuming that Geocast has
stabilized. We have seen thatoCast stabilizes to the set of legal staté$,, in Section
12.4. What we need to show for Theorem 13.19 is that, stafitomg a set of states where
GeoCast is already stabilizedd LS stabilizes toL;,, (Lemma 13.18). We do this in five
stages, one for each of the legal sets described in Secti@n TBe first stage starts from
a state wheré&'eoCast is already stabilized and ends up in the first legal set. Therse
stage starts in the first legal set and ends up in the secand, et

The first lemma describes the first stagerbl.S stabilization, to legal set} .. It says
that withint;,, time of GeoCast stabilizing, where},, > €.mpie, the system ends up in a

state inL}, ..

x|z 4EL? - .
Lemma 13.13 Lett!,, be anyt such that > euumpie. fragsera << s} stapilizes in

. Ll
timet},, to frags; .

Proof sketch: To see this result, just consider the first time after eaclernas received a

266

time or GPSupdate input, which takes at most,,,,.. time to happen. [

The next lemma describes the second stagé bf stabilization. It shows that starting
from a state in_;,,, LS ends up in a state ih?,, within ¢2,, time, wheret?,, is any time

greater tharRe + d.

Lemma 13.14 Let ¢7,, be anyt such thatt > 2¢ + d. fmgsfjfs stabilizes in time?,, to

fra SL’Q”“"
9SHLS

Proof: By Lemma 3.21, we just need to show that for any lengthprefix « of an ele-
ment Offragsé’lf's, a.lstate isin L2,,. We examine each property 6f, ..

By Lemma 13.13, since the first statewfs in L} ,,, we know that property 1 of?,,
holds in each state af.

For property 2 notice that for eaclpdate message added for the first time to one of
a client'sto_send queue and then propagatedWtdcast, the property will hold and will
continue to hold thereafter. Hence, the only thing we needdioy about are the messages
already in ao_send queue or already iiWbcast in a. f state. However, afterl time elapses
from the start oty, the property will be trivially true.

For property 3, we consider each part. Property 3(a) willrefter at most time,
the time it takes for any such errant messages. jistate to be propagated out t6bcast.
Property 3(b) will hold after at mosttime after property 3(a) holds (giving any messages
with bad location information to be received and then remdofvrem local through the
geocast of ampdate). Property 3(c) will hold within any non-0 time after propeB(b)
holds, as each new geocast of @mdate will use location information that is correct.
Property 3(d)

For property 4 notice that for eagfeocast tuple of anupdate message added for the
first time to ato_send queue after property 3(b) holds (which takes up te d time) and
then propagated within time to vbcastq, the property will hold and continue to hold as
the message makes its way through the system. The only tlengeed to consider are the
tuples that are already inta_send queue inu. f state. In the worst case, such a tuple takes
e time to be placed imbcastq, and any non-0 time afterwards to haveliteast timestamp

no longer be the current time. [|

267

For the third stage off LS stabilization, the next lemma shows that starting from a
state inL?,,, HLS ends up in a state ifi},, within ¢}, time, wheret}, , is any time greater
than(e + d)D.

Lemma 13.15 Lett;,, be anyt suchthat > (e+d)D. (RecallD is the hop count diameter

3
ths

2
of the network.)fmgsf{’ig stabilizes in time;,, to frags;/is.

Proof: By Lemma 3.21, we just need to show that for any lengjthprefix « of an ele-
ment offragsfjfg, a.lstate is in L3,.. We examine each property 6f,. .

By Lemma 13.14, since the first statewfs in L?,,, we know that property 1 of?,,
holds in each state af.

For property 2, notice that by property 4 éf,, we have that all geocast tuples of
update messages added tdcastqg in o will satisfy the property and continue to do so.
After (e + d)D time has passed, we will have that the property holds forualhduples

broadcast within the prigfe + d) D time. u

The next lemma, for the fourth stage BiLS stabilization, shows that starting from a
state inL},,, HLS ends up in a state if},, within ¢}, time, wheret},, is any time greater
thand + ttl,, + (e + d)D.

Lemma 13.16 Lett;,, be anyt such that > d + ttly, + (e +d)D. fragsziﬁs stabilizes in

4
ths

timet},, to fragsyis.

Proof: By Lemma 3.21, we just need to show that for any lengthprefix « of an ele-
ment offragsﬁlg, a.lstateisin L},.. We examine each property 6f,..

By Lemma 13.15, since the first statewfs in L3,,, we know that property 1 of?,,
holds in each state ef. Property 2 is easy to see due to its similarity to property 239..

For property 3, notice that at the beginningagfthe newest values d@fin a dir tuple
is less thanv. f state(now). After ¢}, time passes, these entries will be expired and won't
affect the property. This means that all we have to checkas\ltihenever alir entry is
updated inq, it satisfies the property. This is obvious since such an tgpdaly occurs

through thegeorcv of anupdate message, which can only happen if property 3 holds.

268

For property 4, notice that any nevreply tuple that is added to tHedger or added to
V' BDelay after property 3 holds will satisfy property 4. Similarlgrfproperty 5, any new
hireply tuple added tabcastq after property 4 holds will satisfy property 5.

For property 6, notice that at the beginningcaafthe newest values afin a last Loc
tuple is less thawn. f state(now). After t},. time passes, those entries stilllinst Loc will
be timestamped with values less than those of concern tartipegy. This means that all
we have to check is that any additions or update&itoLoc satisfy the property. Since
such changes only occur through teorcv of anhlreply, we just need to verify that any
such message that arrives with the wrong regiorpfat some time has a timestamp that is
older thant},,. This follows from the fact that anglreply sent ina: with bad information

must be using information timestamped from befargby property 2 ofZ?,). |

For the fifth stage off LS implementation, the next lemma shows that starting from a
state inL},,, HLS ends up in a state ih;,, within ¢7,, time, wheret;,, is any time greater
than(e + d)D.

4
Lemma 13.17 Let ¢}, be anyt such that > (e + d)D. fragsé’f’s stabilizes in time?,

to fragsé’sf's.
The proof of this lemma is simple for the same reason thattthefphatZ;,, is trivial; the
property is a longer-interval version of properties thatalready know hold.

We now have all of the pieces of reasoning for the five stagebefecond phase
of HLS stabilization. (Recall that the second phaseHat.S stabilization occurs after
GeoCuast has stabilized, corresponding @:oCast state being in the set?,,.) We then

combine this reasoning from Lemmas 13.13-13.17 to showthigasecond phase of stabi-

lization of H LS takest),, time,},, > €sampie + ttln + 2¢ + 2d + 3(e + d) D, to stabilize:

Lemma 13.18 Lett},, be anyt such that > esqmpie + ttl + 2¢ +2d + 3(e 4+ d) D. Then

XGeoCas EL2eo T . . L5
fragsariXaeeceShio) stapilizes in time,, to frags./.

Proof: The result follows from the application of Lemma 3.7 on the femmas (Lemmas
13.13-13.17) above.

269

Lett' be(t),, — (esample +ttlyy +2e +2d +3(e+d)D)) /5. Then lett},. bet’ + esample,
t'+ (e + d)D. (These terms are chosen so as to satisfy the constraiméllgha Esamples
7, > 2e + d, etc.)
{x|x[XGeoCasteL§eo} his hls
Let B, be fragsHLS , By be fragsHLS, B, be fmgsHLS, B; be
fragsHLS, By befmgsH’fS, andBs befragsH’fS in Lemma 3.7. Let, bet}, , t, bet?,,,
t; bet3,., t, bet}, , andt; bet?, in Lemma 3.7. Then by Lemma 3.7 and Lemmas 13.13-

13.17, we have thatrags\""[¥oeocolico} stapilizes in time?, + 12, + 13, + 4 7
9SHLS his T this T Uhas + This T This
to fmgsHhLlSS
x| eoCas 2eo
Sincet),, = t},, + t3,, + thls +td, + 13, we conclude thafrags'sy " ceoce < oot

stabilizes in timg},, to fragsH’f‘S n

Using this and our prior result adeoCast stabilization (Theorem 12.9) we can now fi-
nally show the main stabilization result of this chaptere phoof of the result breaks down
the self-stabilization of/ LS into two phases, the first being whetoCast stabilizes,

and the second being where the remaining piecds$ o$ stabilize.

Theorem 13.191] ., Fail(V BDelay,||V,C|V,/'*) [e p Fail(V BDelay,||C)'") self-
stabilizes int;,;s time, ths > tgeo + €sampte + ttlhy + 2€ + 2d + 3(e + d) D, to L, relative
to R(RW||[VW{|Vbcast).

Proof: For brevity, we will use execsy_prLs to refer to

ELECSU([], ey Fail(V BDelayy||V.Ge |VHL)], ¢ p Fail(V BDelay,||CH L)) || R(RW ||V W ||Vbcast) -

We must show that execsy_prs stabilizes in time t5, to

By Corollary

f mgs UFazl(VBDelayu||VG6°||VHL)H < p Fail(V BDelay,||CHL)| RGRW |V W |[Vbcast)"
3.11, fragsnhléUFazl(VBDelayu||VG€°||VHL)Hpep Fail(V BDelayy||CHL)| RGRW |V W ||V bcast) is the
same asfragsH’fS This means that we must show thatecs;_ s Stabilizes in time
ths 1O fragsHhLlSS The result follows from the application of transitivity sfabilization
(Lemma 3.6) on the two phases BiLS stabilization.

For the first phase, we note that by Theorem 12:9¢s;_ s stabilizes in timée .,

{x‘x’r‘XGEOCaSteLgeo}
to fragsy; g

270

For the second phase, I§t, bety, — t,e0. SiNCety > tyeo + E€sampie + ttlhy + 2e +
2d +3(e+d)D, this implies that},, > €sampic + ttln + 2 + 2d + 3(e + d)D. By Lemma

5
ths

x|z L EL2 - L
13.18, we have thatragst s < s} stapilizes in time/),, to frags .

Taking B to beexecsy_prs, C to befragsglggxaeoc““@g”}, andD to befragsfjfs
in Lemma 3.6, we have thatecsy_p s Stabilizes in time ., + t},, to fragsziﬁs.

Since this = tgeo + s we conclude that
[T.co Fail(VBDelay,||V,Se||V,AE) [Lcp Fail(VBDelay,||C)T") self-stabilizes in
tns time to L3, relative toR(RW||VW ||V bcast).]

With Lemma 13.12, this allows us to conclude that after arcetten of H LS has
stabilized, the execution fragment from that point on $aBsthe properties in Section
13.3.5:

Lemma 13.20 Lett,;; be anyt suchthat > ¢,.,+€sampie+ttlp+2e+2d+3(e+d)D. Then
EXECSY([],, ey Fail(V BDelay, | V.G |[VHL) 1, p Fail(V BDelayy|CHL))||[R(RW ||V W || Vbeast) stabilizes in
timet,;, to a setA of execution fragments such that for eacke A, there exists a subset

IT of theHLreply events inx such that:

1. There exists a function mapping edghreply event inll to a HLquery event such
that the four properties (Integrity, Bounded time replyli&dde reply, and Reliable

information) hold.

2. ForeveryHLreply(p), eventr not inII wherer occurs at some time it must be the
case that — a. fstate(now) < 2(e + d)dist(u, h(p)).

13.5 Extensions

Here we briefly describe some possible extensions to our Hi@ithm:

Multiple home locations: In order for our scheme to tolerate crash failures of a lichite
number of VSAs, each mobile client id could map to a set of V&R locations; the hash

function would return a sequence of region ids as the honeitmts. We could use any

hash function that provides a sequence of region identies possibility is germutation

271

hash functiopnwhere permutations of region ids are lexicographicaltyeoed and indexed
by client id. A version of the home location service was pnéseé in [37] that used this
idea.

Randomized asymmetric quorums: It is possible to have asymmetric updates and
gueries, such as with local updates to close-by VSAs an@umif selected VSAS or vice
versa (the expected number of VSAs that are required to bategénd queried is small,
as proved in [68]). Instead of using a predefined set to qoey,might use a randomized
scheme based on [68], where a random set of regions is chasepdating and inquiring
about the location of a client node. Moreover, we could enbahe scheme in [68] by
using a predefined set for location updates (such as the-blosegions) and random set
for location queries (or vice versa).

Attribute queries: There are scenarios in which one would like to query for ¢tlreodes
with certain attributes in a geographic area (e.g., a sefarch medical doctor that is cur-
rently near by). Our scheme supports such queries in a hataga Attributes can hash
to home locations that store tables of clients with thelaita, and their locations. Clients
searching for another nearby client with some attributddcthen have a local VSA query

home locations for the attribute, and select a nearby diient the list that is returned.

272

Chapter 14

End-to-end Routing

One basic, but often difficult to provide, service in mobittwiorks is end-to-end routing.
We describe a self-stabilizing algorithm over the VSA lay@mprovide a mobile client
end-to-end routing service. This service is built on prieogast and location management
services in such a way that the resulting application remsatf-stabilizing.

Our self-stabilizing implementation of a mobile client etadend communication ser-
vice is simple, given the geocast and home location serviéeslient sends a message
to another client by forwarding the message to its local V@&Aich then uses the home
location service to discover the destination client’s oegand forwards the message to that
region using the geocast service.

In the rest of this chapter, we describe the service (Sed#doh) and some of its prop-
erties (Section 14.2), then describe a set of legal statéseo$ervice and properties of
execution starting in those legal states (Section 14.3) fimally argue that our service is

self-stabilizing (Section 14.4).

14.1 Client end-to-end routing specification

End-to-end routing is an important application for ad-hetworks. End-to-end routing
(E2F) is a service that allows arbitrary clients to communicatetientp sends a message
m to client ¢ using theesend(m, ¢), action. The message may then be received; by

through theercv(m), action.

273

Our implementation of the end-to-end routing servieg F, uses the home location
service to discover a recent region location of a destinatient node and then uses this
location in conjunction with Geocast to deliver messagesinAhe implementation of the
Home Location Service, there are two parts to the end-toreutihg implementation: the
client-side portion and the VSA-side portion.

The client-side portiorC"*” takes a request to send a message a clientq and
transmits it to its local VSA for forwarding. It also listefar Vbcast messages originating
at other clients and addressed to it, and delivers them.

The VSAV 2P portion is very simple. A client may send it a message to bedoded
to a client. It looks up a somewhat recent location of theidasbn client using? LS and
then sends the message via geocast to the reported region.

The TIOA specification for the individual clients is in Figui4-1. The specification
for the individual regions is in Figure 14-2. The completevgm, F2F is the composition
of [[,cpy Fail(V,72F (V.G V.IE|V BDelayy), 1, p Fail(CF?F||CHF||V BDelay,), and

RW ||[VW ||Vbcast. In other words, the service consists dfail-transformed automaton at

peEP

each region of the composition of the end-to-end, home ilmtageocast, an®l B Delay
machines; dail-transformed automaton at each client of the compositioh@fend-to-
end, home location, and B Delay machines; an&®W || VW ||V beast.

Recall that in the Geocast (Chapter 12) and Location Manage(Chapter 13) chap-
ters, we noted that for eaah € U, the various geocast and home location automata at
the regions were not technically VSAs since their externedrfaces included more than
just the allowedscast, vrcv, andtime actions. Here we can finally resolve this issue. For
eachu € U, the VSA at regionu is the compositior/22E||VGeo ||V HL " with all geo-
cast, georcv, HLQuery andHLreply actions hidden. The resulting machine satisfies the
conditions for being a VSA.

We now describe the pieces of thR ' service in more detail.

14.1.1 Client algorithm

The signature, state, and transitiong’yf*” are in Figure 14-1.

274

Signature: Input esend(m, q), 28

2 Input GPSupdate(l,t)p,! € R,t € RZ0 Effect:

Input esend(m, q)p, m € Msg,q € P sdatag— append(sdataq (m, q)) 30
4 Input vrev((rdata, m, p)),, me Msg

Output vcast((sdata, m, g)),, me Msg, q € P Output vcast((sdata, m, g, reg)), 32
6 Output ercv(m),, me Msg Precondition:

(m, q) = head(sdatag A clock# LAreg# L 34

8 State: Effect: _

analogclocke R=0U {_L}, initially L sdatag+— tail (sdataq 36

10 rege UuU{L}, initially L

sdatage (Msg xP)*, initially A Input vrev((rdata, m, p)), 38
12 deliverge Msg*, initially X Effect:)
deliverq«— append(deliverg m) 40
14 Trajectories:
evolve Output ercv(m), 42
16 d(clock) = 1 Precondition:
stop when m = head(deliverg) A clock## LAreg# L 44
18 Any precondition is satisfied. Effect:))
deliverq <« tail (deliverg) 46
20 Transitions:
Input GPSupdate(l, t),,
22 Effect:
if clock# t vV reg= Lthen
24 sdataq deliverg— A
clock« t

26 reg «— region(l)

Figure 14-1: ClientC"*" automaton.

The two main variablesidataq anddeliverq, are queues. Variablelatag stores pairs
(m, q) of esend requests that have not yet been forwarded to a VSA, widsa message
andgq the intended recipient. Variabt&liverq stores messages intended for receipt by the
client, but not yetrcv’ed.

The GPSupdate(l, t), action (line 21) results in an update of the clientg variable
to the regionregion(l) and a reset of the local clock to timelines 25-26). If theclock
variable was not when the action occurred oritg was_L, then thesdataq anddeliverq
gueues are also cleared (lines 23-24); this correspondsesedting of the queues either

because the client has just started or because the cliemd@uect local state.

A messagen is sent to another cliegtvia anesend(m, ¢),, input (line 28), which adds
the pair(m, q) to sdataq (line 30). This results in the forwarding of the informatitorp’s
current region’s VSA throughicast((sdata, m, ¢, reg)),, and the removal of the pair from
sdataq (lines 32-36).

Information about a message for client p from other clients can be forwarded and
ultimately received througharcv((rdata, m, p)), input (line 38). This adds the message

m to deliverq (line 40). The message: is subsequently delivered through the output

275

1 Signature:
Input time(t),, t € R=0

3 Input vrev((sdata, m, g, u))., me Msg q € P
Input HLreply(p, V)u,p € P,ve U

5 Input georcv((fdata, m, p))., me Msg p € P
Output HLQuery(p)w, p€ P

7 Output vcast((rdata, m, p))., me Msg p € P
Output geocast((fdata, m, p), V),

9 meMsgpeP,veU

11 State:

analogclock € R=0U { L}, initially
13 beastge 2Ms9x P initially ()

tosende P — 2(Msgx(®=UL) jnitially ¢
15 findrege P — U U {L}, initially L

Output HLQuery(p)« 40
Local: m € Msg

Precondition: 42
clock# LA (m, L)€ tosendp)
Effect: 44

tosendp) < tosendp) — {(m, L)} U {(m, clock) }
46
Input HLreply(p, V)«
Effect: 48
findregp) < v
50
Output geocast((fdata, m, p), V).
Precondition: 52
clock# LAfindregp) =v# L
3t:((m, t)e tosendp)A [t = LV t< clock-2(etd) dist(u, h(p)) 5»
Effect:

]) tosendp) < tosendp) — {(m', t) [m" = m} 56
17 Trajectories:
evolve Internal cleanFind(p)« 58
19 d(clock) =1 Precondition:
stop when findregp) # LA tosendp) = 0 60,
21 Any output precondition is satisfied Effect:
V 3p € P: [findregp) # LA tosendp) = 0] findregp) — L 62
23 vIpeP, meMsgteR2% ((m,t) € tosendp)
A [t> clock vt < g clock-2(e+d)dist(u, h(p)) -€]) | Internal cleanSend(p)., 64
25 Precondition:
Transitions: I(m, tye tosendp): [t > clockV t < clock-2(e+d) dist(u, h(p))de
27 Input time(t). Effect:
Effect: tosendp) < tosendp) 68
29 if clock# t then — {(m, t) [t > clockV t < clock-2(e+d) dist(u, h(p))}
clock «t 70
31 bcastg— 0 Input georcv((fdata, m, p))«
foreachpe P Effect: 72
33 tosendp) < 0 bcastg— bcastqu {(m, p) }
findregp) < L 74
35 Output vcast((rdata, m, p))«
Input vrev(({sdata, m, p, u)), Precondition: 76
37 Effect: clock# LA (m, p) € bcastq
tosendp) < tosendp) U {(m, L)} Effect: 78

bcastq— bcastg— {(m, p) }

Figure 14-2: VSAV 22E(ttl,,, h], automaton.

ercv(m), action (lines 42-46).

14.1.2 VSA algorithm

The signature, state, and transitiond/gf** are in Figure 14-2.

There are three main variables in thé2%|ttl;,, h], automaton. The variable-astq
is a set of pairs of messages and process ids; each pairpomissto a mesasge that the
VSA is about to broadcast locally for receipt by some cliehlie variabletosend maps
each process igd to a set of messages that local clients have asked the VSAwaifd to
p, tagged either with a timestamp indicating when it arrivetha VSA or L, indicating

the message has just arrived but the locatiop b&s not yet been queried. The variable

276

findreg maps each process id either to a region corresponding tceatrlxcation of the
process, OfrL.

The VSA at aregiom is told by a local client of theiesends of message: to a clientp
via the receipt of dsdata, m, p, u) action (line 36). This adds the pdit, 1) to tosend(p)
(line 38), indicating thatn is to be sent tp and that the VSA needs to look pfs region.
This results in arHLQuery(p), to look up the region, resulting in the update of the pair
(m, L) to (m, clock) (lines 40-45). Whenever a response in the fétlmeply(p, v),, occurs
(line 47), the variablefindreg(p) is updated ta (line 49), indicatingp was in regionv
recently.

For each pair(m,t) in tosend(p), if findreg(p) is not L, meaning that the VSA
has a relatively recent location fgr, the VSA forwards the message information to
p’s location and removes the message record frterend. This is done through a
geocast((fdata, m, p)), output (lines 51-56). If there are no tuplestissend(p), mean-
ing there are no messages that need to be forwarde@ttstanding, therfindreg(p) is
cleared (lines 58-62).

When a(fdata, m,p) message is received from the geocast service, indicatiaig th
there is a message intended for some client that should be nearby, the VSA adds
the pair (m,p) to its becastq (lines 71-73). This results in the local broadcast via
vcast((rdata, m, p})), (lines 75-79) to inform the client of the message.

If a tuple (m, t) is in tosend(p) but the timestampis either from the future (the result
of corruption) or from longer thad(e + d)dist(u, h(p)) ago (meaning that thidLQuery
for p's location timed out), therym, ¢) is considered to be expired and is removed from
tosend(p) (lines 64-69).

14.2 Properties of executions of the end-to-end routing

service

The end-to-end communication service allows clients tal seassages to other clients. A

clientp can send a messageto another clieng through theesend(m, ¢),, action. If client

277

g can be found at an alive VSA amddoes not move too far for a sufficient amount of time,
the message will then be received by clignihrough theercv(m), action.

More formally, we say that a procegss hosted by region at a timet if:

1. Foreach’ € [t,t + 3(e+ d)D + e + d|, u is not failed.
2. Foreacht’ € [t—ttly,—d—(e+d)D,t+(e+d)D+d|,reg” (p,t') = reg™(p,t') = w.

3. Foreach’ € [t+(e+d)D+d,t+3(e+d)D+e+2d],{reg—(p,t') = reg*(p,t')} C

nbrs™(u) andp is not failed.

This amounts to saying that a proces sis hosted by a regairtimet if: (1) regionu is
not failed from timet until d before what will be the deadline for message delivery in the
end-to-end communication service; (2) regiohas been the region gflong enough that
any location information stored ais home location front until any home location query
started at time can complete will indicate thatis either inu or some newer region; and
(3) proceswy stays inu or a neighboring region af until any end-to-end communication
started at can complete.

We say that &send(m, ¢), at a timet is receivableif there exists some regiansuch

that:

1. Proces9 is not failed at time.
2. Procesg is hosted by regiom at timet.

3. For eacht’ € [t,t + d] and eactv € {reg(p,t),reg" (p,t)}, anHLquery(q), at

timet' is serviceable.

4. For eachy € {reg (p,t),regt(p,t)}, there exists at least one shortest path from
to u of regions that are nonfailed and haveck values equal to the real-time for the

interval[t, t + (e + d)(2dist(v, h(p)) + dist(v,u))].
Then we can show the following result:

Lemma 14.1 The E2F service guarantees that in each executionf £2F, there exists
a function mapping eacércv(m), event to aesend(m, ¢), event such that the following

hold:

278

1. Integrity: If an ercv(m), eventr is mapped to aresend(m, ¢), eventr’, thenn’

occurs beforer.

2. Bounded-time deliverylf an ercv(m), eventr is mapped to aesend(m, ¢),, event
7' wheren’ occurs at time, then evenir occurs in the intervalt, t + 3(e + d) D +

e+ 2d.

3. Reliable receivable deliveryrhis guarantees that a message that is end-to-end sent
will be received if it is receivable: If amsend(m,q), eventr’ occurs at timet,
a.ltime > t+3(e+d)D+ e+ 2d, andr’ is receivable, then there existeecv(m),

eventr such thatr occurs in the intervalt, t + 3(e + d)D + e + 2d].

Proof sketch: It is easy to define the mapping froencv to esend events described above
by reasoning about the chain of actions connectireya and esend event: For each
ercv(m), event,m must have been removed frafaliverq (line 44). Such am: is added
to deliverq through the receipt of edata message containing (lines 38-40), which in
turn was sent by a VSA based on one of its |dealstq tuples (lines 75-79). Such a tuple
in bcastq came from the receipt of afdlata message (lines 71-73), which wgsocast
by some VSA based on its localsend and findreg variables (lines 51-56). Such values
in tosend queues are added based on receipt dadata message (lines 36-38) which are
only sent by a client in response to esend. Hence, for eaclercv(m), event there must
have been aasend(m, ¢),, event that occurred before. The mapping selects the latelst s
one.

The two interesting properties to check are Bounded-tinieety and Reliable receiv-
able delivery. Bounded-time delivery is guaranteed by #ue that in the reasoning above,
there is an upper bound on the amount of time each step canltakeeceipt of thedata
message sent by a VSA can take ug te d time. The receipt of th&data message at the
VSA that caused thedata message can take up @+ d) D time, the maximum time for a
geocast to complete. The VSA thajeocast thatfdata message only did so if itsindreg
indicated a location for the end-to-end message recipiistcan take up teD(e+d) time

for the VSA to discover (the time is the maximum time fortdhQuery for the location

279

to complete). This is all after the VSA thgeocast thatfdata message received adata

message sent from a client upttime before. The sum of these time8B(e+d) +e+2d.

For Reliable receivable delivery, we note that the propsmif the underlying/ L.S and
Geocast services make the property easy to check. Consider a réte®send(m,),
eventr’ occurs at time. We need to show that arcv(m), eventr occurs within3D (e +
d) + e + 2d time. By property 1 ofreceivable we know thatp doesn't fail at timet.
This means that it will transmit asdata message to its VSA at time By property 3 of
receivable a local VSA will receive thisdata message by time+ d and either already
have a listed location for ¢ or will HLQuery for one. If it must perform atLQuery, we
know it will receive areply by time+d+2D(e+d), or2D(e+d) later. This then prompts
the VSA togeocast anfdata message ta. Since property 4 afeceivablenolds, we know
that thegeocast will arrive at regionu at most(e + d) D later, by timet + d + 3D (e + d).
By property 1 of our definition of hosting, we know that regionvill be alive to receive
the message. It then takes regionp toe time tovcast ardata message tg, and a further
d time for the message to arriveatBy property 3 of hosting, we know thatis alive and
will vrcv therdata message, causing it to immediatelcv the message embedded in the

rdata message. This happens by at time at maesBD(e + d) + e + 2d. |

14.3 Legal sets

Here we describe a legal set 82 F by describing a sequence of four legal sets, each a
subset of the prior. Recall from Lemma 3.13 that a legal setates for a TIOA is one
where each closed execution fragment starting in a statieeirsét ends in a state in the
set. We break the definition of the legal set up into multiplgal sets in order to simplify
the proof reasoning and more easily prove stabilizaticer|a Section 14.4. Because the
proofs in this section are routine, we omit them. At the endhis section, we discuss

properties of execution fragments B2 E that start in our set of legal states.

280

14.3.1 Legal set.),,

The first set of legal states describes some propertiesrd#t@ally checkable at a region
or client and that become true at an alive VSA at the time offiisetime input for the
VSA andGPSupdate input at a client, assuming the underlyiflg..S system is in a legal

State.

Definition 14.2 Let L., be the set of statesof £2FE where all of the following hold:

e2e

1. JJ[XHLS € L}5zls'
This says that the state restricted to the variable&/d@fs is a legal state of{/ LS.

2. Foreachp € P : ~fuailed, (nonfailed client):

(@) clock, # 1 = [clock, = now A reg, = reg(p)].
This says that if the local clock is ndt, then it is set to the current real-time
andreg, is p’s current region.

(b) For eachu € U, [I(sdata,m,q,u) € tosend tosend;] = u €
{reg=(p, now),reg*(p, now)}.
This says that if arsdata message is in one of a clienfi$B Delay queues,
then the message correctly indicates a region that the tthas been in at this
time.

(c) Foreachm € deliverq,, 3((rdata, m,p), u,t, P') € vbcastq :

t>now—dApé¢ P.

This says that each message sittingléhiverg was sent in amdata message

to p within the lastd time.

3. Foreachu € U : = failed, Nclock, # 1 (nonfailed VSA that receivedizne input):
(@) clock, = now.
This says that the local clock should be equal to the reagtim

(b) Foreachp € P and(m,t) € tosend,(p) : t < clock,.
This just says that any records of messages that are waitirgetgeocast to

another region do not have timestamps from the future.

281

(c) Foreachp € P,v € U, findreg,(p) = v = 3t € [now — ttly, —d — (e +
d)(dist(v, h(p)) + dist(h(p),u)), now] : v € {reg*(p,t),reg=(p,t)}.
This says that if the VSA'$indreg indicates that a procesg was recently
located at regiory, then procesg was in that region within the lastl,, + d +
(e + d)(dist(v, h(p)) + dist(h(p), w)) time.

(d) Foreach(m,p) € beastq,,
3((geocast, (fdata, m, p), w,u,t),w,t', P') € vbcastq : t > now—(e+d)D.
This says that any pair in a VSAigastq was part of arfdata message that was

geocast to u within the last(e 4 d) D time.

Lemma 14.3 L}

e2e

is a legal set forE2F.

14.3.2 Legal sef’?

eZe

The second set of legal states describes some properttasoldaafter any spurious VSA

messages are broadcast and spuridhs.st messages are delivered.
Definition 14.4 Let L2,, be the set of statesof F2FE where all of the following hold:

1.z e L}

e2e*

This says thaf.?,_is a subset of.!

eZe eZe*

2. For each((sdata, m, q,reg),u,t, P') € vbcastq,
t > now —d=reg € {reg—(p,t),reg(p,t)}.
This says that for angdata transmission made within the lagttime, thesdata

message was sent by a process to a local VSA.
3. Foreachu € U : —failed, (nonfailed VSA):

(@) A((sdata,m,q,v),t) € to_send,.
This says that a VSA cannot be in the process of transmittisgata message.
(b) For each ((rdata, m,p),t) € to_send,

3((geocast, (fdata, m, p), w,u,t'y,v,t", P') € vbcastq : t' + (e + d)D + e >

282

t + now — rtimer,.
This says that anydata message iV’ B Delay, can be matched to afdata

transmission to regiom made within the laste + d) D + e time.

4. For each ((rdata,m,p),u,t,P’) € wbcastq, t > now — d =
3((geocast, (fdata, m, p), w,u,t'),v,t", P’y € vbcastq : t' + (e + d)D + e > t.
This says that angdata transmission i/ bcast from the lasti time can be matched

to anfdata transmission to regiom made up tqe + d) D + e time before thedata

transmission.

Lemma 14.5 L2, is a legal set forF2F.

14.3.3 Legal set.?,,

The third set of legal states describes some propertietthéafter any VSA records that

could cause the forwarding of spurious end-to-end messagegmoved.

Definition 14.6 Let L3, be the set of statesof £2FE where all of the following hold:

e2e

1.z € L2

e2e*

This says that.?,, is a subset of 2,_.

eZe

2. For eachu € U : —failed,, for eachp € P/[(Fv € Um € Msg
ledger,(({fdata, m, p), u,v,now)) # null) V I(m,t) € tosend,(p) : t > now —
2D(e+d)] = I((sdata, m,p,u),v,t', P') € vbcastq : [u ¢ P'ANt' > now—dN(t #
L=t>t—d).

This says that any record itvsend or anyfdata message that was just geocast can
be matched to asdata transmission to the region made no more thibago andd

before the record’s timestamp if a nantimestamp exists.

Lemma 14.7 L3, is a legal set forE2E.

283

14.3.4 Legal sef’?

ee

The fourth set of legal states describes some propertieboichafter any bad forwards of

end-to-end messages are removed.

Definition 14.8 Let L%

eZe

be the set of statesof £2E where all of the following hold:

1.z € L?

eZe"

This says thal.?,, is a subset of.?

eZe eZe*

2. For each((geocast, (fdata, m, p), u,v,t),w,t', P') € vbcastq: t > now — (D(e +
d) + e+ d) = [(3((sdata,m,p,u),v,t", Py € wvbcastq : t" + d + 2(e +
d)dist(u, h(p)) > t)\ATt* € [t—ttl, —d— (e+d)(dist(v, h(p))+dist(h(p),u)),t] :
ve{reg”(p,t7),reg(p,t")}].
This says that anfdata transmission from within the lagt+d) D +e-+d time can be
matched to aisdata transmission that occurred no more thafe+d)dist(u, h(p))+
d time before the timestamp of theata geocast. In addition, th&lata message is
beinggeocast to a regionv that contained the intended end-to-end recipient at some
time in thettly, + d + (e + d)(dist(v, h(p)) + dist(h(p),w)) interval leading up to

the time of thédata transmission.

Lemma 14.9 *

e2e

is a legal set forE2F.

Properties of execution fragments starting inL?

ee

As in the location management service, we can describe thgepies of execution frag-

ments of E2F that start in*

e2e

as properties of executions B2 F, as described in Section
14.2. As before, the difference is in the mapping of someetutfercv events that occur
towards the beginning of the execution fragment.

More formally, we can say the following:

Lemma 14.10 E2F guarantees that for an execution fragmenstarting in L%, , there

ee?

exists a subsdi of theercv events im such that:

284

1. There exists a function mapping eaehv eventinll to anesend event such that the
three properties (Integrity, Bounded-time delivery, aredi&ble receivable delivery)
hold.

2. For everyercv(m), eventr not in 1l wherer occurs at some timg it must be the

case that — a. fstate(now) < 3D(e + d) + e + 2d.

This concept and proof is similar to the material in Secti8r815, where we described the
properties of execution fragments BfLS as a variant of the properties of executions of

H LS, adjusting for a subset of reply events towards the begghoira fragment.

14.4 Self-stabilization

We've seen that L), is a legal set for E2F. Here we show that
[L.cv Fail(V BDelay, ||V, VIHVEE) [e p Fail(V BDelay,||C|CF2F) - self-

stabilizes toL%,. relative to R(RW|[VW|[Vbcast) (Theorem 14.16), meaning that if

e2e
certain program portions of the implementation are stantean arbitrary state and run
with R(RW ||[VW ||[Vbeast), the resulting execution eventually gets into a staté iy).
Using Theorem 14.16, we then conclude that after an exacaofi@2 F has stabilized, the
execution fragment from the point of stabilization on dassthe properties described in
Section 14.3.4.

The proof of the main stabilization result for the chaptdéredrem 14.16, breaks stabi-
lization down into two large phases, corresponding to Brathion of the lower leveH LS
service (which includes the stabilization of theoCast service), followed by stabilization
of the E2F service assuming thaf LS has stabilized. We have seen ti#aLS stabilizes
to the set of legal statds),, in Section 13.4. What we need to show for Theorem 14.16 is
that, starting from a set of states wheid.S is already stabilizedZ2F stabilizes toL%,,
(Lemma 14.15). We do this in four stages, one for each of tha&l kets described in Sec-
tion 14.3. The first stage starts from a state whiéesS is already stabilized and ends up
in the first legal set. The second stage starts in the first $sga@and ends up in the second,

etc.

285

The first lemma describes the first stageffE stabilization, to legal set’, . It says

eZe-*

that withint.,, time of H LS stabilizing, wherel,. > €;umpie, the system ends up in a state
in L}

e2e*

{ﬂxLXHLSEL%S}

Lemma 14.11 Lett!, be anyt such thatt > Esample- [TAGSpop stabilizes in

e2e
H 1 L}:2e
timet,,, t0 fragsg5e.

Proof sketch: To see this result, just consider the first time after eacteras received a

time or GPSupdate input, which takes at most,,,,;. time to happen. [

The next lemma describes the second stageé2di stabilization. It shows that starting

time, wheret2,_is any time

e2e

E2F ends up in a state ih?,, within ¢

e2e e2e

from a state in’!

ee’

greater thar + d.

L

Lemma 14.12 Let 2,, be anyt such thatt > e + d. fragsE%g stabilizes in time?,, to
12

frag Sk

Proof: By Lemma 3.21, we just need to show that for any lenghprefix a of an ele-

1
ment Offmgs%’;g, a.lstate isin L?

eZe-*

We examine each property 6f,. .

By Lemma 14.11, since the first statewfs in L., , we know that property 1 of?,,
holds in each state af.

For property 2, we note that each new ssdata message added to one of a client’s
to_send queues and then propagateditbrast, the property will hold and continue to hold
thereafter. Hence, the only thing we need to worry about aggessalready in &_send
gueue or invbcastq in a.fstate. However, afterd time elapses from the start af, the
property will be trivially true.

For property 3, we consider each part. Property 3(a) willrefter at most time,
the time it takes for any such errant messages. fixtate to be propagated out t6bcast.
For property 3(b), we note that a nedata message is only added to_send, if there
previously was a corresponding péin, p) in the VSAsbcastq, which by property 3(d) of
1;1

eZe

implies that any newly addediata message satisfies this property 3(b). This means

that we only need to worry aboutlata messages already tin_send, at the start ofx.

286

Once into_send,,, it is at moste time before a message is removed fransend,,. Hence,
aftere time has passed, the property will be trivially true.

For property 4, since each nedata message added tdcastq first is into_send,,, we
know that any such messages added after property 3(b) hdldstisfy property 4. After
d time elapses from when property 3(b) holds, the propertyheikrivially true. |

For the third stage af’2 F stabilization, the next lemma shows that starting from testa

in L?

ee?

2D(e+d).

E2F ends up in a state ih?,, within ¢

e2e e2e

time, wheref?,_ is any time greater than

Lemma 14.13 Let t3

e2e

be anyt such thatt > 2(e + d)D. (Recall D is the hop count

2 3
diameter of the network.])ragségzg stabilizes in time?,, to fragsée;g.

Proof: By Lemma 3.21, we just need to show that for any lenghprefix « of an ele-
ment Offragsé%g, a.lstate isin L2,,. We examine each property &6f,. .

By Lemma 13.14, since the first stateofs in L2, , we know that property 1 of.?

e2e! eZe

holds in each state af.

For property 2, notice that for each new entry addetbtend the property will hold,
since the new entry will be the result of the receipt ofsalata message that satisfies the
properties fromV/bcast. Hence, the onlyosend entries we need to worry about are the
tosend entries already there in. f state. However, afteRD(e + d) time elapses from the
start of«, the property will be trivially true. For th&dger entries, we note that each new

entry in theledger after the bogugosend entries are cleared satisfy the property. =

The next lemma, for the fourth stage B2 FE stabilization, shows that starting from a

E2F ends up in a state ih%, within ¢4

eZe eZe

state inL?

ee?

time, wheret?,_ is any time greater

eZe

thand + e + (e + d)D.

Lemma 14.14 Let ¢!, be anyt such thatt > d + e + (e + d)D. fragsé%g stabilizes in

e2e
4
Le2e

timetl,, to fragsy5e.

e2e

Proof: By Lemma 3.21, we just need to show that for any lengshprefix a of an ele-

3 I
ment of fragsy:s, a.lstate is in L1

e2e*

We examine each property 6f,. .

287

By Lemma 14.13, since the first statewfs in L3,,, we know that property 1 of.?,,

e2e’
holds in each state af.

For property 2, notice that for each new tuple addeghtastq for ageocast of afdata
message, the property will be true since the message wiledoom the VSASiedger,
which we know by property 2 of?2,. will satisfy the property we need here. Hence, the
only fdata geocast messages icastq that we need to worry about are those that are
present in the first state ef. However, afterd + e + (e + d)D time, the property will

trivially be true. u

We now have all of the pieces of reasoning for the four stafiélseosecond phase of
E2F stabilization. (Recall that the second phase @ stabilization occurs aftefl LS
has stabilized, corresponding f6L.S state being in the set?,..) We then combine this
reasoning from Lemmas 14.11-14.14 to show that the seccesbpif stabilization of/2 F

takest,,, time,t.,. > €sumpie + (3D + 2)(e + d), to stabilize:

Lemma 14.15 Let ¢

e2e

be anyt such thatt > esample + (3D + 2)(e + d). Then

Xups€l
f?”agsgz‘g #es€hind sabilizes in time’,, to fmgsﬁ&

Proof: The result follows from the application of Lemma 3.7 on therfiemmas (Lemmas
14.11-14.14) above.
Let ¢’ be (t.,, — (€sampie + (3D + 2)(e + d)))/4. Then lett!

eZe

bet' + €sampie, t2, D€

t' +e+d, t3, bet' +2(e+d)D, andt!

eZe

bet'+d+e+ (e+d)D. (These terms are chosen
so as to satisfy the constraints that > €sumpie, t2, > € + d, etc.)
{"E|"E|VXHL5€L}5LI.5} e2e e2e e2e
Let By be fragsp, , By be fmgsEQE, B, befragsEZE, B; be fmgsEQE,
be t2

e2e?

4
and B, be fragsys in Lemma 3.7. Lett; be tl,,, t ts be &8
be ¢

o IN Lemma 3.7. Then by Lemma 3.7 and Lemmas 14.11-14.14, we tleat

{o|z[XgrseL},}

and ¢4

e2e?

fragspsp stabilizes in time’,, + t2,, + t3,, + t1,, to frags E@fg
Sincet,,, = tiy, + 2, + 2, + tk,., we conclude thafmgsg;gx“s@“s} stabilizes
intimet,,, to fragsE*”;E n

Using this and our prior result o LS stabilization (Theorem 13.19) we can now

finally show the main stabilization result of this chapteheTproof of the result breaks

288

down the self-stabilization aE2 F into two phases, the first being whelt&. S stabilizes,

and the second being where the remaining piecds2df stabilize.

Theorem 14.16 [] ., Fail(V BDelay,|VE||V.AH|VE2E) [T o p Fail(V BDelay,||CH || CF2F)
self-stabilizes it o, time,t.oc > this + €sample + 2€ + 2d + 3(e + d) D, to L, relative to
R(RW||[VW{|Vbcast).

peEP

Proof: For brevity, we will use execsy_gaE to refer to

ELECSU([] ey Fail(V BDelayy||V.Eee |VHL|VE2E)] ¢ p Fail(V BDelayy||CHL||CE2E))||RGRW ||V W ||V bcast) -

We must show that execsy_gag stabilizes in time t. to

e2e
fragsn v Fazl(VBDelayu||VG6°||VHLHVE2E) [1,¢ p Fail(V BDelay, ||CHL(|CF2E) | R(RW ||V W ||V bcast)*

e2e
By Corollary 3. 11xf7’“95 v Fail(V BDelayu | V.G |VHL||VE2E) [[, . p Fail(V BDelay, | CHL||CE2E)|[R(RW |V W || Vbeast)

is the same aﬁragsﬁg ThIS means that we must show thatcs;_ o Stabilizes in time
teoe 10 frags Ee;g The result follows from the application of transitivity efabilization
(Lemma 3.6) on the two phases B2 E stabilization.

For the first phase, we note that by Theorem 13¢X8¢s;,_ o Stabilizes in time

Xnrs€l
to fra sgz‘g aLs ’”5}

For the second phase, 1, bet.o. —tps. SinCeteoe > this + Esample + 2 +2d +3(e+
d)D, this implies that.,, > €sumpie + 2¢ + 2d + 3(e + d)D. By Lemma 14.15, we have

{z|z[XprseLll

that frags o p =} stabilizes in timeg.,, to fragsEgzg
Taking B to beexecsy_gap, C to befmgsg;‘gxmsah“} andD to befmgsEefg in

Lemma 3.6, we have that:ecsy_pop Stabilizes in time,;; + t.,. to fragsEefg
Since tese = ths + ! we conclude that

eZe?
[T.cv Fail(VBDelay, ||V, VI VEE)] e p Fail(V BDelay,||CHH|CF?F) - self-

peEP
stabilizes int.o. time, teo. > this + €sampe + 2¢ + 2d + 3(e + d) D, to L1, relative to

R(RW|[VW | Vbcast). o

This immediately implies the following result about the @sated VSA layer algo-

rithm:

Lemma 14.17Let alg.. be a VAlg such that for each p € P,
algeze(p) = COJM|cr?P and for each u € U, algese(u) =

289

ActHide({geocast(m, v),, georcv(m),, HLQuery(p),, HLreply(p, v),|Jm € Msg,u,v €
U,p c P}, VuGeO||VuHL||VuE2E).
Lett.o. be anyt such that > tp,;5 + €sampre + 2¢ + 2d + 3(e + d) D.

ThenV LN odes|alges.] Self-stabilizes in timé.,. to LY, relative toR(RW ||VW ||V bcast).

eZe

With Lemma 14.10, this allows us to conclude that after arcetien of £2F has
stabilized, the execution fragment from that point on $aBsthe properties in Section
14.3.4:

Lemma 14.18 Lett.,. be anyt such that > ¢ + €sampie + 2¢ + 2d + 3(e + d)D.
Thenexecsy (v Lnodeslalges)| RERW|[VI |Vieast) StADIliZES in timé.,. to a setA of execution
fragments such that for each € A, there exists a subsél of theercv events in such

that:

1. There exists a function mapping eazhbv event inll to anesend event such that the
three properties (Integrity, Bounded-time delivery, aradi&ble receivable delivery)

hold.

2. For everyercv(m), eventr not inII wherer occurs at some timg it must be the

case that — a. fstate(now) < 3D(e + d) + e + 2d.

In other words, if we start each client and VSA running the-eménd routing program
in an arbitrary state and run them witRiV ||V ||Vbcast started in a reachable state,
then the execution eventually reaches a point from whiclptbperties of the end-to-end
routing service described in Section 14.3.4 are satisfiads@& properties basically say that
Integrity, Bounded-time delivery, and Reliable receieati¢livery hold for most of thercv
andesend events in the fragment, modulo several straggtew events that occur early in

the execution fragment.

14.5 Extensions

Here we briefly describe some possible extensions tdz@uf algorithm:

290

Routing optimizations: Once the location of a client is known, communication wité th
client can be continued directly, and movements during theversation may be piggy-
backed on the information transferred in order to updateddstination according to the
move (as suggested [38]). We also note that we can use an detbide location scheme
such as the one in [38], implemented by virtual automata revireermediate tree nodes
are also mapped to regions.

Sleeping client messaging servicavobile clients might be able to shut down to conserve
power. We could guarantee that a sleeping client eventtedgives messages intended for
it by having local VSAs save the messages. The VSAs thengedefined times, broadcast
the messages. Sleeping clients wake up for these broadests/e their messages, and

can go to sleep again afterwards.

291

292

Chapter 15

Motion Coordination

In this chapter, we describe how to use a variant of the VSA&r&y help a set of mobile
robots arrange themselves on any specified curve on the jpldhe presence of dynamic
changes both in the underlying ad hoc network and the setrtitipating robots. This
application serves as an example of a coordination probdrare VSAs can communicate
with client nodes to change the motion trajectories of thoemts. The VSAs coordinate
among themselves to distribute the client nodes relativaijormly among the VSAS’
regions. Each VSA directs its local client nodes to aligmikelves on the local portion
of the target curve, and each client node then moves towhelgdints indicated. The
resulting motion coordination protocol is self-stabitigi in that each robot can begin the
execution in any arbitrary state and at any arbitrary lacgith the plane. In the context of
this application, self-stabilization is especially dabie since it ensures that the robots can

adapt to changes in the desired target formation.

15.1 Background

In this chapter, we study the problem of coordinating theavedr of a set of autonomous
mobile robots (physical nodes) in the presence of changtgeinnderlying communica-
tion network as well as changes in the set of participatifigpte. Consider, for example, a
system of firefighting robots deployed throughout forests @iher arid wilderness areas.

Significant levels of coordination are required in order ¢onbat the fire: to prevent the

293

fire from spreading, it has to be surrounded; to put out the firefighters need to create
“firebreaks” and spray water; they need to direct the actain@otentially autonomous)
helicopters carrying water. All this has to be achieved lith set of participating agents
changing and with unreliable (possibly wireless) commatian between agents. Similar
scenarios arise in a variety of contexts, including searchrascue, emergency disaster
response, remote surveillance, and military engagemsrdng many others. In fact, au-

tonomous coordination has long been a central problem inlenabotics.

We focus on a generic coordination problem that, we belieaptures many of the
complexities associated with coordination in real-woddrsarios. We assume that the mo-
bile robots are deployed in a large two-dimensional pland that they can coordinate their
actions by local communication using wireless radios. T®ts must arrange themselves
to form a particular pattern, specifically, a continuous/ewtrawn in the plane. The robots
must spread themselves uniformly along this curve. In tiegidinting example described

above, this curve might form the perimeter of the fire.

The problem of motion coordination has been studied in a&taaf contexts, focusing
on several different goals: flocking [55]; rendezvous [5,688; aggregation [43]; deploy-
ment and regional coverage [21]. Control theory literatostains several algorithms for
achieving spatial patterns [10, 19, 41, 77]. These algmstlassume that the agents pro-
cess information and communicate synchronously, and héimeg are analyzed based on
differential or difference equations models of the syst@wonvergence of this class of algo-
rithms over unreliable and delay-prone communication nblhave been studied recently
in [15].

Geometric pattern formation with vision-based models fabite robots have been
investigated in [22, 40, 42, 80, 81, 83]. In these weak mqdéks robots are oblivious,
identical, anonymous, and often without memory of pastoasti For the memoryless
models, the algorithms for pattern formation are often anattically self-stabilizing. In [22,
23], for instance, a self-stabilizing algorithm for forrgia circle has been presented. These
weak models have been used for characterizing the classttefpathat can be formed
and for studying the computational complexity of format@lgorithms, under different

assumptions about the level of common knowledge amongstsgich as, knowledge of

294

distance, direction, and coordinates [80, 83].

These types of coordination problems can be quite chaligndue to the dynamic
and unpredictable environment that is inherent to wiretekboc networks. Robots may
be continuously joining and leaving the system, and they fady In addition, wireless
communication is notoriously unreliable due to collisioc@ntention, and various wireless
interference.

Here we show how the VSA Layer can implement a reliable andsbprotocol for
coordinating mobile robots. The protocol relies on the V&Asrganize the mobile robots
in a consistent fashion. Each VSA must decide based on itd@vah information which
robots to keep in its own region, and which to assign to neaghly regions; for each robot
that remains, the VSA determines where on the curve the sitmatld reside. Unlike in the
prior three applications (Geocast, location managemeudt.ead-to-end communication),
the client motion in the motion coordination protocol is trotlable by the client, allowing
the client to change its motion trajectory based on insimastfrom a VSA.

We have previously presented a protocol for coordinatingifeaevices using virtual
infrastructure in [66]. The paper described how to impletaesimple asynchronous virtual
infrastructure, and proposed a protocol for motion coation. This earlier protocol relies
on a weaker (i.e., untimed) virtual layer (see [30, 75]),le/kte current protocol relies on a
stronger (i.e., timed) virtual layer. As a result, our newmbnation protocol is somewhat
simpler and more elegant than the previous version. Viitfehstructure has also been
considered in [11] for collision prevention of airplanes.

In order that the robot coordination be truly robust, our r@@rdination protocol is
alsoself-stabilizingmeaning that each robot can begin in an arbitrary state) arlaitrary
location in the network, and yet the distribution of the rsbwill still converge to the
specified curve. When combined with our stabilizing emaolabf the VSA Layer, we end
up with entirely self-stabilizing solution for the probleshautonomous robot coordination.

Recall that self-stabilization provides many advanta@#gen the unreliable nature of
wireless networks, it is possible that occasionally (dualierrant interference) a signifi-
cant fraction of messages may be lost, disrupting the pobitacself-stabilizing algorithm

can readily recover from this. Moreover, a self-stabiligadgorithm can cope with more

295

dynamic coordination problems. In real-life scenarios,rduired formation of the mobile
nodes may change. In the firefighting example above, as thaduances or retreats, the
formation of firefighting robots must adapt. A self-stabilg algorithm can adapt to these
changes, continually re-arranging the robots along thdynelwosen curve.

Another technical contribution of this chapter is the exéfigation of a proof tech-
nique for showing self-stabilization of systems impleneehtising virtual infrastructure.
The proof technique has three parts. First, using invagaasértions and standard control
theory results we show that from any initial state, the aggpion protocol, in this case,
the motion coordination algorithm converges toaateptable statéSection 15.3). Next,
we describe a set dégal statef the algorithm (Section 15.4.1). Using a simulation re-
lation we show that the set of legal states behaves just likesét of reachable states of
the complete system—the VSA layer running the coordinaigorithm (Section 15.4.2).
Then we show that the algorithm always stabilizes to a leigé¢ £ven when it starts from
some arbitrary state after failures (Section 15.4.3). Faoylegal state the algorithm then
eventually behaves as if it has reached an acceptable statielgd there are no further
failures. It has already been shown in Section 11.3.4 thainoplementation of the VSA
layer itself is self-stabilizing and produces traces th#is$y certain properties with respect
to the failure pattern of VSAs. Combining the stabilizatminthe implementation of the
VSA layer and the application protocol, we are able to camhelself-stabilization of the

emulation of the system (Theorem 15.22).

15.2 Motion Coordination using Virtual Nodes

We assume a variant of the VSA layer described in Chapter & only difference between
the original VSA layer and the variant used in this chaptén the control of the motion of
client nodes, described in Section 15.2.3.

To describe the motion coordination problem, welfix A — R to be a simple, dif-
ferentiable curve ok that is parameterized by arc length. The domain4set parameter
values is an interval in the real line. We also fix a particuatwork tiling given by the

collection of regions{ R, } .cy such that each point ifi is also in some regio®,. Let

296

A, = {p € A : region(I'(p)) = u} be the domain of in regionu. We assume that,,
is convex for every regiom; it may be empty for some. The local part of the curve
in regionw is the restriction”, : A, — R,. We write|A,]| for the length of the curve
I',. We define thequantizationof a real number: with quantization constant > 0 as

¢s(7) = [Z]o. We fix o, and writeq, as an abbreviation fay, (| A,

), qmin for the mini-

mum nonzeraqy,, andq,,.., for the maximumy,.

15.2.1 Problem Statement

Our goal is to design an algorithm for mobile robots such, thiate the failures and recov-
eries cease, within finite time all the robots are located"@nd as time progresses they
eventually become equally spacedlonFormally, if nofail andrestart actions occur after

timet,, then:

1. there exists a constait, such that for eaclh € U, within timet, + T the set of
robots located ink, becomes fixed and its cardinality is roughly proportionaj,to

moreover, ifg, # 0 then the robots ik, are located ohl",,, and

2. in the limit, as time goes to infinity, all robots i&, are uniformly spacedonT,,.

15.2.2 Overview of Solution using the VSA Layer

The VSA Layer is used as a means to coordinate the movemeliof icodes, i.e., robots.
A VSA controls the motion of the clients in its region by segtiand broadcasting target
waypoints for the clients: VSA’N ,, u € U, periodically receives information from clients
in its region, exchanges information with its neighborsl aends out a message containing
a calculated target point for each client node “assignedégonu. VN, performs two

tasks when setting the target points: (1) it re-assigns swite clients that are assigned to

For a given point: € R, if there existg € A such thaf’(p) = z, then we say that the pointis on the
curvel’; abusing the notation, we write thisasc T'.

2A sequencery, ..., z, of points in R is said to beuniformly spacecn a curvel if there exists a
sequence of parameter valygs< p ... < p,, such that foreach 1 < i < n, I'(p;) = z;, and for each,

1 <@ <n,pi —pi-1 = Piy1 — Di-

297

itself to neighboring VSAs, and (2) it sends a target posibal” to each client that is as-
signed to itself. The objective of (1) is to prevent neighibbgVSAs from getting depleted
of robots and to achieve a distribution of robots over théargythat is proportional to the
length ofl" in each region. The objective of (2) is to space the nodesumlfy onI" within
each region. The client algorithm, in turn, receives itgent position information from a
modified version ofR1V called RIW’ and computes a velocity vector for reaching its latest
received target point from a VSA.

Each virtual nodel/N ,, uses only information about the portions of the target cuirve
in regionu, and neighboring regions. For the sake of simplicity, we assthat all client
nodes know the complete curve We could as well have modeled the client nodes in
as receiving external information about the nature of theesin regionu and neighboring

regions only.

15.2.3 RW'’: modified RW

In our solution, we have VSAs dire€t/N's to new locations. In order to hat&Vs comply,
we need to modify our virtual layer model. In particular, weed to modifyRW slightly to
allow a mobile node to communicate to the real world automatbat its desired velocity
is, rather than allowing?1¥ to nondeterministically choose the node’s velocity itself

We call our modified real world automatdRlV’. It is very similar to RWW, except
for the addition of thevelocity action for each mobile node. As beforg})V’ models
system time and mobile node locations. It is an externalcsooirreliable time and location
knowledge for physical nodes. TH&W TIOA in Figure 15-1 maintains location/ time
information and updates mobile nodes with that information

The newvelocity input allows a mobile node to communicate a new desired itgltx
RW'. In particular, avelocity(v), input promptsRkIV’ to change procegss velocity tov.

As you can see, in addition to the neelocity action, RIW’ is also different fromR1V
in that it has one additional state variable/. In addition, the development of thec
variable for each procegsis now as before, unlessl(p) is not_L, in which casdoc(p)

changes as specified byl(p):

298

Signature: Transitions:

2 Output GPSupdate(l, t),,| € R p€ P, t € R0 Output GPSupdate(l, t), 20
Input velocity(v),,ve R2, pe P Preconsimon:)
4 V(u,t') € updategp): t # t 22
State: | =loc(p) At=now
analognow. R=0, initially 0 Effect: 24
e onabd ey - updatesp) — updatesp) U {(1,)}
updategp): 2 *R=" for eachp € P, initially ¢ 26
8 analogloc(p): R, for eachp € P, initially arbitrary Input velocity(v),,
vel(p):R2U { L }:|vel(p)|< Vinaa,for eachp € P, initially L Effect: 28
10 vel(p) «— v
Trajectories:
12 evolve
d(now) =1
14 VpeP:

if vel(p) # L then d(loc(p)) =
vel(p) else|d(loc(p))| < vmaz
16 stop when
Ip € P:V(l, t) € updategp): NOW > t+ €,qmpie

Figure 15-1:RW[vsaz, €sampe]-

e loc: P — R maps each physical node id to a poinfinndicating the node’s current
location. Initially this is arbitrary. We assume that thaobe inoc for eachp € Pis
equal tovel(p), unlessvel(p) = L, in which caséoc(p) changes at a rate no greater

thanv,,,.

e vel : P — R*U {1} is the velocity of each mobile node. It is initially, and is

updated viarelocity inputs.

The set of reachable states fBi1’ is the same as foRIV, except thatel can be

arbitrary.

15.2.4 CN: Client Node Algorithm

The algorithm for the client nodé'N (6),, p € P (see Figure 15-2) follows a round struc-
ture, where rounds begin at times that are multiples. dAt the beginning of each round,

a CN stops moving and sendsca-update message to its local VSA (that is, the VSA in
whose region the&’N currently resides). Then-update message tells the local VSA the
CN’s id and its current location iR. The local VSA then sends a response to the client,
i.e., atarget-update message. Each such message describes the new targetlogdto
CN,, and possibly an assignment to a different regiot\,, computes its velocity vector

v,, based on its current position and its target position;, asv, = (z, — x;)/||z, — 7} ||

299

and communicates,,,, v, to RW’. As a result themR11/" moves the position of'N,, (with

maximum velocity) towards;,.

Signature:
2 Input GPSupdate(l, t),, | € R t € R
Input vrev(m),, m e {target-update} x (P — R)
4 Output vcast((cn-update, p, 1)), | € R
Output velocity(v),, v € R?
6
State:
8 analogclock R=0U {1}, initially L
analogz € RU {1}, location, initially L
10 z* € RU{Ll}, target point, initially L
v e {L,0}U{v:R?||v| = 1},initially L
12
Trajectories:
14 evolve
if clock# L
16 then d(clock) = 1 else dclock) = 0
if v# L
18 thend(z) = v - vmas else dz) =0
stopwhen[z # L Ax* # L
20 A clockmod é = 0]
Vieg#LAz* # L Av||la* —z|| # z* —]
22 V{(z=a*Ve=LvVvae*=1)Av#0]

Transitions:

Input GPSupdate(l, t),,

Effect

if (x, clock# (I, t)v
21> Vimaz (6]t/6] 4-ty) v
x*= 1vtmodd¢ (et2d+2¢, §-d,)

thenz, z* « |; clock « t

v— L

Input vrev({target-update, target)),,

Effect

if [[target(p) -z < vmaz (5] <52] -clock-d,.)
Aclockmod ¢ > e+ 2d + 2¢

then z* « target(p)

Output vcast((cn-update, p, X))
Precondition

x=xz# LAclockmodd =0Az* # L
Effect

r* — L

Output velocity(v),
Precondition

24

26

28|

30|

32

34

36

38|

40|

42|

44

46

V=Vmaz - (2" —2)/|[z" — 2|

V(vV=0A[z =2* Va*=Lve= 1]) 48
Effect
v —V/Vmaz 50

Figure 15-2: Client nodé’ N (¢),, automaton.

15.2.5 VN: Virtual Stationary Node Algorithm

The algorithm for virtual node/N (6, k, p1, p2)., u € U, appears in Figure 15-3, where
k € ZT andpy, p» € (0, 1) are parameters of the TIOA/N , collectscn-update messages
sent at the beginning of the round fro6W's located in regionk,, and aggregates the
location and round information in a tabl&/. Whend + ¢ time passes from the beginning
of the round,VN, computes from\/ the number of client nodes assigned to it that it has
heard from in the round, and sends this information imaupdate message to all of its
neighbors.

When VN, receives asn-update message from a neighboring VSA, it stores th&
population information in a tabld/. Whene + d + ¢ time from the sending of its own
vn-update passesVN, uses the information in its tabled andV about the number of

CNs inits and its neighbors’ regions to calculate how méafys assigned to itself should

300

1 Signature: Input vrev({cn-update, id, loc)).,
Input time(t),, t € R=0 Effect 26
3 Input vrev(my),, if u= region(loc) A clockmod 6 € (0, d]
me ({cn-update} xP xR) U ({vn-update} xU xN) then M(id) « loc; V « 0 28
5 Output vcast(m).,
me ({vn-update} x{u} xN) U ({target-update} x Output vecast({vn-update, u, n))- 30
(P—R)) Precondition
7 clockmod § = d+e 32
State n= |M|# OA V= {{u, n)}
9 analogclock RZ9U { L}, initially L. Effect 34
M:P—R, initially 0. Ve {{un}
11V :U — N,initially 0.) 36
Input vrev((vn-update, id, n)).,
13 Trajectories: Effect _ 38
evolve if id € nbrs(u) then V(id) < n
15 if clock# t 40
then d(clock) = 1 else dclock) = 0 Output ygast((target-update, target))«
17 stop whenAny precondition is satisfied. Precondition 42
clockmodd =e+2d+2c AM# 0
19 Transitions: target= calctarget(assign(id(M), V), M) 44
Input time(t),, Effect
21 Effect M,V 0 46
if clock##tvtmodé ¢ (0,e+2d + 2¢]
23 then M, V — 0; clock — t
Figure 15-3:V N (9, k, p1, p2). TIOA, with parameters: safety, and damp-
ing p1, pa.

be reassigned and to which neighbor. This is done throughgbign function, and these
assignments are then used to calculate new target poirtstdiC' N s through thealctar-
get function (see Figure 15-4). The choice of point assignmdrasvs on the intuition
for solutions to what members of the control community dadl¢donsensus problefi@7],
where several agents try to converge at a point, usually éverage. One standard way for
solving continuous consensus is for the agents to inteeactyise and replace their current
values with their average. Our assignment algorithm islaimbut more complicated due
to a policy of maintaining a minimum number of agents in ameatiegion (to help prevent
alive VSAs from failing), the fact that each region has npléineighboring regions with

which to coordinate, and the effects of quantization.

If the number of CN's assigned to/N,, exceeds the minimureafe numbelk, then
assign may reassign soméN's to neighbors, based on the numbedfs at those neigh-
bors. Letin, denote the set of neighboring VSAs &1V, that are on the curvé and
y.(g), denote the numberum(V,(g)) of CN's assigned td/N,, whereg is eitheru or
a neighbor ofu. If ¢, # 0, meaningV N, is on the curve then we lébwer, denote the

subset ofbrs(u) that are on the curve and have fewer assigaais than VN, has after

301

function assign(assignedM2”, y: nbrst (u) — N) =
assign P — U, initially {(i, u) } for eachi € assignedM 2
n: N, initially y(u); ra: N, //initially O
if y(u) > kthen 4
if gu # Othen
let lower = {g € nbrs(u): g—iy(u) > y(9)} 6
for each g € lower
ra—min(|p2 - [72y(u) — y(9)]/2(llowerl+1) |, n — k) 8
updateassignby reassigning-a nodes fromu to g
N«<~—n-—ra 10
else if{v € nbrs(u): ¢, # 0} = 0 then
let lower = {g € nbrs(u) : y(u) > y(g)} 12
for each g € lower
ra— min (| pz - [y(u) — y(9)]/2(|lower+1) |, n — k) 1
updateassignby reassigning-a nodes fromu to g
nN«—n-—ra 16
elsera «— | (y(u) -k)/ |[{v € nbrs(u): g, # 0}|]
for each g € {v € nbrg(u): g, # 0} 18
updateassignby reassigning-a nodes fromu to g
return assign 20
function calctarget(assign P — U, locM: P — R) = 22
seq indexed list of pairs id x P, initially the list,
for eachi € P : assigr{i)= u AlocM(i) € T'y, of (p, i) 24
wherep=I';; ! (locM(i)), sorted byp, theni
for eachi € P : assigr(i) # null 26
if assigrii) = g # uthenlocM(i) < oy
else iflocM(i) ¢ T'y thenlocM(i) < choose{min,cr,, {dist(x,locM(i))}} 28
elseletp = I'y ' (locM (7)), seqk) = (p, i)
if k= first(seq thenlocM(i) « T'y (inf(Aw)) 30
else ifk = last(seqg then locM(i) « I"y (sup(Av))
else letsedk — 1) = (px—1,%k—1), 32
sedk + 1) = (pr+1, ikt1)
loCM(i) T (p + py - (PE=15PEHL — p)) 34
return locM
Figure 15-4:V N (k, p1, p2). TIOA functions.

normalizing withg—z. For eachy € lower,, VN, reassigns the smaller of the following two
quantities of CN's to VN2 (1) ra = ps - [{*yu(u) — yu(9)]/2(|lower,| + 1), wherep, < 1
is adamping factoyand (2) the remaining number 6fNV's overk still assigned toV'N ,,.

If ¢, = 0, meaningV N, is not on the curve, andfN, has no neighbors on the curve
(lines 11-15), then we ldbwer, denote the subset afbrs(u) with fewer assigned’Ns
thanVN,. For eachy € lower,, VN, reassigns the smaller of the following two quantities
of CNs: (L)ra = p2-[yu(u) —yu(9)]/2(|lower,|+1) and (2) the remaining number 6fVs
overk still assigned toVN,,. VN, is on aboundaryif ¢, = 0, but there is & € nbrs(u)
with ¢, # 0. In this casey,(u) — k of VN,’s CNs are assigned equally to neighbors in
In, (lines 17-19).

Thecalctarget function assigns to every NV, assigned td’N ,, a target pointocM,,(p)

302

in region R,, whereg = u or it is one ofu’s neighbors. The target poibc)M,(p) is
computed as follows: I'N, is assigned td/N ,, g # u, then its target is set to the center
o, of regiong (line 27); if CN,, is assigned td/N,, but is not located on the cunig, then
its target is set to the nearest point on the curve, nondétetically choosing one if there
are several (line 28); iCN,, is either the first or last client node @n, then its target is set
to the corresponding endpointbf (lines 30-31); ifCN, is on the curve but is not the first
or last client node then its target is moved to the mid-pairnie locations of the preceding
and succeeding'N's on the curve (line 34). For the last two computations a ssxpieg
of nodes on the curve sorted by curve location is used (line 25

Lastly, VN, broadcasts new waypoints for the round vitaayet-update message to

its CNs.

15.2.6 MC: Complete System

DefineMC to be the element of Algs, the set of VSA layer algorithms (Definition 7.3),
where for eachp € P, MC(p) = CN,, and for eachu € U, M C(u) =V N,,.

The complete system is the® Layer'[MC], which is exactly the same as
V Layer[MC], the VSA layer instantiated with/C' (Definition 7.4), except thaRWW is
replaced withR1V/":

o RW,

o VW,

e VBcast,

e Fail(V BDelay,||CN,), one for eachp € P, and

e Fail(V BDelay,||V N,), one for each. € U.

Recall thatF'ail(A) denotes the fail-transformed version of TIOA(see Chapter 5).

Round length

Given the maximum Euclidean distanee between points in neighboring regions, it can

take up to——— time for a client to reach its target. Also, after the cliermies in the

VUmazx

303

region it was assigned to, it could find the local VSA has thildet d, be the time it
takes a VSA to start up, once a new node enters the region aoadhag) no nodes in
the region fail or leave until after the startup (notice thath a constant may not exist;
however, under the assumption that executions of the Vitayar are in the execution
fragment setS described in Definition 11.12, such a constant does existiaedual to

d + tgi..). TO ensure a round is long enough for a client node to senarihgodate,
allow VNs to exchange information, allow clients to receivéagget-update message
and arrive at new assigned target locations, and be surgalimbdes are alive in their
region before a new round begins, we require thdahe round length parameter, satisfies

d > 2e 4 3d + 26 + 1 /Vpaz + d.

15.3 Correctness of the Algorithm

In this section, we show thatarting from an initial stateand assuming that executions
of the virtual layer satisfy the properties of sein Definition 11.12 (where5 describes
execution fragments of the virtual layer that satisfy danpsioperties with respect to when a
fail or restart of a VSA is allowed to occur and when a VSA rastaguaranteed to occur),
the system described in 15.2.2 satisfies the requiremeatsfigol in Section 15.2.1. The
proofs of the results in this section parallel those presgkim [66], albeit the semantics
of the Virtual Layer used here is different (the virtual nedesed in [66] were untimed
and hence dependent on the timing of client node messagesiplete their tasks). The
proofs still look similar since the reasoning both here an@6] uses the same round-based
structure. In the following section we show self-stabtiiaa.

We define round as the interval of tim& (¢ — 1), 0 - t). That s, round begins at time
d(t — 1) and is completed by timé - t. We sayCN,,p € P, is activein roundt if node
p is not failed throughout round A VN, v € U, is activein roundt, ¢t > 0 if it is alive
from the beginning of round until its V' B Delay performs avcast’ of a target-update
message. By definition none of th&N s is active in the first round. We also define the

following notation:
e [n(t) C U is the subset o¥/N ids that are active in roundandg, # 0;

304

Out(t) C U is the subset of/Ns that are active in roundandg, = 0;

e ((t) C Pisthe subset of activé’N's at round;

Cin(t) C Pis the set of active’Ns located in regions with id iin(¢) at the begin-

ning of roundt;

Cout(t) C P is subset of activel’Ns located in regions with id iDut(¢) at the

beginning of round.

For every pair of regions, w and for every round, we definey(w, t),, to be the value
of V(w), (i.e., the number of clients believes are available in regiar) immediately prior
to VN, performing avcast, in roundt, i.e., at timee + 2d + 2¢ after the beginning of round
t. If there are no new client failures or recoveries in rounithen for every pair of regions
u,w € nbrs™(v), we can conclude that(v,), = y(v,t),, which we denote simply as
y(v,t). We definep; = (lq_%T)U The ratep; effects the rate of convergence, and will be

used in the analysis. Notice that > 1. Notice that for any, w € nbrs(u) U {u}, in the

absence of failures and recoveries(@¥'s in roundt, y,; = y.,+; we write this simply as

Yn(t).

15.3.1 Approximately Proportional Distribution

For the rest of this section we fix a particular round numfgesind assume that, for all
p € P, nofail, or restart, events occur at or after roung. We also assume that all
executions oV Layer'[MC] satisfy the properties &f in Definition 11.12. The first lemma

states some basic facts about #ssign function.
Lemma 15.1 In every round > t,:
1. Ify(u,t) > k for someu € U, theny(u,t + 1) > k;
2. In(t) C In(t+1);

3. Out(t) C Out(t+1).

305

Proof: We fix roundt > ¢,.

1. From line 4 of theassign function (Figure 15-4) it is clear thatN,, u € U, reas-
signs some of itsCN s in roundt only if y(u,t) > k. And if a CN is not reassigned

and does not fail, it remains active in the same region.

2. ForanyVN,, u € In(t), if y(u,t) < k then VN, does not reassigrCN s, and
y(u,t + 1) = y(u, t). Otherwise, from line 8 of Figure 15-4 it follows thatu, t +
1) > k. In both cases: € In(t + 1). (Since all processes that move do so after
receiving atarget-update message from their region, an alive VSA won't fail in a
round until after itsscast’ of atarget-update has occurred. Also, by our assumption
on the size of, it is obvious that by the start of the next round the VSA wibin

be alive since no processes die or leave in thediggrtion of a round.)

3. ForanyVN,, u € Out(t), if y(u,t) < k then VN, does not reassigrCN s, and
y(u,t + 1) = y(u,t). Otherwise, from line 14 and line 17 of Figure 15-4 it follows
thaty(u,t 4+ 1) > k. In both cases € Out(t + 1). (This follows the reasoning of

the prior item.)

We now identify a round, > ¢, after which the set of regions.(¢) and Out(¢) remain

fixed.

Lemma 15.2 There exists a round, > t, such that for every round € [t;,t; + (1 +

ps)m*n?]:
1. In(t) = In(t,);
2. Out(t) = Out(ty);

3. Cin(t) C Cip(t+1); and

4. Cot +1) C Cou(8).

306

Proof: By Lemma 15.1, Part 2, we know that the gett) C U is non-decreasing &s
increases. From Part 3, we know that&et (¢) C U is non-decreasing @sncrease. Since
U is finite, we conclude from this that there is some roundfter which no new regions
u € U are added to eithein(¢) or Out(t). Thus we have satisfied Parts 1 and 2. Notice
that this occurs no later than roung+ 2m? - (1 + p3)m?*n?.

For Part 3, consider a clieritN,, p € C;,(t), that is currently assigned in rourido
VN, u € In(t). From lines 5-9 of Figure 15-4 we see tlig¥, is assigned to SomgN ,,
w € nbrs™(u) whereg,, # 0. If VN, is inactive in round + 1, then clientCN, remains
in VN, until it becomes active, resulting iiN ,, being added tdn(t), thus contradicting
the fact that for every round > ¢, In(t') = In(t;). We conclude that’N ,, is active in
roundt, and hence rountl+ 1, from which the claim follows.

For Part 4, notice that since there are no failures and reiesvef CN s, C(t) =
C(t + 1). By definition,C;,,(t) U Coui(t) = C(t), Cin(t) N Coue(t) = 0, andCy,, (¢t + 1) U
Cout(t+1) = C(t 4+ 1), Cin(t +1) N Coe(t + 1) = 0. The result follows from Part (3)m

Fix ¢; for the rest of this section such that it satisfies Lemma 15t& next lemma states
that eventually, regions bordering on the curve stop assigriients to regions that are on
the curve. That is, assume thais a region where, = 0, but thatu has a neighbov

whereq, # 0; then, eventually, from some round onwards)ever again assigns clients to

V.

Lemma 15.3 There exists some roumg € [t,, ¢+ (14 p3)m?n?] such that for every round
t € [ta,ts + (1 + p3)m?n]: if u € Out(t) andv € In(t) and if u andv are neighboring

regions, then, does not assign any clientstan roundt.

Proof: Notice that ifu assigns a client te, thenC,,; decreases by one. During the
interval [t1,t; + (1 + p3)m?n?], we know thatC,,; is non-increasing by Lemma 15.2.
Thus, eventually, there is some routidafter which eitherC,,, = () or after which no

further clients are assigned from a regiont(-) to a region/n(-). Since there are at most

n clients, we can conclude that this occurs at latest by rauren - [(1 + p3)m?n]. u

Fix t, for the rest of this section such that it satisfies Lemma 1be8nma 15.2 implies

that in every round > t1, In(t) = In(t;) and Out(t) = Out(t,); we denote these simply

307

as/n and Out. The next lemma states a key property oféissign function after round; .
For around > t;, consider somé&’N ,, u € Out(t), and assume thatn , is the neighbor
of VN, assigned the most clients in rouhdThen we can conclude th&iV, is assigned
no more clients in round+ 1 than VN, is assigned in round A similar claim holds for
regions in/n(t), but in this case with respect to tliensityof clients with respect to the
qguantized length of the curve. The proof of this lemma is Basecareful analysis of the

behavior of theassign function.

Lemma 15.4 In every round € [ty,ts + (1 + p3)m?n], foru,v € U andu € nbrs(v):

1. Ifu,v € Out(t) andy(v,t) = maxyepprsuynou) ¥(w, t) andy(u,t) < y(v,t), then
y(u,t +1) < y(v,t).

2. If u,v €]n(t) andy(v,t)/qv = MaXyenbrs(u)Nin(t) [y(wat)/Qw] andy(uat)/QU <
y(v,t)/q,, then:

ylw,t+1) _ y(v, 1) o
< - (1 - p2) 2 :
qu dy Tnax

Proof: For Part 1, fixu, v andt, as in the statement of the lemma. Consider some region
w that is a neighbor ofi and that assigns clients toin roundt + 1. Sinceq, = 0, notice
thatw assigns clients ta only if the conditions of lines 11-16 in Figure 15-4 are met.
This implies thatv € Out(t), and hencey(w,t) < y(v,t), by assumption. We can also
conclude thatower,, > 1, asw assigns clients ta only if u € lower,,. Finally, from

line 14 of Figure 15-4, we observe that the number of cligmas are assigned toby w in

roundt is at most:

P2 [y(w7t) B y(“? t)] < P2 [y<vv t) B y<u>t)]
2(|lower,(t)] +1) — 4

Since v has at most four neighbors, we conclude that it is assignednast

308

p2 [y(v,t) — y(u,t)] clients. Sincep, < 1 andy(u,t) < y(v,t), this implies that:

y(u,t+1) < y(u,t) + pa [y(v,t) — y(u, t)]
< pa-y(o,t) + (1= pa)y(u, i)
< p2-y(0,t) + (1= pa)y(v, 1)
< y(v,t).

For Part 2, as in Part 1, fix v andt as in the lemma statement. Recall we have assumed
thaty(u,t)/q. < y(v,t)/q,. We begin by showing that, due to the manner in which the
curve is quantizedy(u, t)/q, < y(v,t)/qy — 0/qzq,- Sincey, is defined ag P, /oo, and

sinceg, is defined ag P, /o |0, we notice that, by assumption:

) | 2| o < yiwnn) | 2]

o

We divide both sides by, and since both sides are integral, we exchange<th&vith a

l<l:

) | 2] <yo0 [22] -1

ywt) _ylwt) o
I e

Dividing everything bys, and bounding,, andg, by ¢,...., we achieve the desired calcula-

From this we conclude:

<

tion.

Now, consider some regiom that is a neighbor of. and that assigns clients toin
roundt + 1. First, notice thaiv ¢ Out(t), since by Lemma 15.3, no clients are assigned
from an Out region to an/n region after round, (prior to ¢, + (1 + p3)m?n). Thus,w
assigns clients ta only if the conditions of lines 5-10 in Figure 15-4 are metislimplies
thatw € In(t), and hencey(w,t)/q., < y(v,t)/q,, by assumption. We can also conclude

that lower,, > 1, asw assigns clients ta only if u € lower,,. Finally, from line 8 of

Figure 15-4, we observe that the number of clients that aigmead tou by w in roundt is

309

at most:

po | (2) w(w,) —y(w.0)] o |(2) y(0t) =yt
2(|lower,(t)] + 1) = 4

Since v has at most four neighbors, we conclude that it is assignednast

02 [(qu/q0)y (v, t) — y(u, t)] clients. This implies that:

e +1) <)+ on | (2) 0.0 - vt

v

< (%) ue)+ (0= pa)ylan)

(2

Thus, dividing everything by,,, and recalling thay(u, t)/q. < y(v,t)/qy — 0/ @2 0s

qu Qv Qu

< n(1) oo (030

y,8) (1—p2)~

2
v mazx

IN

The next lemma states that there exists a rdlipdsuch that in every round> T7,,;,

the set ofCN's assigned to regiom € Out(t) does not change.

Lemma 15.5 There exists a round,,; € [t2,t> + m?n such that in any round > T,,;,

the set ofCNs assigned td’N,,, v € Out(t), is unchanged.

Proof: First, we show that there exists some roufg; such that the aggregate number
of CN s assigned td’N, remains the same in bofty,; and7,,; + 1 for all u € Out(ts).
We then show that the actual assignment of individual cdieatnains the same i,,; and
Tour + 1.
We consider a vectoE(¢) that represents the distribution of clients among regions

in Out(t). That is, the first element if(¢) represents the largest number of clients in

310

any region; the second elementii{t) represents the second largest number of clients in
any region; and so forth. We then argue that, compared lgrdghically, £(t + 1) <
E(t). Since the elements if(t) are integers, we conclude from this that eventually the

distribution of clients becomes stables and ceases to ehang

We proceed to definé/(¢) as follows fort > t,. Let N,,; = |Out|. LetII(t) be
a permutation ofOut that orders the regions by the number of assigned clieets,ifiu
precedes in I1(¢), theny(u,t) < y(v,t). When we say that some regiarhas index,

we mean thall(t), = u. DefineE(t) as follows:

We use the notatioR'(¢), to refer to the/'* component of(¢) counting from the right, i.e.,
it refers toII(¢),. Any two vectorsE(t) and E(t + 1) can be compared lexicographically,

examining each of the elements in turn from left to right, l@&gest to smallest.

We now consider some rounde |[ty,t, + m?n|, and show tha#(t) > E(t + 1).
Consider the case wherg(t) # E(t + 1), and letu be the region with maximum index

that assigns clients to another region. kdde the index of region.

First, we argue that for every regiorwith index< k, we can conclude tha{v, t+1) <
y(u,t). Consider some particular region Notice thatv has no neighbors i0ut that are
assigned more than(u, t) clients in roundt; otherwise, such a neighbor would assign
clients towv, contradicting our choice af. Thus, by Lemma 15.4, Part 1, we can conclude

thaty(v,t+1) < y(u, t) (@s long as € [ts, t2 +2m?n], which we will see to be sufficient).

Since this implies that there are at leasegions assigned fewer thaiu, t) = E(t)y
clients in roundt + 1, we can conclude that'(t + 1), < E(t)x. In order to show that
E(t+1) < E(t), itremains to show that for evely > k, E(t) = E(t + 1)

Consider some region with index > k. By our choice ofu, it is clear thatv is not
assigned any clients by a region with index:. It is also easy to see thats not assigned
any clients by a region with index< k, sincey(v,t) > y(u,t) > y(w,t); as per line 12,
regionw does not assign any clients to a region withy(w, t) clients. Thus no new clients

are assigned to regiom Moreover, by choice ofi, regionv assigns none of its clients

311

elsewhere. Finally, since> t,, none of the clients fail. Thugy(v,t) = y(v,t + 1).

Since the preceding logic holds for all,,;, — £ + 1 regions with index> k, and all
have more thag(u,t) > y(u,t + 1) clients, we conclude that for eveky > k, E(t)r =
E(t+ 1), implying thatE(t) > E(t + 1), as desired.

SinceE(+) is non-increasing, and since it is bounded from below by #re zector, we
conclude that eventually there is a roufig; such that for alt > T,,;, E(t) = E(t + 1).

Now suppose the set of clients assigned to regi@manges in some round> T,,;.
The only way the set of clients assigned to regiarould change, without changingu, t)
and the set’,,;, is if there existed a cyclic sequence ofN s with ids in Out in which
each VN givesupc > 0 CN stoits successoVN inthe sequence, and receives’N
s from its predecessor. However, such a cyclel@¥ s cannot exist because thever set
imposes a strict partial ordering on thiéV s.

Finally, we observe that i/ (t) = E(t+1) for anyt, then the assignment of clients does
not change from that point onwards: since all the clientsaiaed in the same regions in
E(t)andE(t+1), we can conclude that thessign function produced the same assignment
in E(t + 1) as inE(t). Since the vectoE(-) has at mostr? elements, each with at mast

values, we can conclude tha},; is at mostm?n rounds after.. []

For the rest of the section we fiX,,; to be the first round aftef,, at which the property
stated by Lemma 15.5 holds. Lemma 15.5, together with Lenftbal 15.2, and 15.3,
imply that in every round > T,.;, Cp.(t) = Cp,(t1) andCou,(t) = Couw(t); we de-
note these simply a€';, andCy,;. The next lemma states a property similar to that of
Lemma 15.5 forVN,,, u € In, and the argument is similar to the proof of Lemma 15.5,

and uses Part (2) of Lemma 15.4.

Lemma 15.6 There exists a round;,, € [Tou:, Tour + p3m?n] such that in every round

t > Ty, the set ofCN's assigned td’N,,, u € In, is unchanged.

Proof: We proceed to definé/(¢) as follows fort > T,,. Let N;, = |In|. LetIl(t)
be a permutation ofn that orders the regions by the density of assigned cliemts,ii u

precedes in 11(t), theny(u,t)/q. < y(v,t)/q,. When we say that some regianhas

312

indexk, we mean thatl(¢), = u. DefineE(t) as follows:

() = <?/(H(t)Nm7t) y(IL() -1, 1) y<n<t>1,t>> |

qH(t)N 7 QH(t)Nm,l T QH(t)l

in

We use the notatioR'(¢), to refer to the/'* component of(¢) counting from the right, i.e.,
it refers toll(¢),. Any two vectorsE(t) and E(t + 1) can be compared lexicographically,
examining each of the elements in turn from left to right, l@&gest to smallest.

We now consider some round> 7, and show that/(¢) > E(t + 1). Consider the
case where’(t) # E(t + 1), and letu be the region with maximum index that assigns
clients to another region. Létbe the index of regiom.

First, we argue that for every regienwith index < k, we can conclude that(v, t +
1)/q, < y(u,t)/q,— ¢ for some constang. Consider some particular regionNotice that
v has no neighbors ifr that have density greater thafu, t) /g, in roundt; otherwise, such

a neighbor would assign clients tocontradicting our choice af. Thus, by Lemma 15.4,

Part 2, we can conclude thatv,t + 1)/q, < y(u,t)/q, — ¢ where(= (1 — pQ)q%‘;w (as
long ast € [ta, t2 + (1 + p3)m?n], which we will see to be sufficient).

Since this implies that there are at leaAsegions assigned fewer thg(w, t) = E(t)
clients in round + 1, we can conclude thai(t + 1), < E(t), — (. In order to show that
E(t+ 1) < E(t), it remains to show that for every > k, E(t)y = E(t + 1).

Consider some region with index > k. By our choice ofu, it is clear thatv is not
assigned any clients by a region with index. It is also easy to see thatis not assigned
any clients by a regiomw with index < k, sincey(v,t)/q, > y(u,t)/q. > y(w,t)/q.; as
per line 6, regionv does not assign any clients to a region with a density(w, t)/q,.
Thus no new clients are assigned to regionMoreover, by choice ofi, regionv as-
signs none of its clients elsewhere. Finally, since ¢y, none of the clients fail. Thus,
y(v,t)/q = y(v,t +1)/q,.

Since the preceding logic holds for a\l;, — £ + 1 regions with index> k, and all
have more than(u, t)/q, clients, we conclude that for eveky > k, E(t)y = E(t + 1),
implying thatE'(¢) > E(t + 1), as desired.

Since E(+) is non-increasing, and since it decreases by at least aastigsin every

313

round in which it decreases, and since it is bounded fromvbélp the zero vector, we
conclude that eventually there is a roufig,, such that for alt > Ty, E(t) = E(t + 1).

Now suppose the set of clients assigned to regi@hanges in some rourtd> T;,;.
The only way the set of clients assigned to regiorould change, without changing
y(u,t)/q, and the set’;,, is if there existed a cyclic sequence dfN s with ids in In
in which each VN gives upc > 0 CN s to its successor/N in the sequence, and re-
ceivesc CN s from its predecessor. However, such a cyclel@¥ s cannot exist because
the lower set imposes a strict partial ordering on théV s.

Finally, we observe that i/ (t) = E(t+1) for anyt, then the assignment of clients does
not change from that point onwards: since all the clientsaiaeed in the same regions in
E(t)andE(t+1), we can conclude that thessign function produced the same assignment
in E(t + 1) as inE(t). Since the vectoFE(-) has at mostn? elements, each with at most

Gnaz_ values, we can conclude thA},; is at mostpsm?n rounds aftefl,,,, and hence at

"=p)o
most(1 + p3)m?n rounds after,, as needed. u

The following bounds the total number of clients locateddgions with ids inOut to be
O(m?).

Lemma 15.7 In every round > Ty, |Cous(t)| = O(m?).

Proof: From Lemma 15.5, the set o€’V s assigned to eachN,,, v € Out(t), is un-
changed in every round> T,,;. This implies that in any round > T,,;, the number of
CN s assigned by'N, to any of its neighbors i8. Therefore, from line 17 of Figure 15-4,
for any boundaryVN,, (y(v,t) — k)/|In,| < 1. Recall thatin, is the (constant) set of
neighbors ofv with quantized curve lengt} 0. Since|In,| < 4, y(v,t) < 4 + k.

From line 14 of Figure 15-4, for any non-bounda¥Wv,, v € Out(t), if v is 1-hop
away from a boundary region then2 0= < 1. Sincellower, (t)| < 4, y(v,t) <
% + 4 + k. Inducting on the number of hops, the maximum number of tdi@ssigned
toa VN,, v € Out(t), at¢ hops from the boundary is at mo%’;f + k + 4. Since for any
¢,1 < ¢ <2m — 1, there can be at most VN s at/-hop distance from the boundary,

summing givesCl,,| < (k + 4)(2m — 1)m + M = O(m?). n

314

For the rest of the section we fi&,,, to be the first round aftéf,,,;, at which the prop-
erty stated by Lemma 15.6 holds. Lemma 15.8 states that thé&uof clients assigned to
eachVN,, u € In, in the stable assignment aftél,,;, is proportional tag, within a con-
stant additive term. The proof follows by induction on themher of hops from between

any pair of VNs.

Lemma 15.8 In every round > Ty, fOr u, v € In(t):

AminP2

- 2]

Proof: Consider a pair of VN s for neighboring regions andv, u,v € In. Assume

without loss of generality that(u, t) > y(v, t). From line 8 of Figure 15-4, it follows that

pal2y(u,1) = y(v,0)) < 2| lower, (1)] +1). Since|lower, (1)] < 4, [— 1] < 10
—19_ By induction on the number of hops froito 2m — 1 between any twoVN s,

— gminpP2

the result follows. n

15.3.2 Uniform Spacing

From line 28 of Figure 15-4, it follows that by the beginninground 7., + 2, all CN's

in C;, are located on the curé. Thus, the algorithm satisfies our first goal. The next
lemma states that the locations of thé&/s in each region, u € In, are uniformly spaced
onl, in the limit, and it is proved by analyzing the behaviokeltarget as a discrete time

dynamical system.

Lemma 15.9 Consider a sequence of rounds= Ty, . . ., t,. ASn — oo, the locations

of CNsinu, u € In, are uniformly spaced oh,,.

Proof: From Lemma 15.6 we know that the set 6iV s assigned to eachiV,,, u € In,
remains unchanged. Then, at the beginning of rognévery C'N assigned toVN, is
located in region: and is on the curvé,,. Assume without loss of generality th&tV , is

assigned at least tw@'N s. Then, at the beginning of roungl one CN is positioned at

315

each endpoint of,, namely af", (inf(P,)) andl', (sup(P,)). From lines 30—31 of Figure
15-4, we see that the target points for thesdpoint CN s are not changed in successive
rounds.

Let sequ(t2) = (o, i) - - -» (Pnt1s int1)), Wherey, = n + 2, py = inf(P,), and
Pny1 = sup(P,). From line 34 of Figure 15-4, for any 1 < i < n, thei'* element inseq,

at roundt, £ > 2, is given by:

pi(te1) = pilte) + o1 (pi_l(tk) gpiﬂ(tk) - Pz’@k)) :

For the endpointsy;(t,.1) = p;(tx). Let thei'™ uniformly spaced point on the cunig,
between the two endpoints bg The parameter valug corresponding ta; is given by
Pi = po + 7 (Pat1 — po)- In What follows, we show that as — oo, thep; converge tq;
for everyi, 0 < i < n + 1, that is, the location of the non-endpoiitN s are uniformly
spaced oni’,. The rest of this proof is exactly the same as the proof of Tdmed3 in [46]
in which the authors prove convergence of points on a stréigdwith uniform spacing.

Observe thap; = $(pi—1 + piy1) = (1 — p1)pi + 2 (pi—1 + Pi41). Define error at step
k, k > 2, ase;(k) = p;(tx) — pi. Therefore, foreach, 2 < i < n—1,¢(k+1) =
pi(tes1) =i = (L—pr)ei(k) + G (eim1 (k) + €1 (k)), ex(k+1) = (1 —pi)er(k) + Gea(k),
ande, (k+1) = (1—p1)en(k)+%e,—1(k). The matrix for this can be written as(k+1) =

Te(k), whereT is ann x n matrix:

pi/2 1—p1 p/2 O 0
0 0 p/2 1=p1 p1/2

Using symmetry of’, p; < 1, and some standard theorems from control theory, it follows
that the largest eigenvalue @fis less than. This implieslinm,_...7% = 0, which implies

lzmk_,ooe(k) = 0. |
We conclude by summarizing the results in this section,iGed5.3:

316

Theorem 15.101f there are nofail or restart actions for robots at or after some roungl
and the execution fragments@t.ayer’[MC] satisfy the properties of sgtfrom Definition

11.12, then:

1. Within a finite number of rounds aftés, the set ofCNs assigned to eaclv N,
u € U, becomes fixed, and the size of the set is proportional touhatiged length

¢u, Within a constant additive terf2m—1

dmin P2

2. All client nodes in aregion € U for whichg, # 0 are located o, and uniformly

spaced o', in the limit.

15.4 Self-stabilization of the Algorithm

In this section we show that the VSA-based motion coordamegcheme is self-stabilizing.
Specifically, we show that when the VSA and client componénthe VSA layer start
out in somearbitrary stateowing to failures and restarts, they eventually produceesa
that look like reachable traces of the motion coordinatilgo@thm. Thus, the traces of
V Layer’[M C] running with some reachable stateldbcast|| RW'||V W, eventually, be-
comes indistinguishable from a reachable tracé éizyer’[M C]. Note that the virtual
layer algorithmalg is instantiated here with the motion coordination algonth/C' of
Section 15.2.

To show correctness, we use the strategy described in 86&:8pwhere we describe
a legal setl,;- of VLayer[MC], and show that it is a legal set (Section 15.4.1), and
then legal states of the specification (here they are thénadide states). We then define
a simulation relatioriR), between states dfLayer'[MC] (see Definition 15.13), and
show the relation is a simulation relation (Lemma 15.14). t&n show that for each
state inLc, there exists a state in the invariant setchabley raye,/(nc) SUCh thatR 3¢
holds between the states (Lemma 15.15). (This is to condhatethe system started in
the set of legal states implements the system started inchabke state.) We then show
thatVLNodes[MCl]is self-stabilizing ta_ ;¢ relative toR(RW'||||V IV ||Vbcast) (Theorem
15.20). We conclude that the set of traces of the implemientatabilizes to the set of

317

reachable traces of executions\dfayer’[MC].

We then go a step further, and connect the result to an emnlafithe VSA layer.
In Chapter 11 we showed how to implement a self-stabilizil@AML_ayer. In particular,
that implementation guarantees that for each algoriibyme V Algs, the implementation
stabilizes in some,,,;, time to execution fragments whose traces are the same asdhos
execution fragments of the virtual layer that also happebeton the setS described in
Definition 11.12. Thus, if the coordination algorithidC' is such thatl’ LN odes[MC|
self-stabilizes in some timeto L, relative toR(RW'||VW ||V bcast), then we can con-
clude that physical node traces of the emulation algorithmi@”' stabilize in timet ;. +t
to client traces of executions of the VSA layer started iralegtL ;- and that satisfy the

properties ofS (Theorem 15.22).

15.4.1 Legal Sets

First we describe two legal sets fotLayer’[MC], L}, and Ly whereL ¢ is a subset
of L},.. Recall from Lemma 3.13 that a legal set of states for a TIOdnis where each
closed execution fragment starting in a state in the set enastate in the set. We break
the definition of the legal set up into two sets in order to difpphe proof reasoning and

more easily prove stabilization later.

Legal set},.

The first legal seL.}, describes a set of states that result after the@RBupdate occurs

at each client node and the fitsher occurs at each virtual node.
Definition 15.11 A statex of V Layer’[MC| is in L}, iff the following hold:

1. X[XVbcast||RW’||VW c 7“6G,Chabl6Vbca5t”szva.

2. Yu € U : —failed, : clock, € {RW'now, L} A (M, # 0 = clock, mod d €
(0, e+ 2d + 2¢)).

3. Vp € P:~failed, = v, € {RW".vel(p)/vmaz, L}

318

4. Vp € P: ~failed, \ x, # L:

(@) z, = RW'.loc(p) A clock, = RW' .now.
(b) oy € {xp, L}V ||7) — 2p|| < Vmae(0[clock, /6] — clock, — d,).

(c) Vbeast.reg(p) = region(x,) V clock mod § € (e+2d+2¢,0 —d, + €sampie)-

Part (1) requires that restricted to the state dfbcast|| RW'||VIW be a reachable state of
Vbcast| RW'||[VIW. Part (2) states that nonfailed VSAs havecks that are either equal
to real-time orl, and have nonempty/ only after the beginning of a round and up to
e+ 2d+ 2¢e time into a round. Part (3) states that nonfailed clientehalocity vectors that
are equal either td. or equal to the client’s velocity vector iRV’, scaled down by,,,..
(this scaling to a unit velocity vector is done for convemienthe domain of the client’s
local velocity variable is simply a direction, not a magudigiwhich constrains the possible
values of the variable and hence marginally simplifies §tation reasoning). Finally,
Part (4) states that nonfailed clients with nanpositions have: (4a) positions equal to
their actual location and localocks equal to the real-time, (4b) targets that are one of
1, the location, or a point reachable from the current locatidthin d, before the end of
the round, and (4cl bcast last region updates that match the current region or theisme
within a certain time window in a round. It is routine to cheblat L}, is indeed a legal
set forVLayer’[MC].

Legal setL ;¢

Now we describe the main legal skf; for our algorithm. First we describe a setrebet
states, states corresponding to state® bliyer’[M C] at the start of a round. It turns out
that it is relatively simple to show that an execution fraginef VLayer'[MC] reaches a
reset state. We defink,;- to be the set of states reachable from these reset state$o Due

our use of reset states, it is simple to show that our algorgtabilizes tal ;.

Definition 15.12 A statex of V Layer'[M C] is in Reset y iff:

1. x € L}

319

2. Vp € P: —failed, =
to_send, = to_send; = AN (v, =LV (z; # L Av, =0))].

3. Yu e U : —failed, = to_send, = .
4. Y{m,u,t, P") € vbcastq : P' =).
5. RW'.now mod 6 =0AVp € P:VY(l,t) € RW . updates(p) : t < RW'.now.

Lyc is the set of reachable states®fart(V Layer' [MC|, Reset).

Reset o consists of states in which (1) the state idi}., (2) each nonfailed client has

an empty queue in it8’ B Delay and either has a position variable equaltor has both a
non-L target and O velocity, (3) each nonfailed VSA has an emptyqueitsV B Delay,

(4) all messages iWbcast have either been delivered or dropped at each process, and (5
the time is the starting time for a round and@BSupdates have yet occurred at this time.

Once again, it is routine to check that thaf - is a legal set foWLayer’ [MC].

15.4.2 Relationship betweer ;- and reachable states

Now we define a simulation relatioR »,c on the states o’ Layer’[M C], and then prove
that for each state € L, ¢, there exists a statg € reachabley payerpc) SUCh thatx
andy are related byR v,c. This implies that the trace of any execution fragment istgrt
with x is the trace of an execution fragment starting wgthwhich is a reachable trace
of V Layer'[MC]. We define the candidate relatidt,. and prove that it is indeed a

simulation relation.

Definition 15.13 R ¢ is a relation between states BfLayer’[M C] such for any states

andy of V Layer'[M C], xRy ¢y iff the following conditions are satisfied:
1. x(RW'.now) = y(RW'.now) A x(RW".loc) = y(RW".loc).

2. Forallp € P,y(vel(p)) € {x(vel(p)), L} A
{teR=°|3l € R:(l,t) € x(RW'.updates(p))}
={teR2 |3l e R:(I,t) € y(RW . updates(p))}.

320

3. x(VW) =y(VIW) Ax(Vbcast.now) = y(Vbcast.now).

4. x(Vbcast.reg) = y(Vbcast.reg) A
{{m,u,t, Py € x(Vbcast.vbcastq) | P' # 0}
= {(m,u,t, P") € y(Vbcast.vbcastq) | P' # 0}.

5. Foralli € PUU, x(failed;) = y(failed;).
6. Forallu € U : =x(failed,):

(@) x(clock,) = y(clock,) Nx(M,) = y(M,)
A [x(M,) # 0 = Yo € nbrs™(u) : x(V,(v)) = y(Viu(v))].

(b) |x(to-send,)| = |y(to_send,)| A Vi € [1,|x(tosend,)|] : Y(m,t) =
x(to_send,[i]) : y(to_send,[i]) = (m,t + y(rtimer,) — x(rtimer,)).

7. Forallp € P: —x(failed,y):

@) x(CN,) =y(CNy) V [x(x,) = y(x,) = L Ax(vp) = y(vp)].
(b) x(VBDelay,) = y(VBDelay,).

(¢) x(to_send,) # A = x(Vbcast.oldreg(p)) = y(Vbcast.oldreg(p)).

We describe the various conditions two related statesdy must satisfy. Part (1) requires
that they share the same real-time and location’fis. Part (2) requires that for each
client, the velocity atR1/' is equal or the velocity ity is L, andGPSupdate records in
the two states are for the same times. Part (3) requiredilas state and/bcast.now

are the same ir andy. Part (4) requires that the unprocessed message tupldwesare
and that the last recorded regiondihcast for clients are the same in both states. Part (5)
says that failure status of eachV and VN is the same in both states. Part (6a) requires
that for a nonfailed VSA, local time and the setare equal ik andy, and further, ifAM/

is nonempty ther” is equal for local regions in both states. Part (6b) saysthegb_send
gueues for a nonfailed VSA are the same, except with the tangss for messages i
adjusted up by the difference betweéiner, in statey andx. Part (7a) requires that the

algorithm state of a nonfailedN is either the same, or both states share the samedocal

321

and have locations equal to. Part (7b) says that thé B Delay state is the same for each
nonfailedCN in x andy. Finally, Part (7b) requires that if the_send buffer is nonempty
in statex for a nonfailed client, theWbcast.oldreg(p) is the same in both states.

The proof of the following lemma is also routine and it bredksvn into a large case
analysis. Say that andy are states i)y 1.qyer (0] SUCh thatkR y,cy. For any action or
closed trajectory of V Layer’[M C], suppose’ is the state reached frory then, we have
to show there exists a closed execution fragnieof V' Layer’[M C] with (. f state =y,
trace((3) = trace(o), andx'R ¢ 5.Istate.

Lemma 15.14 R v is a simulation relation fol” Layer’[M C].

Proof: It suffices to show that for every staie € V Layer’'[MC], the following three

conditions hold:

1. If 2 € Oy rayeruc) then there exists a statec Oy qyer) SUCh thatt R ycy. It

is obvious that taking = z satisfies this condition.

2. Say thatr andy are states i)y 1qyerrc] SUCh thatt Ry cy. Then for any action
a € Ayipayer ey if VLayer'[MC] performs actioru and the state changes from
x to 2/, we must show there exists a closed execution fragmieitV Layer’ [M C|
with 5. fstate = y,trace() = trace(p(x)ap(x’)), andx’RycG.Istate. For this
proof we must consider each action. For each action, we cam gte closed execu-
tion fragment3 is simply p(y)ap(y’). This obviously satisfies the trace requirement.
It is also easy to verify that’R,;cy’. This is because the relatidd,;- holds be-
tween states that are effectively the same (any differeimcesate variables occur
in circumstances where the differences are irrelevant).d@/aot perform the case

analysis here since it is trivial.

3. Say that{z,y} C Qviayermnco) andazRycy. Let a be an execution fragment of
V Layer[MC|] consisting of one closed trajectory, withfstate = x. We must
show that there is a closed execution fragmenf V Layer’ [M C| with . f state =
y,trace(3) = trace(a), anda.lstateR yc 3.1state. Thisis trivial in that we just take

[to be the actionless fragment where client locations, dpakd timers develop in a

322

similar manner to their counterpartsdn The only interesting thing to check is that if
for somep € P, z(vel(p)) # L andy(vel(p)) = L, then any change in location for
pin « is permissible in3. This holds because any change in location that is bounded

by speed,,... is permissible whenel(p) is set to_L.

To show that each state i, is related to a reachable stateloLayer’ [MC], it is
enough to show that each statdinset ¢ is related to a reachable statelofayer’[MC].
The proof proceeds by providing a construction of an exeouti V' Layer’[M C] for each

state inReset yc.

Lemma 15.15 For each statex € Reset ¢, there exists a statg € reachabley pqyerric

such thatxR y;cy.

Proof: Letx be a state imReset, . We construct an executianbased on state such
thatxR ;ca.lstate. The construction of is in three phases. Each phase is constructed by
modifying the execution constructed in the prior phase twlpce a new valid execution

of V Layer'[MC]. After Phase 1, the final state of the constructed executiares client
locations and real-time values with state Phase 2 adds clien¢starts andvelocity ac-
tions for nonfailed clients in state, making the final state of clients consistent with state
x. Phase 3 adds VSrestart actions to make the final state of VSAs consistent with state

X.

1. Leta; be an execution df Layer’[M C| where each client and VSA starts out failed,
norestart or fail events occur, and,.ltime = x(RW.now). For each failegh € P,
there exists some history of movement that never violatesxamum speed 0f,,,,,
is consistent with stored updates fgrand that lead to the current locationyofWe
move each faileg in just such a way and add@PSupdate((l,t)), at timet for
each(l,t)e x(RW'.updates(p)).

For each nonfailedp € P and each state iy, we set RW'loc(p) =

x(RW'.loc(p)) (meaning the client does not move). For each nonfajled:

323

P, add aGPSupdate(x(RW'.loc(p)),t), action for eacht such that3(l,¢) €
x(RW' updates(p)).

For eachu € U, if x(last(u)) # L then add g@ime(t), output at timef in «; for
eacht in the set{t* | t* = x(last(u)) V (t* < x(last(u)) At* mod €sgmpre = 0)}.

Validity: It is obvious that the resulting execution is a valid exemutiof
V Layer'[MC.

Relation betweer anda; .lstate: They satisfy (1)-(4) of Definition 15.13.

. In order to construct;, we modify a; in the following way for eaclp € P such
that—x(failed,): If x(x,) # L, we add aestart, event inmediately before and a
velocity(0), immediately after the lassPSupdate, event ino,. If x(z,) = L and
x(v,) = 0, then we add aestart, andvelocity(0), event inmediately after the last
GPSupdate, event ina;. If x(z,) = L andx(v,) = L, then we add aestart,

event at timex(RW’.now) in a;.

Validity Sincerestart actions are inputs they are always enabled, avel@city, ac-
tion is always enabled at clieotV,. Also, there can be no trajectory violations since
any alive clients receive their firiPSupdate within €4, time of x(RW’.now)

in a2, meaning that sincéis larger thar g, andx(RW'.now) is a round bound-
ary, there is no time before(RIW'.now) in o, where acn-update should have been

sent. It is obvious that this is a valid executionvifayer'[MC].
Relation betweem andas.lstate They satisfy (1)-(4) and (7) of Definition 15.13.
. To constructy, we modify o in the following way for eachu € U such that

—x(failed,): If x(clock,) = 1, we add arestart, event after angime,, actions.

If x(clock,) # L, we add aestart, eventimmediately before the lagne, action.

Validity A restart action is always enabled. Also, there can be no trajectarlavi
tions since no outputs at a VSA are enabled until its |ddalk nonempty. Sincé/

is empty, we can conclude that this is a valid executioxlodyer'[MC].
Relation betweer anda.lstate xRy co.lstate.

324

We conclude that is an execution oV Layer’[M C] such that if we take = «.lstate,

theny € reachabley ayeric) ANAXR 0y -]

It directly follows that for every state ih,,¢ there is a reachable statelofayer’ [M C]
that is related to it. (This result can be seen by noting thahestate inL,,- is reach-
able from a state iReset ¢, which the prior lemma implies is related to some state in

reachabley payer(ric)-)

Lemma 15.16 For each statex € Ly ¢, there exists a statg < reachabley ayer[ric

such thatkR y;cy.

From Lemmas 15.16 and 15.14 it follows that the set of traagnfrents of
V Layer’[M C] corresponding to execution fragments starting frbga: is contained in
the set of traces ak(V Layer'[MC]).

As a corollary to this result, we have the following simplesetvation, based on the
matching execution constructed in the proof of the simatatelation above. It says that
for any execution fragment of V Layer'[MC] in S[V LNodes[MC]] and starting in a
statex in Ly, and given a statg related tox, there is an execution fragment starting
with y that has the same trace @asind is also inS[V LNodes[MC]]. (This is very useful
in Theorem 15.22, where we show that our emulation of a VSA&daan run the\/C
algorithm and eventually produce reachable traces of g¢ixecinagments satisfying certain

failure patterns of VSAs.)

Corollary 15.17 Let a be an execution fragment &f Layer’'[M C] where a. f state €
Lyc andais in S[VLNodes[MC]]. Lety be a state inceachabley qayer e SUCh that

a. fstateR ycy. Then there exists an execution fragmehof V Layer' [M C| where:
1. o/.fstate = y.
2. trace(a) = trace(d).
3. If ais a closed execution fragment, therstate R y,c o .Istate.
4. o' € S[VLNodes[MC]].

325

The first three properties of the corollary follow from thetf¢hatR ;¢ is a simulation re-
lation. The fourth follows from the proof th&), is a simulation relation; the constructed
execution in the proof shows exactly the same mobile nodeemewts and process failures

and restarts. Hence, df satisfies the properties of Definition 11.12, thémmust as well.

15.4.3 Stabilization toL ;¢

We've seen thal ;- (Section 15.4.1) is a legal set forLayer’[M C], and that each state
in Ly ¢ is related to some reachable state of the system (Lemma)1Bl@& we can show
that our algorithm stabilizes to the legal set (Theorem @b.2Ve do this in two phases,
corresponding to each legal set.

After we show that VLNodes[MC] self-stabilizes to L, relative to
R(RW'||VW ||Vbcast), we use the fact thaR,,- (see Definition 15.13) is a simu-
lation relation that relates states i, with reachable states of Layer'[MC] to
conclude that a stabilizing VSA emulation algorithm emulgt)M/ C' will eventually
produce reachable traces of the system (Theorem 15.22).

First, we state the following the stabilization result. Beghis, consider the moment
after each client has receivedGPSupdate and each virtual node has receivetirae,

which takes at most,,,,,,; time.

Lemma 15.18 V LNodes[MC] is self-stabilizing toL},. in timet for any ¢ > €.umpie
relative to the automatoR(V bcast|| RW'||[VIW).

Next we show that starting from a state ir},, we eventually arrive at a state in

Reset o, and hence, a state Iy ;c.

Lemma 15.19 Executions of/ Layer'[M (] started in states i}, stabilize in time) +

d + e to executions started in statesin,c.

Proof: It suffices to show that for any length+ d+ e prefix a of an execution fragment of
V Layer'[MC] starting fromL}, ., a.lstate € Ly;c. By the definition ofL,,¢, it suffices

to show that there is at least one statéitset ;- that occurs inv.

326

Let ¢y be equal tax. fstate(RW'.now), the time of the first state in. We consider
all the “bad” messages that are about to be delivered aftgstate. (1) There may be
messages i bcast.vbcastq that can take up td time to be dropped or delivered at each
process. (2) There may be messagesinend™ or to_sendt queues at clients that can
submitted tol’beast and take up t@ time to be dropped or delivered at each process. And
(3), there may be messagestinsend queues at VSAs that can take upedime to be
submitted toV bcast and an additionad time to be dropped or delivered at each process.
We know that all “bad” messages will be processed (droppettlivered at each process)
by some stat& in a such thate(RW'.now) = t; =ty + d + e.

Consider the state* at the start of the first round after stateSincex*(RW'.now) =
d([t1/0] + 1), we have thak*(RW'.now) —ty = x*(RW'.now) —ti+e+d < §+e+d.
The only thing remaining to show is that is in Reset,¢. It's obvious thatx* satisfies
(1) and (5) of Definition 15.12. Code inspection tells us tloatany state inZ},., and
hence, for any state in, any newvcast transmissions of messages will fall into one of

three categories:

1. Transmission oEn-update by a client at a timé such that mod § = 0. Such a

message is delivered by tine- d.

2. Transmission ofn-update by a virtual node at a timesuch that mod § = d +e.

Such a message is delivered by time d + e.

3. Transmission ofarget-update by a virtual node at a timeé such that mod § =

2d + e 4+ 2¢. Such a message is delivered by time d + e.

In each of these cases, amgast transmission is processed before the start of the next
round. Thusx* satisfies properties (2), (3), and (4) of Definition 15.12.clheck (2), we
just need to verify that for all nonfailed clients:if, is not L thenz; is not L andv, is

0. It suffices to show that at least o@Supdate occurs at each client between state
and statex*. (Such an update at a nonfailed client would updgtéo bez, for clients
with 7 = | or x; too far away fromr, to arrive atr; beforex*. Any subsequent receipts

of target-update messages will only result in an updateatpif the client will be able to

327

arrive atz;, beforex*. This implies thaw, can only bel or 0, and since nGPSupdates
could have occurred at the same timexasstopping conditions ensure that+# _L.)

To see that at least or@PSupdate occurs at each client between stateand state
x*, we need that*(RW'.now) — x'(RW'.now) > €sgmpre. SinCex*(RW'.now) —
X' (RW'now) = 6 — (xX'(RW'.now) mod d) > —e—2d —2¢,0 > e+ 2d+ 2+ d,,

andd, > €sgmpie It follows thatd > e + 2d + 2¢e + €gampie- []

Combining our stabilization results we conclude th@Nodes[M C] started in an arbi-
trary state and run witlR(Vbcast||RW'||VW) stabilizes toL ;¢ in time t,,stq, Where
tmestab 1S @NYt such that > § + d + e + €sampie. From transitivity of stabilization and

15.19, the next result follows.

Theorem 15.20Lett,,.s.op D @nyt such thatt > d + d + e + esample-
VLNodes|[MC] is self-stabilizing to Lyc in time t,.4. relative to
R(Vbcast| RW'||[VIV).

Thus, despite starting from an arbitrary configuration efM$A and client components
in the VSA layer, withint,,..., time, the system reaches a statd.ijac.
We can take this a step further to reason about the behavithreaystem from the

physical level implementation of the virtual layer:

Lemma 15.21 Consider theS-constrainedt,,,-stabilizing VSA emulation algorithm
defined in Lemma 11.22. Then‘ncesActHide(HpL,U(pLNOdes[amap[Mcﬂ)HR(RW/Hpbmst)) stabi-

lizes in timetstab + tmcsmb to {trace(a) ‘ o € ETECSActHide(Hy 1,,Start(V Layer' |[MC),Lac)) N

S(VLNodes|[MC])}.

The result is just an application of Corollary 8.4 to the emtioh algorithmamap of
Lemma 11.22 and Theorem 15.20.

We then combine this result with Corollary 15.17 and Lemmd&35%o arrive at the fol-
lowing result, which says that our stabilizing emulatiogalthm from Section 11 running
the M C algorithm produces traces that stabilize in timg, + t,,.sta t0 traces of reach-
able execution fragments of théC' algorithm that also happen to satisfy the VSA failure

patterns described in Definition 11.12:

328

Theorem 15.22 Consider theS-constrainedt;,,-stabilizing VSA emulation algorithm
defined in Lemma 11.22. Thetracesacthide(Hpy ,U(PLNodeslamap[MC]))|| R(RW' || Pbeast))

stabilizes in timely ., + tmestar 10 {trace(o) | o € execsacride(my 1, RV Layer/[Mc])) N
S(VLNodes|[MC))}.

Thus, putting together this result and Theorem 15.10, wengahe the following state-
ment about the locations of physical nodes that run our VSAlation of theM C' algo-

rithm starting in some arbitrary state:

Theorem 15.23Let o be any execution of th8-constrainedt,;.,-stabilizing VSA emu-
lation algorithm defined in Lemma 11.22, runniagC' and starting from an arbitrary
configuration of the physical nodes. Assume that there igsonet after which there are
no failures or restarts of the physical nodes.

Then: (1) within a finite amount of time afterthe set of physical nodes assigned to each
region becomes fixed and the size of the set is proportiond#ig¢aquantized length,,,
within a constant additive terf{2*-1and (2) and the physical nodes in regiomgor

whichg, # 0 are located orl", and uniformly spaced in the limit.

15.5 Conclusion

We have described how we can use the Virtual Stationary Aatominfrastructure to de-
sign protocols that are resilient to failure of participgtagents. In particular, we presented
a protocol by which the participating robots can be unifgrespgaced on an arbitrary curve.
The VSA layer implementation and the coordination protaam@ both self-stabilizing.
Thus, each robot can begin in an arbitrary state, in an ariitocation in the network,
and the distribution of the robots will still converge to thgecified curve. The proposed
coordination protocol uses only local information, anddesrshould adapt well to flocking

or tracking problems where the target formation is dynaftyicdanging.

329

330

Chapter 16

Conclusions

In this thesis we have introduced the idea of Widual Stationary Automatdayer for
simplifying implementations of applications for mobilereliess networks, a theory for self-
stabilization in timed systems, and a theory for stabigzmulations. We have provided a
stabilizing emulation of the VSA layer and shown it to be d8izing emulation. We have
demonstrated the use of the VSA layer to provide implem@mstof several services for
mobile networks.

In this chapter, we begin by reviewing the main contribusiarf this thesis (Section
16.1). We then discuss some conclusions about our appr&ttign 16.2) and some

open questions and ongoing research (Section 16.3).

16.1 Contributions

The first main contribution of this thesis is the introduntaf formal semantics for stabi-
lization and crash/ restart failures in the TIOA model (Cieap 3 and 5). Self-stabilization
[26, 27] is the ability to recover from an arbitrarily cortugiate. We define stabilization in
the TIOA systems using hybrid sequences, and develop $égehamiques to use this the-
ory throughout the thesis. Our definition of stabilizatioakes provisions for discussing
external sources of stability and allows us to tackle sitaddibn of implementations of
long-lived services with invocation / response or send éikecbehavior, where it might

not be possible to find a “reset” state. Our crash/ restdrr&aimodeling is done with a

331

general transformation that takes a TIOA program and preslacnew program that can

suffer from crash failures and restarts.

The second main contribution of this thesis is the presemtaf a formal semantics for
emulation of a system (Chapter 4) and the application ofdéimition to an emulation of a
virtual layer by a physical node layer (Chapter 8). This jtes proof obligations required
to conclude that one system successfully emulates anotbans. We describe an emula-
tion as a kind of implementation relationship between twis sé timed machines, where
an emulation of a program produces behavior that looks tikéaf the program being em-
ulated. We also present a formal semantics for a stabiliemmglation of a system, where
an emulation of a program can start in an arbitrary state \eriteally behave as though
it is the program started in an arbitrary state. We obseraeifta stabilizing emulation
of a stabilizing program is used, then the resulting systelirewentually behave like the
program started from some desirable state.

The third main contribution of this thesis is the introdoatiof the timed Virtual Sta-
tionary Automata programming layer (Chapter 7), which calp lapplication developers
write simpler algorithms for mobile networks. This is/atual fixed infrastructure, con-
sisting oftiming-awareandlocation-awareVSAs at fixed locations which mobile nodes
can interact with. Each VSA represents a predeterminedrgpbiy area and has broadcast
capabilities similar to those of the mobile nodes, thougthg@es suffering from an addi-
tional additive broadcast delay, allowing nearby VSAs arabite nodes to communicate

with one another.

Our fourth main contribution is a protocol for emulating M8A layer using mobile
nodes with access to a GPS oracle and a proof that the prosogaitabilizing VSA layer
emulation (Part 1l). We use a leader-based replicated statdine approach to implement
each region’s VSA with mobile nodes located in that regiome Pproof that this protocol is
a stabilizing emulation of the VSA layer exercises the s$tabg emulation definitions, as
well as the stabilization theory. A phase-based approaphawing stabilization is used to
show that the protocol is stabilizing.

Our fifth main contribution is to use the VSA layer to providalslizing implemen-

tations of two main services: end-to-end routing (Chap®rdnd motion coordination

332

(Chapter 15). The end-to-end routing service is impleneeiighree stabilizing layers:
geocast (Chapter 12), location management (Chapter 18)thentop-level implementa-
tion of the end-to-end routing service. The stabilizatibthe top-level end-to-end routing
service is dependent on the stabilization of the locationagament service, which is in
turn dependent on the stabilization of the geocast serviegjevelop proof techniques to
show these stabilization results. The motion coordinatilgorithm is especially interest-
ing in that it demonstrates the use of the VSA layer to agtidélect movement of client
nodes. Using a stabilizing emulation of the VSA layer suchhasone from Part II, we
can take a stabilizing VSA layer implementation of an agilan (such as the end-to-end
routing application or the motion coordination applicadiorun the stabilizing emulation
algorithm on that VSA layer implementation, and concluda the resulting system pro-
duces behaviors that eventually look like those of the appbn.

To summarize, this thesis develops theories of stabitimadind crash/ restart failures
for timed systems and a theory for emulation and stabiliammlation; it introduces the
idea of a VSA programming layer; it presents a stabilizingition of the VSA layer;
and it presents stabilizing VSA layer implementations oéad-to-end routing service and

a motion coordination service.

16.2 Evaluation

Here we discuss several issues related to the VSA layer andhglementation in this
thesis.

The theories of stabilization and crash/ restart failure€hapters 3 and 5 provide
simple formal foundations for reasoning about failureqaréimed systems. There is still
work to be done to further develop the stabilization theorintlude other concepts, such
assnap stabilizatior{instantaneous fault containment) [13], from the gendadization
literature.

Because this is a theoretical thesis where we demonstrat¢heeries of stabilization
and emulation, we concentrate on only a virtual layer wittyssdrong semantics, making

it easy to use the layer to program applications. The comeation between clients and

333

VSAs in neighboring regions is reliable and the clocks ingistem do not drift. This is
very useful in circumstances where safety-critical agians require timely and reliable
coordination and communication, and where the devicematgly emulating the layer
have hardware that behaves well enough to have the implatiembe successful.

However, such strong semantics are not necessary for matigatpns. For example,
in the case of a shoe sale application where a VSA for a regili@sron messages from
mobile shoppers to compile a “hot list” of stores to visitniight not be critical for each new
sale message sent to the VSA be received or that each shogperregion is guaranteed
to get each notification from the VSA of a store they could sabpSuch a service really
only needs to be best effort.

In addition, the hardware of the underlying mobile deviceghthbe able to support
implementing the VSA layer described. Without reliable coamication on the part of
mobile nodes within some distance of each other, we camtigedv SAs that have reliable
communication. Also, if mobile nodes have clocks that dvie can’t provide VSAs with
perfect clocks. In addition, if th&11 service is inexact, we would need to take this into
account in our algorithm.

Another perhaps-too-strong feature of the VSA layer is thate is a VSA at each re-
gion of a network, and that each VSA must be able to commumigdh each neighboring
VSA. In the real world, where wireless broadcast becomesridmble as more congestion
occurs, it is possible that having VSAs be so close to onehanaian result in many lost
messages, leading to VSA failures. Also, it might be thatavetry region of a deployment
space needs a VSA. If coordination only needs to be doneyoaadl only at areas remote
from one another, the VSA layer model described here miglotekill.

Even taking the strong semantics of the VSA layer as givea,irtiplementation of
that layer in this thesis is not optimized for any performaneetric, such as the maximum
delay of a VSA broadcast, message overhead of the emulatiabilization time, VSA
restart time, or the local computation complexity.

The implementations of the VSA layer applications in Chept2-15 were also not
optimized for message complexity, time complexity, or faalerance. The idea of using

virtual nodes to help accomplish routing does seem to sfynble task of providing such

334

an application; however, the geocast application doesfoiogxample, try to do anything
in the way of routing around failed VSAs. The fault-tolerarand message complexity of
the location management service could be improved by, famgite, using ideas from [8]
to limit information propagation through the occasiona o$forwarding pointers.

We believe that the motion coordination application of Gkaf5 presents a very inter-
esting paradigm for coordination. The implementation &f $lkervice introduces a frame-
work for interaction between mobile nodes and virtual coligrs that can be useful for
other coordination applications. One example is air trafbictrol; in [11] VSA controllers
for sectors of airspace were responsible for issuing fligittars to aircraft while main-
taining certain safety conditions. Another example is i@][.where a VSA is used to

implement a virtual traffic light.

16.3 Open questions and avenues for research

Considering the fact that strong semantics for the VSA lay&ot always necessary and
that it is not always able to be provided, it would be intaresto consider what a weaker
semantics for the VSA layer would look like. For example, wétzould the semantics be
if probabilistic message loss is possible at the physigadria What if the message delay
at the physical layer comes from some distribution, rathantbeing nicely bounded by
d,nys? What should the model for a VSA look like if the physical nedaly have access
to clocks that suffer some bounded drift?

How do we handle message collision at the physical layereTisaecent work [47]
that implies that collision might be something that can bek&d around most of the time,
implying that a stabilizing emulation of a VSA layer mightryavell not need much mod-
ification to work in this environment. There are also TDMA &ghot-based approaches
that could help us prevent collisions to begin with; timéskould be apportioned amongst
regions such that neighboring regions are on differentglote, minimizing the chances
of collision. There is also work on handling collisions ti@specifically geared towards
other virtual node layers [44].

How do we handle the case whekdl is only approximate or is a service that might

335

take some time to stabilize? In the second case, where ieisvas that might take time to
stabilize, the only impact on this work would be to extenddtabilization time of each of
the algorithms by the amount of time it takes #@F1” to stabilize. In the first case, where
RW is only approximate, if we have a bound on how inexact thetlonanformation
from RW can be, we might be able to accomodate it with the algorithesgmted here;
we simply require that the broadcast range for nodes thatKitithey are in some region
is such that they can reach all nodes that “think” they ardnat tegion or a neighboring
one. However, there is a tradeoff that becomes apparenisimpiproach: since broadcast
range is bounded, the additional fuzziness results in thalshg of region sizes. In the

real-world, this can result in increased message loss,aladditional congestion.

For each physical model, what are the best/ most efficieotitfgns for implementing

the VSA layer under various metrics for performance?

Since power consumption is also a common concern for mobdesin the real-world,
it would also be interesting to consider implementationg®As that are power and trajec-
tory sensitive, in that physical nodes with ample power ueses that are likely to remain
in a region for a longer period are more likely to take on thedba of virtual machine

emulation.

Another thing to pursue is the question of how to split up tinesal machine emulation
to lessen the burden of emulation. For example, if a datailsdseing replicated, it might
be possible for emulators to be responsible for somethsgytlean the full database. Such
an approach can also help alleviate some privacy concesms ane emulator might have
access to all potentially sensitive information in a regidfat would be the semantics of

a virtual layer implemented in this way?

An implementation of a version of the VSA layer with much slerpsemantics was
examined in [12]; it would be interesting to examine mukiphplementation algorithms
for different semantics of the VSA layer so as to both: (1)exkpent with just how easy/
hard it is to implement efficient versions of some of thesetayn the real world, and (2)
study the difficulty of implementing different applicat®mn these layers with different
semantics. For the second point, it would also be useful topawe the complexity of

algorithms implemented with various VSA layers to the coemjiyy of algorithms for the

336

same services but that do not use a VSA layer; how much oveibdeeing introduced by
use of the layer and how does it seem to trade off with the ebsepbementing correct

algorithms?

The VSA model makes the assumption of a globally known statiee-up of the de-
ployment space into non-overlapping regions. We couldidensn extension to the VSA
model that allows regions to be overlapping or the region toape dynamic. The model
and emulation implementation can be relatively easily moéel to allow overlapping re-
gions; the only real change that should be needed is for ¢ansli run multiple copies of
the programs described in part | of the thesis, one for eagibm¢he emulator is in. On the
guestion of the static nature of the region map, while thikesahe model predictable and
easy to work with, it is possible that over time we might wanirtodify the regions of the
network by splitting regions, merging them, or some comtoameof the two. This leads to
the question of how such changes get communicated to emsylatad what circumstances
should cause the change to occur. Tti&" automaton could perhaps be modified so that
it reports a region map as well as a location. However, thiglvalso introduce addi-
tional stabilization difficulties (both in emulation andusing the virtual layer), since the
assumed global region map would no longer be something wie comsider hard-wired,
meaning it is soft state that would be susceptible to coivagailure or could be started in

an arbitrary state.

Also of interest would be developing more applications foe ¥SA layer. The mo-
tion coordination algorithms seem particularly intenegtil mentioned the air traffic con-
trol [11] and traffic light [12] work, but there are a numbereitensions and additional
applications whose implementations could benefit from dd4beVSA layer. For exam-
ple, the virtual traffic light application is just one podsipiece of a larger potential group
of intelligent-highway applications, in which cars willrcg on-board computers with wire-
less communication capabilities. Distributed algorithromaning on these systems will need
to conduct a variety of activies, including collecting dé¢ay., about traffic patterns), alert-
ing cars about road hazards (e.g., accidents or arrivingganey vehicles), and providing
advice and control. For example, the distributed protocay muggest less-congested al-

ternative routes, or may even emulate the functions of @irtaffic lights at intersections

337

having no real traffic lights.

Other applications of interest could include things likegwal storage. Because VSAS
are failure prone, the state of a VSA can be lost. A virtualee application could provide
a means by which to back-up the data at a VSA. This would nonbadaitional feature
of the VSA layer, but instead an application implementedamaf the VSA layer. The
Geoquorums work [34] describes such an application forfardift virtual layer model.

On the theory side, as | mentioned, many concepts in stabdiz could be formalized
using the definition of stabilization for TIOA defined in thisesis. There are also other
results that may be useful; one theory in particular thatld/dne useful to provide is a
theory of stabilizing composition [27] for TIOA that accornates thef'ail-transform
described in this thesis. Roughly, we would like to have altesying that for comparable
TIOAs A and B and a TIOAC that is compatible with both, if the traces bfiil(A) sta-
bilize to the traces of'ail(U(B)), then the traces af'ail(A||C') stabilize to the traces of
Fail(U(B||C)). We would also like to have a generalization that allows wsttsider mul-
tiple machines composed together within theil-transform (|| As - - - A,,, rather than
A), or a generalization that allows us to consider the tra¢eSwl(A)| D stabilizing to
traces of Fail(U(B))||E and conclude that the traces Bhil(A||C)|| D stabilizes to the
traces ofFail(U(B||C))||E, etc. The proof of Lemma 11.23 would have been much sim-

pler if such results existed.

338

Bibliography

[1] Abraham, I., Dolev, D., and Malkhi, D., “LLS: a localitywaare location service
for mobile ad hoc networks”Proceedings of the DIALM-POMC Joint Workshop on
Foundations of Mobile Computing004.

[2] ACM Transactions on Sensor Netwarks
[3] Ad Hoc Networks JournaElsevier.

[4] Akylidz, I.F., Su, W., Sankarasubramanian, Y., and @ayE., “Wireless sensor net-
works: a survey”Computer NetworkéElsevier), 38(4), pp. 393-422, 2002.

[5] Ando, H., Oasa, Y., Suzuki, I., and Yamashita, M., “Distted memoryless point
convergence algorithm for mobile robots with limited vistly”, IEEE Transactions
on Robotics and Automatiph5(5):818—-828, 1999.

[6] Arora, A., Demirbas, M., Lynch, N., and Nolte, T., “A Hi@rchy-based Fault-local
Stabilizing Algorithm for Tracking in Sensor NetworksBth International Confer-

ence on Principles of Distributed Systems (OPOD2BD4.

[7] Awerbuch, B. and Peleg, D., “Sparse partitions (extehdestract)”,IEEE Sympo-

sium on Foundations of Computer Scient290.

[8] Awerbuch, B. and Peleg, D., “Online tracking of mobileeus’, Journal of the
Association for Computing Machiner§2, 1995.

[9] Beal, J., “Persistent nodes for reliable memory in gepbically local networks”,
Tech Report AIM-2003-11, MIT, 2003.

339

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

BLONDEL, V., HENDRICKX, J., Q_.SHEVSKY, A., AND TSITSIKLIS, J. 2005. Con-
vergence in multiagent coordination consensus and flocking’roceedings of the
Joint forty-fourth IEEE Conference on Decision and Contaotl European Control
Conference2996—-3000.

BROwWN, M. D. 2007. Air traffic control using virtual stationary auata. M.S.

thesis, Massachusetts Institute of Technology.

Brown, M., Gilbert, S., Lynch, N., Newport, C., Nolte,,Tand Spindel, M. The
Virtual Node Layer: A Programming Abstraction for WireleéSsnsor Networks. In

International Workshop on Wireless Sensor Network Archute, April 2007.

Bui, A., Datta, A., Petit, F., and Villain, V. State-optal snap-stabilizing PIF in tree
networks. InProceedings of the Fourth Workshop on Self-Stabilizingegys June
1999.

Camp, T. and Liu, Y., “An adaptive mesh-based protoootfeocast routing”Journal
of Parallel and Distributed Computing: Special Issue on M®Bd-hoc Networking
and Computingpp. 196-213, 2002.

CHANDY, K. M., MITRA, S.,AND PILOTTO, C. 2008. Convergence verification:
From shared memory to partially synchronous system#n proceedings of Formal
Modeling and Analysis of Timed Systems (FORMATSIAS8LS, vol. 5215. Springer
Verlag, 217-231.

Chockler, G., Demirbas, M., Gilbert, S., Newport, ChdaNolte, T., “Consensus and
Collision Detectors in Wireless Ad Hoc Network$?roceedings of the 24th Annual

ACM Symposium on Principles of Distributed Computing (PQ2005.

Chockler, G., Demirbas, M., Gilbert, S., Newport, (hda\olte, T., “Consensus and
Collision Detectors in Wireless Ad Hoc NetworkDistributed ComputingJune,
2008.

CHOCKLER, G., GLBERT, S., AND LYNCH, N. 2008. Virtual infrastructure for

collision-prone wireless networks. FProceedings of PODCTo appear.

340

[19] CLAVASKI, S., CHAVES, M., DAY, R., NAG, P., WILLIAMS, A., AND ZHANG, W.
2003. Vehicle networks: achieving regular formationPhoceedings of the American

control Conference

[20] Cooper, M.,commenht t p: / / www. ar r ayconmm coni news/ pr det ai | . ht n?i d=104,
1973.

[21] Cortes, J., Martinez, S., Karatas, T., and Bullo, F.,ov€rage control for mobile
sensing networks”|EEE Transactions on Robotics and Automatia@(2):243-255,
2004.

[22] DEFAGO, X. AND KONAGAYA, A. 2002. Circle formation for oblivious anonymous
mobile robots with no common sense of orientationPtoc. 2nd Int’l Workshop on
Principles of Mobile Computing (POMC’02ACM, Toulouse, France, 97-104.

[23] DEFAGO, X. AND Souissl, S. 2008. Non-uniform circle formation algorithm
for oblivious mobile robots with convergence toward umnihity. Theor. Comput.
Sci. 396,1-3, 97-112.

[24] Demers, A., Gehrke, J., Rajaraman, R., Trigoni, N., afab, Y., “Energy-
Efficient Data Management for Sensor-Networks: A Work-hogress
Report”, 2nd IEEE Upstate New York Workshop on Sensor Networks
coml ab. ecs. syr/ edu/ wor kshop, 2003.

[25] Demirbas, M., Arora, A., and Gouda, M., “A pursuer-egadame for sensor net-

works”, Symposium on Self-Stabilizing Systems (S3288.

[26] Dijkstra, E.W., “Self stabilizing systems in spite attibuted control”,Communica-
tions of the ACM1974.

[27] Dolev, S.,Self-StabilizationMIT Press, 2000.

[28] Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., and Ne|tT., “Brief announcement:
Virtual stationary automata for mobile networksProceedings of the 24th Annual

ACM Symposium on Principles of Distributed Computing (PQ2005.

341

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., and NalfT., “Timed virtual stationary
automata for mobile networksTR MIT-LCS-TR-979&2005.

DoOLEV, S., GLBERT, S., LAHIANI, L., LYNCH, N., AND NOLTE, T. 2005a. Virtual

stationary automata for mobile networks.Rroceedings of OPODIS

Dolev, S., Gilbert, S., Lynch, N., Schiller, E., Shvartan, A., and Welch, J., “Virtual
Mobile Nodes for Mobile Ad Hoc NetworksTnternational Conference on Principles
of Distributed Computing (DISC2004.

Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Weld., “GeoQuorums: Imple-
menting Atomic Memory in Ad Hoc Networks” 7th International Conference on
Principles of Distributed Computing (DISC$pringer-Verlag LNCS:2848, pp. 306-
320, 2008.

DOLEV, S., GLBERT, S., LYNCH, N., SHVARTSMAN, A., AND WELCH, J. 2003.
Geoquorums: Implementing atomic memory in ad hoc netwdrkBistributed algo-
rithms F. E. Fich, Ed. Lecture Notes in Computer Science, vol. 283@&3. 306—-320.

DOLEV, S., GLBERT, S., LYNCH, N. A., SHVARTSMAN, A. A., AND WELCH,
J. 2005. Geoquorums: Implementing atomic memory in moldld@c networks.

Distributed Computing

Dolev, S., Herman, T., and Lahiani, L., “Polygonal Bdoast, Secret Maturity and
the Firing Sensors'Third International Conference on Fun with Algorithms (FWJN

pp. 41-52, May 2004. Also to appearAd Hoc Networks JournaElseiver.

Dolev, S., Israeli, A., and Moran, S., “Self-Stabilian of Dynamic Systems Assum-
ing only Read/Write Atomicity” Proceeding of the ACM Symposium on the Princi-
ples of Distributed Computing (PODC 9@jp. 103-117. Also iistributed Comput-
ing 7(1): 3-16 (1993).

Dolev, S., Lahiani, L., Lynch, N., and Nolte, T., “Sedfabilizing Mobile Node Loca-
tion Management and Message Routingth Self-stabilizing Systems (SSS), 2005

342

[38] Dolev, S., Pradhan, D.K., and Welch, J.L., “Modified @r8tructure for Location
Management in Mobile EnvironmentsZomputer CommunicationSpecial issue on
mobile computing, Vol. 19, No. 4, pp. 335-345, April 1996 sAlINFOCOM 1995,
\Vol. 2, pp. 530-537, 1995.

[39] Dolev, S. and Welch, J.L.,“Crash Resilient Commurimain Dynamic Networks”,

IEEE Transactions on Computeidl. 46, No. 1, pp.14-26, January 1997.

[40] EFRIMA, A. AND PELEG, D. 2007. Distributed models and algorithms for mo-
bile robot systems. IISOFSEM (1)Lecture Notes in Computer Science, vol. 4362.
Springer, Harrachov, Czech Republic, 70-87.

[41] FAX, J.AND MURRAY, R. 2004. Information flow and cooperative control of vedicl

formations.IEEE Transactions on Automatic Control 4AB465-1476.

[42] FLOCCHINI, P., RRENCIPE G., SANTORO, N., AND WIDMAYER, P. 2001. Pattern

formation by autonomous robots without chirality. SlROCCO 147-162.

[43] Gazi, V., and Passino, K.M., “Stability analysis of swe”, IEEE Transactions on
Automatic Contral48(4):692—-697, 2003.

[44] Gilbert, S., "Virtual Infrastructure for Wireless Addd Networks”, Thesis, MIT,
2007.

[45] Gilbert, S., Lynch, N., Mitra, S., and Nolte, T. "Seltabilizing Mobile Robot For-
mations with Virtual Nodes” International Symposium on Stabilization, Safety, and

Security of Distributed SystemBo appear: November 2008.

[46] Goldenberg, D.K., Lin, J., and Morse, A.S., “Towardshility as a network control
primitive”, MobiHoc '04: Proceedings of the 5th ACM international syrsipon on
Mobile ad hoc networking and computingages 163—-174. ACM Press, 2004.

[47] Gollakota, S. and Katabi, D., "ZigZag Decoding: CombgtHidden Terminals in
Wireless Networks”’ACM SIGCOMM 2008.

343

[48] Haas, Z.J. and Liang, B., “Ad Hoc Mobility Managementtiviuniform Quorum
Systems”]JEEE/ACM Trans. on Networking/ol. 7, No. 2, p. 228-240, April 1999.

[49] Herlihy, M.P. and Tirthapura, S., “Self-stabilizingsttibuted queueingProceedings
of 15th International Symposium on Distributed Computpages 209-219, October
2001.

[50] HERMAN, T. 1996. Self-stabilization bibliography: Access guidé&eoretical Com-

puter Science

[51] Hubaux, J.P., Le Boudec, J.Y., Giordano, S., and Harij, “The Terminodes
Project: Towards Mobile Ad-Hoc WAN'Proceedings of MOMUC1999.

[52] IEEE Pervasive Computing: Mobile and Ubiquitous Systems
[53] IEEE Transactions on Mobile Computing

[54] Imielinski, T. and Badrinath, B.R., “Mobile wireles®mputing: challenges in data
management’Communications of the ACM/l. 37, Issue 10, pp. 18-28, October
1994.

[55] Jadbabaie, A., Lin, J., and Morse, A.S., “Coordinatmfngroups of mobile au-
tonomous agents using nearest neighbor ruld&EE Transactions on Automatic
Control, 48(6):988-1001, 2003.

[56] Johnson, D., Maltz, D., and Broch, J., “DSR: The Dyna®auirce Routing Protocol
for Multi-Hop Wireless Ad Hoc Networks”, chapter 5, pp.1392, Addison-Wesley,
2001.

[57] Karp, B. and Kung, H. T., “GPSR: Greedy Perimeter StaelRouting for Wire-
less Networks”,Proceedings of the 6th Annual International Conference abil
Computing and Networkingpp. 243-254, SCM Press, 2000.

[58] Kaynar, D., Lynch, N., Segala, R., and Vaandrager, Fhe Theory of Timed 1/O
Automata Morgan Claypool, 2006.

344

[59] Kuhn, F., Wattenhofer, R., Zhang, Y., and Zollinger, AGeometric Ad-Hoc Rout-
ing: Of Theory and Practice’Rroceedings of the 22nd Annual ACM Symposium on
Principles of Distributed Computing (POD3003.

[60] Kuhn, F., Wattenhofer, R., and Zollinger, A., “Asymptally Optimal Geometric
Mobile Ad-Hoc routing”,Proceedings of the 6th International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Commuincat (Dial-M), pp.
24-33, ACM Press, 2002.

[61] Lamport, L., "Time, clocks, and the ordering of evenmtsidistributed systemCom-
munications of the ACML978.

[62] Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.Rd dorris, R., “A Scalable Loca-
tion Service for Geographic Ad Hoc Routing?roceedings of Mobicon2000.

[63] Lin, J., Morse, A.S., and Anderson, B., “Multi-agenhdezvous problem”,42nd
IEEE Conference on Decision and Contra003.

[64] Lok, C., “Instant Networks: Just Add Softwaréfechnology Reviewlune, 2005.
[65] Lynch, N.,Distributed AlgorithmsMorgan Kaufman, 1996.

[66] Lynch, N., Mitra, S., and Nolte, T., “Motion coordinat using virtual nodes”|[EEE

Conference on Decision and Contr@005.

[67] Lynch, N., Segala, R., and Vaandrager, F., “Hybrid Ii@cmata”, Information and
Computation185(1):105-157, August 2003.

[68] Malkhi, D., Reiter, M., and Wright, R., “ProbabilistQuorum Systems”Proceed-
ing of the 16th Annual ACM Symposium on the Principles ofrDisted Computing
(PODC 97) pp. 267-273, Santa Barbara, CA, August 1997.

[69] Martinez, S., Cortes, J., and Bullo, F., “On robust rengus for mobile autonomous

agents”,IFAC World CongressPrague, Czech Republic, 2005.

[70] Merritt, M., Modugno, F., and Tuttle, M., “Time consing@d automata”,2nd Inter-
national Conference on Concurrency Theory (CONCURP1.

345

[71] Mittal, V., Demirbas, M., and Arora, A., “bcl: Local clustering in large scale
wireless networks”TR OSU-CISRC-2/03-TR0Z003.

[72] Nath, B. and Niculescu, D., “Routing on a curve ACM SIGCOMM Computer

Communication Reviev003.

[73] Navas, J.C. and Imielinski, T., “Geocast- geographidrassing and routing”Pro-
ceedings of the 3rd MobiCqri997.

[74] Neogi, N., “Designing Trustworthy Networked Systen#s:Case Study of the Na-
tional Airspace System”, International System Safety €warice, Ottawa, Canada,
August 3-11, 2003.

[75] NOLTE, T. AND LYNCH, N. A. 2007a. Self-stabilization and virtual node layer em-
ulations. InProceedings of SSS894-408.

[76] NOLTE, T. AND LYNCH, N. A. 2007b. A virtual node-based tracking algorithm for
mobile networks. INCDCS

[77] OLFATI-SABER, R., FAX, J.,AND MURRAY, R. 2007. Consensus and cooperation in

networked multi-agent systemBroceedings of the IEEE 9%,(January), 215-233.

[78] Park, V. and Corson, M., A highly adaptive distributediting algorithm for mobile

wireless networkslEEE Infocom April 1997.

[79] Perkins, C. and Royer, E., Ad hoc on-demand distancéweouting. 2nd IEEE
Workshop on Mobile Computing Systems and Applicatiealbruary 1999.

[80] PRENCIPE G. 2000. Achievable patterns by an even number of autonemnmiile
robots. Tech. Rep. TR-00-11. 17.

[81] PRENCIPE G. 2001. Corda: Distributed coordination of a set of autoaos mobile
robots. INERSADS185-190.

[82] Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Gmdan, R., and Shenker, S.,
“GHT: A Geographic Hash Table for Data-Centric Storadefst ACM International
Workshop on Wireless Sensor Networks and Applications A)/2R02.

346

[83] Suzuki, I. and Yamashita, M., “Distributed autonomausbile robots: Formation of
geometric patterns”SIAM Journal of computindg28(4):1347-1363, 1999.

[84] Talbot, D., “Airborne Networks”Technology Revievivay, 2005.

[85] Talbot, D., “The Ascent of the Robotic Attack JeTgchnology Reviewarch, 2005.
[86] TinyOS Community Forumhtt p: // www. ti nyos. net .

[87] Vasek, T., “World Changing Ideas: Germany&chnology RevievApril, 2005.

[88] Weisman, R., “MIT seeks computing revolutioBoston Globg2005.

347

