
Virtual Stationary Timed Automata for Mobile Networks

by

Tina Ann Nolte

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2009

c© Massachusetts Institute of Technology 2009. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

October 24, 2008

Certified by
Nancy Lynch

NEC Professor of Software Science and Engineering
Thesis Supervisor

Accepted by.
Terry P. Orlando

Chair, Department Committee on Graduate Students

2

Virtual Stationary Timed Automata for Mobile Networks

by

Tina Ann Nolte

Submitted to the Department of Electrical Engineering and Computer Science
on October 24, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis, we formally define a programming abstractionfor mobile networks called the
Virtual Stationary Automataprogramming layer, consisting of real mobile clients, virtual
timed I/O automata called virtual stationary automata (VSAs), and a communication ser-
vice connecting VSAs and client nodes. The VSAs are located at prespecified regions that
tile the plane, defining a static virtual infrastructure. Wepresent a theory of self-stabilizing
emulation and use this theory to prove correct a self-stabilizing algorithm to emulate a
timed VSA using the real mobile nodes that are currently residing in the VSA’s region. We
also specify two important services for mobile networks: motion coordination and end-
to-end routing. We split the implementation of the end-to-end routing service into three
smaller pieces, consisting of geographic routing and location management services with an
end-to-end routing service built on top of them. We provide stabilizing implementations of
each of these services using the VSA abstraction, and provide formal correctness analyses
for each implementation.

Thesis Supervisor: Nancy Lynch
Title: NEC Professor of Software Science and Engineering

3

4

Acknowledgments

The years I spent at MIT were filled with interactions with people that I will never forget.

Their support is what made this thesis possible.

First, I would like to thank my thesis advisor, Nancy Lynch. Of course, her technical

guidance was necessary and invaluable, but, just as important, whenever I felt as though the

light at the end of the tunnel was a little faint, a conversation with her would put me back

on my feet. She was always able to help me remember that problems that I was thinking

about were both interesting and of interest. I would never have been able to write this thesis

without that.

I would also like to thank the other members of my thesis committee, Shlomi Dolev

and Madhu Sudan, for their time and feedback.

Next, I would like to acknowledge the people that I had the honor of collaborating with

on work that led up to this thesis. A visit by Shlomi Dolev and one of his students, Limor

Lahiani, was the spark for this work. Shlomi is a bottomless well of interesting ideas and

questions, and this initial visit created too many ideas to put into one paper. The first two

VSA papers [29,37] came from this visit.

Seth Gilbert was an indispensable sounding board, on the first VSA paper [29] and

others [45], [12]. If I had difficulty figuring out how to explain something in my head, I

would often talk to Seth. Somehow he could peer in and see whatI was trying to say. We

also had the opportunity to work together on some of the motion coordination work that

appears in this thesis [45]. This motion coordination work was joint work with Sayan Mitra

and was based on an earlier paper that Sayan and I worked on [66]. Working with Sayan

on that earlier paper was the most fast-paced paper-writingexperience I have ever had; it

was a ton of fun, and the meal at his house when it was done was two tons of fun.

I also enjoyed working with Seth Gilbert and Calvin Newport (a well-read conversation-

alist who often came to my aid when nontechnical diversions were required) on a project

with Matt Brown and Mike Spindel on implementing some of the virtual infrastructure

ideas [12].

I had the pleasure of working with people outside the scope ofmy thesis as well. These

5

collaborators and friends include Mandana Vaziri, Ling Cheung, Rui Fan, Murat Demirbas,

and Elad Schiller. I would also like to thank my master’s thesis supervisor, Daniel Jackson,

for helping me complete my first big technical work.

I need to thank my family and friends for their support. Without my family I would

not be here, on planet Earth, let alone finishing an undertaking such as this. Without my

friends, I would not have (most of) my sanity intact today. And without Stangelaliana and

the Al/ Logan/ Nick/ Junior team in particular, I would probably have starved to death in

my last months in Boston.

Finally, I have to particularly thank my husband, Jason, whoalways disagreed with me

whenever I said that I was never going to finish, even if it was only because he wanted me

to start working so that he could quit his day job and join the PGA tour (just you try it,

buddy). Since Jason often complains that he has no records for the times when I admit that

he was right and I was wrong, here it is:

“Jason, you were right, and I was wrong”.

6

Contents

1 Introduction 15

1.1 Mobile ad hoc networks . 16

1.1.1 Point-to-point based algorithms 16

1.1.2 Location aware algorithms . 17

1.2 Virtual programming layers .. . 18

1.2.1 Virtual objects . 18

1.2.2 Virtual Mobile Nodes . 19

1.2.3 Our approach – Timed Virtual Stationary Automata 19

1.3 Theory of stabilization and emulation for timed systems. 20

1.4 A stabilizing VSA layer emulation algorithm 22

1.5 Thesis overview . 24

1.6 Research acknowledgments .. 28

I Theory of stabilization and VSA layer emulation 30

2 Mathematical preliminaries 33

2.1 Basic mathematical preliminaries 33

2.2 Timed I/O Automata . 34

3 Self-stabilization 41

4 Emulations 51

4.1 Emulation . 51

7

4.2 Emulation stabilization .. . 53

5 Failure transform 57

6 Layers: Physical layer model 61

6.1 Network tiling . 61

6.2 Mobile physical nodes . 63

6.3 RW: Real World . 64

6.4 Pbcast: Local broadcast service . 69

6.4.1 Properties ofPbcast . 70

6.4.2 Reachable states ofPbcast . 72

6.4.3 Reachable states ofRW‖Pbcast 74

6.5 P-algorithms andPLayers. 78

7 Layers: Virtual Stationary Automata layer model 79

7.1 Network tiling andRW . 80

7.2 Virtual time and failer serviceVW . 80

7.3 Mobile client nodes . 81

7.4 Virtual Stationary Automata (VSAs) 82

7.5 VBDelaydelay buffers . 83

7.5.1 ClientVBDelay . 83

7.5.2 VSAVBDelay . 85

7.6 Vbcast: Virtual local broadcast service . 85

7.7 V-algorithms andVLayers . 90

8 VSA layer emulations 93

II VSA layer emulation algorithm 96

9 Totally ordered broadcast service 99

9.1 TOBspec: Specification of totally ordered broadcast99

9.1.1 TObcast. 101

8

9.1.2 TOBDelay . 105

9.1.3 TOBFilter . 105

9.1.4 TOBspec . 107

9.2 TOBimpl: Implementation . 117

9.3 Correctness of the implementation 121

9.3.1 Legal sets . 122

9.3.2 Simulation relation . 133

9.3.3 Self-stabilization . 142

10 Leader election service 147

10.1 LeadSpec: Specification of the leader election service147

10.1.1 LeadMain . 149

10.1.2 LeadCl . 151

10.1.3 LeadSpec. 153

10.2 LeadImpl: Implementation . 160

10.3 Correctness of the implementation 162

10.3.1 Legal sets . 163

10.3.2 Simulation relation . 165

10.3.3 Self-stabilization .172

11 Implementation of the VSA layer 175

11.1 Client implementation .. 175

11.2 VSA implementation . 175

11.3 Correctness of the implementation 182

11.3.1 Legal sets . 186

11.3.2 Simulation relation . 200

11.3.3 Self-stabilization .216

11.3.4 Stabilizing emulations .221

11.3.5 Message complexity . 228

11.4 Extending the implementation to allow more failures 228

9

III VSA layer applications 230

12 GeoCast 233

12.1 Specification . 234

12.2 Properties of executions of the geocast service 237

12.3 Legal sets . 239

12.3.1 Legal setL1
geo . 239

12.3.2 Legal setL2
geo . 241

12.4 Self-stabilization .. . 246

13 Location Management 251

13.1 Location service specification 253

13.1.1 Client algorithm . 255

13.1.2 VSA algorithm . 256

13.2 Properties of executions of the location service 257

13.3 Legal sets . 259

13.3.1 Legal setL1
hls . 260

13.3.2 Legal setL2
hls . 261

13.3.3 Legal setL3
hls . 262

13.3.4 Legal setL4
hls . 263

13.3.5 Legal setL5
hls . 264

13.4 Self-stabilization .. . 266

13.5 Extensions . 271

14 End-to-end Routing 273

14.1 Client end-to-end routing specification 273

14.1.1 Client algorithm . 274

14.1.2 VSA algorithm . 276

14.2 Properties of executions of the end-to-end routing service 277

14.3 Legal sets . 280

14.3.1 Legal setL1
e2e . 281

10

14.3.2 Legal setL2
e2e . 282

14.3.3 Legal setL3
e2e . 283

14.3.4 Legal setL4
e2e . 284

14.4 Self-stabilization .. . 285

14.5 Extensions . 290

15 Motion Coordination 293

15.1 Background . 293

15.2 Motion Coordination using Virtual Nodes 296

15.2.1 Problem Statement . 297

15.2.2 Overview of Solution using the VSA Layer 297

15.2.3 RW′: modifiedRW . 298

15.2.4 CN: Client Node Algorithm . 299

15.2.5 VN: Virtual Stationary Node Algorithm 300

15.2.6 MC: Complete System . 303

15.3 Correctness of the Algorithm 304

15.3.1 Approximately Proportional Distribution 305

15.3.2 Uniform Spacing . 315

15.4 Self-stabilization of the Algorithm 317

15.4.1 Legal Sets . 318

15.4.2 Relationship betweenLMC and reachable states 320

15.4.3 Stabilization toLMC . 326

15.5 Conclusion . 329

16 Conclusions 331

16.1 Contributions . 331

16.2 Evaluation . 333

16.3 Open questions and avenues for research 335

11

12

List of Figures

3-1 ExecutionαB for Lemma 3.6. 43

6-1 Pp. 63

6-2 RW[vmax, ǫsample]. 65

6-3 RWderived variables. 65

6-4 Pbcast[dphys, rreal]. 69

7-1 Virtual Stationary Automata layer. VSAs and clients communicate locally

usingVbcast. VSA and client outputs may be delayed inVBDelaybuffers.

VW provides timing and failure information to VSAs, andRW provides

timing and mobile node location information. 79

7-2 VW[ǫsample] , Virtual time and failer service. 80

7-3 Vu. 82

7-4 VBDelayp, Message delay service for clients. 83

7-5 VBDelay[e]u, Message delay service for VSAs. 85

7-6 Vbcast[d]. 86

9-1 Totally ordered broadcast service. Client outputs may be delayed inTOB-

Delaybuffers, and messages are filtered out based on region and time alive

information inTOBFilter buffers. RW provides timing and mobile node

location information. 100

9-2 TObcast[d], Message ordering service. 101

9-3 TOBDelayp, Message delay service. 105

9-4 TOBFilter[d]p, Message filtering service. 106

13

9-5 TOBimplerp, providing ordered broadcast. 117

10-1 Leader election service. ALeadCl for a client performs aprefer′(f) to

indicate that its client should be considered byLeadMainas the leader of

its client’s region. LeadMaindetermines the winners of the leader com-

petition for each region and communicates the results to each LeadCl. A

winning process’sLeadClmight then produce aleader output to its client,

indicating the client is a leader. .. . 148

10-2 LeadMain, electing a leader. 149

10-3 LeadClp, client portion for electing a leader. 151

10-4 Leaderp, electing a leader. 160

11-1 VSA layer implementation. Each process runs a collection of algorithms:

LeadCl, TOBDelay, andTOBFilter, defined previously, together with

CE[alg] andV SAE[alg], the client and VSA emulator algorithms. 176

11-2 VSAE[alg]p, emulator atp of alg ∈ V Algs. 179

11-3 Relationship between virtual and real time. A virtual clock behind real time

runs faster until it catches up. .. 180

11-4 Functions for use in correctness proofs. 184

12-1 VSA geocast automaton at regionu, V Geo
u 234

13-1 ClientCHL[ttlhb]p periodically sends region updates to its local VSA. . . . 253

13-2 VSAV HL[ttlhb, h : P → U]u automaton. 254

14-1 ClientCE2E
p automaton. 275

14-2 VSAV E2E [ttlhb, h]u automaton. 276

15-1 RW′[vmax, ǫsample]. 299

15-2 Client nodeCN(δ)p automaton. 300

15-3 V N(δ, k, ρ1, ρ2)u TIOA, with parameters: safetyk, and dampingρ1, ρ2. . . 301

15-4 V N(k, ρ1, ρ2)u TIOA functions. 302

14

Chapter 1

Introduction

In this thesis, we focus on mobile ad-hoc networks, where mobile processors attempt to

coordinate despite minimal infrastructure support. The task of designing algorithms for

constantly changing networks is difficult. Highly dynamic networks, however, are becom-

ing increasingly prevalent, especially in the context of pervasive and ubiquitous computing,

and it is therefore important to develop and use techniques that simplify this task.

In addition, nodes in these networks are often unreliable, and may suffer from crashes or

corruption faults, which cause arbitrary changes to their program states. Self-stabilization

[26, 27] is the ability to recover from an arbitrarily corrupt state. This property is impor-

tant in long-lived, chaotic systems where certain events can result in unpredictable faults.

For example, transient interference may disrupt wireless communication, violating our as-

sumptions about the broadcast medium.

In this thesis, I develop new techniques to cope with this dynamic, heterogeneous, and

chaotic environment. We mask the unpredictable behavior ofmobile networks by defining

and emulating a stablizingvirtual fixed infrastructure, called theVirtual Stationary Au-

tomata layer, consisting oftiming-awareand location-awaremachines at fixed locations,

that mobile nodes can interact with. The static virtual infrastructure allows application

developers to use simpler algorithms — including many previously developed for fixed

networks. In order to facilitate the reasoning about this layer, in this thesis I also define a

formal model for stabilization and stabilizing emulation in timed systems.

15

1.1 Mobile ad hoc networks

Mobile ad hoc networks are made up of mobile nodes (devices) that can be deployed in

an ad hoc way over some deployment space. These networks can be made up of machines

ranging from small sensors such as Berkeley motes [86], to cars, cell phones, and laptop

computers. The nodes making up these networks are equipped with wireless communica-

tion, rather than access to a fixed “landline”. They can provide communication or coordina-

tion services in situations where it is too costly or impractical to build a fixed infrastructure.

Commonly cited examples of places where mobile ad hoc networks are especially useful

are ones from search and rescue operations or battlefield coordination.

Direct communication in these networks is between devices that are close enough to

each other to receive broadcasts. Since the devices are mobile and long distance commu-

nication requires multiple transmission hops, it can be difficult to ensure reliable commu-

nication between devices that are not within broadcast range. We assume for this thesis

that mobile nodes enjoy reliable communication with other mobile nodes that are within a

certain broadcast radius.

The machines making up these networks are also commonly fault-prone, since they

are often small battery-powered devices, making them susceptible to crashes or sudden

displacement. Also, their power constraints feed into constraints on broadcast power, im-

plying the possibility of unexpected interruption or interference in communication. In this

thesis, the mobile nodes are susceptible to crash failures and restarts, as well as corruption

failures.

Increasingly, it is common for mobile devices to be equippedwith access to a reason-

ably reliable time and location service that can provide devices with synchronized time

updates and real-time location information. We assume in this thesis that mobile nodes

have access to such anoracle.

1.1.1 Point-to-point based algorithms

Many of the initial algorithms for mobile ad hoc networks concentrated on achieving re-

liable point-to-point routing [56, 78, 79], one of the most important services in traditional

16

wired networks. This can be used to handle the dynamic natureof the networks by re-

moving the concepts of geography and location from the consideration; a wireless network

could be forced to appear as some wired network, oblivious ofthe location of its nodes.

Unfortunately, while such an approach might be sufficient ifpoint-to-point communica-

tion is the only service that is desired, there are many circumstances where communication

and coordination tied to actual geographic location is preferable in a mobile network. For

example, in a traffic coordination scenario, safety would bebest served by having cars near

the same intersection coordinate with one another to avoid collision, rather than coordinate

with the particular vehicles it has in their “car-phonebooks”.

1.1.2 Location aware algorithms

In contrast to the point-to-point approach, there are a number of prior papers that take

advantage of geography to facilitate the coordination of mobile nodes. For example, the

GeoCast algorithms [14, 73], GOAFR [59], and algorithms for“routing on a curve” [72]

route messages based on the location of the source and destination, using geography to

delivery messages efficiently. Other papers [51,62,82] usegeographic locations as a repos-

itory for data. These algorithms associate each piece of data with a region of the network

and store the data at certain nodes in the region. This data can then be used for routing

or other applications. All of these papers take a relativelyad-hoc or application-specific

approach to using geography and location. We suggest a more systematic approach; we

believe that the algorithms presented in these papers wouldbenefit from using a fixed,

predictable timing-enabled infrastructure to simplify coordination.

In industry there have been a number of attempts to provide specialized applications for

ad-hoc networks by organizing some sort of virtual infrastructure over the mobile nodes.

PacketHop and Motorola envision mobile devices cooperating to form mesh networks to

provide communication services in areas with wireless-broadcast equipped devices but not

a lot of fixed infrastructure [64]. These virtual infrastructures could allow on-the-fly net-

work formation that can be used at disaster sites, or other areas where fixed infrastructure

does not exist or has been destroyed. BMW and several other car manufacturers are de-

17

veloping systems that allow cars to communicate with one another about local road or car

conditions, aiding in accident avoidance [87].

Another approach is that of Persistent Nodes [9]. Persistent nodes are virtual objects

that move in a static sensor network, taking advantage of changing network conditions to

try to ensure availability of data. While mobile, a persistent node only provides a non-

atomic read/write object.

However, each of the above examples tackles very specific kinds of applications, like

routing or distribution of sensor data. We believe a more general-purpose virtual infrastruc-

ture, that organizes mobile nodes into general programmable entities, can make a richer set

of applications easier to provide. For example, with the advent of autonomous combat

drones [85], the complexity of algorithms coordinating thedrones can make it difficult

to provide assurance to an understandably concerned publicthat these firepower-equipped

autonomous units are coordinating properly. With a formal model of a flexible and easy-

to-understand virtual infrastructure available, it wouldbe easier to both provide and prove

correct algorithms for performing sophisticated coordination tasks.

1.2 Virtual programming layers

In this thesis I describe a different approach to taming mobile ad hoc networks– virtual

programming layers. Virtual programming layers do not provide a specific service; instead,

they are a programming abstraction that allows applicationdevelopers to design simpler

algorithms for mobile networks. Several virtual programming layers have previously been

proposed for mobile ad-hoc networks.

1.2.1 Virtual objects

The GeoQuorums algorithm [32] was the first to use virtual nodes; this algorithm defined a

Focal Point Abstraction where mobile nodes in fixed, designated geographic regions of the

network, calledfocal points, would cooperate to emulate atomic read/write shared memory.

Atomicity is a strong property for a shared memory object that can be accessed concurrently

by multiple processes; it requires that the invocations andresponses of the object look as if

18

the object was only being accessed one at a time, and in an order consistent with the order

of actual invocations and responses [65]. The focal points in the Focal Point abstraction

were allowed to fail, but could not subsequently recover. This abstraction utilized a local

broadcast service and a GeoCast communication service to facilitate communication be-

tween mobile clients and focal points. Quorums (sets) of focal points were then used in the

paper to provide a fault-tolerant atomic memory service.

1.2.2 Virtual Mobile Nodes

More general virtual mobile automata were suggested in [31]. In this Virtual Mobile Node

(VMN) abstraction, the virtual nodes are discrete I/O automata [65] that move on a prede-

fined path through the network. The implementation of a VMN using the network’s mobile

nodes offered fault-tolerance through finite state replication among the mobile nodes em-

ulating the VMN. A VMN is capable of recovery after failure, and utilizes just a local

broadcast communication service to communicate with mobile clients, rather than both the

local broadcast and GeoCast services used in the GeoQuorumswork.

1.2.3 Our approach – Timed Virtual Stationary Automata

In Part I of this thesis, I present a new theoretical programming abstraction for mobile

networks that consists of a static infrastructure of fixed, timed virtual machines with an ex-

plicit notion of real time, calledVirtual Stationary Automata(VSAs), distributed at known

locations over the plane, and emulated by the real mobile nodes in the system. Each VSA

represents a predetermined geographic area and has broadcast capabilities similar to those

of the mobile nodes, though perhaps suffering from an additional additive broadcast delay,

allowing nearby VSAs and mobile nodes to communicate with one another. This program-

ming layer provides mobile nodes with a virtual infrastructure with which to coordinate

their actions. Many practical algorithms depend significantly on timing, and it is reason-

able to assume that many mobile nodes have access to reasonably synchronized clocks.

In the VSA programming layer, the virtual automata also haveaccess tovirtual clocks,

guaranteed to not drift too far from real time.

19

VSAs are machines whose computational model is more powerful than those in [31],

in that ours include timing capabilities, which are important for many applications. How-

ever, our automata are stationary, and are arranged in a connected pattern that is similar to

a traditional wired network. This allows application developers to reuse a number of pre-

viously designed algorithms for stationary networks. Notethat the virtual nodes described

in [31,32] could all be implemented using the infrastructure we describe here.

We present several applications in part III of this thesis whose implementations are

significantly simplified by the VSA infrastructure. We consider both low-level services,

such as routing and location management, as well as more sophisticated applications, such

as motion coordination. The key idea in all cases is to locatedata and computation at

timed virtual automata throughout the network, thus relying on the fixed, predictable in-

frastructure to simplify coordination in ad-hoc networks.It is interesting to note that this

infrastructure can be used to implement services such as routing that are oftentimes thought

of as the lowest-level services in a network.

1.3 Theory of stabilization and emulation for timed sys-

tems

One contribution of this thesis is the formal modeling and analysis of the VSA program-

ming layer, its implementation, and the implementations ofvarious applications using the

layer. In this thesis, we model systems using the timed I/O automata (TIOA) formal-

ism [58]. These formal specification models provide unambiguous and simple descriptions

of system behaviour and allow us to formally reason about system behaviour. Formal spec-

ifications also make clear those hidden system assumptions that can derail deployment of a

distributed system.

As part of the project to formally model and analyze algorithms to provide the VSA

programming layer, this thesis presents a formal semanticsfor emulation of a system. This

provides proof obligations required to conclude that one system successfully emulates an-

other system. An emulation is a kind of implementation relationship between two sets of

20

timed machines. Intuitively, one set of machinesB emulates another set of machinesC
if each machine (program)C in C is mapped to a machine (emulation of the program) in

B that has externally observable traces that look like some constrained set of externally

observable traces ofC.

Another significant contribution of this thesis is a theory of stabilization in TIOA sys-

tems, which we had to develop to explain the stabilization properties of our algorithm for

emulating the VSA layer. Self-stabilization [26, 27] is theability to recover from an arbi-

trarily corrupt state. This property is important in long-lived, chaotic systems where cer-

tain events can result in unpredictable faults. For example, transient interference may dis-

rupt the wireless communication, violating our assumptions about the broadcast medium.

This might result in inconsistency and corruption in the emulation of the VSA. Our self-

stabilizing implementation of the VSA layer, however, can recover after corruptions to

correctly emulate a VSA.

Prior work in self-stabilization for TIOA systems was informal. Our formal theory of

stabilization in TIOA systems is based onhybrid sequences, sequences consisting of trajec-

tories (modeling the evolution of a collection of variablesover a time interval) interleaved

with discrete actions. One set of hybrid sequencesB is said tostabilize in timet to another

set of hybrid sequencesC if each suffix ofβ startingt time after the beginning ofβ happens

to be in the setC. In this thesis, we demonstrate that these definitions work by concocting

a “formula” that we use throughout the thesis for reasoning about the stabilization of an

implementation of one system by another (described in the beginning of Section 9.3).

Our definition of stabilization using hybrid sequences is general enough to not only

allow us to talk about executions (or traces) of one timed system stabilizing to executions

(or traces) of another timed system, but also to talk about fragments of executions or traces

starting in a certain set of states stabilizing to some set offragments starting in another

set of states. This generality is very useful in stabilization proofs for two reasons: (1) it

makes it easy for us to break stabilization of an algorithm down into multiple phases, where

one phase takes fragments starting in one set of states to fragments starting in a second set,

another phase takes fragments starting in the second set to those in a third, etc.; (2) it makes

it easy to talk about stabilization of algorithms with access to reliable external oracles; and

21

(3) it provides a way to talk about stabilization of algorithms for which there is no obvious

“reset” state. By the last I mean that our definition of stabilization allows us to talk about

stabilization of long-lived services with an invocation / response or send / receive behavior.

In execution fragments of implementations of these services, it is possible for there to never

be a point where there is no outstanding invocation or send. However, the implementation

might be guaranteed to reach a point where it behaves just like some suffix of an execution

of the service. Our definition of stabilization allows us to discuss these kinds of algorithms.

This thesis also presents a formal semantics for stabilizing emulation of timed systems.

Since one part of this thesis is providing an emulation algorithm that implements a VSA

layer but is also stabilizing, it is necessary to consider what such an emulation algorithm

can guarantee. Hence, this thesis also presents a formal semantics for stabilizing emulation

of timed systems. Say one set of machinesB emulates another set of machinesC. We

want to define the idea that for any programC in C, the emulation of the program can

be started in an arbitrary state but eventually produce externally observable behaviors that

are related to those ofC. What kind of behaviors ofC should be the emulation produce?

Intuitively, after a period where the emulation produces nonsense, it should manage to

produce traces that look like traces of the programC, though not necessarily starting from

an initial or reachable state of that program. Notice that this means that if corruption

failures or arbitrary initial states are a possibility at emulators, then not only should the

emulation algorithm be a stabilizing emulation, but the programs being emulated should be

stabilizing.

These contributions are useful outside the scope of virtualnodes, potentially aiding in

the specification of emulations of other systems or simplifying the reasoning about stabi-

lizing timed systems in general.

1.4 A stabilizing VSA layer emulation algorithm

In part II of this thesis, I present an algorithm for implementing a VSA layer using a mobile

ad hoc network consisting of mobile nodes that may suffer from crash failures and restarts.

In order to provide this implementation, I first implement two other services over the mo-

22

bile nodes: totally ordered broadcast and leader election.Each mobile node is assumed

to have access to a GPS service informing it of the region it iscurrently in. The totally

ordered broadcast service ensures that processes in the same region receive the same mes-

sages in the same order. Under the assumption of reliable broadcast communication, this

service is easily implemented using a technique similar to the one used in [61] to imple-

ment replicated state machines. The leader election service uses a round-based algorithm

to periodically elect a new leader in each geographic area.

Given these two services, our clock-equipped VSA layer can then be emulated by the

real mobile nodes in the network. A VSA for a particular geographic region is emulated by

a subset of the mobile nodes currently populating its region: the VSA state is maintained

in the memory of the real nodes emulating it, and the real nodes perform VSA actions on

behalf of the VSA. If no mobile nodes are in the region, the VSAfails; if mobile nodes later

arrive, the VSA restarts. The emulation is shared by the nodes while one node designated

as leader is responsible for performing the outputs of the VSA and keeping the other nodes

consistent in their VSA state.

An important property of our implementation is that it is self-stabilizing. Traditionally,

studies of self-stabilizing systems are concerned with those systems that can be started from

arbitrary configurations and eventually regain consistency without external help. However,

mobile clients often have access to some reliable external information from a service such

as GPS. Our algorithms use an external GPS service as a reliable oracle, providing periodic

real time clock and location information to base stabilization upon. For example, our algo-

rithms often use timestamps and location information to tagevents. In an arbitrary state,

recorded events may have corrupted timestamps. Corrupted timestamps indicating future

times can be identified and reset to predefined values; new events receive newer timestamps

than any in the arbitrary initial state. This could eventually allow nodes in the system to

totally order events. We use the eventual total order to provide consistency of information

and distinguish between incarnations of activity (such as retransmissions of messages).

23

1.5 Thesis overview

Here we provide an overview of the thesis. The thesis is divided into three main parts. The

first part of the thesis focuses on introducing the theory of timed stabilization, stabilizing

emulation, and VSA layers. The second part of the thesis focuses on a stabilizing emula-

tion algorithm for the VSA layer. The third part of the thesisprovides some examples of

applications for the VSA layer.

Part I

The first part of the thesis provides the theoretical foundation for the rest of the thesis.

It describes definitions and results for stabilization in timed systems, failures, stabilizing

emulations, and the VSA layer.

I first provide some mathematical tools for talking about stabilization, system failure,

and emulation in timed I/O automata systems. I also describea system model for GPS-

equipped mobile ad-hoc networks, and then describe a formalTIOA model of the VSA

programming layer.

Chapter 2

I begin by reviewing the Timed I/O Automata model of [58] for discussing timed systems.

Chapter 3

I then provide some mathematical definitions and tools for talking about stabilization in

timed systems. The definition of stabilization for timed systems is based on hybrid se-

quences; we define stabilization as being from one set of hybrid sequences to another. In

this chapter I also show some useful results about stabilization, including results about

transitivity andlegal sets. Legal sets are sets of states that are closed under execution

fragments; they are used often in this thesis to describe states with desirable properties.

24

Chapter 4

In this chapter, I define the concept of an emulation and a stabilizing emulation. Emulations

define a kind of implementation relationship between two sets of machines. The definition

of emulation is followed with a definition of a stabilizing emulation. An algorithm is a

stabilizing emulation if an emulation of a program can be started in an arbitrary state but

eventually behave as though it is the emulated program, though from a potentially arbitrary

state.

Chapter 5

This chapter discusses a model for node failure and restart.It describes a general crash

stop and restart transformation for TIOA programs. Such a transformation is useful in that

it removes ambiguity about the semantics of failures and restarts.

Chapter 6

Here I introduce a model of a mobile ad hoc network physical layer. This layer consists of

mobile physical nodes, a GPS oracle, and a broadcast communication service. Communi-

cation is local in this model.

Chapter 7

In this chapter, I consider the Virtual Stationary Automatalayer model. The VSA layer

consists of mobile client nodes (analogous to mobile physical nodes), a GPS oracle, a

virtual broadcast communication service, a virtual time service (a GPS time service for

the Virtual Stationary Automata), and Virtual Stationary Automata. A VSA is a TIOA

with a real-time clock, restricted external interface, allowing it to only send and receive

messages using the virtual broadcast service; its broadcasts can be delayed for up to a

constant amount of time.

25

Chapter 8

Here the results and definitions of Chapter 4 are specializedfor the case of an emulation of

the VSA layer by the physical layer.

Part II

We provide an implementation of that layer using the underlying mobile ad-hoc system, and

prove that the implementation provides a stabilizing emulation of the VSA programming

layer. This implementation is in three parts: totally ordered broadcast, leader election, and

a main emulation component.

Chapter 9

It is useful to have access to a totally ordered broadcast service that allows nodes in the

same region to receive the same sets of messages in the same order. The totally ordered

broadcast service is intended to allow a non-failed nodep that knows it is in some region

u to broadcast a messagem, via tocast(m)p, and to have the message be received exactly

d, d > dphys, time later viatorcv(m)q, by nodes that are in regionu or a neighboring region

for at leastd time.

Chapter 10

It is also useful to have access to a leader election service that allows nodes in the same

region to periodically compete to be named sole leader of theregion for some time. Our

leader election service is a round-based service that collects information from potential

leaders at the beginning of each round, determines up to one leader per region, and performs

leader outputs for those leaders that remain alive and in their region for long enough.

Chapter 11

We describe a fault-tolerant implementation of a VSA by mobile nodes in its region of

the network. At a high level, the individual mobile nodes in aregion share emulation of

the virtual machine through a deterministic state replication algorithm while also being

26

coordinated by a leader. Each mobile node runs its portion ofthe totally ordered broadcast

service, leader election service, and a Virtual Node Emulation (VSAE) algorithm, for each

virtual node.

In this chapter we also prove that the implementation is a stabilizing emulation of the

VSA layer.

Part III

We conclude with a description of two applications that we implement using the VSA

layer. In the thesis, each implementation, whether of the VSA programming layer or of

applications built on the layer, is proved correct using theTIOA formal framework.

The first VSA application, end-to-end routing, is implemented in three pieces: a region-

to-region geocast service, a location management service,and an end-to-end routing ser-

vice built on the geocast and location management services.The second application is a

motion coordination service.

Chapter 12

We describe a stabilizing region-to-region communicationservice in this chapter. The al-

gorithm is based on a shortest path procedure. When a region receives a geocast message

it has not previously seen from regionu to regionv for which it is on a shortest path from

u to v, it forwards the message closer to regionv. The program described in this chapter is

a part of a VSA layer program to provide end-to-end routing.

Chapter 13

This chapter describes how to provide the location management piece of the end-to-end

routing service on the VSA layer. The solution is based on theconcept ofhome location

servers, where each mobile client identifier hashes to a home location, a region of the

network that is periodically updated with the location of the client and that is responsible

for answering queries about the client’s location. The periodic location updates and the

forwarding of queries and responses are done using the geocast service of Chapter 12.

27

Chapter 14

We describe a simple self-stabilizing algorithm over the VSA layer to provide a mobile

client end-to-end routing service. A client sends a messageto another client by forward-

ing the message to its local VSA, which then uses the home location service to discover

the destination client’s region and forwards the message tothat region using the geocast

service.

Chapter 15

In this chapter, we study how the VSA layer can help us solve the problem of coordinat-

ing the behavior of a set of autonomous mobile robots (physical nodes) in the presence of

changes in the underlying communication network as well as changes in the set of partic-

ipating robots. Each VSA must decide based on its own local information which robots

to keep in its own region, and which to assign to neighboring regions; for each robot that

remains, the VSA determines where on the curve the robot should reside. Unlike in the

prior three applications (Geocast, location management, and end-to-end communication),

the client motion in the motion coordination protocol is controllable by the client, allowing

the client to change its motion trajectory based on instructions from a VSA.

1.6 Research acknowledgments

Much of the research presented in this thesis has been done incollaboration with others,

particularly: Shlomi Dolev, Seth Gilbert, Limor Lahiani, Nancy Lynch, and Sayan Mitra.

The content in this thesis has been partially drawn from the following papers:

• Self-stabilization and Virtual Node Layer Emulations[75]. This paper is a prelimi-

nary version of some of the results in Chapters 3, 4, and 8. In it I introduced a set of

formal definitions for stabilization in timed systems, as well as a formal definition of

stabilizing emulation for the VSA layer. However, the definitions in this thesis are

different; the thesis generalizes some of the stabilization and emulation results, and

introduces a new formal model for process failures and restarts.

28

• Timed Virtual Stationary Automata for Mobile Networks[29, 30]. These papers pre-

sented preliminary models of the physical layer described in Chapter 6 and the VSA

layer described in Chapter 7, though the failure modeling inthese papers difffers

from the modeling in this thesis.

The initial impetus for these papers came from work with Shlomi Dolev and Limor

Lahiani about their ideas on how mobile nodes in predefined geographic regions

could share responsibility for implementing a message routing service. These papers

were joint work in which we generalized these ideas into an implementation of an

early version of a VSA layer, where mobile nodes in predefinedgeographic regions

could share responsibility for general emulation of algorithms.

• Self-Stabilizing Mobile Node Location Management and Message Routing[37]. This

paper contains early versions of algorithms for implementing geographic broadcast,

location management, and message routing services using the VSA layer. It is based

on some of the ideas from the same work with Shlomi Dolev and Limor Lahiani

mentioned above, and was the first paper demonstrating applications of the VSA

layer.

In Chapters 12-14 of this thesis I use a different set of VSA layer algorithms to

implement versions of these services. However, the breakdown in [37] of the message

routing problem into three pieces is preserved in this thesis.

• Self-Stabilizing Mobile Robot Formations with Virtual Nodes [45]. This paper is a

preliminary version of Chapter 15 in this thesis. It is itself based on work in [66],

where a simplified virtual node layer was used to coordinate the motion of mobile

nodes. The technical definition of the problem of motion coordination (a variant of

which appears in this thesis in Section 15.2) and the rules used by the virtual nodes

for allocating / directing mobile nodes (Figure 15-4 of thisthesis) are primarily the

work of Sayan Mitra, as is the proof that these rules lead to motion coordination

(reproduced in this thesis in Section 15.3). My contribution in this work is in the

VSA layer modeling of the algorithm, as well as the design andproof of stabilization

of a self-stabilizing version of the algorithm.

29

Part I

Theory of stabilization and VSA layer

emulation

30

In Part I of this thesis, I introduce the theory that the rest of this thesis is built on. I open

with a brief review in Chapter 2 of the Timed I/O Automata model of [58] for discussing

timed systems.

In Chapter 3, I then provide some mathematical definitions and tools for talking about

stabilization in timed systems. The definition of stabilization for timed systems is based

on hybrid sequences; we define stabilization as being from one set of hybrid sequences to

another. In this chapter I also show some useful results about stabilization, including results

about transitivity andlegal sets. Legal sets are sets of states that are closed under execution

fragments; they are used often in this thesis to describe states with desirable properties.

Next, in Chapter 4, I define the concepts of an emulation and a stabilizing emulation.

An emulation defines a kind of implementation relationship between two sets of machines.

The definition of emulation is followed with a definition of a stabilizing emulation. An al-

gorithm is a stabilizing emulation if an emulation of a program can be started in an arbitrary

state but eventually behave as though it is the emulated program, though from a potentially

arbitrary state.

Chapter 5 is where I discuss a model for node failure and restart. It describes a general

crash stop and restart transformation for TIOA programs. Such a transformation is useful

in that it removes ambiguity about the semantics of failuresand restarts.

In Chapter 6, I introduce a model of a mobile ad hoc network physical layer. This layer

consists of mobile physical nodes, a GPS oracle, and a broadcast communication service.

Communication is local in this model.

Chapter 7 is where I describe the Virtual Stationary Automata layer model. The VSA

layer consists of mobile client nodes (analogous to mobile physical nodes), a GPS oracle,

a virtual broadcast communication service, a virtual time service (a GPS time service for

the Virtual Stationary Automata), and Virtual Stationary Automata. A VSA is a TIOA

with a real-time clock, restricted external interface, allowing it to only send and receive

messages using the virtual broadcast service; its broadcasts can be delayed for up to a

constant amount of time.

Finally, Chapter 8 is where the emulation results and definitions of Chapter 4 are spe-

cialized for the case of an emulation of the VSA layer by the physical layer.

31

32

Chapter 2

Mathematical preliminaries

Here we introduce some terminology and notation for expressing mathematical properties

in this thesis.

2.1 Basic mathematical preliminaries

If f is a function, we refer to the domain and range off asdomain(f) and range(f)

respectively. IfS is a set, we can restrictf to S, written f⌈S, defined to be the function

with domain equal toS ∩ domain(f) where for eachc in its domain, it maps tof(c). If f

is a function mapping to a set of functions andS is a set, thenf ↓ S is the function with

domain equal todomain(f) and such that for eachc in its domain, it maps tof(c)⌈S.

If S is a set, then a sequenceσ overS is a function with a domain either equal to the set

of all positive integers or the set{1, · · · , k} for some positive integerk, and with a range

equal toS. We use|σ| to be the cardinality ofdomain(σ). The set of finite sequences

over S are denoted byS∗. The empty sequence is denoted byλ. The concatenation of

two sequencesσ andσ′ is writtenσσ′. We say thatσ is a prefix ofσ′, written σ ≤ σ′, if

eitherσ = σ′ or σ is finite andσ′ = σρ for some sequenceρ. If σ is a nonempty sequence,

thenhead(σ) refers to the first element ofσ andtail(σ) refers toσ with its first element

removed.insert(σ, s, i), for s ∈ S and0 ≤ i ≤ |σ| is a new sequence equal toσ, except

with elements inserted after the element at positioni.

33

2.2 Timed I/O Automata

Here we describe Timed I/O Automata (TIOA) terminology usedin this thesis. TIOAs

are nondeterministic state machines whose state can changein two ways: instantaneously

through a discrete transition, or according to a trajectorydescribing the evolution, possibly

continuous, of variables over time. The TIOA framework can be used to carefully specify

and analyse timed systems. (Additional details can be foundin [58].) Each algorithm and

specification in this thesis is expressed using this framework.

The type of a variable describes the values that a variable can take on, while the dynamic

type of a variable describes how a variable’s values can change over time.

Definition 2.1 For each variablev we have the following:

• type(v), thestatic typeof v, is a nonempty set of values.

• dtype(v), thedynamic typeof v, is a set of functions from left-closed intervals of time

starting at 0 totype(v) satisfying the following:

– For eachf ∈ dtype(v) and t ∈ R, f shifted forward byt time is also in

dtype(v).

– For eachf ∈ dtype(v) and each left-closed subintervalJ ofdomain(f), f⌈J ∈
dtype(v).

– Consider any sequence of functionsf0, f1, · · · , each in dtype(v) such

that for each fi except the last, the domain offi is right-closed and

max(domain(fi)) = min(domain(fi+1)). Then the functionf , defined so

thatf(t) = fi(t) wherei is the minimum index such thatt ∈ domain(fi), is in

dtype(v).

Variablev is constantover a left-closed interval of time if its mapping to a value is constant

over that interval. Variablev is a discretevariable if for every left-closed interval of time,

v is constant over the interval.

Definition 2.2 A valuationfor a setV of variables is a function mapping each variable

v ∈ V to a value intype(v). The set of such valuations isval(V).

34

A trajectory models the evolution of a collection of variables over a time interval.

Definition 2.3 A trajectory, τ , for V is a function mapping a left-closed interval of time

starting at 0 to the set of valuations forV , such that forv ∈ V , τ restricted tov is in the

dynamic type ofv.

• τ is closedif domain(τ) is both left and right-closed.

• τ.fstate is the first valuation ofτ , and, forτ closed,τ.lstate is the last.

• The limit time ofτ , τ.ltime, is the supremum ofdomain(τ).

• The concatenation,ττ ′, of trajectoriesτ andτ ′, τ closed, is the trajectory resulting

from the pasting ofτ ′, shifted byτ.ltime, to the end ofτ . The valuation atτ.ltime is

the one inττ ′, overwriting the value ofτ ′.ftime.

• A trajectory forV with a domain equal to the point 0 is called apoint trajectory for

V . If v is a valuation forV , then℘(v) is the point trajectory forV mapping tov.

A timed I/O automaton is a state machine with some set of variables describing its state.

It also has a set of discrete actions, some internal, some external inputs and some external

outputs. Its state can change either through discrete transitions, which result in atomic state

changes, or through trajectories, which describe the evolution of the state variables over the

time when discrete transitions do not occur.

Definition 2.4 A Timed I/O Automaton (TIOA), A = (X, Q, Θ, I, O, H,D, T), consists

of:

• SetX of internal variables.

• SetQ ⊆ val(X) of states.

• SetΘ ⊆ Q of start states, nonempty.

• SetsI of input actions,O of output actions, andH of internal actions, each disjoint.

A = I ∪ O ∪ H is all actions.E = I ∪ O is all external actions.

35

• SetD ⊆ Q × A × Q of discrete transitions.

We say actiona is enabled in statex if (x, a, x′) ∈ D, for somex′ ∈ X. We require

A be input-enabled (every input action is enabled at every state).

• SetT ⊆ trajectories ofQ. We require:

– For every statex, the point trajectory forx must be inT ,

– For everyτ ∈ T , every prefix and suffix ofτ is in T ,

– For every sequence of trajectories inT , where for everyτi but the last,τi is

closed andτi.lstate = τi+1.fstate, the concatenation of the trajectory se-

quence is also inT , and

– Time-passage enabling: for every statex, there exists aτ ∈ T where

τ.fstate = x, and eitherτ.ltime = ∞ or τ is closed and somel ∈ H ∪ O is

enabled inτ.lstate.

Definition 2.5 Two TIOAsA andB arecompatibleif they share no internal variables, and

their internal actions are not actions of the other.

Composition, described in the following definition, is useful for describing the be-

haviour of complex systems. It allows us to describe the system as a collection of separate

components that can then be run together after composition.

Definition 2.6 Two compatible TIOAsA andB can becomposedinto a new TIOAA‖B,

which hasA andB as components where an action performed in one component that is

an external action of the other component is also performed in the other component. Each

external action of the composition is an output if it is an output of one of the component

automata, and an input otherwise. Each internal action of the individual automata remains

an internal action.

The following definition allows us to perform output action hiding on TIOAs, reclassi-

fying a designated set of output actions as internal actions. This is especially useful when

we later consider implementation relationships, where we require that the sets of external

actions for machines be the same.

36

Definition 2.7 LetA be a TIOA andO be a subset ofOA. ThenActHide(O,A) is a TIOA

equal toA except thatOActHide(O,A) = OA − O andHActHide(O,A) = HA ∪ O.

Hybrid sequences are described in the next definition. Thesesequences are often used

to describe an execution or a trace (observable behaviour) of a TIOA.

Definition 2.8 Given a setA of actions and a setV of variables, an(A, V)-sequenceis an

alternating sequenceα = τ0a1τ1a2τ2 · · · where: (a) Eachai is an action inA, (b) Eachτi

is a trajectory forV , (c) If α is finite, it ends with a trajectory, and (d) Eachτi but the last

is closed.

• α is closedif it is a finite sequence and its final trajectory is closed.

• The limit time ofα, α.ltime, is the sum of limit times ofα’s trajectories.

• The concatenation,αα′, of two(A, V)-sequencesα andα′, α closed, isα followed

byα′, where the last trajectory ofα is concatenated to the first trajectory ofα′.

• For sets of actionsA andA′, and sets of variablesV andV ′, the(A′, V ′)-restriction

of an (A, V)-sequenceα, written α⌈(A′, V ′), is the sequence that results from pro-

jecting the trajectories ofα on variables inV ′, removing actions not inA′, and

concatenating all adjacent trajectories.

In the following definition, an execution fragment of a TIOA is defined to be a hy-

brid sequence where each trajectory is a trajectory of the TIOA and for each action in the

sequence, the last state of the trajectory preceding it satisfies the precondition of the ac-

tion, and the first state of the trajectory following it is thestate that should result from that

discrete transition.

Definition 2.9 An execution fragmentof a TIOA A is an (A, V)-sequenceα =

τ0a1τ1a2τ2 · · · , where eachτi is a trajectory inT , and if τi is not the last trajectory of

α, then(τi.lstate, ai+1, τi+1.fstate) ∈ D. We refer to the set of execution fragments ofA
starting from a state in someS ⊆ Q asfragsS

A.

37

The following definition of an execution just says that an execution is any execution

fragment where the very first state of the first trajectory of the fragment is an initial state of

the TIOA.

Definition 2.10 An execution fragment ofA, α, is anexecutionof A if α.fstate is in Θ.

We refer to the set of executions ofA asexecsA.

Definition 2.11 A state ofA is reachableif it is the last state of some closed execution of

A. We refer to the set of reachable states ofA asreachableA.

Definition 2.12 An invariantfor A is a property that is true for all reachable states ofA.

A trace, defined below, is the external observable behaviourof a TIOA. The only infor-

mation it imparts is the length of an execution, whether or not the execution is right-closed,

and the timing and order of the external actions of the TIOA inthat execution.

Definition 2.13 A trace(external behaviour) of an execution fragmentα of A, trace(α),

is α restricted to external actions ofA and trajectories over the empty set of variables.

tracesA is the set of traces of executions ofA. We refer to the set of traces of execution

fragments ofA starting from a state in someS ⊆ Q astracefragsS
A.

The next lemma (Lemma 5.2 in [58]) says that execution fragments of composed TIOAs

project to fragments of the components:

Lemma 2.14 LetA = A1‖A2 and letα be an execution fragment ofA.

Thenα⌈(A1, X1) is an execution fragment ofA1, andα⌈(A2, X2) is an execution fragment

ofA2. Also,α is an execution iff bothα⌈(A1, X1) andα⌈(A2, X2) are executions.

The next theorem (Theorem 7.3 in [58]) says that traces of composed TIOAs are ex-

actly those empty-variable hybrid sequences whose restrictions to the external actions of

component TIOAs are traces of the components:

Theorem 2.15 LetA = A1‖A2.

ThentracesA = {β | β is an(E, ∅)-sequence andβ⌈(Ei, ∅) ∈ tracesAi
, i ∈ {1, 2}}.

38

The following two results on execution pasting are from [44]. Say that we are given two

compatible TIOAsA1 andA2, and executionsα1 andα2 of A1 andA2 respectively. The

first result says that if there is a hybrid sequenceβ with the same type as a trace ofA1‖A2

and such thatβ is consistent with the traces of executionsα1 andα2 in thatβ restricted to

external actions ofA1 is equal to the trace ofα1 (and similarly forA2), then we can paste

together the executionsα1 andα2 to get an execution ofA1‖A2 whose trace is equal toβ.

The second result is just a generalization for a finite numberof machines.

Lemma 2.16 Let A = A1‖A2, and let α1 and α2 be executions ofA1 and A2 re-

spectively. Letβ be an (EA, ∅) sequence such thatβ⌈(EA1 , ∅) = trace(α1) and

β⌈(EA2 , ∅) = trace(α2). Then there exists an executionα ofA such thatα1 = α⌈(A1, X1),

α2 = α⌈(A2, X2), andtrace(α) = β.

Corollary 2.17 Let A = A1‖A2‖ . . .‖Ak for some finitek, and letαi be an execution

of Ai for everyi. Let β be an(EA, ∅) sequence such thatβ⌈(EAi
, ∅) = trace(αi) for

eachi ∈ {1, . . . , k}. Then there exists an executionα of A such thattrace(α) = β and

αi = α⌈(Ai, Xi), for eachi ∈ {1, . . . , k}.

The following definitions describe the concept of one TIOA implementing another. The

intuition is thatA implementsB if for each execution ofA, its externally visible behaviour

happens to be the same as the externally visible behaviour ofB.

Definition 2.18 Two TIOAsA andB are comparableif they have the same external inter-

face.

Definition 2.19 If A andB are comparable, then we say thatA implementsB, written

A ≤ B , if tracesA ⊆ tracesB.

The next definition describes properties of a special kind ofrelation that is useful for

showing that one TIOA implements another.

Definition 2.20 Let A andB be comparable TIOAs. Aforward simulationfrom A to B
is a relationR ⊆ QA × QB satisfying the following for all statesxA andxB of A andB
respectively:

39

1. If xA ∈ ΘA then there exists a statexB ∈ ΘB such thatxARxB.

2. If xARxB andα is an execution fragment ofA consisting of one action surrounded by

two point trajectories, withα.fstate = xA, thenB has a closed execution fragment

β with β.fstate = xB, trace(β) = trace(α), andα.lstateRβ.lstate.

3. If xARxB andα is an execution fragment ofA consisting of a single closed trajectory,

with α.fstate = xA, thenB has a closed execution fragmentβ with β.fstate =

xB, trace(β) = trace(α), andα.lstateRβ.lstate.

A useful theorem, shown in [58], is that if there is a forward simulation from machine

A to B then the trace of an execution fragment ofA starting in some state related via the

simulation relation to a state inB is a trace of an execution fragment ofB starting in the

related state:

Theorem 2.21 Let A and B be comparable TIOAs and letR be a forward simulation

relation fromA to B. LetxA andxB be states ofA andB, respectively, such thatxARxB.

ThentracefragsA(xA) ⊆ tracefragsB(xB).

One immediate corollary is the following, which extends theabove result to sets of

states the execution fragments may start in:

Corollary 2.22 LetA andB be comparable TIOAs,R be a simulation relation fromA to

B, LA be a subset of states ofA, andLB be a subset of states ofB. Suppose that for each

x ∈ LA there exists somey ∈ LB such thatxRy. ThentracefragsLA
A ⊆ tracefragsLB

B .

Another useful corollary of Theorem 2.21, shown in [58], is the following, which says

that if a forward simulation relation from one machine to a comparable machine exists,

then the first machine implements the second:

Corollary 2.23 Let A and B be comparable TIOAs and letR be a forward simulation

relation fromA toB. ThenA ≤ B.

40

Chapter 3

Self-stabilization

We define stabilization in terms of sets of(A, V)-sequences. This is general enough to talk

about stabilization of traces and execution fragments of TIOAs, and about stabilization of

transformed versions of these(A, V)-sequences.

First we define the concept of at-suffix of a hybrid sequenceα. This is just a suffix of

α such that its corresponding prefix has a limit time oft.

Definition 3.1 Let α and α′ be (A, V)-sequences, andt be a non-negative real.α′ is a

t-suffix of α if a closed(A, V)-sequenceα′′ exists whereα′′.ltime = t andα = α′′α′.

By the definition of concatenation for hybrid sequences and trajectories, if sequencesα′′

andα′ are concatenated to produce sequenceα, the first state ofα′ is overwritten by the

last state ofα′′ in the concatenation. This means that any sequence that begins with some

arbitrary value of the variables ofα but otherwise equalsα′ could also be concatenated

to α′′ to getα. In the following definition, we define astate-matchedt-suffix to be at-

suffix with the additional constraint that its first state happens to match the last state of its

associated prefix.

Definition 3.2 Letα = α′′α′ be an(A, V)-sequence andt be a non-negative real.

α′ is a state-matchedt-suffix of α if it is a t-suffix ofα, andα′.fstate = α′′.lstate.

As long as an(A, V)-sequence either has a limit time greater than somet or is closed with

a limit time equal tot, we know that a state-matchedt-suffix of the sequence exists.

41

Lemma 3.3 Let α be an(A, V)-sequence andt be a non-negative real where eithert <

α.ltime, or t = α.ltime andα is closed. A state-matchedt-suffix ofα exists.

Proof: In the case wheret = α.ltime, the point trajectory℘(α.lstate) is a state-matched

t-suffix of α; α = α℘(α.lstate).

If t < α.ltime, then consider any closed prefixα′ of α such thatα′.ltime = t. By

Lemma 3.5 in [58], there exists someα′′ such thatα = α′α′′. Consider any suchα′′ with

α′′.fstate changed toα′.lstate. This modifiedα′′ is a state-matchedt-suffix of α.

Definition 3.4 LetB be a set of(AB, V)-sequences andC be a set of(AC , V)-sequences,

whereAB andAC are sets of actions andV is a set of variables. Lett be inR
≥0.

B stabilizes in timet to C if each state-matchedt-suffixα of each sequence inB is a

sequence inC.

Since executions and traces of TIOAs are(A, V)-sequences, the above definition can be

used to talk about executions or traces of one TIOA stabilizing to executions or traces of

some other TIOA. The following lemma is a general result thatcan be used to show, for

example, that if executions of one TIOA stabilize to those ofanother then its traces also

stabilize to traces of the other.

Lemma 3.5 Let B be a set of(AB, V)-sequences andC be a set of(AC , V)-sequences,

whereAB andAC are sets of actions andV is a set of variables. LetA be a set of actions

and V ′ a set of variables. IfB stabilizes toC in time t, then{αB⌈(A, V ′) | αB ∈ B}
stabilizes to{αC⌈(A, V ′) | αC ∈ C} in timet.

Proof: SayB stabilizes toC in time t. Consider any sequenceα ∈ {αB⌈(A, V ′) | αB ∈
B}, and state-matchedt-suffix α′ of α. We must show thatα′ ∈ {αC⌈(A, V ′) | αC ∈ C}.

By definition of a state-matchedt-suffix, there must exist someα′′ such thatα = α′′α′

andα′.fstate = α′′.lstate. By definition ofα, there must exist someαB ∈ B such that

αB⌈(A, V ′) = α and some prefixα′′B of αB such thatα′′B⌈(A, V) = α′′ andα′′B.ltime =

α′′.ltime = t. Sinceα′′B is a prefix ofαB, there is someα′B such thatαB = α′′Bα′B. Consider

any suchα′B and replace its first state withα′′B.lstate. Thisα′B is a state-matchedt-suffix

of αB.

42

Lemma 3.9 of [58] tells us thatα′′Bα′B⌈(A, V) = α′′B⌈(A, V) α′B⌈(A, V). This means

thatα′′α′ = α′′α′B⌈(A, V). Sinceα′B.fstate is equal toα′′B.lstate, (α′B⌈(A, V)).fstate =

(α′′B⌈(A, V)).lstate, meaningα′B⌈(A, V) = α′.

SinceB stabilizes toC in time t and α′B is a state-matchedt-suffix of a sequence

in B, α′B is in C. This implies thatα′B⌈(A, V ′) ∈ {αC⌈(A, V ′) | αC ∈ C}, and hence

α′ ∈ {αC⌈(A, V ′) | αC ∈ C}.

Lemma 3.6 (Transitivity) Let B be a set of(AB, V)-sequences,C be a set of(AC , V)-

sequences, andD be a set of(AD, V)-sequences, whereAB, AC , andAD are sets of ac-

tions, andV is a set of variables. IfB stabilizes toC in timet1, andC stabilizes toD in

timet2, thenB stabilizes toD in timet1 + t2.

Proof: AssumeB stabilizes toC in time t1, andC stabilizes toD in time t2. Consider

any sequenceαB in B such thatαB.ltime ≥ t1 + t2 and any state-matchedt1 + t2-suffix

α3
B of αB. By our definition of stabilization (Definition 3.4), we mustshow thatα3

B ∈ D.

αB: -

α1
B

t1

α2
B

t2

α3
B

Figure 3-1: ExecutionαB for Lemma 3.6.

By our definition of a state-matchedt1 + t2-suffix, there must exist someα′B such that

αB = α′Bα3
B, α3

B.fstate = α′B.lstate andα′B.ltime = t1 + t2.

Sinceα′B.ltime ≥ t1, by Lemma 3.3 there must exist some state-matchedt1-suffix α2
B

of α′B. This means that there must exist someα1
B such thatα′B = α1

Bα2
B, α1

B.ltime = t1,

andα2
B.fstate = α1

B.lstate. This also implies thatαB = α1
Bα2

Bα3
B, as in Figure 3-1.

Sinceα1
B.ltime = t1 andα2

Bα3
B.fstate = α2

B.fstate = α1
B.lstate, α2

Bα3
B is a state-

matchedt1-suffix of αB. SinceB stabilizes toC in time t1 andα2
Bα3

B is a state-matched

t1-suffix of αB, α2
Bα3

B is in C.

Also, sinceα3
B.fstate = α′B.lstate = α2

B.lstate, α3
B is a state-matchedt2-suffix of

α2
Bα3

B. SinceC stabilizes toD in time t2 andα3
B is a state-matchedt2-suffix of a sequence

in C, α3
B is in D.

We conclude thatB stabilizes toD in time t1 + t2.

43

We can generalize the transitivity lemma to a sequence of sets of hybrid sequences.

The proof follows by induction onn, where the inductive step simply applies the above

transitivity lemma:

Lemma 3.7 Let A0, A1, . . . , An be a sequence of sets of actions, and letV be a set of

variables. LetB0, B1, . . . , Bn be a sequence where for eachi such that0 ≤ i ≤ n, Bi is

a set of(Ai, V)-sequences. Lett1, t2, . . . , tn be a sequence of non-negative reals where for

eachi such that1 ≤ i ≤ n, Bi−1 stabilizes in timeti to Bi.

ThenB0 stabilizes in timet to Bn, for t = Σi,1≤i≤nti.

The following definitions capture the idea of a TIOA being self-stabilizing when com-

posed with another TIOA, allowing us to write algorithms that can be started in an arbitrary

state but take advantage of separate oracles or even other self-stabilizing TIOAs, in order

to eventually reach some legal state of the composed automaton. The idea of a TIOA sta-

bilizing relative to another TIOA can be thought of as similar to that of fair composition,

described in [27], showing that under certain conditions, if you have a self-stabilizing im-

plementationA of a service that’s used by a self-stabilizing implementationB of a higher

level service, thenB usingA is still stabilizing.

We begin by defining a function that takes a TIOA and a state setL and returns the

same TIOA with its start state set changed toL.

Definition 3.8 LetA be any TIOA andL be any nonempty subset ofQA.

ThenStart(A, L) is defined to beA except withΘStart(A,L) = L.

We then define some shorthand that we will use often in this thesis.

Definition 3.9 We use notationU(A) for Start(A, QA) (or A started in an arbitrary

state), andR(A) for Start(A, reachableA) (or A started in a reachable state).

Lemma 3.10 LetO andA be compatible TIOAs,L ⊆ QA, andL′ ⊆ QO. Then:

1. Start(A, L)‖Start(O, L′) = Start(A‖O, L × L′).

This says that one can change two automata’s start states andthen compose them,

or compose two automata and then change the resulting automaton’s start state, and

still get the same result.

44

2. fragsL
A = execsStart(A,L).

This says that any execution fragment ofA starting inL is an execution ofA after

its start states are updated to be the setL, and vice versa.

3. For anyM ⊆ QA, fragsL
Start(A,M) = fragsL

A.

This says that it does not make a difference if an automaton’sstart states are changed

from its original start states when you consider execution fragments that are allowed

to start in any state inL.

Proof: 1. The only thing that might differ between the two is the start states, but it is

easy to check that the start states of both areL × L′.

2. By definition of an execution and definition ofStart(A, L), an execution of

Start(A, L) is an execution fragment ofA starting with a state inL, and vice versa.

3. SinceA and Start(A, L) are the same except for start states, then an execution

fragment of either machine starting with a state inL is an execution fragment of the

other machine starting in a state inL.

The following corollary simply states that it does not make adifference if two au-

tomata’s start states are changed from their original startstates when you consider execu-

tion fragments of their composition that are allowed to start in any state in some setL′′.

Corollary 3.11 LetO andA be compatible TIOAs,L ⊆ QA, L′ ⊆ QO, andL′′ ⊆ QA‖O.

ThenfragsL′′

Start(A,L)‖Start(O,L′) = fragsL′′

A‖O.

Proof: By Lemma 3.10, part 1,fragsL′′

Start(A,L)‖Start(O,L′) = fragsL′′

Start(A‖O,L×L′). By part

3, lettingM = L × L′, this equalsfragsL′′

A‖O.

In the following definition, we describe a legal set for a TIOAas a subset of its states

that is closed under steps and closed trajectories of the TIOA.

Definition 3.12 LetA be a TIOA, andL ⊆ QA. L is a legal setfor A if:

45

1. For every(x, a, x′) ∈ DA, if x ∈ L thenx′ ∈ L.

2. For every closedτ ∈ TA, if τ.fstate ∈ L thenτ.lstate ∈ L.

This definition implies the following trivial lemma saying that a legal set for a TIOA is

a subset of its states that is closed under execution fragments.

Lemma 3.13 Let A be a TIOA, andL ⊆ QA. L is a legal setfor A iff for every closed

execution fragmentα of A such thatα.fstate ∈ L, α.lstate is also inL.

The following result is trivial and follows almost immediately from the definition of a

legal set.

Lemma 3.14 LetA be a TIOA,L be a legal set forA, andt ∈ R
≥0.

Then for anyα in fragsL
A and any state-matchedt-suffixβ of α, β is in fragsL

A.

This immediately implies the following result about trace fragments:

Lemma 3.15 LetA be a TIOA andL be a legal set forA.

Then for anyα in tracefragsL
A and any suffixβ of α, β is in tracefragsL

A.

Another simple observation is that the set of all states of a TIOA is a legal set for the

TIOA:

Lemma 3.16 LetA be a TIOA. ThenQA is a legal set forA.

A marginally more ambitious result is that the set of reachable states of a TIOA is a

legal set for the TIOA:

Lemma 3.17 LetA be a TIOA. ThenreachableA is a legal set forA.

Proof: Consider any execution fragmentα such thatα.fstate is a reachable state ofA.

We must show thatα.lstate is a reachable state ofA.

By definition of reachability, ifα.fstate is a reachable state ofA then there exists some

closed executionα′ of A such thatα′.lstate = α.fstate. Since the extension ofα′ with α

is an execution ofA, we have thatα.lstate is a reachable state ofA.

46

The definition of composition makes the following lemma trivial. The lemma says that

given two TIOAs and two legal sets, one for each TIOA, the cartesian product of the two

legal sets is itself a legal set of the composition of the TIOAs.

Lemma 3.18 LetO andA be compatible TIOAs, and letLO be a legal set forO andLA

be a legal set forA. ThenLO × LA is a legal set forO‖A.

The following lemma is the simple observation that the legalset for some TIOA is also

a legal set for the TIOA with some set of its output actions hidden, and vice versa.

Lemma 3.19 LetA be a TIOA,L ⊆ QA, andO be a subset ofOA. ThenL is a legal set

for ActHide(O,A) iff L is a legal set forA.

The following result is a core result for substitutivity. Itsays that if one machine’s

traces stabilize to the traces of a second machine, then the traces of a third machine started

in some legal set and composed with the first stabilizes to thetraces of the third machine

started in the same legal set and composed with the second. (Having the third machine

start in a legal set translates into an execution suffix closure property, where each suffix of

an execution of the machine composed with the first or second machine above is still an

execution of the machine.)

Theorem 3.20 LetA, B, andC be TIOAs andL be a legal set forC such that:

• A is comparable withB, andC is compatible withA and compatible withB.

• tracesA stabilizes in timet to tracesB.

ThentracesStart(C,L)‖A stabilizes in timet to tracesStart(C,L)‖B.

Proof: We must show that for anyα′α in tracesStart(C,L)‖A whereα is the state-matched

t-suffix of α′α, α is in tracesStart(C,L)‖B.

By Theorem 2.15, this is the same as showing thatα is a hybrid sequence with an

empty variable set (which is obvious since it is a trace) suchthat: (1)α⌈(EStart(C,L), ∅) is

in tracesStart(C,L), and (2)α⌈(EB, ∅) is in tracesB.

For the first condition, sinceα⌈(EStart(C,L), ∅) is a suffix ofα′α⌈(EStart(C,L), ∅), itself a

trace ofStart(C, L), Lemma 3.15 implies thatα⌈(EStart(C,L), ∅) is in tracesStart(C,L).

47

For the second condition, sinceα⌈(EA, ∅) is a state-matchedt-suffix of α′α⌈(EA, ∅),
which is in tracesA, the definition of stabilization tells us thatα⌈(EA, ∅) is in tracesB.

SinceEA = EB by assumption, we have shown the second condition.

We conclude thattracesStart(C,L)‖A stabilizes in timet to tracesStart(C,L)‖B.

The following result shows that saying that some subsetS of execution fragments of a

TIOA stabilizes in timet to a set of fragments starting in some set of legal statesL is the

same as saying that any statex that occurs at timet in a fragment inS is in L.

Lemma 3.21 LetA be a TIOA,L be a legal set forA, S ⊆ fragsA, andt ∈ R
≥0.

ThenS stabilizes in timet to fragsL
A iff for eachα ∈ S and each closed prefixα′ of α such

thatα′.ltime = t, α′.lstate ∈ L.

Proof: (⇒) : Say thatS stabilizes in timet to fragsL
A. We must show that for eachα ∈ S

and each closed prefixα′ of α such thatα′.ltime = t, α′.lstate ∈ L. For any such prefixα′

there is someα′′ such thatα = α′α′′. Choose such anα′′ such thatα′′.fstate = α′.lstate.

By definition of a state-matchedt-suffix, α′′ is a state-matchedt-suffix of α. By definition

of stabilization,α′′ is in fragsL
A. This implies thatα′′.fstate ∈ L. Sinceα′.lstate =

α′′.fstate, α′.lstate ∈ L.

(⇐) : Say that for eachα ∈ S and each closed prefixα′ of α such thatα′.ltime = t,

α′.lstate ∈ L. We must show thatS stabilizes in timet to fragsL
A. This means that

we must show that for anyα ∈ S and state-matchedt-suffix α′′ of α, α′′ is in fragsL
A.

By definition of state-matchedt-suffix, there must exist some prefixα′ of α such that

α′.ltime = t, α′α′′ = α, andα′′.fstate = α′.lstate. By assumption,α′.lstate ∈ L,

meaningα′′.fstate ∈ L, and hence thatα′′ ∈ fragsL
A.

The following lemma says that if you consider an execution ofthe composition of a

machine started in an arbitrary state together with a machine started in a reachable state, a

suffix of that execution is still an execution of the composition with one component started

in an arbitrary state together with a machine started in a reachable state.

Lemma 3.22 LetO andA be compatible TIOAs andt be a nonnegative real.

If α ∈ execsU(A)‖R(O) andβ is a state-matchedt-suffix ofα, thenβ ∈ execsU(A)‖R(O).

48

Proof: This follows immediately from Lemmas 3.14, 3.16, 3.17, and 3.18.

This immediately implies the following corollary about traces:

Corollary 3.23 LetO andA be compatible TIOAs.

If α ∈ tracesU(A)‖R(O) andβ is a suffix ofα, thenβ ∈ tracesU(A)‖R(O).

The next definition describes self-stabilization.A is some TIOA that can be started in

an arbitrary initial state, whileO is an oracle TIOA that is composed withA. The legal

setL can be thought of as some set of good target states for the composition.A is said to

self-stabilize in timet to L relative toO if within t time, any execution ofA‖O with A
started in an arbitrary state reaches a legal state.

Definition 3.24 LetO andA be compatible TIOAs, andL be a legal set forA‖O.

A self-stabilizes in timet to L relative toO if execsU(A)‖O stabilizes in timet to fragsL
A‖O.

Notice in the definition above that whenO = R(O′) for some TIOAO′, we are effec-

tively describing the capability of a self-stabilizing TIOA A to recover from a corruption

fault, whereA’s state can be changed arbitrarily at some point in an execution. Consider an

execution ofA‖O in which a corruption fault occurs atA, changing the state ofA to some

arbitrary state. Call the resulting state ofA‖O states. That states is in QA× reachableO′ .

Any execution fragment starting froms is in execsU(A)‖O. By our definition,execsU(A)‖O

stabilizes tofragsL
A‖O, meaning that after a corruption fault, the system stabilizes to a legal

state.

49

50

Chapter 4

Emulations

In this chapter, we introduce a formal theory of emulations.We start by giving the definition

of an emulation. Then we describe emulation stabilization,and show a simple result stating

that a stabilizing emulation of a self-stabilizing programhas traces that eventually look like

those of the self-stabilizing program started from a legal state of that program.

4.1 Emulation

Here we define the concept of emulation, a kind of implementation relationship between

two sets of TIOAs,B andC. Say we have some functionemu that maps machines inC
to machines inB. We would like to say, intuitively, that the set of machinesB emulates

the set of machinesC if for eachC ∈ C, the machineemu(C) in B has externally visible

behaviors that can be restricted so as to be in some constrained set of the externally visible

behaviors ofC.

Our definition of an emulation exposes a little more information in that we allow the

designation of two automataB′ andC ′ that will be composed with each of the machines in

B andC respectively.B′ andC ′ are system components that always run the same program,

and hence don’t change based on which element ofC is being emulated. Pulling out these

special automata will prove to be very useful when we discussstabilization of emulations

(see Section 4.2).B then emulatesC in the context ofB′ andC ′ if for any C in C, each

trace ofemu(C)‖B′ is a trace in a constrained set of traces ofC‖C ′, subject to some action

51

hiding.

The constraints on traces ofC‖C ′ are expressed in the definition using theS function,

which maps eachC to some subset of the execution fragments ofC‖C ′. (We map to exe-

cution fragments ofC‖C ′, rather than executions ofC‖C ′, in order to allow us to use the

sameS later when we consider stabilizating emulations.) We can use S to describe prop-

erties of or relationships between the states ofC andC ′. For example,S might describe a

consistency condition between states ofC andC ′, requiring that certain state components

in C andC ′ have the same value. These kinds of conditions can be difficult or tedious to

describe otherwise.

Definition 4.1 LetB andC be sets of TIOAs,emu be a function of typeC → B, B′ andC ′

be TIOAs, andEB andEC be sets of actions such that:

• For eachB ∈ B, B is compatible withB′ andEB ⊆ OB‖B′ .

• For eachC ∈ C, C is compatible withC ′ andEC ⊆ OC‖C′.

LetS be a function that maps eachC in C to a suffix-closed subset offragsActHide(EC ,C‖C′).

We say that(B, B′, EB) emulates(C, C ′, EC) constrained toS with emu if for eachC

in C, tracesActHide(EB,emu(C)‖B′) ⊆ {trace(α) | α ∈ S(C) ∩ execsActHide(EC ,C‖C′)}.

In the special case whereS maps eachC to the entire set of execution fragments of

C‖C ′ after action hiding, we actually are not constraining the set of traces ofC‖C ′ that

traces of the emulation are supposed to correspond to. In this case, we drop the “constrained

to S” phrase:

Definition 4.2 Let (B, B′, EB) emulate(C, C ′, EC) constrained toS with emu, whereS is

the function that maps eachC in C to the setfragsActHide(EC ,C‖C′).

Then we say that(B, B′, EB) emulates(C, C ′, EC) with emu.

We then conclude that for this special case ofS, our emulation definition unrolls to give

an implementation result:

Lemma 4.3 Let (B, B′, EB) emulate(C, C ′, EC) with emu.

Then for everyC in C, ActHide(EB, emu(C)‖B′) ≤ ActHide(EC, C‖C ′).

52

4.2 Emulation stabilization

Now we define emulation stabilization, a concept closely related to self-stabilization. Let’s

say that(B, B′, EB) emulates(C, C ′, EC) constrained toS with emu. We want to define

the idea that for anyC in C, the machineemu(C) started in an arbitrary state and com-

posed withR(B′) (B′ started in a reachable state) has traces that are eventuallyrelated to

constrained traces ofC andC ′.

What sorts of constrained traces ofC andC ′ should they be related to? Think ofC ′

as the oracle piece; we want to ensure thatC ′ is always in a reachable state. Intuitively,

after stabilization an emulation should manage to produce traces that are related to traces

of constrained execution fragments of the composition ofC andR(C ′). However, a state

of C corresponding to the state at the beginning of such a fragment might be arbitrary; an

emulation could stabilize to a point after which it looks like it is running the same program

as C but not necessarily starting from an initial or reachable state. Hence, we require

that the emulation’s traces should stabilize to constrained traces ofU(C) (C started in an

arbitrary state) composed withR(C ′), subject to some action hiding.

Definition 4.4 Let (B, B′, EB) emulate(C, C ′, EC) constrained toS with emu, and lett be

in R
≥0. We say that(B, B′, EB) emulation stabilizes in timet to (C, C ′, EC) constrained

to S with emu if tracesActHide(EB,U(emu(C))‖R(B′)) stabilizes in timet to {trace(α) | α ∈
S(C) ∩ execsActHide(EC ,U(C)‖R(C′))}.

As before with our definition of emulation, we introduce a term for the special case

whereS maps eachC to the entire set of execution fragments ofC‖C ′ after action hiding:

Definition 4.5 Let (B, B′, EB) emulation stabilize in timet to (C, C ′, EC) constrained toS

with emu, whereS is the function that maps eachC in C to the setfragsActHide(EC ,C‖C′).

Then we say that(B, B′, EB) emulation stabilizes in timet to (C, C ′, EC) with emu.

Lemma 4.6 Let (B, B′, EB) emulation stabilize in timet to (C, C ′, EC) with emu.

Then for everyC in C, tracesActHide(EB,U(emu(C))‖R(B′)) stabilizes in timet to

tracesActHide(EC ,U(C)‖R(C′)).

53

Finally, if (B, B′, EB) emulation stabilizes to(C, C ′, EC) constrained toS with emu,

and someC in C self-stabilizes to some legal setL relative toR(C ′), we can easily conclude

that the traces ofemu(C) started in an arbitrary state and composed withR(B′) stabilize to

the constrained traces ofC‖C ′ started inL, subject to some action hiding. In other words,

a stabilizing emulation of a self-stabilizing program has traces that eventually look like

constrained traces of the self-stabilizing program started in a legal state.

Theorem 4.7 1. Let (B, B′, EB) emulation stabilize in timet1 to (C, C ′, EC) con-

strained toS with emu.

2. LetC be an element ofC, L be a legal set forC‖C ′, andt2 ∈ R
≥0 be chosen so that

C self-stabilizes toL relative toR(C ′) in timet2.

Then tracesActHide(EB,U(emu(C))‖R(B′)) stabilizes in timet1 + t2 to {trace(α) | α ∈
S(C) ∩ execsActHide(EC ,Start(C‖C′,L))}.

Proof: By definition of emulation stabilization,tracesActHide(EB,U(emu(C))‖R(B′)) stabilizes

in time t1 to {trace(α) | α ∈ S(C) ∩ execsActHide(EC ,U(C)‖R(C′))}.

Since C self-stabilizes toL relative to R(C ′) in time t2, the definition of self-

stabilization says this means thatexecsU(C)‖R(C′) stabilizes in timet2 to execsStart(C‖C′ ,L).

Since S(C) is suffix-closed, this and Lemma 3.5 imply that{trace(α) | α ∈
S(C) ∩ execsActHide(EC ,U(C)‖R(C′))} stabilizes in timet2 to {trace(α) | α ∈ S(C) ∩
execsActHide(EC ,Start(C‖C′,L))}.

SincetracesActHide(EB,U(emu(C))‖R(B′)) stabilizes in timet1 to {trace(α) | α ∈ S(C) ∩
execsActHide(EC ,U(C)‖R(C′))}, which in turn stabilizes in timet2 to {trace(α) | α ∈ S(C) ∩
execsActHide(EC ,Start(C‖C′,L))}, Lemma 3.6 implies thattracesActHide(EB,U(emu(C))‖R(B′)) sta-

bilizes in timet1 + t2 to {trace(α) | α ∈ S(C) ∩ execsActHide(EC ,Start(C‖C′,L))}

This immediately implies the following result for the special caseS that maps eachC

to the entire set of execution fragments ofC‖C ′ after action hiding:

Corollary 4.8 1. Let(B, B′, EB) emulation stabilize in timet1 to (C, C ′, EC) with emu.

2. LetC be an element ofC, L be a legal set forC‖C ′, andt2 ∈ R
≥0 be chosen so that

C self-stabilizes toL relative toR(C ′) in timet2.

54

Then tracesActHide(EB,U(emu(C))‖R(B′)) stabilizes in time t1 + t2 to

tracesActHide(EC ,Start(C‖C′,L)).

55

56

Chapter 5

Failure transform

This chapter describes a general transformation of a TIOA into a new TIOA that can be

crashed and restarted. This is done with the addition offail andrestart actions and afailed

variable indicating if the automaton is in a failed state. Inthis definition, a failed machine

is one where no locally-controlled action is enabled, inputs do not change its state, and the

values of the variables do not change while time passes. A failed machine can be restarted

with a restart action, making the machine non-failed and initializing thevariables of the

original machine to a start state of that machine.

After we present the definitions, we present several resultswith respect to theFail

transform.

The first definition describes a TIOA that we canFail transform.

Definition 5.1 LetA = (X, Q, Θ, I, O, H,D, T) be a TIOA such that{fail, restart}∩ (I ∪
O ∪ H) = ∅ andfailed /∈ X. ThenA is Fail-transformable.

Now we present the definition of theFail transformation of aFail-transformable TIOA.

Definition 5.2 LetA = (X, Q, Θ, I, O, H,D, T) be aFail-transformable TIOA.

ThenFail(A)1 is defined to be the structure:

• X ′ = X ∪ {failed : Bool, a discrete variable}.

1In a system with multiple components withFail transforms we employ the appropriate renaming to keep
the failed variable andfail andrestart actions unique between the transforms. For example, given TIOAs A
andB, we refer to thefailed variable inFail(A) asfailedA, and thefailed variable inFail(B) asfailedB,
etc.

57

• Q′ = {x ∈ val(X ′) | x⌈X ∈ Q}.

• Θ′ = {x ∈ Q′ | failed ∨ x⌈X ∈ Θ}.

• H ′ = H, O′ = O, I ′ = I ∪ {fail, restart}.

• D′ equals the set of(x, a, x′) ∈ X ′ × A × X ′ such that one of the following holds:

– x = x′ ∧ x(failed) ∧ a ∈ I.

– (x⌈X, a, x′⌈X) ∈ D ∧ ¬x(failed) ∧ ¬x′(failed).

– x′(failed) ∧ a = fail.

– x′⌈X ∈ Θ ∧ x(failed) ∧ ¬x′(failed) ∧ a = restart.

– x = x′ ∧ ¬x(failed) ∧ a = restart.

• T ′ equals the set of trajectoriesτ ∈ trajs(Q′) such that one of the following holds:

– ¬τ(0)(failed) ∧ τ ↓ X ∈ T .

– τ(0)(failed) ∧ τ is any constant trajectory.

In this definition, a TIOAA is transformed intoFail(A). The new automaton has one

additional state variable,failed, indicating whether or not the machine is failed, and two

additional input actions,fail andrestart. The variablefailed is a discrete variable (defined

in Section 2.2), meaning it does not change over the course ofa trajectory. The states of the

new automaton are states of the old automaton, together witha valuation of the Boolean

flag failed. The start states of the new machine are defined to be ones where failed is

arbitrary, but iffailed is false then the rest of the variables are set to values consistent with

a start state ofA.

The definition ofD′ describes the new set of valid transitions(x, a, x′). First, the set

includes the transitions(x, a, x) where thefailed flag is set inx anda is an input action of

A. This basically addresses input-enabling inFail(A) by saying that if a machine is failed,

then an input action that occurs results in no change to the state. Second, the set includes

“normal” transitions ofA when the machine is not failed– if the machine is not failed in

statex anda is in the set of actions ofA, then the resulting statex′ is still nonfailed, and

58

(x⌈X, a, x′⌈X) is a valid transition ofD. Third, we describe the failing of a machine– if

a =fail, thenx′(failed) is true and the rest of the state can be changed arbitrarily. Fourth,

we describe the restarting of a failed machine– ifx(failed) is true anda =restart, then

x′(failed) is false and the rest of the variables are initialized to an initial state ofA. Fifth,

we describe the no-op that results if we restart a non-failedmachine– ifa = restart and

¬x(failed), then statex equalsx′.

The set of trajectories ofT ′ can be divided into two sets of trajectories based on the

value of thefailed variable. In both sets, the value of thefailed variable is constant. If

failed is false over the course of the trajectoryτ , thenτ is such thatτ ↓ X is a trajectory of

the machineA. In other words, while the machine is not failed its trajectories basically look

like those of the original machine. Iffailed is true over the trajectoryτ , then all variables

are constant inτ . This means that if the machine is failed, then its state variables are frozen.

This does not constrain time from passing– any constant trajectory is allowed.

Results about theFail transform

Here we present several results about the failure transformation that will prove useful later

in the thesis. The first two results show a relationship between the failure transformation

applied to a composition of two TIOAs and the failure transformation of the individual

component TIOAs. Then we describe a relationship between the Fail andU operators

(useful when considering self-stabilizing algorithms).

The following theorem is an execution projection result that says that performing a

Fail-transform on the compositionA1‖A2 of two automata results in a machine whose

executions constrained to actions and variables ofFail(A1) or Fail(A2) are executions of

Fail(A1) or Fail(A2) respectively. It follows immediately from the definition ofFail and

Lemma 2.14.

Theorem 5.3 Let A1 and A2 be compatible TIOAs that are eachFail-transformable,

and letα be an execution fragment ofFail(A1‖A2). Thenα⌈(A1 ∪ {fail, restart}, X1 ∪
{failed}) is an execution fragment ofFail(A1), andα⌈(A2∪{fail, restart}, X2∪{failed})

59

is an execution fragment ofFail(A2). Also,α is an execution ofFail(A1‖A2) iff α re-

stricted in the manner above is an execution ofFail(Ai) for eachi ∈ {1, 2}.

The following theorem is an execution pasting result similar to Lemma 2.16. Say that

we are given two compatibleFail-transformable TIOAsA1 andA2, and executionsα1

andα2 of Fail(A1) andFail(A2) respectively, where each execution starts with the same

value forfailed. The result says that if there is a hybrid sequenceβ with the same type

as a trace ofFail(A1‖A2) and such thatβ is consistent with the traces of executionsα1

andα2 in thatβ restricted to external actions ofFail(A1) is equal to the trace ofα1 (and

similarly for A2), then we can paste together the executionsα1 andα2 to get an execution

of Fail(A1‖A2) whose trace is equal toβ.

It follows immediately from the definition ofFail and Lemma 2.16.

Theorem 5.4 LetA = A1‖A2, and letα1 andα2 be executions ofFail(A1) andFail(A2)

respectively such thatα1.fstate(failed) = α2.fstate(failed). Let β be an(EFail(A), ∅)
sequence such thatβ⌈(EFail(A1), ∅) = trace(α1) andβ⌈(EFail(A2), ∅) = trace(α2).

Then there exists an executionα of Fail(A) such thatα1 = α⌈(AFail(A1), XFail(A1)),

α2 = α⌈(AFail(A2), XFail(A2)), andtrace(α) = β. (Notice that this implies that thefailed

flag in the first state ofα1 is equal to thefailed flag in the first state ofα, and similarly for

the first state ofα2.)

The last result is the following, stating that we can interchange theFail andU operators

on an automaton and get the same result:

Theorem 5.5 LetA be a TIOA such thatfail andrestart is not an action ofA andfailed

is not a variable. ThenFail(U(A)) = U(Fail(A)).

Proof: This follows immediately from the definitions ofFail andU . In both cases, the

resulting automaton isA started in an arbitrary state, only with newfail andrestart actions

and with a newfailed variable started with an arbitrary value.

60

Chapter 6

Layers: Physical layer model

Here we describe the formal theoretical system model for a mobile network that we will be

working with in this thesis.

The physical layer consists of a bounded, tiled region of theplane, where mobile phys-

ical (real) nodes are deployed. These nodes are TIOAs susceptible to crash failures and

restarts, and with access to local clocks. They also have access to a local broadcast ser-

vice Pbcast, which models broadcasts and receives of messages, and reliable real world

automaton,RW, which models movement of the physical nodes and real-time.We will use

this layer to emulate the VSA layer (we define emulation in Chapter 4).

6.1 Network tiling

The network tiling describes the geography of the network:

• R is the deployment space of the network. It is a fixed, closed, bounded connected

portion of the two-dimensional plane.

• dist : R2 → R
≥0 is the Euclidean distance between two points inR.

• U is the finite totally ordered set of region identifiers.

A region is a set of connected points inR, with a unique identifier fromU . R is divided

into closed regions. The only overlap of points permitted atdistinct regions is at the shared

boundaries.

61

• points : U → 2R is a function mapping from region ids to points inR. points(u) is

defined to be the set of points in the region corresponding to identifieru.

• region : R → U is a function from points inR to region ids. For a pointl ∈ R,

region(l) is defined to bemin({u ∈ U | l ∈ points(u)}), that is, the minimum id of

any region containingl.

• nbrs : 2U×U is a neighbor relation on ids fromU . nbrs holds for any two distinct

region idsu andv whose regions share any points. More formally,(u, v) ∈ nbrs ⇔
(u 6= v ∧ points(u) ∩ points(v) 6= ∅). Recall that if two distinct regions share any

points, these must be boundary points of both regions. This definition implies that

diagonally adjacent neighbors in a grid are neighbors, for example.

• nbrs+(u) : U → 2U refers to the set{u} ∪ nbrs(u).

• regDist : U2 → N is the region distance between two regions. For regionsu and

v, regDist(u, v) is defined to be the hop count of the shortest path betweenu and

v in the neighbor graph induced by thenbr relation. For example, ifu = v then

regDist(u, v) = 0, and if(u, v) ∈ nbrs thenregDist(u, v) = 1.

• D, a natural number, is the network diameter in terms of regiondistances. It is

defined asmaxu,v∈U regDist(u, v).

• r, a non-negative real, is an upper bound on the Euclidean distance between two

points in the same or neighboring regions. More formally, werequire that for every

u, v such thatv ∈ nbrs+(u) and for everyl1 ∈ points(u) and l2 ∈ points(v),

dist(l1, l2) ≤ r.

Example: Grid tiling: Tilings are not required to be regular, though this is oftenuseful. One

example of a regular tiling is a baseb, b ∈ R
>0, grid whereR is divided into squareb × b

regions. Squares that share edges or are diagonal from one another, sharing a single border

point, are neighbors. This means that each non-border square inR has eight neighbors. In

such a baseb grid, r could be any value greater than or equal to2
√

2 b.

62

1 Signature:
Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

3 Input brcv(m)p, m∈ Msg
Output bcast(m)p, m∈ Msg

5 Arbitrary additional non-fail, non-restart actions.

7 State:
analogclock: R

≥0∪ {⊥}, initially ⊥
9 Finite set of additional non-failed variables, each initially

set to a unique initial value.

12Trajectories:
if clock 6=⊥then

14d(clock) = 1
else constantclock

16Additional variables develop as specified.

Figure 6-1:Pp.

Example: Hexagonal tiling: Another example of a regular tiling is a hexagonal, or honey-

comb, tiling with edges of lengthb, b ∈ R
>0. In this case, each interior hexagonal region

has six neighbors, one for each edge.r could be any value greater than or equal to
√

13 b.

6.2 Mobile physical nodes

Here we describe our model of the mobile physical nodes. Thismodel describes the soft-

ware aspects of the physical nodes, but does not address the actual mobility of the nodes;

mobility is modelled by the “Real World” automatonRW , described in Section 6.3.

• P is the set of mobile node ids.

• For eachp ∈ P , we assume a mobile physical nodePp from a set of TIOAs,

PProgramp. Each physical nodePp is modeled as a timed I/O automaton.

• Msg is the set of messages that a process may broadcast.

We provide an outline of the allowable structure ofPp in Figure 6-1. Each mobile

physical nodePp has a local clock variableclock. We assume that each node’sclock

progresses at the rate of real-time, and is initially⊥.

We assume that a physical nodePp has at least the following external interface, which

includes the ability to broadcast and receive messages and to receiveRW updates.

• Output bcast(m)p, m ∈ Msg:

A nodep may broadcast a message usingPbcastthroughbcast(m)p.

63

• Input brcv(m)p, m ∈ Msg:

A nodep receives a messagem from Pbcastthroughbrcv(m)p.

• Input GPSupdate(l, t)p, l ∈ R, t ∈ R
≥0:

Such an update fromRW indicatesPp is currently at locationl and the current time

is t. If the node adopts the valuet as its local clock valueclock, then since the local

clock’s value progresses at the rate of real-time, the value ofclock will generally be

equal to that of real time. However,clock might not be equal to real-time if the node

has just recovered from a failure or started in an arbitrary state. In these cases, the

periodicGPSupdate can correct the clock value.

We allow additional arbitrary non-fail and non-restart actions and local non-failed

state. Our restrictions onfail and restart actions andfailed variables makesPp Fail-

transformable, which allows us to use theFail transformation described in Chapter 5 to

getFail(Pp).

6.3 RW: Real World

RW models system time and mobile node locations. It is an external source of reliable

time and location knowledge for physical nodes. TheRWTIOA in Figure 6-2 maintains

location/ time information and updates physical nodes withthat information. Its outputs

are also inputs to thePbcastservice, allowing the broadcast service to guarantee delivery

of messages sent between nodes that are located geographically close to each other.

RW is parameterized by the following constants:

• vmax : R
≥0, a maximum velocity magnitude for mobile node motion.

• ǫsample : R
≥0, a maximum amount of time between updates for each node.

RW maintains a variable,now, that is considered the true system time, and two map-

pings from the set of physical node idsP , loc andupdates:

• now is a non-negative real representing the current true systemtime.

64

Signature:
2 Output GPSupdate(l, t)p, l ∈ R, p∈ P, t ∈ R≥0

4 State:
analognow: R≥0, initially 0

6 updates(p): 2R×R
≥0

, for eachp ∈ P , initially ∅
loc(p): R, for eachp ∈ P , initially arbitrary

Trajectories:
10evolve

d(now) = 1
12|d(loc(p))| ≤ vmax, for eachp ∈ P

stop when
14∃p∈ P: ∀〈l, t〉 ∈ updates(p): now≥ t + ǫsample

16Transitions:
Output GPSupdate(l, t)p

18Precondition:
l = loc(p) ∧ t = now∧∀〈u, t′〉 ∈ updates(p): t 6= t′

20Effect:
updates(p)← updates(p) ∪ {〈l, t〉}

Figure 6-2:RW[vmax, ǫsample].

prevUpd(p: P, t: R
≥0): R

≥0∪ {⊥}
2 if ∃〈l, t′〉 ∈ updates(p): t′ < t then

return max({t′∈ R
≥0|∃〈l,t′〉∈ updates(p):t′< t})

4 else return⊥

6 reg−(p: P, t: R≥0): U ∪ {⊥}
if ∃〈l, t′〉 ∈ updates(p): t′ < t then

8 return min ({v∈ U|
∃l ∈ points(v): 〈l, prevUpd(p, t)〉 ∈ updates(p)})

10 else return⊥

12reg+(p: P, t: R
≥0): U ∪ {⊥}

if ∃l ∈ R: 〈l, t〉 ∈ updates(p) then
14return min ({v∈ U|∃l∈ points(v):〈l,t〉∈ updates(p)})

else return reg−(p, t)
16

reg(p: P): U ∪ {⊥}
18return reg+(p, now)

Figure 6-3:RWderived variables.

• loc : P → R maps each physical node id to a point in the plane indicating the

node’s current location. Initially this is arbitrary. We assume that the magnitude of

the change inloc for eachp ∈ P is bounded by speedvmax.

• updates : P → 2R×R≥0
, maps the set of physical node ids,P , to a set of pairs〈l, t〉,

indicating that aGPSupdate(l, t)p occurred. Initially, this set is empty.

WhenRW outputs aGPSupdate(loc(p), now)p at a mobile nodePp, informing the

node of the node’s locationloc(p) and the current time, the pair〈loc(p), now〉 is stored in

updates(p) as a record of the update. AGPSupdate is required to occur at a mobile node

Pp at time 0 (guaranteed by the stopping condition on line 14 andthe fact thatupdates(p)

starts out empty for eachp in P) and at least everyǫsample time thereafter (guaranteed by

the stopping condition expressed on line 14). AGPSupdate is allowed to occur only

once at any particular timet and particular processPp (guaranteed by the precondition that

∀〈l, t′〉 ∈ updates(p) : t′ 6= t on line 19). This precondition is useful later in preventing

certain race conditions from occurring when a node restartsafter a failure.

65

We also define several derived function variables that will be useful throughout this

thesis (see Figure 6-3):

• prevUpd : (P × R) → R ∪ {⊥} maps a physical node idp and timet to the

time t′ of the lastGPSupdatep that occurred before timet. This is calculated to be

max({t′ | ∃〈l, t′〉 ∈ updates(p) : t′ < t}). If no such time exists, it returns⊥.

• reg− : (P × R) → U ∪ {⊥} maps a physical node idp and timet to the region

indicated by the lastGPSupdatep before timet. It is defined as thev ∈ U such that

there is a locationl in region(v) such that〈l, prevUpd(p, t)〉 ∈ updates(p). If no

such region exists, it returns⊥.

This function is useful for referring to the region that a process is in, as indicated

by the history ofGPSupdates stored inRW.updates, at the beginning of some

time. A processPp can be considered to be in two different regions at the same

time t in an execution. For example, a process’s region in some execution at timet

might be a regionv. Then aGPSupdate(l, t)p could occur, changing the region to

u = region(l). This means that the variableRW.reg(p) at timet is set tov at the

beginning of timet, and set tou at the end of timet. The functionreg− returns the

first region,v.

• reg+ : (P × R) → U ∪ {⊥} maps a physical node idp and timet to the region

indicated by theGPSupdatep that occurs at timet if it exists, and to the result of

reg−(p, t) if it does not.

Similarly to reg−, this function is useful for referring to the region that a process is

in at some timet, though in this case it refers to the region at the end of that time.

For example, in the scenario described inreg−, reg+(p, t) would returnu.

• reg : P → U ∪ {⊥} maps a physical node idp to the region of the node as indicated

by the lastGPSupdatep. This is the last reported region of the node, and is defined

to bereg+(p, now).

66

Reachable states ofRW

Here we characterize the reachable states ofRW by providing a list of properties exactly

describing those states. We show that (1) the list of properties is an invariant forRW and

(2) any state satisfying the list of properties is indeed a reachable state ofRW .

First we describe the reachable states ofRW .

Definition 6.1 DefineInvRW to be the set of statesx of RW such that the following prop-

erties hold:

1. ∀t ∈ (0, now], ∀p ∈ P, ∃〈l, t′〉 ∈ updates(p) : |t − t′| ≤ ǫsample.

This means that for any timet after 0 and up to the clock time inx, for eachp ∈ P

there is some〈l, t′〉 pair in updates(p) wheret′ is within ǫsample time oft.

2. ∀p ∈ P, ∀〈l, t〉 ∈ updates(p) : t ∈ [0, now].

This means that there are no update records that indicate an update occurred before

time 0 or after the current time.

3. ∀p ∈ P, ∀〈l, t〉, 〈l′, t′〉 ∈ updates(p) : [t = t′ ⇒ l = l′].

This means that there is at most one update record for a particular time and process.

4. There exists a functionlocAt : (P × R
≥0) → R such that for allp ∈ P :

(a) ∀〈l, t〉 ∈ updates(p) : locAt(p, t) = l.

(b) locAt(p, now) = loc(p).

(c) ∀t1, t2 : 0 ≤ t1 < t2 ≤ now : |locAt(p,t1)−locAt(p,t2)|
|t1−t2|

≤ vmax.

This means that there is a function that can describe for eachp ∈ P a location

at any time between 0 and the current time that is consistent with the update

histories stored inupdates(p), the current location, and the maximum speed

restriction ofvmax.

We now show that the set of properties describingInvRW is an invariant forRW . We do

this by showing that every reachable state ofRW is in InvRW .

Lemma 6.2 reachableRW ⊆ InvRW .

67

Proof: Consider a state inreachableRW . We must show that it satisfies the properties of

a state inInvRW . This is the same as showing that the last state of any closed execution of

RW is in InvRW . We proceed by induction on closed executions ofRW .

First, we check that the initial state ofRW satisfies the list of properties above. Since

updates(p) are empty for eachp ∈ P , the properties are trivially satisfied.

Next we check that if the properties hold in some statex and an action is performed

that leads to statex′, then the properties hold in statex′. We break this down by action:

• GPSupdate(l, t)p: It is easy to see that Properties 1 and 2 still hold. Property3 can

only be violated in there exists some pair〈l′, t〉 ∈ updates(p) wherel 6= l′. However,

by Property 4 in statex, l = locAt(p, now). Sinceloc(p) does not change in 0 time,

thenloc(p) = locAt(p, now), meaning thatl = l′. For Property 4, thelocAt function

that exists for statex would still satisfy our requirements in statex′.

Finally we check that for any closed trajectoryτ starting with a statex where the prop-

erties hold and ending in a statex′, the properties hold in statex′. The only interesting

properties to check are 1 and 4. Property 1 will still hold dueto the stopping condition

expressed in line 14. For Property 4, simply adopt the function locAt that must exist at the

beginning of the trajectory and extend the mapping fort ≥ x(now) for eachp ∈ P to be

loc(p) at timet in τ . The resulting function will satisfy 4(a) and 4(b). 4(c) will hold due to

the trajectory restriction described on line 12.

Now we show the opposite direction, namely that any state inInvRW is a reachable

state ofRW . We do this by showing how, given a statex in InvRW , we can construct an

execution ofRW that ends inx.

Lemma 6.3 InvRW ⊆ reachableRW .

Proof: Consider a statex in InvRW . We must show thatx is a reachable state ofRW .

We do this by constructing an executionα of RW such thatα.lstate = x. This execution

describes the motion of the physical nodes and contains onlyGPSupdate events.

By property 4 in the description ofInvRW , there exists some functionlocAt to describe

the location of each process from time 0 tox(now). We use this to describe an execution

68

Signature:
2 Input GPSupdate(l, t)p, l ∈ R, p∈ P, t ∈ R≥0

Input bcast(m)q , m∈Msg, q∈ P
4 Output brcv(m)p, m∈ Msg, p∈ P

Internal drop(m, t, q, p), m∈Msg, t ∈ R≥0, p, q∈ P
6

State:
8 analognow: R≥0, initially 0

updates(p): 2R×R
≥0

, for eachp ∈ P , initially ∅

10 pbcastq(p): 2Msg×R
≥0×2P

, for eachp ∈ P , initially ∅

12 Trajectories:
evolve

14 d(now) = 1
stop when

16 ∃p∈ P:∃〈m,t,P′〉∈ pbcastq(p):[t= now-dphys∧P′ 6= ∅]

18 Transitions:
Input GPSupdate(l, t)p

20 Effect:
updates(p)← updates(p) ∪ {〈l, t〉}

Input bcast(m)p

24Effect:
if ∀〈m′, t, P′〉 ∈ pbcastq(p): [m′ 6= m∨ t 6= now] then

26pbcastq(p)← pbcastq(p) ∪ {〈m, now, P〉}

28Output brcv(m)q

Local:
30p: P, t: R≥0, P′: 2P

Precondition:
32〈m, t, P′〉 ∈ pbcastq(p) ∧ q∈ P′ ∧ t 6= now

Effect:
34pbcastq(p)← pbcastq(p) -{〈m, t, P′〉} ∪ {〈m, t, P′-{q}〉}

36Internal drop(m, t, q, p)
Local:

38l, l′: R, t′ ≤ t, t′′: R
≥0, P′: 2P

Precondition:
40〈l, t′〉∈ updates(p)∧∀ 〈l∗, t∗〉∈ updates(p):[t∗≤ t′∨ t∗> t]

〈l′, t′′〉∈ updates(q)∧∀ 〈l∗, t∗〉 ∈ updates(q): t∗ ≤ t′′

42〈m, t, P′〉∈ pbcastq(p) ∧q∈ P′ ∧ t6= now∧ dist(l, l′)> rreal

Effect:
44pbcastq(p)← pbcastq(p)-{〈m, t, P′〉}∪ {〈m, t, P′-{q}〉}

Figure 6-4:Pbcast[dphys, rreal].

α, where the evolution of the variableloc in α from time 0 tonow is defined as follows:

for eachp ∈ P and timet, loc(p) at timet in α is equal tolocAt(p, t). In addition, for

eachp ∈ P and〈l, t〉 ∈ updates(p), we add aGPSupdate(l, t)p action at timet in α. If

more than oneGPSupdate occurs at any timet, order theGPSupdates by the process for

which the update is occurring (recall that by property 3 there is at most oneGPSupdate

per process at a particular time). It is easy to see thatα is an execution ofRW : by Property

4 and our construction of the evolution ofloc, the change in location of processes satisfies

the requirements for an execution ofRW . By Properties 2, 3, and 4, eachGPSupdate is

enabled. By Property 1,GPSupdates occur often enough to satisfy the stopping conditions

of RW in line 14. It is also easy to see thatα.lstate is equal tox.

The preceding two lemmas directly imply the following characterization theorem:

Theorem 6.4 InvRW = reachableRW .

6.4 Pbcast: Local broadcast service

Each node has access to the local broadcast communication service Pbcast, modelled in

Figure 6-4. The service is parameterized with the following:

69

• rreal, a non-negative real representing the minimum broadcast radius of the nodes.

We require thatrreal ≥ r + ǫsamplevmax.

• dphys, a non-negative real representing the message delay upper bound.

The service described in Figure 6-4 allows each clientPp to broadcast a message to all

nearby clients throughbcast(m)p and receive messages broadcast by other clients through

brcv(m)p.

The main variable of this service ispbcastq(p) for eachp ∈ P , storing information

about broadcasts performed byPp. When abcast(m)p input occurs at some timet, if no

bcast(m)p already occurred at timet, Pbcastadds a〈m, t, P 〉 tuple topbcastq(p). The set

of process ids in the third component of the tuple representsthe set of processes that might

still potentially receive the message. Some positive amount of time after the broadcast

(guaranteed by the precondition thatt 6= now on line 32 and 42), a processPq in the set

can either receive the message (lines 28-34), or ifPq’s last reported locationl′ (as described

on line 41) is farther thanrreal from the last reported locationl of the sender at timet (as

described on line 40), the transmission may fail toPq (lines 36-44). In either case, the idq

is removed from the set of ids of processes that might still receive the message. We require

that once a message is broadcast, for every node the message is received or the transmission

fails by at mostdphys time later (guaranteed by the stopping condition expressedon line

16). Our requirement that a non-0 amount of time pass betweenbroadcast and the possible

receiving or dropping of the message is utilized later to prevent race conditions that can

result when a process changes regions or failure modes.

6.4.1 Properties ofPbcast

The service guarantees that in each executionα of Pbcast, there exists a function mapping

eachbrcv(m)q event to thebcast(m)p event that caused it such that the following hold:

• Integrity: If a brcv(m)q eventπ is mapped to abcast(m)p eventπ′, thenπ′ occurs

beforeπ.

70

• Non-duplicative delivery: If a brcv(m)q eventπ is mapped to abcast(m)p eventπ′

which occurs at a timet, then there do not exist any otherbrcv(m)q events that map

to abcast(m)p event at timet. (Notice that this is slightly stronger than the normal

non-duplicative delivery property. Here, if some process sends the same message

more than once at some timet, this property implies that at most one copy of the

message is received by any process. This is enforced throughthe check on line 25

for whether the sender has already sent a copy of the message at this time.)

• Bounded-time delivery: If a brcv(m)q eventπ is mapped to abcast(m)p eventπ′

whereπ′ occurs at timet, then eventπ occurs in the interval(t, t + dphys].

• Reliable local delivery: This guarantees that a transmission will be received by

nearby nodes: If abcast(m)p eventπ′ occurs at timet where the last recorded loca-

tion of p by the end of timet is l andα.ltime > t + dphys, and for each last recorded

locationl′ of q in the entire interval[t, t + dphys], dist(l, l′) ≤ rreal, then there exists

abrcv(m)q eventπ such thatπ is mapped to somebcast(m)p event (not necessarily

π′) at timet. (This property is enforced through the preconditions for thedrop action

in lines 38-42. A process fails to receive a message transmitted at timet only if at

some point during the transmission interval it is too far, asreported byGPSupdates,

from the last reported location of the transmitter at timet.)

Notice that we are not concerned with the failure status of physical nodes in our model

of Pbcast. Messages are delivered entirely based on the locations of the nodes. If aFail-

transformed physical node is failed when abrcv event occurs for it, then by our definition

of theFail transform, thebrcv event is a no-op.

Clearly, this is a theoretical abstract model of broadcast communication available to

mobile nodes. In real mobile network deployments, reliablelocal delivery can be difficult

to achieve. While the abstract model assumed here does accommodate the possibility of

bounded-time retransmission to tackle wireless broadcastissues such as message collisions,

it does not handle the reality of having onlyhigh probabilitybounded-time retransmission.

There is ongoing work towards providing reliable communication in wireless networks

with collision failures [16, 17], but coping with such settings is beyond the scope of this

71

thesis.

6.4.2 Reachable states ofPbcast

Here we characterize the reachable states ofPbcastby providing a list of properties exactly

describing those states. We show that (1) the list of properties is an invariant forPbcast

and (2) any state satisfying the list of properties is indeeda reachable state ofPbcast.

First we describe the reachable states ofPbcast.

Definition 6.5 DefineInvPbcast to be the set of statesx of Pbcastsuch that the following

properties hold:

1. ∀p ∈ P, ∀〈m, t, P ′〉 ∈ pbcastq(p) : t ∈ [0, now].

This means that the timestamp attached to a message broadcast record is not for a

time before 0 or after the current time.

2. ∀p ∈ P, ∀〈m, t, P ′〉 ∈ pbcastq(p) : [t < now − dphys ⇒ P ′ = ∅].
This means that for any record of a message broadcast from more thandphys time

ago, the set of processes yet to either receive the message ordrop it is empty.

3. ∀p ∈ P, ∀〈m, t, P ′〉 ∈ pbcastq(p) : [t = now ⇒ P = P ′].

This means that for any record of a message broadcast that occurred at the current

time, no process has yet received or dropped the message.

4. ∀p ∈ P, ∀〈m, t, P ′〉, 〈m′, t′, P ′′〉 ∈ pbcastq(p) : [〈m, t〉 = 〈m′, t′〉 ⇒ P ′ = P ′′].

This means that for any two distinct records of message broadcasts from the same

timet in pbcastq(p) for somep ∈ P , the messages must be different.

We now show that the set of properties describingInvPbcast is an invariant forPbcast.

We do this by showing that every reachable state ofPbcastis in InvPbcast.

Lemma 6.6 reachablePbcast ⊆ InvPbcast.

Proof: Consider a state inreachablePbcast. We must show that it satisfies the properties of

a state inInvPbcast. This is the same as showing that the last state of any closed execution

of Pbcast is in InvPbcast. We proceed by induction on closed executions ofPbcast.

72

First, we check that the initial state ofPbcastsatisfies the list of properties above. Since

pbcastq(p) is empty for eachp ∈ P , the properties are trivially satisfied.

Next we check that if the properties hold in some statex and an action is performed

that leads to statex′, then the properties hold in statex′. We break this down by action:

• GPSupdate(l, t)p: It is easy to see that the properties still hold.

• bcast(m)p: It is easy to see that all properties except 1 are not affected. Properties

1 and 3 are satisfied by the structure of the tuple added topbcastq(p) in line 26.

Property 4 will still hold because of the test on line 25.

• brcv(m)q: The only possibly nontrivial property verification to be done is for Prop-

erty 3. However, the precondition for abrcv on line 32 states thatt 6= now. Hence,

Property 3 will continue to hold.

• drop(m, t, q, p): The only possibly nontrivial property verification for this action is

for Property 3. By the precondition on line 42, we know thatt 6= now. Hence, the

property still holds.

Finally we check that for any closed trajectoryτ starting with a statex where the prop-

erties hold and ending in a statex′, the properties hold in statex′. The only interesting

property to check is 2. Property 2 will still hold due to the stopping condition expressed in

line 16.

Now we show the opposite direction, namely that any state inInvPbcast is a reachable

state ofPbcast. We do this by showing how, given a statex in InvPbcast, we can construct

an execution ofPbcastthat ends inx.

Lemma 6.7 InvPbcast ⊆ reachablePbcast.

Proof: Consider a statex in InvPbcast. We must show thatx is a reachable state ofPbcast.

We do this by constructing an executionα of Pbcastsuch thatα.lstate = x.

The construction is done in two phases. First, we construct an executionα1 which

describes theGPSupdates that occurred. Then we constructα by adding abcast event

73

to α1 for each message tuple inpbcastq(p), p ∈ P , together withbrcv events for processes

whose ids do not appear in the tuple’s set of process ids. We describe this construction in

more detail below.

For executionα1, for eachp ∈ P and〈l, t〉 ∈ updates(p), we add aGPSupdate(l, t)p

action at timet in α1. If more than oneGPSupdate occurs at any timet, we order the

updates by the process for which the update occurs. It is easyto see thatα1 is an execution

of Pbcast: sinceGPSupdate is an input it is always enabled. It is also easy to see that

α1.lstate restricted to the value of thenow andupdates variables is equal to the value of

x restricted in a similar manner.α1.lstate, however, has an emptypbcastq(p) for each

p ∈ P .

We then createα by addingbcast andbrcv events toα1 in the following way: For

eachp ∈ P and〈m, t, P ′〉 ∈ pbcastq(p), add abcast(m)p event at timet, and for every

q not in P ′, add abrcv(m)q after thebcast action at timemin(t + dphys, x(now)). Since

bcast is an input action, it is always enabled. Since the timet is notx(now) in any of the

records and properties 3 and 4 hold, any of thebrcv events is enabled. We also need to

check that the stopping conditions in line 16 are not violated; a violation can only occur in

our construction if somebcast event is added toα more thandphys time beforex(now) and

there is some process for which a correspondingbrcv event does not occur. By property 2,

any tuple from more thandphys time beforex(now) has an empty setP ′, meaning that our

construction added an associatedbrcv for each process, and the stopping condition was not

violated. Hence,α is an execution ofPbcast.

The only thing remaining to be checked is that the value ofα.lstate(pbcastq) is equal

to that ofx. This is easy to see by the construction ofα and property 1.

The preceding two lemmas directly imply the following characterization theorem:

Theorem 6.8 InvPbcast = reachablePbcast.

6.4.3 Reachable states ofRW‖Pbcast

Here we characterize the reachable states ofRW‖Pbcastby providing a list of properties

exactly describing those states. We show that (1) the list ofproperties is an invariant for

74

RW‖Pbcastand (2) any state satisfying the list of properties is indeeda reachable state of

RW‖Pbcast. We then show a useful result about the relationship betweenbroadcast and

receive events and the regions of nodes.

First we describe the reachable states ofRW‖Pbcast.

Definition 6.9 DefineInvRW‖Pbcast to be the set of statesx of RW‖Pbcast such that the

following properties hold:

1. x⌈XRW ∈ InvRW .

This means that theRW -related elements of state satisfy the properties ofInvRW .

2. x⌈XPbcast ∈ InvPbcast.

This means that thePbcast-related elements of state satisfy the properties of

InvPbcast.

3. Pbcast.now = RW.now ∧ Pbcast.updates = RW.updates.

This means that the clock values and update records are the same betweenPbcast

andRW .

We now show that the set of properties describingInvRW‖Pbcast is an invariant for

RW‖Pbcast. We do this by showing that every reachable state ofRW‖Pbcast is in

InvRW‖Pbcast.

Lemma 6.10 reachableRW‖Pbcast ⊆ InvRW‖Pbcast.

Proof: Consider a state inreachableRW‖Pbcast. We must show that it satisfies the proper-

ties of a state inInvRW‖Pbcast. This is the same as showing that the last state of any closed

execution ofRW‖Pbcastis in InvRW‖Pbcast. By Lemma 6.2, property 1 ofInvRW‖Pbcast

holds throughout such an execution. By Lemma 6.6, property 2of InvRW‖Pbcast holds

throughout such an execution. That leaves only property 3 toshow. We proceed by induc-

tion on closed executions ofRW‖Pbcast.

First, we check that the initial state ofRW‖Pbcastsatisfies property 3. Sincepbcastq(p)

andupdates(p) are empty for eachp ∈ P and both start withnow = 0, property 3 is

trivially satisfied.

75

Next we check that if property 3 holds in some statex and an action is performed that

leads to statex′, then property 3 holds in statex′. We break this down by action:

• GPSupdate(l, t)p: The pair〈l, t〉 is added toupdates(p) in bothRW andPbcast,

so since property 3 holds in statex, it still holds inx′.

• bcast(m)p, brcv(m)q, drop(m, t, q, p):

These do not impactupdates(p) or now, so property 3 still trivially holds.

Finally we check that for any closed trajectoryτ starting with a statex where property

3 holds and ending in a statex′, property 3 holds in statex′. Theupdates variable does not

change over a trajectory and thenow variables develop at the same rate. Hence, property 3

holds in statex′.

Now we show the opposite direction, namely that any state inInvRW‖Pbcast is a reach-

able state ofRW‖Pbcast. We do this by showing how, given a statex in InvRW‖Pbcast, we

can construct an execution ofRW‖Pbcastthat ends inx.

Lemma 6.11 InvRW‖Pbcast ⊆ reachableRW‖Pbcast.

Proof: Consider a statex in InvRW‖Pbcast. We must show thatx is a reachable state of

RW‖Pbcast. We do this by taking an executionαRW of RW and an executionαPbcast of

Pbcast and pasting them together to get an executionα of RW‖Pbcastwhereα.lstate = x.

Let αRW be the execution ofRW with αRW .lstate = x⌈XRW constructed in Lemma

6.3, which exists becausex satisfies property 1. LetαPbcast be the execution ofPbcast

with αPbcast.lstate = x⌈XPbcast constructed in Lemma 6.7, which exists becausex satisfies

property 2. Letβ betrace(αPbcast). Obviously,β⌈(EPbcast, ∅) = trace(αPbcast). Because

of property 3 and the construction of the two executions, it is obvious thattrace(αRW) =

trace(β)⌈(ERW , ∅). Hence, by Lemma 2.16, there exists an executionα of RW‖Pbcast

such thatαRW = α⌈(ARW , XRW) andαPbcast = α⌈(APbcast, XPbcast). By construction,

α.lstate must equalx.

The preceding two lemmas directly imply the following characterization theorem:

Theorem 6.12 InvRW‖Pbcast = reachableRW‖Pbcast.

76

We now present a result that will be used later in the thesis. Using Theorem 6.12, our

upper bounds on region sizes allow us to conclude that after abroadcast at timet from a

processp whoseGPSupdates indicate it starts in a regionu (equal toreg−(p, t)) and ends

in a regionv (equal toreg+(p, t)) at timet, abrcv for the message will be output byPbcast

for each process whoseGPSupdates indicate it is inu, v, or neighboring regions (equal to

nbrs+(u) andnbrs+(v)) for the entire duration of the message broadcast interval:

Lemma 6.13 Let α be an execution ofRW‖Pbcast and letmap be a function mapping

from eachbrcv(m)q event to abcast(m)p event such that the Integrity, Non-duplicative

delivery, Bounded-time delivery, and Reliable local delivery properties hold.

Suppose abcast(m)p eventπ′ occurs at timet and α.ltime > t + dphys. Consider any

q such that for allt∗ in the interval [t, t + dphys], reg+(q, t∗) ∈ nbrs+(reg−(p, t)) ∪
nbrs+(reg+(p, t)). Then there exists abrcv(m)q eventπ such thatπ is mapped toπ′.

Proof: If a GPSupdatep event occurs at timet, then letl be the associated location, else

let l be the associated location of the lastGPSupdatep event before timet. Let q be

an id such that for allt∗ in the interval[t, t + dphys], reg+(q, t∗) ∈ nbrs+(reg−(p, t)) ∪
nbrs+(reg+(p, t)). We must show that there exists abrcv(m)q eventπ such thatπ is

mapped toπ′. By the Reliable local delivery property ofPbcast(Section 6.4), this result

would be implied if we could just show that for each timet∗ and locationl′ such thatl′ is

the most recent location record ofq in Pbcast.updates(q)at timet∗, dist(l, l′) ≤ rreal.

We consider cases for the region ofl′. If its region is innbrs+(reg−(p, t)), then by our

upper bound on region size, the distance betweenl′ and any point innbrs+(reg−(p, t)) is

at mostr. If point l is in reg−(p, t), then this implies thatdist(l, l′) ≤ r. If point l is not

in reg−(p, t), then aGPSupdatep occurred at timet. By property 1 ofInvRW , the last

update before timet occurred for some pointl′′ in reg−(p, t) no more thanǫsample beforet,

and by property 4 ofInvRW , the maximum distance that could have been travelled in that

time isǫsamplevmax, meaning pointl is no more thanǫsamplevmax from the pointl′′. Hence,

dist(l, l′) ≤ dist(l, l′′) + dist(l′′, l′) ≤ r + ǫsamplevmax ≤ rreal.

If the region ofl′ is in nbrs+(reg+(p, t)), then by our upper bound on region size, the

distance betweenl′ and any point innbrs+(reg+(p, t)) is at mostr. Since pointl is located

77

in reg+(p, t), dist(l, l′) ≤ r ≤ rreal.

6.5 P-algorithms andPLayers

Here we define a physical layer algorithm and the complete physical layer.

First, we define a physical layer algorithm. A physical layeralgorithm is just an assign-

ment of a TIOA program to each physical node.

Definition 6.14 A P-algorithm,palg : P → PProgramp, is a mapping from each mobile

node idp ∈ P to some TIOAPp ∈ PProgramp. The set of all P-algorithms is referred to

asPAlgs.

Since we are interested in considering failure-prone physical nodes, given a physical

layer algorithm, the physical layer is then the compositionof RW andPbcastwith Fail-

transformed programs for all the physical nodes, as indicated by the physical layer algo-

rithm.

Definition 6.15 Letpalg be an element ofPAlgs.

• PLNodes[palg], theFail-transformed physical nodes parameterized bypalg, is the

composition ofFail(palg(p)) for all p ∈ P .

• PLayer[palg], the physical layer parameterized bypalg, is the composition of

PLNodes[palg] with RW‖Pbcast.

78

Chapter 7

Layers: Virtual Stationary Automata

layer model

.

.

.

.

.

.

V bcast

Fail

Fail

Fail

Fail

failp, restartp

failq, restartq

failu, restartu

failv, restartv

V BDelay[e]u

V BDelay[e]v

V BDelayp

V BDelayq

Cp

Cq

GPSupdate(l, now)p

RW V W

GPSupdate(l′, now)q

Vu

Vv

vcast(m)p

vrcv(m)p

vcast(m)q

vrcv(m)q

vcast(m)u

vrcv(m)u

vcast(m)v

vrcv(m)v

vcast’(m, f)p

vcast’(m, f ′)q

vcast’(m, true)u

vcast’(m, true)v

time(now)u

time(now)v

Figure 7-1: Virtual Stationary Automata layer. VSAs and clients communicate locally
usingVbcast. VSA and client outputs may be delayed inVBDelaybuffers. VW provides
timing and failure information to VSAs, andRWprovides timing and mobile node location
information.

Here we describe our formal theoretical model for the virtual node abstraction layer.

TheVirtual Stationary Automataabstraction layer [29] includes the network tiling and

RW of the physical layer, client nodes that correspond to physical nodes, virtual stationary

automata (VSAs) at predefined regions of the network, aVW time and failer service for

79

Signature:
2 Output time(t)u, t ∈ R≥0, u∈ U

Output failu, u∈ U
4 Output restartu, u∈ U

6 State:
analognow: R≥0, initially 0

8 last(u): R≥0∪ {⊥}, for eachu ∈ U , initially ⊥

10 Trajectories:
evolve

12 d(now) = 1
stop when

14 ∃u∈ U: last(u) ∈ {⊥, now-ǫsample}

16Transitions:
Output time(t)u

18Precondition:
t = now

20Effect:
last(u)← t

22

Output failu
24Precondition:

None
26Effect:

None
28

Output restartu
30Precondition:

None
32Effect:

None

Figure 7-2:VW[ǫsample] , Virtual time and failer service.

VSAs, and a local broadcast service between client nodes andVSAs, calledVbcast, similar

to the Pbcastof the physical layer (see Figure 7-1). In addition, the abstraction layer

containsVBDelaybuffers that delay the broadcasts of clients and VSAs.

In the rest of this chapter, we describe all of the above components in more detail. The

entire VSA layer is then defined to be just the composition ofRW, V W , andV bcast to-

gether with theFail-transform for each client and VSA of the composition of thatprocess’s

machine with its correspondingV BDelay buffer.

7.1 Network tiling and RW

The network tiling, describing the geography of the network, is the same as in Section 6.1.

The reliable location and time oracleRW is the same as in Section 6.3.

7.2 Virtual time and failer service VW

The virtual time and failer service,V W serves both as a time oracle for VSAs and a fail

and restart service for VSAs. A TIOA description ofV W is in Figure 7-2. Similar toRW

for clients,V W performs atime(t)u output at time 0 and at least everyǫsample time for each

u ∈ U . Also,V W nondeterministically issuesfailu andrestartu outputs for eachu ∈ U .

80

Reachable states ofVW

Here we characterize the reachable states ofVW by providing a list of properties exactly

describing those states.

Definition 7.1 DefineInvV W to be the set of statesx of V W such that the following prop-

erties hold:

1. ∀u ∈ U, now 6= 0 ⇒ last(u) 6= ⊥.

This means that after time 0, there must be a non-⊥ time stored for eachu ∈ U .

2. ∀u ∈ U, last(u) 6= ⊥ ⇒ last(u) ∈ [now − ǫsample, now].

This means that for anyu ∈ U , any non-⊥ last(u) stores a time at mostǫsample old

and no larger thannow.

We do not show thatInvV W describes the set of reachable states ofV W since it is

trivial.

7.3 Mobile client nodes

Here we describe our model of the mobile client nodes; this model is very similar to the

model forPp in Section 6.2.

• For eachp in the set of physical node idsP , we assume a mobile client nodeCp from

a set of TIOAs,CProgramp.

As for Pp, Cp has a local clock variable,clock that progresses at the rate of real-time,

and is initially⊥. As before, additional arbitrary local non-failed variables are allowed. Its

external interface is also assumed to at least include theGPSupdate inputs ofPp, as well

asvcast(m)p outputs andvrcv(m)p inputs, corresponding tobcast andbrcv actions atPp.

Additional arbitrary non-fail and non-restart actions are again allowed.

81

1 Signature:
Input time(t)u, t ∈ R≥0

3 Input vrcv(m)u, m∈ Msg
Output vcast(m)u, m∈ Msg

5 Arbitrary additional non-fail, non-restart internal actions.

7 State:
analogclock: R

≥0∪ {⊥}, initially ⊥
9 Finite set of additional non-failed variables, each initially

set to a unique initial value.

12Trajectories:
if clock 6=⊥ then

14d(clock) = 1
else constantclock

16Additional variables develop as specified.

18Transitions:
Input time(t)u

20Effect:
if clock 6= t then

22Optional state changes may occur.
clock← t

24

Additional transitions as allowed by the signature.
26Changes to clock are not permitted in non-time transitions.

Figure 7-3:Vu.

7.4 Virtual Stationary Automata (VSAs)

Here we describe VSAs. A VSA is a clock-equipped abstract virtual machineVu associated

with a regionu in the network.

• For eachu in the set of region identifiersU , we assume an abstract virtual machine

Vu from a set of TIOAs,V Programu.

We provide an outline of the allowable structure ofVu in Figure 7-3. Each abstract

virtual machineVu has a local clock variableclock. We assume that each node’sclock

progresses at the rate of real-time, and is initially⊥ before being updated with atime

input.

We assume that an abstract virtual machineVu has only the following external interface,

which consists of the ability to receive time updates and broadcast and receive messages.

• Input time(t)u, t ∈ R
≥0:

This input reports the current timet. We require that in the state that results from

this input, nodeu’s clock equalst. Also, we require that no other state changes occur

unlessclock was not equal tot when the action occurred.

• Output vcast(m)u, m ∈ Msg:

A nodeu may broadcast a message throughvcast(m)u.

• Input vrcv(m)u, m ∈ Msg:

A nodeu receives a messagem throughvrcv(m)u.

82

Signature:
2 Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

Input vcast(m)p, m∈Msg
4 Output vcast′(m, f)p, m∈Msg, f ∈ Bool

6 State:
to send+, to send−: Msg∗, initially λ

8 updated: Bool, initially false

10 Trajectories:
stop when

12 to send+ 6= λ ∨ to send− 6= λ

14Transitions:
Input GPSupdate(l, t)p

16Effect:
to send−← to send+

18to send+← λ
updated← true

20

Input vcast(m)p

22Effect:
if updatedthen

24to send+← append(to send+, m)

26Output vcast′(m, f)p

Precondition:
28m= head(to send− to send+) ∧ (f⇔ to send− = λ)

Effect:
30if f then

to send+← tail(to send+)

32elseto send−← tail (to send−)

Figure 7-4:VBDelayp, Message delay service for clients.

We allow additional arbitrary non-failedvariables and non-fail and non-restart internal

actions. We also require that each action be deterministic,in that for each states and each

actiona of Vu, there exists at most one states′ such that(s, a, s′) is a transition ofVu.

7.5 VBDelay delay buffers

As mentioned previously, there are outbound delay buffers from clients and VSAs to the

broadcast serviceVbcast. For each client or VSA node, its associatedVBDelaybuffer takes

as input thevcast(m) outputs of the node, tags each messagem with a Boolean that is later

used by theVbcastservice to help determine what region the node was in when themessage

was produced, and passes the tagged message on to theVbcastservice. In this section we

first describe the client delay buffer, and then the VSA delaybuffer.

7.5.1 ClientVBDelay

The delay buffer for a client,VBDelayp, p ∈ P (see Figure 7-4), tagsvcast messages

from the client with a Boolean indicating if the message was submitted before the latest

GPSupdate at the client, and submits the tagged message to theVbcastservice before

any time passes. (Hence, the delay buffer has a delay of time 0.) Its state consists of the

83

following variables:

• to send+ ∈ Msg∗: This is a queue of messages to be passed on toVbcast. It is

initially empty.

• to send− ∈ Msg∗: This is also a queue of messages to be passed on toVbcast. It

contains messages that were submitted before the latestGPSupdate at the client. It

is initially empty.

• updated : Bool: This is a Boolean indicating whether the node has experienced a

GPSupdate since starting. It is initially false.

Its interface consists of the following three kinds of actions:

• Input GPSupdate(l, t)p, l ∈ R, t ∈ R
≥0, p ∈ P : This input indicates that processp

is at locationl, and results in the process moving itsto send+ messages toto send−

and then clearingto send+. It also updatesupdated to true.

• Input vcast(m)p, m ∈ Msg, p ∈ P : This input is a broadcast of a messagem,

resulting in the addition ofm to to send+.

• Output vcast′(m, f)p, m ∈ Msg, f ∈ Bool, p ∈ P : This output is the passing on

of a vcast message toVbcast. The Booleanf indicates whether the message was

submitted to the process after its lastGPSupdate.

When avcast of a message occurs at a process that has received at least oneGPSup-

date, the message is appended to a local queueto send+ of messages the sender wants

to communicate to other processes (lines 21-24). If noGPSupdate has occurred, the

message is dropped. Whenever aGPSupdate occurs at the client, the queueto send− is

overwritten withto send+, to send+ is erased, andupdated is set to true (lines 15-19).

(Notice that, with our Section 6.3 restriction that aGPSupdate occurs at most once per

time per particular client, the queueto send− will generally be empty at the time of a

GPSupdate.) Wheneverto send− · to send+ is not empty (line 12), the first message

in to send− · to send+ is removed, tagged with a Booleanf equal to true ifto send− is

empty and false otherwise (line 28), and output viavcast′, passing the tagged message on

to theVbcastservice (lines 26-32).

84

Signature:
2 Input vcast(m)u, m∈ Msg

Output vcast′(m, true)u, m∈ Msg
4

State:
6 analogrtimer: R

≥0, initially 0
to send: (Msg×R≥0)∗, initially λ

8

Trajectories:
10 evolve

d(rtimer) = 1
12 stop when

∃〈m, t〉 ∈ to send: rtimer -t /∈ [0, e)

Transitions:
16Input vcast(m)u

Effect:
18to send← append(to send, 〈m, rtimer〉)

20Output vcast′(m, true)u

Precondition:
22∃t ∈ R≥0: 〈m, t〉 = head(to send)

Effect:
24to send← tail (to send)

Figure 7-5:VBDelay[e]u, Message delay service for VSAs.

7.5.2 VSAVBDelay

For each VSA, the delay buffer is slightly simpler than that of a client in that the VSA

always knows its region (it does not receiveGPSupdate inputs), and is slightly more

complicated in that it does not have to immediately forward outgoing messages. Instead,

VBDelayu is parameterized by the following constant:

• e : R
≥0, a maximum output delay time.

VBDelayfor a VSA is almost the same asVBDelayfor a client, except that the Boolean

attached to each message is always set to true, and whenVBDelayu receives avcast(m)u

input, it saves the message and the local time in the localto send queue (lines 16-18) for

some nondeterministically-chosen time in[0, e] (enforced by the stopping condition on line

13), and then broadcasts the message throughvcast′(m, true) (lines 20-24).

Any program written for the VSA layer must take into accounte, as it would message

delay.

7.6 Vbcast: Virtual local broadcast service

Each client and virtual node has access to the virtual local broadcast communication service

Vbcast, modelled in Figure 7-6. The service is parameterized with the following:

• d : R
≥0, the message delay upper bound. We require thatd > dphys.

85

1 Signature:
Input GPSupdate(l, t)p, l ∈ R, p∈ P, t ∈ R≥0

3 Input vcast′(m, f)i, m∈Msg, f ∈ Bool, i ∈ P∪ U
Output vrcv(m)j , m∈Msg, j ∈ P∪ U

5 Internal drop(n, j), n∈ Nat, j ∈ P∪ U

7 State:
analognow: R

≥0, initially 0
9 reg(p), oldreg(p):U∪ {⊥}, for eachp ∈ P , initially ⊥

vbcastq: (Msg×U×R≥0×2P∪U)∗, initially λ
11

Trajectories:
13 evolve

d(now) = 1
15 stop when

∃〈m, u, t, P′〉 ∈ vbcastq: [t = now-d∧P′ 6= ∅]
17

Transitions:
19 Input GPSupdate(l, t)p

Effect:
21 oldreg(p)← reg(p)

reg(p)← region(l)

24Input vcast′(m, f)i

Effect:
26if i ∈ U then

vbcastq← append(vbcastq, 〈m, i, now, P∪ U〉)
28else if(f ∧ reg(p) 6=⊥) then

vbcastq← append(vbcastq, 〈m, reg(p), now, P∪ U〉)
30else if(¬ f ∧oldreg(p) 6= ⊥) then

vbcastq← append(vbcastq, 〈m, oldreg(p), now, P∪ U〉)
32

Output vrcv(m)j

34Local:
n∈ [1, . . ., |vbcastq|], u: U, t: R

≥0, P′: 2P∪U

36Precondition:
vbcastq[n]= 〈m, u, t, P′〉 ∧ j ∈ P′ ∧ t 6= now

38Effect:
vbcastq[n]← 〈m, u, t, P′ -{j}〉

40

Internal drop(n, j)
42Local:

m: Msg, u: U, t: R≥0, P′: 2P∪U

44Precondition:
vbcastq[n] = 〈m, u, t, P′〉 ∧ j ∈ P′ ∧ t 6= now

46(j ∈ P∧ reg(j) /∈ nbrs+(u)) ∨ (j ∈ U ∧ j /∈ nbrs+(u))
Effect:

48vbcastq[n]← 〈m, u, t, P′ -{j}〉

Figure 7-6:Vbcast[d].

The service described in Figure 7-6 takes eachvcast′(m, f)i input from client and

virtual node delay buffers and delivers the messagem via vrcv(m) at each client or virtual

node that is in some regionu or a neighboring region for thed time after broadcast of

the message. If thevcast′ was from a VSA at regioni, then the regionu is equal toi.

Otherwise, if thevcast′ was from a client, we use the Boolean tagf to determine the

regionu; if f is true then regionu is the region ofi when thevcast′ occurs, and iff is false

then regionu is the region ofi before the lastGPSupdate at i occurred.

Vbcast’s interface consists of the following three kinds of actions:

• Input GPSupdate(l, t)p, l ∈ R, t ∈ R
≥0, p ∈ P : This input indicates that processp

is at locationl, and results in the update of records storing a client’s lasttwo regions.

• Input vcast′(m, f)i, m ∈ Msg, f ∈ Bool, i ∈ P ∪ U : This input is a broadcast

of a messagem by some nodei wherei is either the id of a client or a VSA. The

Booleanf indicates for clients whether the client’s lastGPSupdate occurred before

the clientvcast the message.

86

• Output vrcv(m)j , m ∈ Msg, j ∈ P ∪ U : This output represents the delivery of a

messagem at processj.

The state variables are:

• now : R
≥0: This variable is a real-time clock. It is initially 0.

• reg(p) : U ∪ {⊥} for p ∈ P : This is the region of each client. It is initially⊥ for

eachp ∈ P , and is set whenever aGPSupdatep occurs.

• oldreg(p) : U ∪ {⊥} for p ∈ P : This is the region of each client before the client’s

lastGPSupdate. It is initially ⊥ for eachp ∈ P , and is updated to the old value of

reg(p) whenever aGPSupdatep occurs.

• vbcastq : (Msg × U × R
≥0 × 2P∪U)∗: This is the record of all outstandingvcast′

events, structured as an initially empty queue of tuples. Each tuple consists of a

vcast′ message and its attached region, the time at which the message was input,

and a set of ids of nodes (clients and VSAs) for which the message has not yet been

delivered or lost.

The main variable of this service isvbcastq, storing information about all previous

virtual broadcasts. When avcast′(m, f)i input occurs at some timet, the action first cal-

culates a regionu to associate with the message. Regionu is equal toi if i is a region id

(lines 26-27). Ifi is a client id andf is true, thenu is set toreg(p). If i is a client id and

f is false, thenu is set tooldreg(p). If u is ⊥ the message is dropped, otherwise the tuple

〈m, u, now, P ∪ U〉 is then appended tovbcastq. The set of ids in the tuple represents the

set of processes that might still potentially receive the message. This set starts as all mobile

node and region ids. Some positive amount of time after the broadcast (guaranteed by the

precondition thatt 6= now on line 37 and 45), a processj in the set can either receive the

message (lines 33-39), or ifj is a mobile node id with a region not equal to or neighboring

u or if j is a region id not equal to or neighboringu, the transmission may fail toj (lines

41-48). In either case, the idj is removed from the set of ids of processes that might still

receive the message. We require that once a message is broadcast, for every node the mes-

sage is received or the transmission fails by at mostd time later (guaranteed by the stopping

87

condition expressed on line 16). Our requirement that a non-0 amount of time pass between

broadcast and the possible receiving or dropping of the message is utilized later to prevent

race conditions that can result when a process changes regions or failure modes.

Properties ofVbcast

The service guarantees that in each executionα of Vbcast, there exists a function mapping

eachvrcv(m)j event to avcast′(m, f)i event such that the following hold:

• Integrity: If a vrcv eventπ is mapped to avcast′ eventπ′, thenπ′ occurs beforeπ.

• Non-duplicative delivery: If a vrcv(m)j eventπ is mapped to avcast′ eventπ′, then

there do not exist any othervrcv(m)j events that map toπ′.

• Bounded-time delivery: If a vrcv eventπ is mapped to avcast′ eventπ′ whereπ′

occurs at timet, then eventπ occurs in the interval(t, t + d].

• Reliable local delivery: This guarantees that a transmission will be received by

nearby nodes: Say avcast′(m, f)i eventπ′ occurs at timet andα.ltime > t + d.

Let u be i if i ∈ U , otherwise bereg−(i, t) if f is false orreg(i) at the time ofπ′

if f is true. If u is not⊥, then for eachj ∈ P ∪ U such that eitherj ∈ P and

reg+(j, t′) ∈ nbrs+(u) for all t′ in the interval[t, t+d] or j ∈ nbrs+(u), there exists

avrcv(m)j eventπ such thatπ is mapped toπ′.

TheVbcastservice is very similar to thePbcastservice described in Section 6.4. The

most obvious difference is that theVbcastservice is extended to a larger id set, consisting

of region ids as well as physical node ids. Comparing the guarantees for both services, we

also note that theNon-duplicative deliveryproperty and theReliable local deliveryproperty

are both slightly different.

TheNon-duplicative deliveryproperty ofVbcastsays that at most onevrcv event at a

particular process is mapped to a singlevcast′ event. The property inPbcastsays some-

thing more stringent, namely that if abrcv(m)q event is mapped to abcast(m)p event at

time t, then there are no otherbrcv(m)q events that map to anybcast(m)p event at timet

88

for the samem andp. With the more restrictive non-duplication property ofPbcastwe can

easily build aVbcastservice with this more common definition of non-duplicativedelivery.

TheReliable local deliveryproperty ofVbcastdiffers in that it is expressed in terms of

regions, unlike inPbcastwhere it is expressed in terms of locations. Here, we requirethat

messages that originate from some regionu be received by all nodes that are in regionu or

neighboring regions for the transmission period. ForPbcast, we require that messages that

originate from some locationl be received by all nodes within some distance ofl for the

transmission period.

Reachable states ofVbcast[d]

Here we characterize the reachable states ofVbcast[d] by providing a list of properties

exactly describing those states.

Definition 7.2 DefineInvV bcast to be the set of statesx of V bcast such that the following

properties hold:

1. ∀p ∈ P, oldreg(p) 6= ⊥ ⇒ reg(p) 6= ⊥.

This means that for eachp ∈ P , the value ofreg(p) can only be⊥ if oldreg(p) is⊥.

2. ∀〈m, u, t, P ′〉 ∈ vbcastq, t ≤ now ∧ (P ′ 6= ∅ ⇒ t ≥ now − d) ∧ (t = now ⇒ P ′ =

P ∪ U).

This means that for each message tuple invbcastq, the timestamp of the message is

not afternow, if there are still processes that have not either lost or delivered the

message then the message is no older thand, and if the message was sent at this time

thenP ′ is full.

3. The tuples invbcastq are in order of their timestamp.

We do not show thatInvV bcast describes the set of reachable states ofV bcast since it is

trivial.

89

7.7 V-algorithms andVLayers

Here we provide definitions for a VSA layer algorithm and a complete VSA layer.

A VSA layer algorithm is just an assignment of a TIOA program to each client and

VSA.

Definition 7.3 A V-algorithm,alg : P ∪ U → CProgram ∪ V Program, is a map-

ping such that for eachp ∈ P , alg(p) ∈ CProgramp and for eachu ∈ U , alg(u) ∈
V Programu. The set of all V-algorithms is referred to asV Algs.

Since we are interested in providing this layer using failure-prone physical nodes, we

then define aVLayer, a VSA layer with failure-prone clients and VSAs. Given a VSAlayer

algorithmalg, a fail-transformed node (either a client or a VSA) of the VSAlayer is the

Fail-transformed version of the composition of the TIOA for the node as indicated byalg

with the node’s delay buffer. TheVLayer is then the composition ofRW‖V W‖V bcast

with all the fail-transformed nodes of the VSA layer.

Definition 7.4 Letalg be an element ofV algs.

• V LNodes[alg], the fail-transformed nodes of the VSA layer parameterized byalg,

is the composition ofFail(V BDelayi‖alg(i)) for all i ∈ P ∪ U .

• V Layer[alg], the VSA layer parameterized byalg, is the composition of

V LNodes[alg] with RW‖V W‖V bcast.

Reachable states ofRW‖VW‖Vbcast

Here we characterize the reachable states ofRW‖VW‖Vbcastby providing a list of proper-

ties exactly describing those states.

Definition 7.5 DefineInvRW‖VW‖Vbcast to be the set of statesx of RW‖V W‖V bcast such

that the following properties hold:

1. x⌈XV bcast ∈ InvV bcast ∧ x⌈XRW ∈ InvRW ∧ x⌈XV W ∈ InvV W .

This says that a state of the composition restricted to the individual components is in

the corresponding set of reachable states for that component.

90

2. RW.now = V W.now = V bcast.now.

This says that the clock values of the components are the same.

3. ∀p ∈ P , RW.reg(p) = V bcast.reg(p).

This says that the region for a process matches betweenV bcast andRW .

4. ∀p ∈ P , if |RW.updates(p)| > 1 then let〈up, tp〉 be the tuple with second highesttp

in RW.updates(p), else letup be⊥. ThenV bcast.oldreg(p) = up.

This says that theoldreg(p) for anyp ∈ P matches the region associated with the

next-to-lastGPSupdate at processp.

We do not show thatInvRW‖VW‖Vbcast describes the set of reachable states of

RW‖VW‖Vbcastsince it is trivial.

91

92

Chapter 8

VSA layer emulations

Here we describe what it means for a mapping from V-algorithms to P-algorithms to be an

emulation algorithm for the VSA layer, using the language and theory of Chapter 4. If such

a mapping is an emulation algorithm for the VSA layer, then anapplication programmer

could write programs for the VSA layer and then run those programs on the physical layer.

First we define the concepts of an emulation and a stabilizingemulation of a VSA layer.

Then we conclude that a stabilizing emulation of a self-stabilizing VSA layer program has

traces that eventually look like those of the VSA layer program starting in some legal

state. This separates the reasoning about stabilization properties of a VSA layer emulation

algorithm from those of the VSA layer program.

We define an emulation algorithmamap of the VSA layer to be a function mapping V-

algorithms to P-algorithms, where for anyalg in V Algs, a trace ofPLNodes[amap[alg]]

composed withRW‖Pbcast is related to some trace ofV LNodes[alg] composed with

RW‖V W‖V bcast. For a particularalg, amap[alg] could be defined so that each phys-

ical node’s program is a composition of the client program inthe VSA layer for that node,

and a VSA emulator portion where the physical node helps emulate its current region’s

VSA.

First, for use throughout this thesis, we introduce two pieces of notation that describe

actions to be hidden in the physical layer and the virtual layer:

Definition 8.1 DefineHPL to be{bcast(m)p, brcv(m)p | m ∈ Msg, p ∈ P}.

93

Definition 8.2 DefineHV L to be{vcast(m)i, vrcv(m)i, vcast
′(m, f)i, time(t)u, failu, restartu |m ∈

Msg, f ∈ Bool, t ∈ R
≥0, i ∈ P ∪ U, u ∈ U}.

Now we can define our concepts of VSA layer emulation.

Definition 8.3 • Letamap be a function of typeV Algs → PAlgs, and lett be inR
≥0.

• LetPL be{PLNodes[amap[alg]] | alg ∈ V Algs}.

• LetVL be{V LNodes[alg] | alg ∈ V Algs}.

• Let emu be the function of typeVL → PL such that for eachalg ∈ V Algs,

emu(V LNodes[alg]) = PLNodes[amap[alg]].

• Let S be a function that maps each elementV of PL to a suffix-closed subset of

fragsActHide(HV L,V ‖RW‖V W‖V bcast).

Then we define the following two terms:

1. amap is an S-constrained VSA layer emulation algorithm if

(PL, RW‖Pbcast, HPL) emulates (VL, RW‖V W‖V bcast, HV L) constrained

to S with emu.

Recall from Definition 4.1 that this means thatemu maps each elementV L ofVL to

an elementPL ofPL such that each trace ofPL‖RW‖Pbcast with actions inHPL

hidden is a trace of an execution ofV L‖RW‖V W‖V bcast with actions inHV L

hidden that also happens to be inS(V L).

2. amap is an S-constrained t-stabilizing VSA layer emulation algo-

rithm if (PL, RW‖Pbcast, HPL) emulation stabilizes in time t to

(VL, RW‖V W‖V bcast, HV L) constrained toS with emu.

We can now combine a stabilizing VSA layer emulation with a self-stabilizing VSA

layer algorithm and conclude that the appropriately restricted traces of the result stabilize

to appropriately restricted trace fragments of the VSA layer algorithm started from legal

states of that algorithm. This is a simple corollary of Theorem 4.7.

94

Corollary 8.4 1. Letamap be anS-constrainedt1-stabilizing VSA layer emulation al-

gorithm.

2. Let alg ∈ V Algs, t2 ∈ R
≥0, and legal setL for V Layer[alg] be chosen so that

V LNodes[alg] self-stabilizes toL relative toR(RW‖V W‖V bcast) in timet2.

Then tracesActHide(HPL,U(PLNodes[amap[alg]])‖R(RW‖Pbcast)) stabilizes in timet1 + t2 to

{trace(α) | α ∈ execsActHide(HV L,Start(V Layer[alg],L)) ∩ S(V LNodes[alg])}.

In other words, consider the composition ofRW‖Pbcast started in a reachable state with

PLNodes[amap[alg]] (the physical nodes running an emulation of the virtual layer pro-

gramalg) started in an arbitrary state. Hide the actions inHPL. The set of traces of the

resulting machine stabilizes in timet1 + t2 (the time for the VSA layer emulation to stabi-

lize, followed by the time for the virtual layer program to stabilize to legal setL) to the set

of traces of executions allowed byS of the virtual layer started in legal setL, after hiding

actions inHV L.

95

Part II

VSA layer emulation algorithm

96

Part II describes an implementation of the VSA layer using the underlying mobile ad-

hoc system, and proves that the implementation provides a stabilizing emulation of the

VSA programming layer. This implementation is in three parts: totally ordered broadcast,

leader election, and a main emulation component.

Chapter 9 is where I describe the totally ordered broadcast service. It is useful to have

access to a totally ordered broadcast service that allows nodes in the same region to receive

the same sets of messages in the same order. The totally ordered broadcast service is

intended to allow a non-failed nodep that knows it is in some regionu to broadcast a

messagem, via tocast(m)p, and to have the message be received exactlyd, d > dphys,

time later viatorcv(m)q, by nodes that are in regionu or a neighboring region for at least

d time.

In Chapter 10, I describe the leader election service that allows nodes in the same region

to periodically compete to be named sole leader of the regionfor some time. Our leader

election service is a round-based service that collects information from potential leaders at

the beginning of each round, determines up to one leader per region, and performsleader

outputs for those leaders that remain alive and in their region for long enough.

Finally, in Chapter 11, I describe a fault-tolerant implementation of each VSA by mo-

bile nodes in its region of the network, and prove that the implementation gives us a stabi-

lizing emulation of the VSA layer. At a high level, the individual mobile nodes in a region

share emulation of the virtual machine through a deterministic state replication algorithm

while also being coordinated by a leader. Each mobile node runs its portion of the totally

ordered broadcast service, leader election service, and a Virtual Node Emulation (VSAE)

algorithm, for each virtual node.

97

98

Chapter 9

Totally ordered broadcast service

In order to simplify later algorithms, it is useful to have access to a totally ordered broadcast

service that allows nodes in the same region to receive the same sets of messages in the

same order. The totally ordered broadcast service is intended to allow a non-failed node

p that knows it is in some regionu to broadcast a messagem, via tocast(m)p, and to

have the message be received exactlyd, d > dphys, time later viatorcv(m)q, by nodes that

are in regionu or a neighboring region for at leastd time. In this chapter, we start by

introducing a specification for the service. We then show howto implement this service

using the physical layer. Finally, we show that our implementation is correct and that it is

self-stabilizing.

9.1 TOBspec: Specification of totally ordered broadcast

We describe the specification of totally ordered broadcast (see Figure 9-1) in three parts:

TObcast, TOBDelayp, andTOBFilterp, for eachp ∈ P . The specification of the totally

ordered broadcast service is thenTOBspec, which is equal toTObcast‖RW composed

with Fail(TOBDelayp‖TOBFilterp) for all p ∈ P , with certain actions hidden.

TObcastis the main message ordering and delivery service, taking inputs of message

and Boolean pairs, tagging the message with a regionu calculated based on the Boolean

and theGPSupdate history of the sender of the message, and holding the region-tagged

messages for exactlyd time before delivering〈m, u〉 at each process that has been in region

99

.

.

.

TObcast

Fail

Fail

failp, restartp

failq, restartq

TOBFilterp

TOBFilterq

TOBDelayp

TOBDelayq

GPSupdate(l, now)p

RW

GPSupdate(l′, now)q

tocast(m)p

torcv(m)p

tocast(m)q

torcv(m)q

tocast’(m, f)p

torcv’(m, v′)p

tocast’(m, f ′)q

torcv’(m, v”)q

Figure 9-1: Totally ordered broadcast service. Client outputs may be delayed inTOBDe-
lay buffers, and messages are filtered out based on region and time alive information in
TOBFilter buffers.RWprovides timing and mobile node location information.

u or a neighboring region for the appropriate time. The order of these deliveries at each

process is consistent with a global ordering of all broadcast inputs toTObcast.

TOBDelayp is an outgoing delay buffer that sits between processp andTObcast, taking

inputs of messages to be sent via the totally ordered broadcast service from the process,

tagging each with a Boolean indicating if the message was submitted to the automaton

since the client’s lastGPSupdate, and submitting the tagged messages toTObcast. This

mechanism is similar to the one used inV BDelay (see Figure 7-4) for the virtual layer.

TOBFilterp also sits betweenTObcastand a user of theTObcastservice, but in the

opposite direction. WhenTObcastdelivers a message tagged with some regionu to TO-

BFilterp, TOBFilterp determines whether or not processp received aGPSupdate after

starting and at leastd time ago, and if so passes the message along to be received at the

user. This preventsp from receiving messages that it was not alive and in the region long

enough to receive.

Notice that theTOBDelayandTOBFilter machines are for individual processes. In this

thesis we are interested in consideringFail-transformed mobile nodes. In the presence of

process failures, it is apparent that allowable traces of the totally ordered broadcast service

will be dependent on the history of thefails andrestarts of a mobile node. Separating

100

1 Signature:
Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

3 Input tocast′(m, f)p, m∈Msg, f ∈ Bool, p∈ P
Output torcv′(m, u)p, m∈ Msg, u∈ U, p∈ P

5 Internal drop(p), p∈ P

7 State:
analognow: R

≥0, initially 0

9 updates(p): 2U×R
≥0

, for eachp ∈ P , initially ∅
procs: 2P , initially P

11 sent, oldsent: (Msg×U×P×R
≥0)∗, initially λ

13 Derived variables:
reg−(p: P): U ∪ {⊥}

15 if ∃〈u, t〉 ∈ updates(p): t < now then
return min ({u∈ U |∃t′ < now: 〈u, t′〉 ∈ updates(p)

17 ∧∀〈u∗, t∗〉 ∈ updates(p): (t∗ ≤ t ∨ t∗ = now)})
else return⊥

19

reg(p: P): U ∪ {⊥}
21 if ∃u∈ U: 〈u, now〉 ∈ updates(p) then

return min ({u∈ U |〈u, now〉 ∈ updates(p)})
23 else return reg−(p)

25 regSpan(p: P, r: U, t: R≥0): Bool
return ∃〈u, t′〉 ∈ updates(p): [t′ ≤ t

27 ∧∀〈v, t′′〉 ∈ updates(p): (t′′ ≥ t′⇒ r ∈ nbrs+(v))]

29 Trajectories:
evolve

31 d(now) = 1
stop when

33 ∃〈m, u, p, t〉 = head(sent): t = now-d

Transitions:
36Input GPSupdate(l, t)p

Effect:
38updates(p)← updates(p) ∪ {〈region(l), t〉}

40Input tocast′(m, f)p

Effect:
42choosei ∈ {j ∈ [0, |sent|]| ∀k∈ (j, |sent|]:

∃〈m′, u′, p′, t′〉 = sent(k): (p′ 6= p∧ t′ = now)}
44if (f ∧ reg(p) 6=⊥) then

sent← insert(sent, 〈m, reg(p), p, now〉, i)
46if (¬ f ∧ reg−(p) 6= ⊥) then

sent← insert(sent, 〈m, reg−(p), p, now〉, i)
48

Output torcv′(m, u)p

50Precondition:
∃q∈ P: 〈m, u, q, now-d〉 = head(sent) ∧ p∈ procs

52regSpan(p, u, now-d)
Effect:

54procs← procs-{p}
if procs= ∅ then

56oldsent← append(oldsent, head(sent))
sent← tail (sent)

58procs← P

60Internal drop(p)
Local:

62m: Msg, u: U
Precondition:

64∃q∈ P: 〈m, u, q, now-d〉 = head(sent) ∧ p∈ procs
¬ regSpan(p, u, now-d)

66Effect:
procs← procs-{p}

68if procs= ∅ then
oldsent← append(oldsent, head(sent))

70sent← tail (sent)
procs← P

Figure 9-2:TObcast[d], Message ordering service.

theTOBDelayandTOBFilter machines fromTObcastallows us toFail-transform portions

of TOBspec. This separation makes it easier to describe a main service component that

is Fail-oblivious, making it easier to useFail-transform related theory from Chapter 5.

If a component not corresponding to a particular mobile nodewere to not be oblivious to

mobile node failures, it would introduce complications later when we use totally ordered

broadcast in conjunction with other services (in Chapter 11).

We describe theTOBDelay, TOBFilter, andTObcastpieces in more detail below.

9.1.1 TObcast

Here we provide a description ofTObcast(Figure 9-2), the message ordering and region-

based delivery service. The interface ofTObcastconsists of three kinds of actions:

101

• Input GPSupdate(l, t)p, l ∈ R, t ∈ R
≥0, p ∈ P : This input indicates that a process

p is currently located at positionl.

• Input tocast′(m, f)p, m ∈ Msg, f ∈ Bool, p ∈ P : This input is a broadcast of

a messagem from a process. The Booleanf indicates whether the message was

submitted top’s delay buffer afterp’s last GPSupdate, and is used byTObcastto

determine the appropriate source region for the message.

• Output torcv′(m, u)q, m ∈ Msg, u ∈ U, q ∈ P : This output represents the delivery

of a messagem at processq. The messagem corresponds to an earliertocast′

message. The regionu is the region of sender of the message at the time the message

wastocast.

The state variables are:

• now : R
≥0: This variable is the real-time. It is initially 0.

• updates(p) : 2U×R≥0
, p ∈ P : This variable is a history of the reported regions for

each process. For eachGPSupdate(l, t)p input, the pair〈region(l), t〉 is stored in

updates(p).

• procs : 2P : This is a bookkeeping variable, used to keep track of which processes

have not had the first message insent delivered or dropped. It is initiallyP .

• sent : (Msg × U × P × R
≥0)∗: This is the queue of all outstandingtocast′ events,

initially empty. For eachtocast′(m, f)p input, a tuple〈m, u, p, now〉 is stored in

sent, whereu is calculated based on the value off andupdates(p).

• oldsent : (Msg ×U ×P ×R
≥0)∗: This is the queue of all processedtocast′ events,

initially empty. Each entry in this queue was previously an entry in sent.

The code also uses three derived variables:

• reg : P → U ∪ {⊥} maps a physical node idp to the region indicated by the

lastGPSupdatep. If no such region exists, the function returns⊥. The function is

calculated in a similar manner to thereg function in Section 6.3.

102

• reg− : P → U ∪ {⊥} maps a physical node idp to the region indicated by the last

GPSupdatep before the current time. If no such region exists, the function returns

⊥. The function is calculated in a similar manner to thereg− function in Section 6.3.

• regSpan : (P × U × R
≥0) → Bool maps a physical node idp, region idu, and

timet to a Boolean indicating whether the processp was in regionu or a neighboring

region from the end of timet up to the current time. This is calculated by examining

all the pairs inupdates(p) and seeing if there exists some pair with a timestampt′ no

larger thant such that for each pair with a timestamp at least as large ast′, the region

in that pair is eitheru or a neighbor ofu.

Whenever atocast′(m, f)p input occurs (line 40), the action calculates a regionu to

associate with the message. Iff is true, thenu is set toreg(p), elseu is set toreg−(p). If u

is ⊥, then the message is dropped, elseTObcastinserts the tuple〈m, u, p, now〉 into sent

(lines 44-47) at some position such that all tuples after it in sent were also sent at timenow

and not sent byp (lines 42-43). This means that the tuples are ordered insent with respect

to the real-time at which they arrived, and that tuples that originate from the same process

are ordered with respect to the order in which the process submitted them.

Whenever the head tuple〈m, u, p, t〉 of the sent queue has a timestampt equal to

now − d, meaning the tuple was addedd time ago, atorcv′(m, u)q or drop(q) output is

performed (ensured by the stopping condition on line 33) foreachq in P , and the tuple

is moved fromsent to oldsent. The action istorcv′(m, u)q if q was in regionu or a

neighboring region from the end of timet until the current time (expressed in line 52 as the

condition thatregSpan(q, u, t)). The action isdrop(q) otherwise (line 65). This prevents

q from receiving the message.

Properties of TObcast

In each executionα of TObcast, there exists a function mapping eachtorcv′(m, u)q event

to a tocast′(m, f)p event such that the following hold:

• Region-based integrity: If a torcv′(m, u)q eventπ is mapped to atocast′(m, f)p

eventπ′ at some timet, then(f ∧ u = reg(p))∨ (¬f ∧ u = reg−(p)) when eventπ′

103

occurs andregSpan(q, u, t) is true whenπ occurs.

• Non-duplicative delivery: If a torcv′q eventπ is mapped to atocast′ eventπ′, then

there do not exist any othertorcv′(m)q events that map toπ′.

• Exact-time delivery: If a torcv′ eventπ is mapped to atocast′ eventπ′ whereπ′

occurs at timet, then eventπ occurs at timet + d.

• Reliable local delivery: This guarantees that a transmission will be received by

nearby nodes: Say atocast′(m, f)p eventπ′ occurs at timet andα.ltime > t + d.

Let u bereg(p) whenπ′ occurs iff is true orreg−(p) whenπ′ occurs otherwise. If

u is not⊥, then for eachq ∈ P such thatregSpan(q, u, t) in all states ofα at time

t + d, there exists atorcv′q eventπ such thatπ is mapped toπ′.

• There exists a total order ontocast′ events such that the following hold:

– Sender-order preservation: For anytocast′p eventsπ′1 andπ′2, if π′1 occurs be-

foreπ′2 thenπ′1 < π′2.

– Consistent delivery order: For anytocast′ eventsπ′1 andπ′2 whereπ′1 < π′2, and

any torcv′ eventsπ1 andπ2 whereπ1 maps toπ′1 andπ2 maps toπ′2, we have

thatπ1 occurs beforeπ2.

– No gap delivery: Let π′1 be atocast′(m, f)p event at timet, u bereg(p) when

π′1 occurs iff is true orreg−(p) whenπ′1 occurs otherwise, andπ′2 be atocast′

event such thatπ′1 < π′2. Let π2 be sometorcv′q event such thatπ2 maps toπ′2.

If u is not⊥ andregSpan(q, u, t) whenπ2 occurs, then there exists atorcv′q

eventπ1 such thatπ1 maps toπ′1.

It is easy to define the mapping and total ordering referred toin the properties above.

The mapping fromtorcv′ events totocast′ events is the one that matches eachtorcv′ event

that occurs when some tuple〈m, u, p, t〉 is at the head ofsent to the tocast′ event that

added that tuple tosent. The tocast′ events are ordered by the order of their respective

tuples inoldsent sent.

104

Signature:
2 Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

Input tocast(m)p, m∈Msg
4 Output tocast′(m, f)p, m∈Msg, f ∈ Bool

6 State:
to send+, to send−: Msg∗, initially λ

8 updated: Bool, initially false

10 Trajectories:
stop when

12 to send+ 6= λ ∨ to send− 6= λ

14Transitions:
Input GPSupdate(l, t)p

16Effect:
to send−← to send+

18to send+← λ
updated← true

20

Input tocast(m)p

22Effect:
if updatedthen

24to send+← append(to send+, m)

26Output tocast′(m, f)p

Precondition:
28m= head(to send− to send+) ∧ (f⇔ to send− = λ)

Effect:
30if f then

to send+← tail(to send+)

32elseto send−← tail (to send−)

Figure 9-3:TOBDelayp, Message delay service.

9.1.2 TOBDelay

Figure 9-3 describes the TIOA forTOBDelayp, which tagstocast messages from process

p with Booleans indicating if the message was submitted sincethe lastGPSupdate, and

then passes the pair toTObcastto handle. This TIOA is identical, except for the names of

the broadcast actions, toVBDelayp (see Figure 7-4) for the virtual layer.

9.1.3 TOBFilter

Figure 9-4 gives a TIOA,TOBFilter, that acts as an intermediary betweenTObcastand a

user of the service, filteringtorcv messages based on the amount of time since the first

GPSupdate received by the process after the process was started; we only want a process

p to receive a message sent from a regionu d time ago if we know that processp was alive

and knew it was inu or a neighboring region ofu from d time ago until it receives the

message. This certainty is useful later (in Section 11.3) tosimplify our reasoning that all

emulators of a virtual node receive exactly the same sequences of messages.

TOBFilter’s state consists of the following variables:

• rtimer : [0, d] ∈ R
≥0 ∪ {⊥}: This variable is a timer. It is initially⊥, but it is set to

0 at the firstGPSupdate the process receives, after which it progresses at the rate of

real-time until it hitsd.

105

Signature:
2 Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

Input torcv′(m, u)p, m∈ Msg, u∈ U
4 Output torcv(m)p, m∈ Msg

6 State:
analogrtimer: [0, d] ∈ R≥0∪ {⊥}, initially ⊥

8 to rcv: (Msg×U)∗, initially λ

10 Trajectories:
if rtimer /∈ {⊥, d} then

12 d(rtimer) = 1
else constantrtimer

14 stop when
to rcv 6= λ

Transitions:
18Input GPSupdate(l, t)p

Effect:
20if rtimer =⊥ then

rtimer← 0
22for each 〈m, u〉 ∈ to rcv: region(l) /∈ nbrs+(u)

to rcv← to rcv -{〈m, u〉}
24

Input torcv′(m, u)p

26Effect:
if rtimer = d then

28to rcv← append(to rcv, 〈m, u〉)

30Output torcv(m)p

Precondition:
32∃u∈ U: 〈m, u〉 = head(to rcv)

Effect:
34to rcv← tail(to rcv)

Figure 9-4:TOBFilter[d]p, Message filtering service.

• to rcv : (Msg × U)∗: This is the queue of message and region pairs fromTObcast

of messages to betorcved. It is initially empty.

Its interface consists of the following three kinds of actions:

• Input GPSupdate(l, t)p, l ∈ R, t ∈ R
≥0, p ∈ P : This input indicates that processp

is at locationl.

• Input torcv′(m, u)q, m ∈ Msg, u ∈ U, q ∈ P : This input is the passing on of a

message fromTObcast. The regionu indicates the region of the sender at the time it

tocast the message.

• Output torcv(m)q, m ∈ Msg, q ∈ P : This output represents the delivery of a mes-

sagem at processq. The messagem is the message from some pair received through

torcv′.

When aGPSupdate(l, t) occurs at the process, if the process’srtimer is ⊥ (meaning

this is the firstGPSupdate since it started), thenrtimer is set to 0 (lines 20-21) so that the

process can keep track of how long it has been since it first started receiving updates. For

each pair〈m, u〉 in its to rcv queue such thatu is not equal to or neighboringregion(l),

the pair is removed fromto rcv (lines 22-23); this prevents the process from receiving a

message that originated from a region that the process has not been in or neigboring for the

pastd time.

106

When atorcv′(m, u) input occurs, if the process’s firstGPSupdate after it was started

was at leastd time ago (line 27), then the pair〈m, u〉 is appended to theto rcv queue (line

28). If to rcv is not empty (line 15) then the head〈m, u〉 of the queue is removed and the

messagem is torcved (lines 30-34).

9.1.4 TOBspec

As mentioned earlier, the full specification,TOBspec, for the totally ordered broadcast

service is equal to the composition of the message ordering service andRW , TOb-

cast‖RW , composed with the fail transformed filter and delay servicefor each process,

Fail(TOBFilterp‖TOBDelayp) for all p ∈ P , with certain actions hidden. (Remember, the

Fail transform from Chapter 5 takes an automaton and adds a mechanism for modeling

crash failures and restarts of the automaton.) In particular, the hidden actions are the set

HTOspec = {tocast′(m, f)p, torcv
′(m, u)p | m ∈ Msg, f ∈ Bool, u ∈ U, p ∈ P}. This

means thatTOBspecis equal toActHide(HTOspec, TObcast‖RW‖∏

p∈P Fail(TOBFilterp‖
TOBDelayp)).

Reachable states ofTOBspec

Here we characterize the reachable states ofTOBspecby providing a list of properties

exactly describing those states. We show that (1) the list ofproperties is an invariant for

TOBspecand (2) any state satisfying the list of properties is indeeda reachable state of

TOBspec.

Definition 9.1 DefineInvTOBspec to be the set of statesx such that the following properties

hold:

1. x⌈XRW ∈ InvRW .

This says that theRW component state is a reachable state ofRW .

2. ∀p ∈ P : TObcast.updates(p) = {〈region(l), t〉 | 〈l, t〉 ∈ RW.updates(p)} ∧
TObcast.now = RW.now.

This says that real-time andupdates should correspond beweenRW andTObcast.

107

3. procs 6= P ⇒ ∃〈m, u, p, t〉 = head(sent) : t = now − d.

This says that if the bookkeeping variableprocs is not full, then there must be some

exactlyd old message at the head ofsent.

4. ∀〈m, u, p, t〉 ∈ oldsent : t ≤ now − d, and tuples are in order oft.

This says that tuples inoldsent are at leastd old and are ordered by their timestamps.

5. ∀〈m, u, p, t〉 ∈ sent : t ∈ [now − d, now], and tuples are in order oft.

This says that tuples insent are at mostd old, not sent from a future time, and are

ordered by their timestamps.

6. ∀p ∈ P, ∀t ∈ R
≥0, consider the subsequence〈m1, u1, p, t〉, · · · , 〈mn, un, p, t〉

of oldsent sent (the concatenation ofoldsent and sent). Then u1, · · · , un ∈
RW.reg−(p, t)∗RW.reg+(p, t)∗.

This says that the regions attached to messages inoldsent sent are consistent with

theGPSupdates for the senders.

7. ∀p ∈ P : ¬failedp :

(a) ¬updatedp ⇒ rtimerp = ⊥∧ to send−p = to send+
p = to rcvp = λ.

This says that ifupdatedp does not hold, then the rest of the state of

TOBDelayp andTOBFilterp is set to initial values.

(b) updatedp ⇒ ∃〈l, t〉 ∈ RW.updates(p) : t + rtimerp = now ∨ d = rtimerp <

now − t.

This says thatupdatedp implies there was aGPSupdatep eitherrtimerp ago

if rtimerp < d, else at leastd time ago.

(c) to send−p 6= λ ⇒ [rtimerp > 0 ∧ ∃〈l, t〉 ∈ RW.updates(p) : t = now ∧
∀〈m, u, p, now〉 ∈ sent : u = RW.reg−(p, now)].

This says that a non-emptyto send−p indicates thatp was first updated before

now, and updated atnow. Also, any messages insent from p at the current

time are from thep’s region before its lastGPSupdate.

108

(d) Let procedp be append(oldsent, head(sent)) if p /∈ procs and oldsent oth-

erwise. Let〈m1, u1, p1, now − d〉, · · · , 〈mn, un, pn, now − d〉 be the subse-

quence ofprocedp such that∀i ∈ [1, n] : regSpan(p, ui, now − d). Then

∃i ∈ [0, n] : [to rcvp = 〈mi+1, ui+1〉, · · · , 〈mn, un〉∧(rtimerp < d ⇒ i = n)].

This says that ifrtimerp < d, thento rcvp is empty, elseto rcvp is the (mes-

sage, region) restriction of a suffix of the sequence of tuples fromd time ago,

tagged with regionsu that passregSpan(p, u, now − d), and processed by

TObcast for p.

We now show that the set of properties describingInvTOBspec is an invariant forTOB-

spec. We do this by showing that every reachable state ofTOBspecis in InvTOBspec.

Lemma 9.2 reachableTOBspec ⊆ InvTOBspec.

Proof: Consider a state inreachableTOBspec. We must show that it satisfies the properties

of a state inInvTOBspec. This is the same as showing that the last state of any closed

execution ofTOBspec is in InvTOBspec. By Lemma 6.2, property 1 is true throughout

such an execution. This leaves properties 2-7 to check. We proceed by induction on closed

executions ofTOBspec.

First, we check that the initial state ofTOBspec satisfies the list of properties above.

This is easy to see.

Next we check that if the properties hold in some statex and an action is performed

that leads to statex′, then the properties hold in statex′. We break this down by action:

• GPSupdate(l, t)p: The only relevant properties are 2, 6, and 7. Of these, the only

interesting case is for property 7(c).

For property 7(c), ifp is non-failed andto send−p is non-empty in statex′, it must

be thatto send+
p was non-empty in statex. By the fact that properties 1, 7(a), and

7(b) held in statex, we know thatrtimerp > 0 in statex, and hence in statex′. An

update fornow is added toRW.updates(p) as a result of this action, so we know that

∃〈l, t〉 ∈ RW.updates(p) : t = now. Finally, by properties 1 and 6, we know that

in statex, all messages sent byp at the current time inoldsent sent must have been

tagged with a region equal toRW.reg−(p, now).

109

• torcv′(m, u)p: The relevant properties are 3-5 and 7. The only interestingone to

check is property 7(d). Consider the case wherep is not failed (the only case we

have to consider). Sincex satisfied property 7(d) in statex, by the precondition for

this action to occur, it must have been the case thatp was inprocs in statex. If

rtimerp < d, then the action results in no addition of a tuple toto rcvp and we are

done. If not, then the action results in an addition of the tuple 〈m, u〉 to the end

of to rcvp. Sincex′(procedp) = append(x(procedp), head(x(sentp))), the result

follows.

• torcv(m)p, m ∈ Msg: The only relevant property is 7, 7(d) in particular. It is trivial

to check.

• tocast(m)p: The only relevant property is 7, but it is trivial to check.

• tocast′(m, f)p: The only relevant properties are 5-7. The only interestingone to

check is property 6. Letu beRW.reg(p) if f is true, andRW.reg−(p, now) other-

wise. If u is ⊥, then nothing happens tosent, and property 6 still is true. Otherwise,

in statex′, we know that a tuple〈m, u, p, now〉 is added tosent after any other mes-

sages sent byp and not before any messages sent before timenow. We must show

that if the regionu is notRW.reg(p), then there is no tuple〈m′, RW.reg(p), p, now〉
in x(sent). If u is notRW.reg(p), then it must be the case thatf is false, meaning

thatto send−p was non-empty in statex. By property 7(c), this implies that all tuples

in sent from p at timenow are labelled with a region equal toRW.reg−(p, now),

and we are done.

• drop(p): The only relevant properties are 3-5 and 7. They are trivialto check.

Finally we check that for any closed trajectoryτ starting with a statex where the prop-

erties hold and ending in a statex′, the properties hold in statex′. The only continuous

variables arenow andrtimerp, and it is easy to check that all properties will hold in state

x′ due to trajectory stopping conditions.

Now we show the opposite direction, namely that any state inInvTOBspec is a reachable

state ofTOBspec. We do this by showing how, given a statex in InvTOBspec, we can

110

construct an execution ofTOBspec that ends inx.

Lemma 9.3 InvTOBspec ⊆ reachableTOBspec.

Proof: Consider a statex in InvTOBspec. We must show thatx is a reachable state of

TOBspec. We do this by constructing an executionα of TOBspec such thatα.lstate = x.

This construction is done in phases. Each phase is constructed by modifying the exe-

cution constructed in the prior phase to produce a new valid execution ofTOBspec. After

the first four phases, the constructed execution leads to thefail status, region setting, and

rtimer for each process that is consistent with that of statex. The fifth phase addstocast

and tocast′ events foroldsent sent message tuples. It then addstorcv′ anddrop events

for each tuple inoldsent. The phase finally addstorcv′ events for messages sent more than

d time ago. The sixth phase addstorcv′ anddrop events for processes not inx(proc). The

seventh phase addstorcv events for messages sentd time ago, but not in a process’sto rcv

queue. The final phase addstocast events foroutgoing queue messages in statex; these

are messages that weretocast but not yet successfully propagated via atocast′.

1. Construction ofα1: By Theorem 6.12 and the fact thatx satisfies property 1 of

InvTOBspec, it is possible to construct an executionαRW of RW ending in a state of

RW consistent with that ofx. α1 is the execution ofTOBspecsuch thatα.fstate’s

non-failed TOBspecstate is the unique initial one,failedp is false for eachp ∈ P ,

andα1 restricted to the actions and variables ofRW is equal toαRW restricted in a

similar manner.

Validity of execution: It is easy to observe thatα1 is an execution ofTOBspec.

Relation to x: Let y be α1.lstate. Let X1 be XRW ∪
{TObcast.updates, TObcast.now}. It is obvious that sincex satisfies proper-

ties 1 and 2 ofInvTOBspec, x⌈X1 = y⌈X1. Also, for eachp ∈ P such that

¬x(failedp), we have¬y(failedp).

2. Construction ofα2: To constructα2, for eachp ∈ P if x(failedp) then we add afailp

event at timex(now) in α1, after any other events at timex(now).

111

Validity of execution:Sincefail events are input actions, it is easy to observe thatα2

is an execution ofTOBspec.

Relation tox: Let y be α2.lstate. Let X2 be X1 ∪ {failedp | p ∈ P}. The

relationship from step 1 still is true. In addition, we now have that for allp ∈ P ,

x(failedp) = y(failedp), meaning thatx⌈X2 = y⌈X2.

3. Construction ofα3: To constructα3, for each p ∈ P if ¬x(failedp) and

¬x(updatedp), then we add afailp immediately followed by arestartp at time

x(now) in α2, after any other events.

Validity of execution:Since these are input actions,α3 is an execution ofTOBspec.

Relation tox: Let y beα3.lstate. The relationship from step 2 still is true. Also, for

eachp ∈ P that is non-failed inx and has¬updatedp, we have thaty(rtimerp) = ⊥
since arestartp event resets thertimerp variable to⊥. Together with the fact that

x satisfies property 7(a) ofInvTOBspec and that properties of step 2, and hence

of step 1, still hold fory, we have that for allp ∈ P such that¬x(updatedp),

x(TOBDelayp) = y(TOBDelayp) andx(TOBFilterp) = y(TOBFilterp).

4. Construction ofα4: To constructα4, for each non-failedp ∈ P with now 6=
rtimerp < d, we add afailp followed immediately by arestartp immediately be-

fore theGPSupdatep at timenow − rtimerp in α3.

Validity of execution:Since these are input actions,α4 is an execution ofTOBspec.

Relation tox: Let y beα4.lstate. The relationship from step 3 still is true. Also, it

is easy to see that the construction forcesrtimerp to be equal tox(now) − rtimerp

for those non-failedp for whichrtimerp is less thand and not equal tonow. Hence,

by the fact thatx satsifies property 7(b) ofInvTOBspec, in addition to the relationship

in step 3, we have that for all non-failedp ∈ P , x(updatedp) = y(updatedp) and

x(rtimerp) = y(rtimerp).

5. Construction ofα5: To constructα5, there are three substeps.

112

(a) First, for eachp ∈ P, t ≤ x(now), and u ∈ U , consider the sub-

sequence〈m1, u, p, t〉, · · · ∈ x(oldsent) x(sent). We construct an alter-

nating sequences of eventstocast(m1)p, tocast′(m1, true)p, tocast(m2)p,

tocast′(m2, true)p, · · · . We add events ins in order and immediately after

each other at timet in α4 such that the following hold:

• The addition of a tuple tosent in thetocast′ action inserts the tuple so that

the ordering is the same as inx(oldsent) x(sent).

• If u = x(RW.reg−(p, t)), then events ins are added before any

GPSupdatep or failp event at timet.

• If u 6= x(RW.reg−(p, t)), then events ins are added immediately after any

GPSupdatep event at timet.

(b) Then, for eacht ≤ x(now) − d, consider the subsequence〈m1, v1, p1, t〉,
〈m2, v2, p2, t〉, · · · 〈mn, vn, pn, t〉 of x(oldsent). We construct a sequences′ of

torcv′ anddrop events to add toα5, consisting of exactly onetorcv′(m1, v1)p

or drop(p) event for eachp ∈ P , followed by exactly onetorcv′(m2, v2)p or

drop(p) event for eachp ∈ P , etc. We add this sequences′ of events in order

and immediately after each other inα5 at timet+d, after all other events at that

time. We selecttorcv′ or drop based onupdates(p).

(c) Finally, for eachtorcv′(m1, v1)p event that occurs at some timet′ < x(now), if

p is non-failed withrtimerp = d in our constructed execution at the time of the

torcv′ event, then insert atorcv(m)p event immediately after thetorcv′ event in

the execution.

Validity of execution:To check thatα5 is an execution, we consider each substep.

(a) Sincetocast is an input and hence always enabled, we just need to check that

the tocast′ events are enabled. What we need to check is that the associated

Booleans paired with the messages in thetocast′ actions are “correct” and that

eachtocast′ occurs while the process is alive. To see that the Boolean value of

true is always appropriate, notice that the construction does not allow there to

113

be any carryover of messages when aGPSupdate occurs. Hence, all messages

that are passed along are from theto send+
p queue, meaning the Boolean is

always true.

Next we note that for anyt < now, if a failp occurs at timet, only one can

occur and it occurs before aGPSupdatep (by our construction in steps 1-4).

For t = now, a failp occurs at most once and occurs after aGPSupdatep.

We consider cases in this step of our construction. The first case places mes-

sages sent from the first region of the process at timet before anyGPSupdatep

or failp event at timet. Since it is ordered before anyfailp, the process is alive.

We conclude that thetocast′ event is enabled.

The second case places messages sent from the ending region of the process at

time t after anyGPSupdate for the region. The associated region on the mes-

sage would obviously be for the ending region. Ift < now and afailp occurs

at time t, it is immediately followed by arestart and then theGPSupdate,

implying the process would be alive for these actions. Ift = now, then any

fail event is after theGPSupdate, and sinces is squeezed in between theGP-

Supdate and thefail, then the process again must be alive. In either case, we

conclude that thetocast’ event is enabled.

(b) Exactly one of atorcv′(m, v)p or drop(p) action is enabled for a message sent

at some timet ≤ x(now)−d if the head ofsent isd old and its message has not

yet been delivered or dropped top. Since this is our precondition for adding one

of the actions in our construction, and because of the way in which we select

which of the actions to perform based onupdates(p), we can can conclude that

these actions were enabled for each of their corresponding tuples inx(oldsent).

(c) It is obvious that thetorcv actions are enabled.

It is easy to check that no trajectory stopping conditions are violated inα5 since

messages into send and to rcv queues are immediately processed, and messages

added tosent are removed exactlyd time after their addition.

Relation tox: It is easy to see that this construction preserves the properties of

114

step 4. Lety be α5.lstate. It is clear, by the fact thatx satisfies property 6 of

InvTOBspec and our condition in step (a) that tuples be added tosent in a way that

reflects the ordering of tuples inx(oldsent) x(sent), thaty(oldsent) y(sent) is equal

to x(oldsent) x(sent). It is also clear by the fact thatx satisfies properties 4 and 5

of InvTOBspec and by step (b) thatx(oldsent) = y(oldsent) andx(sent) = y(sent).

By step (c) we can see that in both statex and statey, for all non-failedp ∈ P ,

to rcvp can only contain pairs corresponding tox(oldsent) tuples with timestamps

equal tonow − d.

6. Construction ofα6: To constructα6, let 〈m, u, q, t〉 be head(x(sent)). For each

p /∈ x(procs), we add atorcv′(m, u)p or drop(p) action based on theregStart test

at timex(now) in α5, after all other events.

Validity of execution: To check that this is an execution, note that sincex ∈
InvTOBspec, property 3 ofInvTOBspec means that ifx(procs) is not equal toP , then

it must be the case thatt = now− d, meaning one of eithertorcv′ or drop is enabled

for eachp ∈ P .

Relation tox: It is easy to see that the construction preserves the properties of step

5. Let y beα6.lstate. It is clear thatx(TObcast) = y(TObcast). Sincex satisfies

property 7(d) ofInvTOBspec, it should also be clear that for every non-failedp ∈ P ,

x(to rcvp) is a suffix ofy(to rcvp).

7. Construction ofα7: For each non-failedp ∈ P , let i be |α6.lstate(to rcvp)| −
|x(to rcvp)|. Let 〈m1, u1〉, · · · 〈mn, un〉 be α6.lstate(to rcvp), and let

〈mi+1, ui+1〉, · · · , 〈mn, un〉 be x(to rcvp). We construct a sequences of ac-

tions torcv(m1)p, · · · , torcv(mi)p. We then add this sequences of actions in order

and immediately after each other inα7 at timex(now), after all other events.

Validity of execution: Note that sincex(to rcvp) is a suffix ofα6.lstate(to rcvp),

there must be some prefix of pairs inα6.lstate(to rcvp). Since removal of these pairs

via tocast is always enabled at a non-failed process, this is a valid execution.

Relation tox: Let y beα7.lstate. It is easy to see the construction preserves the

115

properties of step 6. It is also that for every non-failedp ∈ P , x(TOBFilterp) =

y(TOBFilterp).

8. Construction ofα: For each non-failedp ∈ P , we modifyα7 by addingtocast

events at timex(now):

• Let s− be a sequence of eventstocast(m−1)p, tocast(m−2)p, · · · , where

m−1 , m−2 , · · · is x(to send−p). The events ins− are added in order and im-

mediately after each other after any othertocastp events and before any

GPSupdatep event at timex(now).

• Let s+ be a sequence of eventstocast(m+
1)p, tocast(m+

2)p, · · · , where

m+
1 , m+

2 , · · · is x(to send+
p). The events ins+ are added in order and immedi-

ately after each other immediately after any other events attimex(now).

Validity of execution:Since the added events are inputs,α is an execution.

Relation tox: The properties of step 7 still hold. Lety beα.lstate. It is easy to see

that x(to send−p) = y(to send−p) andx(to send+
p) = y(to send+

p) if each tocast

occurs while the process is alive. We check that now.

By our construction, the only way for afailp event to occur at timex(now) for a

non-failed process with non-⊥ region is in step 4– it would be followed immediately

by arestartp andGPSupdatep.

We consider the two cases ofs− ands+ in this step of our construction. The first

case placess− before anyGPSupdatep event at timex(now). By our observation

in the paragraph above and the fact thatx satisfies property 7(b) and 7(c), the process

would have to be alive.

The second case placess+ after anyGPSupdatep for the process. Again, by our

observation about step 4, the process would be alive.

We can conclude thatx = α.lstate.

The preceding two lemmas directly imply the following characterization theorem:

Theorem 9.4 InvTOBspec = reachableTOBspec.

116

1 Signature: (Mtup= Msg×P×R≥0×Bool×N×U)

Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

3 Input tocast(m)p, m∈Msg
Input brcv(mtup)p, mtup∈Mtup

5 Output torcv(m)p, m∈ Msg
Output bcast(mtup)p, mtup∈ Mtup

7

State:
9 analogclock: R

≥0∪ {⊥}, initially ⊥

updates: 2U×R
≥0

, initially ∅
11 btime: R≥0, initially 0

bseq: N, initially 0
13 outgoing+, outgoing−: Msg∗, initially λ

incoming: 2Mtup, initially ∅
15

Derived variables:
17 reg−: U ∪ {⊥}

if ∃〈u, t〉 ∈ updates: t < clock then
19 return min ({u∈ U |∃t′ < clock: 〈u, t′〉 ∈ updates

∧∀〈u∗, t∗〉 ∈ updates: (t∗ ≤ t ∨ t∗ = clock)})
21 else return⊥

23 reg: U ∪ {⊥}
if ∃u∈ U: 〈u, clock〉 ∈ updatesthen

25 return min ({u∈ U |〈u, clock〉 ∈ updates})
else return reg−

27

regSpan(r: U, t: R≥0): Bool
29 return ∃〈u, t′〉 ∈ updates: [t′ ≤ t ∧

∀〈v, t′′〉 ∈ updates: (t′′ ≥ t′⇒ r ∈ nbrs+(v))]
31

Trajectories:
33 d(clock) = 1

stop when
35 Any precondition is satisfied.

37 Transitions:
Input tocast(m)p

39 Effect:
outgoing+← append(outgoing+, m)

42Input GPSupdate(l, t)p

Effect:
44if (clock6= t∨ updates= ∅∨∃〈u, t′〉∈ updates:[t′≥ t]∨ btime> t

∨∃〈m, s, t′, f, b, r〉 ∈ incoming: t′ /∈ [t -d, t)) then
46clock, btime← t

bseq← 0
48updates, incoming← ∅

outgoing+← λ
50updates← updates∪ {〈region(l), t〉}

outgoing−← outgoing+

52outgoing+← λ
for each 〈m, s, t′, f, b, r〉 ∈ incoming: ¬ regSpan(r, t′)

54incoming← incoming-{〈m, s, t′, f, b, r〉}

56Input brcv(〈m, s, t, f, b, r〉)p

Effect:
58if (t ∈ [clock-dphys, clock) ∧ regSpan(r, t)) then

incoming← incoming∪ {〈m, s, t, f, b, r〉}
60

Output bcast(〈m, p, t, f, b, r〉)p

62Precondition:
m= head(outgoing− outgoing+) ∧ [f⇔∃u∈ U:{〈u, t〉}= updates]

64r 6= ⊥∧ (outgoing−= λ⇒r= reg)∧ (outgoing− 6= λ⇒r= reg−)
t= clock6=⊥∧ [(btime 6= t ∧ b = 1) ∨ (btime= t ∧ b = bseq+1)]

66Effect:
if outgoing− 6= λ then

68outgoing−← tail (outgoing−)

elseoutgoing+← tail(outgoing+)
70btime← clock

bseq← b
72

Output torcv(m)p

74Local:
s: P, t: R

≥0, f: Bool, b: N, r: U
76Precondition:

updates6= ∅∧ 〈m, s, t, f, b, r〉 ∈ incoming∧ t ≤ clock-d
78∀〈m′, s′, t′, f′, b′, r′〉 ∈ incoming: 〈t, s, f, b〉 ≤ 〈t′, s′, f′, b′〉

Effect:
80incoming← incoming-{〈m, s, t, f, b, r〉}

Figure 9-5:TOBimplerp, providing ordered broadcast.

9.2 TOBimpl: Implementation

Here we present a self-stabilizing implemention ofTOBspecusing the physical layer. For

each physical node idp ∈ P , the corresponding physical node has a TIOA calledTOBim-

plerp, which we describe in this section. The implementation of the entire totally ordered

broadcast service,TOBimpl, is then the composition ofFail(TOBimplerp) for all thep ∈ P

andPbcast‖RW , with thebcast andbrcv actions ofPbcasthidden. Recall that theFail-

transform of an automaton takes an automaton and adds a mechanism for allowing crash

failures and restarts.

117

Our technique is loosely based on one originally suggested by Lamport [61]. In that

work, Lamport presented an ordering technique to ensure total ordering of messages. We

extend that technique here to accommodate both multiple transmissions of the same mes-

sage by the same process at the same time (allowing us to use this service to help emulate

the virtual layer broadcast service where such multiple transmissions are allowed) and pro-

cess failures. Eachtocast message is tagged by the sender with the time of transmission,

the id and region of the sender, and a Boolean and sequence number, and then sent using

Pbcast. Received messages from nearby regions are stored until exactly d time has passed

since the message was sent. They are thentorcved in lexicographic order of sender id,

Boolean flag, and sequence number, in that order. In the lexicographic order, a false value

is ordered before a true value, according to the convention that false is equal to 0 and true

is equal to 1.

The sequence number allows us to order messages sent by a process at the same time.

The Boolean value is an indication of whether or not the sender has received its firstGP-

Supdate since starting at the time of the broadcast. This is important to ensure that, when

we allow failures and restarts of the physical nodes, if a process broadcasts a message, fails,

restarts, and broadcasts a new message, all at some timet, the message sent after the fail

and restart is ordered after the one sent before the fail and restart: Any message sent before

the failure would be tagged with a false Boolean flag. After a restart, a process’stocast is

only sent out if aGPSupdate occurs before thetocast. Hence, any message sent after a

process restarts would have a true Boolean flag, ordering it after the pre-failure messages.

Now we describeTOBimplerin more detail.

The state variables ofTOBimplerp are as follows:

• clock : R
≥0 ∪ {⊥}: This is the local clock time. It is initially⊥, but after the first

GPSupdatep after initialization, it should be equal to the current realsystem time.

• updates : 2U×R≥0
: This is the set of region and time pairs that correspond withthe

GPSupdates received at the process. It is initially∅.

• btime : R
≥0: This is a time at least as large as the broadcast timestamp ofthe last

message sent by the process but no larger than the current time. It is initially 0.

118

• bseq : N: This is a message sequence number, initially 0. It is used tohelp order

messages sent at the same time by the process.

• outgoing+ : Msg∗: This is a queue oftocast messages yet to be broadcast via

Pbcast, initially empty.

• outgoing− : Msg∗: This is also a queue oftocast messages yet to be broadcast via

Pbcast, initially empty. It contains messages that were submittedbefore the latest

GPSupdate at the process.

• incoming ∈ 2Msg×P×R≥0×Bool×N×U : This is an initially empty set of messages, each

tagged by sender, broadcast time, a Boolean, a sequence number, and a broadcast

region. It is the set of messages received by the process throughPbcast, but not yet

processed in atorcv event.

We also define two derived variables, both calculated in manner similar to that of their

counterparts in Section 9.1.1:

• reg : U ∪ {⊥} maps to the region indicated by the lastGPSupdatep. If no such

region exists, the function returns⊥.

• reg− : U ∪ {⊥} maps to the region indicated by the lastGPSupdatep before the

current time. If no such region exists, the function returns⊥.

• regSpan : (U × R
≥0) → Bool: This function takes a regionr and a timet, and

returns a Boolean indicating whether or not the process has entries inupdates con-

sistent with the process having been in or neighboring regionr from some time before

or equal to timet and through the present time.

When a node receives aGPSupdate (line 42) when itsupdates is ∅, indicating that

the GPSupdate is the first since it started, or when there is some local inconsistency in

state (lines 44-45), then it initializes its non-clock and non-btime variables (lines 47-49),

and setsclock andbtime to the time indicated byGPSupdate (line 46). Otherwise, and

after the above initialization, the current region and timeis added toupdates (line 50),

outgoing− is replaced withoutgoing+ (line 51),outgoing+ is cleared (line 52), and each

119

entry inincoming that is tagged with a region and time that does not pass theregSpan test

is removed fromincoming (lines 53-54).

When a node receives atocast(m)p input (line 38), it appendsm to its localoutgoing+

sequence (line 40). Wheneveroutgoing−outgoing+ is nonempty for a process with a non-

⊥ clock and non-⊥ r = reg if outgoing− is empty orr = reg− otherwise, abcastp action

occurs (lines 35 and 63-65). In this action, them at the head ofoutgoing−outgoing+ is

expanded into a larger message tuple〈m, p, clock, f, b, r〉, which includes the process id,

current time, valuesf andb to help order its messages sent at a particular time, and the

regionr of the message. The tuple is broadcast usingPbcast. f is true exactly when the

process’supdates = {〈r, clock〉} (line 63), indicating whether the process had received its

first GPSupdate since initialization at this time.b is a message sequence number, either

equal tobseq+1 if btime = clock (incrementing the sequence number ifbtime was already

updated to the current time, either through a message havingbeen sent at the current time

or aGPSupdate having updated the process’s state), or 1 (resetting the sequence number)

if this is the first message sent at this time sincebtime was last updated (line 65). As a

result of the action, ifoutgoing− is nonempty, the head ofoutgoing− is removed, else the

head ofoutgoing+ is removed (lines 67-69). Then thebtime andbseq numbers are updated

to match the timestamp and numberb of the message tuple that was sent (lines 70-71).

When a node receives such a message tuple (line 56) from its own or a neighboring

regionr such that the message was sent at a timet that is not too soon or too late by the

broadcast service requirements and such thatregSpan(r, t) is true (line 58), it adds the

the message tuple toincoming (line 59). Message tuples inincoming with timestamps

that are exactlyd old are removed fromincoming andtorcved in order of sender id and

sequence number (lines 35 and 73-80).

As mentioned in the beginning of the section, the complete implementation of the to-

tally ordered broadcast service is the composition ofPbcast‖RW andFail(TOBimplerp)

for all p ∈ P . Hence, in addition to the variables and actions described above, for each

p ∈ P , there is afailedp Boolean flag indicating whether or not the process is failed,as

well as afailp andrestartp input action for eachp ∈ P . Sincebrcv andbcast actions do

not exist in theTOBspec, we also hide those actions in the implementation.

120

9.3 Correctness of the implementation

In this section we describe aspects of the correctness of ourimplementation of the totally

ordered broadcast service. DefineTOBimplerto be the composition ofFail(TOBimplerp)

for all p ∈ P , and let HTOimpl be {bcast(m)p, brcv(m)p | m ∈ (Msg × P ×
R
≥0 × Bool × N × U), p ∈ P}. The implementation of the service is thenTOBimpl

= ActHide(HTOimpl, P bcast‖RW‖TOBimpler), the composition ofPbcast‖RW and

TOBimpler with thebcast andbrcv actions for implementation messages hidden.

To show correctness, we first describe a legal setLTOBimpl of TOBimpl

(Section 9.3.1). Then, we show thatStart(TOBimpl, LTOBimpl) implements

Start(TOBspec, InvTOBspec). We do this in the following way: using the legal set defini-

tion (Definition 3.12) and a simulation relation (Definition2.20), we show in Section 9.3.2

that our implementation,TOBimpl, implementsTOBspec, meaning that traces of the im-

plementation are contained in traces of the specification. The simulation relation is defined

only for states ofTOBimpl in the legal setLTOBimpl; we then show a separate result that

each of these states is related to some reachable state ofTOBspec (Lemma 9.18).

Next, we argue in Section 9.3.3 thatTOBimpleris self-stabilizing toLTOBimpl relative

to R(RW‖Pbcast), which allows us to finally conclude in Theorem 9.25 that our imple-

mentation eventually reaches a state that is related to a reachable state ofTOBspec.

We use this approach in future chapters to describe correctness and stabilization of an

implementation of a system. To summarize the strategy:

1. Define a legal setLI for the implementationI, and show that the set is a legal set.

2. Define a legal setLS for the specificationS, and show that the set is a legal set.

3. Show thatStart(I, LI) ≤ Start(S, LS), meaning that traces of the implementation

started in legal setLI are traces of the specification started in legal setLS. This can

be shown in the following way:

(a) Define a simulation relation between states of the implementation inLI and

states of the specification. Show the relation is a simulation relation.

121

(b) Show that for each state inLI , there exists a state inLS of states of the specifi-

cation such that the simulation relation holds between the states. (In the case of

totally ordered broadcast, we define the invariant set of thespecification as the

reachable states, which happens to be a set of invariant states. In general, this

is not necessary. It is done simply for convenience here, since it is obvious that

the trace of the service starting from a reachable state is a suffix of some trace

of the specification that satisfies the properties describedin Section 9.1.1.)

4. Show that the implementation self-stabilizes toLI .

5. Conclude that the set of traces of the implementation stabilizes to the set of traces of

execution fragments of the specification starting inLS. (This follows immediately

from points 3 and 4.)

For the rest of the section, we refer to a state variablev of Fail(TOBimplp) asvp. We

also refer to a state variablev of RW‖Pbcastsimply asv.

9.3.1 Legal sets

Here we describe a legal set ofTOBimpl by describing four legal sets, each a subset of the

prior one. Recall from Lemma 3.13 that a legal set of states for a TIOA is one where each

closed execution fragment starting in a state in the set endsin a state in the set. We break

the definition of the legal set up into four legal sets in orderto simplify the proof reasoning

and more easily prove stabilization later, in Section 9.3.3.

Legal state setL1
TOBimpl:

The first set of legal states describes some properties that become true at an alive process

at the time of the firstGPSupdate for the process.

Definition 9.5 L1
TOBimpl is the set of statesx of TOBimpl where all of the following hold:

1. x⌈XRW‖Pbcast ∈ InvRW‖Pbcast.

This says that the state restricted to the variables ofRW‖Pbcast are reachable states

of RW‖Pbcast (Theorem 6.12 showed thatInvRW‖Pbcast = reachableRW‖Pbcast).

122

2. For eachp ∈ P : (¬failedp ∧ updatesp 6= ∅) :

(a) clockp = now ∧ btimep ≤ clockp.

This says that a non-failed process with a non-∅ updates must have a local

clock that matchesRW‖Pbcast’s now, and abtime variable that is not set in

the future.

(b) ∀〈m, s, t, f, b, r〉 ∈ incomingp : [regSpanp(r, t) ∧ t ∈ [clockp − d, clockp)].

This says that the message tuples in theincoming set of a non-failed process

with a non-∅ updates are labelled with timestamps that are not set in the future

or befored before the current time. It also says that each such tuple wassent

from a region at a time such that processp has been in range for the transmis-

sion period.

(c) ∃〈l, t〉 ∈ updates(p) : [〈region(l), t〉 ∈ updatesp

∧ ∀〈a, t′〉 ∈ updates(p) ∪ updatesp − {〈l, t〉, 〈region(l), t〉} : t′ < t].

This says that the latest update forp matches betweenRW andTOBimpler,

and that the latest update is unique.

(d) outgoing− 6= λ ⇒
[∃〈v, t〉 ∈ updatesp : t < clockp ∧ ∃u ∈ U : 〈u, clockp〉 ∈ updatesp].

This says that theoutgoing− queue of a non-failed process with a nonempty

updates is nonempty only if there is some recorded update that occurred before

the current time and an update that occurred at the current time.

Lemma 9.6 L1
TOBimpl is a legal set forTOBimpl.

Proof: Let x be any state inL1
TOBimpl. By Definition 3.12 of a legal set, we must verify

two things for statex:

• For each statex′ of TOBimpl and actiona of TOBimpl such that(x, a, x′) is in the

set of discrete transitions ofTOBimpl, statex′ is in L1
TOBimpl.

• For each statex′ and closed trajectoryτ of TOBimpl such thatτ.fstate = x and

τ.lstate = x′, statex′ is in L1
TOBimpl.

123

By Theorem 6.4, we know that ifx satisfies the first property ofL1
TOBimpl, then any

discrete transition ofTOBimpl will lead to a statex′ that still satisfies the first property,

and any closed trajectory starting with statex will end in some state that satisfies the first

property. This implies that we just need to check that in the two cases of the legal set

definition, the statex′ satisfies all parts of the second property ofL1
TOBimpl.

For the first case of the legal set definition, we consider eachaction:

• drop(〈m, s, t, f, b, u〉, t, q, p), tocast(m)p: These don’t impact property 2.

• failp: This action trivially preserves property 2.

• restartp: Since this action setsupdatesp to ∅ if it makes any state changes at all,

property 2 would still trivially hold.

• torcv(m)p: This could impact property 2(b). However, since the only impact of the

action is the removal of a tuple inincomingp, then if property 2(b) holds in statex,

it continues to hold in statex′.

• GPSupdate(l, t)p: Let v beregion(l). If the conditional on lines 44-45 holds, then

this action first setsclockp andbtimep to now, bseqp to 0,updatesp andincomingp

to ∅, andoutgoing+
p to λ. Then, regardless of whether the conditional holds, the

action adds〈l, t〉 to updates(p) and〈v, t〉 to updatesp, overwritesoutgoing−p with

outgoing+
p , clearsoutgoing+

p , and removes any element ofincomingp whose region

and time does not passregSpanp. It is easy to see that the resulting statex′ satisfies

properties 2(a)-2(c).

For property 2(d), it is obvious that the only thing to verifyis that if outgoing−p is

not empty, then there exists some pre-clockp timestamped pair inupdatesp. We con-

sider the cases for whether the if conditional on lines 44-45holds. If it held, then

outgoing−p is empty in statex′, meaning property 2(d) holds. If the conditional did

not hold, then by the fact thatupdatesp must have contained a pre-clockp times-

tamped pair inx, property 2(d) still holds.

• brcv(〈m, s, t, f, b, r〉)p: The only property this might impact is 2(b). However, the

124

conditional on line 58 ensures that if a new tuple is added toincomingp, then it

satisfies the property.

• bcast(〈m, q, t, f, b, r〉)p: Properties 2(b) - 2(d) are obviously not impacted. Since

this action setsbtimep to clockp, property 2(a) still holds.

For the second case of the legal set definition, we now consider any closed trajectoryτ

such thatx = τ.fstate. Let x′ beτ.lstate. We must show thatx′ ∈ L1
TOBimpl. It is easy to

see that because the only evolving variables referenced in the properties areclockp andnow

which evolve at the same rate, property 2(a) holds. With the trajectory stopping conditions

of TOBimpleron line 35, if an entry in someincomingp has a timestamp from more than

d time ago, then it istorcved. This means that property 2(b) remains true throughout a

trajectory. Property 2(c) is not impacted in a trajectory. Property 2(d) holds throughout a

trajectory because of the stopping conditions on line 35, enforcing that no time passes until

any entries inoutgoing−p andoutgoing+
p are cleared.

Legal state setL2
TOBimpl:

The next legal set describes a subset of states ofL1
TOBimpl that satisfy some additional

properties with respect to thepbcastq, outgoing, updates, andbtime variables.

Definition 9.7 L2
TOBimpl is the set of statesx of TOBimpl where all of the following hold:

1. x ∈ L1
TOBimpl.

2. ∀p ∈ P, ∀ 〈〈m, s, t, f, b, r〉, t′, P ′〉 in pbcastq(p) : t′ = now:

(a) s = p ∧ t = t′ ∧ (f ⇒ ∃l ∈ R : 〈l, t〉 ∈ updates(p) ∧ region(l) = r)

∧r ∈ {reg−(p, t), reg+(p, t)}.

This says that any message tuple inpbcastq(p) for somep ∈ P has a source

tag equal to the process id, a timestamp equal to the time thatthe message was

actually sent, and a region tag consistent with the updates at that time. It also

says that if a message tuple has a true Boolean tag then its region is the ending

region of the process at transmission time.

125

(b) ∀〈〈m′, s′, t′′, f ′, b′, r′〉, t′, P ′′〉 ∈ pbcastq(p) − {〈〈m, s, t, f, b, r〉, t′, P ′〉} :

(f 6= f ′ ∨ b 6= b′) ∧ [(〈f, b〉 < 〈f ′, b′〉 ∧ r 6= r′) ⇒ r = reg−(p, t)].

This says that any two message tuple records for messages that were sent by

the same process at the same time and with the same Boolean tagand sequence

number are actually the same tuple. It also says that if two message tuples

with the same correct timestamp have different region tags,then the one whose

Boolean tag paired with message sequence number is lower than the other’s

has a region tag equal to the sender’s region at the beginningof timet. Re-

member that the Boolean value is an indication of whether or not the sender

has received its firstGPSupdate since starting at the time the message was

originally submitted; any message with a false Boolean is one that was origi-

nally submitted before anyGPSupdate for the period occurred at the process,

while any message with a true Boolean is one that was submitted after. Hence,

the region associated with a false Boolean is the region for the process at the

beginning of timet, while a region associated with a true Boolean is the region

for the process after aGPSupdate occurred at the process at timet.

(c) (¬failedp ∧ r = regp 6= reg−p) ⇒ outgoing−p = λ.

This says that if some message was sent by a non-failed process with a non-⊥
region at the current time and with a region tag equal to the current local region

of the process which differs from the prior region, thenoutgoing− is empty.

(d) Let fp be a Boolean such thatfp ⇔ ∃u ∈ U : {〈u, clockp〉} = updatesp.

Let seqnump be a natural such thatseqnump = 0 if btimep 6= clockp and

seqnump = bseqp otherwise.

Then(¬failedp ∧ updatesp 6= ∅) ⇒ 〈clockp, fp, seqnump〉 ≥ 〈t, f, b〉.
This says that any message ordering tags that might be added to an outgoing

message will be larger than any previously broadcast tags atthis time.

Lemma 9.8 L2
TOBimpl is a legal set forTOBimpl.

Proof: Let x be any state inL2
TOBimpl. By Definition 3.12 of a legal set, we must verify

two things for statex:

126

• For each statex′ of TOBimpl and actiona of TOBimpl such that(x, a, x′) is in the

set of discrete transitions ofTOBimpl, statex′ is in L2
TOBimpl.

• For each statex′ and closed trajectoryτ of TOBimpl such thatτ.fstate = x and

τ.lstate = x′, statex′ is in L2
TOBimpl.

By Lemma 9.6, we know that ifx satisfies the first property ofL2
TOBimpl, then any

discrete transition ofTOBimpl will lead to a statex′ that still satisfies the first property,

and any closed trajectory starting with statex will end in some state that satisfies the first

property. This implies that we just need to check that in the two cases of the legal set

definition, the statex′ satisfies all parts of the second property ofL2
TOBimpl.

For the first case of the legal set definition, we consider eachaction:

• drop(〈m, s, t, f, b, u〉, t, q, p), tocast(m)p, torcv(m)p, brcv(〈m, s, t, f, b, r〉)p:

These don’t impact property 2.

• failp: This action doesn’t affect properties 2(a) and 2(b). It trivially preserves proper-

ties 2(c) and 2(d).

• restartp: This action doesn’t affect properties 2(a) and 2(b). Sincethis action sets

updatesp to∅ if it makes any state changes at all, properties 2(c) and 2(d)still trivially

hold.

• GPSupdate(l, t)p: Let v be region(l). It is trivial to see that properties 2(a) and

2(b) are still satisfied in statex′.

The only way for this action to change any state relevant to the other parts of property

2 is if ¬failedp. If the conditional on lines 44-45 holds, then the resultingstate triv-

ially satisfies property 2(c). For property 2(d), we know that 〈clockp, fp, seqnump〉
is equal to〈clockp, true, 0〉 in statex′. This is at least as great as the correspond-

ing tags ofpbcastq(p) messages sent at timeclockp if we can show that any such

pbcastq(p) message tags havefalse in their second field. This follows from the fact

that statex′ satisfies property 3 ofInvRW (see Definition 6.1), meaning that no more

than one update occurred at the current time, and because property 2(a) held in state

x, implying that no messages withtrue flags were sent at the current time byp.

127

If the conditional on lines 44-45 does not hold, then the resulting state is one for

which property 2(d) obviously still holds. More interesting to show is property 2(c).

By property 3 ofInvRW , we know that no other update could have occurred at this

time. Hence, since property 2(a) held in statex, all messages inpbcastq(p) must be

tagged withreg−(p, now), which is either equal tov, meaning we are done, or equal

to some other region, also meaning we are done.

• bcast(〈m, q, t, f, b, r〉)p: Examination of the attached tags in lines 63-65 show us

that property 2(a) still holds. Ifoutgoing−p was empty in statex, then this action sets

outgoing+
p to its tail and broadcasts a message with the current region.Property 2(c)

still holds. If outgoing−p was not empty in statex, then this action setsoutgoing−p

to its tail and broadcasts a message with a region corresponding to the node’s prior

update. Since property 2(c) held in statex, it must still hold in statex′. Since inx,

〈clockp, fp, seqnump〉 is at least as large as any corresponding tags inpbcastq(p) for

this time, then this new message’s tuple is strictly larger by the precondition for the

action, andbtimep andbseqp are updated by the action to match this message’st and

b, preserving property 2(d). Since the tags are strictly larger, examination of the tags

attached to the message imply that property 2(b) still holds.

For the second case of the legal state definition, we considerany closed trajectoryτ such

thatx = τ.fstate. Let x′ beτ.lstate. We must show thatx′ ∈ L2
TOBimpl. It is easy to see

that because the only evolving variables referenced in property 2 areclockp andnow, with

the trajectory stopping conditions ofTOBimplerin line 35, messages inoutgoing queues

will be removed through abcast, preserving properties 2(a), 2(b), and 2(c). Property 2(d)is

easily seen to remain true throughout a trajectory since theonly relevant variable isclockp,

and any messages in transit that previously satisfied 2(d) have tags that continue to satisfy

2(d) when time passes.

Legal state setL3
TOBimpl:

The next legal set is a subset of states ofL2
TOBimpl that satisfy some additional properties

with respect to the set of messages in transit and the historystored inupdates.

128

Definition 9.9 L3
TOBimpl is the set of statesx of TOBimpl where all of the following hold:

1. x ∈ L2
TOBimpl.

2. ∀t′ ≥ now − d, ∀p ∈ P, ∀ 〈〈m, s, t, f, b, r〉, t′, P ′〉 in pbcastq(p):

(a) s = p ∧ t = t′ ∧ r ∈ {reg−(p, t), reg+(p, t)}
∧ (f ⇒ ∃l ∈ R : 〈l, t〉 ∈ updates(p) ∧ region(l) = r).

This is property 2(a) ofL2
TOBimpl, extended to allt′ ≥ now − d.

(b) ∀〈〈m′, s′, t′′, f ′, b′, r′〉, t′, P ′′〉 ∈ pbcastq(p) − {〈〈m, s, t, f, b, r〉, t′, P ′〉} :

(f 6= f ′ ∨ b 6= b′) ∧ [(〈f, b〉 < 〈f ′, b′〉 ∧ r 6= r′) ⇒ r = reg−(p, t)].

This is property 2(b) ofL2
TOBimpl, extended to allt′ ≥ now − d.

(c) (r ∈ {reg−(p, t), reg+(p, t)} ∧ t = t′) ⇒ ∀q ∈ P − P ′ :

[(〈m, s, t, f, b, r〉 /∈ incomingq ∧ ¬failedq ∧ ∃〈l′, t′〉 ∈ updates(p) : [t′ ≤ t ∧
∀〈l, t′′〉 ∈ updates(p) : t′′ ≥ t′ ⇒ region(l) ∈ nbrs+(r)]∧ regSpanq(r, t)) ⇒
(t ≤ now − d ∧ ∀〈m′, s′, t, f ′, b′, r′〉 ∈ incomingq : 〈s′, f ′, b′〉 ≥ 〈s, f, b〉)].
In other words, consider any message tuple in a process’spbcastq such that

the tuple’s region tagr is a region of the process at broadcast time, and the

attached timestampt is the time when the message was broadcast. Now con-

sider any non-failed processq whereq has been in range of the broadcast and

has localupdates that indicate this (meaningq should receive the message).

This property says thatRW‖Pbcast has yet to deliver the message toq or, if it

has delivered the message, the message tuple is either inincomingq (meaning

q received the message fromPbcast and has the tuple stored locally to pro-

cess) or the timestamp is at leastd old and all tuples inincomingq have larger

timestamp/ source/ Boolean flag/ sequence number tags than the message tuple

(meaning thatq received the message fromPbcast and processed the tuple lo-

cally and in order with respect to the other message tuples itwas supposed to

receive).

3. For eachp ∈ P : (¬failedp ∧ updatesp 6= ∅) :

∃〈u, t〉 ∈ updatesp : [(t ≤ now−d∨t = min({t′ | ∃v ∈ U : 〈v, t′〉 ∈ updatesp}))∧

129

∀t′ ≥ t : {u | 〈u, t′〉 ∈ updatesp} = {region(l) | 〈l, t′〉 ∈ updates(p)}].
This says that for any non-failed processp, there is some timet such thatupdatesp

corresponds withupdates(p) for all entries with timestamps starting att, and such

that t is either the minimum timestamp inupdatesp or is at leastd old.

Lemma 9.10 L3
TOBimpl is a legal set forTOBimpl.

Proof: Let x be any state inL3
TOBimpl. By Definition 3.12 of a legal set, we must verify

two things for statex:

• For each statex′ of TOBimpl and actiona of TOBimpl such that(x, a, x′) is in the

set of discrete transitions ofTOBimpl, statex′ is in L3
TOBimpl.

• For each statex′ and closed trajectoryτ of TOBimpl such thatτ.fstate = x and

τ.lstate = x′, statex′ is in L3
TOBimpl.

By Lemma 9.8, we know that ifx satisfies the first property ofL3
TOBimpl, then any

discrete transition ofTOBimpl will lead to a statex′ that still satisfies the first property,

and any closed trajectory starting with statex will end in some state that satisfies the first

property. This implies that we just need to check that in the two cases of the legal set

definition, the statex′ satisfies all parts of the second and third property ofL3
TOBimpl. By

simple extension of the reasoning in Lemma 9.8, we can also quickly see that properties

2(a) and 2(b) hold. It is also simple to see that property 3 canonly be affected by the

GPSupdate action. Hence, for each non-GPSupdate action we consider only property

2(c), and forGPSupdate we consider property 2(c) and 3.

For the first case of the legal set definition, we consider eachaction:

• drop(〈m, s, t, f, b, u〉, t, q, p): This action is only enabled in statex if there is some

set of idsP ′ such thatP ′ containsq, 〈〈m, s, t, f, b, u〉, t, P ′〉 ∈ pbcastq(p), t 6= now,

and the distance between the last reported location ofp at timet and the last reported

location ofq is greater thanrreal. The action results in the removal ofq from P ′.

However, by the precondition, we know thatq is only removed fromP ′ if the distance

above is more thanrreal. By Lemma 6.13,reg(q) must not be innbrs+(u), so the

property remains true.

130

• failp, restartp, bcast(〈m, q, t, f, b, r〉)p: These actions trivially preserve properties 2

and 3.

• tocast(m)p: This doesn’t impact properties 2 and 3.

• torcv(m)p: For property 2(c), note that the precondition for the action guarantees that

in statex there must be some〈m, s, t, f, b, r〉 ∈ incomingp such thatt ≤ clockp − d

and 〈t, s, f, b〉 is ordered before all other similar tuple components inincomingp.

Since property 2(b) ofL1
TOBimpl holds in statex, we know thatt ≥ clockp − d.

This implies thatt = clockp − d. Hence, the two conditions on the right of the last

implication in property 2(c) both hold.

• GPSupdate(l, t)p: Let v beregion(l). For this action, we must consider both prop-

erty 2(c) and 3.

For 2(c), consider what happens ifp is not failed. If the conditional on lines 44-

45 holds, then statex′ will have updatesp = {〈v, t〉}. This means thatregSpanp

will only be true for messages witht = now. By property 3 in the description of

InvPbcast, the attachedP ′ in thepbcastq record containsq, satisfying property 2(c).

If the conditional on lines 44-45 does not hold, then we just need to be sure that

no message tuples that previously should not be inincomingq suddenly should be.

However it is obvious that the addition of a pair toupdatesp does not suddenly allow

prior disallowed tuples. Property 2(c) is still satisfied.

For property 3, we are only interested in the case wherep is not failed in statex.

If the conditional on lines 44-45 holds, then it is obvious that property 3 holds in

statex′, sinceupdatesp = {〈v, t〉} in statex′. If the conditional does not hold, then

we know thatx(updatesp) 6= ∅ andupdatesp in x′ equalsupdatesp in x, with an

additional〈v, t〉 element. Since statex satisfied property 3 andupdatesp was not

empty, there was some pair inupdatesp such that the property held relative to the

pair. If we select the same pair, it is obvious that the property still holds in statex′.

• brcv(〈m, s, t, f, b, r〉)p: Property 2(c) could only be a problem if this action does not

add this tuple toincomingp or if it adds the tuple butt = clockp − d and〈s, f, b〉 is

131

smaller than that of other entries with the same timestamp. The second can’t happen

by property 2 ofInvPbcast and the if condition on line 58. We examine the first. By

the if condition on line 58 in the action, if the tuple is not added it must mean that

either¬regSpanp(r, t) or t ≥ clockp or t < clockp − dphys. By properties 1-3 of

InvPbcast and sincet is equal to the actual time the tuple is broadcast, thent < clockp

andt ≥ clockp − dphys. Hence, for the tuple not to be added,¬regStartp(r, t). In

either case, one of the conditions on the left of the last implication in property 2(c)

fails, so property 2(c) still holds.

For the second case of the legal state definition, we considerany closed trajectoryτ such

that x = τ.fstate. Let x′ be τ.lstate. We must show thatx′ ∈ L3
TOBimpl. It is easy to

see that because the only evolving variables referenced in property 2 areclockp andnow,

with the trajectory stopping conditions of bothRW‖Pbcast, forcing updates at nodes and

delivery of messages or drops of those messages withindphys time, andTOBimpleron line

35, forcing processing of messages fromincoming whenever exactlyd time has passed

since broadcast, properties 2 and 3 will remain true throughout a trajectory.

Legal state setLTOBimpl:

The final legal set is a subset ofL3
TOBimpl that satisfies an additional property about the

entries of anyincoming set with respect to the state ofRW‖Pbcast.

Definition 9.11 LTOBimpl is the set of statesx of TOBimpl where all of the following

hold:

1. x ∈ L3
TOBimpl.

2. For eachp ∈ P : (¬failedp ∧ updatesp 6= ∅) ⇒ ∀〈m, s, t, f, b, r〉 ∈ incomingp :

∃P ′ ⊆ P − {p} : 〈〈m, s, t, f, b, r〉, t, P ′〉 ∈ pbcastq(s).

This says that any tuple in a process’sincoming must be a tuple that was actually

handled for the process byRW‖Pbcast and sent by the process whose id is the

source tag in the message at the time indicated by the timestamp of the message.

Lemma 9.12 LTOBimpl is a legal set forTOBimpl.

132

Proof: Let x be any state inLTOBimpl. By Definition 3.12 of a legal set, we must verify

two things for statex:

• For each statex′ of TOBimpl and actiona of TOBimpl such that(x, a, x′) is in the

set of discrete transitions ofTOBimpl, statex′ is in LTOBimpl.

• For each statex′ and closed trajectoryτ of TOBimpl such thatτ.fstate = x and

τ.lstate = x′, statex′ is in LTOBimpl.

By Lemma 9.10, we know that ifx satisfies the first property ofLTOBimpl, then any

discrete transition ofTOBimpl will lead to a statex′ that still satisfies the first property,

and any closed trajectory starting with statex will end in some state that satisfies the first

property. This implies that we just need to check that in the two cases of the legal set

definition, the statex′ satisfies the second property ofLTOBimpl.

For the first case of the legal set definition, we could consider each action, but the only

non-trivial one to examine isbrcv:

• brcv(〈m, s, t, f, b, r〉)p: For this action to occur, by the precondition for this output

in RW‖Pbcastand property 2(a) ofL3
TOBimpl, an appropriately tagged version of this

tuple must have been inpbcastq(s). Hence, if the tuple is added toincomingp in this

action, then by the above observation, property 2 will hold.

For the second case of the legal state definition, we considerany closed trajectoryτ

such thatx = τ.fstate. It is easy to see that because the only evolving variables referenced

in property 2 areclockp andnow, property 2 will remain true throughout a trajectory.

A trivial observation is that an initial state ofTOBimplis in LTOBimpl:

Lemma 9.13 An initial state ofTOBimpl is in LTOBimpl.

9.3.2 Simulation relation

Here we show that Start(TOBimpl, LTOBimpl) implements

Start(TOBspec, reachableTOBspec) (Lemma 9.19). We do this by first describing a

simulation relationRTOB from our implementation of the totally ordered broadcast

133

service, TOBimpl, to the TIOA specification of the totally ordered broadcast service,

TOBspec. We prove thatRTOB is a simulation relation in Lemma 9.15, and then conclude

that TOBimpl implementsTOBspec(Theorem 9.16). In other words, we conclude that

the traces of our implementation are traces of totally ordered broadcast. We then show in

Lemma 9.18 that for each state inLTOBimpl there exists some reachable state ofTOBspec

that is related to it underRTOB.

You may notice in the definition below that forxRTOBy to hold, statex must be a state

in the legal setLTOBimpl. This constrains the simulation relation to only be concerned with

implementation states which we will later show are related to reachable states ofTOBspec

(see Lemma 9.18).

Definition 9.14 RTOB is a relation between states ofTOBimpl and states ofTOBspec

such that ifx is a state ofTOBimpl andy is a state ofTOBspec, thenxRTOBy exactly

when the following conditions are satisfied:

1. x ∈ LTOBimpl andx(RW) = y(RW).

This says that our relation only holds for state pairs where the state of our imple-

mentation is in the legal setLTOBimpl and theRW state is equal inx andy.

2. y ∈ InvTOBspec ∧ y(procs) = P .

This says thaty must be a reachable state ofTOBspec, and thaty(procs) is full.

3. For eachp ∈ P , x(failedp) = y(failedp).

This says that the failure status of each process is the same in the two states.

4. For eachp ∈ P , ¬x(failedp) ⇒ [(x(updatesp) = ∅ ∧ y(rtimerp) = ⊥)

∨∃〈u, t〉 ∈ x(updatesp) : ([t ≤ x(now) − d ∧ y(rtimerp) = d]

∨ [∀〈v, t′〉 ∈ x(updatesp) : t′ ≥ t ∧ t = x(now) − y(rtimerp)])].

This says that the stored updates for each non-failed process corresponds to the

rtimer. In particular, rtimer is ⊥ whenupdatesp is empty, and eitherrtimer is

as old as the first pair inupdates, or both are at leastd old.

5. For eachp ∈ P , (¬x(failedp) ∧ x(updatesp) 6= ∅)

134

⇒ [x(outgoing−p) = y(to send−p) ∧ x(outgoing+
p) = y(to send+

p)].

This says that correspondingoutgoing andto send queues are equal.

6. Let〈〈m1, p1, t1, f1, b1, u1〉, t1, P1〉, · · · , 〈〈mn, pn, tn, fn, bn, un〉, tn, Pn〉 be the subset

of
⋃

p∈P x(pbcastq(p)) with ti > now − d, ordered by〈ti, pi, fi, bi〉.
Theny(sent) = 〈m1, u1, p1, t1〉, · · · , 〈mn, un, pn, tn〉.
This says that the sequencesent in TOBspec is the same as the sequence of re-

stricted message tuples inpbcastq that are less thand old and then sorted by tags.

7. For eachp ∈ P , let 〈m1, p1, t, f1, b1, u1〉, · · · , 〈mn, pn, t, fn, bn, un〉 be the subset of

x(incomingp) with t = now − d, ordered by〈pi, fi, bi〉.
If ¬x(failedp) ∧ x(updatesp) 6= ∅, theny(to rcvp) = 〈m1, u1〉, · · · , 〈mn, un〉.
This says that for a non-failed process with a non-⊥ region, the sequence of message

and region pairs into rcv in TOBspec is the same as the sequence of message and

region pairs from tuples inincomingp that are exactlyd old and then sorted by tags.

Now we show thatRTOB is a simulation relation fromTOBimplto TOBspec:

Lemma 9.15 RTOB is a simulation relation fromTOBimpl to TOBspec.

Proof: By definition of a simulation relation we must show three things for all states of

the two automata:

1. We must show that for anyx ∈ ΘTOBimpl there exists a statey ∈ ΘTOBspec such

thatxRTOBy. There is one unique initial non-failed and non-loc state for both the

first and the second automaton, and any values offailed and loc for eachp ∈ P is

possible for either automaton. It is easy to check thatRTOB holds between any two

such states.

2. Say thatx ∈ QTOBimpl andy ∈ QTOBspec, and thatxRTOBy. Then for any actiona ∈
ATOBimpl, if TOBimplperforms actiona and the state changes fromx to x′, we must

show that there exists a closed execution fragmentβ of TOBspecwith β.fstate =

y, trace(β) = trace(℘(x)a℘(x′)), andx′RTOBβ.lstate.

By Lemma 9.12, Property 1 ofRTOB holds inx′.

135

For the other properties, we consider each action:

• drop: Let β be the point trajectory℘(y). It is trivial to see thatx′RTOBy and

that the trace of bothβ andα are empty.

• failp andrestartp: These are trivial.

• tocast(m)p: Let β be ℘(y) tocast(m)p ℘(y′). It is easy to see the trace is

the same. Ifx(updatesp) 6= ∅ then since the same message is added to the

end ofoutgoing+
p in TOBimpland toto send+

p in TOBspec, thenx′RTOBy′.

Otherwise,x(updatesp) is empty and we can trivially conclude thatx′RTOBy′.

• torcv(m)p: Let β be℘(y) torcv(m)p ℘(y′). We need to check that this action

is enabled iny. If the action is enabled in the implementation, then there is

an associated tuple inincomingp with timestampt ≤ clockp − d and with a

tag which is smaller than the tags of all others in the set. By property 2(b) of

L1
TOBimpl, t is at leastclockp − d, implying it is equal toclockp − d. Since

xRy, this must mean that the tuple is the head ofto rcvp. Hence, this action is

enabled in the specification.

We now note thattrace(α) = trace(β) and that it is easy to see thatx′RTOBy′:

sincexRTOBy and the associated tuple is removed fromincomingp and the

corresponding tuple is removed fromy(to rcvp), x′RTOBy′ must hold.

• GPSupdate(l, t)p: Let β be℘(y) GPSupdate(l, t)p ℘(y′). Letv beregion(l).

It is easy to see that the traces ofα andβ are equal. To see thatx′RTOBy′, we

first note that properties 1-3 and 6 are easy to see hold. We consider several

cases for the other properties: Ifx(failedp), then checking that the properties

hold is trivial. So we consider where¬x(failedp).

Say the conditional on lines 44-45 holds. Since property 1 holds, we know that

the only way for the conditional to hold is ifx(updatesp) = ∅. SincexRTOBy,

we know by property 4 ofRTOB thaty(rtimerp) = ⊥, which by property 2 of

RTOB means thatTOBDelayp.updated = false andto send−p = to send+
p =

λ = to rcvp. In statex′, outgoing−p = outgoing+
p = λ, ∅ = incomingp and

updatesp = {〈v, t〉}. In statey′, to send−p = to send+
p = λ = to rcvp still,

136

satisfying properties 5 and 7. Also, in statey′, rtimerp = 0, satisfying property

4.

Now we check the other case, where the conditional on lines 44-45 does not

hold. We know that in statex, updatesp is not empty. In this case, the only

changes betweenx andx′ are thatupdatesp in x′ also contains the pair〈v, t〉,
and any tuples inincomingp that don’t satisfyregSpan are removed; it is easy

to see that these will simply be those with region tags not equal tov or a neigh-

boring region. It is trivial to see that property 5 still holds. For property 4,

notice that in statey′, rtimerp is not different from what it was in statey. Also,

we can choose the same〈u, t′〉 in x(updatesp) to satisfy property 4 in statex′.

Finally, to check property 7, notice thatTOBDelayp removes any pair without

a region that is the same or neighboringv. Hence, property 7 still holds.

• brcv(〈m, s, t, f, b, r〉)p: Let β be℘(y). It is easy to see that the traces are the

same, and that the possible addition of an element toincomingp doesn’t affect

any properties since by property 2(a) ofL3
TOBimpl and property 3 ofInvPbcast,

t > x(clockp) − d.

• bcast(〈m, q, t, f, b, r〉)p: Let β be ℘(y) tocast′(m, c)p ℘(y′), wherec is true

iff y(to send−p) is empty, and the tuple is added tosent so that any other tu-

ples for timet from p or any smaller id process is before the point of addi-

tion, and any tuples for timet from a larger id process is after the point. We

first check thattocast′ is enabled iny. SincexRTOBy andbcast is enabled

in x, ¬y(failedp).Also, x(outgoing−p) = y(to send−p) andx(outgoing+
p) =

y(to send+
p), meaning the same message is transmitted. Hence,tocast′ is en-

abled.

Now we check thatx′RTOBy′ holds. This is easy for property 5 since the heads

of two corresponding equal queues will be removed to leave new corresponding

equal queues. The only other property to check is 6. We must check that the

tags in the tuple added topbcastq(p) are the largest in the set, ordering the tuple

after previously sent tuples byp. This is ensured through the fact thatx satisfies

137

property 2(d) ofL2
TOBimpl. By our condition on the way in which the tuple is

added tosent, we know that order is preserved between different senders.

3. Say thatx ∈ QTOBimpl, y ∈ QTOBspec, andxRTOBy. Let α be an execution fragment

of TOBimplconsisting of one closed trajectory, withα.fstate = x.

We must show that there is a closed execution fragmentβ of TOBspecwith

β.fstate = y, trace(β) = trace(α), andα.lstateRTOBβ.lstate.

Let p1 be the first id in P , p2 be the second, etc. Let〈m1, u1, q1, t1〉,
〈m2, u2, q2, t2〉, · · · 〈mn, un, qn, tn〉 be they(sent) prefix containing all tuples with

ti ≤ α.lstate(now) − d.

Then β is the execution fragmentτ1 a1
p1

τ1,1 a1
p2

τ1,2 · · · a1
p|P |

τ2 a2
p1

· · ·
an

p|P |
τn+1, where β.ltime = α.ltime, ti + d = τi.lstate(now), and ai

pj
∈

{torcv′(mi, ui)pj
, drop(pj)}, for all i from 1 to n and j in 1 to |P |. We selectai

pj

to be torcv′ if ∃〈v, t〉 ∈ τi.updates(pj) : t ≤ now − d ∧ ∀〈v′, t′〉 ∈ updates(p) :

(t′ ≥ t ⇒ v′ ∈ nbrs+(u)), anddrop otherwise.

In other words,β is an execution fragment wheretorcv′p anddrop events are added

in order of process id for each message in thesent queue that is exactlyd old. In

order to satisfy properties 2, 6 and 7 of the relationRTOB, our construction ensures

that in the last state ofβ no actiontorcv′ or drop is enabled.

It is obvious that the traces ofα and β are the same. It is also easy to

see that by construction, eachtorcv′ and drop action will be enabled, and that

α.lstateRTOBβ.lstate.

The following theorem concludes that our implementation ofthe totally ordered broad-

cast service implementsTOBspec.

Theorem 9.16 TOBimpl ≤ TOBspec.

Proof: This follows directly from the previous lemma and Corollary2.23.

138

One useful observation about the proof thatRTOB is a simulation relation is the fol-

lowing, which says that, given any execution fragmentα of TOBimpl started in the legal

setLTOBimpl and a statey of TOBspec that is related to the first state ofα, there is an

execution fragment ofTOBspec starting in statey that not only has the same trace asα but

also has the sameRW andFail-related projections as those ofα (This is very useful later,

when reasoning about theFail-transformed composition of the totally ordered broadcast

implementation pieces with pieces of other services):

Lemma 9.17 Let α be in frags
LTOBimpl

TOBImpl and y be a state inreachableTOBspec such that

α.fstateRTOBy. Then there existsα′ in fragsTOBspec such that:

1. α′.fstate = y.

2. trace(α) = trace(α′).

3. If α is a closed execution fragment, thenα.lstateRTOBα′.lstate.

4. α⌈(ARW , VRW) = α′⌈(ARW , VRW).

5. For eachp ∈ P , α⌈({failp, restartp}, {failedp}) = α′⌈({failp, restartp}, {failedp}).

The first three properties of the lemma follow from the fact thatRTOB is a simulation rela-

tion, while the last two properties follow from the construction of the matching execution

of TOBspec in the proof thatRTOB is a simulation relation, which preserves the actions

and variables ofRW and each of the processes’Fail-transform variables and actions.

Now, as mentioned previously, we tie the legal statesLTOBimpl to reachable states of

TOBspec. In particular, we show that each state inLTOBimpl is related to some reachable

state ofTOBspec.

Lemma 9.18 For any statex ∈ LTOBimpl, there exists a statey ∈ reachableTOBspec where

xRTOBy.

Proof: We prove this lemma by showing how, given a statex ∈ LTOBimpl, we can con-

struct a statey of TOBspecsuch thatxRTOBy. We do this by describing the state of

the components of statey. We then check that the constructed statey is one such that

y ∈ InvTOBspec andxRTOBy holds.

139

1. y(RW) = x(RW).

This says that theRW component is the same in bothx andy.

2. For eachp ∈ P : y(TObcast.updates(p)) = {〈region(l, t)〉 | 〈l, t〉 ∈
x(RW.updates(p))}.

This says that theupdates should correspond betweenRW andTObcast.

3. y(TObcast.now) = x(RW.now), andy(procs) = P .

This says that the realtime should correspond betweenTObcast andRW and that

procs should always be full.

4. For eachp ∈ P , x(failedp) = y(failedp).

This says that the fail status of the processes should match between the states.

5. For eachp ∈ P , if x(failedp) theny(TOBFilterp) andy(TOBDelayp) are arbi-

trary.

This says that for failed processes the state of theTOBFilter andTOBDelay com-

ponents are arbitrary.

6. For eachp ∈ P , if ¬x(failedp) and x(updatesp) = ∅, then: ¬y(updatedp),

y(to send−p) = y(to send+
p) = y(to rcvp) = λ, andy(rtimerp) = ⊥.

This says that if a process is not failed and has an emptyupdates in x, then in state

y updated is false,rtimer is ⊥, and theto send−, to send+, andto rcv queues are

empty.

7. For eachp ∈ P , if ¬x(failedp) andx(updatesp) 6= ∅, then:

• y(updatedp).

This says that if a process is not failed andupdates is not empty inx, then

updated is true for the process iny.

• y(to send−p) = x(outgoing−p) andy(to send+
p) = x(outgoing+

p).

This says that if a process is not failed andupdates is not empty inx, then the

process’soutgoing queues correspond to their counterpartto send queues iny.

140

• Let t = min({t∗ ∈ R
≥0 | ∃u ∈ U : 〈u, t∗〉 ∈ x(updatesp)}).

Theny(rtimerp) = min(d, x(now) − t).

This says that if a process is not failed andupdates is not empty inx, then

rtimer in y is as old as the first pair in the process’supdates in statex, or both

are at leastd old.

• Let 〈m1, p1, t, f1, b1, u1〉, · · · , 〈mn, pn, t, fn, bn, un〉 be the subset of

x(incomingp) with t = x(now) − d, ordered by〈pi, fi, bi〉.
Theny(to rcvp) = 〈m1, u1〉, · · · , 〈mn, un〉.
This is the same as property 7 of Definition 9.14.

8. Let〈〈m1, p1, t1, f1, b1, u1〉, t1, P1〉, · · · , 〈〈mn, pn, tn, fn, bn, un〉, tn, Pn〉 be the subset

of
⋃

p∈P x(pbcastq(p)) with ti > x(now) − d, ordered by〈ti, pi, fi, bi〉.
Theny(sent) = 〈m1, u1, p1, t1〉, · · · , 〈mn, un, pn, tn〉.
This is the same as property 6 of Definition 9.14.

9. Let〈〈m1, p1, t, f1, b1, u1〉, t, P1〉, · · · , 〈〈mn, pn, t, fn, bn, un〉, tn, Pn〉 be the subset of
⋃

p∈P x(pbcastq(p)) with t = x(now) − d, ordered by〈pi, fi, bi〉.
Theny(oldsent) = 〈m1, u1, p1, t〉, · · · , 〈mn, un, pn, t〉.
This says thatoldsent in y is calculated fromd-old pbcastq messages.

Next we show thaty ∈ InvTOBspec. We check each property ofInvTOBspec (Definition

9.1) in statey. Properties 1-5 and 7(a) ofInvTOBspec are trivial to check. Property 6

of InvTOBspec holds in y because statex satisfies properties 2(a) and 2(b) ofL2
TOBimpl

and because of properties 8 and 9 in the construction above. To see this, notice that by

properties 8 and 9 above, the concatenation ofoldsent andsent in statey is the sequence

of pbcastq messages in statex with timestamps up tod old, in order of the timestamp,

sender, attached Boolean, and sequence number of the message tuple. Properties 2(a) and

2(b) ofL2
TOBimpl guarantee that those tuples in statex satisfy the region ordering property

described in property 6 ofInvTOBspec.

For the remainder of property 7 ofInvTOBspec, we provide pointers to the properties

of statex and the construction that imply the property. Property 7(b)of InvTOBspec holds

in y because statex satisfies property 3 ofL3
TOBimpl and because of the third bullet in

141

property 7 in the construction above. Property 7(c) ofInvTOBspec holds iny because state

x satisfies property 2(d) ofL1
TOBimpl and because of property 7 in the construction above.

Property 7(d) ofInvTOBspec holds iny because statex satisfies property 2(c) ofL3
TOBimpl

and because of properties 7-9 in the construction above.

All that remains is to show thatxRTOBy. We check each property ofRTOB. Properties

1-3, 6, and 7 are trivial to check. Property 4 ofRTOB holds because of property 6 and the

third bullet of property 7 in the construction above. Property 5 of RTOB holds because of

the second bullet of property 7 in the construction above.

By Theorem 9.4, we know thatInvTOBspec = reachableTOBspec, and we conclude that

for any statex in LTOBimpl, there is some reachable statey of TOBspecsuch thatxRTOBy.

Now we can pull together the results in this section to finallyconclude that

Start(TOBimpl, LTOBimpl) implementsStart(TOBspec, reachableTOBspec).

Lemma 9.19 Start(TOBimpl, LTOBimpl) ≤ Start(TOBspec, reachableTOBspec).

Proof: By Lemma 9.15,RTOB is a simulation relation fromTOBimpl to TOBspec. By

Lemma 9.18, we know that for each statex ∈ LTOBimpl, there is some reachable state

y of TOBspecsuch thatxRTOBy. Hence, by Corollary 2.22,tracefrags
LTOBimpl

TOBimpl ⊆
tracefrags

reachableTOBspec

TOBspec , which implies the result.

9.3.3 Self-stabilization

We’ve seen thatLTOBimpl is a legal set forTOBimpl, and that each state inLTOBimpl is

related to a reachable state ofTOBspec. Here we show thatTOBimplerself-stabilizes to

LTOBimpl relative toR(RW‖Pbcast) (Theorem 9.24), meaning that if certain program por-

tions of the implementation are started in an arbitrary state and run withR(RW‖Pbcast),

the resulting execution eventually gets into a state inLTOBimpl. This is done in phases,

corresponding to each legal setL1
TOBimpl, L2

TOBimpl, L3
TOBimpl, and finallyLTOBimpl.

After we show thatTOBimplerself-stabilizes toLTOBimpl relative toR(RW‖Pbcast),

we use the fact thatRTOB (see Definition 9.14) is a simulation relation that relates states

142

in LTOBimpl with reachable states ofTOBspec to conclude that after an execution ofTO-

Bimplhas stabilized, the trace fragment from the point of stabilization withbcast andbrcv

actions hidden is the suffix of some trace ofTOBspec(see Theorem 9.25).

The first lemma describes the first phase of stabilization, for legal setL1
TOBimpl:

Lemma 9.20 Let t1tob be anyt such thatt > ǫsample.

TOBimpler self-stabilizes in timet1tob to L1
TOBimpl relative toR(RW‖Pbcast).

Proof: By definition of self-stabilization, we must show that

execsU(TOBimpler)‖R(RW‖Pbcast) stabilizes in timet1tob to frags
L1

TOBimpl

TOBimpler‖R(RW‖Pbcast).

By Corollary 3.11, the setfrags
L1

TOBimpl

TOBimpler‖R(RW‖Pbcast) is the same asfrags
L1

TOBimpl

TOBimpl .

By Lemma 3.21, we just need to show that for any length-t1tob prefix α of an element of

execsU(TOBimpler)‖R(RW‖Pbcast), α.lstate is in L1
TOBimpl. We examine each property of

L1
TOBimpl.

By Theorem 6.4, since the state ofRW‖Pbcastin the first state ofα is a reachable state

of RW‖Pbcast, we know that property 1 ofL1
TOBimpl holds in each state ofα.

By the proof of Lemma 9.6, we know that for eachp ∈ P , if property 2 ofL1
TOBimpl

holds forp in some state, it continues to hold forp in subsequent states. Consider the first

GPSupdatep in α for somep and the statex in α immediately after the event. It is easy to

see that property 2 holds forp in statex. Sinceα.ltime = t1tob andt1tob > ǫsample, we know

that for eachp ∈ P at least oneGPSupdatep action occurs inα. Hence, for eachp ∈ P ,

property 2 ofL1
TOBimpl holds atα.lstate.

We conclude thatα.lstate is in L1
TOBimpl.

Lemma 9.21 Let t2tob be anyt such thatt > 0.

frags
L1

TOBimpl

TOBimpl stabilizes in timet2tob to frags
L2

TOBimpl

TOBimpl .

Proof: By Lemma 3.21, we just need to show that for any length-t2tob prefixα of an element

of frags
L1

TOBimpl

TOBimpl , α.lstate is in L2
TOBimpl. We examine each property ofL2

TOBimpl.

By Lemma 9.6, since the first state ofα is in L1
TOBimpl, we know that property 1 of

L2
TOBimpl holds in each state ofα.

Notice that there must be some statex of α such thatx(now) = α.fstate(now) and

all actions that occur afterx in α occur at a state withnow > x(now). Consider any

143

statey in α such thaty occurs a non-0 amount of time afterα.fstate and no actions occur

betweenx andy. This means that there are no tuples iny(pbcastq(p)) that were sent at the

time y(now) and no tuples iny(outgoing−p) or y(outgoing+
p), meaning that property 2 is

trivially satisfied. This allows us to conclude that property 2 of L2
TOBimpl holds aty and

hence, by Lemma 9.8, atα.lstate.

We conclude thatα.lstate is in L2
TOBimpl.

Lemma 9.22 Let t3tob be anyt such thatt > d.

frags
L2

TOBimpl

TOBimpl stabilizes in timet3tob to frags
L3

TOBimpl

TOBimpl .

Proof: By Lemma 3.21, we just need to show that for any length-t3tob prefixα of an element

of frags
L2

TOBimpl

TOBimpl , α.lstate is in L3
TOBimpl. We examine each property ofL3

TOBimpl.

By Lemma 9.8, since the first state ofα is in L2
TOBimpl, we know that property 1 of

L3
TOBimpl holds in each state ofα.

For property 2, based on the proof of Lemma 9.10, the propertycan be considered as

a conjunction of separate statements, one for each possibletime. It is also not difficult to

see that for any statex in α and timet larger thanα.fstate(now), property 2 holds for

messages sent at timet. Hence, in order to ensure that property 2 as a whole holds at

stateα.lstate, we need that property 2 holds atα.lstate for all times up tod time before

α.lstate(now). This is satisfied becauseα.ltime > d.

For property 3, we know that inα.fstate, any non-failed process with non-empty

updatesp has its latest update inupdatesp correspond to its latest update atRW . After

d time passes, that particular latest update satisfies the requirements of the〈u, t〉 in prop-

erty 3, if the process has not failed in the meantime. If the process has been failed in the

meantime or was failed inα.fstate, then it will have anupdatesp set consistent with the

updates ofRW starting from after it awakens.

We conclude thatα.lstate is in L3
TOBimpl.

Lemma 9.23 frags
L3

TOBimpl

TOBimpl stabilizes in timed to frags
LTOBimpl

TOBimpl .

Proof: By Lemma 3.21, we just need to show that for any length-d prefixα of an element

of frags
L3

TOBimpl

TOBimpl , α.lstate is in LTOBimpl. We examine each property ofLTOBimpl.

144

By Lemma 9.10, since the first state ofα is in L3
TOBimpl, we know that property 1 of

LTOBimpl holds in each state ofα.

It is plain that for any state inα, any new tuple added to anincoming queue for a pro-

cess will satisfy property 2 ofLTOBimpl. Consider anyp ∈ P and tuple〈m, s, t, f, b, r〉 ∈
incomingp in α.fstate. By property 2(b) ofL1

TOBimpl, we know thatt < α.fstate(clockp).

By our stopping conditions on line 35, this tuple will be removed whenclockp = t + d.

Hence, the tuple will be removed in less thand time. This holds for any processp and any

tuple inα.fstate(incomingp). This implies that inα.lstate, property 2 will hold.

We conclude thatα.lstate is in LTOBimpl.

Theorem 9.24 Let ttob be anyt such thatt > 2d + ǫsample.

TOBimpler self-stabilizes in timettob to LTOBimpl relative toR(RW‖Pbcast).

Proof: We must show thatexecsU(TOBimpler)‖R(RW‖Pbcast) stabilizes in timettob to

frags
LTOBimpl

TOBimpler‖R(RW‖Pbcast). By Corollary 3.11,frags
LTOBimpl

TOBimpler‖R(RW‖Pbcast) is the same

asfrags
LTOBimpl

TOBimpl . The result follows from the application of Lemma 3.7 to the four lem-

mas (Lemmas 9.20-9.23) above. Lett1tob = ǫsample + (ttob − 2d − ǫsample)/3, t2tob =

(ttob − 2d − ǫsample)/3, and t3tob = d + (ttob − 2d − ǫsample)/3. (These terms are cho-

sen so as to satisfy the constraints thatt1tob > ǫsample, t2tob > 0, andt3tob > d, as well as the

constraint thatt1tob + t2tob + t3tob + d = ttob.)

Let B0 beexecsU(TOBimpler)‖R(RW‖Pbcast), B1 befrags
L1

TOBimpl

TOBimpl , B2 befrags
L2

TOBimpl

TOBimpl ,

B3 be frags
L3

TOBimpl

TOBimpl , and B4 be frags
LTOBimpl

TOBimpl in Lemma 3.7. Lett1 be t1tob, t2 be

t2tob, t3 be t3tob, andt4 be d in Lemma 3.7. Then by Lemma 3.7 and Lemmas 9.20-9.23,

execsU(TOBimpler)‖R(RW‖Pbcast) stabilizes in timet1tob+t2tob+t3tob+d = ttob tofrags
LTOBimpl

TOBimpl .

We conclude thatTOBimpler self-stabilizes in timettob to LTOBimpl relative to

R(RW‖Pbcast).

As promised, we can now conclude that an execution ofTOBimpleventually reaches

a point such that the trace of the execution from that point onis the same as the suffix of

some trace of the specification.

Theorem 9.25 Let ttob be anyt such thatt > 2d + ǫsample.

tracesActHide(HTOimpl,U(TOBimpler)‖R(RW‖Pbcast)) stabilizes in timettob to tracesR(TOBspec).

145

Proof: By Lemma 9.19, we know thattracefrags
LTOBimpl

TOBimpl ⊆ tracefrags
reachableTOBspec

TOBspec .

By Theorem 9.24, we know that execsU(TOBimpler)‖R(RW‖Pbcast) stabi-

lizes in time ttob to frags
LTOBimpl

TOBimpler‖R(RW‖Pbcast). By Lemma 3.10,

frags
LTOBimpl

TOBimpler‖R(RW‖Pbcast) is the same asfrags
LTOBimpl

TOBimpl . By Lemma 3.5, this

implies that tracesActHide(HTOimpl,U(TOBimpler)‖R(RW‖Pbcast)) stabilizes in time ttob to

tracefrags
LTOBimpl

TOBimpl .

Sincetracefrags
LTOBimpl

TOBimpl ⊆ tracefrags
reachableTOBspec

TOBspec , we conclude that the set of

traces ofActHide(HTOimpl, U(TOBimpler)‖R(RW‖Pbcast)) stabilizes in timettob to

tracefrags
reachableTOBspec

TOBspec , which is the same astracesR(TOBspec).

146

Chapter 10

Leader election service

In order to simplify the implementation of the VSA layer, it is useful to have access to a

leader election service that allows nodes in the same regionto periodically compete to be

named sole leader of the region for some time. In this chapter, we describe the specifica-

tion and implementation for a stabilizing round-based leader election service used in our

emulator implementation. We then show that our implementation is correct and that it is

self-stabilizing.

10.1 LeadSpec: Specification of the leader election service

We describe the specification of our leader election serviceas an algorithm in two parts:

LeadMain and LeadClp, p ∈ P (see Figure 10-1). The specification of the leader

election service is thenLeadSpec, which is equal toLeadMain‖RW composed with

Fail(LeadClp) for all p ∈ P , with certain actions hidden.

Notice that theLeadCl machines are for individual processes. In this thesis we arein-

terested in consideringFail -transformed mobile nodes. Separating theLeadCl machines

from LeadMainallows us toFail-transform portions ofLeadSpec. As with TOBDelay

andTOBFilter in Chapter 9, separating the leader election service into aFail-oblivious

central component andFail-transforming individual components makes it easier to useFail-

transform theory from Chapter 5.

Our leader election service is a round-based service that collects information from po-

147

.

.

.

LeadMain

Fail

Fail

failp, restartp

failq, restartq

LeadClp

LeadClq

GPSupdate(l, now)p

RW

GPSupdate(l′, now)q

preferp

leaderp

preferq

leaderq

prefer’(f)p

leader’(f)p

prefer’(f)q

leader’(f)q

Figure 10-1: Leader election service. ALeadCl for a client performs aprefer′(f) to in-
dicate that its client should be considered byLeadMainas the leader of its client’s region.
LeadMaindetermines the winners of the leader competition for each region and communi-
cates the results to eachLeadCl. A winning process’sLeadClmight then produce aleader
output to its client, indicating the client is a leader.

tential leaders at the beginning of each round, determines up to one leader per region, and

performsleader outputs for those leaders that remain alive and in their regions up to when

the round is exactlyd old. We assume that rounds are of lengthtslice, wheretslice > 2d+ ǫ.

Rounds begin on multiples oftslice. A new leader competition for each region begins fresh

(remembering none of the prior round’s leaders or nominations) at the start of each round.

This simple round-based structure, with little information remembered from one round to

the next, is helpful when discussing stabilization in Section 10.3.3.

LeadMainis the central decision-making portion of the leader election service, collect-

ing nominations from processes for leadership, and determining leaders for each region

from these nominations.LeadClp sits betweenLeadMainand a processp. At the start of

each round, it communicates withLeadMainto nominate its process as the current round’s

leader for its region by providing Boolean priority inputs to LeadMain, letting it know

that the process it represents is an alive process with knowledge of its region, and hence

competing for leadership. If it received an indication fromits process that its entry should

be favored, the Boolean it communicates is true. Otherwise,the Boolean is false. These

Boolean priorities are later used by the emulation algorithm (Section 11.2) to communicate

148

1 Signature:
Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0, p∈ P

3 Input prefer′(val)p , val∈ Bool, p∈ P
Internal reset

5 Output leader′(val)p , val∈ Bool, p∈ P

7 State:
analognow: R

≥0, initially 0
9 reg: P→ U ∪ {⊥}, initially ⊥ for all p ∈ P

pref: P→ Bool, initially false for allp ∈ P
11 cand: U→ (P×Bool) ∪ {⊥}, initially ⊥ for all u ∈ U

serviced: 2P , initially ∅
13

Trajectories:
15 evolve

d(now) = 1
17 stop when

(nowmod tslice = dphys ∧ serviced6= P)
19 ∨ (nowmod tslice = dphys+2ǫ ∧ serviced6= ∅)

21 Transitions:
Input GPSupdate(l, t)p

23 Effect:
reg(p)← region(l)

26Input prefer′(b)p

Effect:
28pref(p)← b

if ∃q∈ P: 〈q, b〉 = cand(reg(p)) then
30cand(reg(p))← choose{cand(reg(p)), 〈p, b〉}

else ifb∨ cand(reg(p)) = ⊥then
32cand(reg(p))← 〈p, b〉

34Output leader′(val)p

Precondition:
36nowmod tslice ∈ (0, dphys] ∧ p /∈ serviced

val⇔ 〈p, pref(p)〉 = cand(reg(p))
38Effect:

serviced← serviced∪ {p}
40

Internal reset
42Precondition:

nowmod tslice > dphys+ǫ ∧ serviced6= ∅
44Effect:

for all u∈ U
46cand(u)←⊥

for all p∈ P
48pref(p)← false

serviced← ∅

Figure 10-2:LeadMain, electing a leader.

whether the submitting process is currently emulating its local region’s VSA.

LeadMaintakes Boolean priority inputs at the beginning of the round from theLeadCls,

and each time such an input occurs,LeadMain decides whether to replace whoever is the

current winner for the input process’s region with the new process, always selecting a

process that submits a true value over one that submits a false value.

By the time the round isd old, LeadMainsubmits an input to eachLeadClp saying

whether its processp is the round’s leader for its region. If the input says it is and LeadClp

has a record of participating in the latest leader competition then it performs an output to

let its process know that it is the leader.

We describe theLeadMain andLeadCl components in more detail below.

10.1.1 LeadMain

Here we provide a description ofLeadMain(Figure 10-2), the central leader-deciding ser-

vice. The interface ofLeadMainconsists of three kinds of actions:

• Input GPSupdate(l, t)p, l ∈ R, t ∈ R
≥0, p ∈ P : This input indicates that a process

p is currently located at positionl.

149

• Input prefer′(val)p, val ∈ Bool, p ∈ P : This input indicates that processp is

proposing itself as a candidate to be leader of its current region. The Booleanval

indicates whether the process should have priority in leader selection. (Later, we

use this mechanism to give priority to processes in a region that are participating in

emulation of their region’s VSA (Section 11.2).)

• Output leader′(val)p, val ∈ Bool, p ∈ P : This output indicates to processp

whether or not it was chosen as the leader for its current region. A trueval indi-

cates yes, while a falseval indicates no.

The state variables are:

• now : R
≥0: This variable is the real-time. It is initially 0.

• reg(p) : U ∪ {⊥}, p ∈ P : This variable is the last reported region for each process,

initially ⊥. For eachGPSupdate(l, t)p input, the valueregion(l) is stored inreg(p).

• pref(p) : Bool, p ∈ P : This variable is the priority for the processp. For each

prefer′(val)p input, the valueval is stored inpref(p).

• cand(u) : (P × Bool) ∪ {⊥}, u ∈ U : This variable communicates who the current

leader of the region is. It is initially⊥, but when aprefer′(b)p occurs whenreg(p) =

u, it is updated to〈p, b〉 if cand(u) was⊥ or b is true and the current pair is false. If

b matches the Boolean of a pair already incand(u) thencand(u) may or may not be

updated to〈p, b〉.

• services : 2P : This is a bookkeeping variable used byLeadMainto keep track of the

processes for which aprefer′ output has not yet occurred.

Whenever aprefer′(b)p occurs (line 26) at the start of a round,LeadMainstoresb as

pref(p) (line 28). Then it checks to see ifp’s region has a current candidate for leader. If

not or if b is true and the current candidate tuple is false, the tuple〈p, b〉 is stored ascand(u)

(lines 31-32). Ifb matches the Boolean in the current candidate tuple, thenLeadMain

nondeterministically decides whether or not to replace thecurrent candidate tuple with

〈p, b〉 (lines 29-30).

150

1 Signature:
Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

3 Input preferp
Input leader′(val)p, val∈ Bool

5 Output prefer′(val)p , val∈ Bool
Output leaderp

7

State:
9 analogclock∈ R

≥0∪ {⊥}, initially ⊥
reg: U ∪ {⊥}, initially ⊥

11 pref, participated: Bool, initially false

13 Trajectories:
evolve

15 if clock 6= ⊥then
d(clock) = 1

17 else constantclock
stop when

19 (clockmod tslice = 0∧¬ participated)
∨ (clockmod tslice = dphys + ǫ ∧participated)

21

Transitions:
23 Input GPSupdate(l, t)p

Effect:
25 if reg 6= region(l) ∨ clock 6= t then

reg← region(l)
27 clock← t

pref, participated← false

30Input preferp
Effect:

32if clockmod tslice = 0 then
pref← true

34participated← false

36Output prefer′(val)p

Precondition:
38clockmod tslice = 0∧¬ participated∧ val = pref

Effect:
40participated← true

42Input leader′(val)p

Effect:
44if clock 6=⊥∧ (¬ val∨¬ participated) then

pref, participated← false
46

Output leaderp
48Precondition:

clockmod tslice = dphys + ǫ ∧ participated
50Effect:

pref, participated← false

Figure 10-3:LeadClp, client portion for electing a leader.

After some non-zero amount of time into the round and no laterthan dphys into a

round,LeadMainservices processes. For each processp not in serviced, it performs a

leader′(val)p output, whereval is true exactly whencand(reg(p)) is equal to the tuple

〈p, pref(p)〉 (lines 34-37). It then updatesserviced to containp, indicating that it has been

serviced (line 39).

After more thand into a round,LeadMainperforms areset, initializing pref, cand,

andserviced for the next leader election round (lines 41-49).

10.1.2 LeadCl

Here we provide a description ofLeadClp. This piece communicates high priorities for

leader election from a process toLeadMainand acts as an intermediary for communicating

leadership decisions fromLeadMainto a process. This piece is also the portion ofLeadSpec

that allows us to model the impact of failures. For example,LeadMainmay choose as leader

a process that has failed since the beginning of a round;LeadClprevents that process from

151

becoming a leader.

Its interface consists of five kinds of actions:

• Input GPSupdate(l, t)p, l ∈ R, t ∈ R
≥0, p ∈ P : This input indicates that a process

p is currently located at positionl.

• Input preferp, p ∈ P : This input indicates that the process is to have priority in

leader election. (As mentioned earlier, this is used in Section 11.2 by processes

currently emulating their local VSA to indicate that they should be chosen as leader

over processes that are not yet participating in VSA emulation.)

• Input leader′(val)p, val ∈ Bool, p ∈ P : This input indicates whether or notLead-

Main has chosen this process as the winning candidate for leader for p’s current

region.

• Output prefer′(val)p, val ∈ Bool, p ∈ P : This output is the process putting itself

up for consideration as leader. The valueval is true if aprefer has occurred in this

round at the process.

• Output leaderp, p ∈ P : This output communicates that a process is the leader for

its current region.

Its state variables are the following:

• clock : R
≥0 ∪ {⊥}: This is the process’s local clock. It is initially⊥, but is set to the

system’s real-time when aGPSupdate occurs at the process.

• reg : U ∪ {⊥}: This is the last reported region of the process since initialization.

• pref : Bool: This value indicates priority of the process. If aprefer occurs at the

beginning of a round, this value is set to true and triggers aprefer′ output. Otherwise,

this value is false.

• participated : Bool: This indicates whether the process has participated in itscur-

rent region’s leader election via aprefer′ action. It can be reset after it has partici-

pated if aprefer input occurs.

152

At the start of a round,LeadClp performs aprefer′(pref)p output, settingparticipated

to true so as to prevent additional such outputs (lines 36-40). It may also receive apreferp

input (indicating that its client wants processp to have higher priority in the leader election

competition), resulting in the setting ofpref to true andparticipated to false, triggering

a(nother)prefer′ output (lines 30-34). Whenever aGPSupdate occurs at the process that

changes its region or clock,pref andparticipated are set to false, preventing the process

from later performing aleader output in the region it left (line 28).

Later, if it receives aleader′(val)p input (line 42), ifval is false (meaning it was not

chosen as leader for its region) or ifclock = ⊥ (meaning it has restarted and has not yet

received aGPSupdate) or participated is false (meaning it has moved or restarted since

the beginning of the round), thenLeadClp setspref andparticipated to false, initializing

those values for the next round (lines 44-45). Otherwise, itdoes nothing.

If, at exactlyd into the round,participated is still true (meaning that it did not receive

a leader′ input reporting it was not leader for its region) thenLeadClp performs aleaderp

output (lines 47-49), and initializespref andparticipated for the next round (line 51).

10.1.3 LeadSpec

As mentioned earlier, the full specification,LeadSpec, for the leader election service is

equal to the composition of the central leader-choosing service andRW composed with

theFail-transformedLeadCl portion for each process, with certain actions hidden:

Definition 10.1 LetHLeadspec be{leader′(val)p, prefer
′(val)p | val ∈ Bool, p ∈ P}. Then

defineLeadSpec to beActHide(HLeadspec,
∏

p∈P Fail(LeadClp)‖LeadMain‖RW).

Legal states ofLeadSpec

Here we characterize a set of legal states forLeadSpec by providing a list of properties

describing those states. We then show that the set of states is legal.

Properties 1, 2, and 5 ensure that the state ofRW is reachable and consistent with the

state ofLeadMain. Properties 3 and 4 describe some basic facts about the stateof LeadMain

153

based on the age of a round. The remaining properties describe facts about states based on

the value of eachLeadCl.

Definition 10.2 DefineInvLeadSpec to be the set of statesx of LeadSpec such that the

following properties hold:

1. x⌈XRW ∈ InvRW .

This says that theRW components are in a reachable state.

2. RW.now = LeadMain.now ∧ RW.reg = LeadMain.reg.

This says that the clock time and region mapping is the same betweenRW and

LeadMain.

3. RW.now mod tslice > dphys + 2ǫ

⇒ (serviced = ∅ ∧ ∀u ∈ U : cand(u) = ⊥ ∧ ∀p ∈ P : ¬pref(p)).

This says that if the current round is greater thandphys + 2ǫ old, thenLeadMain’s

serviced, cand, andpref variables are initialized.

4. RW.now mod tslice = 0 ⇒ serviced = ∅ andRW.now mod tslice ∈ (dphys, d] ⇒
serviced = P .

This says that when a round starts,serviced must be empty. Also,when the round is

more thandphys old and up tod old, all processes must have been serviced.

5. ∀u ∈ U : ∀p ∈ P : ∀b ∈ Bool : ∀t = tslice⌊RW.now/tslice⌋ : cand(u) = 〈p, b〉 ⇒
u ∈ {RW.reg−(p, t), RW.reg+(p, t)}.

This says that ifcand(u) is set to a pair containing some process, then that process

was in regionu at the start of the current round.

6. ∀p ∈ P : ¬failedp ∧ clockp 6= ⊥:

(a) regp = RW.reg(p) 6= ⊥∧ clockp = RW.now.

This says that an alive process withclockp 6= ⊥ has areg variable and time

corresponding to its region inRW and the time atRW .

154

(b) prefp ⇒ (participatedp ∨ clock mod tslice = 0).

This says that an alive process withclockp 6= ⊥ andprefp set to true either has

a participated variable set to true, or the round has just started.

7. ∀p ∈ P : ¬failedp ∧ clockp 6= ⊥∧ participatedp:

(a) clockp mod tslice ≤ d.

This says if there is an alive process withclockp 6= ⊥ andparticipatedp, then

the round is at mostd old.

(b) ∀t ≥ tslice⌊clockp/tslice⌋ : RW.reg+(p, t) = regp.

This says that an alive process withclockp 6= ⊥ andparticipatedp has been in

its current region since the time at the start of the current round.

(c) cand(reg(p)) 6= ⊥∧ (prefp ⇒ ∃q ∈ P : cand(reg(p)) = 〈q, true〉).
This says that if there is an alive process withclockp 6= ⊥ andparticipatedp,

then its current region has a candidate for leader. Ifprefp is true in addition,

then the process’s current region has a candidate for leaderthat is tagged with

“true” value.

(d) pref(p) = prefp.

This says that if a process is alive and hasclockp 6= ⊥ and participatedp is

true, then its localprefp value is the same preference value as that recorded in

LeadMain.

(e) p /∈ serviced ∨ (RW.now mod tslice > 0 ∧ cand(reg(p)) = 〈p, prefp〉).
This says that an alive process withclockp 6= ⊥ and participatedp equal to

true is either not already serviced inLeadMain or the round is older than 0

and the process’s current region has a candidate leader pairthat is equal top

paired withprefp.

We now show that the set of properties describingInvLeadSpec is a legal set for

LeadSpec. (Together with the fact that the initial state of the systemis in InvLeadSpec,

this means thatInvLeadSpec is a set of invariant states.)

Lemma 10.3 InvLeadSpec is a legal set forLeadSpec.

155

Proof: Let x be any state inInvLeadSpec. By Definition 3.12 of a legal set, we must verify

two things for statex:

• For each statex′ of LeadSpec and actiona of LeadSpec such that(x, a, x′) is in the

set of discrete transitions ofLeadSpec, statex′ is in InvLeadSpec.

• For each statex′ and closed trajectoryτ of LeadSpec such thatτ.fstate = x and

τ.lstate = x′, statex′ is in InvLeadSpec.

We previously showed that property 1 always holds. This leaves the remaining properties

to verify.

For the first cast of the legal set definition, we check that if the properties hold in some

statex and some action is performed that leads to statex′, then the properties hold in state

x′. We break this down by action:

• failp, restartp, reset, preferp, leaderp: The properties are trivial to verify with these

actions.

• GPSupdate(l, t)p: The only relevant properties are 2, 6, and 7. The propertiesare

trivial to check.

• prefer′(val)p: The only relevant properties are 5 and 7.

For property 5, consider ifcand(regp) is updated as a result of the action. If not,

then property 5 still holds since it did in statex. If cand(regp) is updated, then it is

updated to〈p, val〉. Since property 7(b) held in statex, then property 5 holds inx′.

For property 7, we know thatx′(participatedp) is true. Also, properties 7(a), 7(b),

7(d), and 7(e) obviously still hold. For the first part of 7(c), we need to check that

cand(reg(p)) 6= ⊥. If prefer′ did not updatecand(reg(p)), it must have been that

cand(reg(p)) was not equal to⊥. If it did updatecand(reg(p)), it updated it to

〈p, val〉. Either way, the first part of 7(c) holds. For the second part of 7(c), we need

to check that ifx′(prefp) is true thencand(reg(p)) is set to some tuple with a true

boolean. Ifprefer′ did not updatecand(reg(p)), it must have been thatcand(reg(p))

was already set to a tuple with a true tag sinceval = prefp and the post-state only

156

fails to adopt a true tag if it already has one. Ifprefer′ did updatecand(reg(p)) then

it was updated to〈p, true〉, satisfying the property.

• leader′(val)p: The only interesting property to check is 7(e). Consider the two cases

for val. If val is false, thenx′(participatedp) does not hold, and we are done. Ifval

is true andx(participatedp) is false, thenx′(participatedp) is also false, and we are

again done. Ifval is true andx(participatedp) is true, thenx′(participatedp) is also

true andp is in serviced, so we have to verify thatRW.now mod tslice > 0 and

cand(reg(p)) = 〈p, prefp〉. ThatRW.now mod tslice > 0 is easy to see by virtue

of the precondition for the action. To see thatcand(reg(p)) = 〈p, prefp〉, notice

that the precondition for the action implies thatx(cand(reg(p))) = 〈p, x(pref(p))〉.
Sincecand andpref(p) are not updated by the action, we have thatcand(reg(p)) =

〈p, x(pref(p))〉. Since statex satisfies property 7(d), we know thatx(pref(p)) =

x(prefp). Sinceprefp is not changed whenval is true andparticipatedp is true, we

have our result.

For the second case of the legal set definition, we check that for any closed trajectoryτ

starting with a statex where the properties hold and ending in a statex′, the properties hold

in statex′. The most interesting properties to check for this are 3, 6(b), and 7(a). Property 3

is preserved by the stopping conditions on line 19 ofLeadMain, forcing areset action to

occur bydphys +2ǫ into a round. Property 4 is preserved by the stopping conditions on line

18 ofLeadMain, forcing aleader′ output to occcur for any unserviced processes. Property

6(b) is preserved by the stopping conditions on line 19 ofLeadCl, forcing aprefer′ output

to occur to updateparticipated. Property 7(a) is preserved by the stopping conditions on

line 20 ofLeadCl, forcing aleader output to occur to updateparticipated.

Properties ofLeadSpec

In each executionα of LeadSpecsuch thatα.fstate ∈ InvLeadSpec, we can show that the

following properties hold for each regionu ∈ U :

For each statex in α and process idj ∈ P , we defineaware(u, j, x) to be true exactly

when¬x(failedj), x(clockp) 6= ⊥, andx(reg(j)) = u. (This is a way of saying that

157

processj is alive and knows it is in regionu in statex.) Then for eacht ∈ R
≥0:

1. Say thatt mod tslice = 0, α.fstate(RW.now) < t ≤ α.lstate(RW.now), and

there exists somep ∈ P and statex in α wherex(RW.now) = t andaware(u, p, x)

is true. Then there exists someq ∈ P and statex′ in α wherex′(RW.now) =

t, aware(u, q, x′) is true, and there exists a statex∗ after x′ where either (a)

x∗(RW.now) = t+d and there exists aleaderq at statex∗ or (b)x∗(RW.now) ≤ t+d

andaware(u, q, x∗) is not true.

In other words, if there are processes in regionu at the start of the timeslice and none

of those processes fail or leave the region until after the round isd old, then aleaderp

output occurs when the round isd old at one of those processes.

2. For eachp ∈ P , if a leaderp event occurs inα at statex wherex(RW.now) = t and

x(reg(u)) = u then:

(a) t mod tslice = d.

This says thatleader outputs can only occur when a round is exactlyd old.

(b) If α.fstate(RW.now) ≤ t−d, then there exists a statex′ wherex′(RW.now) =

t − d and for all statesx′′ in α from x′ until x, aware(u, p, x′′) is true.

This says that if aleaderp occurs then it must be that processp was aware that

it was in regionu from the beginning of the round until theleader output.

(c) If α.fstate(RW.now) < t − d and there exists a processq andpreferq at time

t − d whereaware(u, q, x′) is true for all statesx′ from thepreferq until some

state whereRW.now > t−d, then there exists somepreferp at a statex′′ where

x′′(RW.now) = t − d andaware(u, p, x∗) is true for allx∗ from x′′ until x.

This says that aleader output will not occur at a process that did not experience

aprefer input at the beginning of the round unless no other process inits region

experienced aprefer at the beginning of the round and remained aware it was in

the region for some non-0 time. In other words, if there exists a higher priority

process that remains aware it is in the region past the very beginning of a round,

then no lower priority process will become leader of the region in that round.

158

Verification of these properties is relatively trivial under the assumption thatα starts in a

state inInvLeadSpec (guaranteeing that appropriate regions and clock times arepresent in

all components and that rounds begin fresh). For property 1,any process that is aware it

is in some region at the start of a round will participate in the leader competition for that

round unless it fails or moves before getting a chance to do so. If no such process fails or

moves from the region until the round is more thand old, thenLeadMain’s cand for the

region will be set to a pair consisting of one of those processids, together with its submitted

Boolean. TheLeadClfor this process will then not reset itsparticipated variable until the

round is exactlyd old, when it performs aleader output.

Property 2(a) holds because of the precondition on line 49 ofLeadCl. Property 2(c)

holds because priority nominations are preferred byLeadMain, and high priority nomi-

nees that manage to fail, restart and be renominated with lowpriority will not receive a

leader′(true) input.

Property 2(b) is the most interesting to show. It holds becauseGPSupdates that indi-

cate a region change orrestarts after a process has failed both resetparticipated to false at

a LeadCl. If participated is set to false after the round is more than 0 old, then it does not

get reset to true again in the round, preventing aleader output at the process from being

enabled if a region change orrestart happens when a round is more than 0 old. This means

that the only situation we need to examine is the one where a process is nominated for more

than one region.We need to verify that in this case, the process will not perform aleader

because it won the competition in the old region. The key observation here is that for this

case to occur, aGPSupdate must have occurred that changed the process’s region. If the

process does not revert to the old region, thenLeadMainwill perform a leader′(false)

for the process, preventing aleader output. If the process does revert to the old region,

it must be when the round is more than 0 old (since at most oneGPSupdate per process

is permitted per real-time value), implying thatparticipated is false, as described in the

discussion of property 1.

159

Signature:
2 Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

Input preferp
4 Input brcv(m)p, m∈ {candidate} ×Bool×P×U

Output bcast(m)p, m∈ {candidate} ×Bool×P×U
6 Output leaderp

8 State:
analogclock: R

≥0∪ {⊥}, current real time, initially⊥
10 reg: U ∪ {⊥}, current region, initially⊥

pref, participated: Bool, initially false
12

Trajectories:
14 evolve

if clock 6= ⊥then
16 d(clock) = 1

else constantclock
18 stop when

(clockmod tslice= 0∧¬ participated∧ reg 6= ⊥)
20 ∨ (clockmod tslice = dphys + ǫ ∧ participated)

22 Transitions:
Input GPSupdate(l, t)p

24 Effect:
if reg6= region(l)∨ clock6= t∨ (t mod tslice> dphys+ǫ∧ participated)

26 ∨ (t mod tslice > 0∧ pref∧¬ participated) then
clock← t

28 reg← region(l)
pref, participated← false

Input preferp
32Effect:

if clockmod tslice = 0 then
34pref← true

participated← false
36

Output bcast(〈candidate, val, p, u〉)p

38Precondition:
clockmod tslice = 0∧¬ participated

40val = pref∧ u = reg 6= ⊥
Effect:

42participated← true

44Input brcv(〈candidate, val, q, v〉)p

Effect:
46if v= reg∧ clockmod tslice∈ (0, dphys] then

if (val∧¬ pref) ∨ (val = pref∧ q < p) then
48pref, participated← false

50Output leaderp
Precondition:

52clockmod tslice = dphys + ǫ ∧ participated
Effect:

54pref, participated← false

Figure 10-4: Leaderp, electing a leader.

10.2 LeadImpl: Implementation

Here we describe our implementation ofLeadSpec(Figure 10-4).LeadSpecis implemented

by Leaderp automata with access toRW‖Pbcast. At the beginning of each round, a process

tosses its hat into the ring as a possible leader for its region by broadcasting acandidate

message, together with its id and priority. Each process then collects these messages until

d time into the round. Whenever such a message for its region isreceived, if the process

is still participating then it compares the id and Boolean priority to its own local id and

priority. If the message’s priority does not have priority over the process’s local priority

and the message’s process id is not lower, then the process does nothing. Otherwise, the

process ceases participating and readies itself for the next round.

The interface ofLeaderp consists of the following five kinds of actions:

• Input GPSupdate(l, t)p, l ∈ R, t ∈ R
≥0, p ∈ P : This input indicates that a process

p is currently located at positionl.

160

• Input preferp, p ∈ P : This input indicates that the process is to have priority in

leader election. (This is theprefer input forLeadClp.)

• Input brcv(〈candidate, val, q, v〉)p, val ∈ Bool, v ∈ U, q, p ∈ P : This is the receipt

of acandidate message from some process.

• Output bcast(〈candidate, val, p, u〉)p, val ∈ Bool, u ∈ U, p ∈ P : This output is

the process putting itself up for consideration as leader for its regionu = regp. The

valueval is true if pref is true, indicating aprefer has occurred in this round at the

process.

• Output leaderp, p ∈ P : This output communicates that a process is the leader for

its current region.

Its state variables are the following:

• clock : R
≥0 ∪ {⊥}: This is the process’s local clock. It is initially⊥, but is set to the

system’s real-time when aGPSupdate occurs at the process.

• reg : U ∪ {⊥}: This is the last reported region of the process since initialization.

• pref : Bool: This value indicates priority of the process. If aprefer occurs at the

beginning of a round, this value is set to true and triggers abcast output. Otherwise,

this value is false.

• participated : Bool: This indicates whether the process has or needs to participated

in its current region’s leader election via abcast action.

At the start of a round,Leaderp performs abcast(〈candidate, pref, p, reg〉)p output,

settingparticipated to true so as to prevent additional such outputs (lines 37-42). It may

also receive apreferp input (indicating that its client wants to have priority in the leader

election), resulting in the setting ofpref to true andparticipated to false, triggering

a(nother)bcast output (lines 31-35). Whenever aGPSupdate occurs at the process that

changes its region or clock,pref andparticipated are set to false, preventing the process

from later performing aleader output in the region it left (line 29).

161

Later, if it receives abrcv(〈candidate, val, q, reg〉)p input (line 44), then if it is no later

thandphys into the round and eitherval is true whilepref is false (meaning the sender

had a higher priority) orval andpref are the same butq < p (lines 46-47), thenLeaderp

setspref andparticipated to false, initializing those values for the next round (lines 48).

Otherwise, it does nothing.

If, at exactlyd into the round,participated is still true (meaning that it did not receive

a candidate message for its region from a higher priority or same priority but lower id

process) thenLeaderp performs aleaderp output (lines 50-52), and initializespref and

participated for the next round (line 54).

10.3 Correctness of the implementation

In this section we describe aspects of the correctness of ourimplementation of the leader

election service. We define the complete implementation system to be the composition of

theFail-transformedLeader automata together withPbcast andRW , with certain actions

hidden:

Definition 10.4 Let HLeadimpl be {bcast(m)p, brcv(m)p | p ∈ P, m ∈ {candidate} ×
Bool × P × U}, and letLeadImplerbe

∏

p∈P Fail(Leaderp). Then defineLeadImpl

to beActHide(HLeadimpl, LeadImpler‖Pbcast‖RW).

To show correctness, we use the strategy described in Section 9.3:

1. Describe a legal setLLeader of LeadImpl, and show that it is a legal set (Definition

10.8).

2. Define a legal setInvLeadSpec for the specificationLeadSpec, and show that the set

is a legal set. (This was done in Section 10.1.3.)

3. Show thatStart(LeadImpl, LLeader) ≤ Start(LeadSpec, InvLeadSpec) (Lemma

10.14). We show this in the following way:

(a) Define a simulation relationRLeader betweenLeadImplandLeadSpec(see Def-

inition 10.9). Show the relation is a simulation relation (Lemma 10.10).

162

(b) Show that for each state inLLeader, there exists a state in the invariant set

InvLeadSpec such thatRLeader holds between the states (Lemma 10.13).

4. Show thatLeadImpleris self-stabilizing toLLeader relative toR(RW‖Pbcast) (The-

orem 10.17).

5. Conclude that the set of traces of the implementation stabilizes to the set of traces of

executions ofLeadSpecstarting inInvLeadSpec (Theorem 10.18).

10.3.1 Legal sets

Here we describe a legal set ofLeadImplby describing two legal sets, one a subset of the

other. Recall from Lemma 3.13 that a legal set of states for a TIOA is one where each

closed execution fragment starting in a state in the set endsin a state in the set. We break

the definition of the legal set up into two sets in order to simplify the proof reasoning and

more easily prove stabilization later.

The first set of legal states describes some properties that become true at an alive process

at the time of the firstGPSupdate for the process.

Definition 10.5 DefineL′Leader to be the set of statesx of LeadImpl such that each of the

following properties hold:

1. x⌈XPbcast‖RW ∈ InvPbcast‖RW .

This says that the state restricted toPbcast‖RW is a reachable state of the

Pbcast‖RW .

2. ∀p ∈ P : ¬failedp ∧ clockp 6= ⊥:

(a) regp = RW.reg(p) 6= ⊥∧ clockp = RW.now.

This says that alive processes withclockp 6= ⊥ have a local clock variable and

region setting that matches the clock and region setting inRW .

(b) participatedp ⇒ clockp mod tslice ≤ d.

This says that if there is an alive processes withclockp 6= ⊥ andparticipatedp,

then the round is at mostd old.

163

(c) prefp ⇒ (participatedp ∨ clockp mod tslice = 0).

This says that if there is an alive processes withclockp 6= ⊥ and prefp then

eitherparticipatedp is true or the round has just started.

It is easy to check thatL′Leader is a legal set forLeadImpl.

Lemma 10.6 L′Leader is a legal set forLeadImpl.

Next we define a set of “reset” states for the algorithm. The reset states correspond

to states ofLeadImplafter the leader election competition for one round has completed

and before the competition for the next round begins (when the leader competition state is

“reset”). It also turns out that it is relatively simple to show that an execution fragment of

LeadImplreaches a reset state. When we define our final set of legal states in Definition

10.8 as states reachable from reset states, it makes the taskof showing stabilization of

LeadImplin Section 10.3.3 much simpler.

Definition 10.7 DefineResetLeader to be the set of statesx of LeadImpl such that each of

the following properties hold:

1. x ∈ L′Leader.

This says thatx is a state inL′Leader.

2. RW.now mod tslice = 0 ∨ RW.now > dphys + ǫ.

This says thatx is either at the beginning of a round or more thandphys + ǫ into one.

3. ∀p ∈ P : (¬failedp ∧ clockp 6= ⊥) : ¬prefp.

This says that each alive process withclockp 6= ⊥ hasprefp set to false.

4. ∀p ∈ P : ∀〈〈candidate, b, q, u〉, t, P ′〉 ∈ Pbcast.pbcastq(p) : P ′ = ∅.

This says that there are nocandidate messages in transit.

The reset states are used to define our final set of legal statesLLeader for LeadImpl.

LLeader is the set of states reachable from a reset state.

Definition 10.8 DefineLLeader to bereachableStart(LeadImpl,ResetLeader).

It is obvious thatLLeader is a legal set forLeadImpl.

164

10.3.2 Simulation relation

Here we show thatStart(LeadImpl, LLeader) implementsStart(LeadSpec, InvLeadSpec)

(Lemma 10.14). We do this by first describing a simulation relation RLeader from our

implementation of the leader election service,LeadImpl, to the TIOA specification of the

leader election service,LeadSpec(Definition 10.9). We prove thatRLeader is a simulation

relation, and then conclude thatLeadImplimplementsLeadSpec. In other words, we con-

clude that the traces of our implementation are traces of leader election. We then show

that for each state inLLeader, there exists a state in the invariant setInvLeadSpec such that

RLeader holds between the states (Lemma 10.13).

You may notice in the definition below that forxRLeadery to hold, statex must be a

state in the legal setLLeader. This constrains the simulation relation to only be concerned

with implementation states which we will then show are related to states ofLeadSpec in

InvLeadSpec.

Now we define the simulation relation for our algorithm.

Definition 10.9 RLeader is a relation between states ofLeadImpl andLeadSpec such for

any statesx andy of the two machines respectively,xRLeadery exactly when the following

conditions are satisfied:

1. Statex satisfies the following:

(a) x ∈ LLeader.

This says thatx is a state inLLeader.

(b) ∀p ∈ P : ∀〈〈candidate, b, q, u〉, t, P ′〉 ∈ Pbcast.pbcastq(p):

i. P ′ = ∅ ∨ t = tslice⌊RW.now/tslice⌋.
This says thatcandidate messages submitted toPbcast have either been

processed for each process or were sent at the beginning of the current

round.

ii. (RW.now mod tslice ≤ dphys + ǫ ∧ t = tslice⌊RW.now/tslice⌋) ⇒ (q =

p ∧ u ∈ {RW.reg−(p, t), RW.reg+(p, t)}).

165

This says that if the current round is not more thand old, then anycan-

didate messages sent at the beginning of the round are tagged with the

correct source and region for the process that sent it.

(c) ∀p ∈ P : ¬failedp ∧ clockp 6= ⊥ ∧ participatedp:

i. ∃P ′ ⊆ P : 〈〈candidate, prefp, p, regp〉, tslice⌊RW.now/tslice⌋, P ′〉 ∈
Pbcast.pbcastq(p).

This says that each nonfailed process with non-⊥ clock andparticipated

set to true sent acandidate message at the beginning of the round for its

current region andpref variable.

ii. ∀q ∈ P : ∀〈〈candidate, b, q, regp〉, tslice⌊RW.now/tslice⌋, P ′〉 ∈
Pbcast.pbcastq(q) : (p ∈ P ′ ∨ [prefp = b ∧ p ≤ q] ∨ [prefp ∧ ¬b]).

This says that for each nonfailed processp with non-⊥ clock and

participated set to true and for eachcandidate message sent for the pro-

cess’s region at the beginning of the current timeslice and processed for

p, either thecandidate message’s Boolean was false andprefp is true or

prefp is equal to the message’s Boolean and idp is ordered beforeq.

2. Statey satisfies the following:

(a) RW.now = LeadMain.now ∧ RW.reg = LeadMain.reg.

This says thatLeadMain’s clock is the real-time, and that its stores regions for

processes is consistent withRW ’s.

(b) ∀p ∈ P : (¬failedp∧clockp 6= ⊥∧participatedp) ⇒ (pref(p) = prefp∧[p /∈
serviced ∨ (RW.now mod tslice > 0 ∧ cand(reg(p)) = 〈p, prefp〉)]).
This says that for each nonfailed process with non-⊥ clock andparticipated

set must havepref(p) matchprefp and eitherp has not yet received aleader′

input or the round is more than 0 old and the process is the leader of its current

region.

(c) RW.now mod tslice > dphys + ǫ ⇒ (serviced = ∅ ∧ ∀u ∈ U : cand(u) =

⊥ ∧ ∀p ∈ P : ¬pref(p)).

166

This says that when a round is more thand old, serviced must be empty,

cand(u) must be initialized for each region, andpref(p) must be false for each

p ∈ P .

(d) RW.now mod tslice = 0 ⇒ serviced = ∅.

This says that at the beginning of a round,serviced must be empty.

3. x(RW) = y(RW).

This says thatRW matches in both states.

4. ∀p ∈ P : x(Fail(Leaderp)) = y(Fail(LeadClp)).

This says that each process’s failure status is the same inx andy.

5. Let leadCand : (U × Bool) → P ∪ {⊥} be a function that takes a re-

gion u and Booleanb, and returns the lowest idp such that∃P ′ ⊆ P :

〈〈candidate, b, p, u〉, tslice⌊x(RW.now)/tslice⌋, P ′〉 ∈ x(Pbcast.pbcastq(p)), or ⊥ if

no suchp exists.

Let leader : U → P ∪ {⊥} be a function that takes a regionu and returns

〈p, true〉 if leadCand(u, true) = p 6= ⊥, 〈p, false〉 if leadCand(u, true) =

⊥ and leadCand(u, false) = p 6= ⊥, or ⊥ if leadCand(u, true) =

leadCand(u, false) = ⊥.

Then∀u ∈ U : y(RW.now) mod tslice ≤ dphys + ǫ ⇒ y(cand(u)) = leader(u).

This says thatcand(u) in statey is set to the process, if it exists, with the lowest id

amongst the process tags forcandidate messages with the same Boolean value for

the region sent at the beginning of the current round, and forwhich the Boolean was

either true or there were no such true Boolean-tagged messages in the round.

Now we show thatRLeader is a simulation relation fromLeadImplto LeadSpec.

Lemma 10.10RLeader is a simulation relation between states ofLeadImpl and

LeadSpec.

Proof: By definition of a simulation relation (Definition 2.20) we must show three things

for all states of the automaton:

167

1. We must show that for anyx ∈ ΘLeadImpl there exists a statey ∈ ΘLeadSpec such that

xRLeadery.

The corresponding statey of the specification is the one with the sameRW asx,

with x(Fail(Leaderp)) = y(Fail(LeadClp)) for all p ∈ P , and with the variables

of LeadMain set to their unique initial values. It is easy to check thatxRLeadery.

2. Say thatx andy are states such thatxRLeadery. Then for any actiona ∈ ALeadImpl, if

LeadImpl performs actiona and the state changes fromx to x′, we must show there

exists a closed execution fragmentβ of LeadSpec with β.fstate = y, trace(β) =

trace(℘(x)a℘(x′)), andx′RLeaderβ.lstate. For this proof we should consider each

actiona.

• failp, restartp, GPSupdate(l, t)p, preferp: The corresponding execution frag-

ment is℘(y)a℘(y′). The traces ofα andβ are the same, and checking that the

relation holds betweenx′ andy′ is trivial.

• brcv(〈candidate, b, q, u〉)p: The corresponding execution fragment is either:

℘(y) or ℘(y)leader′(false)p℘(y′). It is obvious that in each of these cases,

the traces ofα andβ are both empty.

We select the corresponding execution fragment in the following way: If p is

alive andclockp 6= ⊥, u = x(regp), x(participatedp) and[(b ∧ ¬x(prefp)) ∨
(b = x(prefp) ∧ q < p)] then the fragment is℘(y)leader′(false)p℘(y′).

To see that theleader′(false)p action is enabled, we need to check that

p /∈ x(serviced) and thatx(cand(reg(p))) 6= 〈p, x(pref(p))〉. To see that

x′ andy′ are related, since statex satisfies property 2(b) of the simulation rela-

tion, we know that eitherp /∈ x(serviced) or x(cand(reg(p))) = 〈p, x(prefp)〉.
Sincex also satisfies property 5 of the relation, we know thatp /∈ x(serviced)

and thatx(cand(reg(p))) 6= 〈p, x(pref(p))〉.

Otherwise the fragment is℘(y). To see thatx′andy′ are related, the only prop-

erties we need to recheck are properties 1(c)(ii) and 4. These are easy to check.

• bcast(〈candidate, b, p, u〉)p: The corresponding execution fragment is

℘(y)prefer′(prefp)p℘(y′), where statey′(LeadMain.cand(reg(p))) is selected

168

in the following way: If cand(reg(p)) = ⊥ ∨ ∃〈q, b′〉 = cand(reg(p)) :

[(b ∧ ¬b′) ∨ (b = b′ ∧ p < q)], then updatecand(reg(p)) to be〈p, b〉. Oth-

erwise, leavecand(reg(p)) the same.

The traces ofα andβ are both empty. To see that theprefer′ action is en-

abled, note that the two actions basically have the same precondition. To see

that x′ andy′ are related, it is trivial to check that properties 1-4 of thesim-

ulation relation hold. For property 5, notice that ify(cand(reg(p))) = ⊥,

then y′(cand(reg(p))) = 〈p, b〉. This obviously satisfies property 5. If

y(cand(reg(p))) 6= ⊥ then since property 5 holds in statex, it must be that

there is some〈q, b′〉 = y(cand(reg(p))) such that there is an associatedcan-

didate message inpbcastq in x for the current round andreg(p). Since we

updatey′(cand(reg(p))) exactly when〈p, b〉 is such thatb is true andb′ is not,

or p < q andb = b′, then we know thatleader(reg(p)) in statex′ is equal to

cand(reg(p)) in statey′.

• leaderp: The corresponding execution fragment is℘(y)a℘(y′). The traces ofα

andβ are the same, and checking that the action is enabled and thatthe relation

holds betweenx′ andy′ is trivial.

• drop(〈candidate, b, p′, u〉, t, q, p): The corresponding execution fragment is

℘(y). The traces ofα and β are both empty. To see thatx′ and y′ are re-

lated, since property 1 holds in statex, we know that the message was for a

different region thanq’s, meaning it has no bearing on the properties covered

by the simulation relation.

3. Say thatxRLeadery. Let α be an execution fragment ofLeadImpl consisting of

one closed trajectory, withα.fstate = x. We must show that there is a closed

execution fragmentβ of LeadSpec with β.fstate = y, trace(β) = trace(α), and

α.lstateRLeaderβ.lstate.

Let t0 be α.fstate(RW.now) and t3 be α.lstate(RW.now). Let t1 be dphys +

tslice⌊t0/tslice⌋. If t3 mod tslice > dphys + ǫ then lett2 be min(t3, dphys + 2ǫ +

tslice⌊t0/tslice⌋), else lett2 bedphys + 2ǫ + tslice⌊t0/tslice⌋.

169

Let p1, · · · , pm be an ordering of the set ofp ∈ P such thatp /∈ y(serviced) and

〈p, y(pref(p))〉 6= y(cand(reg(p))). Let pm+1, · · · , pn be an ordering of the set of

p ∈ P such thatp /∈ y(serviced) and〈p, y(pref(p))〉 = y(cand(reg(p))).

If t1 ∈ [t0, t3) and t2 ∈ (t0, t3] then β is the execution fragment

τ1leader′(false)p1τ1,1leader′(false)p2τ1,2, · · · leader′(false)pm
τ1,m, leader′(true)pm+1

τ1,m+1, · · · , leader′(true)pn
τ1,n, τ2, resetτ3, where β.ltime = α.ltime and

τi.lstate(RW.now) = ti.

If t1 ∈ [t0, t3) but t2 /∈ (t0, t3] thenβ is the same as above, except that it ends withτ2

andτ2.lstate = t3.

If t1 /∈ [t0, t3) andt2 ∈ (t0, t3], thenβ is τ2resetτ3.

If t1 /∈ [t0, t3) andt2 /∈ (t0, t3] thenβ is justτ3.

In other words, we fill inleader′ actions for processes that have not been ser-

viced when the time isdphys after the start of the round after other actions have

been completed, so as to not violate the trajectory stoppingconditions on line 18 of

LeadMain. We also fill inreset actions at timesdphys + 2ǫ into a round, or at time

t3 if t3 is beforedphys +2ǫ and afterdphys into a round, so as to not violate the trajec-

tory stopping conditions on line 19 ofLeadMain and to satisfy property 2(c) of the

simulation relation.

It is easy to check thatα.lstateRLeaderβ.lstate.

The following theorem concludes that our implementation ofthe leader election service

implementsLeadSpec.

Theorem 10.11LeadImpl ≤ LeadSpec.

Proof: This follows directly from the previous lemma and Corollary2.23.

One useful observation about the proof thatRLeader is a simulation relation is the fol-

lowing, which says that for any execution fragment ofLeadImplstarting in a statex in

170

LLeader and for any statey in InvLeadSpec such thatxRLeadery, there is some fragment of

the leader election specification starting in statey that not only has the same trace but also

has the sameRW andFail-related projections. (This is very useful later, when reasoning

about theFail-transformed composition of the leader election implementation pieces with

pieces of other services):

Lemma 10.12 Let α be in fragsLLeader

LeadImpl and y be a state inInvLeadspec such that

α.fstateRLeadery. Then there exists anα′ in frags
InvLeadSpec

LeadSpec such that:

1. α′.fstate = y.

2. trace(α) = trace(α′).

3. If α is a closed exectuion fragment, thenα.lstateRLeaderα
′.lstate.

4. α⌈(ARW , VRW) = α′⌈(ARW , VRW).

5. For eachp ∈ P , α⌈({failp, restartp}, {failedp}) = α′⌈({failp, restartp}, {failedp}).

The first three properties of the lemma follow from the fact thatRLeader is a simulation re-

lation, while the last two properties follow from the construction of the matching execution

of LeadSpec in the proof thatRLeader is a simulation relation, which preserves the actions

and variables ofRW and each of the processes’Fail-transform variables and actions.

Now, to show that each state inLLeader is related to a legal state of the specification, it is

enough to show that each state inResetLeader is related to a legal state of the specification.

Lemma 10.13 For each statex ∈ LLeader, there exists a statey ∈ InvLeadSpec such that

xRLeadery.

Proof: Let x be a state inLLeader. By definition ofLLeader, x is a state reachable from a

state inResetLeader. Hence, we just need to show that for any statex in ResetLeader, we

can construct a statey based on statex such thatxRLeadery holds.

Let state y(RW) = x(RW), y(LeadMain.now) = x(RW.now),

y(LeadMain.reg) = x(RW.reg), y(serviced) = ∅, ∀u ∈ U : y(cand(u)) = ⊥,

∀p ∈ P : y(prob(p)) = false, andy(Fail(LeadClp)) = x(Fail(Leaderp)).

171

It is trivial to verify both that statey satisfies the properties ofInvLeadSpec and that

xRLeadery holds.

We can now conclude that a trace of an execution ofLeadImplstarted in a state in

LLeader is the same as the trace of some execution fragment ofLeadSpecstarting in a legal

state.

Lemma 10.14 tracefragsLLeader

LeadImpl ⊆ tracefrags
InvLeadSpec

LeadSpec .

Proof: This follows from Lemma 10.13 and Lemma 10.12.

10.3.3 Self-stabilization

We’ve seen thatLLeader (Definition 10.8) is a legal set forLeadImpl, and that each state

in LLeader is related to a state inInvLeadSpec (Lemma 10.13). Here we show thatLeadIm-

pler self-stabilizes toLLeader relative toR(RW‖Pbcast) (Theorem 10.17), meaning that

if certain program portions of the implementation are started in an arbitrary state and run

with R(RW‖Pbcast), the resulting execution eventually gets into a state inLLeader. This

is done in two phases, corresponding to each legal setL′Leader andLLeader.

After we show thatLeadImplerself-stabilizes toLLeader relative toR(RW‖Pbcast),

we use the fact thatRLeader (see Definition 10.9) is a simulation relation that relates states

in LLeader with states ofLeadSpec in InvLeadSpec to conclude that after an execution of

LeadImplhas stabilized, the trace fragment from the point of stabilization withbcast and

brcv actions hidden is the suffix of some trace ofLeadSpecstarting inInvLeadSpec (Theo-

rem 10.18).

It is easy to check that
∏

p∈P Fail(Leaderp) is self-stabilizing toL′Leader in time t1lead

relative toR(Pbcast‖RW), wheret1lead is anyt such thatt > ǫsample. (To see this stabiliza-

tion result, just consider the moment after each node has received aGPSupdate, which

takes at mostǫsample time to happen.)

Lemma 10.15 Let t1lead be anyt such thatt > ǫsample.
∏

p∈P Fail(Leaderp) is self-stabilizing toL′Leader in timet1lead relative toR(Pbcast‖RW).

172

We show that starting from a state inL′Leader, LeadImplends up in a state inLLeader

within t2lead time, wheret2lead is anyt such thatt > 2dphys + ǫ.

Lemma 10.16 Let t2lead be anyt such thatt > 2dphys + ǫ.

frags
L′

Leader

LeadImpl stabilizes in timet2lead to fragsLLeader

LeadImpl.

Proof: We just need to show that for any length-t2lead prefix α of an element of

frags
L′

Leader

LeadImpl, α.lstate ∈ LLeader. By the definition ofLLeader, we just need to show

that there is at least one state inResetLeader that occurs inα.

Let t0 be equal toα.fstate(RW.now), the time of the first state inα. In α.fstate,

there may be messages inPbcast.pbcastq that can take up todphys time to be dropped or

delivered at each process. We’ll call any of these above messages “bad” messages. We

know that all “bad” messages will be processed (dropped or delivered at each process) by

some statex in α such thatx(RW.now) = t1 = t0 + dphys.

Code inspection tells us that for any state inL′Leader and hence for any state inα,

any newbcast transmissions ofcandidate messages will occur exactly whenRW.now

mod tslice = 0, and will be processed (dropped or delivered at each process) by dphys later.

Notice that in each of these cases, anybcast transmission is processed bydphys into a

round. This implies that any state after statex in α whereRW.now mod tslice > dphys or

RW.now mod tslice = 0 satisfies properties 1, 2, and 4 ofResetLeader.

Notice that any state afterx in α whereRW.now mod tslice > dphys + ǫ also satisfies

property 3 ofResetLeader. This means that to complete our proof we just need to bound

the amount of time that could be required to get from statex to a statex∗ such thatt2 =

x∗(RW.now) mod tslice > dphys + ǫ andx∗(RW.now) > x(RW.now).

We consider three cases for timet1. First, if t1 mod tslice > dphys + ǫ, then for anyt2

such thatt2 − t1 ∈ (0, tslice − (t1 mod tslice)), we’re done. Second, ift1 mod tslice ≤
dphys + ǫ but does not equal 0, then fort2 = t1 + dphys + ǫ, t2 mod tslice > dphys + ǫ, and

we’re done. Last, ift1 mod tslice = 0, then for anyt2 such thatt2 − t1 ∈ (dphys + ǫ, tslice),

t2 mod tslice > dphys + ǫ, and we’re done.

This implies the total time for stabilization is anyt > 2dphys + ǫ, whicht2lead satisfies.

Now we can combine our stabilization results to conclude that Fail(Leaderp) compo-

173

nents started in an arbitrary state and run withR(Pbcast‖RW) stabilizes toLLeader in time

tlead, wheretlead is anyt such thatt > 2dphys + ǫ + ǫsample.

Theorem 10.17Let tlead be anyt such thatt > 2dphys + ǫ + ǫsample.

LeadImpler is self-stabilizing toLLeader in timetlead relative toR(Pbcast‖RW).

Proof: We must show thatexecsU(LeadImpler)‖R(RW‖Pbcast) stabilizes in timetlead to

fragsLLeader

LeadImpler‖R(RW‖Pbcast). By Corollary 3.11,fragsLLeader

LeadImpler‖R(RW‖Pbcast) is the same

as fragsLLeader

LeadImpl. The result follows from application of transitivity of stabilization

(Lemma 3.6), applied to the two lemmas above. Lett1lead = ǫsample + (tlead − 2dphys −
ǫ − ǫsample)/2 andt2lead = 2dphys + ǫ + (tlead − 2dphys − ǫ − ǫsample)/2.

First, let B be execsU(LeadImpler)‖R(RW‖Pbcast), C be frags
L′

Leader

LeadImpl, and D be

fragsLLeader

Leadimpl in Lemma 3.6. Then by Corollary 3.11 and Lemmas 10.15 and 10.16, we

have thatexecsU(LeadImpler)‖R(RW‖Pbcast) stabilizes in timet1lead + t2lead to fragsLLeader

LeadImpl.

Sincetlead = t1lead + t2lead, we conclude thatLeadImpler self-stabilizes in timetlead to

LLeader relative toR(RW‖Pbcast).

We can finally pull our results together to conclude that traces of LeadImpl with

Fail(Leaderp) components started in an arbitrary state and run withR(Pbcast‖RW) sta-

bilize in timetlead to traces ofLeadSpec starting from a state inInvLeadSpec.

Theorem 10.18Let tlead be anyt such thatt > 2dphys + ǫ + ǫsample.

tracesU(LeadImpler)‖R(Pbcast‖RW) stabilizes in timetlead to tracesStart(LeadSpec,InvLeadSpec).

Proof: By Theorem 10.17 and the definition of self-stabilization, we have that

tracesU(LeadImpler)‖R(Pbcast‖RW) stabilizes in timetlead to tracefragsLLeader

LeadImpl. Since we

showed in Lemma 10.14 thattracefragsLLeader

LeadImpl ⊆ tracesStart(LeadSpec,InvLeadSpec), we

have our result.

174

Chapter 11

Implementation of the VSA layer

Here we describe an implementation of the VSA layer (defined in Chapter 7) by the mobile

nodes in a network. This implementation usesRW , the totally ordered broadcast service,

and the leader election service.

We present the implementation as a trivial client implementation, together with a more

involved VSA implementation. We then reason that this implementation describes a stabi-

lizing VSA layer emulation algorithm.

11.1 Client implementation

Recall the VSA abstraction consists not just of VSAs andV bcast, but also client au-

tomata, corresponding to mobile nodes in the network. The implementation of client

automata is almost trivial;CE[alg]p is equal toalg(p), except that thevcast andvrcv

actions are replaced bytocasts andtorcvs of message tuples. Avcast(m) becomes a

tocast(〈vmsg, false, m〉). A vrcv(m) input becomes atorcv(〈vmsg, b, m〉), b ∈ Bool,

action. The effect on local state is the same for both actions.

11.2 VSA implementation

We describe a fault-tolerant implementation of a VSA by mobile nodes in its region of

the network. At a high level, the individual mobile nodes in aregion share emulation of

175

.

.

.

TObcast

Fail

Fail

failp, restartp

failq, restartq

TOBFilterp

TOBFilterq

TOBDelayp

TOBDelayq

V SAE[alg]p

CE[alg]p

LeadClp

V SAE[alg]q

CE[alg]q

LeadClq

GPSupdate(l, now)p

RWLeadMain

GPSupdate(l′, now)q

tocast(m)p

torcv(m)p
leaderpleader′(f)p

preferpprefer′(f)p

tocast

tocast’(m, f)p

torcv’(m, v′)p

Figure 11-1: VSA layer implementation. Each process runs a collection of algorithms:
LeadCl, TOBDelay, and TOBFilter, defined previously, together withCE[alg] and
V SAE[alg], the client and VSA emulator algorithms.

the virtual machine through a deterministic state replication algorithm while also being

coordinated by a leader. Each mobile node runs its portion ofthe totally ordered broadcast

service, leader election service, and a Virtual Node Emulation (VSAE) algorithm, for each

virtual node. The TIOA implementation forV SAEp is in Figure 11-2.

For eachalg ∈ V ALgs, V SAE[alg]p has five kinds of interface actions:

• Input GPSupdate(l, t)p, l ∈ R, t ∈ R
≥0, p ∈ P : This input indicates that a process

p is currently located at positionl.

• Input leaderp, p ∈ P : This input communicates that a process is the leader for its

current region.

• Input torcv(m)p, m ∈ V M, p ∈ P : This input is either of avmsg containing a

virtual node layer message to be received by the region or avstate, which contains

the state of a VSA.

• Output tocast(m)p, m ∈ V M, p ∈ P : This output is either of avmsg containing

a virtual node layer message from the current region’s VSA ora vstate message

containing the state of the current region’s VSA.

176

• Output preferp, p ∈ P : This input indicates that the process is an emulator of its

current region’s VSA.

It also has the following state variables:

• clock : R
≥0∪{⊥}: This variable is⊥ initially, and then updated to real-time through

aGPSupdate input. Once set, it progresses at the rate of real-time.

• reg : U ∪ {⊥}: This variable is⊥ initially, but it is updated toreg(l) whenever a

GPSupdate(l, t)p input occurs.

• part : Bool: This Boolean indicates whether the process is attempting to participate

in the virtual machine emulation in the current round.

• leader : Bool: This Boolean indicates whether the process is currently the leader of

its region.

• vstate : ∪u∈UQalg(u)∪{⊥}: This variable stores the local copy of the emulator state,

if it is known by the emulator. Otherwise, it is⊥.

• savedq : (Msg × R
≥0)∗: This queue stores timestamp-tagged messages to be re-

ceived by the VSA. Whenever avmsg is received via atorcv, the included message

is stored together with the current time at the end ofsavedq.

• outq : Msg∗: This queue is a queue of outgoing messages for the local region’s

VSA.

Mobile nodes in a regionu use a leader-based emulation algorithm to implement the

regionu’s virtual node. At a high level, a leader is periodically selected in a zone by

the leader election service (described in Chapter 10). A leader is responsible for both

broadcasting the messages that would have been sent by the virtual machine in its region

in the laste time, wheree is theV BDelay buffer delay parameter, and broadcasting an

up-to-date version of the VSA state. This broadcast is used to both stabilize the state of

the emulation algorithm, forcing all emulators in the same region to have the same virtual

machine state, and to allow newly joining emulators (those that have just restarted or moved

177

into the region) to start participating in emulation. This virtual machine state is frozen

from the point of the sending of this virtual machine state message, until the mobile nodes

again participate in the leader election service. During that time, the virtual machine runs

at an accelerated pace, simulating the receipt of messages received fromTOBcast while

doing so, until the machine is caught up with real-time and the next leader is chosen. Any

broadcasts that this emulation of the virtual machine produces are stored in a local outgoing

queue for broadcast if the emulator becomes a leader.

We now describe the emulation algorithm in more detail.

Round-based virtual machine emulation. Our VSA emulation algorithm follows a

round-based structure. As in the leader election service, time is divided into rounds of

lengthtslice = e, where each round begins at a multiple oftslice.

All active simulation of VSA actions is done only in the firstd time of a round, after

which the VSA state is frozen until the next round. During that d period, each emulator in

a region stores and updates the state of the VSA (including the VSA’s clock value) locally,

simulating all actions of the VSA based on it. To guarantee the VSA emulation satisfies

the specifications from Chapter 7 (bounding the time the output trace of the emulation may

be behind that of the VSA being emulated), the virtual clock must catch up to real time.

This is done by having the virtual clock advance at a rate thatallows it to simulate an entire

timeslice’s worth of the VSA ind time. This is illustrated in Figure 11-3, where the virtual

clock proceeds in fits and starts relative to real time, occasionally falling behind and then

catching up. It is formally described in lines 34-36.

At any time, when an emulator receives a TObcast message withavmsg tuple (contain-

ing aVbcast message), it places the message in a local saved message queue (lines 50-52)

from which it later simulates the VSAvrcving (processing) the message (lines 72-78). If

the VSA is to perform a local action, the emulator simulates its effect on the VSA state

(lines 80-87). If the VSA action is tovcast a message, the emulator places the message in

an outgoing VSA queue (lines 86-87), to be removed andtocasted in avmsg message as a

VSA message by the leader, in the VSA’s stead (lines 89-93). This queue starts each round

empty.

Leader responsibilities. For fault-tolerance and load balancing reasons, it is necessary

178

Signature:
2 VM= ({vstate}×U×∪ u∈U Qalg(u))∪ ({vmsg}×Bool×Msg)

Input GPSupdate(l, t)p, l ∈ R, t ∈ R

4 Input leaderp
Input torcv(m)p, m∈ VM

6 Output tocast(m)p, m∈ VM
Output preferp

8 Internal participatep

Internal VSArcv(m)p, m∈Msg
10 Internal VSAlocal(act)p, act∈ ∪u∈U (Halg(u) ∪Oalg(u))

Internal resetRoundp

12

State:
14 analogclock: R≥0∪ {⊥}, initially ⊥

reg: U ∪ {⊥}, initially ⊥
16 part, leader: Bool, initially false

vstate: ∪u∈UQalg(u) ∪ {⊥}, initially ⊥

18 savedq: (Msg×R
≥0)∗, initially λ

outq: Msg∗, initially λ
20

Derived variable: legal: Bool= = clock 6=⊥⇒
22 [(leader⇒clockmod tslice= d)∧ (part⇒clockmod tslice≤ 2d+ǫ)
∧ reg6=⊥∧ sorted(savedq)∧∀〈m,t〉∈ savedq:t≤ clock

24 ∧ (vstate6=⊥⇒[vstate∈ Qalg(reg)∧∀〈m,t〉∈ savedq:t≥ vstate.clock
∧∀t= clockmod tslice:([t≥ d⇒clock-vstate.clock= t-d]∧ [t∈

26 (0,2d)⇒part]∧ [t≤ d⇒clock-vstate.clock= (t-d)(1- tslice

d
)])])]

28 Trajectories:
evolve

30 if clock 6= ⊥then
d(clock) = 1

32 else constantclock
τ(clock).vstate= τalg(reg)(τ (clock).vstate.clock)

34 if vstate.clock< clock∧ clockmod tslice ≤ d then
d(vstate.clock) = tslice / d

36 else constantvstate
stop when

38 Any precondition is satisfied.

40 Transitions:
Input GPSupdate(l, t)p

42 Effect:
if clock 6= t ∨ reg 6= region(l) ∨¬ legal then

44 clock← t
reg← region(l)

46 part, leader← false
vstate←⊥

48 savedq, outq← λ

50 Input torcv(〈vmsg, b, m〉)p

Effect:
52 savedq← append(savedq, 〈m, clock〉)

54 Output preferp
Precondition:

56 clockmod tslice = 0∧¬ part∧ vstate6=⊥
Effect:

58 outq← λ
part← true

Internal participatep

62Precondition:
clockmod tslice = 0∧¬ part∧ vstate=⊥

64Effect:
part← true

66

Input leaderp
68Effect:

if clockmod tslice = d then
70leader← true

72Internal VSArcv(m)p

Precondition:
74vstate.clock< clock∧ next(vstate, δalg(reg))= ⊥

part∧ 〈m, vstate.clock〉 = head(savedq)
76Effect:

vstate← δalg(reg)(vstate, vrcv(m))

78savedq← tail(savedq)

80Internal VSAlocal(act)p

Precondition:
82vstate.clock< clock∧ part

act= next(vstate, δalg(reg)) 6=⊥

84Effect:
vstate← δalg(reg)(vstate, act)

86if act= vcast(m) then
outq← append(outq, m)

88

Output tocast(〈vmsg, true, m〉)p

90Precondition:
clock 6= ⊥∧ leader∧ vstate6= ⊥∧m= head(outq)

92Effect:
outq← tail(outq)

94

Output tocast(〈vstate, u, vstate′〉)p

96Precondition:
clock 6= ⊥∧ reg= u∧ leader

98vstate= vstate′ ∧ [vstate=⊥∨ outq= λ]
Effect:

100leader← false

102Input torcv(〈vstate, u, vstate′〉)p

Effect:
104if clockmod tslice = 2d∧ (part∨ vstate6=⊥)

∧ reg= u then
106vstate← vstate′

if vstate/∈ Qalg(reg) then
108vstate← startalg(reg)(clock-d)

vstate.clock← clock-d
110savedq← savedq− {〈m, t〉: t < clock-d}

part← false
112

Internal resetRoundp

114Precondition:
clockmod tslice = 2d + ǫ ∧ part

116Effect:
vstate←⊥

118part← false

Figure 11-2: VSAE[alg]p, emulator atp of alg ∈ V Algs.

179

t’

t

t−t’=e−d

virtual clock

real clock

t’’

t’’

Figure 11-3: Relationship between virtual and real time. A virtual clock behind real time
runs faster until it catches up.

to have more than just one process maintaining a VSA. In our virtual machine emulation,

at the beginning of a round, each process already emulating the VSA performs aprefer

output, andd later at most one of the mobile nodes in a VSA’s region is chosen as a leader

by the leader election service. Recall from Section 10.1.3 that processes that perform a

prefer output are chosen over processes that do not by the leader election service. Hence,

a process that is already participating in the emulation of its local region’s VSA is chosen

as a leader over a process that is not already participating in the emulation. The leader

has primary responsibility for performing VSA outputs and helping new emulators join the

virtual machine emulation. In our multiple emulator approach, a VSA is maintained by sev-

eral emulators, including at most one leader. However, onlya process that is leader actually

performs the sending of the stored messages inoutq, preventing multiple transmission of

messages from the VSA.

To keep emulators consistent, each emulator must develop the VSA variables in the

same way, and choose the same discrete actions to perform at the same points in a VSA

execution and with the same results. We assume that each emulator chooses the same VSA

trajectory from any particular VSA state and uses the same deterministic functionnext,

mapping a state and a transition set to a next action to perform. The results of a transition

180

are also determinized; if more than one state is possible as aresult of a transition, then

some deterministic method for selecting one of the states isemployed by each process. In

addition, emulators continue to simulate locally controlled VSA actions until no more are

possible before simulating receipt of received messages (line 83), also helping to ensure

that local emulator state remains consistent.

Emulation details. There are several complications in VSA emulation that arisedue to

both message delays and process failure:

Joining: When a node discovers it is in a new region, it sets its local region and clock to

match that fromGPSupdate, and initializes its remaining variables (lines 41-48). Atthe

beginning of the first full round it is alive for, the process will perform aparticipate action,

setting its localpart variable to true (lines 61-65), indicating that the processhas been in

the region since the beginning of the round, allowing us to conclude that the process expects

to receive allTObcast messages sent since the beginning of the round.2d time later, when

any process in the region withpart set to true or already emulating the VSA receives a

vstate message for its region, it computes its region’s VSA’s statefrom the information in

the message and stores it as the frozen VSA state for use in thenext round (lines 102-111).

The clock in the resulting VSA state is set to be the time when the VSA state was current,

d into the current round. It also removes any messages from itslocal saved message queue

that were sent before the beginning of the round (line 110).

If no suchvstate message arrives in the round (meaning the leader of the roundfailed

or left the region before sending such a message), then each process withpart set to true,

regardless of whether or not the process is emulating the VSA, setspart to false and erases

its local VSA state (lines 113-118).

Restarting a VSA:If a process is leader and has no value for the VSA state (implying

that all processes that entered the leader competition for that regionu in that round were

not emulating the VSA), it restarts the emulation (95-99). It does this by sending avs-

tate message with attached state of⊥. Let Θ′alg(u) be a designated element ofΘalg(u) and

startalg(u)(t) be δalg(u)(Θ
′
alg(u), time(t)). When a process in the region that is either em-

ulating the VSA or haspart set to true receives such avstate message, it computes and

stores the statestartalg(u)(clock − d) as its local VSA state (lines 107-108), corresponding

181

to having restarted the VSAd time ago and immediately having it receive atime(clock−d)

input.

Self-stabilization. In order to make the implementation self-stabilizing, we use local cor-

rection duringGPSupdate actions and the receipt of the periodicvstate messages sent by

leaders. Thevstate messages sent by a leader contain state information which overwrites

any VSA state information at other emulators, bringing emulators into agreement about

VSA state.

11.3 Correctness of the implementation

Here we discuss several aspects of the correctness of our implementation of the VSA layer.

Each process runs theFail-transformed composition of its localCE[alg], V SAE[alg],

TOBDelay, TOBFilter, andLeadCl automata (see Figure 11-1). We define our imple-

mentation system as the composition of these automata withRW‖TObcast‖LeadMain,

with certain actions hidden.

Definition 11.1 For eachalg ∈ V Algs, defineV Emu[alg] to be

ActHide(HTOspec ∪ HLeadspec, RW‖TObcast‖LeadMain

‖∏

p∈P Fail(CE[alg]p‖V SAE[alg]p‖LeadClp‖TOBDelayp‖TOBFilterp)).

Before continuing, we will first present several definitionsuseful in our discussion.

Then, to show correctness, we use the strategy described in Section 9.3, tweaked slightly

to account for the fact that we are building on self-stabilizing implementations of services

in our implementation:

1. For eachalg ∈ V Algs, describe a legal setL3
V Emu[alg] of VEmu[alg], and show that

it is a legal set (Lemma 11.8).

2. Define a legal set for the specification, and show that the set is a legal set. (The legal

set is the relatively trivial one,whereRW‖V W‖V bcast is started in a reachable state,

and all other state is arbitrary.)

182

3. Show that the implementation started inL3
V Emu[alg] implementsV Layer[alg] started

in a reachable state ofRW‖V W‖V bcast (Lemma 11.15). We show this in the fol-

lowing way:

(a) Define a simulation relationREmu[alg] betweenVEmu[alg] and VLayer[alg]

(see Definition 11.9). Show the relation is a simulation relation, after some

action hiding (Lemma 11.10).

(b) Show that for each state inL3
V Emu[alg], there exists a state in the invariant set

{x ∈ QV Layer[alg] | x⌈XRW‖V W‖V bcast ∈ InvRW‖V W‖V bcast} such thatREmu[alg]

holds between the states (Lemma 11.14) (Recall thatInvRW‖V W‖V bcast, the

reachable states of the composition, is defined in Definition7.5).

4. Show that the set of executions of the implementation started in invariant states of

TOBspec andLeadSpec stabilizes to the set of executions ofV Emu[alg] started

in L3
V Emu[alg] (Lemma 11.19). Notice that this differs slightly from the strategy de-

scribed in Section 9.3, since we will ultimately be using implementations of the to-

tally ordered broadcast and leader election services that stabilize themselves so that

they appear to be starting in invariant states of the two services. As we mention be-

low, we add an additional set of results to the strategy in Section 11.3.4 that allows us

to conclude that these stabilizing implementations together with the main emulation

algorithm self-stabilize to reach states related to statesin L3
V Emu[alg].

5. Conclude that the set of traces ofV Emu[alg] stabilizes to the set of traces of

executions ofVLayer[alg] starting in {x ∈ QV Layer[alg] | x⌈XRW‖V W‖V bcast ∈
InvRW‖V W‖V bcast} (Theorem 11.20).

We also conclude another result (Theorem 11.21), which constrains the execution frag-

ments ofV Layer that implementation fragments correspond to after stabilization. We then

add one more set of results, connecting the implementationsof the totally ordered broad-

cast and leader election services to conclude that we actually have a stabilizing emulation

of the virtual node layer (Section 11.3.4).

183

procVstateu(t: R≥0, sentseq: (Msg×U×P×R≥0)∗): Qalg(u)∪ {⊥}

2 = =
rVstate: Qalg(u) ∪ {⊥}← ⊥

4 while sentseq6= λ

if head(sentseq)= 〈〈vstate, u, vstate〉,v,p,t〉∧ v∈ nbrs+(u) then
6 rVstate← vstate

if rVstate/∈ Qalg(u) then
8 rVstate← startalg(u)(t)

rVstate.clock← t
10 sentseq← tail(sentseq)

return rVstate
12

procVmsgs(u:U,t:R≥0,sentseq:(Msg×U×P×R
≥0)∗):(Msg×R

≥0)∗

14 = =

rSeq: (Msg×R≥0)∗← λ
16 while sentseq6= λ

if head(sentseq)= 〈〈vmsg,v,m〉,w,p,t′〉∧w∈ nbrs+(u)∧ t′≥ t
18 then

rSeq← append(rSeq, 〈m, t′ + d〉)
20 sentseq← tail(sentseq)

return rSeq

to rcvVmsgs(to rcv:(Msg×U)∗,t:R≥0):(Msg×R≥0)∗= =

46rSeq: (Msg×R
≥0)∗← λ

while to rcv 6= λ
48if head(to rcv) = 〈〈vmsg, u, m〉, v〉 then

rSeq← append(rSeq, 〈m, t〉)
50to rcv← tail(to rcv)

return rSeq
52

lookAhead(u: U, vstate, vstate′: Qalg(u), savedq:

54(Msg×R≥0)∗,outq,to send:Msg∗):Boolean= =
return ∃τ1a1τ2a2 · · · τn ∈ fragsValg(u)

:

561. τ1.fstate = vstate ∧ τn.lstate = vstate′

2. next(τn.lstate, δalg(u)) = ⊥

583.∀ai: ai = next(τi.lstate, δalg(u)) 6= ⊥

∨ (next(τi.lstate, δalg(u)) = ⊥

60∧∃m ∈Msg : ai = vrcv(m))
4. Let〈m1, t1〉, · · · , 〈mm, tm〉= sequence

62of received messages andvstate.clock
values for thevrcv actions ina1, · · · , an.

64Thensavedq = 〈m1, t1〉, · · · , 〈mm, tm〉.
5. Letm1, · · ·ml= sequence of sent messages

66for thevcast actions ina1, · · · , an.
Thento send= append(outq, (m1, · · · , ml)).

Figure 11-4: Functions for use in correctness proofs.

Now, we’ll describe several functions and definitions helpful for the rest of the chap-

ter (Figure 11-4). This next definition is simply shorthand for the queue of messages in

TObcast.oldsent followed by the head ofTObcast.sent if the message has already been

processed byTObcast for the input process.

Definition 11.2 Define procSent(p) to be oldsent if p /∈ procs or

append(oldsent, head(sent)) if p ∈ procs.

The functions in Figure 11-4 are described in more detail below:

• procV stateu : (R≥0 × (Msg ×U ×P ×R
≥0)∗) → Qalg(u) ∪ {⊥}, u ∈ U : Consider

procV stateu(t, sentseq). This function takes a timet and a sequence of message

tuplessentseq, and returns a state for the VSA in regionu. It finds the lastvstate

tuple, of the form〈〈vstate, u, vstate〉, v, p, t〉 in the sequence. A state for the VSA

in regionu is then calculated based on the tuple’svstate: if vstate ∈ Qalg(u) then

the function returnsvstate after replacingvstate.clock with t, and if not then the

function returnsstartalg(u)(t). (We later use this function to calculate the state of a

region’s VSA based onvstate messages that have been sent (Section 11.3.2).)

• procV msgs : (U × R
≥0 × (Msg × U × P × R

≥0)∗) → (Msg × R
≥0)∗: Consider

procV msgs(u, t, sentseq). This function takes a regionu, time t, and sequence of

184

message tuplessentseq, and returns a sequence of timestamped messages. It takes

all tuples insentseq of the form〈〈vmsg, v, m〉, w, p, t′〉, wherew ∈ nbrs+(u) amd

t′ ≥ t, and returns the sequence projected ontom and t′, after adjustingt′ up by

d. (We later use this function to calculate the list of messages to be received by a

VSA based on information inTObcast (Section 11.3.2). The timestamp indicates

the virtual time at which the VSA should receive the message.)

• to rcvV msgs : ((Msg × U)∗ × R
≥0) → (Msg × R

≥0)∗: Consider

to rcvV msgs(to rcv, t). This function takes a sequenceto rcv of messages tagged

with regions and a timet, and returns a sequence of timestamped messages. It se-

lects the messages into rcv of the form〈〈vmsg, u, m〉, v〉, and returns the sequence

projected ontom and then paired witht. (This function is used for a reason similar

to the one for why we useprocV msgs. It calculates messages to be received by a

VSA based on information inTOBFilter. (See Section 11.3.2.))

• lookAhead : (U × Qalg(u) × Qalg(u) × (Msg × R
≥0)∗ × Msg∗ × Msg∗) → Bool:

ConsiderlookAhead(u, vstate, vstate′, savedq, outq, to send). This function takes

a regionu, an early state ofu calledvstate, an ending state ofu calledvstate′, a

queue of timestamped messages to process calledsavedq, and queues of outgoing

messages calledoutq andto send, and returns a Boolean indicating whether there

exists some execution ofalg(u) such that:

1. The execution begins invstate and ends invstate′.

2. There are no locally controlled actions enabled invstate′.

3. Each locally controlled action in the execution is the onearrived at from use of

the functionnext, and novrcv actions occur unless no locally controlled action

is enabled.

4. Consider the sequence ofvrcv actions in the execution, and construct a se-

quence of tuples corresponding to the messages in thevrcv actions, paired with

the value ofvstate.clock when the action occurred. This sequence is equal to

savedq.

185

5. Consider the sequence ofvcast actions in the execution, and construct a se-

quence corresponding to the messages in thevcast actions. Thenoutq followed

by this sequence is equal toto send.

In other words, this function takes a VSA in statevstate and with a queue of outgoing

messagesoutq and indicates whether the VSA can then consume the messages in

savedq in a carefully prescribed way and end in statevstate′ with a new sequence

of outgoing messagesto send. (We later use this function to verify that the frozen

state of a VSA emulation is consistent with a future abstractVSA state. (See Section

11.3.2.))

11.3.1 Legal sets

Fix somealg ∈ V Algs. Here we describe a legal set forVEmu[alg]. Recall from Lemma

3.13 that a legal set of states for a TIOA is one where each closed execution fragment start-

ing in a state in the set ends in a state in the set. We break downthe legal set definition into

three legal sets in order to simplify the proof reasoning andmore easily prove stabilization

in Section 11.3.3.

Legal state setL1
V Emu[alg]:

The first set of legal states describes some properties that become true at an alive process

at the time of the firstGPSupdate for the process.

Definition 11.3 L1
V Emu[alg] is the set of statesx of V Emu[alg] where each of the following

properties hold:

1. x⌈XLeadSpec ∈ InvLeadSpec andx⌈XTOBspec ∈ InvTOBspec.

This says that the state is such that when restricted to the variables ofLeadSpec or

the variables ofTOBspec, the result is in the respective invariant set.

2. For eachp ∈ P : ¬failedp ∧ clockp 6= ⊥ (nonfailed client with a non-⊥ clock

value):

186

(a) regp = reg(p) ∧ clockp = LeadClp.clock = now ∧ updatedp ∧ rtimerp 6= ⊥.

This says that the client’sreg matches its actual region, its clock is set to the

real time as is its clock inLeadCl, and itsrtimer in TOBcast has started

running.

(b) [leaderp ⇒ clockp mod tslice = d] ∧ [partp ⇒ clockp mod tslice ≤ 2d + ǫ].

This says that if theleader bit is set, then it isd into the current round. Also, if

part is set, then it is at most2d + ǫ into the current round.

(c) sorted(savedqp) ∧ ∀〈m, t〉 ∈ savedqp : t ≤ clockp.

This says that the elements ofsavedq are ordered with respect to timestamp,

and that the highest timestamp the can be observed is the current time.

3. For eachp ∈ P : ¬failedp ∧ clockp 6= ⊥ ∧ vstatep 6= ⊥ (nonfailed client with a

non-⊥ clock value and a non-⊥ vstate):

(a) vstatep ∈ Qalg(regp) ∧ ∀〈m, t〉 ∈ savedqp : t ≥ vstatep.clock.

This says that the client’svstate must be a state of the client’s current region

VSA, and that all messages insavedq must have timestamps that are not smaller

than thevstate’s clock value.

(b) clockp mod tslice ∈ (0, 2d) ⇒ partp.

This says that if the round is greater than 0 but less than2d old, thenpart is

true.

(c) clockp mod tslice ≥ d ⇒ clockp − vstatep.clock = (clockp mod tslice) − d.

This says that when the round is at leastd old, then the virtual clock’s value is

set to equal what the real time wasd into the current round.

(d) clockp mod tslice ≤ d ⇒
clockp − vstatep.clock = (d − clockp mod tslice)(

tslice

d
− 1).

This says that when the round is at mostd old, then the virtual clock’s value is

behind the real time by exactly the amount of time remaining until the round is

d old, times(tslice − d)/d.

It is easy to observe thatL1
V Emu[alg] is a legal set for the implementation.

187

Lemma 11.4 L1
V Emu[alg] is a legal set forV Emu[alg].

Legal state setL2
V Emu[alg]:

The next legal set describes a subset of states ofL1
V Emu[alg] that satisfy some additional

properties with respect to the relationship between statesof the leader election algorithm

and the core emulation algorithm.

Definition 11.5 L2
V Emu[alg] is the set of statesx of V Emu[alg] where each of the following

hold:

1. x ∈ L1
V Emu.

This says thatL2
V Emu is a subset ofL1

V Emu.

2. For eachp ∈ P : ¬failedp ∧ clockp 6= ⊥ (nonfailed client with non-⊥ clock value):

(a) partp ⇒ rtimerp ≥ min(d, clockp mod tslice).

This says that ifpart is set, thenTOBcast’s rtimer is eitherd or is at least as

large as the age of the current round.

(b) [prefp ⇒ vstatep 6= ⊥] ∧ [vstatep 6= ⊥ ⇒ rtimerp = d].

This says that ifpref is set in the leader election service, thenvstate is not⊥.

Also, ifvstate is not⊥ thenrtimer must be equal tod.

(c) participatedp ⇒ (partp ∨ clockp mod tslice = 0).

This says that ifparticipated is set, then eitherpart is set or the round has just

begun.

(d) [clockp mod tslice ≤ d ∧ partp]

⇒ [(clockp mod tslice = 0 ∧ ¬participatedp ∧ [prefp ⇔ vstatep 6= ⊥])

∨ ([participatedp ∨ p ∈ serviced] ∧ [pref(p) ⇔ vstatep 6= ⊥]∧
cand(regp) 6= ⊥ ∧ [vstatep 6= ⊥ ⇒ ∃q ∈ P : cand(regp) = 〈q, true〉])].

This says that ifpart is set and the round is at mostd old, then either: (a) the

round has just begun,prefp indicates whethervstate is not⊥, and aprefer′ is

about to occur; or (b)participated is set orp is in serviced, pref(p) indicates

188

whethervstatep 6= ⊥, some process is the leader candidate forregp, and if

vstate is not⊥ then that leader candidate’s pair is a “true” pair.

(e) leaderp ⇒ [¬participatedp ∧ cand(regp) = 〈p, pref(p)〉].
This says that ifleader is set, thenparticipated is not set and〈p, pref(p)〉 is

the leader tuple forregp.

3. For eachp ∈ P : ¬failedp : ∀u, u′ ∈ U :

(a) [(u = reg−(p) ∧ ∃〈vmsg, true, m〉 ∈ to send−p) ∨ (u = regp ∧
∃〈vmsg, true, m〉 ∈ to send+

p)]

⇒ [now mod tslice = d ∧ ∃b ∈ Bool : 〈p, b〉 = cand(u)].

This says that if a non-failed client has a〈vmsg, true, m〉 tuple in one of its

TOBDelay buffers then the round is exactlyd old, and the process is the one

that won the leader competition for the region of thevmsg tuple.

(b) [(u = reg−(p) ∧ ∃〈vstate, u′, q〉 ∈ to send−p) ∨ (u = regp ∧ ∃〈vstate, u′, q〉 ∈
to send+

p)] ⇒ [now mod tslice = d ∧ ¬leaderp ∧ ¬participatedp ∧ u =

u′ ∧ ∃b ∈ Bool : 〈p, b〉 = cand(u) ∧ ∀i ∈ [1, |to send−p to send+
p |] :

[to send−p to send+
p [i] = 〈vstate, u, q′〉 ⇒ ∀j > i : to send−p to send+

p [j] /∈
{〈vstate, u, q〉 | q ∈ Top} ∪ {〈vmsg, true, m〉 | m ∈ Msg}]].
This says that if a non-failed client has avstate message in one of its

TOBDelay buffers then the region tag on the message corresponds to there-

gion it was broadcast in, the client is the one that won the leader competition for

that region, the process will not be performing more leader-related actions, and

no vmsg or vstate messages for the region’s VSA were sent after thevstate

message.

4. ∀u ∈ U : ∀v ∈ nbrs+(u) : [(now mod tslice = d ∧ [∃〈〈vstate, u, q〉, v, p, now〉 ∈
sent : v ∈ nbrs+(u) ∨ ∃〈〈vmsg, true, m〉, u, p, now〉 ∈ sent :6 ∃b ∈ Bool : 〈p, b〉 =

cand(u)]) ⇒ ∀p ∈ P : ∀b ∈ Bool : [(¬failedp ∧ cand(u) = 〈p, b〉) ⇒ ([u =

regp ⇒ (¬participatedp ∧ ¬leaderp ∧ ∀m ∈ Msg : 〈vmsg, true, m〉 6∈ to send+
p)]

∧ [u = reg−(p) ⇒ ∀m ∈ Msg : 〈vmsg, true, m〉 6∈ to send−p]

189

∧ ∀q ∈ Top : 〈vstate, u, q〉 /∈ to send−p to send+
p)]].

This says that if avstate message for a region exists or if avmsg for the region

exists but was sent by a process that did not win the region’s leader competition,

then the process that won the region’s leader competition will not be producing any

vstate or vmsg messages for the region, and does not have any such messages in its

TOBDelay buffers. (In other words, anyvstate and vmsg messages in existence

are not going to be second-guessed by another process sending more messages, and

we can find a single virtual layer state to map to that won’t be changed based on

leader actions. Non-leader messages might have been sent, but they are not prob-

lematic if the leader won’t be performing any more emulation-related broadcasts.)

5. For eachp ∈ P : ¬failedp : [clock mod tslice = d∧ ¬leaderp ∧ ¬participatedp ∧
partp ∧ cand(regp) = 〈p, pref(p)〉] ⇒ ∃q ∈ Top : (〈vstate, regp, q〉 ∈
to send−p to send+

p ∨ 〈〈vstate, regp, q〉, regp, p, now〉 ∈ sent).

This says that if the round isd old, leader and participated are not set,part is

set, and〈p, pref(p)〉 is the leader pair (meaning the client has completed its leader

duties), then avstate message for the region has been sent by the client.

Lemma 11.6 L2
V Emu[alg] is a legal set forV Emu[alg].

Proof: Let x be any state inL2
V Emu[alg]. By Definition 3.12 of a legal set, we must verify

two things for statex:

• For each statex′ of V Emu[alg] and actiona of V Emu[alg] such that(x, a, x′) is in

the set of discrete transitions ofV Emu[alg], statex′ is in L2
V Emu[alg].

• For each statex′ and closed trajectoryτ of V Emu[alg] such thatτ.fstate = x and

τ.lstate = x′, statex′ is in L2
V Emu[alg].

By Lemma 11.4, we know that ifx satisfies the first property ofL2
V Emu[alg], then any

discrete transition ofV Emu[alg] will lead to a statex′ that still satisfies the first property,

and any closed trajectory starting with statex will end in some state that satisfies the first

property. This implies that we just need to check that in the two cases of the legal set

190

definition, the statex′ satisfies all parts of the remaining properties ofL2
V Emu[alg]. Since the

state ofCE[alg]p is not constrained in the legal set definition, we consider only the tocast

outputs of those automata while checking the legal set properties.

For the first case of the legal set definition, the proof is one large, rather simple, case

analysis for each action. For each action, most properties are trivial to verify:

• failp, restartp, drop(p), resetRoundp, VSArcv(m)p, VSAlocal(act)p,

torcv′(m, u)p: All properties will still hold in statex′ after any of these actions.

• GPSupdate(l, t)p: Sincex is in L1
V Emu[alg], we know that the only time a state

change could occur that might affect any of the properties isif the process is changing

regions. However, in that case, local boolean variables arechanged to be mostly false,

making properties 2 and 5 trivially hold. Properties 3 and 4 are also easy to verify in

this case.

• tocast(m)p: The cases of interest to check are where the message being sent is a

true-taggedvmsg message or avstate message.

When the message is a true-taggedvmsg message, the only interesting properties

to check are properties 3 and 4. For property 3(a), we need to check thatnow

mod tslice = d andp is the winner of the leader competition for its current region.

Thatnow mod tslice = d follows from the fact that the precondition specifies that

leaderp must hold, which implies thatnow mod tslice = d because property 2(a)

and property 2(b) ofL1
V Emu[alg] held in statex. That the process is the winner of the

leader competition follows from the fact that property 2(e)holds in statex.

For property 3(b) , we need to check that there were not already anyvstate messages

for the region in aTOBDelay queue. However, the fact thatleaderp was a precon-

dition for the action implies that in statex there could have been no such messages in

aTOBDelay queue. Similar reasoning reveals that property 4 also must still hold.

When the message is avstate message, the interesting cases to check are for prop-

erties 3(b), 4, and 5. Property 5 is easy to immediately see since avstate message

is added to aTOBDelay queue. Property 3(b) and 4 hold for reasons similar to

reasons they held in thevmsg case.

191

• tocast′(m, f)p: The interesting cases to check are for properties 4 and 5.

For property 4, the main thing to check is that if the message transferred toTObcast

is avstate for some regionu or if it is a vmsg purportedly for the region’s VSA but

not sent by the leader, then there wasn’t already avstate or vmsg for the region in a

process’sTOBDelay buffer and that the leader of the region would not be submitting

any. The case where the message is avmsg follows from the fact that property 3(a)

held in statex, making thevmsg case impossible. Thevstate case follows from the

fact that property 3(b) held in statex, meaning that the leader must be done doing

work for the round and there are no othervstate or vmsg messages for the region in

its TOBDelay buffers.

For property 5, it is trivial to see that since avstate message tuple is only transferred

via tocast′ if the vstate tuple was in ato send queue. Also, since property 3(b) held

in statex, the region attached to the message was the correct one with respect to the

to send queue it was in. As a result of thetocast′ action, the tuple is decorated with

the same region as in theto send tuple and put intosent, implying property 5 holds

in statex.

• torcv(m)p: The only interesting case to check is that of the receipt of avstate tuple

message. The property that is interesting to check is the second conjunct of property

2(b). We need to show that ifvstatep 6= ⊥, thenrtimerp = d. If vstatep is not

updated by this action, then the fact that this property heldin statex implies it still

holds in statex′. If vstatep is updated by this action, then it must be that either

vstatep 6= ⊥ in statex or partp was true. Ifvstatep was not⊥ in statex, then

the fact that this property held in statex implies thatrtimerp is still equal tod. If

partp was true, then by the fact that property 2(a) held in statex, we know that

rtimerp ≥ min(d, clockp mod tslice). Forvstatep to have been updated, we know

thatclockp mod tslice = 2d, implying thatrtimerp = d.

• reset: Since the precondition for this leader election action specifies that a round is

more thand old, all properties will hold inx′.

192

• preferp: The properties that must be checked are 2(a)-2(d).

For property 2(a), notice that the action setspartp to true. Since the precondition for

the action says thatclockp mod tslice = 0, we must show thatrtimerp ≥ 0. In other

words, we need to check thatrtimerp is not⊥. This follows from property 2(a) of

L1
V Emu[alg].

For property 2(b), notice that the precondition for the action says thatvstatep 6= ⊥,

and that one of the results of the action is the setting ofprefp to true. This implies

that the first conjunct in property 2(b) holds. To see that thesecond conjunct holds,

we need to check thatrtimerp = d. However, sincevstatep was not⊥ in statex and

this property held in statex, we know thatrtimerp = d in statex. Sincertimerp

andvstatep are not changed by this action, we can conclude thatrtimerp = d.

For property 2(c), notice that a result of the action is thatparticipatedp is set to false,

making property 2(c) trivially true.

For property 2(d), notice that since a precondition of the action is that clockp

mod tslice = 0, and a result of the action is thatparticipatedp is set to false and

prefp is set to true, property 2(d) holds.

• prefer′(val)p: The properties that must be checked are 2(c) and 2(d).

For property 2(c), since one of the preconditions for the action is that clockp

mod tslice = 0, this property trivially holds.

For property 2(d), sinceparticipatedp is set to true by this action, we must show that

if partp is true, thencand(regp) is set to a non-⊥ value,pref(p) indicates whether or

not vstatep 6= ⊥, and ifvstatep 6= ⊥ then some true-tagged process iscand(regp).

Since two of the preconditions for this action are thatparticipatedp is not true and

val = prefp, if partp is true then since property 2(d) held in statex it must have

been the case thatprefp indicated whethervstatep 6= ⊥. As a result of this action,

we know then thatpref(p) would also indicate this. Also as a result of this action, we

know thatcand(regp) will not be set to⊥, and that ifvstatep 6= ⊥ thencand(regp)

would be set to some “true” pair.

193

• leaderp: The properties to verify are properties 2(e), 3(b), and 4. Since the two

preconditions of this action are thatclockp mod tslice = d and thatparticipatedp

be set, we know that properties 3(b) and 4 trivially still hold. For property 2(e), we

need to verify thatparticipatedp is false and thatcand(regp) = 〈p, pref(p)〉. That

participatedp is false is a result of the action. Thatcand(regp) = 〈p, pref(p)〉 is

true is because properties 4 and 7(e) ofInvLeadSpec hold in statex.

• leader′(val)p: The only nontrivial check is for property 2(d). However, this is also

easy to check since the property is assumed to have held in statex and a precondition

for this action is thatnow mod tslice 6= 0.

• participatep: The properties that must be checked are 2(a)-2(d). The reasoning for

property 2(a) is the same as forpreferp.

For property 2(b), since one precondition of the action is that vstatep = ⊥, we must

show thatprefp does not hold. This follows from the fact that this property held in

statex, whenvstatep also was equal to⊥, andprefp is not updated as a result of this

action.

For property 2(c), since one precondition of the action is thatclockp mod tslice = 0,

the property trivially holds.

For property 2(d), we must verify that eitherparticipatedp is false andprefp is

false, or thatparticipatedp is true,pref(p) is false, andcand(regp) is not⊥. Since

property 2(c) held in statex andprefp is not changed by this action, we know that

prefp is false in statex′. This means we just have left to show that ifparticipatedp

is true, thenpref(p) is false andcand(regp) is not⊥. However, since property 2(c)

held in statex and this action does not change the value ofparticipatedp, we know

thatparticipatedp must have been true in statex as well. By property 7(c) and 7(d)

of InvLeadSpec, we know thatpref(p) is false andcand(regp) is not⊥ in statex.

Since none of these variables were modified by this action, the property must still

hold in statex′.

For the second case of the legal set definition, we now consider any closed trajectoryτ such

194

thatx = τ.fstate. Let x′ beτ.lstate. We must show thatx′ ∈ L2
V Emu[alg]. The interesting

cases to verify are for properties 2(a), 2(c), 2(d), and 3. Property 2(a) is preserved by the

fact thatrtimer and clock variables both increase at the same rate untilrtimer hits d.

Property 2(c) is preserved because of stopping conditions on lines 56 and 63 that force

the part variable to be changed to true whenclock mod tslice = 0. Property 2(d) is

preserved because of leader election service stopping conditions forcing a process with

falseparticipated to perform aprefer′ action whennow mod tslice = 0. Property 3 is

preserved because stopping conditions forTOBDelay force messages into send buffers

to immediately be sent.

Legal state setL3
V Emu[alg]:

The final legal set describes a subset of states ofL2
V Emu[alg] from which the system demon-

strates consistency for the emulated state of a VSA.

Definition 11.7 L3
V Emu is the set of statesx of V Emu where each of the following hold:

1. x ∈ L2
V Emu.

This says thatL3
V Emu is a subset ofL2

V Emu.

2. For eachp ∈ P : ¬failedp∧clockp 6= ⊥ (non-failed client with non-⊥ clock value):

(a) [partp ∨ clockp mod tslice = 0] ⇒
procV msgs(regp, tslice⌊now/tslice⌋, procSent(p)) = append (savedqp −
{〈m, t〉 | t − d < tslice⌊now/tslice⌋}, to rcvV msgs(to rcvp, now)).

This says that ifpart is set, then each message sent since the beginning of

the current round that can be received by the client’s current region will be

received by the client or has been stored in the client’ssavedq.

(b) partp ⇒ ∀〈〈vstate, regp, vstate′〉, v, q, d + tslice⌊clockp/tslice⌋〉 ∈
procSent(p) : (v /∈ nbrs+(regp) ∨ 〈〈vstate, regp, vstate′〉, v〉 ∈ to rcvp).

This says that ifpart is set then it has not yet received avstate message sent

at d into the current round for its current region.

195

(c) [vstatep 6= ⊥ ∧ ¬partp] ⇒ [procV msgs(regp, vstatep.clock −
d, procSent(p)) = append(savedqp, to rcvV msgs(to rcvp, now))

∧(vstatep = procV state(d + tslice(⌈now/tslice⌉ − 1), procSent(p))

∨ [clockp mod tslice = 2d ∧ ∃〈〈vstate, regp, vstate′〉, v〉 ∈ to rcvp])].

This says that ifvstate is not⊥ and part is not set, then each message sent

sinced before the client’s virtual clock time that can be received by the client’s

current region will be received by the client or has been stored in the client’s

savedq, which contains no other messages but these. Also, either the client’s

vstate is equal to the one from the lastvstate message for the region, or the

round is2d old and the client is about to receive such a message.

(d) [vstatep 6= ⊥ ∧ partp ∧ clockp mod tslice = 0] ⇒
∃seq = 〈m1, vstatep.clock〉, 〈m2, vstatep.clock〉 · · · , 〈mn, vstatep.clock〉 :

[lookAhead(regp, procV state(regp, vstatep.clock, procSent(p)), vstatep, seq, λ, outqp)

∧procV msgs(regp, vstatep.clock − d, procSent(p)) =

append(seq, append(savedqp, to rcvV msgs(to rcvp, now)))].

This says that if the round has just begun,vstate is not ⊥, and the process

has already performed aprefer output, then there is a tagged sequenceseq of

messages such thatseq followed bysavedq and thevmsg messages about to be

received fromTOBFilter is equal to the sequence ofvmsg tagged messages

sentd beforevstate.clock for receipt in the current region and processed forp

by TObcast. Also,vstate andoutq are consistent with the state and outgoing

buffer that would result if the virtual machine ran startingfrom the attached

virtual state of the lastvstate message for the region in the prior round, and

performedvrcv actions based on the messages and timestamps inseq.

Lemma 11.8 L3
V Emu[alg] is a legal set forV Emu[alg].

Proof: Let x be any state inL3
V Emu[alg]. By Definition 3.12 of a legal set, we must verify

two things for statex:

• For each statex′ of V Emu[alg] and actiona of V Emu[alg] such that(x, a, x′) is in

the set of discrete transitions ofV Emu[alg], statex′ is in L3
V Emu[alg].

196

• For each statex′ and closed trajectoryτ of V Emu[alg] such thatτ.fstate = x and

τ.lstate = x′, statex′ is in L3
V Emu[alg].

By Lemma 11.6, we know that ifx satisfies the first property ofL3
V Emu[alg], then any

discrete transition ofV Emu[alg] will lead to a statex′ that still satisfies the first property,

and any closed trajectory starting with statex will end in some state that satisfies the first

property. This implies that we just need to check that in the two cases of the legal set

definition, the statex′ satisfies all parts of the remaining properties ofL3
V Emu[alg]. Since the

state ofCE[alg]p is not constrained in the legal set definition, we only consider thetocast

outputs of those automata while checking the legal set properties.

For the first case of the legal set definition, we consider eachaction:

• failp, restartp, reset, prefer′(val)p, leaderp, leader′(val)p, tocast(m)p,

tocast′(m, f)p, drop(p): All properties will still hold in statex′ after any of these

actions.

• GPSupdate(l, t)p: The only interesting case is whereGPSupdate changes the re-

gion of a process. However, in that case, emulation-relatedBoolean variables are all

set to false,savedq is cleared, andvstate is set to⊥, making property 2 trivially

hold.

• torcv(m)p: If the message is avmsg message, then the interesting properties to

check are properties 2(a), 2(c), and 2(d).

For property 2(a), it is easy to see that ifpart is true, it must have also

held in statex and that the property holds because the message at the head of

to rcvV msgs(x(to rcvp), now) is now moved to the end ofsavedq, preserving the

property. The reasoning for properties 2(c) and 2(d) is similar.

If the message is avcast message for the process’s current region and the round is

exactly2d old, then the interesting properties to check are properties 2(b) and 2(c).

For property 2(b), ifpartp was set in statex, then a result of this action is that

partp is set to false, making this property hold. For property 2(c), this action only

changesvstate or part if part held in statex or vstate was not⊥. The result of the

197

action is then to setvstate to a non-⊥ value consistent with the one in them, strip

savedq of messages sent before the start of the round, and setpart to false. That

procV msgs has the appropriate relationship tosavedq and to rcv holds because

in statex eithervstate was not⊥, implying that this statement held in that state,

or partp held, implying property 2(a) held in statex, and hence still holds in this

one. For the second conjunct we must show thisvstate message was the one that

procV state uses to calculate the virtual state it returns or that that message is still in

to rcv. We know by property 7(d) ofInvTOBspec thatto rcv contains a suffix of the

messages that the process was to receive inprocSent(p). Hence, if there exists no

othervstate message for the region into rcv we know thatm must have been the

one consistent with the result ofprocV state. (This is partly because properties 2(a)

and 2(b) ofL2
V Emu[alg] tells us thatrtimer must bed and hence that the process will

receive any messages that should be received by processes inits region.)

• torcv′(m, u)p: The reasoning for this action is very similar to the reasoning for

torcv(m)p.

• preferp: The reasoning for properties 2(a) and 2(b) mirror those of theparticipatep

action. The only additional property to check for this action is property 2(d).

Since a precondition of the action is thatvstatep 6= ⊥ and clockp mod tslice =

0 and a result is thatpartp is set to true, we note that since property 2(c)

held in statex, it must be thatvstatep = procV state(d + tslice(⌈now/tslice⌉ −
1), procSent(p)) and procV msgs(regp, vstatep.clock − d, procSent(p)) =

append(savedqp, to rcvV msgs(to rcvp, now)). We also know thatoutq is set to

λ by this action. Hence, it is apparent that by selectingseq = λ, the condition holds.

• participatep: Since a precondition of this action is thatvstate = ⊥ and the result is

thatpart gets set to true, the only properties we need to verify are properties 2(a) and

2(b). Property 2(b) trivially holds since no suchvstate messages could yet exist. To

show property 2(a) holds, notice that the left hand side of the equality consists of no

messages, due to properties 4 and 5 ofInvTOBspec. Also property 7(d) ofInvTOBspec

implies that the result ofto rcvV msgs is also empty. Hence, all that remains is to

198

show thatsavedq contains no messages tagged with the current time. This follows

from the fact that a precondition is thatclock mod tslice = 0 and this property held

in statex, which implies thatsavedq then contained no such tagged messages.

• VSArcv(m)p: Since a precondition of this action is thatpart is true and that the mes-

sage at the head ofsavedq is timestamped less thand into the round, the only inter-

esting property we need to check is property 2(d). Since thisproperty held for some

seq andvstate in statex, we simply extendseq by appending〈m, vstatep.clock〉,
which gives the second conjunct. Also, since the result of this action is exactly the

same change invstate as with avrcv(m) action, we have that the first conjunct must

also hold.

• VSAlocal(act)p: Since a precondition of this action is thatpart is true, the only

interesting property we need to check is property 2(d). Since this property held for

someseq and thevstate in statex, we keep the sameseq, which preserves the second

conjunct. For the first, notice that since the result of this action is exactly the same

change invstate as with a locally controlled action, and avcast message will be

added tooutq, we have that the first conjunct must also hold.

• resetRoundp: Since a result of this action is thatvstatep is set to⊥ andpart is set

to false, property 2 will trivially hold.

For the second case of the legal set definition, we now consider any closed trajectoryτ such

thatx = τ.fstate. Let x′ beτ.lstate. We must show thatx′ ∈ L3
V Emu[alg]. The interesting

properties to check are properties 2(c) and 2(d). Property 2(c) holds becauseTOBDelay

stopping conditions force the processing of messages into send queues, guaranteeing re-

ceipt of anyvstate messages before time moves beyond2d into a round. Also, the local

copies ofvstate cannot be updated at time 0 untilpart is updated through aprefer ac-

tion, which line 56 guarantees. Property 2(d) holds becauseof stopping conditions on lines

74-75 and 82-83, restricting the order in which simulated actions are performed on virtual

VSA state.

199

11.3.2 Simulation relation

Here we show that the implementation started in setL3
V Emu[alg] implements theV Layer

started in a reachable state ofRW‖V W‖V bcast. We do this by first describing a simula-

tion relationREmu[alg] for eachalg ∈ V Algs from our implementation of the VSA layer to

the VSA layer. We prove thatREmu[alg] is a simulation relation in Lemma 11.10, and then

conclude thatV Emu[alg] implements the VSA layer (Theorem 11.11). In other words, we

conclude that the traces of our implementation are traces ofthe VSA layer. We then show

in Lemma 11.14 that for each state inL3
V Emu[alg] there exists some state ofVLayer[alg]

whereRW‖V W‖V bcast is in a reachable state that is related to it under the simulation

relation. We also show another result, that ties traces of the implementation to traces of a

constrained set of execution fragments of the VSA layer (Lemma 11.13).

The definition is structured in the following way: Property 1constrains the relation so

that forxREmu[alg]y to hold, statex must be a state in the legal setL3
V Emu[alg]. This con-

strains the simulation relation to only be concerned with implementation states which we

will show are related to certain desirable states ofV Layer[alg] (see Lemma 11.14). Prop-

erty 2 states some consistency properties of statey of the virtual layer. Property 3 relates

the value ofRW between the implementation and the specification. Property4 constrains

the value ofvbcastq in the specification based on messages sent in the implementation.

Properties 5 and 6 relate the failure status and state of physical nodes in the implementa-

tion to the state of client nodes in the specification. Property 7 describes the failure status

and state of the virtual nodes based on the state of the implementation. One of the other

things to note in property 7 is the relationship between the failure status of a VSA and the

state of the emulation in a region. Intuitively, a VSA is failed when there are no emulators

in a region that will be able to continue or perform emulationof the VSA. The conditions

describing exactly when a VSA for some region is failed is described in property 7(a).

Definition 11.9 For eachalg ∈ V Algs, defineREmu[alg] to be a relation between statesx

of V Emu[alg] and statesy of V Layer[alg] such thatxREmu[alg]y if each of the following

holds:

1. x ∈ L3
V Emu[alg].

200

This says that statex must be a state in the legal setL3
V Emu[alg].

2. Statey satisfies the following properties:

(a) y⌈XRW‖V W‖V bcast ∈ InvRW‖V W‖V bcast.

This says that theRW‖V W‖V bcast components ofy are inInvRW‖V W‖V bcast.

(b) ∀u ∈ U : [(¬failedu ⇒ clocku = RW.now)∧last(u) ≥ max({t ∈ R
≥0 | ∃l ∈

R : ∃p ∈ P : 〈l, t〉 ∈ updates(p)})].
This says that any non-failed VSA has aclock equal to the real-time and that

V W has updated each region with atime action no longer ago than the last

GPSupdate.

(c) ∀u ∈ U : ¬failedu : ∀〈m, t〉 ∈ to sendu :

[now mod tslice > d ⇒ e + t − rtimeru ≥ d − now mod tslice + tslice]

∧ [now mod tslice ≤ d ⇒ e + t − rtimeru ≥ d − now mod tslice].

This says that at any nonfailed VSA, the oldest message in itsV BDelay buffer

is one that will not be older thane by the next time a round isd old.

3. x(RW) = y(RW).

This says that theRW component in both states is the same.

4. Let 〈〈vmsg, bx
1 , m

x
1〉, ux

1, p1, t
x
1〉, · · · , 〈〈vmsg, bx

n, mx
n〉, ux

n, pn, txn〉 be the subsequence

of x(oldsent)x(sent) of vmsg messages wheretxi ≥ now − d. Let

〈my
1, u

y
1, t

y
1, P

′
1〉, · · · , 〈my

m, uy
m, tym, P ′m〉 be the subsequence ofy(vbcastq) such that

tyi ≥ now − d. Then there exists a bijection between elements of the two sequences

such that for any two related tuples〈〈vmsg, bx
i , m

x
i 〉, ux

i , pi, t
x
i 〉 and〈my

j , u
y
j , t

y
j , P

′
j〉:

(a) mx
i = my

j ∧ ux
i = uy

j ∧ txi = tyj .

This says that the related tuples match with respect to the message sent, the

region they were sent from, and the time they were sent.

(b) ∀u ∈ U : u /∈ P ′j ⇔ [i ≤ n−|x(sent)|∨(i = 1+n−|x(sent)|∧|procs| < |P |)].
This says that a region is not in the set of “to-be-processed”ids in V bcast

exactly when theTObcast tuple it is associated with is either inx(oldsent) or

is the head ofx(sent) and the message was processed for some process.

201

(c) ∀p ∈ P : p /∈ P ′j ⇔
[([i ≤ n − |x(sent)| ∨ (i = 1 + n − |x(sent)| ∧ p /∈ x(procs))] ∧ [failedp ∨
〈〈vmsg, bx

i , m
x
i 〉, ux

i 〉 /∈ x(to rcvp)]) ∨ (txi 6= now ∧ ¬regSpan(p, ux
i , t

x
i))].

This says that a client id is not in the set of “to-be-processed” ids in V bcast

exactly when either (a) the process fails theregSpan test and the timestamp for

the message is notnow or (b) theTObcast tuple it is associated with is either

in x(oldsent) or is the head ofx(sent) and p was processed, and either the

client is failed or has already processed the message tuple from itsTOBFilter

queue.

5. ∀p ∈ P : x(failedp) = y(failedp).

This says that the fail status matches between the states foreach client.

6. ∀p ∈ P : ¬failedp:

(a) x(updatedp) = y(updatedp) ∧ x(CE[alg]p) = y(alg(p)).

This says that theupdated variable matches between theV BDelay and

TOBDelay automata in the two states. It also says that the state of the client

algorithm for the virtual layer being run is the same.

(b) Let 〈vmsg, false, m1〉, · · · 〈vmsg, false, mn〉 be the subsequence of

x(to send−p) of 〈vmsg, false, m〉 tuples. Thenm1, · · · , mn = y(to send−p).

This says thatto send− delay buffer inV BDelay corresponds to the sequence

of false-taggedvmsg tuples in theto send− delay buffer inTOBDelay.

(c) Let 〈vmsg, false, m1〉, · · · 〈vmsg, false, mn〉 be the subsequence of

x(to send+
p) of 〈vmsg, false, m〉 tuples. Thenm1, · · · , mn = y(to send+

p).

This says thatto send+ delay buffer inV BDelay corresponds to the sequence

of false-taggedvmsg tuples in theto send+ delay buffer inTOBDelay.

7. For eachu ∈ U : Let 〈m1, t1〉, · · · , 〈mn, tn〉 bey(to sendu).

For eachp ∈ P , let 〈vmsg, true, np
1〉, · · · , 〈vmsg, true, np

m〉 be the subsequence of

x(to send−p) x(to send+
p) of 〈vmsg, true, m〉 tuples.

(a) y(failedu) ⇔ each of the following holds in statex:

202

i. 6 ∃p ∈ P : [¬failedp∧([u = reg−(p)∧∃〈vmsg, true, m〉 ∈ x(to send−p)]∨
[u = regp ∧ ∃〈vmsg, true, m〉 ∈ x(to send+

p)])].

ii. now mod tslice ≥ d ⇒
(6 ∃p ∈ P : [¬failedp ∧ clockp 6= ⊥ ∧ regp = u ∧ (partp ∨ vstatep 6= ⊥)]

∨(procV stateu(d + tslice⌊now/tslice⌋, oldsent sent) = ⊥∧ 6 ∃p ∈ P :

[¬failedp ∧ ∃〈vstate, u, vstate〉 ∈ x(to send−p)x(to send+
p)])).

iii. 6 ∃p ∈ P : [¬failedp ∧ clockp 6= ⊥ ∧ regp = u ∧ (¬partp ∨
¬participatedp) ∧ vstatep 6= ⊥ ∧ now mod tslice = 0].

iv. 6 ∃p ∈ P : [¬failedp ∧ clockp 6= ⊥ ∧ regp = u ∧ partp ∧
cand(u) = 〈p, pref(p)〉∧(participatedp∨leaderp)∧(vstatep 6= ⊥∨now

mod tslice = d)].

This property describes exactly when a VSA is failed. These four properties are

basically the negation of the preconditions that will be described in part(c)(ii)-

(v). In part(c)(ii)-(v), we describe how to determine the state of non-failed VSAs

based on a case analysis of the state of the implementation. For each region,

property 7(a) makes the region be failed if it doesn’t fit intoany of the cases in

part(c)(ii)-(v).

(b) ∀p ∈ P : ¬failedp : [(u = reg−(p)∧∃〈vmsg, true, m〉 ∈ x(to send−p))∨(u =

regp ∧ ∃〈vmsg, true, m〉 ∈ x(to send+
p))] ⇒ (np

1, · · · , np
m) = (m1, · · · , mm).

This says that true-taggedvmsgs in a non-failed process’sTOBDelay buffers

correspond to a prefix of the sequence of messages in the appropriate region’s

VSAV BDelay buffer.

(c) If there exists a〈m, now − d〉 = head(sent) and |x(procs)| < |P | then let

procSent = append(oldsent, head(sent)), else letprocSent = oldsent.

Then¬y(failedu) ⇒ ∃vstate ∈ Qalg(u) : ∃savedq ∈ (Msg×R
≥0)∗ : ∃outq ∈

Msg∗ such that each of the following holds:

i. lookAhead(u, vstate, y(vstateu), savedq, outq, (m1, · · · , mn)).

ii. ∀v ∈ Top : [now mod tslice = d

∧∃p ∈ P : (¬failedp ∧ clockp 6= ⊥∧ regp = u ∧ [partp ∨ vstatep 6= ⊥])

203

∧∃p ∈ P : (¬failedp ∧ ∃〈〈vstate, u, v〉〉 ∈ x(to send−p)x(to send+
p))] ⇒

• [v ∈ Qalg(u) ⇒ v⌈(Xalg(u)−{clock}) = vstate⌈(Xalg(u)−{clock})]∧
[v /∈ Qalg(u) ⇒ vstate = startalg(u)(now)] ∧ vstate.clock = now.

• savedq = procV msgs(u, tslice⌊now/tslice⌋, procSent).

• outq = (np
1, · · · , np

m).

This is the case where a round isd old and there exists a process in the

region that is eligible to process an incomingvstate message for the region

in that round, and some alive process has avstate message for the region

in a TOBDelay buffer. (In other words, the case where avstate message

for a region has been queued for sending and some process is currently

eligible to receive it and continue the emulation.) Theny(vstateu) and

y(to sendu) are consistent with the state that would result if the VSA at

region u were to start at the state calculated from thatvstate message,

process messages that were sent starting in the beginning ofthe round and

that would be received in the region, and add messages generated byvcast

actions to the end of the true-taggedvmsgs in the process’sTOBDelay

buffer.

iii. [now mod tslice ≥ d

∧∃p ∈ P : (¬failedp ∧ clockp 6= ⊥∧ regp = u ∧ [partp ∨ vstatep 6= ⊥])

∧procV stateu(d + tslice⌊now/tslice⌋, oldsent sent) 6= ⊥] ⇒

• vstate = procV stateu(d + tslice⌊now/tslice⌋, oldsent sent).

• savedq = procV msgs(u, tslice⌊now/tslice⌋, procSent).

• outq = λ.

This is the case where there is avstate message for the region sent in this

round and there exists a process in the region that is eligible to process it.

(In other words, the case where avstate message has successfully been

transmitted and some process is currently eligible to receive it and con-

tinue the emulation.) Theny(vstateu) andy(to sendu) are consistent with

the state that would result if the VSA at regionu were to start at the state

204

calculated from thevstate message, process messages that were sent start-

ing in the beginning of the round that would be received in theregion, and

add messages generated byvcast actions to an initially emptyto sendu.

iv. [now mod tslice = 0 ∧ ∃p ∈ P : (¬failedp ∧ clockp 6= ⊥ ∧ regp =

u ∧ vstatep 6= ⊥∧ [¬partp ∨ ¬participatedp])] ⇒

• vstate = procV stateu(now − tslice + d, oldsent).

• savedq = procV msgs(u, now − tslice, procSent).

• outq = λ.

This is the case where it is the beginning of the round and there is still

some process in the region with a non-⊥ vstate that has not yet competed

in the leader election service. (In other words, the case where a round has

just begun and some emulator has yet to participate in the leader election

service, meaning it is still possible that an emulator will continue the VSA

emulation.) Theny(vstateu) andy(to sendu) are consistent with the state

that would result if the VSA at regionu were to start at the state calculated

from thevstate message for the region in the last round, process messages

that were sent starting in the beginning of the last round that would be

received in the region, and add messages generated byvcast actions to an

initially emptyto sendu.

v. If head(x(sent)) is equal to some〈〈vmsg, b, m〉, v, p′, now − d〉 where

v ∈ nbrs+(u) and |x(procs)| < |P |, then letχ = 〈m, now〉, else let

it be λ. Then∀p ∈ P : [¬failedp ∧ clockp 6= ⊥ ∧ regp = u ∧ partp ∧
(participatedp∨leaderp)∧cand(u) = 〈p, pref(p)〉∧(vstatep 6= ⊥∨now

mod tslice = d)] ⇒

• [x(vstatep) 6= ⊥∧ vstate = x(vstatep)]

∨[x(vstatep) = ⊥ ∧ vstate = startalg(u)(now)].

• savedq = append(savedqp − {〈m′, t′〉 | t′ < now − d},

append(to rcvV msgs(to rcvp, now), χ)).

• [x(vstatep) 6= ⊥∧ outq = append((np
1, · · ·np

m), x(outqp))]

205

∨[x(vstatep) = ⊥ ∧ outq = λ].

This says that if a non-failed process is in a region, haspart set, and is go-

ing to send avstate message (it won the leader competetion for the region

and has not yet switched both itsparticipated andleader bits off) then:

(a) if its vstate is not⊥ theny(vstateu) and y(to sendu) are consistent

with the state that would result if regionu’s VSA were to start at the pro-

cess’s currentvstate, process messages that were sent starting in the be-

ginning of the round that would be received in the region, andadd mes-

sages generated byvcast actions to the end of the concatenation of the

true-taggedvmsgs in the process’sTOBDelay buffer with the process’s

outq;

(b) if its vstate is ⊥ (meaning the leader was not previously an emula-

tor) and the round isd old theny(vstateu) andy(to sendu) is consistent

with the state that would result if regionu’s VSA were to start at state

startalg(u)(now), process messages that were sent starting in the begin-

ning of the round that would be received in the region, and addmessages

generated byvcast actions to an initially emptyto sendu.

Now we show thatREmu[alg] is a simulation relation fromV Emu[alg] to V Layer[alg],

both with some actions hidden.

Lemma 11.10 DefineHV Emu be{tocast(m)p, torcv(m)p, leaderp, preferp | m ∈ Msg, p ∈
P}. Then for eachalg ∈ V Algs, REmu[alg] is a simulation relation from

ActHide(HV Emu, V Emu[alg]) to ActHide(HV L, V Layer[alg]).

Proof: By definition of a simulation relation we must show three things for all states of

the two automata:

1. We must show that for anyx ∈ ΘV Emu[alg] there exists a statey ∈ ΘV Layer[alg] such

thatxREmu[alg]y. There is one unique initial non-failed and non-loc state for mobile

nodes in both the first and the second automaton, and any values of failed andloc for

eachp ∈ P is possible for either automaton. Have each VSA be failed. Itis easy to

check thatREmu[alg] holds between any two such states.

206

2. Say thatx ∈ QV Emu[alg] andy ∈ QV Layer[alg], and thatxREmu[alg]y. Then for any ac-

tiona ∈ AV Emu[alg], if ActHide(HV Emu, V Emu[alg]) performs actiona and the state

changes fromx to x′, we must show that there exists a closed execution fragmentβ

of ActHide(HV L, V Layer[alg]) with β.fstate = y, trace(β) = trace(℘(x)a℘(x′)),

andx′REmu[alg]β.lstate. The interesting thing to note in this portion of the proof is

the failures of VSAs. There are several actions that can result in the failure of a VSA:

a fail of a process in its region, aGPSupdate that indicates that a process has left its

region, atocast′ of avmsg message for the region by a process not in the region, or

aprefer′(true) at a process that will not win the leader election competition. In each

case, the VSA fails in the abstract level only if the resulting state in the implementa-

tion is one that satisfies property 7(a) ofRV Emu[alg], which describes the conditions

corresponding to VSA failure.

By Lemma 11.8, Property 1 ofREmu[alg] holds inx′.

For the other properties, we consider each action:

• Internal actiona of CE[alg]p: Let β be ℘(y) a ℘(y′). It is trivial to see that

x′REmu[alg]y and that the trace of bothβ andα are empty.

• reset, participatep, resetRoundp, preferp, leader′(val)p, or leaderp: Let β

be the point trajectory℘(y). It is easy to check thatx′REmu[alg]y for each of

these cases and that the trace of bothβ andα are empty.

• failp: If the conditions in property 7(a) hold forregp in statex′, then letβ be

℘(y) failp℘(y∗) failregp
℘(y′). Otherwise, letβ be℘(y) failregp

℘(y′). It is trivial

to see that the traces ofα andβ are the same in both cases. It is obvious that all

properties of the simulation relation hold between statesx′ andy′.

• restartp: Let β be℘(y) restartp ℘(y′). It is trivial to see thatx′REmu[alg]y and

that the traces ofβ andα are the same.

• GPSupdate(l, t)p: Let u1 · · ·u|u| be some ordering of the region ids.

Let 〈n1, j1〉, · · · , 〈nk, jk〉 be an ordering of the indicesni of tuples

〈mi, ui, ti, P
′
i 〉 in y(vbcastq) and process idsji such thatti 6= x(now),

207

ji ∈ P ′i , and ¬x(regSpan(ji, ui, ti)). If x(regp) 6= x′(regp)

and the properties in 7(a) hold forx(regp) in state x′, then let β

be ℘(y) GPSupdate(l, t)p ℘(y∗) time(t)u1 ℘(yu1) · · · time(t)u|U|
℘(yu|U|

)

drop(n1, j1) ℘(y1) · · ·drop(nk, jk) ℘(yk) failregp
℘(y′). Otherwise, letβ stop

after℘(yk). It is trivial to see that the traces ofα andβ are the same in both

cases.

The only interesting properties to check are properties 4(c) and 7(a). For prop-

erty 4(c), it is obvious that if the property held between state x andy, then it

will also hold betweenx′ andyk.lstate since theGPSupdate removes the as-

sociated message tuple forTOBFilter or will drop the message inTObcast

when exactlyd time has passed since it was sent.

For property 7(a), theGPSupdate only affects the property if the process has

changed regions from some regionu. If it has, then if the conditions in 7(a)

hold in statex′, the simulation relation implies that thaty′(failedu) must be

true. This is obviously the case after the addition of thefail event.

• tocast(m)p: If there exists anm′ such thatm = 〈vmsg, false, m′〉, then let

β be℘(y) vcast(m′)p ℘(y′). It is obvious that the properties of the simulation

relation hold betweenx′ andy′. It is obvious that the traces ofα andβ are the

same.

If there is no suchm′, then letβ be the point trajectory℘(y). It is obvious that

the traces ofα andβ are the same. The only interesting properties to check

are property 7(b) if the message was a true-taggedvmsg message or property

7(c)(ii) if the message was avstate message.

In the case of a true-taggedvmsg, we need to verify that the resulting

TOBDelay buffer of such messages corresponds to a prefix of the VSA’s

V BDelay messages. This follows from the fact that property 7(c)(v) holds

between statex andy, implying that when the head ofx(outqp) is removed and

decorated to sit at the end of theTOBDelay buffers, the resultingoutq com-

puted by the property for statex′ is the same as in statex, implying the property

208

still holds.

In the case of a〈vstate, u, q〉 message, we look at two cases, whereq is in

Qalg(u) and whereq is not. Notice that for this action to occur, it must be that

¬failedp, clockp 6= ⊥, regp = u, andleaderp.

If q is in the set of states, then since statex andy satisfied property 7(c)(v)

and a precondition for the action is thatoutqp = λ and no changes tovstatep,

savedqp, to rcvp, or outqp are made by the current action, then thelookAhead

statement over the same arguments most hold between statesx′ andy′.

If q is not in the set of states, then since statex andy satisfied property 7(c)(v)

and a precondition for the action is thatvstate = ⊥ and no changes tovstatep,

savedqp, to rcvp, or outqp are made by the current action, then thelookAhead

statement over the same arguments most hold between statesx′ andy′.

• tocast′(m, f)p: If m is not avmsg tuple then letβ be the point trajectory

℘(y). It is obvious that the traces ofα and β are the same. The only in-

teresting property to check in this case is property 7(c)(iii). In order for

a tocast′ of a vstate message for a regionu to occur it must be that the

message was in aTOBDelay buffer, and by property 3(b) ofL2
V Emu[alg]

there can be no othervmsg or vstate messages after it inTOBDelay.

This implies that thex(procV msgs(u, tslice⌊now/tslice⌋, procSent)) =

x′(procV msgs(u, tslice⌊now/tslice⌋, procSent)), x(np
1, · · · , np

m) = λ and

x′(procV state(d + tslice⌊now/tslice⌋, oldsent sent)) is equal to the calculated

vstate in statex for property 2(c)(ii). All this implies that the result of the

lookAhead function betweenx′ andy is still true.

If there exists anm′ ∈ Msg such that m = 〈vmsg, false, m′〉
then let β be ℘(y) vcast′(m′, f)p ℘(y′). If there exists anm′ ∈
Msg such that m = 〈vmsg, true, m′〉 then we have four cases. If

f is true and statex′ satisfies the conditions in property 7(a) then

let β be ℘(y) vcast′(m′, true)regp
℘(y∗)failregp

℘(y′). If f is true and

state x′ does not satisfy the conditions in property 7(a) then letβ be

209

℘(y) vcast′(m′, true)regp
℘(y′). The remaining two cases are for whenf is

false, and where we replaceregp with reg−(p). The most interesting property

to check is property 7(c)(v). However, since this same property held between

x andy and the only difference is that the tuple inTOBDelay that is associ-

ated withx(np
1) is removed both fromTOBDelay and the VSA’sV BDelay,

preserving the property between statex′ andy′.

• torcv(m)p: If there exists anm′ ∈ Msg and ab ∈ Bool such thatm =

〈vmsg, b, m′〉 then letβ be℘(y) vrcv(m′)p ℘(y′). Otherwise, letβ be the point

trajectory℘(y). It is obvious that the properties of the simulation relation hold

betweenx′ and the either of the final states ofβ. It is obvious that the traces of

α andβ are the same.

• torcv′(m, u)p, drop(p): If there exists a〈〈vmsg, b, m′〉, u, q, x(now) − d〉 =

head(x(sent)) and |x(procs)| = |P |, then let n be the index of the el-

ement ofy(vbcastq) associated with the tuple at the head ofx(sent), let

u1, · · ·uk be an ordering of the elements innbrs+(u) and letuk+1, · · ·uk+l

be an ordering of the elements inU − nbrs+(u). Then let β be

℘(y) vrcv(m′)u1 β1 · · · vrcv(m′)uk
βkdrop(n, uk+1) βk+1 · · · drop(n, uk+l) βk+l,

where for eachi ∈ [1, k], βi reflects the maximal local computation of the VSA

in regionui after receipt of the message. Otherwise, letβ be the point trajectory

℘(y). It is obvious that the traces ofα andβ are the same in either case.

In the case where the message is avmsg message, the interesting properties to

check are properties 4(b) and 7(c)(ii-iv). Property 4(b) holds since all region ids

are removed from the associatedvbcastq message tuples’sP ′ variable exactly

whenprocs in TObcast goes from being full to having processed a member.

The portions of property 7(c) of interest will hold betweenx′ andβ.lstate be-

cause the only difference in the computedvstate, savedq, andoutq for the

lookAhead function is in the possible extension of thesavedq from statex by

the appropriate receivedvmsg. The message is added to the computedsavedq

for the implementation exactly when it is processed by the VSA in regp, imply-

210

ing that if property 7(c) held between statex andy then it also holds between

x′ andβ.lstate.

• prefer′(val)p: If val is true and the properties of 7(a) hold in statex′ then letβ

be℘(y) failregp
℘(y′). Otherwise letβ be the point trajectory℘(y). It is obvious

that the traces ofα andβ are the same. It is obvious that the simulation relation

holds between statex′ and the final state ofβ.

• VSArcv(m)p: Let β be the point trajectory℘(y). It is obvious that the traces of

α andβ are the same. The only interesting property of the simulation relation

to check is property 7(c)(v). We know that the only difference in the calculated

vstate, savedq, andoutq is that thevstate is the result of receiving mesasgem

and performing local computations until no more are possible at the VSA, and

removing the first element of the calculatedsavedq. Inspection of the function

lookAhead reveals that since property 7(c)(v) held between statex andy, it

must hold between statex′ andy.

• VSAlocal(act)p: Let β be the point trajectory℘(y). It is obvious that the traces

of α andβ are the same. The only interesting property of the simulation relation

to check is property 7(c)(v), but the reasoning is similar tothat ofVSArcv.

3. Say thatx ∈ QV Emu[alg], y ∈ QV Layer[alg], andxREmu[alg]y. Let α be an execution

fragment ofActHide(HV Emu, V Emu[alg]) consisting of one closed trajectory, with

α.fstate = x.

We must show that there is a closed execution fragmentβ of

ActHide(HV L, V Layer[alg]) with β.fstate = y, trace(β) = trace(α), and

α.lstateREmu[alg]β.lstate. The interesting thing to note in this portion of the proof

is the VSA restarts in the abstract level. They occur when rounds ared old and

certain conditions are satisfied. They are added to executions of the abstract layer

based on trajectories of the implementation that straddle the point where a round is

d old.

If there exists a timet such thatx(now) ≤ t ≤ x′(now) and t mod tslice = d

then let u1, · · · , uk be some ordering of the region ids for which for eachi ∈

211

[1, k] there exists a processpi such that¬failedpi
, clockpi

6= ⊥, regpi
= ui,

participatedpi
∨ leaderpi

, and cand(ui) = 〈pi, pref(pi)〉. If such a t exists

then letβ beβ0restartu1℘(y′1)time(t)u1℘(y1) · · · restartuk
℘(y′k)timed(t)uk

, yk, where

β0.lstate(now) = t. Otherwise, letβ consist just ofyk. Bothβ0 andyk are required

to provide maximal ordered local computation at the VSAs (the actions performed at

each VSA are the ones as indicated by thenext function for the VSA and there exist

no locally controlled actions for any VSA in stateyk.lstate).

Finally, if x(now) < x′(now) then yk contains adrop(n, j) action at time

yk.lstate(now) for each tuple〈m, u, t, P ′〉 = vbcastq[n] and process idj such that

j ∈ P ′ and¬x′(regSpan(j, u, t)). This ensures that for property 7(c) the calculated

savedq for each subpart corresponds to the messages that have been received by the

VSA.

Since each of the actions possibly added above are internal to the abstract system,

it is apparent that the traces ofα andβ are the same. To check that the simulation

relation holds between statex and stateyk.lstate, we note that the most interesting

properties to check are properties 7(a) and 7(c).

For property 7(a), notice that by construction atd into a round, if there is a process

that will perform send avstate message, then the VSA of the process’s region is

alive, tacking the fourth part of property 7(a). Since the VSA cannot fail until a

discrete action occurs to change a variable referenced in property 7(a)(iv), we know

that property 7(a) holds between statesx′ andyk.lstate.

For property 7(c), notice that in stateyk, each alive VSA performs an ordered se-

quence of locally controlled events until no more are enabled. Sincex andy are

related and each VSA has simply developed its state forward from y in a manner

consistent with thelookAhead function, it is obvious that property 7(c) holds be-

tween statesx′ andyk.lstate.

The following theorem concludes that for eachalg ∈ V Algs, our implementation of

the VSA layer implementsV Layer[alg], after the hiding of several actions.

212

Theorem 11.11For each alg ∈ V Algs, ActHide(HV Emu, V Emu[alg]) ≤
ActHide(HV L, V Layer[alg]).

Proof: This follows directly from the previous lemma and Corollary2.23.

One useful corollary of this result and the construction of the matching ex-

ecution in the proof of the simulation relationREmu[alg] is that fragments of

ActHide(HV Emu, V Emu[alg]) starting in states inL3
V Emu[alg] correspond to fragments of

ActHide(HV L, V Layer[alg]) started in states in{y ∈ QV Layer[alg] | y⌈XRW‖V W‖V bcast ∈
InvRW‖V W‖V bcast} that are also in the setS defined below.S describes execution frag-

ments of the virtual layer that satisfy certain properties with respect to the failure status of

a VSA. In particular, it describes when afail or restart for a VSA is allowed to occur, and

when arestart of a VSA is guaranteed to occur.

Definition 11.12 Define S to be the function that maps, for eachalg ∈ V Algs,

V LNodes[alg] to the suffix-closed set of execution fragmentsα of V Layer[alg] where

for eachu ∈ U :

1. If a restartu occurs inα at timet thent mod tslice = d and nofail or GPSupdate

actions occur inα at timet beforerestartu.

This says that a VSA can only restart exactlyd into a timeslice, before anyfail or

GPSupdate actions have occurred.

2. For eacht ∈ R
≥0 such thatt mod tslice = 0 and α.fstate(RW.now) < t ≤

α.lstate(RW.now) we define the following:

• For each statex in α and process idj ∈ P , we defineaware(u, j, x) to be true

exactly when¬x(failedj), x(V BDelayj .updated) = true, andx(reg(j)) = u.

(This is a way of saying that processj is alive and knows it is in regionu in

statex.)

• DefineJu to be the set of process idsj such that there exists a statex in α with

x(RW.now) = t such thataware(u, j, x) is true.

213

• For eachj ∈ Ju, definexj to be the first state inα such thatx(RW.now) = t

andaware(u, j, x) is true.

Then

(a) Letx be the first state inα such thatRW.now = t. If ¬x(failedu), then there

exists some processj such thataware(u, j, x).

This says that at the beginning of a new timeslice, if a VSA is not failed then it

must be the case that there is some alive process that knows itis in the VSA’s

region.

(b) If α.lstate(RW.now) ≥ t + d, |Ju| > 0 and aware(u, j, x′) is true for each

j ∈ Ju and each statex′ in α starting from statexj and ending with the first

state such thatRW.now = t+d, then there exists arestartu action inα at time

t + d.

This says that if the set of processes alive and aware they arein regionu at the

beginning of a timeslice is nonempty and none of the processes in the set fail

or leave the region befored into the timeslice, then arestartu action will occur

for the region’s VSA.

(c) If there exists afailu action at statex in α at timet′ such thatt′−t′ mod tslice =

t and¬x(failedu), then there exists aj ∈ Ju and a statex′j in α after xj and

no later thanx such that¬aware(u, j, x′j).

This says that if an alive VSA fails, then there must have beensome process that

was alive and aware it was in the VSA’s region at the beginningof the timeslice

but that has failed or left the region in the meantime.

(d) If there exists afailu action at statex in α at timet′ such thatt′ ∈ (t+d, t+tslice)

and¬x(failedu), then for eachj ∈ Ju, there exists a statex′j in α afterxj and

before thefailu such that¬aware(u, j, x′j).

This says that if an alive VSA fails when the round is more thand old, then

it must be the case that each process that was alive and aware it was in the

VSA’s region at the beginning of the timeslice has failed or left the region in the

meantime.

214

As mentioned before Definition 11.12, the following result says that for any exe-

cution fragment ofV Emu[alg] starting in a state inL3
V Emu[alg] and for any state in

{y ∈ QV Layer[alg] | y⌈XRW‖V W‖V bcast ∈ InvRW‖V W‖V bcast} such that the two states are

related, there is some fragment ofV Layer[alg] that not only has the same trace but also

has the sameRW andFail-related projections. In addition, that fragment is a fragment

allowed byS.

Lemma 11.13 Let alg be in V Algs and α be in frags
L3

V Emu[alg]

ActHide(HV Emu,V Emu[alg]). Let y

be a state in{y ∈ QV Layer[alg] | y⌈XRW‖V W‖V bcast ∈ InvRW‖V W‖V bcast} such that

α.fstateREmu[alg]y. Then there exists anα′ in fragsActHide(HV L,V Layer[alg]) such that:

1. α′.fstate = y.

2. trace(α) = trace(α′).

3. If α is a closed execution fragment, thenα.lstateREmu[alg]α
′.lstate.

4. α⌈(ARW , VRW) = α′⌈(ARW , VRW).

5. For eachp ∈ P , α⌈(AFail(CE[alg]p), VFail(CE[alg]p)) = α′⌈(AFail(alg(p)), VFail(alg(p))).

6. α′ ∈ S[V LNodes[alg]].

The first three properties of the lemma follow from the fact thatREmu[alg] is a simulation

relation, while the fourth and fifth follow from the construction of the matching execution

of V Layer[alg] in the proof thatREmu[alg] is a simulation relation in Lemma 11.10, which

preserves the actions and variables ofRW and each of the processes’Fail-transform vari-

ables and actions. The only interesting property to show is property 6, and in particular,

property 2(b) of the definition ofS. This can be shown by noting that this property follows

immediately from use of the leader election service, which guarantees that in the circum-

stance described in property 2(b), aleader output will be ready to be performed exactlyd

into the timeslice (see Property 1 of Section 10.1.3), and the construction of theV Layer

execution will add arestart action for the region at that time.

The following result ties the legal statesL3
V Emu[alg] to certain states ofV Layer[alg].

215

Lemma 11.14 For anyalg ∈ V Algs and statex ∈ L3
V Emu[alg], there exists a statey ∈

QV Layer[alg] such thaty⌈XRW‖V W‖V bcast ∈ InvRW‖V W‖V bcast andxREmu[alg]y.

Proof: We prove this lemma by showing how, given a statex ∈ L3
V Emu[alg], we can

construct a statey of VLayer[alg] such thaty⌈XRW‖V W‖V bcast ∈ InvRW‖V W‖V bcast and

xREmu[alg]y. This construction is relatively trivial given the manner in whichREmu[alg] is

defined; the relation mostly describes what the statey will be. The only components in

statey for which the relation does not dictate the state values exactly are as follows:

• V W.last: We require that for eachu ∈ U , last(u) is no older than the most recent

of theGPSupdates that occurred or the last time that a round wasd old.

• V bcast.vbcastq: Property 4 of the simulation relation constrains the messages sent

no more thand beforex(now). We havevbcastq contain no messages before that

time. This obviously satisfies property 4.

It is not difficult to check that such a statey is one wherex is related toy and

y⌈XRW‖V W‖V bcast ∈ InvRW‖V W‖V bcast.

We conclude that for any statex in L3
V Emu[alg], there is some statey of VLayer[alg]

such thatxREmu[alg]y andy⌈XRW‖V W‖V bcast ∈ InvRW‖V W‖V bcast.

Lemma 11.14 and Theorem 11.11 immediately imply:

Lemma 11.15 Start(ActHide(HV Emu, V Emu[alg]), L3
V Emu[alg]) ≤

Start(ActHide(HV L, V Layer[alg]), {x ∈ QV Layer[alg] | x⌈XRW‖V W‖V bcast ∈
InvRW‖V W‖V bcast}).

11.3.3 Self-stabilization

We’ve seen thatL3
V Emu[alg] is a legal set for the emulation, and that each state inL3

V Emu[alg]

is related to some desirable state ofVLayer[alg]. Here we show that for anyalg ∈ V Algs,

V Emu[alg] started in any statex such that theLeadSpec component states are in

InvLeadSpec and theTOBSpec component states are inInvTOBSpec stabilizes to execution

216

fragments whose states are inL3
V Emu[alg] (Lemma 11.19). This is done in phases, corre-

sponding to each legal set: we show that we stabilize to each set from the one before it.

After we show this stabilization result, we conclude that after an execution ofVEmu[alg]

has stabilized, the trace fragment from the point of stabilization is a trace of a fragment of

V Layer[alg], with certain actions hidden and with the centralized components started in a

somewhat consistent state (Theorem 11.21).

The first lemma describes the first phase of stabilization, for legal set

L1
V Emu[alg]. Recall that this legal set is one that is arrived at afterGP-

Supdate actions have occurred at each process. It is easy to check that

frags
{x∈QV Emu[alg]|x⌈XLeadSpec∈InvLeadSpec∧x⌈XTOBspec∈InvTOBspec}

V Emu[alg] stabilizes to

frags
L1

V Emu[alg]

V Emu[alg] in time t1vestab, where t1vestab is any t such thatt > ǫsample. (To see

this stabilization result, just consider the moment after each node has a received a

GPSupdate, which takes at mostǫsample time to happen.)

Lemma 11.16 Letalg be inV Algs andt1vestab be anyt such thatt > ǫsample.

frags
{x∈QV Emu[alg]|x⌈XLeadSpec∈InvLeadSpec∧x⌈XTOBspec∈InvTOBspec}

V Emu[alg] stabilizes to

frags
L1

V Emu[alg]

V Emu[alg] in timet1vestab.

We now show that execution fragments starting inL1
V Emu[alg] stabilize to execution

fragments starting inL2
V Emu[alg]. Recall thatL2

V Emu[alg] describes states that satisfy certain

properties with respect to the relationship between the leader election service state and the

emulation algorithm state. The proof of this lemma takes advantage of the fact that when

a round is more thand old, a large number of the properties ofL2
V Emu[alg] are trivially

satisfied.

Lemma 11.17 Letalg be inV Algs andt2vestab be anyt such thatt > d.

Thenfrags
L1

V Emu[alg]

V Emu[alg] stabilizes tofrags
L2

V Emu[alg]

V Emu[alg] in timet2vestab.

Proof: By Lemma 3.21, we just need to show that for any length-t2vestab prefix α of

an element offrags
L1

V Emu[alg]

V Emu[alg] , α.lstate is in L2
V Emu[alg]. We examine each property of

L2
V Emu[alg].

By Lemma 11.4, since the first state ofα is in L1
V Emu[alg], we know that property 1 of

L2
V Emu[alg] holds in each state ofα. That property 2(a) and the second conjunct of property

217

2(b) hold afterd time passes is immediately obvious. It is also easy to check that these

properties do not affect the other properties, and so can be stabilized independently.

For the remaining properties, consider a statex in α such thatx(now) mod tslice > d.

Such a state must exist inα sinceα is of lengtht2vestab > d. We just need to show that

the remaining properties hold in statex and we are done. The crux of this part of the

proof is that whenx(now) mod tslice > d, the properties ofL1
V Emu[alg] make many of the

remaining cases trivially satisfied. Properties 2(d), 4, and 5 trivially hold in statex.

For property 2(b)’s first conjunction, ifprefp is true at a non-failed process then prop-

erty 6(b) ofL1
V Emu[alg] implies that eitherx(now) mod tslice = 0 or participatedp is true.

Since we are assuming thatx(now) mod tslice > d, thenparticipatedp is true, which by

property 7(a) ofInvLeadSpec implies thatx(now) mod tslice ≤ d. Hence, we know that

property 2(b)’s first conjunct is trivially true. Property 7(a) of InvLeadspec also implies that

property 2(c) trivially holds.

For property 2(e), notice that by property 2(b) ofL1
V Emu[alg], if leaderp is true then

x(now) mod tslice = d, so property 2(e) also trivially holds in statex.

Finally, for property 3, notice that true-taggedvmsg messages andvstate messages

are only sent by a process for whichleaderp is true. As just established, this does not hold

for any process in statex. Any such messages that were previously in the queue will be

removed before time passes.

We conclude thatα.lstate is in L2
V Emu[alg].

We now show that execution fragments starting inL2
V Emu[alg] stabilize to execution frag-

ments starting in the final set of legal states,L3
V Emu[alg]. Recall thatL3

V Emu[alg] describes

states that can be related to certain states of the VSA layer.The proof of this lemma takes

advantage of the fact that when a round is more than 0 old, but less thand old, many of the

properties ofL3
V Emu[alg] are satisfied.

Lemma 11.18 Letalg be inV Algs andt3vestab be anyt such thatt > tslice − d.

Thenfrags
L2

V Emu[alg]

V Emu[alg] stabilizes tofrags
L3

V Emu[alg]

V Emu[alg] in timet3vestab.

Proof: By Lemma 3.21, we just need to show that for any length-t3vestab prefix α of

an element offrags
L2

V Emu[alg]

V Emu[alg] , α.lstate is in L3
V Emu[alg]. We examine each property of

218

L3
V Emu[alg].

By Lemma 11.6, since the first state ofα is in L2
V Emu[alg], we know that property 1 of

L3
V Emu[alg] holds in each state ofα.

For the remaining properties, consider a statex in α such thatx(now) mod tslice ∈
(0, d). Such a state must exist inα sincet3vestab > tslice − d. We just need to show that all

the properties hold in statex and we are done. Properties 2(a) and 2(d) trivially hold inx.

For property 2(b), notice that properties 4 and 5 ofInvTOBspec imply that no such

vstate message could exist, since the timestamp on the message would be from the future.

Hence, property 2(b) is trivially satisfied.

For property 2(c), property 3(b) ofL1
V Emu[alg] impliespartp is true, making property

2(c) trivially satisfied.

We conclude thatα.lstate is in L3
V Emu[alg].

We’ve shown that executions ofV Emu[alg] started in a consistent leader election and

totally ordered broadcast state stabilize to executions ofV Emu[alg] started inL1
V Emu[alg],

which stabilize to executions started inL2
V Emu[alg], which in turn stabilize to executions

started inL3
V Emu[alg]. Now we can combine these stabilization results to concludethat

executions ofV Emu[alg] started in consistent leader election and totally ordered broadcast

states stabilize to executions ofV Emu[alg] started inL3
V Emu[alg] in time tvestab, where

tvestab is anyt such thatt > ǫsample + tslice.

Lemma 11.19 Let alg be an element ofV Algs, and tvestab be any t such that

t > ǫsample + tslice.

Then frags
{x∈QV Emu[alg]|x⌈XLeadSpec∈InvLeadSpec∧x⌈XTOBspec∈InvTOBspec}

V Emu[alg] stabilizes to

frags
L3

V Emu[alg]

V Emu[alg] in timetvestab.

Proof: This result follows as a direct application of Lemma 3.7 to Lemmas 11.16, 11.17,

and 11.18. Lett1vestab = ǫsample +(tvestab− tslice−ǫsample)/3, t2vestab = d+(tvestab− tslice−
ǫsample)/3, andt3vestab = tslice − d + (tvestab − tslice − ǫsample)/3.

Let B0 be frags
{x∈QV Emu[alg]|x⌈XLeadSpec∈InvLeadSpec∧x⌈XTOBspec∈InvTOBspec}

V Emu[alg] , B1 be

frags
L1

V Emu[alg]

V Emu[alg] , B2 be frags
L2

V Emu[alg]

V Emu[alg] , andB3 be frags
L3

V Emu[alg]

V Emu[alg] in Lemma 3.7. Let

t1 bet1vestab, t2 bet2vestab, andt3 bet3vestab in Lemma 3.7. Then by Lemma 3.7 and Lemmas

219

11.16-11.18, we have thatfrags
{x∈QV Emu[alg]|x⌈XLeadSpec∈InvLeadSpec∧x⌈XTOBspec∈InvTOBspec}

V Emu[alg]

stabilizes in timet1vestab + t2vestab + t3vestab to frags
L3

V Emu[alg]

V Emu[alg] .

Since tvestab = t1vestab + t2vestab + t3vestab, we conclude that

frags
{x∈QV Emu[alg]|x⌈XLeadSpec∈InvLeadSpec∧x⌈XTOBspec∈InvTOBspec}

V Emu[alg] stabilizes to

frags
L3

V Emu[alg]

V Emu[alg] in time tvestab.

We can now conclude from Lemma 11.19 and Lemma 11.15 that an execution of

V Emu[alg] eventually reaches a point such that the trace of the execution from that point

on is the same as the trace of an execution fragment ofV Layer[alg] starting an arbitrary

state of its nodes, both after some action hiding.

Theorem 11.20Let alg be an element ofV Algs, and tvestab be anyt such thatt >

ǫsample + tslice.

Then tracefrags
{x∈QV Emu[alg]|x⌈XLeadSpec∈InvLeadSpec∧x⌈XTOBspec∈InvTOBspec}

ActHide(HV Emu,V Emu[alg]) stabilizes in

timetvestab to tracesActHide(HV L,U(V LNodes[alg])‖R(RW‖V W‖V bcast)).

As promised at the beginning of Section 11.3.3, we can actually conclude even more

than the above result; we can conclude that an execution ofV Emu[alg] eventually reaches

a point such that the trace of the execution from that point onis the same as the constrained

trace of certain execution fragments ofV Layer[alg], both after some action hiding.

Theorem 11.21Let alg be an element ofV Algs, and tvestab be any t such that

t > ǫsample + tslice.

Then tracefrags
{x∈QV Emu[alg]|x⌈XLeadSpec∈InvLeadSpec∧x⌈XTOBspec∈InvTOBspec}

ActHide(HV Emu,V Emu[alg])

stabilizes in time tvestab to {trace(α) | α ∈ S[V LNodes[alg]] ∩
execsActHide(HV L,U(V LNodes[alg])‖R(RW‖V W‖V bcast))}.

Proof: By Theorem 11.19, we know thatfrags
{x∈QV Emu[alg]|x⌈XLeadSpec∈InvLeadSpec∧x⌈XTOBspec∈InvTOBspec}

V Emu[alg]

stabilizes in timetvestab to frags
L3

V Emu[alg]

V Emu[alg] . By Lemmas 3.5 and 3.10, this implies that

tracesStart(V Emu[alg],{x∈QV Emu[alg]|x⌈XLeadSpec∈InvLeadSpec∧x⌈XTOBspec∈InvTOBspec}) stabilizes in

time tvestab to tracefrags
L3

V Emu[alg]

V Emu[alg] .

Since Lemmas 11.13 and 11.15 imply thattracefrags
L3

V Emu[alg]

ActHide(HV Emu,V Emu[alg]) ⊆
{trace(α) | α ∈ S[V LNodes[alg]] ∩ fragsActHide(HV L,U(V LNodes[alg])‖R(RW‖V W‖V bcast))},

220

we conclude that the traces ofActHide(HV Emu, Start(V Emu[alg], {x ∈
QV Emu[alg]|x⌈XLeadSpec ∈ InvLeadSpec ∧ x⌈XTOBspec ∈ InvTOBspec}))
stabilize in time tvestab to {trace(α) | α ∈ S[V LNodes[alg]] ∩
execsActHide(HV L,U(V LNodes[alg])‖R(RW‖V W‖V bcast))}.

11.3.4 Stabilizing emulations

Now we finally tie all this back to the concept of VSA layer emulations and stabilizing VSA

layer emulations. We’ve describedV Emu[alg], which is a system that emulates the VSA

layer for any VSA layer algorithmalg. However, a VSA layer emulation (Definition 8.3)

is concerned with physical layer programs, which don’t include leader election services

or totally ordered broadcast services, that emulate virtual layer programs. Here we relate

our emulation algorithm to the implementations of the leader election and totally ordered

broadcast services, which allows us to talk about an implementation of the VSA layer using

the physical layer. We do this by defining our VSA layer emulation algorithm based on our

implementations of leader election and totally ordered broadcast, together withV SAE[alg]

for eachalg ∈ V Algs; we replace the leader election and totally ordered broadcast spec-

ification automata (TObcast, LeadMain, andLeadCLp, TOBDelayp, andTOBFilterp

for eachp in P) in V Emu[alg] with the physical layer implementations (TOBImplerp

andLeaderp for eachp in P) of these automata (Lemma 11.22). We then show that this

also defines a stabilizing VSA layer emulation algorithm (Theorem 11.24).

Lemma 11.22 • Letamap : V Algs → PAlgs be defined as follows:

For each alg ∈ V Algs, amap[alg] is the function from P →
PProgramp such that for each p ∈ P , amap[alg](p) =

ActHide(HV Emu, TOBImplerp‖Leaderp‖CE[alg]p‖V SAE[alg]p).

This describes the mapping of VSA layer algorithms to physical layer algorithms

that map each process to the composition of its totally ordered broadcast and leader

election implementation pieces and theCE and V SAE pieces for the particular

VSA algorithm.

• Let tstab be anyt such thatt > 2d + 2ǫsample + tslice.

221

• LetB be{PLNodes[amap[alg]] | alg ∈ V Algs}.

These are programmable components of the emulating system,namely the physical

nodes.

• LetC be{V LNodes[alg] | alg ∈ V Algs}.

These are programmable components of the emulated system, namely the virtual

nodes and client nodes.

• Let emu be the function of typeC → B such that for eachalg ∈ V Algs,

emu(V LNodes[alg]) = PLNodes[amap[alg]].

• LetS be the function in Definition 11.12.

Thenamap is anS-constrained VSA layer emulation algorithm. (In other words, for

eachalg ∈ V Algs, having each process run theFail-transform ofamap[alg](p) together

with theRW andPbcast produces traces that look like traces of executions of the virtual

layer runningalg and inS, after some action hiding.)

Proof: By Definition 8.3 of a VSA layer emulation algorithm, we must show

that (B, RW‖Pbcast, HPL) emulates (C, RW‖V W‖V bcast, HV L) constrained toS

with emu. By Definition 4.1 of emulation, this means that we must show

that for eachC ∈ C, tracesActHide(HPL,emu(C)‖RW‖Pbcast) ⊆ {trace(α) | α ∈
S(C) ∩ execsActHide(HV L,C‖RW‖V W‖V bcast)}. Substituting for the components in

this expression, we must show that for eachalg ∈ V Algs and each α

in execsActHide(HV Emu∪HPL,
∏

p∈P Fail(TOBImplerp‖Leaderp‖CE[alg]p‖V SAE[alg]p)‖RW‖Pbcast), there

exists anα′ in execsActHide(HV L,V Layer[alg]) such that:

1. trace(α) = trace(α′).

2. α′ ∈ S(V LNodes[alg]).

(In other words, we must show that for each VSA layer algorithm alg, an execution of the

emulation algorithm at the physical layer shares the same trace as that of an execution of

the virtual layer that also satisfied the properties ofS, after some action hiding.)

222

Consider executionα. We first show how to break down the execution into compo-

nent executions that are related to executions of components of V Emu[alg], rather than

the physical layer. We then paste these executions togetherto arrive at an execution of

V Emu[alg], which we have shown (Lemma 11.13) to behave as desired executions of the

virtual layer.

By Lemma 2.14 and Theorem 5.3, we know thatα⌈(ATOBImpl, VTOBImpl) is an execu-

tion of TOBImpl. We also know, by Lemma 9.15, that there must exist an initialstateyTOB

of TOBspecsuch thatα.fstate⌈XTOBimplRTOByTOB. By Lemma 9.17, this implies that

there exists some executionαTOB of TOBspecthat starts in stateyTOB such that:

• trace(αTOB) = trace(α⌈(ATOBimpl, VTOBimpl)).

• αTOB⌈(ARW , VRW) = α⌈(ARW , VRW).

• For each p ∈ P , α⌈({failp, restartp}, {failedp}) =

αTOB⌈({failp, restartp}, {failedp}).

Similar reasoning forLeadImpl andLeadSpec gives us an executionαLead of Lead-

Specsuch that:

• trace(αLead) = trace(α⌈(ALeadImpl, VLeadImpl)).

• αLead⌈(ARW , VRW) = α⌈(ARW , VRW).

• For each p ∈ P , α⌈({failp, restartp}, {failedp}) =

αLead⌈({failp, restartp}, {failedp}).

Consider executionsαTOB
p = αTOB⌈(AFail(TOBDelayp‖TOBFilterp), VFail(TOBDelayp‖TOBFilterp)),

αLead
p = αLead⌈(AFail(LeadClp), VFail(LeadClp)), and αCV

p =

α⌈(AFail(CE[alg]p‖V SAE[alg]p), VFail(CE[alg]p‖V SAE[alg]p)). Since each of these ex-

ecutions begins with the same value of thefailedp variable, we have that

Theorem 5.4 implies that for eachp ∈ P there exists an executionαp of

Fail(TOBFilterp‖TOBDelayp‖LeadClp‖CE[alg]p‖V SAE[alg]p) that is the re-

sult of pasting theαTOB
p , αLead

p , andαCV
p component executions. (This follows from two

223

applications of Theorem 5.4.) This and Corollary 2.17 then imply that there exists an

executionα′′ of V Emu[alg] such thattrace(α) = trace(α′′).

Lemma 11.10 implies that there exists some initial statey of V Layer[alg] such

that α′′.fstateREmu[alg]y, and Lemma 11.13 implies that there exists someα′ in

execsActHide(HV L,V Layer[alg]) such thattrace(α) = trace(α′) andα′ ∈ S(V LNodes[alg]).

Now we have shown that we have a VSA layer emulation. Before wecan use this

result to show that we have astabilizingVSA layer emulation (Theorem 11.24), we need

to also show the following result, which says that our low-level physical layer algorithm

stabilizes to a point after which it looks likeV Emu[alg] started from a legal state. This

connects the states of the implementation ofV Emu[alg] with the legal statesL3
V Emu[alg]

of V Emu[alg]. Since we have results showing that fragments ofV Emu[alg] starting in

L3
V Emu[alg] are related to desirable execution fragments ofV Layer[alg] (Lemma 11.13),

this will allow us to conclude the final stabilizing VSA layeremulation result. (It is worth

noting that this proof would be improved if a general stabilizing composition result that

takes into accountFail-transforms was available. I discuss this point in the Conclusions

(Chapter 16).)

Lemma 11.23 Letalg be an element ofV Algs.

Let Impler[alg] be
∏

p∈P Fail(TOBImplerp‖Leaderp‖CE[alg]p‖V SAE[alg]p).

LetL[alg] be the set of statesx ∈ QImpler[alg]‖RW‖Pbcast such that∃y ∈ L3
V Emu[alg]:

1. x⌈XTOBImplRTOBy⌈XTOBspec.

2. x⌈XLeadImplRLeadery⌈XLeadSpec.

3. For eachp ∈ P , x⌈XCE[alg]p‖V SAE[alg]p = y⌈XCE[alg]p‖V SAE[alg]p.

ThenImpler[alg] self-stabilizes toL[alg] relative toR(RW‖Pbcast) in timetstab.

Proof: Consider any executionαPL = α1
PLα2

PLα3
PL of the emulation algorithm at

the physical layer such thatα1
PL.lstate = α2

PL.fstate, α2
PL.lstate = α3

PL.fstate,

α1
PL.ltime = 2d + ǫsample + (tstab − 2d − 2ǫsample − tslice)/2, andα2

PL.ltime = tstab −

224

α1
PL.ltime. Notice that this makesα3

PL a state-matchedtstab-suffix of αPL. We must show

thatα3
PL.fstate is in L[alg]. The proof proceeds by showing thatα2

PLα3
P l (the execution

after the underlying leader election and totally ordered broadcast service implementations

have stabilized) is related to an executionα1
V Emu[alg]α

2
V Emu[alg] of V Emu[alg] started in

invariant states of the leader election specification and the totally ordered broadcast speci-

fication. It then shows thatα2
V Emu[alg] (the execution ofV Emu[alg] after it has stabilized)

is related to an execution of the virtual layer starting froma state with reachable states of

RW‖V W‖V bcast.

By Lemma 2.14, Corollary 2.17, and Theorem 5.3 (pro-

jection and pasting lemmas), we have the trivial result that

α1
PL⌈(ATOBImpl, VTOBImpl) α2

PL⌈(ATOBImpl, VTOBImpl) α3
PL⌈(ATOBImpl, VTOBImpl)

is an execution ofU(TOBimpler)‖R(RW‖Pbcast). Sinceα1
PL.ltime > 2d + ǫsample,

Theorem 9.24 implies thatα2
PL.fstate⌈XTOBImpl is in LTOBimpl. Lemma 9.18 implies

there exists some reachable state ofTOBspec such thatα2
PL.fstate⌈XTOBimpl is related

to it. Lemma 9.17 then implies that there exists an executionα1
TOBspecα

2
TOBspec of

R(TOBspec) such that:

1. α2
TOBspec.fstate = α1

TOBspec.lstate.

2. α2
PL.fstateRTOBα1

TOBspec.fstate andα3
PL.fstateRTOBα2

TOBspec.fstate.

3. α1
TOBspec.fstate ∈ reachableTOBspec andα2

TOBspec.fstate ∈ reachableTOBspec.

4. trace(α1
TOBspec) = trace(α2

PL⌈(ATOBImpl, VTOBImpl) and trace(α1
TOBspec) =

trace(α2
PL⌈(ATOBImpl, VTOBImpl).

Lemma 2.14 then implies that there exists executionsα1
RW α2

RW of RW , α1
TObcastα

2
TObcast of

TObcast, andαp,1
TOBFilDelα

p,2
TOBFilDel of Fail(TOBFilterp‖TOBDelayp) for eachp ∈ P

such that:

1. α1
RW = α1

TOBspec⌈(ARW , VRW) = α2
PL⌈(ARW , VRW), and α2

RW =

α2
TOBspec⌈(ARW , VRW) = α3

PL⌈(ARW , VRW).

2. α1
TObcast = α1

TOBspec⌈(ATObcast, VTObcast) and α2
TObcast =

α2
TOBspec⌈(ATObcast, VTObcast).

225

3. For eachp ∈ P , αp,1
TOBFilDel = α1

TOBspec⌈(AFail(TOBFilterp‖TOBDelayp), VFail(TOBFilterp‖TOBDelayp))

andα1
TOBspec.fstate(failedp) = α2

PL.fstate(failedp).

4. For eachp ∈ P , αp,2
TOBFilDel = α2

TOBspec⌈(AFail(TOBFilterp‖TOBDelayp), VFail(TOBFilterp‖TOBDelayp))

andα2
TOBspec.fstate(failedp) = α3

PL.fstate(failedp).

Similar reasoning forLeadSpec and LeadImpl tells us that there exist executions

α1
LeadSpecα

2
LeadSpec of LeadSpecand executionsα1

LeadMainα2
LeadMain of LeadMain and

αp,1
LeadClα

p,2
LeadCl of Fail(LeadClp) for eachp ∈ P such that:

1. α1
LeadSpec⌈(ARW , VRW) = α2

PL⌈(ARW , VRW), and α2
Leadspec⌈(ARW , VRW) =

α3
PL⌈(ARW , VRW).

2. α1
LeadMain = α1

Leadspec⌈(ALeadMain, VLeadMain) and α2
LeadMain =

α2
Leadspec⌈(ALeadMain, VLeadMain).

3. For each p ∈ P , αp,1
LeadCl = α1

Leadspec⌈(AFail(LeadClp), VFail(LeadClp)) and

α1
Leadspec.fstate(failedp) = α2

PL.fstate(failedp).

4. For each p ∈ P , αp,2
LeadCl = α2

Leadspec⌈(AFail(LeadClp), VFail(LeadClp)) and

α2
Leadspec.fstate(failedp) = α3

PL.fstate(failedp).

Since for eachp ∈ P andi ∈ {1, 2}, the value offailedp is the same in the first state

of αp,i
TOBFilDel, αp,i

LeadCl, and αi+1
p ⌈(AFail(CE[alg]p‖V SAE[alg]p), VFail(CE[alg]p‖V SAE[alg]p)),

Theorem 5.4 (applied twice) implies that for eachp ∈ P there exists an execution

fragment α1
p of Fail(LeadClp‖TOBFilterp‖TOBDelayp‖CE[alg]p‖V SAE[alg]p)

such that α1
p⌈(AFail(TOBFilterp‖TOBDelayp), VFail(TOBFilterp‖TOBDelayp)) =

αp,1
TOBFilDel, α1

p⌈(AFail(LeadClp), VFail(LeadClp)) = αp,1
LeadCl,

and α1
p⌈(AFail(CE[alg]p‖V SAE[alg]p), VFail(CE[alg]p‖V SAE[alg]p)) =

α2
PL⌈(AFail(CE[alg]p‖V SAE[alg]p), VFail(Ce[alg]p‖V SAE[alg]p)). Corollary 2.17 then implies

that there exists an execution fragmentα1
V Emu[alg] of V Emu[alg] that is the result of

pasting executionsα1
p, α1

RW , α1
LeadMain, andα1

TObcast and hiding actions inHPL. We arrive

atα2
V Emu[alg] similarly.

226

Notice thatα1
V Emu[alg]α

2
V Emu[alg] is in the set of executions ofStart(V Emu[alg], {x ∈

QV Emu[alg] | x⌈XLeadSpec ∈ InvLeadSpec∧x⌈XTOBspec ∈ InvTOBspec}), and thatα2
V Emu[alg]

is the state-matchedtstab − α1
PL.ltime-suffix of α1

V Emu[alg]α
2
V Emu[alg]. Since tstab −

α1
PL.ltime > ǫsample + tslice, Lemma 11.19 implies thatα2

V Emu[alg] is in the set of exe-

cution fragments ofV Emu[alg] starting in a state inL3
V Emu[alg].

Sety to beα2
V Emu[alg].fstate. All that remains to show is that the three conditions of

the lemma hold betweenα3
PL.fstate andy. This follows immediately from construction

of α2
V Emu[alg].

Now we can conclude the final result, namely thatamap is an S-constrainedt-

stabilizing VSA layer emulation algorithm. The proof is a direct consequence of Lemmas

11.22, 11.23, and 11.13– Since we have already shown thatamap is anS-constrained VSA

layer emulation algorithm (Lemma 11.22), Definition 4.4 of an S-constrainedt-stabilizing

VSA layer emulation algorithm implies that all that remainsis to show that the traces of

the emulation algorithm at the physical layer stabilizes totraces of execution fragments

of the virtual layer that both satisfy the properties ofS and that start in reachable states

of RW‖V W‖V bcast. Lemma 11.23 gives that the executions of the emulation algorithm

at the physical layer stabilize to executions beginning in states inL[alg], which we show

to be related to executions ofV Emu[alg] with the same trace and that begin in states in

L3
V Emu[alg]. Lemma 11.13 gives that these executions are in turn relatedto executions of

the virtual layer with the same trace and that start in reachable states ofRW‖V W‖V bcast.

Theorem 11.24amap is an S-constrainedtstab-stabilizing VSA layer emulation algo-

rithm.

Proof: By Definition 8.3 of a stabilizing VSA layer emulation algorithm, we

must show that (B, RW‖Pbcast, HPL) emulation stabilizes in timetstab to

(C, RW‖V W‖V bcast, HV L) constrained toS with emu. By Definition 4.4, this means

that we must show that(B, RW‖Pbcast, HPL) emulates(C, RW‖V W‖V bcast, HV L)

constrained toS with emu (which we have already shown in Lemma 11.22) and that

tracesActHide(HPL,U(emu(C))‖R(RW‖Pbcast)) stabilizes in timetstab to {trace(α) | α ∈
S(C) ∩ execsActHide(HV L,U(C)‖R(RW‖V W‖V bcast))}.

227

By Lemma 11.23 we know thatexecsActHide(HPL,U(emu(C))‖R(RW‖Pbcast)) stabilizes in

time tstab to frags
L[alg]
ActHide(HPL,emu(C)‖RW‖Pbcast). By reasoning similar to that in the proof

of Lemma 11.22, following the same tedious process of breaking down executions of

the physical layer algorithm into component executions that can be related to execu-

tions of V Emu[alg], we know that for anyα′ ∈ frags
L[alg]
ActHide(HPL,emu(C)‖RW‖Pbcast),

there exists someα′′ ∈ frags
L3

V Emu[alg]

ActHide(HV Emu,V Emu[alg]) with the same trace asα′. Be-

causeα′′ ∈ frags
L3

V Emu[alg]

ActHide(HV Emu,V Emu[alg]), Lemma 11.13 implies that there exists some

α ∈ S(C) ∩ execsActHide(HV L,U(C)‖R(RW‖V W‖V bcast)) such thattrace(α) = trace(α′).

In other words, consider any VSA layer programalg, and the physical nodes running

their emulation of the VSA layer runningalg (consisting of totally ordered broadcast and

leader election implementations and the main emulation programs for VSAs and their local

clients). Traces of this system where the physical nodes start in an arbitrary state and are run

with RW‖Pbcast in a reachable state stabilize in timetstab to traces of execution fragments

of the VSA layer runningalg (and satisfying properties ofS), only from arbitrary states of

the clients and VSAs.

Given this result, an application programmer can now write programs for the VSA layer

without reasoning about the implementation of the VSA layer.

11.3.5 Message complexity

The message overhead introduced by this algorithm consistsof the extra messaging gener-

ated for the leader election service (one message per process), and the one|vstate|-sized

message communicated everytslice time.

11.4 Extending the implementation to allow more failures

Rather than considering a VSA failed immediately after avstate message fails to be sent

by a leader, we can extend the emulation to allow some finite numberk of such rounds

to pass before failing the VSA. This extension potentially makes the VSA more fault-

tolerant, though it does introduce some additional complication. If a leader is supposed to

228

perform broadcasts on the VSA’s behalf, but fails or leaves before sending them, the next

leader needs to transmit the messages. Since emulators store outgoing VSA messages in

a local outgoing queue but clears that queue at the beginningof a new round, an extended

algorithm must allow all emulators to carry their outgoing queue forward into subsequent

rounds. A new leader then just transmits any messages storedin its outgoing queue and

removes them. To prevent messages from being rebroadcast byfuture leaders, emulators

that receive a VSA message broadcast by the leader remove it from their own outgoing

queues.

Stabilization of an extended algorithm would also take about k times the amount of

time of the original algorithm.

229

Part III

VSA layer applications

230

Part III of this thesis describes applications that we implement using the VSA layer. In

the thesis, each implementation, whether of the VSA programming layer or of applications

built on the layer, is proved correct using the TIOA formal framework. The first three chap-

ters describe a suite of three algorithms that together define a program for the VSA layer

that offers end-to-end routing; Chapters 12 and 13 describegeocast and location manage-

ment automata that are parts of a larger end-to-end routing automaton at each region. The

last chapter describes a motion coordination application.

In Chapter 12, I describe the first piece of the end-to-end routing application, a stabi-

lizing region-to-region communication service. The algorithm is based on a shortest path

procedure. When a region receives a geocast message it has not previously seen from re-

gion u to regionv for which it is on a shortest path fromu to v, it forwards the message

closer to regionv.

Chapter 13 describes the second piece of the end-to-end routing application, a location

management service built over the geocast service of Chapter 12. The solution is based

on the concept ofhome location servers, where each mobile client identifier hashes to a

home location, a region of the network that is periodically updated with the location of the

client and that is responsible for answering queries about the client’s location. The periodic

location updates and the forwarding of queries and responses are done using the geocast

service of Chapter 12.

In Chapter 14, I describe a simple self-stabilizing programfor the VSA layer to provide

a mobile client end-to-end routing service. A client sends amessage to another client by

forwarding the message to its local VSA, which then uses the home location service to

discover the destination client’s region and forwards the message to that region using the

geocast service.

Finally, in Chapter 15, we study how the VSA layer can help us solve the problem

of coordinating the behavior of a set of autonomous mobile robots (physical nodes) in the

presence of changes in the underlying communication network as well as changes in the set

of participating robots. Each VSA must decide based on its own local information which

robots to keep in its own region, and which to assign to neighboring regions; for each robot

that remains, the VSA determines where on the curve the robotshould reside. Unlike in the

231

prior three algorithms (Geocast, location management, andend-to-end communication),

the client motion in the motion coordination protocol is controllable by the client, allowing

the client to change its motion trajectory based on instructions from a VSA.

232

Chapter 12

GeoCast

In this chapter, we describe a self-stabilizing algorithm that usesRW, V W, V bcast, and

V BDelayu, u ∈ U automata to provide geographic routing between regions of the net-

work, allowing communication between regions of the virtual infrastructure. In order to

route location information between geographic regions, weuse a shortest path algorithm.

GeoCast algorithms [14,73], GOAFR [59], and algorithms for“routing on a curve” [72]

route messages based on the location of the source and destination, using geography to

delivery messages efficiently. GPSR [57], AFR [60], GOAFR+ [59], polygonal broad-

cast [35], and the asymptotically optimal algorithm [60] are algorithms based on greedy

geographic routing algorithms, forwarding messages to theneighbor that is geographically

closest to the destination. The algorithms also address “local minimum situations”, where

the greedy decision cannot be made. GPSR, GOAFR+, and AFR achieve, under reasonable

network behavior, a linear order expected cost in the distance between the sender and the

receiver.

In [37], we used a variant of the VSA layer to simplify the implementation of the

geocast routing service. There we used a simple variant of a greedy depth first search

algorithm to communicate messages between VSAs. Here we implement the geocast por-

tion of a larger VSA program (the end-to-end routing programdescribed in Chapter 14)

using a simple shortest path routing algorithm that runs on top of the VSA layer’s fixed

infrastructure.

In the rest of this chapter, we describe the service (Section12.1), then describe a set

233

1 Signature:
Input time(t)u, t ∈ R≥0

3 Input geocast(m, v)u, m∈Msg, v∈ U
Input vrcv(〈geocast, m, w, v, t〉)u, m∈ Msg,w,v∈ U,t∈ R≥0

5 Output vcast(〈geocast, m, w, v, t〉)u, m∈ Msg,w,v∈ U,t∈ R
≥0

Output georcv(m)u, m∈Msg
7 Internal ledgerClean(〈m,w,v,t〉)u, m∈ Msg,w,v∈ U,t∈ R≥0

9 State:
analogclock: R≥0∪ {⊥}, initially ⊥

11 ledger: (Msg×U×U ×R≥0)→ Bool, initially null

13 Trajectories:
evolve

15 d(clock) = 1
stop when

17 ∃m: Msg, ∃w, v: U, ∃t: R≥0: [ledger(〈m, w, v, t〉) 6= null
∧ (ledger(〈m, w, v, t〉)= false∨ [u 6= w∧ clock= t]

19 ∨ clock< t ∨ t+(e+d)dist(w, u)< clock-ǫ
∨ dist(w, v) 6= dist(w, u) + dist(u, v))]

21

Transitions:
23 Input time(t)u

Effect:
25 if clock 6= t then

ledger← null
27 clock← t

Input geocast(m, v)u

30Effect:
if (ledger(m, u, v, clock) = null∨ u= v)∧ clock 6=⊥then

32ledger(m, u, v, clock)← false

34Output vcast(〈geocast, m, w, v, t〉)u

Precondition:
36ledger(〈m, w, v, t〉) = false∧ v 6= u

Effect:
38ledger(〈m, u, v, t〉)← true

40Input vrcv(〈geocast, m, w, v, t〉)u

Effect:
42if ledger(〈m,w,v,t〉)= null ∧ t+(e+d)dist(w, u)≥ clock

∧ t< clock∧ dist(w, v)= dist(w, u)+dist(u, v)
44∧ v 6= w 6= u then

ledger(〈m, w, v, now〉)← false
46

Output georcv(m)u

48Local: v: U, t: R
≥0

Precondition:
50ledger(〈m, v, u, t〉) = false

Effect:
52ledger(〈m, v, u, t〉)← true

54Internal ledgerClean(〈m, w, v, t〉)u

Precondition:
56t + (e+ d) dist(w, u) < clock∨ (u 6= w∧ clock= t)

∨ clock< t ∨ dist(w, v) 6= dist(w, u) + dist(u, v)
58Effect:

ledger(〈m, w, v, t〉)← null

Figure 12-1: VSA geocast automaton at regionu, V Geo
u .

of legal states of the service and properties of executions starting in legal states (Section

12.3), and finally argue that our service is self-stabilizing (Section 12.4).

12.1 Specification

Our geocast service allows a regionu to broadcast a messagem to region v

via geocast(m, v)u. It allows a region to receive such a broadcast message via

georcv(m)v, under certain conditions. The TIOA specification algorithm for individ-

ual regions is in Figure 12-1. The complete service,GeoCast, is the composition of
∏

u∈U Fail(V Geo
u ‖V BDelayu) with RW‖V W‖V bcast. In other words, the service con-

sists of aFail-transformed automata at each region of the geocast machineandV BDelay

machine for that region, as well asRW‖V W‖V bcast.

VSA-to-VSA communication is based on a shortest path procedure. We assume that

each VSA can calculate its hop count distance in the static region graph to other VSAs.

234

When a VSA receives a geocast message it has not previously seen from regionu to region

v for which it is on a shortest path fromu to v, it forwards the message, tagged with a

geocast label, via avcast output. Whenever the destination VSA receives such a message

it performs ageorcv of the message.

Note: Notice that for eachu ∈ U , V Geo
u is technically not a valid VSA since its external

interface contains non-vcast, vrcv, time actions. However, we will later (in Chapters

13 and 14) be composing this automaton with other automata and hiding these actions to

produce new automata that are VSAs. In the meantime, we may refer to these almost-VSAs

as VSAs, with the understanding that this technical detail will be resolved later. None of

the results in this chapter require thatV Geo
u be a VSA.

In this thesis,V Geo
u happens to be part of a specific VSA that is the composition ofV Geo

u

with specific other automata, namely a location management automaton and an end-to-end

routing automaton. However, theV Geo
u automaton can be part of other VSAs as well,

as long as it is composed with automata that allow us to hide the geocast andgeorcv

actions. For example, consider the following variant of thegeocast service,C − Geocast:

TheC − Geocast service allows a clientCp to broadcast a messagem to clients in region

v via C-geocast(m, v)p. It allows each clientCq in regionv to receive such a broadcast

message viaC-georcv(m)q, under certain conditions.

TheC−Geocast application can be implemented using the VSA layer in the following

way: Each region’s VSA is composed of two subprograms,V Geo
u and a new automaton

V C−Geo
u that interacts withV Geo

u and has an external interface consisting only oftime,

vbcast, vrcv, geocast, andgeorcv actions; thegeocast and georcv actions are hid-

den in the composition ofV Geo
u andV C−Geo

u , resulting in a new machine that is a valid

VSA. Whenever a client in a regionu receives aC-geocast(m, v)p input, it vcasts a

〈C-geocast, m, v, u〉 message to its local VSA. When the local VSA’sV C−Geo
u subprogram

vrcvs such a message from a client in its region, it submits ageocast(m, v)p input to the

local V Geo
u VSA subprogram. When such ageorcv(m)v later occurs at theV Geo

v VSA

subprogram in regionv, the output goes to the local VSA’sV C−Geo
v subprogram. This sub-

program then performs avcast(〈C-georcv, m, v〉)v output. Any clientCq in regionv that

receives this message throughvrcv performs aC-georcv(m)q output.

235

Detailed VSA code description

The following code description refers to the TIOA code for the machine at regionu, V Geo
u ,

in Figure 12-1.

The state variableledger keeps track of information with respect to each non-expired

geocast-tagged message (one for whichV Geo
u might still receive messages) that the VSA

has heard of. The message is stored inledger together with its source, destination, and

timestamp. For each such unique tuple of message information, the table stores a Boolean

indicating whether the region has yet processed the message, either by forwarding it in a

geocast broadcast or by receiving it. If the Boolean is false, then the VSA has not yet

processed the message.

WhenV Geo
u receives atime(t) input (line 23, supplied by the virtual time serviceV W),

it checks its localclock to see if it matchest. If not (line 25),V Geo
u resets itsledger values

(line 26). Either way,V Geo
u sets itsclock to t (line 27). (Notice that in normal operation,

once an alive VSA has received its firsttime input itsclock should always be equal to the

real time since itsclock variable advances at the same rate as real time.)

When V Geo
u receives ageocast(m, v)u input at some timet and either it is the

first occurrence ofgeocast(m, v)u at time t or u = v (lines 29-31), V Geo
u sets

ledger(〈m, u, v, clock〉) to false (line 32), indicating the geocast tuple must be processed

so that the message can be forwarded to regionv.

Whenever anyV Geo
u has a falseledger entry for some tuple〈m, w, v, t〉 whereu = v,

the message has reached its destination, andV Geo
u performs ageorcv(m)u output (lines

47-50) and sets theledger entry to true (line 52). If, on the other hand,u 6= v (line 36,

meaningV Geo
u has heard of a particular geocast it should forward but has not yet done

anything about it),V Geo
u sends a message consisting of ageocast tag and the tuple via

vcast (line 34), and sets theledger entry to true (line 38).

WheneverV Geo
u receives a〈geocast, m, w, v, t〉 message (line 40), it checks the fol-

lowing in lines 42-44: (1) it does not yet have a non-nullledger entry for the tuple,

(2) u is on some shortest path betweenw andv (equivalent to saying thatdist(w, v) =

dist(w, u)+dist(u, v)), and (3) the current timeclock is not more thant+(e+d)dist(w, u)

236

(meaning thatV Geo
u received the message no later than the maximum amount of timea

shortest region path trip fromw would have taken to reachu). If the three conditions hold

thenV Geo
u setsledger(〈m, w, v, t〉) to true (line 45).

The internal actionledgerClean(〈m, w, v, t〉)u (line 54) serves to cleanledger of tu-

ples that correspond to geocasts thatV Geo
u no longer will be involved with (line 59). In

particular it clears entries for whicht+(e+ d)dist(w, u) < clock (line 56), corresponding

to geocasts that are too old forV Geo
u to forward. This action is also used for local correc-

tion, removingledger entries for geocast messages between regions that regionu is not

on a shortest path between and for geocast messages that are timestamped in the future

(lines 56-57). Self-stabilization of the system as a whole is then accomplished by the clear-

out of older geocast records based on their timestamps, and by the screening of incoming

messages in lines 42-44. Too old forwarded messages are eliminated from the system and

newer forwarded messages do not impact the treatment of the older ones.

12.2 Properties of executions of the geocast service

We say that ageocast by a regionu to a regionv, at timet is serviceable, if there exists at

least one shortest path fromu to v of regions that are nonfailed and haveclock values equal

to the real-time for the entire interval[t, t + (e + d)dist(u, v)].

With this definition, we can show the following result:

Lemma 12.1 The service guarantees that in each executionα of GeoCast, there exists a

function mapping eachgeorcv(m)v event to thegeocast(m, v)u event that caused it such

that the following hold:

1. Integrity: If a georcv(m)v eventπ is mapped to ageocast(m, v)u eventπ′, thenπ′

occurs beforeπ.

2. Same-time self-delivery:If a georcv(m)v eventπ is mapped to ageocast(m, v)v

eventπ′ whereπ′ occurs at timet, then eventπ occurs at timet.

3. Bounded-time delivery: If a georcv(m)v eventπ is mapped to ageocast(m, v)u

237

eventπ′ whereπ′ occurs at timet and u 6= v, then eventπ occurs in the interval

(t, t + (e + d)dist(u, v)].

4. Reliable self-delivery:This guarantees that a geocast will be received if sent to itself

and no failures occur: If ageocast(m, v)v eventπ′ occurs at timet, α.ltime > t,

and regionv does not fail at timet, then there exists ageocv(m)v eventπ such that

π is mapped to somegeocast(m, v)v event (not necessarilyπ′) at timet.

5. Reliable serviceable delivery:This guarantees that a geocast will be received if it

is serviceable: If ageocast(m, v)u eventπ′ occurs at timet, α.ltime > t + (e +

d)dist(u, v), andπ′ is serviceable, then there exists ageorcv(m)v eventπ such that

π is mapped to somegeocast(m, v)u event (not necessarilyπ′) at timet.

Proof sketch: It is easy to define the mapping fromgeorcv to geocast events described

above as follows: For eachgeorcv(m)u event, there is some regionv and timet where the

tuple〈m, v, u, t〉 is in aledger that changes from being mapped to false to being mapped to

true (lines 50-52). We map thegeorcv event to the firstgeocast(m, u)v event that occurs

at timet.

It is easy to see that most of the properties hold. We show herethat the most in-

teresting properties, Bounded-time delivery and Reliableserviceable delivery, hold. To

see that Bounded-time delivery holds, notice that for ageorcv(m)v to happen, there

must be someu ∈ U and t ∈ R
≥0 such thatledger(〈m, u, v, t〉) = false. This

can only occur if ageocast(m, v)v occurred (trivially satisfying the property), or if a

vrcv(〈geocast, m, u, v, t〉)v occurred at some timet′ to set theledger entry to false. For

the second case, by the conditional on lines 42-43, theledger entry is only changed if

t + (e + d)dist(w, v) ≤ t′. By the stopping conditions on line 18, thegeorcv(m)v must

have occur at timet′ as well, giving the result.

To see that the more interesting Reliable serviceable delivery property holds, assume

that ageocast(m, v)u eventπ′ occurs at timet andπ′ is serviceable. Let one of the shortest

paths of VSAs that satisfy the serviceability definition beu1, · · · , udist(u,v)−1, v, whereu1

is a neighbor ofu and each region in the sequence neighbors the regions that precede or

follow it in the sequence. We argue that there exists ageocv(m)v eventπ such thatπ is

238

mapped to the firstgeocast(m, v)u event at timet. Since the first suchgeocast(m, v)u

event occurs at an alive process that does not fail at timet, it will immediately vcast a

geocast-tagged〈m, u, v, t〉 message. Such a message takes more than 0, but no more than

e + d time to be delivered at neighboring regions, one of which isu1. V Geo
u1

will then

immediatelyvcast a geocast-tagged〈m, u, v, t〉 message, since the conditional on lines

42-43 will hold. Such a message takes more than 0, but no more thane + d time to be

delivered at neighboring regions, one of which isu2. Either the same case as foru1 holds

or u2 received the earlier transmission and immediately transmitted or is about to transmit.

This argument is repeated until ageocast-tagged〈m, u, v, t〉 message is received at region

v. This process will then immediately perform ageocast(m)v event. This event is mapped

to the firstgeocast(m, v)u event at timet, and we are done.

12.3 Legal sets

Here we describe a legal set ofGeoCast by describing two legal sets, the second a subset

of the first. Recall from Lemma 3.13 that a legal set of states for a TIOA is one where each

closed execution fragment starting in a state in the set endsin a state in the set. We break

the definition of the legal set up into two legal sets in order to simplify the proof reasoning

and more easily prove stabilization later, in Section 12.4.At the end of this section, we

discuss properties of execution fragments ofGeoCast that start in our set of legal states.

12.3.1 Legal setL1
geo

The first set of legal states describes some properties that are locally checkable at a region

and that become true at an alive process at the time of the firsttime input for the process

and possibly aledgerClean action.

Definition 12.2 LetL1
geo be the set of statesx of GeoCast where all of the following hold:

1. x⌈XRW‖V W‖V bcast ∈ InvRW‖V W‖V bcast.

This says that the state restricted to the variables of the composition ofRW , V W ,

andV bcast are reachable states of their composition.

239

2. For eachu ∈ U : [¬failedu ⇒ ∀〈m, t〉 ∈ to sendu : rtimer − t ∈ [0, e]].

This says thatV BDelay messages queued for a region have been waiting in the

buffer at least 0 and at moste time.

3. For eachu ∈ U : (¬failedu ∧ clocku = ⊥):

(a) There are nogeocast tuples inV BDelayu.to send.

This says that non-failed regions that have not yet receiveda time input do not

have anygeocast messages queued up for sending.

(b) For each〈m, w, v, t〉 : ledger(〈m, w, v, t〉) 6= false.

This says that non-failed regions that have not yet receiveda time input do not

have anyledger entries that need to be processed.

4. For eachu ∈ U : (¬failedu ∧ clocku 6= ⊥):

(a) clocku = now.

This says that non-failed regions that have a non-⊥ clock have a clock time that

is the same as the actual time.

(b) For each〈m, w, v, t〉 : ledgeru(〈m, w, v, t〉) 6= null (For each non-failed re-

gion with a non-⊥ clock, each non-nullledger entry satisfies the following):

i. t + (e + d)dist(w, u) ≥ clocku − ǫ ∧ (t + (e + d)dist(w, u) ≥ clocku ∨
ledgeru(〈m, w, v, t〉) = true).

This says the entry has not expired too long ago– if we add the maximum

amount of time for a message to follow a shortest path fromw to our region

to the time when the geocast message originated, the result is no less than

ǫ before the current time. Also, if the tuple’s expiration point has passed

thenledger maps it to true.

ii. clocku 6= t ∨ u = w.

This says that ift is equal to the current time, then the source of the geo-

cast message must be the current region. (Recall thatvcasts, such as of

geocast-tagged messages, take non-0 time to be delivered, implyingthat

the only current-timeledger entries must be from self-geocasts.)

240

iii. (clocku > t ∧ u = w) ⇒ ledgeru(〈m, w, v, t〉) = true.

This says that self-geocasts are processed at the time they occur.

iv. clocku ≥ t.

This says that entries inledger can’t be for geocast messages sent in the

future.

v. dist(w, v) = dist(w, u) + dist(u, v).

This says thatu must be on a shortest path between the sender of the geo-

cast and the destination.

It is trivial to check thatL1
geo is a legal set forGeoCast:

Lemma 12.3 L1
geo is a legal set forGeoCast.

12.3.2 Legal setL2
geo

The next legal set,L2
geo, is a subset ofL1

geo that satisfies additional properties with respect

to the state of eachV geo
u andV bcast. The properties are concerned withgeocast tuples,

whether they are in a region’sledger or in transit in the communication service.

Definition 12.4 LetL2
geo be the set of statesx of GeoCast where all of the following hold:

1. x ∈ L1
geo.

This says thatL2
geo is a subset ofL1

geo.

2. For eachu ∈ U : (¬failedu ∧ clocku 6= ⊥), and for each〈m, w, v, t〉 :

ledgeru(〈m, w, v, t〉) 6= null:

(a) [u 6= v ∧ ledgeru(〈m, w, v, t〉) = true] ⇒ ∃t′ ∈ R
≥0 :

〈〈geocast, m, w, v, t〉, t′〉 ∈ to sendu ∨ ∃t′′ ≥ t : ∃P ′ ⊆ P ∪ U :

〈〈geocast, m, w, v, t〉, u, t′′, P ′〉 ∈ vbcastq.

This says that if theledger of an alive region with non-⊥ clocku maps a tu-

ple 〈m, w, v, t〉 to true andu is not the destination, then the tuple tagged with

geocast is either inV BDelayu or in vbcastq. (Recall thatvbcastq contains a

record of all previouslyvcast messages.)

241

(b) u 6= w ⇒ ∃t′ ∈ [t, t + e] : ∃P ′ ⊂ P ∪ U : 〈〈geocast, m, w, v, t〉, w, t′, P ′〉 ∈
vbcastq.

This says that if a non-source’sledger maps the tuple to a non-null value, then

there exists a record of the original broadcast of thegeocast tuple invbcastq

within e time of the tuple’s timestamp.

3. For eachu ∈ U : ¬failedu: ∃〈〈geocast, m, w, v, t〉, t′〉 ∈ to sendu ⇒ [t +

(e + d)dist(w, u) ≥ now − rtimeru + t′ ∧ ∃t′′ ∈ [t, t + e] : ∃P ′ ⊂ P ∪ U :

〈〈geocast, m, w, v, t〉, w, t′′, P ′〉 ∈ vbcastq].

This says that if a nonfailed region’sV BDelay queue contains ageocast message,

then the timestamp on the message is such that it was sent by the region before it

expired, and there exists a record of the original broadcastof thegeocast tuple in

vbcastq within e time of the tuple’s timestamp.

4. For each〈〈geocast, m, w, v, t〉, u, t′, P ′〉 ∈ vbcastq : [P ′ 6= ∅ ⇒ ∃t′′ ∈ [t, t + e] :

∃P ′′ ⊂ P : 〈〈geocast, m, w, v, t〉, w, t′′, P ′′〉 ∈ vbcastq].

This says that if ageocast tuple with timestampt is in transit inV bcast (meaning

the tuple has yet to be either delivered or dropped by each process), then avcast of

the tuple happened between timet and timet+ e and was either received or dropped

by at least one process. (In other words, if ageocast tuple is still in transit, then

there exists a record of the original broadcast of thegeocast tuple invbcastq within

e time of the tuple’s timestamp.)

Next we check thatL2
geo is a legal set forGeoCast.

Lemma 12.5 L2
geo is a legal set forGeoCast.

Proof: Let x be any state inL2
geo. By Definition 3.12 of a legal set, we must verify two

things for statex:

• For each statex′ of GeoCast and actiona of GeoCast such that(x, a, x′) is in the

set of discrete transitions ofGeoCast, statex′ is in L1
TOBimpl.

• For each statex′ and closed trajectoryτ of GeoCast such thatτ.fstate = x and

τ.lstate = x′, statex′ is in L2
Geo.

242

By Lemma 12.3, we know that ifx satisfies the first property ofL2
geo, then any discrete

transition ofGeoCast will lead to a statex′ that still satisfies the first property, and any

closed trajectory starting with statex will end in some state that satisfies the first property.

This implies that we just need to check that in the two cases ofthe legal set definition, the

statex′ satisfies all parts of the second property ofL2
geo.

For the first case of the legal set definition, we consider eachaction:

• GPSupdate(l, t)p, drop(n, j), failu, restartu, geocast(m, v)u, georcv(m)u,

ledgerClean(〈m, w, v, t〉)u: These are trivial to verify.

• time(t)u: If failedu holds in statex, then none of the properties are affected. Let’s

consider the case where¬failedu. Since property 4(a) holds in statex, eithert =

clocku, meaning all properties still hold since no changes to region u’s state occur,

or clocku = ⊥ and the action initializesledgeru. In the second case, property 2

becomes trivially true, and property 4 is not affected. Since property 3(a) ofL1
geo

holds in statex, we know that nogeocast tuples are into sendu, making property 3

of L2
geo trivially true.

• vrcv(〈geocast, m, w, v, t〉)u: The only non-trivial property to verify is property 2(b).

Assume thatu 6= w, meaning that the region receiving the message is not the re-

gion that received the associatedgeocast. We must show that there exists some

t′ ∈ [t, t + e] : ∃P ′ ⊂ P ∪ U such that the received tuple, tagged withw, t′, and

P ′ is in vbcastq. By the precondition for this action, we know that there exists some

〈〈geocast, m, w, v, t〉, w′, t′′, P ′′〉 in x(vbcastq) such thatP ′′ is non-empty. Since

statex satisfies property 4, we know that there exists somet′ ∈ [t, t + e] andP ′ a

proper subset ofP ∪U such that〈〈geocast, m, w, v, t〉, w, t′, P ′〉is in vbcastq, show-

ing the property.

• vcast(〈geocast, m, w, v, t〉)u: The only non-trivial properties to verify are properties

2(a) and 3. To check property 2(a) we consider two cases: one whereu = w and

one where it does not. Ifu 6= w, then property 2(a) follows from the fact that

property 2(b) held in statex. Otherwise, it follows from the fact that an effect of

243

the action is the addition of an appropriate tuple toto sendu. To check property

3 we need to check that the tuple added toto sendu has a timestampt such that

t + (e + d)dist(w, u) ≥ now and there is a record of the original broadcast of the

geocast tuple. The first follows from the fact that property 4(b)i. ofL1
geo holds in

statex. The second follows from the fact that property 2(a) holds instatex.

• vcast′(〈geocast, m, w, v, t〉, true)u: The only non-trivial properties to verify are

properties 2(a) and 4. Property 2(a) is easy to see since an effect of this action is

moving a tuple fromto sendu into vbcastq. To check property 4, we need to show

that there is a〈〈geocast, m, w, v, t〉, w, t′′, P ′′〉 in x(vbcastq) = x′(vbcastq), where

t′′ ∈ [t, t + e], which follows from the fact that property 3 held in statex.

For the second case of the legal set definition, we now consider any closed trajectory

τ such thatx = τ.fstate. Let x′ beτ.lstate. We must show thatx′ ∈ L2
geo, by verifying

that each property ofL2
geo holds. It is easy to see that because the only evolving variables

referenced in the properties areclocku, rtimeru, andnow which evolve at the same rate,

properties 2 and 4 hold.

The only interesting property to check is property 3. In particular, the only thing of

interest to check is that if a regionu is not failed and itsV BDelay buffer contains a

geocast tuple from regionw with timestampt andV BDelay timer tagt′, thent + (e +

d)dist(w, u) ≥ now − rtimeru + t′. However, sincenow andrtimer evolve at the same

rate, the value on the right of the inequality remains the same over a trajectory. The values

on the left of the inequality remain the same over a trajectory because they are discrete

variables.

Properties of execution fragments starting inL2
geo

One thing to note is that execution fragments ofGeoCast that begin in a state inL2
geo

satisfy a set of properties very close to the ones described for executions in Section 12.2.

Recall that in Section 12.2, we showed thatGeoCast guarantees that for every execution

there exists a function mapping eachgeorcv(m)v event to thegeocast(m, v)u event that

caused it such that five properties (Integrity, Same-time self-delivery, Bounded-time deliv-

244

ery, Reliable self-delivery, and Reliable serviceable delivery) hold.

Now we consider execution fragments ofGeoCast rather than executions and show that

properties similar to those in Section 12.2 still hold. The first property basically says that

the properties of an execution ofGeoCast also hold for execution fragments ofGeoCast

that begin in a state inL2
geo, provided that we are allowed to consider a function that maps

only a subset ofgeorcv events inα. The second property constrains the set ofgeorcv

events that we don’t map to be ones that occur early enough in the execution fragment that

there is not required to be a correspondinggeocast event.

Lemma 12.6 GeoCast guarantees that for every execution fragmentα beginning in a state

in L2
geo there exists a subsetΠ of thegeorcv(m)v events inα such that:

1. There exists a function mapping eachgeorcv(m)v event inΠ to thegeocast(m, v)

event that caused it such that the five properties (Integrity, Same-time self-delivery,

Bounded-time delivery, Reliable self-delivery, and Reliable serviceable delivery)

hold.

2. For everygeorcv(m)v eventπ not inΠ whereπ occurs at some timet, it must be the

case thatt − α.fstate(now) ≤ (e + d) ∗ maxu∈U dist(u, v).

Proof sketch: The two properties together say that execution fragments ofGeoCast that

begin in a state inL2
geo demonstrate behavior similar to that of executions ofGeoCast,

modulo several orphangeorcvs that can be viewed as events that would have been mapped

to geocast events that occur before the start ofα. In particular, consider the same mapping

described in Section 12.2. We can show the same results as in Section 12.2 forgeocasts

and thosegeorcvs that are mapped togeocasts. Now consider eachgeorcv(m)v that oc-

curs at somet time after the start of the execution fragment and is not mapped to ageocast.

We just need to show that there exists some regionu such thatt ≤ (e + d)dist(u, v), im-

plying that thegeorcv could be viewed as being mapped to ageocast(m, v)u that occurs

before the start of the execution fragment. Each suchgeorcv corresponds to aledger

entry that satisfies property 4(b) ofL1
geo. Taking the source region in the entry asu,

we know that the associated timestampt′ satisfied the property that it was no more than

245

(e + d)dist(u, v) old when thegeorcv occurred. Since this tuple must have been in the

system (either in transit or in aledger) at the beginning of the execution fragment, this

implies thatt ≤ (e + d)dist(u, v).

12.4 Self-stabilization

We’ve seen that L2
geo is a legal set for GeoCast. Here we show that

∏

u∈U Fail(V BDelayu‖V Geo
u) self-stabilizes toL2

geo relative to R(RW‖V W‖V bcast)

(Theorem 12.9), meaning that if certain program portions ofthe implementation are started

in an arbitrary state and run withR(RW‖V W‖V bcast), the resulting execution eventually

gets into a state inL2
geo. This is done in two phases, corresponding to the legal setsL1

geo

andL2
geo.

Using Theorem 12.9, we then conclude that after an executionof GeoCast has sta-

bilized, the execution fragment from the point of stabilization on satisfies the properties

described in Section 12.3.2.

The first lemma describes the first phase of stabilization, for legal setL1
geo. It

says that
∏

u∈U Fail(V BDelayu‖V Geo
u) self-stabilizes in timet1geo to L1

geo relative to

R(RW‖V W‖V bcast), wheret1geo is any time greater thanǫsample:

Lemma 12.7 Let t1geo be anyt such thatt > ǫsample.
∏

u∈U Fail(V BDelayu‖V Geo
u) self-stabilizes in time t1geo to L1

geo relative to

R(RW‖V W‖V bcast).

Proof sketch: To see this result, just consider any time after each node hasreceived atime

input, which takes at mostǫsample time to happen.

The next lemma shows that starting from a state inL1
geo, GeoCast ends up in a state in

L2
geo within t2geo time, wheret2geo is any time greater thanǫ + (e + d)(D + 1). (Recall that

D is the network diameter in region hops.) This result takes advantage of the timestamping

of geocast tuples as a way to prevent data from being too old.

Lemma 12.8 Let t2geo be anyt such thatt > ǫ + (e + d)(D + 1).

frags
L1

geo

GeoCast stabilizes in timet2geo to frags
L2

geo

GeoCast.

246

Proof: By Lemma 3.21, we just need to show that for any length-t2geo prefix α of an ele-

ment offrags
L1

geo

GeoCast, α.lstate is in L2
geo. We examine each property ofL2

geo.

By Lemma 12.7, since the first state ofα is in L1
geo, we know that property 1 ofL2

geo

holds in each state ofα.

For property 2(a) it is plain that for any state inα, any new tuple added to a region

u’s ledger will satisfy the property since the tuple will initially mapto false, making the

property trivially hold with respect to that tuple. Also, any tuple that maps to false will

continue to satisfy the property even when it changes to being mapped to true, since such a

change only occurs when thegeocast-tagged tuple is added toto send. The tuple is then

only removed fromto send if the process fails or a similar tuple is added tovbcastq, either

or which would have property 2(a) continue to hold.

This leaves tuples with a non-u destination that a regionu’s ledger maps to true in the

first state ofα. Sinceα.fstate ∈ L1
tob and hence satisfies property 4(b)i., we know that

such a tuple will have a timestamp no smaller thannow− ǫ− (e+d)D. This means that in

α.lstate, the entry will have been removed, giving us that the algorithm stabilizes to satisfy

the property.

For property 3, consider what happens when a nonfailed region has ageocast tuple

in its to send buffer. The first thing we would like to show is that the tuple’s timestamp

is consistent with what it would have been if the tuple were broadcast before it expired.

Sinceα.fstate ∈ L1
tob and hence satisfies property 4(b)i., we know that any new messages

added toto send will satisfy this requirement. This leaves only problematic tuples that

were present into send in α.fstate. However, we know that each tuple into send spends

at moste time there. Since this is less thant2geo we are done with this portion of property 3.

The remainder of property 3, together with property 2(b) andproperty 4 are very similar

in their proof obligations. Hence, we only discuss the proofof property 4 here.

For property 4, notice that for eachgeocast tuple added for the first time in the system

to a to send queue and then propagated withine time to vbcastq, the property will hold

and continue to hold as the message makes its way through the system. The only thing

we need to consider are the tuples throughout the system inα.fstate. Consider the worst

case of a “bad” tuple in ato send queue. The tuple could, at worst, take maximum time

247

to be propagated tovbcastq and delivered at a client (which works out toe + d time),

and could contain a timestamp just undere + d ahead of real-time inα.fstate. The tuple

will eventually stop being forwarded when it stops being accepted forledger entries, up to

(e+d)(D−1) later. Its entries inledgers can take up to an additionale+d+ ǫ time before

being removed byledgerClean actions. This total time ofǫ + (e + d)(D + 1) is less than

t2geo, and we are done.

Now we can combine our stabilization results to conclude that Fail(V BDelayu‖V Geo
u)

components started in an arbitrary state and run withR(RW‖V W‖V bcast) stabilizes to

L2
geo in time tgeo, wheretgeo is anyt such thatt > ǫsample + ǫ+(e+d)(D+1). The result is

a simple application of the transitivity of stabilization (Lemma 3.6) to the prior two results.

Theorem 12.9 Let tgeo be any t such that t > ǫsample + ǫ + (e + d)(D +

1).
∏

u∈U Fail(V BDelayu‖V Geo
u) self-stabilizes in timetgeo to L2

geo relative to

R(RW‖V W‖V bcast).

Proof: We must show thatexecsU(
∏

u∈U Fail(V BDelayu‖V Geo
u))‖R(RW‖V W‖V bcast) stabilizes

in time tgeo to frags
L2

geo
∏

u∈U Fail(V BDelayu‖V Geo
u)‖R(RW‖V W‖V bcast)

. By Corollary 3.11,

frags
L2

geo
∏

u∈U Fail(V BDelayu‖V Geo
u)‖R(RW‖V W‖V bcast)

is the same asfrags
L2

geo

GeoCast. The result

follows from the application of transitivity of stabilization (Lemma 3.6) on the two lemmas

(Lemmas 12.7 and 12.8) above. Lett1geo = ǫsample +(tgeo− ǫsample − ǫ− (e+d)(D+1))/2

andt2geo = ǫ + (e + d)(D + 1) + (tgeo − ǫsample − ǫ− (e + d)(D + 1))/2. (These terms are

chosen so as to satisfy the constraints thatt1geo > ǫsample andt2geo > ǫ + (e + d)(D + 1), as

well as the constraint thatt1geo + t2geo = tgeo.)

First, letB be execsU(
∏

u∈U Fail(V BDelayu‖V Geo
u))‖R(RW‖V W‖V bcast), C be frags

L1
geo

GeoCast,

andD befrags
L2

geo

GeoCast in Lemma 3.6. Then by Lemma 3.6 and Lemmas 12.7 and 12.8, we

have thatexecsU(
∏

u∈U Fail(V BDelayu‖V Geo
u))‖R(RW‖V W‖V bcast) stabilizes in timet1geo + t2geo to

frags
L2

GeoCast

GeoCast .

Sincetgeo = t1geo + t2geo, we conclude that
∏

u∈U Fail(V BDelayu‖V Geo
u) self-stabilizes

in time tgeo to L2
geo relative toR(RW‖V W‖V bcast).

With Lemma 12.6, this allows us to conclude that after an execution of GeoCast has

248

stabilized, the execution fragment from that point on satisfies the properties in Section

12.3.2:

Lemma 12.10 Let tgeo be anyt such thatt > ǫsample + ǫ + (e + d)(D + 1).

ThenexecsU(
∏

u∈U Fail(V BDelayu‖V Geo
u))‖R(RW‖V W‖V bcast) stabilizes in timetgeo to a setA of

execution fragments such that for eachα ∈ A, there exists a subsetΠ of thegeorcv(m)v

events inα such that:

1. There exists a function mapping eachgeorcv(m)v event inΠ to thegeocast(m, v)

event that caused it such that the five properties (Integrity, Same-time self-delivery,

Bounded-time delivery, Reliable self-delivery, and Reliable serviceable delivery)

hold.

2. For everygeorcv(m)v eventπ not inΠ whereπ occurs at some timet, it must be the

case thatt − α.fstate(now) ≤ (e + d) ∗ maxu∈U dist(u, v).

249

250

Chapter 13

Location Management

In this chapter, we describe a self-stabilizing algorithm for the location management part of

the end-to-end routing service in Chapter 14. The algorithmis built on the Geocast service

and the VSA layer and provides a location service that allowsVSAs in the network to

find relatively recent information about the region locations of clients. Each mobile client

identifier hashes to a home location, a region of the network that is periodically updated

with the location of the client, and that is responsible for answering queries about the

client’s location.

Finding the location of a moving client in an ad-hoc network is difficult, much more

so than in cellular mobile networks where a fixed infrastructure of wired support stations

exist (as in [54]), or in sensor networks where some approximation of a fixed infrastructure

may exist [6]. Alocation servicein ad-hoc networks is a service that allows any client to

discover the location of any other client using only its identifier. The basic paradigm for

location services that we use here is that of ahome location service: Hosts calledhome

location serversare responsible for storing and maintaining the location ofother hosts in

the network [1, 48, 62]. Several ways to determine the sets ofhome location servers, both

in the cellular and entirely ad-hoc settings, have been suggested.

The locality aware location service (LLS) in [1] for ad-hoc networks is based on a hier-

archy of lattice points for destination nodes, published with locations of associated nodes.

Lattice points can be queried for the desired location, witha query traversing a spiral path

of lattice nodes increasingly distant from the source untilit reaches the destination. An-

251

other way of choosing location servers is based on quorums. Aset of hosts is chosen to be

a write quorum for a mobile client and is updated with the client’s location. Another set

is chosen to be aread quorum and queried for the desired client location. Eachwrite and

read quorum has a nonempty intersection, guaranteeing that if aread quorum is queried,

the results will include the latest location of the client written to awrite quorum. In [48],

a uniform quorum system is suggested, based on a virtual backbone of quorum representa-

tives.

Location servers can also be chosen using a hash table. Some papers [51, 62, 82] use

geographic locations as a repository for data. These use a hash to associate each piece of

data with a region of the network and store the data at certainnodes in the region. This data

can then be used for routing or other applications. The Grid location service (GLS) [62]

maps each clientCp’s id to some geographic coordinatesxp. A client Cp’s location is then

saved by clients located closest to the coordinatesxp.

The location managment scheme we present here is based on thehash table concept

and built on top of the VSA layer and the Geocast service. VSAsand mobile clients are

programmed to form a self-stabilizing, fault-tolerant distributed data structure for location

management, where VSAs serve as home locations for mobile clients. Each client’s id

hashes to a VSA region, the client’s home location, whose VSAis responsible for main-

taining the location of the client. Whenever a VSA wants to locate a client nodeCp, the

VSA computes the home location ofCp by applying a predefined global hash function to

Cp’s id, and queries the region represented by the result of that hash forCp’s location.

In the rest of this chapter, we describe the service (Section13.1) and properties of the

service (Section 13.2), then describe a set of legal states of the service and properties of

executions starting in those legal states (Section 13.3), and finally argue that our service is

self-stabilizing (Section 13.4). As a wrap-up we also mention some possible extensions to

this work.

252

Signature:
2 Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

Output vcast(〈update, p, u, t〉)p, u∈ U, t ∈ R≥0

4

State:
6 analogclock∈ R

≥0∪ {⊥}, initially ⊥
reg∈ U ∪ {⊥}, the current region, initially⊥

8 hbTO∈ N, initially 0

10 Trajectories:
evolve

12 d(clock) = 1
stop when

14 Any precondition is satisfied.

16Transitions:
Input GPSupdate(l, t)p

18Effect:
if reg 6= region(l) ∨ clock 6= t then

20clock← t
reg← region(l)

22hbTO← 0

24Output vcast(〈update, p, u, t〉)p

Precondition:
26t = clock∧ u = reg 6= ⊥

hbTO∗ttlhb ≤ clock∨ hbTO∗ttlhb > clock+ ttlhb

28Effect:
hbTO← ⌊clock/ttlhb⌋ + 1

Figure 13-1: ClientCHL[ttlhb]p periodically sends region updates to its local VSA.

13.1 Location service specification

Our location service allows a VSAu to submit a query for a recent region of a client node

p via aHLquery(p)u action. It allows the region to receive a reply to this query indicating

thatp was recently in a regionv though aHLreply(p, v)u action, under certain conditions.

In our implementation, called theHome Location Service (HLS), we accomplish this using

home locations. Recall that the home location of a client nodep is the region whose VSA

is periodically (at least everyttlhb time) updated withp’s region. The home locations are

calculated with a hash functionh, mapping a client’s id to a VSA region, and is known to

all VSAs. These home location VSAs can then be queried by other VSAs to determine a

recent region ofp.

TheHLS implementation consists of two parts: a client-side portion and a VSA-side

portion. CHL
p is a subautomaton of clientp that interacts with VSAs to provide HLS. It is

responsible for notifying VSAs in its current and neighboring regions which region it is in.

For the VSA-side,V HL
u is a subprogram of the VSA at regionu that takes a request for

some client nodep’s region, calculatesp’s home location using the hash function, and then

sends location queries to the home location using Geocast. The home location subprogram

at the receiving VSA responds with the region information ithas forp, which is then output

by V HL
u . V HL

u also is responsible both for informing the home location of each clientp

located in its region ofp’s region, and maintaining and answering queries for the regions

of clients for which it is a home location.

253

1 Signature:
Input time(t)u, t ∈ R

≥0

3 Input vrcv(〈update, p, v, t〉)u, p∈ P, v∈ U, t ∈ R≥0

Input HLQuery(p)u

5 Input georcv(m)u, m∈ ({hlquery} ×P×U)

∪ ({update, hlreply} ×P×U ×R≥0)
7 Output geocast(m, v)u, v∈ U, m∈ ({hlquery} ×P×{u})
∪ ({update, hlreply} ×P×U ×R≥0)

9 Output HLreply(p, v)u, p∈ P, v∈ U
Internal cleanu

11

State:
13 analogclock: R≥0∪ {⊥}, initially ⊥

local, lastreq: P→ R
≥0∪ {⊥}, initially ⊥

15 dir, lastLoc: P→ U ×R≥0, initially null
req: P→ Bool, initially false

17 answer: P→ 2U , initially ∅

19 Trajectories:
evolve

21 d(clock) = 1
stop when

23 Any output precondition is satisfied
∨∃p∈ P: [lastreq(p) ≤ clock-2(e+d) dist(u, h(p)) -ǫ

25 ∨∃〈v, t〉 = dir(p): t ≤ clock-ttlhb -d -(e+ d) dist(v′, u) -ǫ
∨∃〈v, t〉 = lastLoc(p): t ≤ clock-ttlhb -d

27 -(e+ d) (dist(v, h(p)) + dist(h(p), u)) -ǫ]

29 Transitions:
Input time(t)u

31 Effect:
if clock 6= t ∨∃p∈ P: (local(p) /∈ [clock-d, clock) ∪ {⊥}

33 ∨ lastreq(p) > clock∨ [req(p) ∧ lastreq(p) =⊥]
∨ [∃〈v, t〉 ∈ {dir(p), lastLoc(p)}: t ≥ clock]

35 ∨ [¬ ∃〈v, t〉 = dir(p): t ≥ clock-ttlhb -d -

(e + d) dist(v′, u)
∧ answer(p) 6= ∅]∨ [h(p) 6= u∧dir(p) 6=⊥])then

37 clock← t
for each p∈ P

39 local(p), lastreq(p)←⊥
dir(p)← null

41 req(p)← false
answer(p)← ∅

43

Input vrcv(〈update, p, v, t〉)u

45 Effect:
if v = u∧ t ∈ [clock-d, clock) then

47 local(p)← t

49 Output geocast(〈update, p, u, t〉, v)u

Precondition:
51 local(p) ∈ [clock-d, clock) ∧ v = h(p)

Effect:
53 local(p)←⊥

Input georcv(〈update, p, v, t〉)u

56Effect:
if h(p) = u∧ t ∈ [clock-d -(d + e) dist(u, v), clock)

58∧ (dir(p) = null ∨ [dir(p) = 〈v′, t′〉 ∧ t′ < t]) then
dir(p)← 〈v, t〉

60

Input HLQuery(p)u

62Effect:
if clock 6=⊥then

64lastreq(p)← clock
req(p)← true

66

Output geocast(〈hlquery, p, u〉, v)u

68Precondition:
clock 6= ⊥∧ req(p) = true ∧ v = h(p)

70Effect:
req(p)← false

72

Input georcv(〈hlquery, p, v〉)u

74Effect:
if h(p) = u∧∃〈v′, t〉 = dir(p):

76t ∈ [clock-ttlhb -d -(e+ d) dist(v′, u), clock) then
answer(p)← answer(p) ∪ {v}

78

Output geocast(〈hlreply, p, v, t〉, v′)u

80Precondition:
clock 6= ⊥∧ v′ ∈ answer(p) ∧ u = h(p) ∧ dir(p) = 〈v, t〉

82Effect:
answer(p)← answer(p) − {v′}

84

Input georcv(〈hlreply, p, v, t〉)u

86Effect:
if t∈ [clock-ttlhb-d-(e+d)(dist(v,h(p))+dist(h(p),u)),clock)

88∧ [(∃v′ ∈ U: lastLoc(p) = 〈v′, t′〉 ∧ t′ < t)
∨ lastLoc(p) = null] then

90lastLoc(p)← 〈v, t〉

92Output HLreply(p, v)u

Precondition:
94[∃t∈ [clock-ttlhb-d-(e+d)(dist(v,h(p))+dist(h(p),u)),clock):

lastLoc(p)= 〈v,t〉]∧ lastreq(p)≥ clock-2(e+d)dist(u,h(p))
96Effect:

lastreq(p)←⊥
98

Internal cleanu

100Precondition:
∃p∈ P: [lastreq(p) < clock-2(e+d) dist(u, h(p))

102∨∃〈v, t〉 = dir(p): t < clock-ttlhb -d -(e+ d) dist(v′, u)
∨∃〈v, t〉 = lastLoc(p): t <

104clock-ttlhb -d -(e+ d) (dist(v, h(p)) + dist(h(p), u))]
Effect:

106for each p∈ P
if lastreq(p) < clock-2(e+d) dist(u, h(p)) then

108lastreq(p)←⊥
if ∃〈v,t〉= dir(p):t< clock-ttlhb-d-(e+d)dist(v′,u) then

110dir(p)←⊥
if ∃〈v, t〉 = lastLoc(p): t < clock-ttlhb -d

112-(e+ d) (dist(v, h(p)) + dist(h(p), u)) then
lastLoc(p)←⊥

Figure 13-2: VSAV HL[ttlhb, h : P → U]u automaton.

254

The TIOA specification for the the individual clients is in Figure 13-1. The specifi-

cation for the individual regions is in Figure 13-2. The complete service,HLS, is the

composition of
∏

u∈U Fail(V HL
u ‖V Geo

u ‖V BDelayu),
∏

p∈P Fail(CHL
p ‖V BDelayp), and

RW‖V W‖V bcast. In other words, the service consists of aFail-transformed automata

at each region of the home location machine, geocast machines andV BDelay machine; a

Fail-transformed automata at each client of the geocast machineandV BDelay machine;

andRW‖V W‖V bcast.

Just as with the geocast automataV Geo
u in Chapter 12, we note that for eachu ∈ U ,

V HL
u ‖V Geo

u is not technically a valid VSA since its external interface consists of non-vcast,

vrcv, andtime actions. However, we will later (in Chapter 14) compose thisautomaton

with other automata and hide these actions to produce new automata that are VSAs. In the

meantime we map refer to these almost-VSAs as VSAs, with the understanding that the

technical detail will be resolved later.

Again, just as with the geocast service, theV HL
u subprograms can be used in other VSA

layer programs, as long as eachV HL
u is composed with other VSA subprograms that allow

us to hide theHLQuery andHLreply actions. For example, we could define aC − HLS

service that allows clients to query for the region of other clients, and to subsequently

receive replies. We could implement this service in the sameway as we implemented the

C − Geocast service at the end of Section 12.1: have clients broadcast queries to and

receive replies from their local regionu’s VSA subprogram forC − HLS, which in turn

interacts with the region’sV HL
u subprogram to have those queries answered.

We now describe the pieces of theHLS service in more detail.

13.1.1 Client algorithm

The code executed by clientp’s CHL
p is in Figure 13-1.

Clients receiveGPSupdates everyǫsample time from the GPS automaton (lines 17-22),

making them aware of their current region and the time. If a client’s region or local clock

changes as a result, the variablehbTO is set to 0 (line 22), forcing the immediate send of an

update message, with its id, current time and region information (lines 24-29). The client

255

also periodically (at every multiple ofttlhb time) reminds its current VSA of its region by

broadcasting an additionalupdate message.

13.1.2 VSA algorithm

The code for automatonV HL
u appears in Figure 13-2.

First, the VSA knows which clients are in its or neighboring regions throughupdate

messages. If a VSAvrcvs anupdate message from a clientp claiming to be in its region

(lines 44-47), the VSA sends anupdate message forp, with p’s heartbeat timestamp and

region, through Geocast toh(p), the VSA home location of clientp (lines 49-53).

When a VSA receives one of theseupdate messages for a clientp, it stores both the

region indicated in the message asp’s current region and the attached heartbeat timestamp

in its dir table (lines 55-59). This location information forp is refreshed each time the

VSA receives anupdate for client p with a newer heartbeat timestamp (line 58). Since

a client sends anupdate message everyttlhb time, which can take up tod time to arrive

at and trigger its local VSAu to send anupdate message through Geocast, which can

take(e + d)dist(u, h(p)) time to be delivered at the home location, an entry for clientp

indicating the client was in regionu is erased by its home location if its timestamp is older

thanttlhb + d + (e + d)dist(u, h(p)) (lines 102 and 109-110).

The other responsibility of the VSA is to receive and respondto requests for loca-

tion information on clients. A request for a clientp’s location comes in to regionu via a

HLquery(p)u input (line 61). This setslastreq(p), the time of the last query forp’s loca-

tion (used later to clean up expired queries), to the currenttime, and updates the flagreq(p)

to true, indicating that a query should be sent top’s home location (lines 63-65). This trig-

gers the geocast of a〈hlquery, p, u〉 message top’s home location (lines 67-71). Any home

location that receives such a message and has an unexpired entry for p’s region responds

with a hlreply to the querying VSA with the region and the timestamp of the information

(lines 79-83).

If the querying VSA atu receives ahlreply for a clientp with newer information than

it currently has, it stores the attached region,v, and timestamp inlastLoc(p) (lines 84-

256

90). This information stays inlastLoc(p) until replaced with newer information or until

the entry’s timestamp is older than the maximum time for a client to have sent the next

update, had theupdate received by its local VSA, and had the information propagated to

its home location and from the home location to VSAu (lines 99, 103-104, and 111-113).

If there is an outstanding request forp’s location (indicated by the condition that

lastreq(p) ≥ clock−2(e+d)dist(u, h(p)) in line 95), the VSA performs aHLreply(p, v)u

output and clearslastreq(p), indicating that all outstanding queries forp’s location are sat-

isfied (lines 92-97). If, however,2(e + d)dist(u, h(p)) time passes since a request forp’s

region was received and there is no entry forp’s region,lastreq(q) is just erased (lines 99,

101, and 107-108), indicating that the query has expired.

13.2 Properties of executions of the location service

A location service answers queries for the locations of clients. A VSA u can submit a

query for a recent region of client nodep via aHLquery(p)u action. Ifp’s home location

can be communicated with andp has been in the system for a sufficient amount of time,

the service responds within bounded time with a recent region locationv of p through a

HLreply(p, v)u action.

More formally, we say that a processp is findableat a timet if there exists a timetsent

such that:

1. tsent mod ttlhb = 0 and processp has been alive since timetsent − ǫsample.

2. For eachu ∈ {reg−(p, tsent), reg
+(p, tsent)}, tsent + d + (e + d)dist(u, h(p)) < t.

3. For eacht′ ∈ [tsent, t] andv ∈ {reg−(p, t′), reg+(p, t′)}, there exists at least one

shortest path fromv to h(p) of regions that are nonfailed and haveclock values equal

to the real-time for the interval[t′, t′ + (e + d)dist(v, h(p))].

(Notice that this amounts to saying that a process is findableif we can be assured that its

home location will have some information on the whereaboutsof the process.)

We say that aHLQuery by a regionu for a processp at timet is serviceableif:

257

1. Processp is findable at timet′ for eacht′ ∈ [t, t + (e + d)dist(u, h(p))].

2. There exists at least one shortest path fromu to h(p) of regions that are nonfailed and

haveclock values equal to the real-time for the interval[t, t + 2(e+ d)dist(u, h(p))].

Then we can show the following result:

Lemma 13.1 TheHLS service guarantees that in each executionα of HLS, there ex-

ists a function mapping eachHLreply(p, v)u event to aHLQuery(p)u event such that the

following hold:

1. Integrity: If a HLreply(p, v)u eventπ is mapped to aHLQuery(p)u eventπ′, thenπ′

occurs beforeπ.

2. Bounded-time reply: If a HLreply(p, v)u eventπ is mapped to aHLQuery(p)u

eventπ′ whereπ′ occurs at timet, then eventπ occurs in the interval[t, t + 2(e +

d)dist(u, h(p))].

3. Reliable reply: This guarantees that a query will be answered if it is serviceable: If a

HLQuery(p)u eventπ′ occurs at timet, α.ltime > t + 2(e + d)dist(u, h(p)), andπ′

is serviceable, then there exists aHLreply(p, v)u eventπ such thatπ occurs at some

timet′ ∈ [t, t + 2(e + d)dist(u, h(p))].

4. Reliable information: If a HLreply(p, v)u event occurs at some timet, then there

exists a timet′ ∈ [t− ttlhb − d − (e + d)(dist(v, h(p)) + dist(h(p), u)), t] such that

v ∈ {reg−(p, t′), reg+(p, t′)}.

Proof sketch: It is easy to define the mapping fromHLQuery to HLreply events described

above as follows: For eachHLreply(p, v)u event, there is some timet 6= ⊥ such that

t = lastreq(p)u (line 95). We map theHLreply event to the firstHLQuery(p)u event that

occurs at timet.

It is very easy to check that the first two properties hold. To see that Reliable reply

holds, we note that for aHLQuery(p)u event the properties of the underlying Geocast

service make the property easy to check. (Due to properties of Geocast, the only thing

258

that really needs checking is that ifp is findable, then when any〈hlquery, p, u〉 message

sent because of theHLQuery is received byp’s home location, the home location will

have information onp’s location. We can see that this holds because ifp is findable, the

properties of Geocast ensure that some recent-enoughupdate message aboutp will have

been received byp’s home location.)

To see that the Reliable information property holds, assumethat aHLreply(p, v)u event

π occurs at some timet. We must show that there exists a timet′ ∈ [t − ttlhb − d −
(e + d)(dist(v, h(p)) + dist(h(p), u)), t] such thatv ∈ {reg−(p, t′), reg+(p, t′)}. By the

precondition for theHLreply event on lines 94-95, we know that there exists a pair〈v, t′′〉
equal tolastLoc(p) such thatt′′ ≥ t − ttlhb − d − (e + d)(dist(v, h(p)) + dist(h(p), u)).

We now argue thatt′′ satisfies the properties of thet′ we are looking for. The only way that

lastLoc(p) is set to〈v, t′′〉 is by the receipt of a〈hlreply, p, v, t′′〉 message (lines 85-90).

Such a message is only sent byp’s home location if the home location’sdir(p) is set to

〈v, t′′〉 (lines 79-81). The home location’sdir(p) is only set to〈v, t′′〉 by the receipt of

an 〈update, p, v, t′′〉 tuple (lines 55-59). Such anupdate tuple is only sent by the region

v if its local(p) is set tot′′ (lines 49-51). Itslocal(p) is only set tot′′ if it received an

〈update, p, v, t′′〉 message through the Vbcast service (lines 44-47). Such a message must

have been sent by a processp at timet. Since the message is only sent by the processp if

its latest region update by timet was for regionv, we have our result.

13.3 Legal sets

Here we describe a legal set ofHLS by describing a sequence of five legal sets, each a

subset of the prior. Recall from Lemma 3.13 that a legal set ofstates for a TIOA is one

where each closed execution fragment starting in a state in the set ends in a state in the

set. We break the definition of the legal set up into multiple legal sets in order to simplify

the proof reasoning and more easily prove stabilization later, in Section 13.4. Because the

proofs in this section are routine, we omit them. At the end ofthis section, we discuss

properties of execution fragments ofHLS that start in our set of legal states.

259

13.3.1 Legal setL1
hls

The first set of legal states describes some properties that are locally checkable at a region

or client and that become true at an alive VSA at the time of thefirst time input for the

VSA andGPSupdate input at a client, assuming the underlyingGeoCast system is in a

legal state.

Definition 13.2 LetL1
hls be the set of statesx of HLS where all of the following hold:

1. x⌈XGeoCast ∈ L2
geo.

This says that the state restricted to the variables ofGeoCast is a legal state of

GeoCast.

2. For eachp ∈ P : ¬failedp (nonfailed client):

(a) clockp 6= ⊥ ⇒ [clockp = now ∧ regp = reg(p)].

This says that if the local clock is not⊥, then it is set to the current real-time

andregp is p’s current region.

(b) [hbTO ∗ ttlhb = clockp + ttlhb ∧ 〈update, p, regp, clockp〉 6∈
to send−p to send+

p] ⇒ 〈〈update, p, regp, clockp〉, regp, clockp, P ∪ U〉 ∈
vbcastq.

This says that ifhbTO indicates that the client should have just sent an update

and there is no such message in the client’sV BDelay, then theupdate has

already been propagated toV bcast.

(c) [∃q ∈ P, u ∈ U, t ∈ R
≥0 : 〈update, q, u, t〉 ∈ to send−p to send+

p] ⇒ [q =

p ∧ t = now ∧ u ∈ {reg−(p, now), reg+(p, now)}].
This says that if an update message is in one of a client’sV BDelay queues,

then the message correctly indicates a region that the client has been in at this

time.

3. For eachu ∈ U : ¬failedu ∧ clocku 6= ⊥ (nonfailed VSA that has received atime

input):

260

(a) clocku = now.

This says that the local clock should be equal to the real-time.

(b) ¬∃p ∈ P : (local(p) /∈ [clock−d, clock)∪⊥∨ lastreq(p) > clock∨ [req(p)∧
lastreq(p) = ⊥] ∨ [∃〈v, t〉 ∈ {dir(p), lastLoc(p)} : t ≥ clock] ∨ [∃〈v, t〉 =

dir(p) : t ≥ clock − ttlhb − d− (e + d)dist(v′, u)∧ answer(p) 6= ∅]∨ [h(p) 6=
u ∧ dir(p) 6= ⊥]).

This just says that a non-failed VSA’s state must satisfy a litany of local consis-

tency conditions, none of which is very interesting.

It is trivial to check thatL1
hls is a legal set forHLS.

Lemma 13.3 L1
hls is a legal set forHLS.

13.3.2 Legal setL2
hls

The second set of legal states describes some properties that hold after any spurious VSA

messages are broadcast and spuriousV bcast messages are delivered.

Definition 13.4 LetL2
hls be the set of statesx of HLS where all of the following hold:

1. x ∈ L1
hls.

This says thatL2
hls is a subset ofL1

hls.

2. For each〈〈update, p, u, t〉, q, v, t′, P ′〉 ∈ vbcastq:

t′ ≥ now − d ⇒ [q = p ∧ t = t′ ∧ u ∈ {reg−(p, t), reg+(p, t)}].
This says that anyupdate tuple in vbcastq sent in the lastd time must correctly

indicate a region of the sender at the time the message was sent.

3. For eachu ∈ U : ¬failedu (nonfailed VSA):

(a) 6 ∃〈〈update, p, v, t〉, t′〉 ∈ to sendu.

This says that a VSA should notvcast an update tuple. (VSAs onlygeocast

update tuples.)

261

(b) For eachp ∈ P : local(p) = t 6= ⊥ ⇒ u ∈ {reg−(p, t), reg+(p, t)}.

This says that iflocal(p) is set tot, then the VSA’s region is a region of the

processp at timet.

(c) For eachv, v′ ∈ U, p ∈ P, t ∈ R
≥0 : [ledger(〈〈update, p, v, t〉, u, v′, now〉) 6=

null ∨ 〈〈geocast, 〈update, p, v, t〉, u, v′, now〉, rtimeru〉 ∈ to sendu] ⇒ [u =

v ∧ v′ = h(p) ∧ u ∈ {reg−(p, t), reg+(p, t)}].
This says that if anupdate message forp has beengeocast but not yet been

turned over toV bcast, then it is beinggeocast to the home location of the

process and correctly indicates one of the regions ofp at the timet included in

the message.

(d) For each p ∈ P, 〈v, t〉 = lastLoc(p) : t ≥ clocku − d :

∃〈〈geocast, 〈hlreply, p, v, t〉, v′, u, t′〉, v′′, t′′, P ′〉 ∈ vbcastq : t′′ ≥ t.

This says that iflastLoc(p) is set to some〈v, t〉 wheret ≥ now − d, then there

exists ageocast of anhlreply tuple no older thant that indicates thatv is a

region ofp at timet.

4. For each〈〈geocast, 〈update, p, v, t〉, u, v′, t′〉, u′, now, P ∪ U〉 in vbcastq:

[t′ ∈ (t, t + d] ∧ u = v = u′ ∧ v′ = h(p) ∧ u ∈ {reg−(p, t), reg+(p, t)}].
This says that anyupdate tuple for a processp and timet that has just beengeocast

and whose record is inV bcast correctly indicates a region of the processp at timet.

It also says that the message is beinggeocast to the process’s home location.

For the sake of brevity and reader sanity, we do not include the proof of the following

lemma here. The proof is a tedious but not difficult case analysis, based on the actions and

trajectories of theHLS system.

Lemma 13.5 L2
hls is a legal set forHLS.

13.3.3 Legal setL3
hls

The third set of legal states describes some properties thathold after any spuriousgeocast

messages are delivered.

262

Definition 13.6 LetL3
hls be the set of statesx of HLS where all of the following hold:

1. x ∈ L2
hls.

This says thatL3
hls is a subset ofL2

hls.

2. For each〈geocast, 〈〈update, p, v, t〉, u, v′, t′〉, u′, t′′, P ′〉 in vbcastq: t′′ ≥ now−(e+

d)D ⇒ [t′ ∈ (t, t + d] ∧ u = v = u′ ∧ v′ = h(p) ∧ u ∈ {reg−(p, t), reg+(p, t)}].
This says that ageocast of anupdate for a processp at timet that was passed to

V bcast at some timet′′ ≥ now− (e + d)D was sent top’s home location by the VSA

at a region of the process at timet.

This lemma is also easy to check:

Lemma 13.7 L3
hls is a legal set forHLS.

13.3.4 Legal setL4
hls

The fourth set of legal states describes some properties that hold after any bad location

information stored at home locations of processes is cleaned up.

Definition 13.8 LetL4
hls be the set of statesx of HLS where all of the following hold:

1. x ∈ L3
hls.

This says thatL4
hls is a subset ofL3

hls.

2. For each〈geocast, 〈〈update, p, v, t〉, u, v′, t′〉, u, t′′, P ′〉 in vbcastq : t′′ ≥ now − d−
ttlhb−2(e+d)D: [t′ ∈ (t, t+d]∧u = v∧v′ = h(p)∧u ∈ {reg−(p, t), reg+(p, t)}].
This is similar to property 2 ofL3

hls, only extended fort′′ ≥ now−d−ttlhb−2(e+d)D.

3. For eachu ∈ U : ¬failedu: ∀p ∈ P : ∀〈v, t〉 = dir(p) : t ≥ clocku − ttlhb − d −
(e+d)dist(v, u) ⇒ ∃〈geocast, 〈〈update, p, v, t〉, v, u, t′〉, v, t′′, P ′〉 ∈ vbcastq : t′′ ≥
now − d − ttlhb − (e + d)D.

This says that at a nonfailed VSA, if the VSA is storing the location of a processp as

region v at timet, then if t ≥ clocku − ttlhb − d − (e + d)dist(v, u), there was a

geocast of anupdate tuple indicating the same region and time information.

263

4. For each u ∈ U : ¬failedu, v, v′ ∈ U, p ∈ P, t ∈
R
≥0 : [ledger(〈〈hlreply, p, v, t〉, u, v′, now〉) 6= null ∨

〈〈geocast, 〈hlreply, p, v, t〉, u, v′, now〉, rtimeru〉 ∈ to sendu] ⇒ [u = h(p) ∧ v ∈
{reg−(p, t), reg+(p, t)}].
This says that if anhlreply message for a processp has beengeocast but not yet

turned over toV bcast, then the VSA is the home location forp and the attached

regionv is a region ofp at timet.

5. For each〈geocast, 〈〈hlreply, p, v, t〉, u, v′, t′〉, u′, now, P ∪ U〉 in vbcastq: [u =

h(p) ∧ v ∈ {reg−(p, t), reg+(p, t)}].
This says that anygeocast of anhlreply that has just been turned over toV bcast

correctly names a region that a processp was in at a timet and was sent byp’s home

location.

6. For eachu ∈ U : ¬failedu, for eachp ∈ P, 〈v, t〉 = lastLoc(p):

t ≥ clocku − d − ttlhb − (e + d)D ⇒
∃〈geocast, 〈〈hlreply, p, v, t〉, h(p), u, t′〉, h(p), t′′, P ′〉 ∈ vbcastq : [t′′ ≥ t ∧ v ∈
{reg−(p, t), reg+(p, t)}].
This says that iflastLoc(p) is set to some〈v, t〉 wheret ≥ now−d−ttlhb−(e+d)D,

then there exists ageocast of anhlreply tuple no older thant that indicates thatv

is a region ofp at timet. In addition,v was a region ofp at timet.

The proof of the following lemma is again omitted because it is routine.

Lemma 13.9 L4
hls is a legal set forHLS.

13.3.5 Legal setL5
hls

The fifth set of legal states describes some properties that hold after any bad location infor-

mation stored at location queriers is cleaned up.

Definition 13.10 LetL5
hls be the set of statesx of HLS where all of the following hold:

1. x ∈ L4
hls.

This says thatL5
hls is a subset ofL4

hls.

264

2. For each〈geocast, 〈〈hlreply, p, v, t〉, u, v′, t′〉, u, t′′, P ′〉 in vbcastq: t′′ ≥ clocku −
(e + d)D ⇒ v ∈ {reg−(p, t), reg+(p, t)}.

This is similar to property 5 ofL4
hls, only extended fort′′ ≥ clocku− (e+d)D, rather

than justt′′ = now.

3. For eachu ∈ U : ¬failedu and for eachp ∈ P : 〈v, t〉 = lastLocu(p)∧t ≥ clocku−
ttlhb − d − 2(e + d)D : ∃〈geocast, 〈〈hlreply, p, v, t〉, h(p), u, t′〉, h(p), t′′, P ′〉 ∈
vbcastq : [t′′ ≥ t ∧ v ∈ {reg−(p, t), reg+(p, t)}].
This is similar to property 6 ofL4

hls, only extended fort′′ ≥ clockuttlhb − d − 2(e +

d)D.

It is trivial to see that since the second two properties are simply properties ofL4
hls

observed for longer periods of time, the following result will follow:

Lemma 13.11 L5
hls is a legal set forHLS.

Properties of execution fragments starting inL5
hls

As with the Geocast service, we can describe properties of execution fragments ofHLS

that start inL5
hls as properties of executions ofHLS, as described in Section 13.2. As be-

fore, the difference is in the mapping of some subset ofHLreply events that occur towards

the beginning of the execution fragment.

More formally, we can say the following:

Lemma 13.12 HLS guarantees that for an execution fragmentα starting in L5
hls, there

exists a subsetΠ of theHLreply events inα such that:

1. There exists a function mapping eachHLreply event inΠ to a HLquery event such

that the four properties (Integrity, Bounded time reply, Reliable reply, and Reliable

information) hold.

2. For everyHLreply(p)u eventπ not inΠ whereπ occurs at some timet, it must be the

case thatt − α.fstate(now) ≤ 2(e + d)dist(u, h(p)).

265

This concept and proof is similar to the material in Section 12.3.2, where we described the

properties of execution fragments of Geocast as a variant ofthe properties of executions of

Geocast, adjusting for a subset of receive events towards the beginning of a fragment.

13.4 Self-stabilization

We’ve seen that L5
hls is a legal set for HLS. Here we show that

∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u)
∏

p∈P Fail(V BDelayp‖CHL
p) self-stabilizes to

L5
hls relative to R(RW‖V W‖V bcast) (Theorem 13.19), meaning that if certain pro-

gram portions of the implementation are started in an arbitrary state and run with

R(RW‖V W‖V bcast), the resulting execution eventually gets into a state inL5
hls. Using

Theorem 13.19, we then conclude that after an execution ofHLS has stabilized, the

execution fragment from the point of stabilization on satisfies the properties described in

Section 13.3.5.

The proof of the main stabilization result for the chapter, Theorem 13.19, breaks sta-

bilization down into two large phases, corresponding to stabilization of the lower level

Geocast service, followed by stabilization of theHLS service assuming that Geocast has

stabilized. We have seen thatGeoCast stabilizes to the set of legal statesL2
geo in Section

12.4. What we need to show for Theorem 13.19 is that, startingfrom a set of states where

GeoCast is already stabilized,HLS stabilizes toL5
hls (Lemma 13.18). We do this in five

stages, one for each of the legal sets described in Section 13.3. The first stage starts from

a state whereGeoCast is already stabilized and ends up in the first legal set. The second

stage starts in the first legal set and ends up in the second, etc.

The first lemma describes the first stage ofHLS stabilization, to legal setL1
hls. It says

that withint1hls time of GeoCast stabilizing, wheret1hls > ǫsample, the system ends up in a

state inL1
hls.

Lemma 13.13 Let t1hls be anyt such thatt > ǫsample. frags
{x|x⌈XGeoCast∈L2

geo}

HLS stabilizes in

timet1hls to frags
L1

hls

HLS.

Proof sketch: To see this result, just consider the first time after each node has received a

266

time or GPSupdate input, which takes at mostǫsample time to happen.

The next lemma describes the second stage ofHLS stabilization. It shows that starting

from a state inL1
hls, HLS ends up in a state inL2

hls within t2hls time, wheret2hls is any time

greater than2e + d.

Lemma 13.14 Let t2hls be anyt such thatt > 2e + d. frags
L1

hls

HLS stabilizes in timet2hls to

frags
L2

hls

HLS.

Proof: By Lemma 3.21, we just need to show that for any length-t2hls prefix α of an ele-

ment offrags
L1

hls

HLS, α.lstate is in L2
hls. We examine each property ofL2

hls.

By Lemma 13.13, since the first state ofα is in L1
hls, we know that property 1 ofL2

hls

holds in each state ofα.

For property 2 notice that for eachupdate message added for the first time to one of

a client’s to send queue and then propagated toV bcast, the property will hold and will

continue to hold thereafter. Hence, the only thing we need toworry about are the messages

already in ato send queue or already inV bcast in α.fstate. However, afterd time elapses

from the start ofα, the property will be trivially true.

For property 3, we consider each part. Property 3(a) will hold after at moste time,

the time it takes for any such errant messages inα.fstate to be propagated out toV bcast.

Property 3(b) will hold after at mostd time after property 3(a) holds (giving any messages

with bad location information to be received and then removed from local through the

geocast of anupdate). Property 3(c) will hold within any non-0 time after property 3(b)

holds, as each new geocast of anupdate will use location information that is correct.

Property 3(d)

For property 4 notice that for eachgeocast tuple of anupdate message added for the

first time to ato send queue after property 3(b) holds (which takes up toe + d time) and

then propagated withine time to vbcastq, the property will hold and continue to hold as

the message makes its way through the system. The only thing we need to consider are the

tuples that are already in ato send queue inα.fstate. In the worst case, such a tuple takes

e time to be placed invbcastq, and any non-0 time afterwards to have itsV bcast timestamp

no longer be the current time.

267

For the third stage ofHLS stabilization, the next lemma shows that starting from a

state inL2
hls, HLS ends up in a state inL3

hls within t3hls time, wheret3hls is any time greater

than(e + d)D.

Lemma 13.15 Lett3hls be anyt such thatt > (e+d)D. (RecallD is the hop count diameter

of the network.)frags
L2

hls

HLS stabilizes in timet3hls to frags
L3

hls

HLS.

Proof: By Lemma 3.21, we just need to show that for any length-t3hls prefix α of an ele-

ment offrags
L2

hls

HLS, α.lstate is in L3
hls. We examine each property ofL3

hls.

By Lemma 13.14, since the first state ofα is in L2
hls, we know that property 1 ofL3

hls

holds in each state ofα.

For property 2, notice that by property 4 ofL2
hls we have that all geocast tuples of

update messages added tovbcastq in α will satisfy the property and continue to do so.

After (e + d)D time has passed, we will have that the property holds for all such tuples

broadcast within the prior(e + d)D time.

The next lemma, for the fourth stage ofHLS stabilization, shows that starting from a

state inL3
hls, HLS ends up in a state inL4

hls within t4hls time, wheret4hls is any time greater

thand + ttlhb + (e + d)D.

Lemma 13.16 Let t4hls be anyt such thatt > d+ ttlhb + (e + d)D. frags
L3

hls

HLS stabilizes in

timet4hls to frags
L4

hls

HLS.

Proof: By Lemma 3.21, we just need to show that for any length-t4hls prefix α of an ele-

ment offrags
L3

hls

HLS, α.lstate is in L4
hls. We examine each property ofL4

hls.

By Lemma 13.15, since the first state ofα is in L3
hls, we know that property 1 ofL4

hls

holds in each state ofα. Property 2 is easy to see due to its similarity to property 2 of L3
hls.

For property 3, notice that at the beginning ofα, the newest values oft in a dir tuple

is less thanα.fstate(now). After t4hls time passes, these entries will be expired and won’t

affect the property. This means that all we have to check is that whenever adir entry is

updated inα, it satisfies the property. This is obvious since such an update only occurs

through thegeorcv of anupdate message, which can only happen if property 3 holds.

268

For property 4, notice that any newhlreply tuple that is added to theledger or added to

V BDelay after property 3 holds will satisfy property 4. Similarly, for property 5, any new

hlreply tuple added tovbcastq after property 4 holds will satisfy property 5.

For property 6, notice that at the beginning ofα, the newest values oft in a lastLoc

tuple is less thanα.fstate(now). After t4hls time passes, those entries still inlastLoc will

be timestamped with values less than those of concern to the property. This means that all

we have to check is that any additions or updates tolastLoc satisfy the property. Since

such changes only occur through thegeorcv of anhlreply, we just need to verify that any

such message that arrives with the wrong region forp at some time has a timestamp that is

older thant4hls. This follows from the fact that anyhlreply sent inα with bad information

must be using information timestamped from beforeα (by property 2 ofL3
hls).

For the fifth stage ofHLS implementation, the next lemma shows that starting from a

state inL4
hls, HLS ends up in a state inL5

hls within t5hls time, wheret5hls is any time greater

than(e + d)D.

Lemma 13.17 Let t5hls be anyt such thatt > (e + d)D. frags
L4

hls

HLS stabilizes in timet5hls

to frags
L5

hls

HLS.

The proof of this lemma is simple for the same reason that the proof thatL5
hls is trivial; the

property is a longer-interval version of properties that wealready know hold.

We now have all of the pieces of reasoning for the five stages ofthe second phase

of HLS stabilization. (Recall that the second phase ofHLS stabilization occurs after

GeoCast has stabilized, corresponding toGeoCast state being in the setL2
geo.) We then

combine this reasoning from Lemmas 13.13-13.17 to show thatthe second phase of stabi-

lization ofHLS takest′hls time,t′hls > ǫsample + ttlhb + 2e + 2d + 3(e + d)D, to stabilize:

Lemma 13.18 Let t′hls be anyt such thatt > ǫsample + ttlhb + 2e + 2d + 3(e + d)D. Then

frags
{x|x⌈XGeoCast∈L2

geo}

HLS stabilizes in timet′hls to frags
L5

hls

HLS.

Proof: The result follows from the application of Lemma 3.7 on the five lemmas (Lemmas

13.13-13.17) above.

269

Let t′ be(t′hls − (ǫsample + ttlhb +2e+2d+3(e+d)D))/5. Then lett1hls bet′+ ǫsample,

t2hls be t′ + 2e + d, t3hls be t′ + (e + D)D, t4hls be t′ + d + ttlhb + (e + d)D, andt5hls be

t′ + (e + d)D. (These terms are chosen so as to satisfy the constraints that t1hls > ǫsample,

t2hls > 2e + d, etc.)

Let B0 be frags
{x|x⌈XGeoCast∈L2

geo}

HLS , B1 be frags
L1

hls

HLS, B2 be frags
L2

hls

HLS, B3 be

frags
L3

hls

HLS, B4 befrags
L4

hls

HLS, andB5 befrags
L5

hls

HLS in Lemma 3.7. Lett1 bet1hls, t2 bet2hls,

t3 bet3hls, t4 bet4hls, andt5 bet5hls in Lemma 3.7. Then by Lemma 3.7 and Lemmas 13.13-

13.17, we have thatfrags
{x|x⌈XGeoCast∈L2

geo}

HLS stabilizes in timet1hls + t2hls + t3hls + t4hls + t5hls

to frags
L5

hls

HLS.

Sincet′hls = t1hls + t2hls + t3hls + t4hls + t5hls, we conclude thatfrags
{x|x⌈XGeoCast∈L2

geo}

HLS

stabilizes in timet′hls to frags
L5

hls

HLS.

Using this and our prior result onGeoCast stabilization (Theorem 12.9) we can now fi-

nally show the main stabilization result of this chapter. The proof of the result breaks down

the self-stabilization ofHLS into two phases, the first being whereGeoCast stabilizes,

and the second being where the remaining pieces ofHLS stabilize.

Theorem 13.19
∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u)
∏

p∈P Fail(V BDelayp‖CHL
p) self-

stabilizes inthls time,thls > tgeo + ǫsample + ttlhb + 2e + 2d + 3(e + d)D, to L5
hls relative

to R(RW‖V W‖V bcast).

Proof: For brevity, we will use execsU−HLS to refer to

execsU(
∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u)
∏

p∈P Fail(V BDelayp‖CHL
p))‖R(RW‖V W‖V bcast).

We must show that execsU−HLS stabilizes in time thls to

frags
L5

hls
∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u)
∏

p∈P Fail(V BDelayp‖CHL
p)‖R(RW‖V W‖V bcast)

. By Corollary

3.11, frags
L5

hls
∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u)
∏

p∈P Fail(V BDelayp‖CHL
p)‖R(RW‖V W‖V bcast)

is the

same asfrags
L5

hls

HLS. This means that we must show thatexecsU−HLS stabilizes in time

thls to frags
L5

hls

HLS. The result follows from the application of transitivity ofstabilization

(Lemma 3.6) on the two phases ofHLS stabilization.

For the first phase, we note that by Theorem 12.9,execsU−HLS stabilizes in timetgeo

to frags
{x|x⌈XGeoCast∈L2

geo}

HLS .

270

For the second phase, lett′hls be thls − tgeo. Sincethls > tgeo + ǫsample + ttlhb + 2e +

2d + 3(e + d)D, this implies thatt′hls > ǫsample + ttlhb + 2e + 2d + 3(e + d)D. By Lemma

13.18, we have thatfrags
{x|x⌈XGeoCast∈L2

geo}

HLS stabilizes in timet′hls to frags
L5

hls

HLS.

TakingB to beexecsU−HLS , C to befrags
{x|x⌈XGeoCast∈L2

geo}

HLS , andD to befrags
L5

hls

HLS

in Lemma 3.6, we have thatexecsU−HLS stabilizes in timetgeo + t′hls to frags
L5

hls

HLS.

Since thls = tgeo + t′hls, we conclude that
∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u)
∏

p∈P Fail(V BDelayp‖CHL
p) self-stabilizes in

thls time toL5
hls relative toR(RW‖V W‖V bcast).

With Lemma 13.12, this allows us to conclude that after an execution of HLS has

stabilized, the execution fragment from that point on satisfies the properties in Section

13.3.5:

Lemma 13.20 Letthls be anyt such thatt > tgeo+ǫsample+ttlhb+2e+2d+3(e+d)D. Then

execsU(
∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u)
∏

p∈P Fail(V BDelayp‖CHL
p))‖R(RW‖V W‖V bcast) stabilizes in

timethls to a setA of execution fragments such that for eachα ∈ A, there exists a subset

Π of theHLreply events inα such that:

1. There exists a function mapping eachHLreply event inΠ to a HLquery event such

that the four properties (Integrity, Bounded time reply, Reliable reply, and Reliable

information) hold.

2. For everyHLreply(p)u eventπ not inΠ whereπ occurs at some timet, it must be the

case thatt − α.fstate(now) ≤ 2(e + d)dist(u, h(p)).

13.5 Extensions

Here we briefly describe some possible extensions to our HLS algorithm:

Multiple home locations: In order for our scheme to tolerate crash failures of a limited

number of VSAs, each mobile client id could map to a set of VSA home locations; the hash

function would return a sequence of region ids as the home locations. We could use any

hash function that provides a sequence of region identifiers; one possibility is apermutation

271

hash function, where permutations of region ids are lexicographically ordered and indexed

by client id. A version of the home location service was presented in [37] that used this

idea.

Randomized asymmetric quorums: It is possible to have asymmetric updates and

queries, such as with local updates to close-by VSAs and uniformly selected VSAs or vice

versa (the expected number of VSAs that are required to be updated and queried is small,

as proved in [68]). Instead of using a predefined set to query,one might use a randomized

scheme based on [68], where a random set of regions is chosen for updating and inquiring

about the location of a client node. Moreover, we could enhance the scheme in [68] by

using a predefined set for location updates (such as the close-by regions) and random set

for location queries (or vice versa).

Attribute queries: There are scenarios in which one would like to query for client nodes

with certain attributes in a geographic area (e.g., a searchfor a medical doctor that is cur-

rently near by). Our scheme supports such queries in a natural way: Attributes can hash

to home locations that store tables of clients with the attribute, and their locations. Clients

searching for another nearby client with some attribute could then have a local VSA query

home locations for the attribute, and select a nearby clientfrom the list that is returned.

272

Chapter 14

End-to-end Routing

One basic, but often difficult to provide, service in mobile networks is end-to-end routing.

We describe a self-stabilizing algorithm over the VSA layerto provide a mobile client

end-to-end routing service. This service is built on prior geocast and location management

services in such a way that the resulting application remains self-stabilizing.

Our self-stabilizing implementation of a mobile client end-to-end communication ser-

vice is simple, given the geocast and home location services. A client sends a message

to another client by forwarding the message to its local VSA,which then uses the home

location service to discover the destination client’s region and forwards the message to that

region using the geocast service.

In the rest of this chapter, we describe the service (Section14.1) and some of its prop-

erties (Section 14.2), then describe a set of legal states ofthe service and properties of

execution starting in those legal states (Section 14.3), and finally argue that our service is

self-stabilizing (Section 14.4).

14.1 Client end-to-end routing specification

End-to-end routing is an important application for ad-hoc networks. End-to-end routing

(E2E) is a service that allows arbitrary clients to communicate:a clientp sends a message

m to client q using theesend(m, q)p action. The message may then be received byq

through theercv(m)q action.

273

Our implementation of the end-to-end routing service,E2E, uses the home location

service to discover a recent region location of a destination client node and then uses this

location in conjunction with Geocast to deliver messages. As in the implementation of the

Home Location Service, there are two parts to the end-to-endrouting implementation: the

client-side portion and the VSA-side portion.

The client-side portionCE2E
p takes a request to send a messagem to a clientq and

transmits it to its local VSA for forwarding. It also listensfor V bcast messages originating

at other clients and addressed to it, and delivers them.

The VSAV E2E
u portion is very simple. A client may send it a message to be forwarded

to a client. It looks up a somewhat recent location of the destination client usingHLS and

then sends the message via geocast to the reported region.

The TIOA specification for the individual clients is in Figure 14-1. The specification

for the individual regions is in Figure 14-2. The complete service,E2E is the composition

of
∏

u∈U Fail(V E2E
u ‖V Geo

u ‖V HL
u ‖V BDelayu),

∏

p∈P Fail(CE2E
p ‖CHL

p ‖V BDelayp), and

RW‖V W‖V bcast. In other words, the service consists of aFail-transformed automaton at

each region of the composition of the end-to-end, home location, geocast, andV BDelay

machines; aFail-transformed automaton at each client of the composition ofthe end-to-

end, home location, andV BDelay machines; andRW‖V W‖V bcast.

Recall that in the Geocast (Chapter 12) and Location Management (Chapter 13) chap-

ters, we noted that for eachu ∈ U , the various geocast and home location automata at

the regions were not technically VSAs since their external interfaces included more than

just the allowedvcast, vrcv, andtime actions. Here we can finally resolve this issue. For

eachu ∈ U , the VSA at regionu is the compositionV E2E
u ‖V Geo

u ‖V HL
u , with all geo-

cast, georcv, HLQuery andHLreply actions hidden. The resulting machine satisfies the

conditions for being a VSA.

We now describe the pieces of theE2E service in more detail.

14.1.1 Client algorithm

The signature, state, and transitions ofCE2E
p are in Figure 14-1.

274

Signature:
2 Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

Input esend(m, q)p, m ∈Msg, q ∈ P
4 Input vrcv(〈rdata, m, p〉)p, m∈ Msg

Output vcast(〈sdata, m, q〉)p, m∈Msg, q∈ P
6 Output ercv(m)p , m∈ Msg

8 State:
analogclock∈ R

≥0∪ {⊥}, initially ⊥
10 reg∈ U ∪ {⊥}, initially ⊥

sdataq∈ (Msg×P)∗, initially λ
12 deliverq∈ Msg∗, initially λ

14 Trajectories:
evolve

16 d(clock) = 1
stop when

18 Any precondition is satisfied.

20 Transitions:
Input GPSupdate(l, t)p

22 Effect:
if clock 6= t ∨ reg=⊥then

24 sdataq, deliverq← λ
clock← t

26 reg← region(l)

28Input esend(m, q)p

Effect:
30sdataq← append(sdataq, 〈m, q〉)

32Output vcast(〈sdata, m, q, reg〉)p

Precondition:
34〈m, q〉 = head(sdataq) ∧ clock 6=⊥∧ reg 6=⊥

Effect:
36sdataq← tail(sdataq)

38Input vrcv(〈rdata, m, p〉)p

Effect:
40deliverq← append(deliverq, m)

42Output ercv(m)p

Precondition:
44m= head(deliverq) ∧ clock 6= ⊥∧ reg 6=⊥

Effect:
46deliverq← tail(deliverq)

Figure 14-1: ClientCE2E
p automaton.

The two main variables,sdataq anddeliverq, are queues. Variablesdataq stores pairs

〈m, q〉 of esend requests that have not yet been forwarded to a VSA, wherem is a message

andq the intended recipient. Variabledeliverq stores messages intended for receipt by the

client, but not yetercv’ed.

TheGPSupdate(l, t)p action (line 21) results in an update of the client’sreg variable

to the regionregion(l) and a reset of the local clock to timet (lines 25-26). If theclock

variable was nott when the action occurred or ifreg was⊥, then thesdataq anddeliverq

queues are also cleared (lines 23-24); this corresponds to aresetting of the queues either

because the client has just started or because the client hadincorrect local state.

A messagem is sent to another clientq via anesend(m, q)p input (line 28), which adds

the pair〈m, q〉 to sdataq (line 30). This results in the forwarding of the informationto p’s

current region’s VSA throughvcast(〈sdata, m, q, reg〉)p and the removal of the pair from

sdataq (lines 32-36).

Information about a messagem for client p from other clients can be forwarded and

ultimately received through avrcv(〈rdata, m, p〉)p input (line 38). This adds the message

m to deliverq (line 40). The messagem is subsequently delivered through the output

275

1 Signature:
Input time(t)u, t ∈ R≥0

3 Input vrcv(〈sdata, m, q, u〉)u, m∈ Msg, q∈ P
Input HLreply(p, v)u, p∈ P, v∈ U

5 Input georcv(〈fdata, m, p〉)u, m∈Msg, p∈ P
Output HLQuery(p)u, p∈ P

7 Output vcast(〈rdata, m, p〉)u, m∈ Msg, p∈ P
Output geocast(〈fdata, m, p〉, v)u,

9 m∈Msg, p∈ P, v∈ U

11 State:
analogclock∈ R≥0∪ {⊥}, initially ⊥

13 bcastq∈ 2Msg×P , initially ∅

tosend∈ P→ 2(Msg×(R
≥0∪⊥)), initially ∅

15 findreg∈ P→ U ∪ {⊥}, initially ⊥

17 Trajectories:
evolve

19 d(clock) = 1
stop when

21 Any output precondition is satisfied
∨∃p∈ P: [findreg(p) 6= ⊥∧ tosend(p) = ∅]

23 ∨∃p∈ P, m∈Msg, t ∈ R≥0: (〈m, t〉 ∈ tosend(p)
∧ [t> clock∨ t ≤ q clock-2(e+d)dist(u, h(p)) -ǫ])

25

Transitions:
27 Input time(t)u

Effect:
29 if clock 6= t then

clock← t
31 bcastq← ∅

for each p∈ P
33 tosend(p)← ∅

findreg(p)←⊥
35

Input vrcv(〈sdata, m, p, u〉)u

37 Effect:
tosend(p)← tosend(p) ∪ {〈m,⊥〉}

40Output HLQuery(p)u

Local: m∈Msg
42Precondition:

clock 6= ⊥∧ 〈m,⊥〉∈ tosend(p)
44Effect:

tosend(p)← tosend(p) − {〈m,⊥〉} ∪ {〈m, clock〉}
46

Input HLreply(p, v)u

48Effect:
findreg(p)← v

50

Output geocast(〈fdata, m, p〉, v)u

52Precondition:
clock 6= ⊥∧ findreg(p) = v 6=⊥

54∃t:(〈m, t〉∈ tosend(p)∧ [t = ⊥∨ t≤ clock-2(e+d) dist(u, h(p))])
Effect:

56tosend(p)← tosend(p) − {〈m′, t〉 |m′ = m}

58Internal cleanFind(p)u

Precondition:
60findreg(p) 6=⊥∧ tosend(p) = ∅

Effect:
62findreg(p)←⊥

64Internal cleanSend(p)u

Precondition:
66∃〈m, t〉∈ tosend(p): [t > clock∨ t < clock-2(e+d) dist(u, h(p))]

Effect:
68tosend(p)← tosend(p)

− {〈m, t〉 |t > clock∨ t < clock-2(e+d) dist(u, h(p))}
70

Input georcv(〈fdata, m, p〉)u

72Effect:
bcastq← bcastq∪ {〈m, p〉}

74

Output vcast(〈rdata, m, p〉)u

76Precondition:
clock 6= ⊥∧ 〈m, p〉 ∈ bcastq

78Effect:
bcastq← bcastq− {〈m, p〉}

Figure 14-2: VSAV E2E[ttlhb, h]u automaton.

ercv(m)p action (lines 42-46).

14.1.2 VSA algorithm

The signature, state, and transitions ofV E2E
u are in Figure 14-2.

There are three main variables in theV E2E[ttlhb, h]u automaton. The variablebcastq

is a set of pairs of messages and process ids; each pair corresponds to a mesasge that the

VSA is about to broadcast locally for receipt by some client.The variabletosend maps

each process idp to a set of messages that local clients have asked the VSA to forward to

p, tagged either with a timestamp indicating when it arrived at the VSA or⊥, indicating

the message has just arrived but the location ofp has not yet been queried. The variable

276

findreg maps each process id either to a region corresponding to a recent location of the

process, or⊥.

The VSA at a regionu is told by a local client of theiresends of messagem to a clientp

via the receipt of a〈sdata, m, p, u〉 action (line 36). This adds the pair〈m,⊥〉 to tosend(p)

(line 38), indicating thatm is to be sent top and that the VSA needs to look upp’s region.

This results in anHLQuery(p)u to look up the region, resulting in the update of the pair

〈m,⊥〉 to 〈m, clock〉 (lines 40-45). Whenever a response in the formHLreply(p, v)u occurs

(line 47), the variablefindreg(p) is updated tov (line 49), indicatingp was in regionv

recently.

For each pair〈m, t〉 in tosend(p), if findreg(p) is not ⊥, meaning that the VSA

has a relatively recent location forp, the VSA forwards the message information to

p’s location and removes the message record fromtosend. This is done through a

geocast(〈fdata, m, p〉)u output (lines 51-56). If there are no tuples intosend(p), mean-

ing there are no messages that need to be forwarded top outstanding, thenfindreg(p) is

cleared (lines 58-62).

When a〈fdata, m, p〉 message is received from the geocast service, indicating that

there is a messagem intended for some clientp that should be nearby, the VSA adds

the pair 〈m, p〉 to its bcastq (lines 71-73). This results in the local broadcast via

vcast(〈rdata, m, p〉)u (lines 75-79) to inform the clientp of the messagem.

If a tuple〈m, t〉 is in tosend(p) but the timestampt is either from the future (the result

of corruption) or from longer than2(e + d)dist(u, h(p)) ago (meaning that theHLQuery

for p’s location timed out), then〈m, t〉 is considered to be expired and is removed from

tosend(p) (lines 64-69).

14.2 Properties of executions of the end-to-end routing

service

The end-to-end communication service allows clients to send messages to other clients. A

clientp can send a messagem to another clientq through theesend(m, q)p action. If client

277

q can be found at an alive VSA andq does not move too far for a sufficient amount of time,

the message will then be received by clientq through theercv(m)q action.

More formally, we say that a processp is hosted by regionu at a timet if:

1. For eacht′ ∈ [t, t + 3(e + d)D + e + d], u is not failed.

2. For eacht′ ∈ [t−ttlhb−d−(e+d)D, t+(e+d)D+d], reg−(p, t′) = reg+(p, t′) = u.

3. For eacht′ ∈ [t+(e+d)D+d, t+3(e+d)D+e+2d],{reg−(p, t′) = reg+(p, t′)} ⊆
nbrs+(u) andp is not failed.

This amounts to saying that a proces sis hosted by a regionu at timet if: (1) regionu is

not failed from timet until d before what will be the deadline for message delivery in the

end-to-end communication service; (2) regionu has been the region ofp long enough that

any location information stored atp’s home location fromt until any home location query

started at timet can complete will indicate thatp is either inu or some newer region; and

(3) processp stays inu or a neighboring region ofu until any end-to-end communication

started att can complete.

We say that aesend(m, q)p at a timet is receivableif there exists some regionu such

that:

1. Processp is not failed at timet.

2. Processq is hosted by regionu at timet.

3. For eacht′ ∈ [t, t + d] and eachv ∈ {reg−(p, t), reg+(p, t)}, anHLquery(q)v at

time t′ is serviceable.

4. For eachv ∈ {reg−(p, t), reg+(p, t)}, there exists at least one shortest path fromv

to u of regions that are nonfailed and haveclock values equal to the real-time for the

interval[t, t + (e + d)(2dist(v, h(p)) + dist(v, u))].

Then we can show the following result:

Lemma 14.1 TheE2E service guarantees that in each executionα of E2E, there exists

a function mapping eachercv(m)q event to aesend(m, q)p event such that the following

hold:

278

1. Integrity: If an ercv(m)q eventπ is mapped to anesend(m, q)p eventπ′, thenπ′

occurs beforeπ.

2. Bounded-time delivery: If an ercv(m)q eventπ is mapped to anesend(m, q)p event

π′ whereπ′ occurs at timet, then eventπ occurs in the interval(t, t + 3(e + d)D +

e + 2d].

3. Reliable receivable delivery: This guarantees that a message that is end-to-end sent

will be received if it is receivable: If anesend(m, q)p eventπ′ occurs at timet,

α.ltime > t+3(e+d)D + e+2d, andπ′ is receivable, then there exists aercv(m)q

eventπ such thatπ occurs in the interval(t, t + 3(e + d)D + e + 2d].

Proof sketch: It is easy to define the mapping fromercv to esend events described above

by reasoning about the chain of actions connecting aercv and esend event: For each

ercv(m)q event,m must have been removed fromdeliverq (line 44). Such anm is added

to deliverq through the receipt of ardata message containingm (lines 38-40), which in

turn was sent by a VSA based on one of its localbcastq tuples (lines 75-79). Such a tuple

in bcastq came from the receipt of anfdata message (lines 71-73), which wasgeocast

by some VSA based on its localtosend andfindreg variables (lines 51-56). Such values

in tosend queues are added based on receipt of ansdata message (lines 36-38) which are

only sent by a client in response to anesend. Hence, for eachercv(m)q event there must

have been anesend(m, q)p event that occurred before. The mapping selects the latest such

one.

The two interesting properties to check are Bounded-time delivery and Reliable receiv-

able delivery. Bounded-time delivery is guaranteed by the fact that in the reasoning above,

there is an upper bound on the amount of time each step can take. The receipt of therdata

message sent by a VSA can take up toe + d time. The receipt of thefdata message at the

VSA that caused therdata message can take up to(e + d)D time, the maximum time for a

geocast to complete. The VSA thatgeocast thatfdata message only did so if itsfindreg

indicated a location for the end-to-end message recipient;this can take up to2D(e+d) time

for the VSA to discover (the time is the maximum time for anHLQuery for the location

279

to complete). This is all after the VSA thatgeocast thatfdata message received ansdata

message sent from a client up tod time before. The sum of these times is3D(e+d)+e+2d.

For Reliable receivable delivery, we note that the properties of the underlyingHLS and

Geocast services make the property easy to check. Consider a receivable esend(m, q)p

eventπ′ occurs at timet. We need to show that anercv(m)q eventπ occurs within3D(e +

d) + e + 2d time. By property 1 ofreceivable, we know thatp doesn’t fail at timet.

This means that it will transmit ansdata message to its VSA at timet. By property 3 of

receivable, a local VSA will receive thissdata message by timet + d and either already

have a listed locationu for q or will HLQuery for one. If it must perform anHLQuery, we

know it will receive a reply by timet+d+2D(e+d), or2D(e+d) later. This then prompts

the VSA togeocast anfdata message tou. Since property 4 ofreceivableholds, we know

that thegeocast will arrive at regionu at most(e + d)D later, by timet + d + 3D(e + d).

By property 1 of our definition of hosting, we know that regionu will be alive to receive

the message. It then takes regionu up toe time tovcast a rdata message toq, and a further

d time for the message to arrive atq. By property 3 of hosting, we know thatq is alive and

will vrcv therdata message, causing it to immediatelyercv the message embedded in the

rdata message. This happens by at time at mostt + 3D(e + d) + e + 2d.

14.3 Legal sets

Here we describe a legal set ofE2E by describing a sequence of four legal sets, each a

subset of the prior. Recall from Lemma 3.13 that a legal set ofstates for a TIOA is one

where each closed execution fragment starting in a state in the set ends in a state in the

set. We break the definition of the legal set up into multiple legal sets in order to simplify

the proof reasoning and more easily prove stabilization later, in Section 14.4. Because the

proofs in this section are routine, we omit them. At the end ofthis section, we discuss

properties of execution fragments ofE2E that start in our set of legal states.

280

14.3.1 Legal setL1
e2e

The first set of legal states describes some properties that are locally checkable at a region

or client and that become true at an alive VSA at the time of thefirst time input for the

VSA andGPSupdate input at a client, assuming the underlyingHLS system is in a legal

state.

Definition 14.2 LetL1
e2e be the set of statesx of E2E where all of the following hold:

1. x⌈XHLS ∈ L5
hls.

This says that the state restricted to the variables ofHLS is a legal state ofHLS.

2. For eachp ∈ P : ¬failedp (nonfailed client):

(a) clockp 6= ⊥ ⇒ [clockp = now ∧ regp = reg(p)].

This says that if the local clock is not⊥, then it is set to the current real-time

andregp is p’s current region.

(b) For each u ∈ U , [∃〈sdata, m, q, u〉 ∈ to send−p to send+
p] ⇒ u ∈

{reg−(p, now), reg+(p, now)}.

This says that if ansdata message is in one of a client’sV BDelay queues,

then the message correctly indicates a region that the client has been in at this

time.

(c) For eachm ∈ deliverqp, ∃〈〈rdata, m, p〉, u, t, P ′〉 ∈ vbcastq :

t ≥ now − d ∧ p /∈ P ′.

This says that each message sitting indeliverq was sent in anrdata message

to p within the lastd time.

3. For eachu ∈ U : ¬failedu∧clocku 6= ⊥ (nonfailed VSA that received atime input):

(a) clocku = now.

This says that the local clock should be equal to the real-time.

(b) For eachp ∈ P and〈m, t〉 ∈ tosendu(p) : t ≤ clocku.

This just says that any records of messages that are waiting to be geocast to

another region do not have timestamps from the future.

281

(c) For eachp ∈ P, v ∈ U , findregu(p) = v ⇒ ∃t ∈ [now − ttlhb − d − (e +

d)(dist(v, h(p)) + dist(h(p), u)), now] : v ∈ {reg+(p, t), reg−(p, t)}.

This says that if the VSA’sfindreg indicates that a processp was recently

located at regionv, then processp was in that region within the lastttlhb + d +

(e + d)(dist(v, h(p)) + dist(h(p), u)) time.

(d) For each〈m, p〉 ∈ bcastqu,

∃〈〈geocast, 〈fdata, m, p〉, w, u, t〉, w, t′, P ′〉 ∈ vbcastq : t ≥ now−(e+d)D.

This says that any pair in a VSA’sbcastq was part of anfdata message that was

geocast to u within the last(e + d)D time.

Lemma 14.3 L1
e2e is a legal set forE2E.

14.3.2 Legal setL2
e2e

The second set of legal states describes some properties that hold after any spurious VSA

messages are broadcast and spuriousV bcast messages are delivered.

Definition 14.4 LetL2
e2e be the set of statesx of E2E where all of the following hold:

1. x ∈ L1
e2e.

This says thatL2
e2e is a subset ofL1

e2e.

2. For each〈〈sdata, m, q, reg〉, u, t, P ′〉 ∈ vbcastq,

t ≥ now − d ⇒ reg ∈ {reg−(p, t), reg+(p, t)}.

This says that for anysdata transmission made within the lastd time, thesdata

message was sent by a process to a local VSA.

3. For eachu ∈ U : ¬failedu (nonfailed VSA):

(a) 6 ∃〈〈sdata, m, q, v〉, t〉 ∈ to sendu.

This says that a VSA cannot be in the process of transmitting an sdata message.

(b) For each 〈〈rdata, m, p〉, t〉 ∈ to sendu :

∃〈〈geocast, 〈fdata, m, p〉, w, u, t′〉, v, t′′, P ′〉 ∈ vbcastq : t′ + (e + d)D + e ≥

282

t + now − rtimeru.

This says that anyrdata message inV BDelayu can be matched to anfdata

transmission to regionu made within the last(e + d)D + e time.

4. For each 〈〈rdata, m, p〉, u, t, P ′〉 ∈ vbcastq, t ≥ now − d ⇒
∃〈〈geocast, 〈fdata, m, p〉, w, u, t′〉, v, t′′, P ′〉 ∈ vbcastq : t′ + (e + d)D + e ≥ t.

This says that anyrdata transmission inV bcast from the lastd time can be matched

to an fdata transmission to regionu made up to(e + d)D + e time before therdata

transmission.

Lemma 14.5 L2
e2e is a legal set forE2E.

14.3.3 Legal setL3
e2e

The third set of legal states describes some properties thathold after any VSA records that

could cause the forwarding of spurious end-to-end messagesare removed.

Definition 14.6 LetL3
e2e be the set of statesx of E2E where all of the following hold:

1. x ∈ L2
e2e.

This says thatL3
e2e is a subset ofL2

e2e.

2. For each u ∈ U : ¬failedu, for each p ∈ P, [(∃v ∈ U, m ∈ Msg :

ledgeru(〈〈fdata, m, p〉, u, v, now〉) 6= null) ∨ ∃〈m, t〉 ∈ tosendu(p) : t ≥ now −
2D(e+d)] ⇒ ∃〈〈sdata, m, p, u〉, v, t′, P ′〉 ∈ vbcastq : [u /∈ P ′∧t′ ≥ now−d∧(t 6=
⊥ ⇒ t′ ≥ t − d)].

This says that any record intosend or any fdata message that was just geocast can

be matched to ansdata transmission to the region made no more thand ago andd

before the record’s timestamp if a non-⊥ timestamp exists.

Lemma 14.7 L3
e2e is a legal set forE2E.

283

14.3.4 Legal setL4
e2e

The fourth set of legal states describes some properties that hold after any bad forwards of

end-to-end messages are removed.

Definition 14.8 LetL4
e2e be the set of statesx of E2E where all of the following hold:

1. x ∈ L3
e2e.

This says thatL4
e2e is a subset ofL3

e2e.

2. For each〈〈geocast, 〈fdata, m, p〉, u, v, t〉, w, t′, P ′〉 ∈ vbcastq: t ≥ now − (D(e +

d) + e + d) ⇒ [(∃〈〈sdata, m, p, u〉, v, t′′, P ′〉 ∈ vbcastq : t′′ + d + 2(e +

d)dist(u, h(p)) ≥ t)∧∃t∗ ∈ [t−ttlhb−d−(e+d)(dist(v, h(p))+dist(h(p), u)), t] :

v ∈ {reg−(p, t∗), reg+(p, t∗)}].
This says that anyfdata transmission from within the last(e+d)D+e+d time can be

matched to ansdata transmission that occurred no more than2(e+d)dist(u, h(p))+

d time before the timestamp of thefdata geocast. In addition, thefdata message is

beinggeocast to a regionv that contained the intended end-to-end recipient at some

time in thettlhb + d + (e + d)(dist(v, h(p)) + dist(h(p), u)) interval leading up to

the time of thefdata transmission.

Lemma 14.9 L4
e2e is a legal set forE2E.

Properties of execution fragments starting inL4
e2e

As in the location management service, we can describe the properties of execution frag-

ments ofE2E that start inL4
e2e as properties of executions ofE2E, as described in Section

14.2. As before, the difference is in the mapping of some subset of ercv events that occur

towards the beginning of the execution fragment.

More formally, we can say the following:

Lemma 14.10 E2E guarantees that for an execution fragmentα starting in L4
e2e, there

exists a subsetΠ of theercv events inα such that:

284

1. There exists a function mapping eachercv event inΠ to anesend event such that the

three properties (Integrity, Bounded-time delivery, and Reliable receivable delivery)

hold.

2. For everyercv(m)q eventπ not in Π whereπ occurs at some timet, it must be the

case thatt − α.fstate(now) ≤ 3D(e + d) + e + 2d.

This concept and proof is similar to the material in Section 13.3.5, where we described the

properties of execution fragments ofHLS as a variant of the properties of executions of

HLS, adjusting for a subset of reply events towards the beginning of a fragment.

14.4 Self-stabilization

We’ve seen that L4
e2e is a legal set for E2E. Here we show that

∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u ‖V E2E
u)

∏

p∈P Fail(V BDelayp‖CHL
p ‖CE2E

p) self-

stabilizes toL4
e2e relative to R(RW‖V W‖V bcast) (Theorem 14.16), meaning that if

certain program portions of the implementation are startedin an arbitrary state and run

with R(RW‖V W‖V bcast), the resulting execution eventually gets into a state inL4
e2e.

Using Theorem 14.16, we then conclude that after an execution of E2E has stabilized, the

execution fragment from the point of stabilization on satisfies the properties described in

Section 14.3.4.

The proof of the main stabilization result for the chapter, Theorem 14.16, breaks stabi-

lization down into two large phases, corresponding to stabilization of the lower levelHLS

service (which includes the stabilization of theGeoCast service), followed by stabilization

of theE2E service assuming thatHLS has stabilized. We have seen thatHLS stabilizes

to the set of legal statesL5
hls in Section 13.4. What we need to show for Theorem 14.16 is

that, starting from a set of states whereHLS is already stabilized,E2E stabilizes toL4
e2e

(Lemma 14.15). We do this in four stages, one for each of the legal sets described in Sec-

tion 14.3. The first stage starts from a state whereHLS is already stabilized and ends up

in the first legal set. The second stage starts in the first legal set and ends up in the second,

etc.

285

The first lemma describes the first stage ofE2E stabilization, to legal setL1
e2e. It says

that withint1e2e time ofHLS stabilizing, wheret1e2e > ǫsample, the system ends up in a state

in L1
e2e.

Lemma 14.11 Let t1e2e be anyt such thatt > ǫsample. frags
{x|x⌈XHLS∈L5

hls
}

E2E stabilizes in

timet1e2e to frags
L1

e2e

E2E.

Proof sketch: To see this result, just consider the first time after each node has received a

time or GPSupdate input, which takes at mostǫsample time to happen.

The next lemma describes the second stage ofE2E stabilization. It shows that starting

from a state inL1
e2e, E2E ends up in a state inL2

e2e within t2e2e time, wheret2e2e is any time

greater thane + d.

Lemma 14.12 Let t2e2e be anyt such thatt > e + d. frags
L1

e2e

E2E stabilizes in timet2e2e to

frags
L2

e2e

E2E.

Proof: By Lemma 3.21, we just need to show that for any length-t2e2e prefix α of an ele-

ment offrags
L1

e2e

E2E, α.lstate is in L2
e2e. We examine each property ofL2

e2e.

By Lemma 14.11, since the first state ofα is in L1
e2e, we know that property 1 ofL2

e2e

holds in each state ofα.

For property 2, we note that each new suchsdata message added to one of a client’s

to send queues and then propagated toV bcast, the property will hold and continue to hold

thereafter. Hence, the only thing we need to worry about messages already in ato send

queue or invbcastq in α.fstate. However, afterd time elapses from the start ofα, the

property will be trivially true.

For property 3, we consider each part. Property 3(a) will hold after at moste time,

the time it takes for any such errant messages inα.fstate to be propagated out toV bcast.

For property 3(b), we note that a newrdata message is only added toto sendu if there

previously was a corresponding pair〈m, p〉 in the VSA’sbcastq, which by property 3(d) of

L1
e2e implies that any newly addedrdata message satisfies this property 3(b). This means

that we only need to worry aboutrdata messages already into sendu at the start ofα.

286

Once into sendu, it is at moste time before a message is removed fromto sendu. Hence,

aftere time has passed, the property will be trivially true.

For property 4, since each newrdata message added tovbcastq first is in to sendu, we

know that any such messages added after property 3(b) holds will satisfy property 4. After

d time elapses from when property 3(b) holds, the property will be trivially true.

For the third stage ofE2E stabilization, the next lemma shows that starting from a state

in L2
e2e, E2E ends up in a state inL3

e2e within t3e2e time, wheret3e2e is any time greater than

2D(e + d).

Lemma 14.13 Let t3e2e be anyt such thatt > 2(e + d)D. (RecallD is the hop count

diameter of the network.)frags
L2

e2e

E2E stabilizes in timet3e2e to frags
L3

e2e

E2E.

Proof: By Lemma 3.21, we just need to show that for any length-t3e2e prefix α of an ele-

ment offrags
L2

e2e

E2E, α.lstate is in L3
e2e. We examine each property ofL3

e2e.

By Lemma 13.14, since the first state ofα is in L2
e2e, we know that property 1 ofL3

e2e

holds in each state ofα.

For property 2, notice that for each new entry added totosend the property will hold,

since the new entry will be the result of the receipt of ansdata message that satisfies the

properties fromV bcast. Hence, the onlytosend entries we need to worry about are the

tosend entries already there inα.fstate. However, after2D(e + d) time elapses from the

start ofα, the property will be trivially true. For theledger entries, we note that each new

entry in theledger after the bogustosend entries are cleared satisfy the property.

The next lemma, for the fourth stage ofE2E stabilization, shows that starting from a

state inL3
e2e, E2E ends up in a state inL4

e2e within t4e2e time, wheret4e2e is any time greater

thand + e + (e + d)D.

Lemma 14.14 Let t4e2e be anyt such thatt > d + e + (e + d)D. frags
L3

e2e

E2E stabilizes in

timet4e2e to frags
L4

e2e

E2E.

Proof: By Lemma 3.21, we just need to show that for any length-t4e2e prefix α of an ele-

ment offrags
L3

e2e

E2E, α.lstate is in L4
e2e. We examine each property ofL4

e2e.

287

By Lemma 14.13, since the first state ofα is in L3
e2e, we know that property 1 ofL4

e2e

holds in each state ofα.

For property 2, notice that for each new tuple added tovbcastq for ageocast of a fdata

message, the property will be true since the message will come from the VSA’sledger,

which we know by property 2 ofL3
e2e will satisfy the property we need here. Hence, the

only fdata geocast messages invbcastq that we need to worry about are those that are

present in the first state ofα. However, afterd + e + (e + d)D time, the property will

trivially be true.

We now have all of the pieces of reasoning for the four stages of the second phase of

E2E stabilization. (Recall that the second phase ofE2E stabilization occurs afterHLS

has stabilized, corresponding toHLS state being in the setL5
hls.) We then combine this

reasoning from Lemmas 14.11-14.14 to show that the second phase of stabilization ofE2E

takest′e2e time,t′e2e > ǫsample + (3D + 2)(e + d), to stabilize:

Lemma 14.15 Let t′e2e be any t such thatt > ǫsample + (3D + 2)(e + d). Then

frags
{x|x⌈XHLS∈L5

hls
}

E2E stabilizes in timet′e2e to frags
L4

e2e

E2E.

Proof: The result follows from the application of Lemma 3.7 on the four lemmas (Lemmas

14.11-14.14) above.

Let t′ be(t′e2e − (ǫsample + (3D + 2)(e + d)))/4. Then lett1e2e be t′ + ǫsample, t2e2e be

t′+ e+d, t3e2e bet′+2(e+d)D, andt4e2e bet′+d+ e+(e+d)D. (These terms are chosen

so as to satisfy the constraints thatt1e2e > ǫsample, t2e2e > e + d, etc.)

Let B0 befrags
{x|x⌈XHLS∈L5

hls
}

E2E , B1 befrags
L1

e2e

E2E, B2 befrags
L2

e2e

E2E, B3 befrags
L3

e2e

E2E,

and B4 be frags
L4

e2e

E2E in Lemma 3.7. Lett1 be t1e2e, t2 be t2e2e, t3 be t3e2e, and t4

be t4e2e in Lemma 3.7. Then by Lemma 3.7 and Lemmas 14.11-14.14, we have that

frags
{x|x⌈XHLS∈L5

hls
}

E2E stabilizes in timet1e2e + t2e2e + t3e2e + t4e2e to frags
L4

e2e

E2E.

Sincet′e2e = t1e2e + t2e2e + t3e2e + t4e2e, we conclude thatfrags
{x|x⌈XHLS∈L5

hls
}

E2E stabilizes

in time t′e2e to frags
L4

e2e

E2E.

Using this and our prior result onHLS stabilization (Theorem 13.19) we can now

finally show the main stabilization result of this chapter. The proof of the result breaks

288

down the self-stabilization ofE2E into two phases, the first being whereHLS stabilizes,

and the second being where the remaining pieces ofE2E stabilize.

Theorem 14.16
∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u ‖V E2E
u)

∏

p∈P Fail(V BDelayp‖CHL
p ‖CE2E

p)

self-stabilizes inte2e time,te2e > thls + ǫsample + 2e + 2d + 3(e + d)D, to L4
e2e relative to

R(RW‖V W‖V bcast).

Proof: For brevity, we will use execsU−E2E to refer to

execsU(
∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u ‖V E2E
u)

∏

p∈P Fail(V BDelayp‖CHL
p ‖CE2E

p))‖R(RW‖V W‖V bcast).

We must show that execsU−E2E stabilizes in time te2e to

frags
L4

e2e
∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u ‖V E2E
u)

∏

p∈P Fail(V BDelayp‖CHL
p ‖CE2E

p)‖R(RW‖V W‖V bcast)
.

By Corollary 3.11,frags
L4

e2e
∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u ‖V E2E
u)

∏

p∈P Fail(V BDelayp‖CHL
p ‖CE2E

p)‖R(RW‖V W‖V bcast)

is the same asfrags
L4

e2e

E2E. This means that we must show thatexecsU−E2E stabilizes in time

te2e to frags
L4

e2e

E2E. The result follows from the application of transitivity ofstabilization

(Lemma 3.6) on the two phases ofE2E stabilization.

For the first phase, we note that by Theorem 13.19,execsU−E2E stabilizes in timethls

to frags
{x|x⌈XHLS∈L5

hls
}

E2E .

For the second phase, lett′e2e bete2e − thls. Sincete2e > thls + ǫsample +2e+2d+3(e+

d)D, this implies thatt′e2e > ǫsample + 2e + 2d + 3(e + d)D. By Lemma 14.15, we have

thatfrags
{x|x⌈XHLS∈L5

e2e}
E2E stabilizes in timet′e2e to frags

L4
e2e

E2E.

TakingB to beexecsU−E2E, C to befrags
{x|x⌈XHLS∈L5

hls
}

E2E , andD to befrags
L4

e2e

E2E in

Lemma 3.6, we have thatexecsU−E2E stabilizes in timethls + t′e2e to frags
L4

e2e

E2E.

Since te2e = thls + t′e2e, we conclude that
∏

u∈U Fail(V BDelayu‖V Geo
u ‖V HL

u ‖V E2E
u)

∏

p∈P Fail(V BDelayp‖CHL
p ‖CE2E

p) self-

stabilizes inte2e time, te2e > thls + ǫsample + 2e + 2d + 3(e + d)D, to L4
e2e relative to

R(RW‖V W‖V bcast).

This immediately implies the following result about the associated VSA layer algo-

rithm:

Lemma 14.17 Let alge2e be a V Alg such that for each p ∈ P ,

alge2e(p) = CHL
p ‖CE2E

p and for each u ∈ U , alge2e(u) =

289

ActHide({geocast(m, v)u, georcv(m)v, HLQuery(p)u, HLreply(p, v)u|m ∈ Msg, u, v ∈
U, p ∈ P}, V Geo

u ‖V HL
u ‖V E2E

u).

Let te2e be anyt such thatt > thls + ǫsample + 2e + 2d + 3(e + d)D.

ThenV LNodes[alge2e] self-stabilizes in timete2e toL4
e2e relative toR(RW‖V W‖V bcast).

With Lemma 14.10, this allows us to conclude that after an execution of E2E has

stabilized, the execution fragment from that point on satisfies the properties in Section

14.3.4:

Lemma 14.18 Let te2e be anyt such thatt > thls + ǫsample + 2e + 2d + 3(e + d)D.

ThenexecsU(V LNodes[alge2e])‖R(RW‖V W‖V bcast) stabilizes in timete2e to a setA of execution

fragments such that for eachα ∈ A, there exists a subsetΠ of theercv events inα such

that:

1. There exists a function mapping eachercv event inΠ to anesend event such that the

three properties (Integrity, Bounded-time delivery, and Reliable receivable delivery)

hold.

2. For everyercv(m)q eventπ not in Π whereπ occurs at some timet, it must be the

case thatt − α.fstate(now) ≤ 3D(e + d) + e + 2d.

In other words, if we start each client and VSA running the end-to-end routing program

in an arbitrary state and run them withRW‖V W‖V bcast started in a reachable state,

then the execution eventually reaches a point from which theproperties of the end-to-end

routing service described in Section 14.3.4 are satisfied. These properties basically say that

Integrity, Bounded-time delivery, and Reliable receivable delivery hold for most of theercv

andesend events in the fragment, modulo several stragglerercv events that occur early in

the execution fragment.

14.5 Extensions

Here we briefly describe some possible extensions to ourE2E algorithm:

290

Routing optimizations: Once the location of a client is known, communication with the

client can be continued directly, and movements during the conversation may be piggy-

backed on the information transferred in order to update thedestination according to the

move (as suggested [38]). We also note that we can use an embedded tree location scheme

such as the one in [38], implemented by virtual automata, where intermediate tree nodes

are also mapped to regions.

Sleeping client messaging service:Mobile clients might be able to shut down to conserve

power. We could guarantee that a sleeping client eventuallyreceives messages intended for

it by having local VSAs save the messages. The VSAs then, at predefined times, broadcast

the messages. Sleeping clients wake up for these broadcasts, receive their messages, and

can go to sleep again afterwards.

291

292

Chapter 15

Motion Coordination

In this chapter, we describe how to use a variant of the VSA layer to help a set of mobile

robots arrange themselves on any specified curve on the planein the presence of dynamic

changes both in the underlying ad hoc network and the set of participating robots. This

application serves as an example of a coordination problem,where VSAs can communicate

with client nodes to change the motion trajectories of thoseclients. The VSAs coordinate

among themselves to distribute the client nodes relativelyuniformly among the VSAs’

regions. Each VSA directs its local client nodes to align themselves on the local portion

of the target curve, and each client node then moves towards the points indicated. The

resulting motion coordination protocol is self-stabilizing, in that each robot can begin the

execution in any arbitrary state and at any arbitrary location in the plane. In the context of

this application, self-stabilization is especially desirable since it ensures that the robots can

adapt to changes in the desired target formation.

15.1 Background

In this chapter, we study the problem of coordinating the behavior of a set of autonomous

mobile robots (physical nodes) in the presence of changes inthe underlying communica-

tion network as well as changes in the set of participating robots. Consider, for example, a

system of firefighting robots deployed throughout forests and other arid wilderness areas.

Significant levels of coordination are required in order to combat the fire: to prevent the

293

fire from spreading, it has to be surrounded; to put out the fire, firefighters need to create

“firebreaks” and spray water; they need to direct the actionsof (potentially autonomous)

helicopters carrying water. All this has to be achieved withthe set of participating agents

changing and with unreliable (possibly wireless) communication between agents. Similar

scenarios arise in a variety of contexts, including search and rescue, emergency disaster

response, remote surveillance, and military engagement, among many others. In fact, au-

tonomous coordination has long been a central problem in mobile robotics.

We focus on a generic coordination problem that, we believe,captures many of the

complexities associated with coordination in real-world scenarios. We assume that the mo-

bile robots are deployed in a large two-dimensional plane, and that they can coordinate their

actions by local communication using wireless radios. The robots must arrange themselves

to form a particular pattern, specifically, a continuous curve drawn in the plane. The robots

must spread themselves uniformly along this curve. In the firefighting example described

above, this curve might form the perimeter of the fire.

The problem of motion coordination has been studied in a variety of contexts, focusing

on several different goals: flocking [55]; rendezvous [5, 63, 69]; aggregation [43]; deploy-

ment and regional coverage [21]. Control theory literaturecontains several algorithms for

achieving spatial patterns [10, 19, 41, 77]. These algorithms assume that the agents pro-

cess information and communicate synchronously, and hence, they are analyzed based on

differential or difference equations models of the system.Convergence of this class of algo-

rithms over unreliable and delay-prone communication channels have been studied recently

in [15].

Geometric pattern formation with vision-based models for mobile robots have been

investigated in [22, 40, 42, 80, 81, 83]. In these weak models, the robots are oblivious,

identical, anonymous, and often without memory of past actions. For the memoryless

models, the algorithms for pattern formation are often automatically self-stabilizing. In [22,

23], for instance, a self-stabilizing algorithm for forming a circle has been presented. These

weak models have been used for characterizing the class of patterns that can be formed

and for studying the computational complexity of formationalgorithms, under different

assumptions about the level of common knowledge amongst agents, such as, knowledge of

294

distance, direction, and coordinates [80,83].

These types of coordination problems can be quite challenging due to the dynamic

and unpredictable environment that is inherent to wirelessad hoc networks. Robots may

be continuously joining and leaving the system, and they mayfail. In addition, wireless

communication is notoriously unreliable due to collisions, contention, and various wireless

interference.

Here we show how the VSA Layer can implement a reliable and robust protocol for

coordinating mobile robots. The protocol relies on the VSAsto organize the mobile robots

in a consistent fashion. Each VSA must decide based on its ownlocal information which

robots to keep in its own region, and which to assign to neighboring regions; for each robot

that remains, the VSA determines where on the curve the robotshould reside. Unlike in the

prior three applications (Geocast, location management, and end-to-end communication),

the client motion in the motion coordination protocol is controllable by the client, allowing

the client to change its motion trajectory based on instructions from a VSA.

We have previously presented a protocol for coordinating mobile devices using virtual

infrastructure in [66]. The paper described how to implement a simple asynchronous virtual

infrastructure, and proposed a protocol for motion coordination. This earlier protocol relies

on a weaker (i.e., untimed) virtual layer (see [30,75]), while the current protocol relies on a

stronger (i.e., timed) virtual layer. As a result, our new coordination protocol is somewhat

simpler and more elegant than the previous version. Virtualinfrastructure has also been

considered in [11] for collision prevention of airplanes.

In order that the robot coordination be truly robust, our newcoordination protocol is

alsoself-stabilizing, meaning that each robot can begin in an arbitrary state, in an arbitrary

location in the network, and yet the distribution of the robots will still converge to the

specified curve. When combined with our stabilizing emulation of the VSA Layer, we end

up with entirely self-stabilizing solution for the problemof autonomous robot coordination.

Recall that self-stabilization provides many advantages.Given the unreliable nature of

wireless networks, it is possible that occasionally (due toaberrant interference) a signifi-

cant fraction of messages may be lost, disrupting the protocol; a self-stabilizing algorithm

can readily recover from this. Moreover, a self-stabilizing algorithm can cope with more

295

dynamic coordination problems. In real-life scenarios, the required formation of the mobile

nodes may change. In the firefighting example above, as the fireadvances or retreats, the

formation of firefighting robots must adapt. A self-stabilizing algorithm can adapt to these

changes, continually re-arranging the robots along the newly chosen curve.

Another technical contribution of this chapter is the exemplification of a proof tech-

nique for showing self-stabilization of systems implemented using virtual infrastructure.

The proof technique has three parts. First, using invariantassertions and standard control

theory results we show that from any initial state, the application protocol, in this case,

the motion coordination algorithm converges to anacceptable state(Section 15.3). Next,

we describe a set oflegal statesof the algorithm (Section 15.4.1). Using a simulation re-

lation we show that the set of legal states behaves just like the set of reachable states of

the complete system—the VSA layer running the coordinationalgorithm (Section 15.4.2).

Then we show that the algorithm always stabilizes to a legal state even when it starts from

some arbitrary state after failures (Section 15.4.3). Fromany legal state the algorithm then

eventually behaves as if it has reached an acceptable state provided there are no further

failures. It has already been shown in Section 11.3.4 that our implementation of the VSA

layer itself is self-stabilizing and produces traces that satisfy certain properties with respect

to the failure pattern of VSAs. Combining the stabilizationof the implementation of the

VSA layer and the application protocol, we are able to conclude self-stabilization of the

emulation of the system (Theorem 15.22).

15.2 Motion Coordination using Virtual Nodes

We assume a variant of the VSA layer described in Chapter 7. The only difference between

the original VSA layer and the variant used in this chapter isin the control of the motion of

client nodes, described in Section 15.2.3.

To describe the motion coordination problem, we fixΓ : A → R to be a simple, dif-

ferentiable curve onR that is parameterized by arc length. The domain setA of parameter

values is an interval in the real line. We also fix a particularnetwork tiling given by the

collection of regions{Ru}u∈U such that each point inΓ is also in some regionRu. Let

296

Au
∆
= {p ∈ A : region(Γ(p)) = u} be the domain ofΓ in regionu. We assume thatAu

is convex for every regionu; it may be empty for someu. The local part of the curveΓ

in regionu is the restrictionΓu : Au → Ru. We write |Au| for the length of the curve

Γu. We define thequantizationof a real numberx with quantization constantσ > 0 as

qσ(x) = ⌈x
σ
⌉σ. We fix σ, and writequ as an abbreviation forqσ(|Au|), qmin for the mini-

mum nonzeroqu, andqmax for the maximumqu.

15.2.1 Problem Statement

Our goal is to design an algorithm for mobile robots such that, once the failures and recov-

eries cease, within finite time all the robots are located onΓ and as time progresses they

eventually become equally spaced onΓ. Formally, if nofail andrestart actions occur after

time t0, then:

1. there exists a constantT , such that for eachu ∈ U , within time t0 + T the set of

robots located inRu becomes fixed and its cardinality is roughly proportional toqu;

moreover, ifqu 6= 0 then the robots inRu are located on1 Γu, and

2. in the limit, as time goes to infinity, all robots inRu are uniformly spaced2 onΓu.

15.2.2 Overview of Solution using the VSA Layer

The VSA Layer is used as a means to coordinate the movement of client nodes, i.e., robots.

A VSA controls the motion of the clients in its region by setting and broadcasting target

waypoints for the clients: VSAVN u, u ∈ U , periodically receives information from clients

in its region, exchanges information with its neighbors, and sends out a message containing

a calculated target point for each client node “assigned” toregionu. VN u performs two

tasks when setting the target points: (1) it re-assigns someof the clients that are assigned to

1For a given pointx ∈ R, if there existsp ∈ A such thatΓ(p) = x, then we say that the pointx is on the
curveΓ; abusing the notation, we write this asx ∈ Γ.

2A sequencex1, . . . , xn of points in R is said to beuniformly spacedon a curveΓ if there exists a
sequence of parameter valuesp1 < p2 . . . < pn, such that for eachi, 1 ≤ i ≤ n, Γ(pi) = xi, and for eachi,
1 < i < n, pi − pi−1 = pi+1 − pi.

297

itself to neighboring VSAs, and (2) it sends a target position onΓ to each client that is as-

signed to itself. The objective of (1) is to prevent neighboring VSAs from getting depleted

of robots and to achieve a distribution of robots over the regions that is proportional to the

length ofΓ in each region. The objective of (2) is to space the nodes uniformly onΓ within

each region. The client algorithm, in turn, receives its current position information from a

modified version ofRW called RW ′ and computes a velocity vector for reaching its latest

received target point from a VSA.

Each virtual nodeVN u uses only information about the portions of the target curveΓ

in regionu and neighboring regions. For the sake of simplicity, we assume that all client

nodes know the complete curveΓ. We could as well have modeled the client nodes inu

as receiving external information about the nature of the curve in regionu and neighboring

regions only.

15.2.3 RW′: modified RW

In our solution, we have VSAs directCNs to new locations. In order to haveCNs comply,

we need to modify our virtual layer model. In particular, we need to modifyRW slightly to

allow a mobile node to communicate to the real world automaton what its desired velocity

is, rather than allowingRW to nondeterministically choose the node’s velocity itself.

We call our modified real world automatonRW ′. It is very similar toRW , except

for the addition of thevelocity action for each mobile node. As before,RW ′ models

system time and mobile node locations. It is an external source of reliable time and location

knowledge for physical nodes. TheRW′ TIOA in Figure 15-1 maintains location/ time

information and updates mobile nodes with that information.

The newvelocity input allows a mobile node to communicate a new desired velocity to

RW ′. In particular, avelocity(v)p input promptsRW ′ to change processp’s velocity tov.

As you can see, in addition to the newvelocity action,RW ′ is also different fromRW

in that it has one additional state variable,vel. In addition, the development of theloc

variable for each processp is now as before, unlessvel(p) is not⊥, in which caseloc(p)

changes as specified byvel(p):

298

Signature:
2 Output GPSupdate(l, t)p, l ∈ R, p∈ P, t ∈ R≥0

Input velocity(v)p, v∈ R
2, p∈ P

4

State:
6 analognow: R

≥0, initially 0

updates(p): 2R×R
≥0

, for eachp ∈ P , initially ∅
8 analog loc(p): R, for eachp ∈ P , initially arbitrary

vel(p):R2∪ {⊥}:|vel(p)|≤ vmax,for eachp ∈ P , initially ⊥
10

Trajectories:
12 evolve

d(now) = 1
14 ∀ p ∈ P :

if vel(p) 6=⊥ then d(loc(p)) =
vel(p) else|d(loc(p))| ≤ vmax

16 stop when
∃p∈ P: ∀〈l, t〉 ∈ updates(p): now≥ t+ ǫsample

Transitions:
20Output GPSupdate(l, t)p

Precondition:
22∀〈u, t′〉 ∈ updates(p): t 6= t′

l = loc(p) ∧ t = now
24Effect:

updates(p)← updates(p) ∪ {〈l, t〉}
26

Input velocity(v)p

28Effect:
vel(p)← v

Figure 15-1:RW′[vmax, ǫsample].

• loc : P → R maps each physical node id to a point inR indicating the node’s current

location. Initially this is arbitrary. We assume that the change inloc for eachp ∈ P is

equal tovel(p), unlessvel(p) = ⊥, in which caseloc(p) changes at a rate no greater

thanvmax.

• vel : P → R
2 ∪ {⊥} is the velocity of each mobile node. It is initially⊥, and is

updated viavelocity inputs.

The set of reachable states forRW ′ is the same as forRW , except thatvel can be

arbitrary.

15.2.4 CN: Client Node Algorithm

The algorithm for the client nodeCN (δ)p, p ∈ P (see Figure 15-2) follows a round struc-

ture, where rounds begin at times that are multiples ofδ. At the beginning of each round,

aCN stops moving and sends acn-update message to its local VSA (that is, the VSA in

whose region theCN currently resides). Thecn-update message tells the local VSA the

CN ’s id and its current location inR. The local VSA then sends a response to the client,

i.e., atarget-update message. Each such message describes the new target location x∗p for

CN p, and possibly an assignment to a different region.CN p computes its velocity vector

vp, based on its current positionxp and its target positionx∗p, asvp = (xp − x∗p)/||xp − x∗p||

299

and communicatesvmaxvp to RW ′. As a result thenRW ′ moves the position ofCN p (with

maximum velocity) towardsx∗p.

Signature:
2 Input GPSupdate(l, t)p, l ∈ R, t ∈ R

≥0

Input vrcv(m)p, m∈ {target-update} ×(P→ R)
4 Output vcast(〈cn-update, p, l〉)p, l ∈ R

Output velocity(v)p, v∈ R2

6

State:
8 analogclock: R≥0∪ {⊥}, initially ⊥

analogx ∈ R ∪ {⊥}, location, initially⊥
10 x∗ ∈ R ∪ {⊥}, target point, initially⊥

v ∈ {⊥, 0} ∪ {v : R2 | |v| = 1}, initially ⊥
12

Trajectories:
14 evolve

if clock 6= ⊥
16 then d(clock) = 1 else d(clock) = 0

if v 6=⊥
18 then d(x) = v · vmax else d(x) = 0

stop when[x 6=⊥ ∧ x∗ 6= ⊥
20 ∧ clockmod δ = 0]

∨ [x 6=⊥ ∧x∗ 6=⊥ ∧ v||x∗ − x|| 6= x∗ − x]
22 ∨ [(x = x∗∨ x = ⊥ ∨ x∗ = ⊥) ∧ v 6= 0]

24Transitions:
Input GPSupdate(l, t)p

26Effect
if 〈x, clock〉6= 〈l, t〉∨

28‖x∗-l‖≥ vmax(δ⌈t/δ⌉-t-dr) ∨
x∗= ⊥∨ t mod δ /∈ (e+2d+2ǫ, δ-dr)

30then x, x∗← l; clock← t
v←⊥

32

Input vrcv(〈target-update, target〉)p

34Effect
if ‖target(p)-x‖< vmax(δ⌈ clock

δ
⌉-clock-dr)

36∧ clockmod δ > e+ 2d + 2ǫ
then x∗ ← target(p)

38

Output vcast(〈cn-update, p, x〉)p

40Precondition
x= x 6= ⊥∧ clockmod δ = 0∧ x∗ 6= ⊥

42Effect
x∗←⊥

44

Output velocity(v)p

46Precondition
v = vmax · (x∗ − x)/||x∗ − x||

48∨ (v= 0∧ [x = x∗ ∨ x∗=⊥∨ x=⊥])
Effect

50v← v / vmax

Figure 15-2: Client nodeCN(δ)p automaton.

15.2.5 VN: Virtual Stationary Node Algorithm

The algorithm for virtual nodeVN (δ, k, ρ1, ρ2)u, u ∈ U , appears in Figure 15-3, where

k ∈ Z+ andρ1, ρ2 ∈ (0, 1) are parameters of the TIOA.VN u collectscn-update messages

sent at the beginning of the round fromCN ’s located in regionRu, and aggregates the

location and round information in a table,M . Whend + ǫ time passes from the beginning

of the round,VN u computes fromM the number of client nodes assigned to it that it has

heard from in the round, and sends this information in avn-update message to all of its

neighbors.

WhenVN u receives avn-update message from a neighboring VSA, it stores theCN

population information in a table,V . Whene + d + ǫ time from the sending of its own

vn-update passes,VN u uses the information in its tablesM andV about the number of

CN s in its and its neighbors’ regions to calculate how manyCN s assigned to itself should

300

1 Signature:
Input time(t)u, t ∈ R≥0

3 Input vrcv(m)u,
m∈ ({cn-update} ×P×R) ∪ ({vn-update} ×U ×N)

5 Output vcast(m)u,
m∈ ({vn-update} ×{u} ×N) ∪ ({target-update} ×

(P→ R))
7

State:
9 analogclock: R

≥0∪ {⊥}, initially ⊥.
M:P→R, initially ∅.

11 V : U → N, initially ∅.

13 Trajectories:
evolve

15 if clock 6= t
then d(clock) = 1 else d(clock) = 0

17 stop whenAny precondition is satisfied.

19 Transitions:
Input time(t)u

21 Effect
if clock 6= t ∨ t mod δ /∈ (0, e+ 2d + 2ǫ]

23 then M, V← ∅; clock← t

Input vrcv(〈cn-update, id, loc〉)u

26Effect
if u = region(loc) ∧ clockmod δ ∈ (0, d]

28then M(id)← loc; V← ∅

30Output vcast(〈vn-update, u, n〉)u

Precondition
32clockmod δ = d+ǫ

n= |M|6= 0∧V 6= {〈u, n〉}
34Effect

V← {〈u, n〉}
36

Input vrcv(〈vn-update, id, n〉)u

38Effect
if id ∈ nbrs(u) then V(id)← n

40

Output vcast(〈target-update, target〉)u

42Precondition
clockmod δ = e+ 2d + 2ǫ ∧M 6= ∅

44target= calctarget(assign(id(M), V), M)
Effect

46M, V← ∅

Figure 15-3:V N(δ, k, ρ1, ρ2)u TIOA, with parameters: safetyk, and damp-
ing ρ1, ρ2.

be reassigned and to which neighbor. This is done through theassign function, and these

assignments are then used to calculate new target points forlocalCN s through thecalctar-

get function (see Figure 15-4). The choice of point assignmentsdraws on the intuition

for solutions to what members of the control community call theconsensus problem[77],

where several agents try to converge at a point, usually their average. One standard way for

solving continuous consensus is for the agents to interact pair-wise and replace their current

values with their average. Our assignment algorithm is similar, but more complicated due

to a policy of maintaining a minimum number of agents in an alive region (to help prevent

alive VSAs from failing), the fact that each region has multiple neighboring regions with

which to coordinate, and the effects of quantization.

If the number ofCN s assigned toVN u exceeds the minimumsafe numberk, then

assign may reassign someCNs to neighbors, based on the number ofCN s at those neigh-

bors. LetInu denote the set of neighboring VSAs ofVN u that are on the curveΓ and

yu(g), denote the numbernum(Vu(g)) of CN s assigned toVN g, whereg is eitheru or

a neighbor ofu. If qu 6= 0, meaningVN u is on the curve then we letloweru denote the

subset ofnbrs(u) that are on the curve and have fewer assignedCN s thanVN u has after

301

function assign(assignedM: 2P , y: nbrs+(u)→ N) =
2assign: P → U , initially {〈i, u〉} for eachi ∈ assignedM

n: N, initially y(u); ra:N, //initially 0
4if y(u) > k then

if qu 6= 0 then
6let lower = {g ∈ nbrs(u): qg

qu
y(u) > y(g)}

for each g ∈ lower
8ra←min(⌊ρ2 · [

qg

qu
y(u)− y(g)]/2(|lower|+1)⌋, n− k)

updateassignby reassigningra nodes fromu to g
10n← n− ra

else if{v∈ nbrs(u): qv 6= 0} = ∅ then
12let lower = {g ∈ nbrs(u) : y(u) > y(g)}

for each g ∈ lower
14ra←min(⌊ρ2 · [y(u)− y(g)]/2(|lower|+1)⌋, n− k)

updateassignby reassigningra nodes fromu to g
16n← n− ra

else ra← ⌊ (y(u) -k)/ |{v∈ nbrs(u): qv 6= 0}| ⌋
18for each g ∈ {v∈ nbrs(u): qv 6= 0}

updateassignby reassigningra nodes fromu to g
20return assign

22function calctarget(assign: P → U , locM: P → R) =
seq, indexed list of pairs inA× P , initially the list,

24for eachi ∈ P : assign(i)= u∧ locM(i) ∈ Γu, of 〈p, i〉

wherep= Γ−1
u (locM(i)), sorted byp, theni

26for each i ∈ P : assign(i) 6= null
if assign(i) = g 6= u then locM(i)← og

28else if locM(i) /∈ Γu then locM(i)← choose{minx∈Γu
{dist(x, locM(i))}}

elselet p = Γ−1
u (locM(i)), seq(k) = 〈p, i〉

30if k = first(seq) then locM(i)← Γu(inf (Au))
else ifk = last(seq) then locM(i)← Γu(sup(Au))

32else letseq(k − 1) = 〈pk−1, ik−1〉,
seq(k + 1) = 〈pk+1, ik+1〉

34locM(i)← Γu(p + ρ1 · (
pk−1+pk+1

2
− p))

return locM

Figure 15-4:V N(k, ρ1, ρ2)u TIOA functions.

normalizing withqg

qu
. For eachg ∈ loweru, VN u reassigns the smaller of the following two

quantities ofCN s toVN g: (1) ra = ρ2 · [qg

qu
yu(u)− yu(g)]/2(|loweru|+ 1), whereρ2 < 1

is adamping factor, and (2) the remaining number ofCN s overk still assigned toVN u.

If qu = 0, meaningVN u is not on the curve, andVN u has no neighbors on the curve

(lines 11–15), then we letloweru denote the subset ofnbrs(u) with fewer assignedCN s

thanVN u. For eachg ∈ loweru, VN u reassigns the smaller of the following two quantities

of CN s: (1)ra = ρ2 ·[yu(u)−yu(g)]/2(|loweru|+1) and (2) the remaining number ofCN s

overk still assigned toVN u. VN u is on aboundaryif qu = 0, but there is ag ∈ nbrs(u)

with qg 6= 0. In this case,yu(u) − k of VN u’s CN s are assigned equally to neighbors in

Inu (lines 17–19).

Thecalctarget function assigns to everyCN p assigned toVN u a target pointlocMu(p)

302

in regionRg, whereg = u or it is one ofu’s neighbors. The target pointlocMu(p) is

computed as follows: IfCN p is assigned toVN g, g 6= u, then its target is set to the center

og of regiong (line 27); if CN p is assigned toVN u but is not located on the curveΓu then

its target is set to the nearest point on the curve, nondeterministically choosing one if there

are several (line 28); ifCN p is either the first or last client node onΓu then its target is set

to the corresponding endpoint ofΓu (lines 30–31); ifCN p is on the curve but is not the first

or last client node then its target is moved to the mid-point of the locations of the preceding

and succeedingCN s on the curve (line 34). For the last two computations a sequenceseq

of nodes on the curve sorted by curve location is used (line 25).

Lastly,VN u broadcasts new waypoints for the round via atarget-update message to

its CN s.

15.2.6 MC: Complete System

DefineMC to be the element ofV Algs, the set of VSA layer algorithms (Definition 7.3),

where for eachp ∈ P , MC(p) = CNp, and for eachu ∈ U , MC(u) = V Nu.

The complete system is thenV Layer′[MC], which is exactly the same as

V Layer[MC], the VSA layer instantiated withMC (Definition 7.4), except thatRW is

replaced withRW ′:

• RW ′,

• VW ,

• VBcast ,

• Fail(V BDelayp‖CNp), one for eachp ∈ P , and

• Fail(V BDelayu‖V Nu), one for eachu ∈ U .

Recall thatFail(A) denotes the fail-transformed version of TIOAA (see Chapter 5).

Round length

Given the maximum Euclidean distance,r, between points in neighboring regions, it can

take up to r
vmax

time for a client to reach its target. Also, after the client arrives in the

303

region it was assigned to, it could find the local VSA has failed. Let dr be the time it

takes a VSA to start up, once a new node enters the region and assuming no nodes in

the region fail or leave until after the startup (notice thatsuch a constant may not exist;

however, under the assumption that executions of the virtual layer are in the execution

fragment setS described in Definition 11.12, such a constant does exist andis equal to

d + tslice). To ensure a round is long enough for a client node to send thecn-update,

allow VN s to exchange information, allow clients to receive atarget-update message

and arrive at new assigned target locations, and be sure virtual nodes are alive in their

region before a new round begins, we require thatδ, the round length parameter, satisfies

δ > 2e + 3d + 2ǫ + r/vmax + dr.

15.3 Correctness of the Algorithm

In this section, we show thatstarting from an initial stateand assuming that executions

of the virtual layer satisfy the properties of setS in Definition 11.12 (whereS describes

execution fragments of the virtual layer that satisfy certain properties with respect to when a

fail or restart of a VSA is allowed to occur and when a VSA restart is guaranteed to occur),

the system described in 15.2.2 satisfies the requirements specified in Section 15.2.1. The

proofs of the results in this section parallel those presented in [66], albeit the semantics

of the Virtual Layer used here is different (the virtual nodes used in [66] were untimed

and hence dependent on the timing of client node messages to complete their tasks). The

proofs still look similar since the reasoning both here and in [66] uses the same round-based

structure. In the following section we show self-stabilization.

We define roundt as the interval of time[δ(t− 1), δ · t). That is, roundt begins at time

δ(t − 1) and is completed by timeδ · t. We sayCN p, p ∈ P , is activein roundt if node

p is not failed throughout roundt. A VN u, u ∈ U , is activein roundt, t > 0 if it is alive

from the beginning of roundt until its V BDelay performs avcast′ of a target-update

message. By definition none of theVN s is active in the first round. We also define the

following notation:

• In(t) ⊆ U is the subset ofVN ids that are active in roundt andqu 6= 0;

304

• Out(t) ⊆ U is the subset ofVN s that are active in roundt andqu = 0;

• C(t) ⊆ P is the subset of activeCN s at roundt;

• Cin(t) ⊆ P is the set of activeCN s located in regions with id inIn(t) at the begin-

ning of roundt;

• Cout(t) ⊆ P is subset of activeCNs located in regions with id inOut(t) at the

beginning of roundt.

For every pair of regionsu, w and for every roundt, we definey(w, t)u to be the value

of V (w)u (i.e., the number of clientsu believes are available in regionw) immediately prior

to VN u performing avcastu in roundt, i.e., at timee+2d+2ǫ after the beginning of round

t. If there are no new client failures or recoveries in roundt, then for every pair of regions

u, w ∈ nbrs+(v), we can conclude thaty(v, t)u = y(v, t)w, which we denote simply as

y(v, t). We defineρ3
∆
= q2

max

(1−ρ2)σ
. The rateρ3 effects the rate of convergence, and will be

used in the analysis. Notice thatρ3 > 1. Notice that for anyv, w ∈ nbrs(u) ∪ {u}, in the

absence of failures and recoveries ofCN s in roundt, yv,t = yw,t; we write this simply as

yh(t).

15.3.1 Approximately Proportional Distribution

For the rest of this section we fix a particular round numbert0 and assume that, for all

p ∈ P , no failp or restartp events occur at or after roundt0. We also assume that all

executions ofVLayer’[MC] satisfy the properties ofS in Definition 11.12. The first lemma

states some basic facts about theassign function.

Lemma 15.1 In every roundt ≥ t0:

1. If y(u, t) ≥ k for someu ∈ U , theny(u, t + 1) ≥ k;

2. In(t) ⊆ In(t + 1);

3. Out(t) ⊆ Out(t + 1).

305

Proof: We fix roundt ≥ t0.

1. From line 4 of theassign function (Figure 15-4) it is clear thatVN u, u ∈ U , reas-

signs some of itsCN s in roundt only if y(u, t) > k. And if a CN is not reassigned

and does not fail, it remains active in the same region.

2. For anyVN u, u ∈ In(t), if y(u, t) < k thenVN u does not reassignCN s, and

y(u, t + 1) = y(u, t). Otherwise, from line 8 of Figure 15-4 it follows thaty(u, t +

1) ≥ k. In both casesu ∈ In(t + 1). (Since all processes that move do so after

receiving atarget-update message from their region, an alive VSA won’t fail in a

round until after itsvcast′ of a target-update has occurred. Also, by our assumption

on the size ofδ, it is obvious that by the start of the next round the VSA will again

be alive since no processes die or leave in the firstd portion of a round.)

3. For anyVN u, u ∈ Out(t), if y(u, t) < k thenVN u does not reassignCN s, and

y(u, t + 1) = y(u, t). Otherwise, from line 14 and line 17 of Figure 15-4 it follows

thaty(u, t + 1) ≥ k. In both casesu ∈ Out(t + 1). (This follows the reasoning of

the prior item.)

We now identify a roundt1 ≥ t0 after which the set of regionsIn(t) andOut(t) remain

fixed.

Lemma 15.2 There exists a roundt1 ≥ t0 such that for every roundt ∈ [t1, t1 + (1 +

ρ3)m
2n2]:

1. In(t) = In(t1);

2. Out(t) = Out(t1);

3. Cin(t) ⊆ Cin(t + 1); and

4. Cout(t + 1) ⊆ Cout(t).

306

Proof: By Lemma 15.1, Part 2, we know that the setIn(t) ⊆ U is non-decreasing ast

increases. From Part 3, we know that setOut(t) ⊆ U is non-decreasing ast increase. Since

U is finite, we conclude from this that there is some roundt1 after which no new regions

u ∈ U are added to eitherIn(t) or Out(t). Thus we have satisfied Parts 1 and 2. Notice

that this occurs no later than roundt0 + 2m2 · (1 + ρ3)m
2n2.

For Part 3, consider a clientCN p, p ∈ Cin(t), that is currently assigned in roundt to

VN u, u ∈ In(t). From lines 5–9 of Figure 15-4 we see thatCN p is assigned to someVN w,

w ∈ nbrs+(u) whereqw 6= 0. If VN w is inactive in roundt + 1, then clientCN p remains

in VN w until it becomes active, resulting inVN w being added toIn(t), thus contradicting

the fact that for every roundt′ ≥ t1, In(t′) = In(t1). We conclude thatVN w is active in

roundt, and hence roundt + 1, from which the claim follows.

For Part 4, notice that since there are no failures and recoveries of CN s, C(t) =

C(t + 1). By definition,Cin(t) ∪ Cout(t) = C(t), Cin(t) ∩ Cout(t) = ∅, andCin(t + 1) ∪
Cout(t + 1) = C(t + 1), Cin(t + 1) ∩ Cout(t + 1) = ∅. The result follows from Part (3).

Fix t1 for the rest of this section such that it satisfies Lemma 15.2.The next lemma states

that eventually, regions bordering on the curve stop assigning clients to regions that are on

the curve. That is, assume thatu is a region wherequ = 0, but thatu has a neighborv

whereqv 6= 0; then, eventually, from some round onwards,u never again assigns clients to

v.

Lemma 15.3 There exists some roundt2 ∈ [t1, t1+(1+ρ3)m
2n2] such that for every round

t ∈ [t2, t2 + (1 + ρ3)m
2n]: if u ∈ Out(t) andv ∈ In(t) and if u andv are neighboring

regions, thenu does not assign any clients tov in roundt.

Proof: Notice that if u assigns a client tov, thenCout decreases by one. During the

interval [t1, t1 + (1 + ρ3)m
2n2], we know thatCout is non-increasing by Lemma 15.2.

Thus, eventually, there is some roundt2 after which eitherCout = ∅ or after which no

further clients are assigned from a regionOut(·) to a regionIn(·). Since there are at most

n clients, we can conclude that this occurs at latest by roundt1 + n · [(1 + ρ3)m
2n].

Fix t2 for the rest of this section such that it satisfies Lemma 15.3.Lemma 15.2 implies

that in every roundt ≥ t1, In(t) = In(t1) andOut(t) = Out(t1); we denote these simply

307

asIn andOut . The next lemma states a key property of theassign function after roundt1.

For a roundt ≥ t1, consider someVN u, u ∈ Out(t), and assume thatVN w is the neighbor

of VN u assigned the most clients in roundt. Then we can conclude thatVN u is assigned

no more clients in roundt + 1 thanVN w is assigned in roundt. A similar claim holds for

regions inIn(t), but in this case with respect to thedensityof clients with respect to the

quantized length of the curve. The proof of this lemma is based on careful analysis of the

behavior of theassign function.

Lemma 15.4 In every roundt ∈ [t2, t2 + (1 + ρ3)m
2n], for u, v ∈ U andu ∈ nbrs(v):

1. If u, v ∈ Out(t) andy(v, t) = maxw∈nbrs(u)∩Out(t) y(w, t) andy(u, t) < y(v, t), then

y(u, t + 1) < y(v, t).

2. If u, v ∈ In(t) and y(v, t)/qv = maxw∈nbrs(u)∩In(t) [y(w, t)/qw] and y(u, t)/qu <

y(v, t)/qv, then:
y(u, t + 1)

qu

≤ y(v, t)

qv

− (1 − ρ2)
σ

q2
max

.

Proof: For Part 1, fixu, v andt, as in the statement of the lemma. Consider some region

w that is a neighbor ofu and that assigns clients tou in roundt + 1. Sincequ = 0, notice

that w assigns clients tou only if the conditions of lines 11–16 in Figure 15-4 are met.

This implies thatw ∈ Out(t), and hencey(w, t) ≤ y(v, t), by assumption. We can also

conclude thatlowerw ≥ 1, asw assigns clients tou only if u ∈ lowerw. Finally, from

line 14 of Figure 15-4, we observe that the number of clients that are assigned tou by w in

roundt is at most:

ρ2 [y(w, t)− y(u, t)]

2(|lowerw(t)| + 1)
≤ ρ2 [y(v, t)− y(u, t)]

4

Since u has at most four neighbors, we conclude that it is assigned atmost

308

ρ2 [y(v, t) − y(u, t)] clients. Sinceρ2 < 1 andy(u, t) < y(v, t), this implies that:

y(u, t + 1) ≤ y(u, t) + ρ2 [y(v, t) − y(u, t)]

≤ ρ2 · y(v, t) + (1 − ρ2)y(u, t)

< ρ2 · y(v, t) + (1 − ρ2)y(v, t)

< y(v, t) .

For Part 2, as in Part 1, fixu, v andt as in the lemma statement. Recall we have assumed

that y(u, t)/qu < y(v, t)/qv. We begin by showing that, due to the manner in which the

curve is quantized,y(u, t)/qu ≤ y(v, t)/qv − σ/q2
max . Sincequ is defined as⌈Pu/σ⌉σ, and

sinceqv is defined as⌈Pv/σ⌉σ, we notice that, by assumption:

y(u, t)

⌈

Pv

σ

⌉

σ < y(v, t)

⌈

Pu

σ

⌉

We divide both sides byσ, and since both sides are integral, we exchange the ‘<’ with a

‘≤’:

y(u, t)

⌈

Pv

σ

⌉

≤ y(v, t)

⌈

Pu

σ

⌉

− 1

From this we conclude:
y(u, t)
⌈

Pu

σ

⌉ ≤ y(v, t)
⌈

Pv

σ

⌉ − σ2

quqv

Dividing everything byσ, and boundingqu andqv by qmax, we achieve the desired calcula-

tion.

Now, consider some regionw that is a neighbor ofu and that assigns clients tou in

roundt + 1. First, notice thatw /∈ Out(t), since by Lemma 15.3, no clients are assigned

from anOut region to anIn region after roundt2 (prior to t2 + (1 + ρ3)m
2n). Thus,w

assigns clients tou only if the conditions of lines 5–10 in Figure 15-4 are met. This implies

thatw ∈ In(t), and hencey(w, t)/qw ≤ y(v, t)/qv, by assumption. We can also conclude

that lowerw ≥ 1, asw assigns clients tou only if u ∈ lowerw. Finally, from line 8 of

Figure 15-4, we observe that the number of clients that are assigned tou by w in roundt is

309

at most:

ρ2

[(

qu

qw

)

y(w, t) − y(u, t)
]

2(|lowerw(t)| + 1)
≤

ρ2

[(

qu

qv

)

y(v, t) − y(u, t)
]

4

Since u has at most four neighbors, we conclude that it is assigned atmost

ρ2 [(qu/qv)y(v, t)− y(u, t)] clients. This implies that:

y(u, t + 1) ≤ y(u, t) + ρ2

[(

qu

qv

)

y(v, t) − y(u, t)

]

≤ ρ2

(

qu

qv

)

· y(v, t) + (1 − ρ2) y(u, t)

Thus, dividing everything byqu, and recalling thaty(u, t)/qu ≤ y(v, t)/qv − σ/q2
max:

y(u, t + 1)

qu
≤ ρ2

(

y(v, t)

qv

)

+ (1 − ρ2) ·
(

y(u, t)

qu

)

≤ ρ2

(

y(v, t)

qv

)

+ (1 − ρ2) ·
(

y(v, t)

qv

− σ

q2
max

)

≤ y(v, t)

qv

− (1 − ρ2)
σ

q2
max

The next lemma states that there exists a roundTout such that in every roundt ≥ Tout,

the set ofCN s assigned to regionu ∈ Out(t) does not change.

Lemma 15.5 There exists a roundTout ∈ [t2, t2 + m2n such that in any roundt ≥ Tout,

the set ofCNs assigned toVN u, u ∈ Out(t), is unchanged.

Proof: First, we show that there exists some roundTout such that the aggregate number

of CN s assigned toVN u remains the same in bothTout andTout + 1 for all u ∈ Out(t2).

We then show that the actual assignment of individual clients remains the same inTout and

Tout + 1.

We consider a vectorE(t) that represents the distribution of clients among regions

in Out(t). That is, the first element inE(t) represents the largest number of clients in

310

any region; the second element inE(t) represents the second largest number of clients in

any region; and so forth. We then argue that, compared lexicographically,E(t + 1) ≤
E(t). Since the elements inE(t) are integers, we conclude from this that eventually the

distribution of clients becomes stables and ceases to change.

We proceed to defineE(t) as follows fort ≥ t2. Let Nout = |Out |. Let Π(t) be

a permutation ofOut that orders the regions by the number of assigned clients, i.e., if u

precedesv in Π(t), theny(u, t) ≤ y(v, t). When we say that some regionu has indexk,

we mean thatΠ(t)k = u. DefineE(t) as follows:

E(t) = 〈y(Π(t)Nout
, t), y(Π(t)Nout−1, t), . . . , y(Π(t)1, t)〉 .

We use the notationE(t)ℓ to refer to theℓth component ofE(t) counting from the right, i.e.,

it refers toΠ(t)ℓ. Any two vectorsE(t) andE(t + 1) can be compared lexicographically,

examining each of the elements in turn from left to right, i.e., largest to smallest.

We now consider some roundt ∈ [t2, t2 + m2n], and show thatE(t) ≥ E(t + 1).

Consider the case whereE(t) 6= E(t + 1), and letu be the region with maximum index

that assigns clients to another region. Letk be the index of regionu.

First, we argue that for every regionv with index≤ k, we can conclude thaty(v, t+1) <

y(u, t). Consider some particular regionv. Notice thatv has no neighbors inOut that are

assigned more thany(u, t) clients in roundt; otherwise, such a neighbor would assign

clients tov, contradicting our choice ofu. Thus, by Lemma 15.4, Part 1, we can conclude

thaty(v, t+1) < y(u, t) (as long ast ∈ [t2, t2 +2m2n], which we will see to be sufficient).

Since this implies that there are at leastk regions assigned fewer thany(u, t) = E(t)k

clients in roundt + 1, we can conclude thatE(t + 1)k < E(t)k. In order to show that

E(t + 1) < E(t), it remains to show that for everyk′ > k, E(t)k′ = E(t + 1)k′.

Consider some regionv with index> k. By our choice ofu, it is clear thatv is not

assigned any clients by a region with index> k. It is also easy to see thatv is not assigned

any clients by a regionw with index≤ k, sincey(v, t) ≥ y(u, t) ≥ y(w, t); as per line 12,

regionw does not assign any clients to a region with≥ y(w, t) clients. Thus no new clients

are assigned to regionv. Moreover, by choice ofu, regionv assigns none of its clients

311

elsewhere. Finally, sincet ≥ t0, none of the clients fail. Thus,y(v, t) = y(v, t + 1).

Since the preceding logic holds for allNout − k + 1 regions with index> k, and all

have more thany(u, t) > y(u, t + 1) clients, we conclude that for everyk′ > k, E(t)k′ =

E(t + 1)k′, implying thatE(t) > E(t + 1), as desired.

SinceE(·) is non-increasing, and since it is bounded from below by the zero vector, we

conclude that eventually there is a roundTout such that for allt ≥ Tout, E(t) = E(t + 1).

Now suppose the set of clients assigned to regionu changes in some roundt ≥ Tout.

The only way the set of clients assigned to regionu could change, without changingy(u, t)

and the setCout, is if there existed a cyclic sequence ofVN s with ids inOut in which

each VN gives upc > 0 CN s to its successorVN in the sequence, and receivesc CN

s from its predecessor. However, such a cycle ofVN s cannot exist because thelower set

imposes a strict partial ordering on theVN s.

Finally, we observe that ifE(t) = E(t+1) for anyt, then the assignment of clients does

not change from that point onwards: since all the clients remained in the same regions in

E(t) andE(t+1), we can conclude that theassign function produced the same assignment

in E(t + 1) as inE(t). Since the vectorE(·) has at mostm2 elements, each with at mostn

values, we can conclude thatTout is at mostm2n rounds aftert2.

For the rest of the section we fixTout to be the first round aftert0, at which the property

stated by Lemma 15.5 holds. Lemma 15.5, together with Lemmas15.1, 15.2, and 15.3,

imply that in every roundt ≥ Tout, CIn(t) = CIn(t1) andCOut(t) = COut(t1); we de-

note these simply asCIn andCOut . The next lemma states a property similar to that of

Lemma 15.5 forVN u, u ∈ In, and the argument is similar to the proof of Lemma 15.5,

and uses Part (2) of Lemma 15.4.

Lemma 15.6 There exists a roundTstab ∈ [Tout, Tout + ρ3m
2n] such that in every round

t ≥ Tstab, the set ofCNs assigned toVN u, u ∈ In, is unchanged.

Proof: We proceed to defineE(t) as follows fort ≥ Tout. Let Nin = |In|. Let Π(t)

be a permutation ofIn that orders the regions by the density of assigned clients, i.e., if u

precedesv in Π(t), theny(u, t)/qu ≤ y(v, t)/qv. When we say that some regionu has

312

indexk, we mean thatΠ(t)k = u. DefineE(t) as follows:

E(t) =

〈

y(Π(t)Nin
, t)

qΠ(t)Nin

,
y(Π(t)Nin−1, t)

qΠ(t)Nin−1

, . . . ,
y(Π(t)1, t)

qΠ(t)1

〉

.

We use the notationE(t)ℓ to refer to theℓth component ofE(t) counting from the right, i.e.,

it refers toΠ(t)ℓ. Any two vectorsE(t) andE(t + 1) can be compared lexicographically,

examining each of the elements in turn from left to right, i.e., largest to smallest.

We now consider some roundt ≥ Tout, and show thatE(t) ≥ E(t + 1). Consider the

case whereE(t) 6= E(t + 1), and letu be the region with maximum index that assigns

clients to another region. Letk be the index of regionu.

First, we argue that for every regionv with index≤ k, we can conclude thaty(v, t +

1)/qv ≤ y(u, t)/qu− ζ for some constantζ . Consider some particular regionv. Notice that

v has no neighbors inIn that have density greater thany(u, t)/qu in roundt; otherwise, such

a neighbor would assign clients tov, contradicting our choice ofu. Thus, by Lemma 15.4,

Part 2, we can conclude thaty(v, t + 1)/qv ≤ y(u, t)/qu − ζ whereζ = (1 − ρ2)
σ

q2
max

(as

long ast ∈ [t2, t2 + (1 + ρ3)m
2n], which we will see to be sufficient).

Since this implies that there are at leastk regions assigned fewer thany(u, t) = E(t)k

clients in roundt + 1, we can conclude thatE(t + 1)k ≤ E(t)k − ζ . In order to show that

E(t + 1) < E(t), it remains to show that for everyk′ > k, E(t)k′ = E(t + 1)k′.

Consider some regionv with index> k. By our choice ofu, it is clear thatv is not

assigned any clients by a region with index> k. It is also easy to see thatv is not assigned

any clients by a regionw with index≤ k, sincey(v, t)/qv ≥ y(u, t)/qu ≥ y(w, t)/qw; as

per line 6, regionw does not assign any clients to a region with a density≥ y(w, t)/qw.

Thus no new clients are assigned to regionv. Moreover, by choice ofu, regionv as-

signs none of its clients elsewhere. Finally, sincet ≥ t0, none of the clients fail. Thus,

y(v, t)/qv = y(v, t + 1)/qv.

Since the preceding logic holds for allNin − k + 1 regions with index> k, and all

have more thany(u, t)/qu clients, we conclude that for everyk′ > k, E(t)k′ = E(t + 1)k′,

implying thatE(t) > E(t + 1), as desired.

SinceE(·) is non-increasing, and since it decreases by at least a constant ζ in every

313

round in which it decreases, and since it is bounded from below by the zero vector, we

conclude that eventually there is a roundTstab such that for allt ≥ Tstab, E(t) = E(t + 1).

Now suppose the set of clients assigned to regionu changes in some roundt ≥ Tstab.

The only way the set of clients assigned to regionu could change, without changing

y(u, t)/qu and the setCin, is if there existed a cyclic sequence ofVN s with ids in In

in which eachVN gives upc > 0 CN s to its successorVN in the sequence, and re-

ceivesc CN s from its predecessor. However, such a cycle ofVN s cannot exist because

the lower set imposes a strict partial ordering on theVN s.

Finally, we observe that ifE(t) = E(t+1) for anyt, then the assignment of clients does

not change from that point onwards: since all the clients remained in the same regions in

E(t) andE(t+1), we can conclude that theassign function produced the same assignment

in E(t + 1) as inE(t). Since the vectorE(·) has at mostm2 elements, each with at most

n q2
max

(1−ρ)σ
values, we can conclude thatTstab is at mostρ3m

2n rounds afterTout, and hence at

most(1 + ρ3)m
2n rounds aftert2, as needed.

The following bounds the total number of clients located in regions with ids inOut to be

O(m3).

Lemma 15.7 In every roundt ≥ Tout, |Cout(t)| = O(m3).

Proof: From Lemma 15.5, the set ofCN s assigned to eachVN u, u ∈ Out(t), is un-

changed in every roundt ≥ Tout. This implies that in any roundt ≥ Tout, the number of

CN s assigned byVN u to any of its neighbors is0. Therefore, from line 17 of Figure 15-4,

for any boundaryVN v, (y(v, t) − k)/|Inv| < 1. Recall thatInv is the (constant) set of

neighbors ofv with quantized curve length6= 0. Since|Inv| ≤ 4, y(v, t) < 4 + k.

From line 14 of Figure 15-4, for any non-boundaryVN v, v ∈ Out(t), if v is 1-hop

away from a boundary regionu, thenρ2(y(v,t)−y(u,t))
2(|lowerv(t)|+1)

< 1. Since|lowerv(t)| ≤ 4, y(v, t) ≤
10
ρ2

+ 4 + k. Inducting on the number of hops, the maximum number of clients assigned

to aVN v, v ∈ Out(t), at ℓ hops from the boundary is at most10ℓ
ρ2

+ k + 4. Since for any

ℓ, 1 ≤ ℓ ≤ 2m − 1, there can be at mostm VN s atℓ-hop distance from the boundary,

summing gives|Cout| ≤ (k + 4)(2m − 1)m + 10m2(2m−1)
ρ2

= O(m3).

314

For the rest of the section we fixTstab to be the first round afterTout, at which the prop-

erty stated by Lemma 15.6 holds. Lemma 15.8 states that the number of clients assigned to

eachVN u, u ∈ In, in the stable assignment afterTstab is proportional toqu within a con-

stant additive term. The proof follows by induction on the number of hops from between

any pair ofVN s.

Lemma 15.8 In every roundt ≥ Tstab, for u, v ∈ In(t):

∣

∣

∣

∣

y(u, t)

qu

− y(v, t)

qv

∣

∣

∣

∣

≤
[

10(2m− 1)

qminρ2

]

.

Proof: Consider a pair ofVN s for neighboring regionsu andv, u, v ∈ In. Assume

without loss of generality thaty(u, t) ≥ y(v, t). From line 8 of Figure 15-4, it follows that

ρ2(
qv

qu
y(u, t)− y(v, t)) ≤ 2(|loweru(t)|+ 1). Since|loweru(t)| ≤ 4, |y(u,t)

qu
− y(v,t)

qv
| ≤ 10

qvρ2

≤ 10
qminρ2

. By induction on the number of hops from1 to 2m − 1 between any twoVN s,

the result follows.

15.3.2 Uniform Spacing

From line 28 of Figure 15-4, it follows that by the beginning of roundTstab + 2, all CN s

in Cin are located on the curveΓ. Thus, the algorithm satisfies our first goal. The next

lemma states that the locations of theCN s in each regionu, u ∈ In, are uniformly spaced

onΓu in the limit, and it is proved by analyzing the behavior ofcalctarget as a discrete time

dynamical system.

Lemma 15.9 Consider a sequence of roundst1 = Tstab, . . . , tn. Asn → ∞, the locations

of CN s inu, u ∈ In, are uniformly spaced onΓu.

Proof: From Lemma 15.6 we know that the set ofCN s assigned to eachVN u, u ∈ In,

remains unchanged. Then, at the beginning of roundt2, every CN assigned toVN u is

located in regionu and is on the curveΓu. Assume without loss of generality thatVN u is

assigned at least twoCN s. Then, at the beginning of roundt3, one CN is positioned at

315

each endpoint ofΓu, namely atΓu(inf(Pu)) andΓu(sup(Pu)). From lines 30–31 of Figure

15-4, we see that the target points for theseendpoint CN s are not changed in successive

rounds.

Let sequ(t2) = 〈p0, i(0)〉, . . . , 〈pn+1, i(n+1)〉, whereyu = n + 2, p0 = inf(Pu), and

pn+1 = sup(Pu). From line 34 of Figure 15-4, for anyi, 1 < i < n, theith element insequ

at roundtk, k > 2, is given by:

pi(tk+1) = pi(tk) + ρ1

(

pi−1(tk) + pi+1(tk)

2
− pi(tk)

)

.

For the endpoints,pi(tk+1) = pi(tk). Let theith uniformly spaced point on the curveΓu

between the two endpoints bexi. The parameter valuēpi corresponding toxi is given by

p̄i = p0 + i
n+1

(pn+1 − p0). In what follows, we show that asn → ∞, thepi converge tōpi

for everyi, 0 < i < n + 1, that is, the location of the non-endpointCN s are uniformly

spaced onΓu. The rest of this proof is exactly the same as the proof of Theorem 3 in [46]

in which the authors prove convergence of points on a straight line with uniform spacing.

Observe that̄pi = 1
2
(p̄i−1 + p̄i+1) = (1 − ρ1)p̄i + ρ1

2
(p̄i−1 + p̄i+1). Define error at step

k, k > 2, asei(k) = pi(tk) − p̄i. Therefore, for eachi, 2 ≤ i ≤ n − 1, ei(k + 1) =

pi(tk+1)− p̄i = (1−ρ1)ei(k)+ ρ1

2
(ei−1(k)+ei+1(k)), e1(k+1) = (1−ρ1)e1(k)+ ρ1

2
e2(k),

anden(k+1) = (1−ρ1)en(k)+ ρ1

2
en−1(k). The matrix for this can be written as:e(k+1) =

Te(k), whereT is ann × n matrix:























1 − ρ1 ρ1/2 0 0 . . . 0

ρ1/2 1 − ρ1 ρ1/2 0 . . . 0

· · · · · ·
0 . . . 0 ρ1/2 1 − ρ1 ρ1/2

0 . . . 0 0 1 − ρ1 ρ1/2























.

Using symmetry ofT , ρ1 ≤ 1, and some standard theorems from control theory, it follows

that the largest eigenvalue ofT is less than1. This implieslimk→∞T k = 0, which implies

limk→∞e(k) = 0.

We conclude by summarizing the results in this section, Section 15.3:

316

Theorem 15.10 If there are nofail or restart actions for robots at or after some roundt0

and the execution fragments ofVLayer’[MC] satisfy the properties of setS from Definition

11.12, then:

1. Within a finite number of rounds aftert0, the set ofCN s assigned to eachVN u,

u ∈ U , becomes fixed, and the size of the set is proportional to the quantized length

qu, within a constant additive term10(2m−1)
qminρ2

.

2. All client nodes in a regionu ∈ U for whichqu 6= 0 are located onΓu and uniformly

spaced onΓu in the limit.

15.4 Self-stabilization of the Algorithm

In this section we show that the VSA-based motion coordination scheme is self-stabilizing.

Specifically, we show that when the VSA and client componentsin the VSA layer start

out in somearbitrary stateowing to failures and restarts, they eventually produce traces

that look like reachable traces of the motion coordination algorithm. Thus, the traces of

V Layer′[MC] running with some reachable state ofV bcast‖RW ′‖V W , eventually, be-

comes indistinguishable from a reachable trace ofV Layer′[MC]. Note that the virtual

layer algorithmalg is instantiated here with the motion coordination algorithm MC of

Section 15.2.

To show correctness, we use the strategy described in Section 9.3, where we describe

a legal setLMC of VLayer’[MC], and show that it is a legal set (Section 15.4.1), and

then legal states of the specification (here they are the reachable states). We then define

a simulation relationRMC between states ofVLayer’[MC] (see Definition 15.13), and

show the relation is a simulation relation (Lemma 15.14). Wethen show that for each

state inLMC , there exists a state in the invariant setreachableV Layer′[MC] such thatRMC

holds between the states (Lemma 15.15). (This is to concludethat the system started in

the set of legal states implements the system started in a reachable state.) We then show

thatVLNodes[MC]is self-stabilizing toLMC relative toR(RW ′‖‖V W‖V bcast) (Theorem

15.20). We conclude that the set of traces of the implementation stabilizes to the set of

317

reachable traces of executions ofVLayer’[MC].

We then go a step further, and connect the result to an emulation of the VSA layer.

In Chapter 11 we showed how to implement a self-stabilizing VSA Layer. In particular,

that implementation guarantees that for each algorithmalg ∈ V Algs, the implementation

stabilizes in sometstab time to execution fragments whose traces are the same as those of

execution fragments of the virtual layer that also happen tobe in the setS described in

Definition 11.12. Thus, if the coordination algorithmMC is such thatV LNodes[MC]

self-stabilizes in some timet to LMC relative toR(RW ′‖V W‖V bcast), then we can con-

clude that physical node traces of the emulation algorithm on MC stabilize in timetstab + t

to client traces of executions of the VSA layer started in legal setLMC and that satisfy the

properties ofS (Theorem 15.22).

15.4.1 Legal Sets

First we describe two legal sets forV Layer′[MC], L1
MC andLMC whereLMC is a subset

of L1
MC . Recall from Lemma 3.13 that a legal set of states for a TIOA isone where each

closed execution fragment starting in a state in the set endsin a state in the set. We break

the definition of the legal set up into two sets in order to simplify the proof reasoning and

more easily prove stabilization later.

Legal setL1
MC

The first legal setL1
MC describes a set of states that result after the firstGPSupdate occurs

at each client node and the firsttimer occurs at each virtual node.

Definition 15.11 A statex of V Layer′[MC] is in L1
MC iff the following hold:

1. x⌈XV bcast‖RW ′‖V W ∈ reachableV bcast‖RW ′‖V W .

2. ∀u ∈ U : ¬failedu : clocku ∈ {RW ′.now,⊥} ∧ (Mu 6= ∅ ⇒ clocku mod δ ∈
(0, e + 2d + 2ǫ]).

3. ∀p ∈ P : ¬failedp ⇒ vp ∈ {RW ′.vel(p)/vmax,⊥}.

318

4. ∀p ∈ P : ¬failedp ∧ xp 6= ⊥:

(a) xp = RW ′.loc(p) ∧ clockp = RW ′.now.

(b) x∗p ∈ {xp,⊥} ∨ ||x∗p − xp|| < vmax(δ⌈clockp/δ⌉ − clockp − dr).

(c) V bcast.reg(p) = region(xp)∨ clock mod δ ∈ (e+2d+2ǫ, δ−dr + ǫsample).

Part (1) requires thatx restricted to the state ofV bcast‖RW ′‖V W be a reachable state of

V bcast‖RW ′‖V W . Part (2) states that nonfailed VSAs haveclocks that are either equal

to real-time or⊥, and have nonemptyM only after the beginning of a round and up to

e+2d+2ǫ time into a round. Part (3) states that nonfailed clients have velocity vectors that

are equal either to⊥ or equal to the client’s velocity vector inRW ′, scaled down byvmax

(this scaling to a unit velocity vector is done for convenience; the domain of the client’s

local velocity variable is simply a direction, not a magnitude, which constrains the possible

values of the variable and hence marginally simplifies stabilization reasoning). Finally,

Part (4) states that nonfailed clients with non-⊥ positions have: (4a) positions equal to

their actual location and localclocks equal to the real-time, (4b) targets that are one of

⊥, the location, or a point reachable from the current location within dr before the end of

the round, and (4c)V bcast last region updates that match the current region or the timeis

within a certain time window in a round. It is routine to checkthatL1
MC is indeed a legal

set forVLayer’[MC].

Legal setLMC

Now we describe the main legal setLMC for our algorithm. First we describe a set ofreset

states, states corresponding to states ofV Layer′[MC] at the start of a round. It turns out

that it is relatively simple to show that an execution fragment of VLayer’[MC] reaches a

reset state. We defineLMC to be the set of states reachable from these reset states. Dueto

our use of reset states, it is simple to show that our algorithm stabilizes toLMC .

Definition 15.12 A statex of V Layer′[MC] is in ResetMC iff:

1. x ∈ L1
MC .

319

2. ∀p ∈ P : ¬failedp ⇒
[to send−p = to send+

p = λ ∧ (xp = ⊥ ∨ (x∗p 6= ⊥∧ vp = 0))].

3. ∀u ∈ U : ¬failedu ⇒ to sendu = λ.

4. ∀〈m, u, t, P ′〉 ∈ vbcastq : P ′ = ∅.

5. RW ′.now mod δ = 0 ∧ ∀p ∈ P : ∀〈l, t〉 ∈ RW ′.updates(p) : t < RW ′.now.

LMC is the set of reachable states ofStart(V Layer′[MC], ResetMC).

ResetMC consists of states in which (1) the state is inL1
MC , (2) each nonfailed client has

an empty queue in itsV BDelay and either has a position variable equal to⊥ or has both a

non-⊥ target and 0 velocity, (3) each nonfailed VSA has an empty queue in itsV BDelay,

(4) all messages inV bcast have either been delivered or dropped at each process, and (5)

the time is the starting time for a round and noGPSupdates have yet occurred at this time.

Once again, it is routine to check that thatLMC is a legal set forVLayer’[MC].

15.4.2 Relationship betweenLMC and reachable states

Now we define a simulation relationRMC on the states ofV Layer′[MC], and then prove

that for each statex ∈ LMC , there exists a statey ∈ reachableV Layer′[MC] such thatx

andy are related byRMC . This implies that the trace of any execution fragment starting

with x is the trace of an execution fragment starting withy, which is a reachable trace

of V Layer′[MC]. We define the candidate relationRMC and prove that it is indeed a

simulation relation.

Definition 15.13 RMC is a relation between states ofV Layer′[MC] such for any statesx

andy of V Layer′[MC], xRMCy iff the following conditions are satisfied:

1. x(RW ′.now) = y(RW ′.now) ∧ x(RW ′.loc) = y(RW ′.loc).

2. For all p ∈ P , y(vel(p)) ∈ {x(vel(p)),⊥} ∧
{t ∈ R

≥0 | ∃l ∈ R : 〈l, t〉 ∈ x(RW ′.updates(p))}
= {t ∈ R

≥0 | ∃l ∈ R : 〈l, t〉 ∈ y(RW ′.updates(p))}.

320

3. x(V W) = y(V W) ∧ x(V bcast.now) = y(V bcast.now).

4. x(V bcast.reg) = y(V bcast.reg) ∧
{〈m, u, t, P ′〉 ∈ x(V bcast.vbcastq) | P ′ 6= ∅}
= {〈m, u, t, P ′〉 ∈ y(V bcast.vbcastq) | P ′ 6= ∅}.

5. For all i ∈ P ∪ U , x(failedi) = y(failedi).

6. For all u ∈ U : ¬x(failedu):

(a) x(clocku) = y(clocku) ∧ x(Mu) = y(Mu)

∧ [x(Mu) 6= ∅ ⇒ ∀v ∈ nbrs+(u) : x(Vu(v)) = y(Vu(v))].

(b) |x(to sendu)| = |y(to sendu)| ∧ ∀i ∈ [1, |x(to sendu)|] : ∀〈m, t〉 =

x(to sendu[i]) : y(to sendu[i]) = 〈m, t + y(rtimeru) − x(rtimeru)〉.

7. For all p ∈ P : ¬x(failedp):

(a) x(CNp) = y(CNp) ∨ [x(xp) = y(xp) = ⊥ ∧ x(vp) = y(vp)].

(b) x(V BDelayp) = y(V BDelayp).

(c) x(to send−p) 6= λ ⇒ x(V bcast.oldreg(p)) = y(V bcast.oldreg(p)).

We describe the various conditions two related statesx andy must satisfy. Part (1) requires

that they share the same real-time and locations forCN s. Part (2) requires that for each

client, the velocity atRW ′ is equal or the velocity iny is ⊥, andGPSupdate records in

the two states are for the same times. Part (3) requires thatV W ’s state andV bcast.now

are the same inx andy. Part (4) requires that the unprocessed message tuples are the same

and that the last recorded regions inV bcast for clients are the same in both states. Part (5)

says that failure status of eachCN andVN is the same in both states. Part (6a) requires

that for a nonfailed VSA, local time and the setM are equal inx andy, and further, ifM

is nonempty thenV is equal for local regions in both states. Part (6b) says thattheto send

queues for a nonfailed VSA are the same, except with the timestamps for messages iny

adjusted up by the difference betweenrtimeru in statey andx. Part (7a) requires that the

algorithm state of a nonfailedCN is either the same, or both states share the same localv

321

and have locations equal to⊥. Part (7b) says that theV BDelay state is the same for each

nonfailedCN in x andy. Finally, Part (7b) requires that if theto send−p buffer is nonempty

in statex for a nonfailed client, thenV bcast.oldreg(p) is the same in both states.

The proof of the following lemma is also routine and it breaksdown into a large case

analysis. Say thatx andy are states inQV Layer′[MC] such thatxRMCy. For any action or

closed trajectoryσ of V Layer′[MC], supposex′ is the state reached fromx, then, we have

to show there exists a closed execution fragmentβ of V Layer′[MC] with β.fstate = y,

trace(β) = trace(σ), andx
′RMCβ.lstate.

Lemma 15.14RMC is a simulation relation forV Layer′[MC].

Proof: It suffices to show that for every statex ∈ V Layer′[MC], the following three

conditions hold:

1. If x ∈ ΘV Layer′[MC] then there exists a statey ∈ ΘV Layer′[MC] such thatxRMCy. It

is obvious that takingy = x satisfies this condition.

2. Say thatx andy are states inQV Layer[MC] such thatxRMCy. Then for any action

a ∈ AV Layer′[MC], if V Layer′[MC] performs actiona and the state changes from

x to x′, we must show there exists a closed execution fragmentβ of V Layer′[MC]

with β.fstate = y, trace(β) = trace(℘(x)a℘(x′)), andx′RMCβ.lstate. For this

proof we must consider each action. For each action, we can show the closed execu-

tion fragmentβ is simply℘(y)a℘(y′). This obviously satisfies the trace requirement.

It is also easy to verify thatx′RMCy′. This is because the relationRMC holds be-

tween states that are effectively the same (any differencesin state variables occur

in circumstances where the differences are irrelevant). Wedo not perform the case

analysis here since it is trivial.

3. Say that{x, y} ⊆ QV Layer′[MC] andxRMCy. Let α be an execution fragment of

V Layer[MC] consisting of one closed trajectory, withα.fstate = x. We must

show that there is a closed execution fragmentβ of V Layer′[MC] with β.fstate =

y, trace(β) = trace(α), andα.lstateRMCβ.lstate. This is trivial in that we just take

β to be the actionless fragment where client locations, clocks, and timers develop in a

322

similar manner to their counterparts inα. The only interesting thing to check is that if

for somep ∈ P , x(vel(p)) 6= ⊥ andy(vel(p)) = ⊥, then any change in location for

p in α is permissible inβ. This holds because any change in location that is bounded

by speedvmax is permissible whenvel(p) is set to⊥.

To show that each state inLMC is related to a reachable state ofV Layer′[MC], it is

enough to show that each state inResetMC is related to a reachable state ofV Layer′[MC].

The proof proceeds by providing a construction of an execution ofV Layer′[MC] for each

state inResetMC .

Lemma 15.15 For each statex ∈ ResetMC , there exists a statey ∈ reachableV Layer′[MC]

such thatxRMCy.

Proof: Let x be a state inResetMC . We construct an executionα based on statex such

thatxRMCα.lstate. The construction ofα is in three phases. Each phase is constructed by

modifying the execution constructed in the prior phase to produce a new valid execution

of V Layer′[MC]. After Phase 1, the final state of the constructed execution shares client

locations and real-time values with statex. Phase 2 adds clientrestarts andvelocity ac-

tions for nonfailed clients in statex, making the final state of clients consistent with state

x. Phase 3 adds VSArestart actions to make the final state of VSAs consistent with state

x.

1. Letα1 be an execution ofV Layer′[MC] where each client and VSA starts out failed,

no restart or fail events occur, andα1.ltime = x(RW.now). For each failedp ∈ P ,

there exists some history of movement that never violates a maximum speed ofvmax,

is consistent with stored updates forp, and that lead to the current location ofp. We

move each failedp in just such a way and add aGPSupdate(〈l, t〉)p at timet for

each〈l, t〉∈ x(RW ′.updates(p)).

For each nonfailedp ∈ P and each state inα1, we set RW ′.loc(p) =

x(RW ′.loc(p)) (meaning the client does not move). For each nonfailedp ∈

323

P , add aGPSupdate(x(RW ′.loc(p)), t)p action for eacht such that∃〈l, t〉 ∈
x(RW ′.updates(p)).

For eachu ∈ U , if x(last(u)) 6= ⊥ then add atime(t)u output at timet in α1 for

eacht in the set{t∗ | t∗ = x(last(u)) ∨ (t∗ < x(last(u)) ∧ t∗ mod ǫsample = 0)}.

Validity: It is obvious that the resulting execution is a valid execution of

V Layer′[MC].

Relation betweenx andα1.lstate: They satisfy (1)-(4) of Definition 15.13.

2. In order to constructα2, we modifyα1 in the following way for eachp ∈ P such

that¬x(failedp): If x(xp) 6= ⊥, we add arestartp event immediately before and a

velocity(0)p immediately after the lastGPSupdatep event inα1. If x(xp) = ⊥ and

x(vp) = 0, then we add arestartp andvelocity(0)p event immediately after the last

GPSupdatep event inα1. If x(xp) = ⊥ andx(vp) = ⊥, then we add arestartp

event at timex(RW ′.now) in α1.

Validity Sincerestart actions are inputs they are always enabled, and avelocityp ac-

tion is always enabled at clientCNp. Also, there can be no trajectory violations since

any alive clients receive their firstGPSupdate within ǫsample time ofx(RW ′.now)

in α2, meaning that sinceδ is larger thanǫsample andx(RW ′.now) is a round bound-

ary, there is no time beforex(RW ′.now) in α2 where acn-update should have been

sent. It is obvious that this is a valid execution ofVLayer’[MC].

Relation betweemx andα2.lstate They satisfy (1)-(4) and (7) of Definition 15.13.

3. To constructα, we modify α2 in the following way for eachu ∈ U such that

¬x(failedu): If x(clocku) = ⊥, we add arestartu event after anytimeu actions.

If x(clocku) 6= ⊥, we add arestartu event immediately before the lasttimeu action.

Validity A restart action is always enabled. Also, there can be no trajectory viola-

tions since no outputs at a VSA are enabled until its localM is nonempty. SinceM

is empty, we can conclude that this is a valid execution ofVLayer’[MC].

Relation betweenx andα.lstate xRMCα.lstate.

324

We conclude thatα is an execution ofV Layer′[MC] such that if we takey = α.lstate,

theny ∈ reachableV Layer[MC] andxRMCy.

It directly follows that for every state inLMC there is a reachable state ofV Layer′[MC]

that is related to it. (This result can be seen by noting that each state inLMC is reach-

able from a state inResetMC , which the prior lemma implies is related to some state in

reachableV Layer′[MC].)

Lemma 15.16 For each statex ∈ LMC , there exists a statey ∈ reachableV Layer′[MC]

such thatxRMCy.

From Lemmas 15.16 and 15.14 it follows that the set of trace fragments of

V Layer′[MC] corresponding to execution fragments starting fromLMC is contained in

the set of traces ofR(V Layer′[MC]).

As a corollary to this result, we have the following simple observation, based on the

matching execution constructed in the proof of the simulation relation above. It says that

for any execution fragmentα of V Layer′[MC] in S[V LNodes[MC]] and starting in a

statex in LMC , and given a statey related tox, there is an execution fragment starting

with y that has the same trace asα and is also inS[V LNodes[MC]]. (This is very useful

in Theorem 15.22, where we show that our emulation of a VSA layer can run theMC

algorithm and eventually produce reachable traces of execution fragments satisfying certain

failure patterns of VSAs.)

Corollary 15.17 Let α be an execution fragment ofV Layer′[MC] whereα.fstate ∈
LMC andα is in S[V LNodes[MC]]. Let y be a state inreachableV Layer′[MC] such that

α.fstateRMCy. Then there exists an execution fragmentα′ of V Layer′[MC] where:

1. α′.fstate = y.

2. trace(α) = trace(α′).

3. If α is a closed execution fragment, thenα.lstateRMCα′.lstate.

4. α′ ∈ S[V LNodes[MC]].

325

The first three properties of the corollary follow from the fact thatRMC is a simulation re-

lation. The fourth follows from the proof thatRMC is a simulation relation; the constructed

execution in the proof shows exactly the same mobile node movements and process failures

and restarts. Hence, ifα satisfies the properties of Definition 11.12, thenα′ must as well.

15.4.3 Stabilization toLMC

We’ve seen thatLMC (Section 15.4.1) is a legal set forV Layer′[MC], and that each state

in LMC is related to some reachable state of the system (Lemma 15.16). Now we can show

that our algorithm stabilizes to the legal set (Theorem 15.20). We do this in two phases,

corresponding to each legal set.

After we show that VLNodes[MC] self-stabilizes to LMC relative to

R(RW ′‖V W‖V bcast), we use the fact thatRMC (see Definition 15.13) is a simu-

lation relation that relates states inLMC with reachable states ofV Layer′[MC] to

conclude that a stabilizing VSA emulation algorithm emulating MC will eventually

produce reachable traces of the system (Theorem 15.22).

First, we state the following the stabilization result. To see this, consider the moment

after each client has received aGPSupdate and each virtual node has received atime,

which takes at mostǫsample time.

Lemma 15.18 V LNodes[MC] is self-stabilizing toL1
MC in time t for any t > ǫsample

relative to the automatonR(V bcast‖RW ′‖V W).

Next we show that starting from a state inL1
MC , we eventually arrive at a state in

ResetMC , and hence, a state inLMC .

Lemma 15.19 Executions ofV Layer′[MC] started in states inL1
MC stabilize in timeδ +

d + e to executions started in states inLMC .

Proof: It suffices to show that for any length-δ+d+e prefixα of an execution fragment of

V Layer′[MC] starting fromL1
MC , α.lstate ∈ LMC . By the definition ofLMC , it suffices

to show that there is at least one state inResetMC that occurs inα.

326

Let t0 be equal toα.fstate(RW ′.now), the time of the first state inα. We consider

all the “bad” messages that are about to be delivered afterα.fstate. (1) There may be

messages inV bcast.vbcastq that can take up tod time to be dropped or delivered at each

process. (2) There may be messages into send− or to send+ queues at clients that can

submitted toV bcast and take up tod time to be dropped or delivered at each process. And

(3), there may be messages into send queues at VSAs that can take up toe time to be

submitted toV bcast and an additionald time to be dropped or delivered at each process.

We know that all “bad” messages will be processed (dropped ordelivered at each process)

by some statex in α such thatx(RW ′.now) = t1 = t0 + d + e.

Consider the statex∗ at the start of the first round after statex. Sincex∗(RW ′.now) =

δ(⌊t1/δ⌋+1), we have thatx∗(RW ′.now)− t0 = x
∗(RW ′.now)− t1 + e+ d ≤ δ + e+ d.

The only thing remaining to show is thatx
∗ is in ResetMC . It’s obvious thatx∗ satisfies

(1) and (5) of Definition 15.12. Code inspection tells us thatfor any state inL1
MC , and

hence, for any state inα, any newvcast transmissions of messages will fall into one of

three categories:

1. Transmission ofcn-update by a client at a timet such thatt mod δ = 0. Such a

message is delivered by timet + d.

2. Transmission ofvn-update by a virtual node at a timet such thatt mod δ = d + ǫ.

Such a message is delivered by timet + d + e.

3. Transmission oftarget-update by a virtual node at a timet such thatt mod δ =

2d + e + 2ǫ. Such a message is delivered by timet + d + e.

In each of these cases, anyvcast transmission is processed before the start of the next

round. Thus,x∗ satisfies properties (2), (3), and (4) of Definition 15.12. Tocheck (2), we

just need to verify that for all nonfailed clients ifxp is not⊥ thenx∗p is not⊥ andvp is

0. It suffices to show that at least oneGPSupdate occurs at each client between statex

and statex∗. (Such an update at a nonfailed client would updatex∗p to bexp for clients

with x∗p = ⊥ or x∗p too far away fromxp to arrive atx∗p beforex∗. Any subsequent receipts

of target-update messages will only result in an update tox∗p if the client will be able to

327

arrive atx∗p beforex∗. This implies thatvp can only be⊥ or 0, and since noGPSupdates

could have occurred at the same time asx
∗, stopping conditions ensure thatvp 6= ⊥.)

To see that at least oneGPSupdate occurs at each client between statex
′ and state

x
∗, we need thatx∗(RW ′.now) − x

′(RW ′.now) > ǫsample. Sincex
∗(RW ′.now) −

x
′(RW ′.now) = δ − (x′(RW ′.now) mod δ) ≥ δ − e − 2d − 2ǫ, δ > e + 2d + 2ǫ + dr,

anddr > ǫsample it follows thatδ > e + 2d + 2ǫ + ǫsample.

Combining our stabilization results we conclude thatV LNodes[MC] started in an arbi-

trary state and run withR(V bcast‖RW ′‖V W) stabilizes toLMC in time tmcstab, where

tmcstab is anyt such thatt > δ + d + e + ǫsample. From transitivity of stabilization and

15.19, the next result follows.

Theorem 15.20Let tmcstab be anyt such thatt > δ + d + e + ǫsample.

V LNodes[MC] is self-stabilizing to LMC in time tmcstab relative to

R(V bcast‖RW ′‖V W).

Thus, despite starting from an arbitrary configuration of the VSA and client components

in the VSA layer, withintmcstab time, the system reaches a state inLMC .

We can take this a step further to reason about the behavior ofthe system from the

physical level implementation of the virtual layer:

Lemma 15.21 Consider theS-constrainedtstab-stabilizing VSA emulation algorithm

defined in Lemma 11.22. ThentracesActHide(HPL,U(PLNodes[amap[MC]])‖R(RW ′‖Pbcast)) stabi-

lizes in timetstab + tmcstab to {trace(α) | α ∈ execsActHide(HV L,Start(V Layer′[MC],LMC)) ∩
S(V LNodes[MC])}.

The result is just an application of Corollary 8.4 to the emulation algorithmamap of

Lemma 11.22 and Theorem 15.20.

We then combine this result with Corollary 15.17 and Lemma 15.15 to arrive at the fol-

lowing result, which says that our stabilizing emulation algorithm from Section 11 running

theMC algorithm produces traces that stabilize in timetstab + tmcstab to traces of reach-

able execution fragments of theMC algorithm that also happen to satisfy the VSA failure

patterns described in Definition 11.12:

328

Theorem 15.22Consider theS-constrainedtstab-stabilizing VSA emulation algorithm

defined in Lemma 11.22. ThentracesActHide(HPL,U(PLNodes[amap[MC]])‖R(RW ′‖Pbcast))

stabilizes in timetstab + tmcstab to {trace(α) | α ∈ execsActHide(HV L,R(V Layer′[MC])) ∩
S(V LNodes[MC])}.

Thus, putting together this result and Theorem 15.10, we canmake the following state-

ment about the locations of physical nodes that run our VSA emulation of theMC algo-

rithm starting in some arbitrary state:

Theorem 15.23Let α be any execution of theS-constrainedtstab-stabilizing VSA emu-

lation algorithm defined in Lemma 11.22, runningMC and starting from an arbitrary

configuration of the physical nodes. Assume that there is some timet after which there are

no failures or restarts of the physical nodes.

Then: (1) within a finite amount of time aftert, the set of physical nodes assigned to each

region becomes fixed and the size of the set is proportional tothe quantized lengthqu,

within a constant additive term10(2m−1)
qminρ2

, and (2) and the physical nodes in regionsu for

whichqu 6= 0 are located onΓu and uniformly spaced in the limit.

15.5 Conclusion

We have described how we can use the Virtual Stationary Automaton infrastructure to de-

sign protocols that are resilient to failure of participating agents. In particular, we presented

a protocol by which the participating robots can be uniformly spaced on an arbitrary curve.

The VSA layer implementation and the coordination protocolare both self-stabilizing.

Thus, each robot can begin in an arbitrary state, in an arbitrary location in the network,

and the distribution of the robots will still converge to thespecified curve. The proposed

coordination protocol uses only local information, and hence, should adapt well to flocking

or tracking problems where the target formation is dynamically changing.

329

330

Chapter 16

Conclusions

In this thesis we have introduced the idea of theVirtual Stationary Automatalayer for

simplifying implementations of applications for mobile wireless networks, a theory for self-

stabilization in timed systems, and a theory for stabilizing emulations. We have provided a

stabilizing emulation of the VSA layer and shown it to be a stabilizing emulation. We have

demonstrated the use of the VSA layer to provide implementations of several services for

mobile networks.

In this chapter, we begin by reviewing the main contributions of this thesis (Section

16.1). We then discuss some conclusions about our approach (Section 16.2) and some

open questions and ongoing research (Section 16.3).

16.1 Contributions

The first main contribution of this thesis is the introduction of formal semantics for stabi-

lization and crash/ restart failures in the TIOA model (Chapters 3 and 5). Self-stabilization

[26,27] is the ability to recover from an arbitrarily corrupt state. We define stabilization in

the TIOA systems using hybrid sequences, and develop several techniques to use this the-

ory throughout the thesis. Our definition of stabilization makes provisions for discussing

external sources of stability and allows us to tackle stabilization of implementations of

long-lived services with invocation / response or send / receive behavior, where it might

not be possible to find a “reset” state. Our crash/ restart failure modeling is done with a

331

general transformation that takes a TIOA program and produces a new program that can

suffer from crash failures and restarts.

The second main contribution of this thesis is the presentation of a formal semantics for

emulation of a system (Chapter 4) and the application of thisdefinition to an emulation of a

virtual layer by a physical node layer (Chapter 8). This provides proof obligations required

to conclude that one system successfully emulates another system. We describe an emula-

tion as a kind of implementation relationship between two sets of timed machines, where

an emulation of a program produces behavior that looks like that of the program being em-

ulated. We also present a formal semantics for a stabilizingemulation of a system, where

an emulation of a program can start in an arbitrary state but eventually behave as though

it is the program started in an arbitrary state. We observe that if a stabilizing emulation

of a stabilizing program is used, then the resulting system will eventually behave like the

program started from some desirable state.

The third main contribution of this thesis is the introduction of the timed Virtual Sta-

tionary Automata programming layer (Chapter 7), which can help application developers

write simpler algorithms for mobile networks. This is avirtual fixed infrastructure, con-

sisting of timing-awareand location-awareVSAs at fixed locations which mobile nodes

can interact with. Each VSA represents a predetermined geographic area and has broadcast

capabilities similar to those of the mobile nodes, though perhaps suffering from an addi-

tional additive broadcast delay, allowing nearby VSAs and mobile nodes to communicate

with one another.

Our fourth main contribution is a protocol for emulating theVSA layer using mobile

nodes with access to a GPS oracle and a proof that the protocolis a stabilizing VSA layer

emulation (Part II). We use a leader-based replicated statemachine approach to implement

each region’s VSA with mobile nodes located in that region. The proof that this protocol is

a stabilizing emulation of the VSA layer exercises the stabilizing emulation definitions, as

well as the stabilization theory. A phase-based approach toproving stabilization is used to

show that the protocol is stabilizing.

Our fifth main contribution is to use the VSA layer to provide stabilizing implemen-

tations of two main services: end-to-end routing (Chapter 14) and motion coordination

332

(Chapter 15). The end-to-end routing service is implemented in three stabilizing layers:

geocast (Chapter 12), location management (Chapter 13), and the top-level implementa-

tion of the end-to-end routing service. The stabilization of the top-level end-to-end routing

service is dependent on the stabilization of the location management service, which is in

turn dependent on the stabilization of the geocast service;we develop proof techniques to

show these stabilization results. The motion coordinationalgorithm is especially interest-

ing in that it demonstrates the use of the VSA layer to actively direct movement of client

nodes. Using a stabilizing emulation of the VSA layer such asthe one from Part II, we

can take a stabilizing VSA layer implementation of an application (such as the end-to-end

routing application or the motion coordination application), run the stabilizing emulation

algorithm on that VSA layer implementation, and conclude that the resulting system pro-

duces behaviors that eventually look like those of the application.

To summarize, this thesis develops theories of stabilization and crash/ restart failures

for timed systems and a theory for emulation and stabilizingemulation; it introduces the

idea of a VSA programming layer; it presents a stabilizing emulation of the VSA layer;

and it presents stabilizing VSA layer implementations of anend-to-end routing service and

a motion coordination service.

16.2 Evaluation

Here we discuss several issues related to the VSA layer and its implementation in this

thesis.

The theories of stabilization and crash/ restart failures in Chapters 3 and 5 provide

simple formal foundations for reasoning about failure-prone timed systems. There is still

work to be done to further develop the stabilization theory to include other concepts, such

assnap stabilization(instantaneous fault containment) [13], from the general stabilization

literature.

Because this is a theoretical thesis where we demonstrate new theories of stabilization

and emulation, we concentrate on only a virtual layer with very strong semantics, making

it easy to use the layer to program applications. The communication between clients and

333

VSAs in neighboring regions is reliable and the clocks in thesystem do not drift. This is

very useful in circumstances where safety-critical applications require timely and reliable

coordination and communication, and where the devices ultimately emulating the layer

have hardware that behaves well enough to have the implementation be successful.

However, such strong semantics are not necessary for many applications. For example,

in the case of a shoe sale application where a VSA for a region relies on messages from

mobile shoppers to compile a “hot list” of stores to visit, itmight not be critical for each new

sale message sent to the VSA be received or that each shopper in the region is guaranteed

to get each notification from the VSA of a store they could shopat. Such a service really

only needs to be best effort.

In addition, the hardware of the underlying mobile devices might be able to support

implementing the VSA layer described. Without reliable communication on the part of

mobile nodes within some distance of each other, we can’t provide VSAs that have reliable

communication. Also, if mobile nodes have clocks that drift, we can’t provide VSAs with

perfect clocks. In addition, if theRW service is inexact, we would need to take this into

account in our algorithm.

Another perhaps-too-strong feature of the VSA layer is thatthere is a VSA at each re-

gion of a network, and that each VSA must be able to communicate with each neighboring

VSA. In the real world, where wireless broadcast becomes less reliable as more congestion

occurs, it is possible that having VSAs be so close to one another can result in many lost

messages, leading to VSA failures. Also, it might be that notevery region of a deployment

space needs a VSA. If coordination only needs to be done locally and only at areas remote

from one another, the VSA layer model described here might beoverkill.

Even taking the strong semantics of the VSA layer as given, the implementation of

that layer in this thesis is not optimized for any performance metric, such as the maximum

delay of a VSA broadcast, message overhead of the emulation,stabilization time, VSA

restart time, or the local computation complexity.

The implementations of the VSA layer applications in Chapters 12-15 were also not

optimized for message complexity, time complexity, or fault-tolerance. The idea of using

virtual nodes to help accomplish routing does seem to simplify the task of providing such

334

an application; however, the geocast application does not,for example, try to do anything

in the way of routing around failed VSAs. The fault-tolerance and message complexity of

the location management service could be improved by, for example, using ideas from [8]

to limit information propagation through the occasional use of forwarding pointers.

We believe that the motion coordination application of Chapter 15 presents a very inter-

esting paradigm for coordination. The implementation of the service introduces a frame-

work for interaction between mobile nodes and virtual controllers that can be useful for

other coordination applications. One example is air trafficcontrol; in [11] VSA controllers

for sectors of airspace were responsible for issuing flight vectors to aircraft while main-

taining certain safety conditions. Another example is in [12], where a VSA is used to

implement a virtual traffic light.

16.3 Open questions and avenues for research

Considering the fact that strong semantics for the VSA layeris not always necessary and

that it is not always able to be provided, it would be interesting to consider what a weaker

semantics for the VSA layer would look like. For example, what should the semantics be

if probabilistic message loss is possible at the physical layer? What if the message delay

at the physical layer comes from some distribution, rather than being nicely bounded by

dphys? What should the model for a VSA look like if the physical nodes only have access

to clocks that suffer some bounded drift?

How do we handle message collision at the physical layer? There is recent work [47]

that implies that collision might be something that can be worked around most of the time,

implying that a stabilizing emulation of a VSA layer might very well not need much mod-

ification to work in this environment. There are also TDMA timeslot-based approaches

that could help us prevent collisions to begin with; timeslots could be apportioned amongst

regions such that neighboring regions are on different timeslots, minimizing the chances

of collision. There is also work on handling collisions thatis specifically geared towards

other virtual node layers [44].

How do we handle the case whereRW is only approximate or is a service that might

335

take some time to stabilize? In the second case, where it is a service that might take time to

stabilize, the only impact on this work would be to extend thestabilization time of each of

the algorithms by the amount of time it takes forRW to stabilize. In the first case, where

RW is only approximate, if we have a bound on how inexact the location information

from RW can be, we might be able to accomodate it with the algorithm presented here;

we simply require that the broadcast range for nodes that “think” they are in some region

is such that they can reach all nodes that “think” they are in that region or a neighboring

one. However, there is a tradeoff that becomes apparent in this approach: since broadcast

range is bounded, the additional fuzziness results in the shrinking of region sizes. In the

real-world, this can result in increased message loss, due to additional congestion.

For each physical model, what are the best/ most efficient algorithms for implementing

the VSA layer under various metrics for performance?

Since power consumption is also a common concern for mobile nodes in the real-world,

it would also be interesting to consider implementations ofVSAs that are power and trajec-

tory sensitive, in that physical nodes with ample power resources that are likely to remain

in a region for a longer period are more likely to take on the burden of virtual machine

emulation.

Another thing to pursue is the question of how to split up the virtual machine emulation

to lessen the burden of emulation. For example, if a databaseis being replicated, it might

be possible for emulators to be responsible for something less than the full database. Such

an approach can also help alleviate some privacy concerns, as no one emulator might have

access to all potentially sensitive information in a region. What would be the semantics of

a virtual layer implemented in this way?

An implementation of a version of the VSA layer with much simpler semantics was

examined in [12]; it would be interesting to examine multiple implementation algorithms

for different semantics of the VSA layer so as to both: (1) experiment with just how easy/

hard it is to implement efficient versions of some of these layers in the real world, and (2)

study the difficulty of implementing different applications on these layers with different

semantics. For the second point, it would also be useful to compare the complexity of

algorithms implemented with various VSA layers to the complexity of algorithms for the

336

same services but that do not use a VSA layer; how much overhead is being introduced by

use of the layer and how does it seem to trade off with the ease of implementing correct

algorithms?

The VSA model makes the assumption of a globally known staticcarve-up of the de-

ployment space into non-overlapping regions. We could consider an extension to the VSA

model that allows regions to be overlapping or the region mapto be dynamic. The model

and emulation implementation can be relatively easily extended to allow overlapping re-

gions; the only real change that should be needed is for emulators to run multiple copies of

the programs described in part I of the thesis, one for each region the emulator is in. On the

question of the static nature of the region map, while this makes the model predictable and

easy to work with, it is possible that over time we might want to modify the regions of the

network by splitting regions, merging them, or some combination of the two. This leads to

the question of how such changes get communicated to emulators, and what circumstances

should cause the change to occur. TheRW automaton could perhaps be modified so that

it reports a region map as well as a location. However, this would also introduce addi-

tional stabilization difficulties (both in emulation and inusing the virtual layer), since the

assumed global region map would no longer be something we could consider hard-wired,

meaning it is soft state that would be susceptible to corruption failure or could be started in

an arbitrary state.

Also of interest would be developing more applications for the VSA layer. The mo-

tion coordination algorithms seem particularly interesting; I mentioned the air traffic con-

trol [11] and traffic light [12] work, but there are a number ofextensions and additional

applications whose implementations could benefit from use of the VSA layer. For exam-

ple, the virtual traffic light application is just one possible piece of a larger potential group

of intelligent-highway applications, in which cars will carry on-board computers with wire-

less communication capabilities. Distributed algorithmsrunning on these systems will need

to conduct a variety of activies, including collecting data(e.g., about traffic patterns), alert-

ing cars about road hazards (e.g., accidents or arriving emergency vehicles), and providing

advice and control. For example, the distributed protocol may suggest less-congested al-

ternative routes, or may even emulate the functions of virtual traffic lights at intersections

337

having no real traffic lights.

Other applications of interest could include things like virtual storage. Because VSAs

are failure prone, the state of a VSA can be lost. A virtual storage application could provide

a means by which to back-up the data at a VSA. This would not be an additional feature

of the VSA layer, but instead an application implemented on top of the VSA layer. The

Geoquorums work [34] describes such an application for a different virtual layer model.

On the theory side, as I mentioned, many concepts in stabilization could be formalized

using the definition of stabilization for TIOA defined in thisthesis. There are also other

results that may be useful; one theory in particular that would be useful to provide is a

theory of stabilizing composition [27] for TIOA that accommodates theFail-transform

described in this thesis. Roughly, we would like to have a result saying that for comparable

TIOAs A andB and a TIOAC that is compatible with both, if the traces ofFail(A) sta-

bilize to the traces ofFail(U(B)), then the traces ofFail(A‖C) stabilize to the traces of

Fail(U(B‖C)). We would also like to have a generalization that allows us toconsider mul-

tiple machines composed together within theFail-transform (A1‖A2 · · ·An, rather than

A), or a generalization that allows us to consider the traces of Fail(A)‖D stabilizing to

traces ofFail(U(B))‖E and conclude that the traces ofFail(A‖C)‖D stabilizes to the

traces ofFail(U(B‖C))‖E, etc. The proof of Lemma 11.23 would have been much sim-

pler if such results existed.

338

Bibliography

[1] Abraham, I., Dolev, D., and Malkhi, D., “LLS: a locality aware location service

for mobile ad hoc networks”,Proceedings of the DIALM-POMC Joint Workshop on

Foundations of Mobile Computing, 2004.

[2] ACM Transactions on Sensor Networks.

[3] Ad Hoc Networks Journal, Elsevier.

[4] Akylidz, I.F., Su, W., Sankarasubramanian, Y., and Cayirci, E., “Wireless sensor net-

works: a survey”,Computer Networks(Elsevier), 38(4), pp. 393–422, 2002.

[5] Ando, H., Oasa, Y., Suzuki, I., and Yamashita, M., “Distributed memoryless point

convergence algorithm for mobile robots with limited visibility”, IEEE Transactions

on Robotics and Automation, 15(5):818–828, 1999.

[6] Arora, A., Demirbas, M., Lynch, N., and Nolte, T., “A Hierarchy-based Fault-local

Stabilizing Algorithm for Tracking in Sensor Networks”,8th International Confer-

ence on Principles of Distributed Systems (OPODIS), 2004.

[7] Awerbuch, B. and Peleg, D., “Sparse partitions (extended abstract)”, IEEE Sympo-

sium on Foundations of Computer Science, 1990.

[8] Awerbuch, B. and Peleg, D., “Online tracking of mobile users”, Journal of the

Association for Computing Machinery, 42, 1995.

[9] Beal, J., “Persistent nodes for reliable memory in geographically local networks”,

Tech Report AIM-2003-11, MIT, 2003.

339

[10] BLONDEL, V., HENDRICKX, J., OLSHEVSKY, A., AND TSITSIKLIS, J. 2005. Con-

vergence in multiagent coordination consensus and flocking. In Proceedings of the

Joint forty-fourth IEEE Conference on Decision and Controland European Control

Conference. 2996–3000.

[11] BROWN, M. D. 2007. Air traffic control using virtual stationary automata. M.S.

thesis, Massachusetts Institute of Technology.

[12] Brown, M., Gilbert, S., Lynch, N., Newport, C., Nolte, T., and Spindel, M. The

Virtual Node Layer: A Programming Abstraction for WirelessSensor Networks. In

International Workshop on Wireless Sensor Network Architecture, April 2007.

[13] Bui, A., Datta, A., Petit, F., and Villain, V. State-optimal snap-stabilizing PIF in tree

networks. InProceedings of the Fourth Workshop on Self-Stabilizing Systems, June

1999.

[14] Camp, T. and Liu, Y., “An adaptive mesh-based protocol for geocast routing”,Journal

of Parallel and Distributed Computing: Special Issue on Mobile Ad-hoc Networking

and Computing, pp. 196–213, 2002.

[15] CHANDY, K. M., M ITRA , S., AND PILOTTO, C. 2008. Convergence verification:

From shared memory to partially synchronous systems. InIn proceedings of Formal

Modeling and Analysis of Timed Systems (FORMATS‘08). LNCS, vol. 5215. Springer

Verlag, 217–231.

[16] Chockler, G., Demirbas, M., Gilbert, S., Newport, C., and Nolte, T., “Consensus and

Collision Detectors in Wireless Ad Hoc Networks”,Proceedings of the 24th Annual

ACM Symposium on Principles of Distributed Computing (PODC), 2005.

[17] Chockler, G., Demirbas, M., Gilbert, S., Newport, C., and Nolte, T., “Consensus and

Collision Detectors in Wireless Ad Hoc Networks”,Distributed Computing, June,

2008.

[18] CHOCKLER, G., GILBERT, S., AND LYNCH, N. 2008. Virtual infrastructure for

collision-prone wireless networks. InProceedings of PODC. To appear.

340

[19] CLAVASKI , S., CHAVES, M., DAY, R., NAG, P., WILLIAMS , A., AND ZHANG, W.

2003. Vehicle networks: achieving regular formation. InProceedings of the American

control Conference.

[20] Cooper, M., comment,http://www.arraycomm.com/news/pr detail.htm?id=104,

1973.

[21] Cortes, J., Martinez, S., Karatas, T., and Bullo, F., “Coverage control for mobile

sensing networks”,IEEE Transactions on Robotics and Automation, 20(2):243–255,

2004.

[22] DÉFAGO, X. AND KONAGAYA , A. 2002. Circle formation for oblivious anonymous

mobile robots with no common sense of orientation. InProc. 2nd Int’l Workshop on

Principles of Mobile Computing (POMC’02). ACM, Toulouse, France, 97–104.

[23] DÉFAGO, X. AND SOUISSI, S. 2008. Non-uniform circle formation algorithm

for oblivious mobile robots with convergence toward uniformity. Theor. Comput.

Sci. 396,1-3, 97–112.

[24] Demers, A., Gehrke, J., Rajaraman, R., Trigoni, N., andYao, Y., “Energy-

Efficient Data Management for Sensor-Networks: A Work-In-Progress

Report”, 2nd IEEE Upstate New York Workshop on Sensor Networks,

comlab.ecs.syr/edu/workshop, 2003.

[25] Demirbas, M., Arora, A., and Gouda, M., “A pursuer-evader game for sensor net-

works”, Symposium on Self-Stabilizing Systems (SSS), 2003.

[26] Dijkstra, E.W., “Self stabilizing systems in spite of distributed control”,Communica-

tions of the ACM, 1974.

[27] Dolev, S.,Self-Stabilization, MIT Press, 2000.

[28] Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., and Nolte, T., “Brief announcement:

Virtual stationary automata for mobile networks”,Proceedings of the 24th Annual

ACM Symposium on Principles of Distributed Computing (PODC), 2005.

341

[29] Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., and Nolte, T., “Timed virtual stationary

automata for mobile networks”,TR MIT-LCS-TR-979a, 2005.

[30] DOLEV, S., GILBERT, S., LAHIANI , L., LYNCH, N., AND NOLTE, T. 2005a. Virtual

stationary automata for mobile networks. InProceedings of OPODIS.

[31] Dolev, S., Gilbert, S., Lynch, N., Schiller, E., Shvartsman, A., and Welch, J., “Virtual

Mobile Nodes for Mobile Ad Hoc Networks”,International Conference on Principles

of Distributed Computing (DISC), 2004.

[32] Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J., “GeoQuorums: Imple-

menting Atomic Memory in Ad Hoc Networks”,17th International Conference on

Principles of Distributed Computing (DISC), Springer-Verlag LNCS:2848, pp. 306-

320, 2003.

[33] DOLEV, S., GILBERT, S., LYNCH, N., SHVARTSMAN , A., AND WELCH, J. 2003.

Geoquorums: Implementing atomic memory in ad hoc networks.In Distributed algo-

rithms, F. E. Fich, Ed. Lecture Notes in Computer Science, vol. 2848/2003. 306–320.

[34] DOLEV, S., GILBERT, S., LYNCH, N. A., SHVARTSMAN , A. A., AND WELCH,

J. 2005. Geoquorums: Implementing atomic memory in mobile ad hoc networks.

Distributed Computing.

[35] Dolev, S., Herman, T., and Lahiani, L., “Polygonal Broadcast, Secret Maturity and

the Firing Sensors”,Third International Conference on Fun with Algorithms (FUN),

pp. 41-52, May 2004. Also to appear inAd Hoc Networks Journal, Elseiver.

[36] Dolev, S., Israeli, A., and Moran, S., “Self-Stabilization of Dynamic Systems Assum-

ing only Read/Write Atomicity”,Proceeding of the ACM Symposium on the Princi-

ples of Distributed Computing (PODC 90), pp. 103-117. Also inDistributed Comput-

ing 7(1): 3-16 (1993).

[37] Dolev, S., Lahiani, L., Lynch, N., and Nolte, T., “Self-stabilizing Mobile Node Loca-

tion Management and Message Routing”,7th Self-stabilizing Systems (SSS), 2005.

342

[38] Dolev, S., Pradhan, D.K., and Welch, J.L., “Modified Tree Structure for Location

Management in Mobile Environments”,Computer Communications, Special issue on

mobile computing, Vol. 19, No. 4, pp. 335-345, April 1996. Also INFOCOM 1995,

Vol. 2, pp. 530-537, 1995.

[39] Dolev, S. and Welch, J.L.,“Crash Resilient Communication in Dynamic Networks”,

IEEE Transactions on Computers, Vol. 46, No. 1, pp.14-26, January 1997.

[40] EFRIMA , A. AND PELEG, D. 2007. Distributed models and algorithms for mo-

bile robot systems. InSOFSEM (1). Lecture Notes in Computer Science, vol. 4362.

Springer, Harrachov, Czech Republic, 70–87.

[41] FAX , J.AND MURRAY, R. 2004. Information flow and cooperative control of vehicle

formations.IEEE Transactions on Automatic Control 49, 1465–1476.

[42] FLOCCHINI, P., PRENCIPE, G., SANTORO, N., AND WIDMAYER , P. 2001. Pattern

formation by autonomous robots without chirality. InSIROCCO. 147–162.

[43] Gazi, V., and Passino, K.M., “Stability analysis of swarms”, IEEE Transactions on

Automatic Control, 48(4):692–697, 2003.

[44] Gilbert, S., ”Virtual Infrastructure for Wireless Ad Hoc Networks”, Thesis, MIT,

2007.

[45] Gilbert, S., Lynch, N., Mitra, S., and Nolte, T. ”Self-Stabilizing Mobile Robot For-

mations with Virtual Nodes”,International Symposium on Stabilization, Safety, and

Security of Distributed Systems, To appear: November 2008.

[46] Goldenberg, D.K., Lin, J., and Morse, A.S., “Towards mobility as a network control

primitive”, MobiHoc ’04: Proceedings of the 5th ACM international symposium on

Mobile ad hoc networking and computing, pages 163–174. ACM Press, 2004.

[47] Gollakota, S. and Katabi, D., ”ZigZag Decoding: Combating Hidden Terminals in

Wireless Networks”,ACM SIGCOMM, 2008.

343

[48] Haas, Z.J. and Liang, B., “Ad Hoc Mobility Management With Uniform Quorum

Systems”,IEEE/ACM Trans. on Networking, Vol. 7, No. 2, p. 228-240, April 1999.

[49] Herlihy, M.P. and Tirthapura, S., “Self-stabilizing distributed queueing”,Proceedings

of 15th International Symposium on Distributed Computing, pages 209–219, October

2001.

[50] HERMAN, T. 1996. Self-stabilization bibliography: Access guide.Theoretical Com-

puter Science.

[51] Hubaux, J.P., Le Boudec, J.Y., Giordano, S., and Hamdi,M., “The Terminodes

Project: Towards Mobile Ad-Hoc WAN”,Proceedings of MOMUC, 1999.

[52] IEEE Pervasive Computing: Mobile and Ubiquitous Systems.

[53] IEEE Transactions on Mobile Computing.

[54] Imielinski, T. and Badrinath, B.R., “Mobile wireless computing: challenges in data

management”,Communications of the ACM, Vol. 37, Issue 10, pp. 18-28, October

1994.

[55] Jadbabaie, A., Lin, J., and Morse, A.S., “Coordinationof groups of mobile au-

tonomous agents using nearest neighbor rules”,IEEE Transactions on Automatic

Control, 48(6):988–1001, 2003.

[56] Johnson, D., Maltz, D., and Broch, J., “DSR: The DynamicSource Routing Protocol

for Multi-Hop Wireless Ad Hoc Networks”, chapter 5, pp.139–172, Addison-Wesley,

2001.

[57] Karp, B. and Kung, H. T., “GPSR: Greedy Perimeter Stateless Routing for Wire-

less Networks”,Proceedings of the 6th Annual International Conference on Mobile

Computing and Networking, pp. 243-254, SCM Press, 2000.

[58] Kaynar, D., Lynch, N., Segala, R., and Vaandrager, F.,The Theory of Timed I/O

Automata. Morgan Claypool, 2006.

344

[59] Kuhn, F., Wattenhofer, R., Zhang, Y., and Zollinger, A., “Geometric Ad-Hoc Rout-

ing: Of Theory and Practice”,Proceedings of the 22nd Annual ACM Symposium on

Principles of Distributed Computing (PODC), 2003.

[60] Kuhn, F., Wattenhofer, R., and Zollinger, A., “Asymptotically Optimal Geometric

Mobile Ad-Hoc routing”,Proceedings of the 6th International Workshop on Discrete

Algorithms and Methods for Mobile Computing and Communications (Dial-M), pp.

24-33, ACM Press, 2002.

[61] Lamport, L., ”Time, clocks, and the ordering of events in a distributed system”,Com-

munications of the ACM, 1978.

[62] Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., and Morris, R., “A Scalable Loca-

tion Service for Geographic Ad Hoc Routing”,Proceedings of Mobicom, 2000.

[63] Lin, J., Morse, A.S., and Anderson, B., “Multi-agent rendezvous problem”,42nd

IEEE Conference on Decision and Control, 2003.

[64] Lok, C., “Instant Networks: Just Add Software”,Technology Review, June, 2005.

[65] Lynch, N.,Distributed Algorithms, Morgan Kaufman, 1996.

[66] Lynch, N., Mitra, S., and Nolte, T., “Motion coordination using virtual nodes”,IEEE

Conference on Decision and Control, 2005.

[67] Lynch, N., Segala, R., and Vaandrager, F., “Hybrid I/O automata”, Information and

Computation, 185(1):105–157, August 2003.

[68] Malkhi, D., Reiter, M., and Wright, R., “ProbabilisticQuorum Systems”,Proceed-

ing of the 16th Annual ACM Symposium on the Principles of Distributed Computing

(PODC 97), pp. 267-273, Santa Barbara, CA, August 1997.

[69] Martinez, S., Cortes, J., and Bullo, F., “On robust rendezvous for mobile autonomous

agents”,IFAC World Congress, Prague, Czech Republic, 2005.

[70] Merritt, M., Modugno, F., and Tuttle, M., “Time constrained automata”,2nd Inter-

national Conference on Concurrency Theory (CONCUR), 1991.

345

[71] Mittal, V., Demirbas, M., and Arora, A., “LOCI: Local clustering in large scale

wireless networks”,TR OSU-CISRC-2/03-TR07, 2003.

[72] Nath, B. and Niculescu, D., “Routing on a curve”,ACM SIGCOMM Computer

Communication Review, 2003.

[73] Navas, J.C. and Imielinski, T., “Geocast- geographic addressing and routing”,Pro-

ceedings of the 3rd MobiCom, 1997.

[74] Neogi, N., “Designing Trustworthy Networked Systems:A Case Study of the Na-

tional Airspace System”, International System Safety Conference, Ottawa, Canada,

August 3-11, 2003.

[75] NOLTE, T. AND LYNCH, N. A. 2007a. Self-stabilization and virtual node layer em-

ulations. InProceedings of SSS. 394–408.

[76] NOLTE, T. AND LYNCH, N. A. 2007b. A virtual node-based tracking algorithm for

mobile networks. InICDCS.

[77] OLFATI -SABER, R., FAX , J.,AND MURRAY, R. 2007. Consensus and cooperation in

networked multi-agent systems.Proceedings of the IEEE 95,1 (January), 215–233.

[78] Park, V. and Corson, M., A highly adaptive distributed routing algorithm for mobile

wireless networks.IEEE Infocom, April 1997.

[79] Perkins, C. and Royer, E., Ad hoc on-demand distance vector routing. 2nd IEEE

Workshop on Mobile Computing Systems and Applications, February 1999.

[80] PRENCIPE, G. 2000. Achievable patterns by an even number of autonomous mobile

robots. Tech. Rep. TR-00-11. 17.

[81] PRENCIPE, G. 2001. Corda: Distributed coordination of a set of autonomous mobile

robots. InERSADS. 185–190.

[82] Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., and Shenker, S.,

“GHT: A Geographic Hash Table for Data-Centric Storage”,First ACM International

Workshop on Wireless Sensor Networks and Applications (WSNA), 2002.

346

[83] Suzuki, I. and Yamashita, M., “Distributed autonomousmobile robots: Formation of

geometric patterns”,SIAM Journal of computing, 28(4):1347–1363, 1999.

[84] Talbot, D., “Airborne Networks”,Technology Review, May, 2005.

[85] Talbot, D., “The Ascent of the Robotic Attack Jet”,Technology Review, March, 2005.

[86] TinyOS Community Forum,http://www.tinyos.net.

[87] Vasek, T., “World Changing Ideas: Germany”,Technology Review, April, 2005.

[88] Weisman, R., “MIT seeks computing revolution”,Boston Globe, 2005.

347

