
STALK: A Self-Stabilizing Hierarchical Tracking Service

for Sensor Networks

Murat Demirbas, Anish Arora

Computer & Information Science
The Ohio State University
Columbus, OH 43210, USA

Tina Nolte, Nancy Lynch

MIT Computer Science &
Artificial Intelligence Laboratory

Cambridge, MA 02139, USA

Abstract

In this paper, we present Stalk, a hierarchical tracking service for sensor networks. Stalk

favors local operations: an operation to find a mobile object at a distance d away requires O(d)
amount of time and communication cost to intercept the moving object, and a move of an object
to a distance d away requires O(d ∗ log(network diameter)) amount of time and communication
cost to update the tracking structure. Moreover, Stalk is fault-local stabilizing: starting from an
arbitrarily corrupted state the tracking structure satisfies its specification within time and commu-
nication cost proportional to the perturbation size instead of the network size. Local stabilization is
achieved by slowing propagation of information as the levels of the hierarchy underlying Stalk in-
crease, enabling the more recent information propagated by lower levels to override misinformation
at higher levels.

Keywords: Sensor networks, tracking, distributed data structures, self-stabilization, fault-containment.

“Everything is related to everything else, but near things are more related
than distant things”.

Waldo Tobler’s First Law of Geography

Number of pages: 1 page cover + 10 page main + 1 page references + 10 page appendix
Contact information. Email: demirbas@cis.ohio-state.edu,
Tel: +1 614 688 4637, Fax: +1 614 292 2911,
Address: 395 Dreese Labs; The Ohio State University; Columbus, OH 43210

Eligible for Best Student Paper Award
Consider for BA if not accepted as regular presentation

1

1 Introduction

Due to applications in mobile computing, cel-
lular telephony, and military contexts, tracking of
mobile objects has received significant attention
[3,4,6,7,16,17,21]. The DARPA Network Embed-
ded Software Technology (NEST) program posed
tracking as a challenge problem in wireless sensor
networks, and several groups in the program have
delivered small-scale (using 100 node networks)
tracking demonstrations: pursuer-evader tracking
with 1 human controlled evader and 3 autonomous
pursuers is showcased in [20], and detection, clas-
sification, and tracking of various intruders, such
as persons and cars, are demonstrated in [1].

Besides the opportunities they provide for
tracking, such as easy deployment and ubiqui-
tous sensing, wireless sensor networks impose the
following constraints: Sensor nodes have limited
computational resources (such as 8K RAM); cen-
tralized algorithms are unsuitable due to their
large computational requirements. Sensor nodes
are energy constrained; algorithms that impose an
excessive communication burden are unacceptable
since they drain battery power quickly. Sensor
networks are fault-prone, message losses and cor-
ruptions and node failures are frequent; nodes can
lose synchrony and programs can reach arbitrary
states [12]. Lastly, on-site maintenance is infeasi-
ble; sensor networks should be self-healing.

Contributions. We present a tracking ser-
vice for sensor networks, namely STALK (Self-
stabilizing TrAcking via Layered linKs).

Stalk is local and scalable; a find invoked
within distance d of the mobile object requires
O(d) time and communication cost (work) to reach
the object, and a move of the object to distance d
away requires O(d ∗ log(network diameter)) time
and work to update the tracking structure.

Stalk is fault-local stabilizing: starting from
an arbitrarily corrupted state it satisfies its speci-
fication in time and work proportional to pertur-
bation size instead of network size. This implies
fault-containment: fault contamination is confined
to an area proportional to the perturbation size.

Overview of Stalk. We achieve scalability of

Stalk by maintaining tracking information with
accuracy related to the distance from the mobile
object. Nearby nodes that are relatively cheap to
update have more recent and accurate information
about the object, whereas far away nodes that are
relatively expensive to update have older and more
approximate information about the object.

Tracking structure. We assume a hierarchical
partitioning of the sensor network into clusters
based on radius. Our tracking structure is a path
rooted at the topmost level of the hierarchy. Each
process in the tracking path has at most one child,
either at its level or one below it in the hierarchy,
and the mobile object resides at the leaf of the
path. Each process in the path points to a process
that is generally closer to the mobile object and
has more recent information about its location.

There is a tradeoff between work for finds
and work for updating a tracking structure after
moves. In a 2-D network, one extreme is the full-
information strategy where a find costs O(1) and
a move of distance d costs O(d2). The other ex-
treme is the no-information strategy where a move
is O(1) and a find of an object d away is O(d2) [5].
We use a partial information strategy to optimize
both finds and moves.

Find operation. A find operation invoked at a
process i queries neighboring processes at increas-
ingly higher levels of the clustering hierarchy until
it encounters a process on the tracking path. Once
the tracking path is found, the find operation fol-
lows it to its leaf to reach the mobile object.

Move operation. We implement move-triggered
updates by means of two local actions, grow and
shrink. The grow action enables a path to grow
from the new location of the mobile object to in-
creasingly higher levels of the clustering hierarchy
and connect to the original path. The shrink ac-
tion cleans branches deserted by the mobile object.
Shrinking also starts at the lowest level and climbs
to increasingly higher levels of the hierarchy.

Fault-local stabilization. We use two concepts
for achieving fault-locality: hierarchical partition-
ing and arresting waves. The key idea is to wait for
more time before updating a wider region’s view.
We employ larger timeouts when propagating an

1

update to a higher level of the hierarchy, and thus,
more recent updates coming from lower levels can
catch-up to misinformed updates at higher levels.
The latency imposed by waiting is a constant fac-
tor of the communication delay and does not af-
fect accessibility of the tracking structure: it still
seamlessly tracks continuously moving objects.

Related work. Stalk provides a “network mid-
dleware support” for tracking: it assumes an un-
derlying service for detection of a mobile object
[11,14,22] and provides a basis for higher level ap-
plications such as multiple target tracking [17,18]
and pursuer-evader applications [8].

In [3], a hierarchy of regional directories is con-
structed so that each level l directory enables a
node to find a mobile object within 2l distance
from itself. The communication cost of a find for
an object d away is O(d∗log2N) and that of a move
of distance d is O(d ∗ logD ∗ logN + log2D/logN)
(where N is the number of nodes and D is network
diameter). A topology change, such as a node fail-
ure, necessitates a global reset of the system since
the regional directories depend on a non-local clus-
tering program that constructs sparse covers [2].

In [6], using a hierarchy of location servers, a
stabilizing location management protocol is pre-
sented; this protocol fails to ensure locality of
finds. Other tracking protocols such as [9, 13], on
the other hand, suffer from nonlocal update prob-
lems, where updates to a tracking structure may
take work dependent on the network size rather
than distance moved.

Organization of the paper. After presenting
datatypes in the next section, we present specifi-
cations of Stalk in Section 3. In Section 4, we
present the move operation. Fault local stabiliza-
tion of the tracking path is discussed in Section 5.
The find operation is in Section 6. In Section 7 we
discuss concurrent execution of move operations,
where the mobile object may relocate while previ-
ous move operations are still updating the track-
ing structure. In Section 8 we consider execution
of find operations while moves are concurrently
updating the tracking structure. In Section 9 we
present simulation results and then make conclud-
ing remarks in Section 10. For space reasons, we

relegate code and detailed proofs to the Appendix.

2 Model

We consider a sensor network consisting of mul-
tiple sensor locations in a set V . Each sensor
location plays host to (possibly) multiple pro-
cesses with identifiers from a set P . We denote
the sensor location of a particular process i us-
ing loc(i) and the Euclidean distance between two
locations v and w using dist(v, w). For conve-
nience we use loc(I) =

⋃
i∈I{loc(i)} for I ⊆ P

and dist(i, j) = dist(loc(i), loc(j)) for i, j ∈ P .

Hierarchical partitioning. We partition P into
MAX +1 equivalence classes {P0, P1, · · · , PMAX}
called levels, and partition processes at the same
level l, 0 ≤ l ≤ MAX, into groups called clusters
Cl = {Cl,1, Cl,2, · · · , Cl,kl

}. We call C the set of all
clusters. Each cluster C ∈ C has a clusterhead
head(C) ∈ C and a set of cluster neighbors nbrl ⊆
Cl ×Cl. We assume this relation is symmetric and
constrain the level 0 neighbor relation so that for
i, j ∈ P0, (i, j) ∈ nbr0 ⇐⇒ dist(i, j) ≤ 1.

For a particular level, a location can host at
most one process. We constrain the clustering so
that every sensor location hosts one process that
belongs to a level 0 cluster and level l clusterhead
locations are level l + 1 process locations for all
levels l < MAX. At level MAX the hierarchy
has a single process.

For each v ∈ V, i ∈ Pk, i ∈ C, and C ∈ Ck we
define some derived notation:
(1) lvl(i) = k, the level of process i,
(2) proc0(v), the level 0 process at location v,
(3) h(i), i’s immediate clusterhead in the hier-
archy, defined as i if k = MAX and j ∈ Pk+1 :
loc(j) = loc(head(C)) otherwise,
(4) hn(i), the iterated clusterhead, defined as i if
n = 0, h(i) if n = 1 and h(hn−1(i)) otherwise,
(5) nbr(i), the set of neighbors of process i, de-
fined as {j ∈ Pk : j ∈ C ′ ∧ (C,C ′) ∈ nbrk},
(6) radius(C), the maximum distance from the
clusterhead of C to any process in C,
(7) children(i), the set of processes with i as their
parent clusterhead in the hierarchy, defined as {i}
if k = 0 and {j : h(j) = i} otherwise.

Geometry assumptions. To reason about algo-

2

rithms in this paper we fix geometry assumptions
about the hierarchical partitioning:
(1) We define a real constant r ≥ 3, the cluster
dilation factor, used to determine cluster size,
(2) We bound the radius of a level l cluster C,
using a real maximum cluster radius constant
m ≥ 2/

√
3, to be rl ≤ radius(C) ≤ mrl,

(3) Clusterheads of neighboring level l clusters are
at least 2rl and at most 2mrl apart,
(4) The minimum distance between locations con-
tained in two non-neighboring level l clusters is
greater than qrl, where q is a real minimum clus-
ter breadth constant satisfying 2m+r−1

r−1 ≤ q ≤ 2m,
(5) The maximum distance between two locations
in V is bounded by the network diameter D.

The constraints imply a bound, ω, on the num-
ber of neighbors at any level l > 0. They also im-
ply that the distance is at most 2mrl−1 between
two neighboring level l processes and mrl−1 be-
tween a level l process and its children in the hier-
archy. Each node in the network is deployed with
O(MAX) storage where MAX ≤ logrD.

An example of the clustering geometry with
r = 3 can be found in Section 4. Our hierarchical
partitioning constraints can be realized by using
a distributed local clustering protocol, Loci [15].
Loci is also locally fault-tolerant and can recover
from node failures and state corruptions.

3 System specification

Here we describe the specification for Stalk.

Passage of time. Timers are real numbers ad-
vancing at the same rate at all automata. A timer
does not advance until all enabled output or inter-
nal actions are completed –local processing time is
negligible.

Mobile object specification. The mobile ob-
ject is an IO automaton Evader with 2 output
actions, objecti and no objecti. It resides at a
sensor location v, modeled by having objecti oc-
cur for each process i such that loc(i) = v and
no other processes. Other processes instead have
no object occur. object and no object cannot
occur at the same time at the same process.

When the mobile object moves from a location
with a level 0 process i it may only move to a

location corresponding to one of the neighbors of i.
This movement is modeled nondeterministically.

Stalk specification. Stalk is a timed IO
automaton that a) maintains the tracking struc-
ture by propagating mobile object information ob-
tained through object and no object inputs and
b) answers client finds by outputting found at the
mobile object’s current location. Stalk consists

find
i

found
i

found
j

find
j

send(m) j,i
j,i

receive(m)

send(m)
i,j

i,j

receive(m)

ob
je

ct jno_object
i

Channel
i,j

j,i
Channel

i

i

i
cpq

cp
oi

nt
er

(k
) i

Finder

Tracker

cpq

Finder

cp
oi

nt
er

(k
) j

j

j

j
Tracker

TrackSvc

Evader

i

object

no
_o

bj
ec

t j

Figure 1. Stalk Subautomata

of two subautomata as seen in Figure 1. It main-
tains the tracking structure through Tracker and
services find requests through Finder. The au-
tomata are implemented on individual processes
communicating through channels. Tracker takes
as input sensor detections of the mobile object,
modeled as objecti and no objecti actions, and
answers Finder cpqs (request for informations)
using cpointer actions. Finder takes as input
client findi requests and eventually answers them
with foundj outputs.

Channel specification. We use a communica-
tion abstraction of a (possibly) multi-hop chan-
nel Channeli,j between any two processes i and
j, where j ∈ nbr(i) ∪ children(i) ∪ {h(i)}. Pro-
cess i sends message m to j on the channel us-
ing the send(m)i,j input action and process j re-
ceives the message with the receive(m)i,j output
action. Formally, the channel is a multiset. A
send(m)i,j adds one copy of message m into the

3

multiset and a receive(m)i,j removes one copy.
The cost of sending a message through Channeli,j
is dist(i, j), and in the absence of faults a message
is removed from the channel by at most δ∗dist(i, j)
time where δ is a known message delay factor.

Fault model and tolerance specification.
Automata can suffer from arbitrary state corrup-
tion indicated by corrupti. These faults may
occur at any time and in any finite number and
order. Channels may suffer faults that corrupt,
manufacture, duplicate, or lose messages.

We say a system is self-stabilizing iff starting
from an arbitrary state the system eventually re-
covers to a consistent state, a state from where its
specification is satisfied. In Section 4 we charac-
terize consistent states for our implementation.

A perturbation count for a given system state
is the minimum number of processes whose state
must change to achieve a consistent state of the
system. For work and time calculations the level
of “perturbed” processes are important; a fault
hitting a level l process affects the entire level l
cluster and hence its size is rl. We define pertur-
bation size to be a weighted sum of the levels of
perturbed processes. A stabilizing system is fault
local stabilizing if the time and work required for
stabilization are bounded by functions of pertur-
bation size rather than system size.

Complete system specification. The com-
plete system is the composition of automata de-
scribed above — Evader, Stalki for each i ∈ P ,
and Channeli,j for each i, j ∈ P .

Consider starting from a consistent state with
no outstanding find requests and no process or
channel corruptions. The system satisfies:
(1) For each find event, tag findi in step x of the
trace with the pair (i, x). Then, it is possible to
tag each foundk event at a step z of the trace with
a pair (j, y) such that lvl(k) = 0, objectk occurs
at step z, (j, y) is the tag of some find event oc-
curring before step z of the execution, and (j, y)
is the tag for at most one found event,
(2) A find is eventually followed by a found event,
(3) Consider the last find event that occurs be-
fore a found event. The total time and work, or
communication cost, to support that find action

initiated at a process Euclidean distance d from
the mobile object is at most O(d),
(4) If the object moves d distance, amortized time
and work performed by Stalk is O(d ∗ log(D)).

Lastly, the system is fault-local stabilizing.

4 Move operation

Here we describe how Tracker updates the
tracking path after a move, assuming that the mo-
bile object does not relocate until the updates are
completed. In Section 7, we relax this restriction
and allow the object to relocate while effects of its
previous moves are still rippling through the path.

Updates to the tracking path are implemented
by two local actions, grow and shrink. The grow
action enables a new path to grow to increasingly
higher levels of the clustering hierarchy and con-
nect to the original path at some level. The shrink
action cleans old branches deserted by the mobile
object starting from the lowest levels and climbing
to increasingly higher levels.

A hierarchical partitioning of a network in-
evitably results in multi-level cluster boundaries:
even though two processes are neighbors they
might be contained in different clusters at all lev-
els of the hierarchy. If a process were to always
propagate grows and shrinks to its clusterhead,
a small movement of the object back and forth
across a multi-level cluster boundary could result
in work proportional to the size of the network
rather than the distance of the move. To resolve
this “dithering” problem, we allow one lateral link
per level in our tracking path structure. A process
occasionally connects to the original path with a
lateral link to a neighboring process rather than by
propagating a link to its parent in the hierarchy.

Each process maintains a child pointer c, a par-
ent pointer p, a grow timer gtime, and a shrink
timer stime. In the initial states, for all i ∈ P ,
i.c = ⊥, i.p = ⊥, i.gtime = ∞, and i.stime = ∞,
where i.x indicates the value of the state variable x
at process i. We use g and s, the grow and shrink
timer constants, to calculate gtime = g∗rlvl(i) and
stime = s ∗ rlvl(i) durations at each process i:

s ≥ 10.5δm (1)

4

s + δm

r
< g ≤ s − δm (2)

Trackeri’s signature includes four input actions
objecti, no objecti, cpqi, and receive(msg)j,i

and two output actions cpointer(j)i and
send(msg)i,j (msg ∈ {gquery, ack gquery, grow,
shrink}). Action cpointer(j)i causes Trackeri

to update Finderi with the current value of the
c pointer in response to Finderi’s cpqi input ac-
tion. The send and receive actions are related
to propagation of grows and shrinks and are ex-
plained in detail below.

4.1 Grow action

The grow action constructs a path to the new
location of the object. If objecti is fired at i ∈ P0

and i.c 6= i, meaning process i is not already a
leaf, then i becomes the leaf by setting i.c := i and
sets the grow timer, gtime. If a process receives a
grow message, it sets its c pointer to the sender,
sets gtime, and sends a gquery message to its
neighbors to check if the original path is reachable
through any of its neighbors. A neighbor j that
receives the gquery sends an ack gquery back if
it is on the tracking path and has a parent pointer
to its clusterhead, h(j). This corresponds to j not
having a lateral link, since only then it is possible
to insert a lateral link from i to j.

When the grow timer expires, if i.c is still
non-⊥, meaning that the path has not shrunk
while i’s grow timer was counting down, the send
(grow) action is enabled at i. If i had heard an
ack gquery from a neighbor j and had conse-
quently set i.p = j then the grow message is sent
to j, inserting a lateral link. Else, i sets its parent
to be its clusterhead, h(i), and sends a grow mes-
sage to its clusterhead. In either case i.gtime is
set to ∞ as i does not need to send more messages.

When a grow message is received at a process i,
i need not propagate the grow further if i already
has a parent in the tracking path or i is the MAX
level process. If i is the MAX level process, then
it sets its parent pointer to be itself. Otherwise,
the above procedure is repeated: a grow timer is
set, and a gquery message is sent to neighbors.

4.2 Shrink action

When a new path connects to the original track-
ing path at some level l, all levels below l in the
original path become deadwood, an old branch of
the tracking path deserted by the mobile object.
The shrink action cleans deadwood.

If no objecti occurs, i removes itself from the
path by setting i.c to ⊥ and setting its shrink
timer. When the timer expires, if i.c is still ⊥,
meaning no newer path has connected at i while i’s
shrink timer was counting down, i sends a shrink
message to its parent in the path and sets p := ⊥.

When i receives a shrink message from j, i
checks to see whether i.c = j. Even though j.p =
i, i.c might not be pointing to j; i.c may have been
updated to point to a process on a newer path. If
i.c = j then i disassociates itself from the path and
sets its shrink timer, scheduling a shrink message
to be sent to i.p. Otherwise, if i.c 6= j, i simply
ignores the message, ensuring that shrink actions
clean only deadwood and not the entire path.

Example. Figure 2 depicts a sample tracking
path. The path is seen pointing to a level 2 clus-
terhead, which points to one of its hierarchy chil-
dren, a level 1 clusterhead. That clusterhead has
a lateral link to another level 1 clusterhead that
points to a level 0 cluster where the object e is lo-
cated. Deadwood is denoted by the dotted path.

e

Figure 2. Tracking path example

5

4.3 Correctness

Here we present system invariants and define
consistent states of the system. We show consis-
tent states are closed under move operations and
the system eventually reaches a consistent state.

In the absence of faults, we have shown (Theo-
rem 4.5 in appendix) that every process i satisfies
I, the following five conditions, at all times:
(I0) If lvl(i) = 0 and objecti occurs then i.c = i,
(I1) If i’s child pointer is not ⊥, then one of the
following holds: (a) i.c = i and the object is at i,
(b) i.c points to a clusterhead contained in its clus-
ter at the next lower level [i.e., i.c ∈ children(i)],
or (c) i.c points to a neighboring clusterhead at
the same level and i.p points to i’s clusterhead at
the next higher level,
(I2) If i’s parent pointer is not ⊥, then either i’s
child pointer is not ⊥ or i is executing a shrink ac-
tion and will send a shrink message to its parent,
(I3) This is the dual: if the child pointer of i is
not ⊥, then i’s parent pointer is also not ⊥ or i
is executing a grow action and is about to send a
grow message to its prospective parent,
(I4) If i.c 6= ⊥ and i.c 6= i then (i.c).p, the parent
pointer of the process i.c points to, is i or ⊥ and
a shrink message from i.c is in transit to i.

A tracking path is a sequence of processes
{ix, . . . , i1} where (1) i1 is a leaf and contains the
object, (2) Every process but i1 points to the next
process as its child, and (3) I is satisfied at all
processes in the sequence.

A complete tracking path is a tracking path
{ix, . . . , i1} where lvl(ix) = MAX and ix.p = ix.

A consistent state is a state where a complete
tracking path exists and i.c = i.p = ⊥ for every
process i not in the tracking path.

Lemma 4.6 Consider execution α that starts
from an initial state and contains objecti actions
at one process i. α reaches a consistent state.

Theorem 4.7 Starting from a consistent state, a
move of the object leads to a consistent state.

4.4 Work

In order to prove our work claims, we first show
that the timing of changes to the tracking path

satisfy certain relationships between the newer
and older portions of the tracking path and ensure
that original path is reused to the extent possible.
More specifically, using our assumptions on s and
g we prove in Lemma 4.8 that a shrink propagated
from level 0 does not erase a level l pointer before
a grow action can use it.

Building on this, we prove in Lemma 4.9 that
lateral links are used as often as possible, and in
Theorem 4.10 that a move to a distance d away
results in O(d ∗ log(D)) time and work.

Lemma 4.9 Consider a complete tracking path
{ix, . . . , i1} in a consistent state before a
move operation and the resulting complete path
{i′x′ , . . . , i′1} in the consistent state after the op-
eration. There exists an index j and level l where:

1. lvl(ij) = l,
2. The old and new path share a prefix up to ij:

{i′x′ , . . . , i′1} = {ix, . . . , ij} · {i′j′ , . . . , i′1},
3. Path {i′j′ , . . . , i′1} has vertical growth to l, 1

4. Path {ix, . . . , i1} has full extension below l,
5. Each process i below level l in the new path

does not neighbor a process j such that
j.p = h(j) in the old path.

Theorem 4.10 Starting from a consistent state,
move operations of the mobile object to a total of
distance d away require at most O(d∗ωmr∗MAX)
amortized work and O(d ∗ gr2 ∗ MAX) amortized
time to update the tracking path.

Proof sketch. Lemma 4.9 implies a level l
pointer in the path is updated as often as every
q

∑l−2
j=1 rj distance because of full extension of lat-

eral links. A O(mrl−1) work cost and O(grl) time
cost is incurred each time a level l pointer is up-
dated. The costs, multiplied by frequency of up-
dates, are summed for each level up to MAX.

5 Fault-containment

After state corruption of a region of (potentially
all) processes, our tracking path heals itself in a

1A tracking path has vertical growth up to l if at every
level k, 0 < k < l, the tracking path has one process at level
k. A tracking path has full extension below l if at every
level k, 0 < k < l, the tracking path contains 2 processes at
level k.

6

fault-local manner, within work proportional to
perturbation size. Here we present correction ac-
tions enabling fault-local stabilization of the path.

Through faults a shrink action can be mis-
takenly initiated. For example, when a portion
of a tracking path is hit by faults, higher level
processes of the path, unaware a healthy lower
path exists, start a shrink action. If “growth” at
lower levels lags behind “shrinking” of upper lev-
els, faults can propagate through the entire upper
path. For fault-containment, grow actions started
at lower levels must contain shrink actions.

Similarly, grow actions can be mistakenly initi-
ated. Consider a garbage path with no object at
its leaf. The topmost process of this path, unaware
that the path does not lead to the object, starts a
grow action. If “shrinking” from lower levels lags
behind “growing” of upper levels, faults can con-
taminate the entire network. Thus shrinks started
at lower levels must contain grows.

The requirements are both satisfied by giving
priority to actions with more recent information
regarding the path; actions from lower levels are
privileged over ones at higher levels. We achieve
this by delaying shrink/grow actions for longer
periods as the level of the process executing the
action increases. This way, propagation actions
coming from below are subject to lesser delays
and can arrest mistakenly initiated propagation
actions; fault-local stabilization is achieved. We
note that the latency imposed by delaying is a con-
stant factor of the communication delay to higher
levels and does not affect the quality of tracking.

Next we present the correction actions for re-
establishing the tracking path invariant I, and
then prove that they are fault-containing. The
signature for the correction actions are in Figure
3. To correct I4 we use heartbeat messages and
two timers: next for periodically sending heart-
beats to the parent and timeout for dissociating a
child if no heartbeat is heard. The correction ac-
tions (code is in the appendix) use a constant b for
calculating the frequency of heartbeat messages,
whose periodicity are tunable to achieve less com-
munication or faster detection. We require that b

is more than twice s, the shrink timer constant:
b ≥ 2s (3)

Signature:
Input: receive(heartbeat)j,i, j ∈ P,
Output: send(heartbeat)i,j , j ∈ P,
Internal: heartbeat seti

timeout seti

timeout expirei

start-shrinki

start-growi

Figure 3. Fault containment signature at i

Correction actions for I0 and I1. I0 is es-
tablished trivially by object and no object ac-
tions. For correction of I1, we make domain as-
sumptions on non-⊥ c, p and gnbrquery variables
for i ∈ P . We require that i.c 6= ⊥ ⇒ i.c ∈
{nbr(i)∪children(i)} : i.c points to either a neigh-
bor of i or to a child of i. Similarly, we restrict the
domain of non-⊥ i.p variables to {nbr(i)∪{h(i)}}
and i.gnbrquery to subsets of nbr(i). These as-
sumptions are reasonable since the clustering pro-
vides a process with the identifiers of its neighbors,
children, and clusterhead; a process can locally
check and set these variables to ⊥ if their values
are outside their respective domains.

Correction actions for I2 and I3. I2 is cor-
rected by start-shrinki. If i has a valid parent
but no valid child, then this action schedules a
shrink message to be sent to i.p. Similarly, start-
growi is responsible for correcting I3. If i has a
valid child but no parent, then this action sends a
gquery message to i’s neighbors and schedules a
grow message to be sent to the future parent of i.

Correction actions for I4. Heartbeats detect
violations of I4. send(heartbeat)i,p ensures that
every process i with a non-⊥ valued parent sends
a heartbeat message to its parent every b ∗ rlvl(i)

time by setting next. Receive (heartbeat)j,i

resets i’s timeout variable to (b + 2δm/r) ∗ r lvl(i)

every time i receives a heartbeat message from
its child, i.c. If i receives a heartbeat from j but
i.c = ⊥ then i sets i.c := j. Otherwise, a heart-
beat message received from a process other than
i.c is ignored.

7

Timeout expirei is enabled if i has a non-⊥
valued child, is not a leaf, and has not received a
heartbeat message in a (b + 2δm/r) ∗ rlvl(i) time
interval. It establishes I4 by setting i.c to ⊥.

Finally, heartbeat seti and timeout seti ac-
tions ensure stabilization of the next and timeout
variables of the corrector by ensuring that their
values are within their respective domains. In
addition, in the receive (grow) action we reset
“timeout to (b + 2δm/r) ∗ rlvl(i),” to prevent the
scenario where the heartbeat timeout of i expires
scheduling a shrink just after i receives a grow
message from a process in a newly growing path.
In this case, receiving a grow message from a child
is as good as receiving a heartbeat.

Stabilization proofs. We prove in Theorem
5.2, using Lemma 5.1, that our program is self-
stabilizing to a consistent state, where a complete
tracking path exists. Then, in Theorem 5.5 we
prove that our program is fault-local stabilizing.

Lemma 5.1 Starting from an arbitrary state of
processes and channels, the system stabilizes to a
state where I holds at every process i and at most
1 message is in travel in every incoming channel
to i within at most 2mδrlvl(i)−1.

Theorem 5.2 Our tracking program stabilizes to
a consistent state.

To prove fault-local stabilization we first give a
bound on arresting distance of grow/shrink waves
in Lemmas 5.3 and 5.4. For these lemmas, we as-
sume faults occur only from level l1 + 1 through
level l2. We prove fault containment by showing
that due to our timing assumptions, a correction
propagated from l1 catches propagation of bad in-
formation at a level l > l2, leaving levels above l
untouched by faults.

Lemma 5.3 Propagation of a shrink action
started at level l1+1 catches propagation of a grow
action started at level l2 by level l where

l = l2 + dlogr
br−b+sr+gr−2s+3δm

gr−s−δm
e.

Lemma 5.4 Propagation of a grow action started
at level l1 catches propagation of a shrink action
started at level l2 by level l where

l = l2 + dlogr
br−b+sr2−gr−δm

sr−gr−3δm
e.

The size, l − l2, of contamination due to fault
propagation is independent of the network size and
is tunable via grow and shrink timer settings. In
Section 7 we give sample values for these.

Theorem 5.5 (Fault-local stabilization) For
a perturbation size S, our program self-stabilizes
in O(S) work and in O(rL) time where L denotes
the highest perturbed level.

Proof sketch. Uses the containment arguments
in Lemmas 5.3 and 5.4.

6 Find operation

Here we describe Finder assuming find oper-
ations are interleaved with move operations. We
relax this restriction in Section 8 and allow the
object to relocate while a find is in progress. The
signature and code are in the appendix.

A find consists of two phases: searching and
tracing. Searching follows pointers to increasingly
higher levels of the hierarchy until a tracking path
is found. Tracing then follows the pointers in the
tracking path to the mobile object.

A find is initiated by a find input. The level
0 process at that location starts servicing the re-
quest. A findi or receive(find)j,i is serviced at a
process i by first querying the Trackeri automata,
using cpqi. When Trackeri returns a pointer
c′ through the cpointer(j)i action, Finderi au-
tomata considers the following cases: If c′ = i,
the object is found at i and the tracing phase is
over, so i outputs foundi. If c′ 6= i and c′ 6= ⊥,
the tracing phase is continuing, and i forwards the
find request to the process pointed to by c′.

If c′ = ⊥ it is still the search phase, and i
sends a fquery message to its neighbors and sets a
timeout equal to the maximum time for roundtrip
neighbor communication at lvl(i). Neighbors an-
swer the query with a fqack message and start
processing the find if they are on the tracking path
and ignore it otherwise. If a fqack is received from
a neighbor j before the timeout period expires,
the tracking path is found and tracing starts; i
has effectively forwarded the find request to j. If

8

the timeout period expires with no reply from a
neighbor, the search phase is continuing and i out-
puts send(find)i,h(i), propagating the find to its
clusterhead.

Work. Finds are local: a find initiated at process
i distance d from the mobile object requires O(d)
work to complete. Geometry assumptions imply:
Theorem 6.1 (Proximity) In a consistent
state, for a process j that is at most d distance
from the mobile object, one of the following holds:

• hdlogrde+1(j) is in the tracking path or
• ∃i ∈ nbr(hdlogrde+1(j)) in the tracking path.

Theorem 6.2 A find operation invoked at dis-
tance d from a mobile object results in O(d∗ωrm)
work and takes O(d ∗ δrm) time.

Proof sketch. The previous theorem implies a
find operation will find the path by level dlogrde+
1. We add this cost of searching to the cost of
following tracking path links from that level.

7 Concurrent move operations

In this section we relax the atomic move restric-
tion and consider concurrent execution of move
operations, where the mobile object may relocate
while effects of previous move operations are still
rippling through the tracking structure.

We showed that a complete tracking path was
preserved by atomic move operations. However,
during concurrent move operations, we can not
guarantee a complete tracking path: at any given
instant, there may be a new path growing, older
deadwood shrinking, and new deadwood being
produced. Hence, we provide a looser definition
of a tracking structure consisting of several path
segments that satisfy a reachability condition.

A path segment is a piece of a tracking path.
The piece is maximal in that the first process in
the segment has no parent pointer or has a parent
pointer to itself and the last pointer in the seg-
ment (the endpoint) points to itself or a process
without a pointer. A sequence of path segments
{{ix,yx , . . . , ix,1}, . . . , {i1,y1 , . . . , i1,1}} is a tracking
structure if i1,1 contains the object and every end-
point iy,1, y 6= 1 satisfies a 3-part reachability con-
dition: (1) If i.c is i’s hierarchy child, lvl(i) > 1

implies the next path segment contains a neigh-
bor of i, and lvl(i) = 1 implies the next segment
contains a process neighboring i.c. (2) If i.c is
i’s neighbor, the next segment contains a process
neighboring i.c. (3) If lvl(i) > 1, the next seg-
ment’s endpoint is at least 2 levels below lvl(i).

A complete tracking structure is a tracking
structure that reaches the top level of the hierar-
chy. We also define a weaker version of a consistent
state: A good state is a program state where a com-
plete tracking structure exists and i.c = i.p = ⊥
for all processes i not in the tracking structure.

We assume the object takes at least e time at
a level 0 process before moving to a neighboring
level 0 process, and the minimum time the object
takes to move a total of d distance is e ∗ d where

e ≥ 2sr3 (4)

Theorem 7.1 Starting from a good state, a move
of the object leads to another good state.

Proof sketch. The reachability condition is im-
plied because the time a mobile object takes mov-
ing far enough to require a level l − 2 update and
then propagating a shrink to remove the level l−2
pointers is more than the time to delete level l
pointers in a prior segment.

Theorem 7.2 Consider a trace α of the program
that contains an objecti event. The trace α even-
tually reaches a good state.

Theorem 7.4 Starting from a good state, object
moves to distance d away takes O(d∗ωrm∗MAX)
work and O(d ∗ gr2 ∗ MAX) time to complete.

Proof sketch. Newer path segments do not out-
grow older segments so Theorem 4.10 holds.

Theorem 7.5 The tracking service with concur-
rent moves is self-stabilizing to a good state.

Theorem 7.6 (Fault-local stabilization) For
concurrent moves and perturbation size S the
system self-stabilizes in O(S) work and in O(rL)
time where L denotes the highest perturbed level.

Sample timer constants. Consider g =
5δm, s = 11δm, e = 23δmr3, and b = 11δmr.
Tracking structure inequalities are satisfied, grow
actions catch faulty shrink actions in 2 levels, and
shrinks catch faulty grows within 4 levels.

9

8 Concurrent find and move operations

In this section we discuss the execution of find
operations while several concurrent move opera-
tions are still in progress on the tracking structure.

In the searching phase we show (Theorem 8.1 in
appendix) that a find invoked within d distance of
a mobile object hits the tracking structure by level
dlogrde+1 as before; the object does not move fast
enough to result in propagation of a shrink to level
dlogrde + 1 before a find operation reaches it.

In a tracing phase concurrent with a move, a
complete tracking path may not be available, and
a find may reach a process with c = ⊥ while trac-
ing the tracking structure. If a find reaches such a
dead end it re-executes the searching phase. The
reachability condition of the tracking structure en-
sures the find will reach a newer path segment
by searching neighboring processes at the current
level or one level higher (Lemmas 8.2 and 8.3 in
appendix). Together they show that the mobil-
ity of the object only results in a constant factor
difference in time and work to complete a find.

Theorem 8.4 A find operation invoked within d
distance of a mobile object requires O(dωrm) work
and O(dδrm) time to reach the object.

9 Simulation results

In the preceding sections we presented ana-
lytical worst-case performance of Stalk. Here
we consider a random movement model for the
object and investigate the average-case perfor-
mance through simulation. For simulations we use
Prowler [19], an event-driven simulator for wireless
sensor networks. Besides Stalk, we simulate two
algorithms for comparison. The first algorithm
always propagates grows/shrinks to the topmost
clusterhead after each move of the object. The sec-
ond algorithm is similar to Stalk except that it
does not use lateral links. The code is available at
www.cis.ohio-state.edu/~demirbas/track/.

Figure 11 (Appendix) shows work done by each
algorithm for increasing values of r. We simu-
lated up to networks of 2500-nodes and observed
that in contrast to the first two, Stalk scales well
with respect to r. Comparing Stalk to algorithm

2, it is clear lateral links have a large impact on
scalability. Theoretical analysis shows that work
of Stalk scales linearly with respect to r in the
worst case, but simulation reveals that work scales
sublinearly for a randomly moving object.

Figure 12 shows work done by each algorithm
with respect to distance the object moved: Stalk

outperforms the other algorithms. Theoretical re-
sults show Stalk’s work scales linearly with re-
spect to distance, but simulation shows it scales
better: the randomly moving object has locality
to its movements that Stalk captures via lateral
links, avoiding the propagation of updates to up-
per levels as much as possible.

10 Concluding remarks

We presented Stalk, a fault-local stabilizing
tracking service for sensor networks. Stalk is
scalable: A find operation invoked within distance
d of the mobile object requires O(d) work to inter-
cept the mobile object, and a move of the evader
to distance d away requires O(d ∗ log(D)) work to
update the tracking structure.

We use two concepts to achieve fault locality:
hierarchical partitioning and arresting waves. The
key idea is to wait longer before updating a wider
region’s view by employing larger timeouts when
propagating an update at higher levels of the hier-
archy. This way, more recent updates from lower
levels can catch-up to updates at higher levels.

Stalk has applications in message routing to
mobile units (tanks, platoons, or mobile agents)
and in pursuer/evader games. As part of our ef-
forts to develop sensor network services in the
DARPA/NEST program, we are implementing
Stalk on the Mica mote platform [10]. For fu-
ture work, we consider adapting Stalk in the con-
text of multiple pursuer - multiple evader prob-
lems where the objective is to coordinate the pur-
suers to collaborate in minimizing the cumulative
cost of catching all the evaders. In addition, we are
examining other problems that could benefit from
our hierarchy-based local stabilization technique.

10

References

[1] A. Arora, P. Dutta, S. Bapat, and et. al. Line
in the sand: A wireless sensor network for target
detection, classification, and tracking. Technical
Report OSU-CISRC-12/03-TR71, The Ohio State
University, 2003.

[2] B. Awerbuch and D. Peleg. Sparse partitions (ex-
tended abstract). In IEEE Symposium on Founda-
tions of Computer Science, pages 503–513, 1990.

[3] B. Awerbuch and D. Peleg. Online tracking of
mobile users. Journal of the Association for Com-
puting Machinery, 42:1021–1058, 1995.

[4] A. Bar-Noy and I. Kessler. Tracking mobile users
in wireless communication networks. In INFO-
COM, pages 1232–1239, 1993.

[5] M. Demirbas, A. Arora, and M. Gouda. A
pursuer-evader game for sensor networks. Sixth
Symposium on Self-Stabilizing Systems(SSS’03),
2003.

[6] S. Dolev, D. Pradhan, and J. Welch. Modified
tree structure for location management in mobile
environments. In INFOCOM (2), pages 530–537,
1995.

[7] L. Guibas, J.-C. Latombe, S.M. LaValle, D. Lin,
and R. Motwani. A visibility-based pursuit-
evasion problem. International Journal of Compu-
tational Geometry and Applications, 9(4/5):471–
481, 1999.

[8] L. J. Guibas. Sensing, tracking, and reasoning
with relations. IEEE Signal Processing Magazine,
March 2002.

[9] M.P. Herlihy and S. Tirthapura. Self-stabilizing
distributed queueing. In Proceedings of 15th In-
ternational Symposium on Distributed Computing,
pages 209–219, oct 2001.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler,
and K. Pister. System architecture directions for
network sensors. ASPLOS, pages 93–104, 2000.

[11] Y. H. Hu, D. Li, K. Wong, and A. Sayeed. Detec-
tion, classification and tracking of targets in dis-
tributed sensor networks. IEEE Signal Processing
Magazine, 19(2), March 2002.

[12] M. Jayaram and G. Varghese. Crash failures can
drive protocols to arbitrary states. ACM Sym-
posium on Principles of Distributed Computing,
1996.

[13] A. Kumar and T. Camp. A new matching algo-
rithm for managing location information in mobile
computing. In Proceedings of the IEEE Interna-
tional Performance, Computing, and Communica-
tions Conference (IPCCC), pages 231–239, 2000.

[14] J. Liu, P. Cheung, F. Zhao, and L. J. Guibas. A
dual-space approach to tracking and sensor man-
agement in wireless sensor networks. MOBICOM,
pages 131–139, 2002.

[15] V. Mittal, M. Demirbas, and A. Arora. Loci:
Local clustering in large scale wireless networks.
Technical Report OSU-CISRC-2/03-TR07, The
Ohio State University, February 2003.

[16] E. Pitoura and G. Samaras. Locating objects in
mobile computing. Knowledge and Data Engineer-
ing, 13(4):571–592, 2001.

[17] D. M. Reid. An algorithm for tracking multiple
targets. IEEE Transactions on Automatic Con-
trol, 1979.

[18] J. Shin, L. Guibas, and F. Zhao. A distributed
algorithm for managing multi-target identities in
wireless ad-hoc sensor networks. Proceedings of
2nd International Workshop on Information Pro-
cessing in Sensor Networks (IPSN), April 2003.

[19] G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi.
Simulation-based optimization of communication
protocols for large-scale wireless sensor networks.
IEEE Aerospace Conference, March 2003.

[20] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert,
and S. Sastry. Distributed control applications
within sensor networks. Proceeding of the IEEE,
Special Issue on Sensor Networks and Applica-
tions, August 2003.

[21] A. P. Sistla, O. Wolfson, S. Chamberlain, and
S. Dao. Modeling and querying moving objects.
In ICDE, pages 422–432, 1997.

[22] F. Zhao, J. Shin, and J. Reich. Information-driven
dynamic sensor collaboration for tracking applica-
tions. IEEE Signal Processing Magazine, March
2002.

11

Appendix

4 Move operation

Signature:
Input: objecti

no objecti

cpqi

receive(msg)j,i, j ∈ P,
msg ∈ {gquery, ack gquery, grow, shrink}

Output: send(msg)i,j, j ∈ P,
msg ∈ {gquery, ack gquery, grow, shrink}

cpointer(j)i, j ∈ P ∪ {⊥}
State:

c ∈ P ∪ {⊥}, initially ⊥
p ∈ P ∪ {⊥}, initially ⊥
gqack ∈ P ∪ {⊥}, initially ⊥
gnbrquery ⊆ P , initially ∅
update, a Boolean, initially false
gtime ∈ <, a timer, initially ∞
stime ∈ <, a timer, initially ∞
now ∈ <, a timer indicating current time at i

Figure 4. Signature and state of Trackeri

Lemma 4.1 I1 is an invariant.

Proof. In the initial states, since (∀i : i.c = ⊥) holds,
I1 is trivially satisfied.

In our program there are only two places where i.c
is set to a non ⊥ value. The first is the objecti action
that sets i.c to be i when an object is present at i,
hence I1 is preserved by this case.

The second is the receive (grow)j,i action that sets
i.c to j, the sender of the grow message. Observe from
the send (grow) actions that a process sends a grow
message to either (1) its clusterhead, or (2) its same
level neighbor in the clustering hierarchy. It follows
from (1) that i.c ∈ children(i), hence I1 is preserved
by this case.

For (2), note that j sends a grow message to a
neighboring process i only if i had previously sent an
ack gquery to j. Since send (ack gquery)i, j im-
plies i.p = h(i), it follows that (i.c ∈ nbr(i) ∧ i.p =
h(i)), I1 is preserved.

Lemma 4.2 I2 is an invariant.

Proof. In the initial states, since (∀i : i.p = ⊥) holds,
I2 is trivially satisfied.

In our program there are only two places where i.p
is set to a non ⊥ value: the send (grow)i,h(i) action
and the receive (ack gquery)j,i action. Both cases
require that i.c 6= ⊥ to set i.p to a non ⊥ value.

Input: objecti

eff: if c 6= i ∧ lvl(i) = 0 then
c := i
gtime := now + g

Output: send (gquery)i,j

pre: j ∈ gnbrquery
eff: gnbrquery := gnbrquery − {j}

if gnbrquery = ∅ then

gtime := now + g ∗ rlvl(i)

Input: receive (gquery)j,i

eff: if p = h(i) then
gqack := j

Output: send (ack gquery)i,j

pre: gqack = j
eff: gqack := ⊥

Input: receive (ack gquery)j,i

eff: if c 6= ⊥ ∧ p = ⊥ then
p := j

Output: send (grow)i,j

pre: now = gtime ∧ c 6= ⊥ ∧
((j = p ∧ p ∈ nbr(i)) ∨ (j = h(i) ∧ p = ⊥))

eff: if p = ⊥ then
p := h(i)

gtime := ∞

Input: receive (grow)j,i

eff: c := j
if lvl(i) = MAX then

p := i
if p = ⊥ then

gnbrquery := nbr(i)

Figure 5. Grow actions at process i

Input: no objecti

eff: if lvl(i) = 0 ∧ c 6= ⊥ then
c := ⊥
stime := now + s

Output: send (shrink)i,j

pre: now = stime ∧ c = ⊥ ∧ j = p
eff: p := ⊥

stime := ∞

Input: receive (shrink)j,i

eff: if c = j then
c := ⊥

stime := now + s ∗ rlvl(i)

Figure 6. Shrink actions at process i

i

i can set c := ⊥ only by executing an object-lefti

or a receive (shrink) action. In both cases, i.stime
is set to be now + s ∗ rlvl(i). When now = i.stime and
c = ⊥ and p 6= ⊥, send (shrink)i,j action sets p := ⊥,
so I2 is preserved.

Lemma 4.3 I3 is an invariant.

Proof. In the initial states I3 is trivially satisfied.
In our program there are only two places where i.c

is set to a non ⊥ value: the objecti action and the
receive (grow)j,i action. In both cases, either the
grow timer at i is set so we have gtime ∈ [now, now +
g ∗ rlvl(i)] or we already have p 6= ⊥.

Recall that the only way that i can change its non
⊥ valued p variable is by executing a send (shrink)
action. This action is enabled only when i.c = ⊥ so I3
is trivially preserved in this case.

Lemma 4.4 I4 is an invariant.

Proof. In the initial states I4 is trivially satisfied.
i.c 6= ⊥ ∧ i.c 6= i implies that i has executed a

receive (grow)i.c,i action. The corresponding send
(grow)i.c,i action at process (i.c) implies that (i.c).p
is set to i.

The only way that process (i.c) can change its non
⊥ valued p variable is by executing a send (shrink)
action. Note that in this case a shrink message is
inserted into the channel to i. Therefore, i.c 6= ⊥ ∧
i.c 6= i implies that either (i.c).p = i or (i.c).p = ⊥ and
a shrink message exists in Channel(i.c),i.

Theorem 4.5 I is an invariant.

Proof. I0 is an invariant due to inspection of the
code. In the above lemmas we proved that I1 through
I4 are invariants, thus I is also an invariant.

Lemma 4.6 Consider an execution α that starts from
an initial state and contains objecti actions at exactly
one process i. Execution α reaches a consistent state.

Proof. The proof is in two parts:
(1) First, we prove that the move operation termi-

nates. Since objecti actions occur at only one pro-
cess i, no no objecti action is fired. Hence, no send
(shrink) actions are enabled, and hence, no receive
(shrink) actions are fired.

A send (gquery) is always enabled at the high-
est level process in the tracking path, except when
the tracking path is complete. We prove that a send
(ack gquery) is never enabled as a result: at the base
case, when the tracking path is of length 1, no send
(ack gquery) is enabled since all neighbors of i1 have

c = ⊥. Assume that in a tracking path of up to length l
no send(ack gquery) is enabled. Then, the tracking
path {il, . . . , i1} is such that ∀k : 1 < k ≤ l : ik.c ∈
children(ik) and child pointers of all processes outside
the path are ⊥ since the only way to have c 6= ⊥ is with
a receive (grow) action. Thus, il sends a grow mes-
sage to its clusterhead, say il+1, and since all neighbors
of il+1 have c = ⊥, no send (ack gquery) is enabled
for a tracking path of length l + 1.

Therefore, in a state where a tracking path
{il, . . . , i1} of length l exists, the only enabled ac-
tion (in addition to the input actions) may be a send
(grow)il,h(il) action. Note that for lvl(il) = MAX ,
the send (grow) action is also disabled. Since the
following lexicographic function always decreases the
move operation is guaranteed to terminate:

• MAX − lvl(il),
• il.now − il.gtime,
• remaining time for grow to be delivered at h(il).
(2) We now show that a consistent state is reached

in α. Since we have shown that for all j not in the
tracking path j.c = ⊥ ∧ j.p = ⊥ holds, here we
only show that a complete tracking path exists when
the move operation terminates. When objecti is ex-
ecuted, condition 1 of the tracking path definition is
satisfied. The send (grow) and the corresponding
receive (grow) actions establish condition 2 of the
tracking path. Since I is an invariant, condition 3 of
the tracking path definition is satisfied. Since termina-
tion occurs when lvl(ix) of the first process ix in the
tracking path is MAX , the path is a complete tracking
path at termination.

Theorem 4.7 Starting from a consistent state, a
move operation of the mobile object leads to another
consistent state.

Proof. Since the starting state is a consistent state,
the original tracking path is a complete tracking path
and for every process i outside the path i.c = i.p = ⊥.

(1) First, we prove that the move operation termi-
nates. Let L be the level that the new growing path
reconnects to the original path.

The highest level process in the new growing path
always sends “gquery” to its neighbors, but never re-
ceives an “ack gquery” till level L. Thus, till level L the
new path always grows vertically, hence for the growth
of the new path up to level L the variant function in
part 1 of Lemma 4.6 applies.

Let i be the level L process where the new growing
path first intersects the original path. Either i is the
MAX level process, meaning there is a vertical track-
ing path, or i responds to the receive(grow) action by

ii

pointing to the highest level process in the new grow-
ing path. At this point it either does not propagate
this grow further since it already has a parent in the
tracking path or it propagates a grow action to its clus-
terhead parent. This might be repeated for every level
above L and below MAX . However, because a grow
introduces at most one lateral link per level in a track-
ing path and then continues to the next level, use of
a lexicographic function similar to that of Lemma 4.6
(but incorporating the possibility of 2 links per level)
reveals the grow eventually will reach the top level.

Shrinking starts at the level 0 process in the old lo-
cation of the evader and clears deadwood below level
L via the send(shrink) and receive(shrink) actions.
A variant function on <the number of hops in the dead-
wood, the shrink timers of the processes in the dead-
wood, and the time for shrink message to be delivered
by the channels in the deadwood> can be used to show
that the shrink reaches level L. At the point of con-
nection, process i either now points to the new path
and upon receipt of the shrink message, discards the
message since it is not from its current child or it prop-
agates the message to its parent. Again, this continues
until either the shrink propagation is halted by encoun-
tering a process whose child pointer points to the new
path or when the shrink reaches level MAX .

Note that when a grow installs a pointer in the new
path it is not possible for the shrink to remove it; the
shrink below level L cannot affect the new path below
L and the remaining cases are either that the shrink
has already been propagated to the next process on
the old path or has not yet arrived at i and will be
halted when it arrives. I guarantees there is no cycle in
the path that allows the same shrink to visit a process
more than once. The argument can be repeated for
each intersection of the two paths above L.

(2) We now show that a consistent state is reached
when the grow and shrink actions terminate. The new
growing path grows vertically and satisfies conditions 1,
2, 3 of the tracking path definition and intersects the
original path at level L. Since the grow action adds
links that are not removed by the concurrent shrink
action and either connects to a portion of the old com-
plete path that reaches level MAX or climbs in level
until it reaches MAX itself, a complete tracking path
will result. Since the starting state was a consistent
state, and our grow and shrink actions have no effect
on processes other than those in the original path and
the new growing path, for every process i that is in
neither path i.c = i.p = ⊥ is preserved. Finally, since
the shrink actions set i.c = i.p = ⊥ for every process
i at which they complete before the grow arrives and

halt when a new pointer is encountered, it follows that
the resulting state is also a consistent state.

Lemma 4.8 A shrink action propagated from level 0
through a tracking path with full extension below l takes
longer to erase a level l parent pointer than a grow
action takes to propagate a vertical growth up to l and
have a neighbor query delivered.

Proof. The minimum time it takes for shrink mes-
sages to erase a level l pointer at a process i is at least
the sum of shrink timer waits at each process in the
tracking path up to i. At level 0, the timer wait is s
and for levels j : 0 < j < l, a process’s timer waits
are srj , with 2 such processes at each level (one with
a lateral link and one with a pointer to a hierarchy
child). At level l, the shrink timer takes srl to expire
and delete i’s p pointer.

In the meantime, propagation of grow messages to a
level l process i′ could suffer maximum message delay in
addition to the time it takes for grow timers to expire,
taking a total of up to

∑l−1
j=0[grj + δmrj] time. Here

i′ would query its neighbors. This message could take
2δmrl−1 time to deliver at a neighboring level l process.
Algebra reveals that this total time is less than the
described shrink time:

∑l−1
j=0[grj + δmrj] + 2δmrl−1 <

s +
∑l−1

j=1 2srj + srl.

Lemma 4.9 Consider a complete tracking path
{ix, . . . , i1} in a consistent state before a move oper-
ation and the resulting complete path {i′x′ , . . . , i′1} in
the consistent state after the operation. There exists
an index j and level l where:

1. lvl(ij) = l,

2. The old and new path share a prefix up to ij:
{i′x′ , . . . , i′1} = {ix, . . . , ij} · {i′j′ , . . . , i′1},

3. Path {i′j′ , . . . , i′1} has a vertical growth to l,

4. The old path {ix, . . . , ij , . . . , i1} has full extension
below l,

5. Each process i below level l in the new path does
not neighbor a process j such that j.p = h(j) in
the old path.

Proof. Because there is only one level MAX pro-
cess, the two tracking paths will satisfy condition 2.
Consider the process ij for which the new path shares
the prefix of the old path up to ij . Consider l to be
lvl(ij). We want to show conditions 3 and 4. Since the
conditions trivially hold for l = 0, consider l > 0.

iii

Assume for contradiction that condition 3 doesn’t
hold. This can only occur if a lateral link was intro-
duced at some level below l in the new path. Lateral
links are introduced as a result of an ack gquery mes-
sage returned by a neighbor in response to a gquery.
Such an acknowledgement is only returned by a neigh-
boring process whose parent pointer p is to its own
clusterhead. Since the move operation was performed
starting from a consistent state, such a process i must
have been in the old path.

When this is the case, the lateral link would have
been installed to the old tree at this point. This instal-
lation would take up to grl′ + 2δmrl′−1 time. In the
meantime, i may have already sent a shrink message
to its parent. However, our assumptions for s and g
guarantee that even in the case where the shrink mes-
sage does not suffer message delay, the grow message
from i to its parent (which could take up to grl′ +δmrl′

time) will arrive before the shrink action has com-
pleted at i.p; the reduced expression described here is
2gr + δmr + 2δm < sr2, which is satisfied by the fact
that g ≤ s − δm. Hence, the new and old paths would
share a prefix that extended beyond ij , a contradiction.

Assume condition 4 does not hold. There is some
l′ < l such that the old path only has one process at
level l′. Since the new path does not connect at this
level, it must be the case that either this process i is
not a neighbor of the corresponding level l′ process i′

in the new path or this process’s parent pointer was
deleted by a shrink action before i′ queried it.

Process i points to a hierarchy child. The maxi-
mum distance from the cluster boundary of process
i’s level l′ − 1 cluster that i.c’s pointer could be to
is mrl′−2. After this pointer, we could add as much as

m + 2m
∑l′−3

j=1 rj distance, from following lateral links
to the bottom level. After the evader moves a dis-
tance of 1, the total distance from the edge of process
i’s level l′ − 1 cluster to the evader could be as much

as 1 + m + mrl′−2 + 2m rl′−2−r
r−1 . For i to not be a

neighbor of process i′, this total distance would have
to be more than qrl′−1, the minimum distance separat-
ing non-neighboring l′−1 cluster boundaries. However,
algebra reveals this is false.

Then it must be that i’s parent pointer was deleted
by a shrink action before i′ had a chance to query it or
that the grow timer at i′ expired before a reply might
have been received. However, Lemma 4.8 guarantees
that the former cannot be and the latter is disproved
by the fact that g > s+δm

r
, implying grl > 2δmrl−1.

Theorem 4.10 Starting from a consistent state, move
operations of the mobile object to a total of distance d

away require at most O(d ∗ ωmr ∗ MAX) amortized
work and O(d ∗ gr2 ∗MAX) amortized time to update
the tracking path.

Proof. A level l pointer in the tracking path is up-

dated as often as every q
∑l−2

j=1 rj = q rl−1−r
r−1 distance

because of full extension at lower levels, whose con-
struction is guaranteed by the previous lemma. As a
result, if an object has traveled a total of d distance
then we must consider updates up to the MAX level,

with up to d(r−1)
q(rl−1−r)

updates at each level l.

A work cost of up to mrl−1 is incurred every time
a level l pointer is updated. This results in up to
4mωrl−1 communication to query the neighbors. Ad-
ditionally, in half the cases it will result in another
2mrl−1 communication to update one neighbor to have
a lateral link. This brings the average communication
for a level l clusterhead update to (4ω + 2)mrl−1.

Further, a time cost of up to δmrl−1 is incurred
when updating a level l pointer, followed by a grl wait
time for the grow. This cost in some cases must also ac-
comodate lateral link insertions, resulting in additional
2δmrl−1 time for communication.

The worst case amortized cost for a move is then∑MAX
j=1 [d(r−1)

q(rj−1−r)∗(4ω+2)mrj−1], or O(dωmr∗MAX).

The time cost is
∑MAX

j=1 [d(r−1)
q(rj−1−r) ∗ (3δm+gr)rj−1] or,

given that g > 4δm
r

, O(d ∗ gr2 ∗ MAX).

5 Fault-containment

Internal: start-shrinki

pre: (c = ⊥ ∧ p 6= ⊥ ∧ stime /∈ [now, now + s ∗ rlvl(i)])
∨ [p ∈ nbr(i) ∧ c ∈ nbr(i)]

eff: c := ⊥

stime := now + s ∗ rlvl(i)

Internal: start-growi

pre: c 6= ⊥ ∧ p = ⊥ ∧ gtime /∈ [now, now + g ∗ rlvl(i)]
eff: if lvl(i)= MAX then

p = i
if p = ⊥ then

gnbrquery := nbr(i)

Figure 7. Starting grow/shrink at process i

Lemma 5.1 Starting from an arbitrary state of the
processes and channels, our tracking program stabilizes
to a state where for every process i, I holds and at most
1 message is in travel in every incoming channel to i
within at most 2mδrlvl(i)−1.

Proof. I0, I1, I2, and I3 (but not I4!) are all local to
a process and are immediately established by the local

iv

Output: send (heartbeat)i,j

pre: now = next ∧ j = p

eff: next := now + b ∗ rlvl(i)

Input: receive (heartbeat)j,i

eff: if c = ⊥ then c := j
if c = j then

timeout := now + (b + 2δm/r) ∗ rlvl(i)

Internal: timeout expirei

pre: now = timeout ∧ c 6= ⊥ ∧ c 6= i
eff: c := ⊥

Internal: heartbeat seti

pre: p 6= ⊥ ∧ next /∈ [now, now + b ∗ rlvl(i)]

eff: next := now + b ∗ rlvl(i)

Internal: timeout seti

pre: c 6= ⊥ ∧ c 6= i

∧ timeout /∈ [now, now + (b + 2δm/r) ∗ rlvl(i)]

eff: timeout := now + (b + 2δm) ∗ rlvl(i)

Figure 8. Heartbeat actions at process i

process actions as discussed in Sections 5. I0 follows
from inspection of object and no object actions. I1
is established due to our domain assumption, also the
first disjunct in the start-shrink action corrects the
third disjunct of I1. I2 is established by the start-
shrink action, I3 is established by start-grow.

Next we show first how the channel contents are
cleared once I0...I3 is established, and then conse-
quently how I4 is established.

In the starting state, there can be a bounded num-
ber of messages in the channels. Since I1, I2, and
I3 are invariants under receive actions, receiving these
messages does not violate them.

Since after I1 is established there cannot be any cy-
cles in the network with respect to message forwarding,
we next show that the messages in the channels in the
starting state are reduced to at most 1 message per
channel within a bounded time 2mδrlvl−1.

The following messages are removed from the chan-
nels and by inspection of the code do not result in new
messages being inserted into the channels:

• messages from processes outside nbr(i) and
children(i), and messages other than grow,
shrink, gquery, ack gquery, and heartbeat,

• heartbeat messages,

• ack gquery messages,

• and grow/shrink messages received by the high-
est level clusterhead.

The following messages result in limited forwarding:

• gquery can result in at most one ack query
message. Thus, its effects are diminished within
2mδ ∗ rl−1.

• A grow/shrink message can result in forwarding
of a grow/shrink message but this time either
to a higher level or to a same level process with
no lateral link (which means the next time the
forwarding has to be to a higher level).

Since before propagation of a grow/shrink mes-
sage we wait for grow/shrink timers to expire and
a new grow/shrink message resets the grow/shrink
timers, all messages in a channel are received and
suppressed to at most 1 message forward. Only
the last grow/shrink message in the channel is
dominant.

I4 is a pair-wise link predicate on processes. After I0
through I3 are established, and junk messages in the
channels are consumed as above, I4 is established by
the timeout expire action.

Theorem 5.2 Our tracking program stabilizes to a
consistent state.

Proof. From Lemma 5.1, it follows that I is estab-
lished at all processes and the number of initial mes-
sages in channels is reduced to at most 1.

In a state where I holds at all processes, along with
the tracking path there may be fake tracking paths,
which fail to satisfy all conditions of a tracking path, for
example in a fake tracking path it may be that i1.c 6= i1
and (∃k : (ik.c).p 6= ik). Due to start-shrink actions,
a fake tracking path is cleaned starting from the lower-
most process in the path. Using a lexicographic func-
tion similar to that in Theorem 4.7, we can argue that
all fake paths are eventually cleared.

A start-grow from the topmost process in the
“true” tracking path results in a complete tracking
path (using a similar proof to that of Lemma 4.6) and
hence in a consistent state.

Lemma 5.3 Propagation of a shrink action started at
level l1+1 catches propagation of a grow action started
at level l2 by level l where

l = l2 + dlogr

br − b + sr + gr − 2s + 3δm

gr − s − δm
e.

Proof. Consider the worst case where faults corrupt
the network in such a way as to introduce a lateral
link at each faulty level. This “bad grow” could then
quickly propagate upwards without use of lateral links.

v

It takes at most (b + 2δm/r) ∗ rl1+1 for a heart-
beat timer to expire at level l1 + 1 and trigger a shrink
action. After this it can take the maximal time to
propagate shrink actions up to level l2 to correct cor-
rupted portions of the network,

∑l2
j=l1+1[sr

j + δmrj +

srj +2δmrj−1], followed by the maximal time to prop-
agate shrink actions through the non-corrupted lev-
els of the network that had received grow messages,∑l−1

j=l2+1[sr
j + δmrj].

To have fault containment, this total time has to be
less than the minimum time that a grow could take to
be propagated past level l from level l2 + 1, the level
above the last initially faulty level:

(b+2δm/r)rl1+1+
∑l2

j=l1+1[2srj+δmrj+2δmrj−1]+
∑l−1

j=l2+1[sr
j + δmrj] <

∑l
j=l2+1 grj .

With simplification the above inequality becomes:
rl1 (br2−br−2sr+δmr−4δm)+rl2(sr+gr+2δm) <

rl(gr − s − δm).

Lemma 5.4 Propagation of a grow action started at
level l1 catches propagation of a shrink action started
at level l2 by level l where

l = l2 + dlogr

br − b + sr2 − gr − δm

sr − gr − 3δm
e.

Proof. Consider the worst case where the correcting
grow must be propagated vertically and connect with
a lateral link at level l.

After the heartbeat timer at level l1 expires it will
send a heartbeat to the lowest faulty level, taking up to
brl1 + δmrl1 . This will trigger propagation of a grow
message. Propagation of this grow action might suffer
maximal message delay of

∑l−1
j=l1+1[grj+δmrj] to reach

level l and then insert a lateral link at level l, taking
up to grl + 2δmrl−1, but must still take less time than
for a shrink to be quickly propagated past level l:

brl1 +δmrl1 +grl+2δmrl−1+
∑l−1

j=l1+1[grj +δmrj] <
∑l

j=l2+1 srj .
Simplification gives:

rl1(br−b−gr−δm)+rl2(sr) < rl(sr−gr−3δm+2δm/r).

The difference l−l2, the size of contamination due to
fault propagation, is tunable via grow and shrink timer
settings. Later, after imposing additional constraints
on grow and shrink timers for handling of concurrent
operations, we give sample values for the timers and
the size of contamination for those values.

Theorem 5.5 (Fault-local stabilization) For a
perturbation size S, our program self-stabilizes in O(S)

work and in O(rL) time where L denotes the highest
perturbed level.

Proof. Even though there may be many different
scenarios for corruption, since they all lead to either
mispropagation of a shrink or a grow, they all can be
cast to the below two cases for a perturbed process i:
1) i can be corrupted to think it has a child and i grows
up, 2) i can be corrupted to think it has no child and
i shrinks up.

In either case i learns the correct information within
at most O(rlvl(i)) time and from the containment ar-
guments in Lemmas 5.3 and 5.4 this correction wave
contains previous misinformed waves within O(rlvl(i))
time and work.

The work for fault-containment is additive: sum-
mation of the work for all perturbed processes re-
sults in O(S) work overall. However, fault-containment
takes place concurrently for all perturbed processes,
the fault-containment time O(L) for the highest level
perturbed process dominates.

6 Find operation

Each process maintains a child pointer c′ and a
nbrtimeout timer. Boolean cpqflag indicates whether
the process should query the Tracker automata for
the latest tracking structure pointer. Boolean fqn in-
dicates if the process has up-to-date information and
is executing a find. Variable nbrqset is used to query
neighbors while nbrack is used to answer neighbors’
queries. We assume that nbrack ∈ nbr(i) ∪ {⊥} and
that nbrqset ⊆ nbr(i). Additionally, we add the local
correction that if cpqflag = false ∧ fqn = false
then nbrtimeout = ∞.

Theorem 6.1 (Proximity) In a consistent state, for
any process j that is at most d distance away from the
mobile object, one of the following holds:

• hdlogrde+1(j) is in the tracking path or

• ∃i ∈ nbr(hdlogrde+1(j)) that is in the tracking
path.

Proof. Let j be rl distance from i1 where the mo-
bile object resides. In order to violate the proximity
invariant, we need to show that neither j.hl+1 nor any
neighbor of j.hl+1 is in the tracking path. This is only
possible if the distance between j and all boundary pro-
cesses in a level l cluster on the tracking path is more

vi

Signature:
Input: findi

receive(msg)j,i, j ∈ P,
msg ∈ {find, fqack, fquery}

cpointer(j)i, j ∈ P ∪ {⊥}
Output: foundi

cpqi

send(msg)i,j, j ∈ P
msg ∈ {find, fqack, fquery}

Internal: fqseti

State:
c′ ∈ P ∪ {⊥}
fqn, a Boolean
nbrack ∈ P ∪ {⊥}
nbrqset ⊆ P
cpqflag, a Boolean
nbrtimeout ∈ <, a timer
now ∈ <, a timer indicating current time at i

Figure 9. Finder signature/state at process i

than qrl, the minimum distance between processes sub-
sumed by two non-neighboring level l clusters. How-
ever, for a contradiction, we show below that there ex-
ists a process in a level l cluster on the tracking path
whose distance to j is less than qrl.

Since there is at most 1 lateral link at every level,
a level l process in the tracking path is at most
m(rl + rl−1) distance from a level l + 1 process in the
path (mrl is the maximum radius of a level l cluster
and a lateral link at level l is of length 2m ∗ rl−1).
Therefore, we conclude that the distance between the
leaf process i1 of the tracking path and a process on
the boundary of a level l cluster in the tracking path
is at most: 2

∑l−1
j=0 mrj . This distance is always less

than qrl, hence the proximity invariant holds.

(2
∑l−1

j=0 mrj) + rl < qrl

≡ 2m rl−1
r−1 + rl < qrl

≡ 2m 1
r−1 + 1 ≤ q

≡ true {since q ≥ 2m+r−1
r−1 }.

Theorem 6.2 A find operation invoked at distance d
from a mobile object results in O(d ∗ ωrm) work and
takes O(d ∗ δrm) time.

Proof. The cost of find operation is calculated as
follows: At every level l all ω neighbors are consulted,
and a find operation will be answered at level dlogrde+
1 in the worst case (follows from Theorem 6.1). Thus,
given propagation costs and 2 communications with

Input: findi

eff: if lvl(i) = 0 then
cpqflag := true
nbrtimeout := ∞

Output: cpqi

pre: cpqflag = true
eff: none

Input: cpointer(j)i

eff: cpqflag := false
fqn := true
c′ := j
if nbrack 6= ⊥ ∧ c′ = ⊥ then

fqn := false
nbrack := ⊥

Output: foundi

pre: fqn = true ∧ c′ = i
eff: fqn := false

Output: send(find)i,j

pre: fqn = true ∧ ((j = c′ ∧ c′ 6= i) ∨
(j = h(i) ∧ c′ = ⊥ ∧ nbrtimeout ≤ now))

eff: fqn := false

Input: receive(find)j,i

eff: cpqflag := true
nbrtimeout := ∞

Input: receive(fqack)j,i

eff: fqn := false

Input: receive(fquery)j,i

eff: cpqflag := true
nbrtimeout := ∞
nbrack := j

Output: send(fqack)i,j

pre: nbrack = j
eff: nbrack := ⊥

Internal: fqseti

pre: fqn = true ∧ c′ = ⊥ ∧ nbrtimeout = ∞
eff: nbrqset := nbr(i)

Output: send(fquery)i,j

pre: j ∈ nbrqset
eff: nbrqset := nbrqset − {j}

if nbrqset = ∅ then

nbrtimeout := now + 4δmrlvl(i)

Figure 10. Finder actions at process i

vii

each of ω neighbors that are at a distance of at most
2m ∗ rl at each level l, we have:

dlogrde+1∑

j=0

(4ωm + m) ∗ rj = (4ωm + m)
dr2 − 1

r − 1
.

We add the cost of following the tracking path links,

at most 2m+
∑dlogrde+1

j=1 (2mrj +mrj−1), to this num-
ber. This gives us that the total work of a find is
O(dωrm), linearly proportional to the initial distance
between the evader and the initiator of the find.

The time for a find to reach this level is expressed

by
∑dlogrde+1

j=0 5δmrj = 5δmdr2−1
r−1 , for transmission up

the hierarchy and queries of neighbors at each level.
Following tracking path links after the path is found

takes up to 2δm +
∑dlogrde+1

j=1 (2δmrj + δmrj−1) for a
total time of O(d ∗ δrm).

7 Concurrent move operations

Lemma 7.1 In the absence of faults, there exists a
tracking structure.

Proof. When the evader first enters the system there
is a singleton tracking structure, {i1}, where the evader
is located. Initially the requirements trivially hold.

Now we assume that there exists a tracking struc-
ture and show that, regardless of evader movements
and allowable timing uncertainty, reachability condi-
tions are maintained. For contradiction, assume that
in one state they are and in the next they are not.

Consider first the case where the reachability viola-
tion occurs at a level 1 endpoint. One of two things
must have happened: either the endpoint’s pointer c
is to a hierarchy child and the next structure segment
does not contain a neighbor of that child or the pointer
is to neighbor and the next segment does not contain
a process that neighbors that neighbor. For the first
condition, it takes up to s+δm time for the endpoint’s
pointer to be erased through propagation of shrink ac-
tions. In the meantime, the evader must have moved
from the location of c to a neighboring process. Since
the evader takes at least e time at this new location,
we know that the condition is satisfied. For the second
condition, it takes up to s + δm + sr + 2δm time for a
shrink action to erase c. In the meantime, the evader
must have moved far enough to violate the reachability
condition, which would require it to have travelled at
least 2q − 2m distance and then propagated a shrink
action to the appropriate level 1 process, which takes
at least s + sr time. Given our assumptions on s and
e this is not possible.

Now consider the case where the violation of reach-
ability condition occurs at an endpoint whose level l is
greater than 1. The first case, where a pointer is to a
hierarchy child, is subsumed by the subsequent cases,
since code inspection and Theorem 4.10 reveal that the
pointer here will be updated to the neighbor. Similarly,
we reason that to violate either of the remaining con-
ditions, it must be the case that the evader has moved
far enough to trigger a shrink wave to ultimately clean
the required neighboring pointer, and that the shrink
has managed to progress beyond two levels below the
endpoint in question.

It takes the evader at least e[2qrl−3 −
∑l−4

j=1 2mrj]
time to move out of range of a path segment’s level l−2
pointer. Afterwards it takes at least s +

∑l−3
j=1[2srj] +

srl−2 time to delete the child pointer of the level l − 2
process in this segment.

To violate the reachability condition, we require
this time to be less than the maximum required to
delete the level l pointers in the old path: s + δm +∑l−1

j=1[2srj + δmrj + 2δmrj−1] + srl + 2δmrl−1. How-
ever, algebra reveals that this is not true, and hence
the reachability condition holds.

Theorem 7.2 Consider a trace α of the program that
contains an objecti event. The trace α eventually
reaches a good state.

Proof sketch. In Theorem 7.1 we proved that good
states are closed under move operations. The proof can
be adapted for the case where the tracking structure
is still growing into a complete tracking structure by
noting that the longest a path segment that started to
grow in response to the first objecti event can take to
reach the topmost level is

∑MAX−1
j=0 [grj + δmrj] time

and a complete tracking structure is established.

Lemma 7.3 Consider a path segment (except the
first) in the tracking structure. The preceding segment
in the structure contains a neighbor of the first process.

Proof. Consider the case where a move of dis-
tance d should be extending a segment to level l =
dlogr(d

r−1
q

+ r)e + 1, the highest level that might be
updated after a move of distance d from the leaf of
a straight tracking structure. In the worst case the
prior segment suffers from maximum message delay
when propagating a grow wave to level l, taking up
to

∑l−1
j=0[grj + δmrj] time, before installing the infor-

mation, taking an additional grl time.
If messaging is fast for the new segment, after the

move has completed in time ed, it will only take the

viii

total time for the grow timers to expire through level
l− 1 to reach level l of the hierarchy, taking

∑l−1
j=0 grj .

This time must be more than the amount of time it
would have taken for the old segment described above
to have installed information at level l: ed > grl +∑l−1

j=0 δmrj , which is satisfied by our assumptions.

Theorem 7.4 The tracking service with concurrent
moves is self-stabilizing to a good state.

Proof. Similar to the proof of Theorem 5.2. From
Lemma 5.1, it follows that I is established at all pro-
cesses and the number of initial messages in channels
is reduced to at most 1. Then fake tracking paths are
cleared via start-shrink actions.

After this point, instead of a single path (as in Theo-
rem 5.2), due to object mobility multiple path segments
may start to grow. Note that, since the invariant I is
already established, the reachability condition is sat-
isfied for the newly growing path segments. Thus, a
complete tracking structure, and hence, a good state is
reached eventually.

Theorem 7.5 (Fault-local stabilization) For con-
current moves and perturbation size S the system self-
stabilizes in O(S) work and in O(rL) time where L
denotes the highest perturbed level.

Proof. Similar to the proof of Theorem 5.5. Any
arbitrarily perturbed state can be captured in terms
of mispropagations of a shrink or a grow for each per-
turbed process i. Since in either case i learns the cor-
rect information within, again, at most O(rlvl(i)) time,
we conclude using Lemmas 5.3 & 5.4 that the system
self-stabilizes in O(S) work and in O(rL) time where
L denotes the highest perturbed level.

8 Concurrent find and move operations

Theorem 8.1 A find operation invoked within d dis-
tance of the mobile object intercepts the tracking struc-
ture by level dlogrde + 1 of the hierarchy.

Proof. If the find starts d away from the mobile ob-
ject then by the time it reaches the dlogrde + 1 level,
having spent the maximal roundtrip neighbor messag-
ing time at each level on the way up, taking up to∑dlogrde

j=0 [δmrj + 4δmrj−1] time, there should still be

a pointer at a neighbor (it takes up to 2δmrdlogrde to
get a query to all neighbors). For there to still be a
pointer, it means that the evader has not had time to

cross out of the dlogrde cluster and quickly propagate
a shrink despite the d unit head start it had:∑dlogrde

j=0 [δmrj + 4δmrj−1] + 2δmrdlogrde <

e[qrdlogrde − d] + s + 2
∑dlogrde

j=1 srj .
This is satisfied by our assumptions.

Lemma 8.2 If the find reaches a dead end by follow-
ing a downward child pointer at a level l process i, then
after searching neighbors of i the find will reach a level
l − 1 process j in a neighboring path segment.

Proof. It follows from the reachability condition of
the tracking structure that a newer path is available
at a neighbor of i. Furthermore, the timing conditions
in Lemma 7.1 ensure that in the worst case the newer
path segment is structured as shown in the below fig-
ure. Note that the case where j has a downward child
pointer to a level l− 2 process, say j ′′, is not the worst
case: Lemma 4.9 ensures that by the time j ′′ sends a
shrink message to j, a newly growing path (that of j ′)
would have already connected to j.

i

j’x j

x

The maximum time a find takes in following the
downward pointer at i to the dead end process, query-
ing neighbors there, returning to i, querying neighbors
of i, and following the newer path to j is: 5δmrl−1 +
4δmrl−1 + 4δmrl−2.

For j to remain intact until the find operation
reaches j, we require the shrink time for j ′ to be greater
than the above term: srl−1 > 9δmrl−1 + 4δmrl−2,
which is satisfied by our assumptions.

Lemma 8.3 If the find reaches a dead end by follow-
ing a lateral pointer at level l process i, then after
querying neighbors of the dead end process the find will
reach a level l − 1 process j in a newer path segment.

Proof. The proof is similar to that of Lemma 8.2. It
follows from the reachability condition of the tracking
structure that a newer path is available at a neighbor
of the dead end process. Furthermore, the timing con-
ditions in Lemma 7.1 ensure that in the worst case the
newer path segment is structured as shown below. The
maximum time a find takes in travelling to i′, querying
neighbors of the dead end process i′, and following the
newer path to j is: 5δmrl−1 + 4δmrl−1.

ix

j’j

x

i i’

For j to remain intact until the find operation
reaches j, we require the shrink time for j ′ to be greater
than the above term: srl−1 > 9δmrl−1, which is satis-
fied by our assumptions.

Theorem 8.4 A find operation invoked within d dis-
tance of a mobile object requires O(dωrm) work and
O(dδrm) time to reach the object.

Proof. The cost of the searching phase is the same as

that in Theorem 6.2: (4ωm+m) dr2−1
r−1 . It follows from

Lemmas 8.2 and 8.3 that work performed in the trac-

ing phase is at most
∑dlogrde+1

j=0 (4mrj−1 + 4ωmrj−1 +

5mrj−1 + 4ωmrj−1 + 4ωmrj−2), or O(dωrm).
Similarly, the time for the searching phase is the

same as before: 5δm dr2−1
r−1 . The tracking phase now

has to take into account the possibilities that lem-
mas 8.2 and 8.3 come into play. This time is at most∑dlogrde+1

j=0 (8δmrj−1 +9δmrj−1 +4δmrj−2). This plus
the searching phase results in a total of O(dδrm) time.

The ability of the evader to move during find oper-
ations results in only constant factor differences in the
time and work it would take for a find to reach it.

9 Simulations

In our experiments, we use a grid topology and em-
ploy a static, two-level clustering: the radius of a level
1 cluster is 1, and the radius of the level 2 cluster is r —
hence the grid is 2r-by-2r. The object moves randomly
to any of the 8 (including the diagonals) neighboring
nodes.

Figure 11. Work done with respect to r

Figure 12. Work done with respect to d

x

