
A Virtual Node-Based Tracking Algorithm for Mobile Networks

Tina Nolte and Nancy Lynch
MIT CSAIL

Cambridge, MA 02139

Abstract— We introduce a virtual-node based mobile object
tracking algorithm for mobile sensor networks, VINESTALK.
The algorithm uses the Virtual Stationary Automata program-
ming layer, consisting of mobile clients, virtual timed machines
distributed at known locations in the plane, called virtual
stationary automata (VSAs), and a communication service
connecting VSAs and mobile clients.

VINESTALK maintains a data structure on top of an un-
derlying hierarchical partitioning of the network. In a grid
partitioning, operations to find a mobile object distance d away
take O(d) time and communication to complete. Updates to
the tracking structure after the object has moved a total of d
distance take O(d ∗ log network diameter) amortized time and
communication to complete. The tracked object may relocate
without waiting for VINESTALK to complete updates for prior
moves, and while a find is in progress.
Keywords: Virtual nodes, sensor networks, hierarchical par-
titioning, tracking, distributed data structures.
Technical areas: Algorithms and theory, Wireless and mo-
bile computing, Sensor networks and ubiquitous computing

I. INTRODUCTION

A system with no fixed infrastructure in which mobile
clients may wander in the plane and assist each other in
forwarding messages is called an ad-hoc network. The task
of designing algorithms for constantly changing networks is
difficult. Highly dynamic networks, however, are becoming
increasingly prevalent, especially in the context of pervasive
and ubiquitous computing, and it is therefore important to
develop and use techniques that simplify this task.

In this paper we describe a tracking algorithm for a mobile
sensor network, VINESTALK (VIrtual NodE STALK). To
simplify the implementation, we mask the unpredictable
behavior of mobile nodes by using a virtual infrastruc-
ture, consisting of mobile client automata, timing-aware and
location-aware machines at fixed locations, called Virtual
Stationary Automata (VSAs) [7], [6], that mobile clients
can interact with and use to coordinate their actions, and
a communication service connecting VSAs and clients.

VINESTALK maintains a tracking path over a hierarchical
partitioning of the network, providing low cost find and
move operations. We implement updates to the tracking
structure by means of two local actions, grow and shrink.
A grow enables a path to grow from the new location of the
mobile object to increasingly higher levels of the hierarchy
and connect to the original path. A shrink cleans branches
deserted by the object. Shrinking also starts at the lowest
level and climbs to increasingly higher levels. Despite the
fact that grow and shrink occur concurrently, we complete the

move operation successfully by using suitably-chosen timers
to determine when these actions are performed.

VINESTALK provides good locality guarantees in a grid-
based hierarchy; a move of the object being tracked to dis-
tance d away requires O(d∗ logD) time and communication
(work) to update the tracking structure, where D is the
network diameter. We also describe a find operation using
the tracking structure. A find operation invoked at a process
queries neighboring processes at increasingly higher levels
of the clustering hierarchy until it encounters a process on
the tracking path. Once the path is found, the find operation
follows it to its leaf to reach the mobile object. We show that
a find invoked within distance d of the mobile object requires
O(d) work to reach the object. Furthermore, VINESTALK

achieves seamless tracking of a continuously moving object
by allowing concurrent tracking and finding operations.
Virtual Stationary Automata programming layer. In prior
work [7], [9], [8], we developed a notion of “virtual nodes”
for mobile ad hoc networks. A virtual node is an abstract,
relatively well-behaved active node that is implemented using
less well-behaved real physical nodes. The static infras-
tructure we use in this paper includes fixed, timed virtual
machines with an explicit notion of real time, called Virtual
Stationary Automata (VSAs), distributed at known locations
over the plane [7], [6]. Each VSA represents a predetermined
geographic area and has broadcast capabilities similar to
those of the mobile physical nodes. Many algorithms depend
significantly on timing, and it is reasonable to assume that
many mobile nodes have access to reasonably synchronized
clocks. In the VSA layer, VSAs also have access to virtual
clocks, guaranteed to not drift too far from real time. The
layer provides mobile nodes with a fixed virtual infrastruc-
ture, reminiscent of more traditional and better understood
wired networks, with which to coordinate their actions.

Our VSA layer is emulated by physical mobile nodes in
the network. Each physical node is periodically told its region
by the GPS. A VSA for a particular region is then emulated
by a subset of the mobile nodes in its region: the VSA state
is maintained in the memory of the physical nodes emulating
it, and the physical nodes perform VSA actions on behalf of
the VSA. If no physical nodes are in the region, the VSA
fails; if physical nodes later arrive, the VSA restarts.
Tracking and location management. An algorithm for
tracking on sensor motes, called STALK (Stabilizing Track-
ing viA Layered linKs), was presented in [2]. It also main-
tains a tracking path imposed on an underlying hierarchical
partitioning of the sensor network into clusters.

VINESTALK is a more robust approach, for mobile net-
works, implementing a similar algorithm over a stationary
network of VSAs. The clients (sensor nodes) broadcast
object detections to their associated local VSAs. The tracking
path of STALK is then maintained by the VSAs in the net-
work, rather than directly by the client nodes themselves. The
predetermined locations of the stationary VSAs allow the use
of a static hierarchy of VSA regions, which circumvents the
need for a difficult-to-provide dynamic global clustering of
the clients in the network, as was required in STALK.

In addition to moving tracking path maintenance to repli-
cated VSAs, we generalize the hierarchical clusterings al-
lowed. The cluster definitions assumed for STALK were very
restrictive in terms of the cluster geometries; for example,
they disallowed hierarchical grid clusters such as those
in [14], [1]. Our generalization of the cluster definitions
allows grid clusters, while still guaranteeing time and work
bounds similar to those of the original STALK algorithm.
In generalizing the cluster definitions, we had to augment
the original algorithm to include secondary pointers to the
tracking path, to help guarantee low-work find operations.

Hierarchies have long been used to facilitate design of
efficient and scalable protocols. For example, Awerbuch and
Peleg [4] described distributed directory servers to store loca-
tion information for mobile objects. A hierarchy of regional
directories, based on read/write quorums of stationary nodes,
is constructed so that each level l directory enables a node to
find a mobile object within 2l distance. The communication
cost of a find for an object d away is O(d ∗ log2N) and that
of a move of distance d is O(d∗logD∗logN+log2D/logN)
(where N is the number of nodes and D is network diam-
eter). However, a topology change, such as a node failure,
necessitates a global reset of the system since the regional
directories depend on a non-local clustering program [3] that
constructs a sparse cover of a graph.

The Grid location service (GLS) [14] maps each tracked
client id to geographic coordinates where clients in the
area are responsible for saving the tracked client’s location.
However, it suffers from the “dithering problem”, as does the
distributed Arrow protocol [12], wherein an object moving
back and forth across a multi-level hierarchy boundary may
lead to nonlocal updates. The Locality-aware Location Ser-
vice (LLS) [1] is based on a grid hierarchy of lattice points for
tracked clients, published with locations of associated nodes.
Lattice points can be queried for the desired location, with
a query traversing a spiral path of lattice nodes increasingly
distant from the source until it reaches the destination. The
protocols in [5] do not exploit the hierarchy idea and are
not scalable for large networks. In [11], using a hierarchy of
location servers, a stabilizing location management protocol
is presented, but does not ensure locality of finds.

II. MODEL ASSUMPTIONS

A. Network tiling

The deployment space is assumed to be a fixed, closed,
and bounded connected region of the 2-D plane, divided into
known connected regions, with unique ids drawn from an

ordered set of region identifiers, U . Each region contains
its boundaries, and the only overlap of points permitted at
distinct regions is at their shared boundaries. For simplicity
a boundary point’s region is the one with minimum id.

We define a relation nbr, on ids from U , such that two
regions are neighboring iff they share any boundary points.

We define the distance between regions u and v to be the
length of the shortest path between u and v in the neighbor
graph induced by the nbr relation. The network diameter,
D, is the maximum distance between any two regions.

B. Cluster hierarchy

The regions are organized into a cluster hierarchy, ex-
pressed as a four-tuple (C, L, cluster : (U × L) → C, h :
C → U), where a cluster is a connected set of regions:

• C is a set of cluster ids,
• L is a set of levels {0, . . . , MAX}, MAX > 0,
• Total, onto function cluster maps a region u and level

l to the name of the level l cluster containing u,
• Total function h maps a cluster id to the name of the

region that is the head of that cluster.
The following are derived terminology for c, c′ ∈ C, l ∈ L:

• level(c) = l ⇔ ∃u ∈ U : cluster(u, l) = c,
• Cluster c’s member regions:

members(c) = {u ∈ U |cluster(u, level(c)) = c},
• Neighboring clusters at c’s level:

nbrs(c) = {c′ ∈ C|c �= c′∧ level(c) = level(c′)∧∃u ∈
members(c), v ∈ members(c′) : nbr(u, v)},

• Cluster children: children(c) = {c′ ∈ C|level(c′) =
level(c)− 1 ∧members(c′) ⊆ members(c)},

• parent(c) = c′ ⇔ c ∈ children(c′).
We require that:

1) Each cluster belongs to exactly one level.
2) There is exactly one level MAX cluster.
3) Each region is the only member of its level 0 cluster.
4) Distinct clusters at the same level don’t overlap.
5) Any members of the same level l cluster, l �= MAX ,

are members of the same level l + 1 cluster.
6) The head, h(c), of a cluster c is a member of c.

We make several geometry assumptions about the clustering,
given functions n, p, q, ω, each from L to Nat≥0:

1) (Proximity): Consider any sequence of clusters
{cl, cl−1, · · · , ck}, 0 ≤ k ≤ l ≤ MAX , such
that level(cl) = l and for each cj,j �=l, level(cj) =
j and ∃c ∈ {cj} ∪ nbrs(cj) : members(c) ⊆
members(cj+1). Then for any region v neighboring
a region in ck, cluster(v, l) ∈ {cl} ∪ nbrs(cl).

2) A cluster at level l has at most ω(l) neighbors.
3) Any member of a level l cluster, l �= MAX , is at most

n(l) distance from any member of a cluster neighbor.
4) Any member of a level l cluster, l �= MAX , is at most

p(l) distance from any member of its level l+1 cluster.
5) Any region up to q(l) distance from a region in a level

l cluster is either in that cluster or one of its neighbors.
Notice that q(0) = 1 and q(l) ≤ n(l) for all l ∈ L. Also,
for any level l + 1 cluster c, any neighbors of neighbors of

level l clusters contained in c are either contained in c or a
neighbor. This, in turn, implies that 2q(l − 1) ≤ q(l).

We also assume the following relationships. While these
conditions are not implied for each selection of n, p, q, for a
clustering satisfying our earlier conditions, there exist n, p, q
(namely the tight ones) that describe the geometries of the
clustering while satisfying these enumerated assumptions:

1) n(l) ≤ n(l + 1)
2) p(l) ≤ p(l + 1)
3) p(l) ≤ n(l + 1)

Example: Grid hierarchy: One hierarchy is a base r grid,
where regions of size 1 are partitioned into r×r square level
1 clusters, which are themselves partitioned into square level
2 clusters, etc. Squares that share edges or are diagonal from
one another, sharing a single border point, are neighbors. Any
region in a cluster can be the clusterhead.

It is easy to verify that this satisfies the proximity re-
quirement, and that we can describe MAX, n, p, q, ω as
follows: (1) MAX = �logr(D +1)�, (2) n(l) = 2rl−1, (3)
p(l) = rl+1 − 1, (4) q(l) = rl, and (5) ω(l) = 8.

C. Virtual Stationary Automata layer with C-gcast

We describe the VSA layer components. Figure 1 depicts
the VSA layer, together with cluster geocast (Section II-C.3).

1) Client nodes: For each p in the set of physical node
identifiers P , we assume a mobile timed I/O automaton [13]
client Cp, with access to an accurate local clock, now. A
GPSupdate(u)p happens at a client Cp whenever it enters
the system or changes region, indicating to the client the
region u where it is currently located.

Each client Cp has access to a communication service
C-gcast, allowing it to communicate with its region’s VSA
through cTOBsend(m, clust(u, 0))p and cTOBrcv(m)p.

Clients are susceptible to stopping failures. After a stop-
ping failure, a client performs no additional local steps until
restarted. If restarted, it starts again from an initial state.

Additional arbitrary external interface actions and local
state used by algorithms running at the client are allowed.
For simplicity we assume that local steps take no time.

2) Virtual Stationary Automata (VSAs): An abstract VSA
is a clock-equipped virtual machine that may be emulated
by the physical mobile nodes in its region in the network (a
self-stabilizing implementation of VSAs using a GPS oracle
and the physical mobile nodes in the system can be found in
[7], [6]). For each region u, we formally describe a VSA for
the region as a timed I/O automaton Vu, with access to an
accurate local clock, now. In the context of our clustering
hierarchy, a VSA Vu is a union of subautomata Vu,l, for
levels l where h(cluster(u, l)) = u, corresponding to one
submachine per cluster its region is head of (hosting).

To emulate a VSA using physical nodes, its interface must
be emulatable by them. Hence, a VSA’s external interface is
restricted to only stopping failure, restarts, and the ability to
send and receive messages through C-gcast. Since a VSA is
emulated by physical nodes (corresponding to clients) in its
region, its failures are defined in terms of clients: a clientless
region’s VSA is failed, a VSA only fails if clients fail or leave

.

.

.

.

.

.

.

.

.

.

.

.

Cp

Cq

GPSupdate(u)p

GPS

GPSupdate(v)q

Vu

Vv

Vu,l

Vu,l′

Vv,l

Vv,l′

C-gcast

cTOBsend(m, clust)p

cTOBsend(m, clust′)q

cTOBsend(m, c′)u,l

cTOBrcv(m)u,l

cTOBsend(m, c′)u,l′

cTOBrcv(m)u,l′

cTOBsend(m, c′)v,l

cTOBrcv(m)v,l

cTOBsend(m, c′)v,l′

cTOBrcv(m)v,l′

cTOBrcv(m)p

cTOBrcv(m)q

Fig. 1. Virtual Stationary Automata layer and C-gcast.

its region, and a failed VSA restarts if its region has some
clients that don’t fail/leave for some trestart time.

3) Cluster geocast service (C-gcast): We assume a cluster
geocast service, allowing: (a) a VSA at a region u hosting
a level l cluster to send a message m to local clients or a
VSA hosting a cluster c′ via a cTOBsend(m, c′)u,l action,
or (b) a client to send a message to the level 0 VSA in
its region or a neighboring one using a similar action. A
message is received via a cTOBrcv(m)u,l action. We assume
that a received message was previously sent.

If no VSAs are failed over the broadcast period, a message
sent will be received at exactly the following amounts of time
later (δ and e are explained in “Preliminaries” below):
(a) level l cluster to neighboring cluster: (δ + e)n(l),
(b) level l cluster to parent cluster, or level l + 1 cluster to
a child cluster: (δ + e)p(l),
(c) level l cluster to a neighbor of a neighbor: (δ + e)2n(l),
(d) level 0 cluster to own or neighbor region clients: δ + e,
(e) client to its current or neighboring region’s cluster: δ.
Preliminaries: The VSA layer in [7], [6] includes clients
and VSAs as described here, and a reliable local broad-
cast service, V-bcast, instead of C-gcast. V-bcast allows
communication between clients and VSAs in the same or
neighboring regions with message delay δ, the max delay of
the underlying physical nodes’ broadcast service. Physical
node emulation of VSAs also leads to a requirement that the
supremum distance between points in neighboring regions be
at most the broadcast radius of the physical nodes. Also, the
abstraction reflects that, due to failures or message delays, a
VSA emulation might be behind real time, appearing to be
delayed in performing outputs by up to some time e.

Afterwards, a communication service for non-neighboring
VSAs was built in [10]: a DFS-based algorithm over V-bcast
provided reliable bounded-delay geocast between VSAs. Our
C-gcast is implemented by sending a cluster’s messages,
tagged with cluster information, to the cluster’s VSA via this
service, and delaying processing of received messages until

the above described amounts of time (which account for δ
and e terms imposed by the VSA layer) have transpired.

III. PROBLEM STATEMENT

We describe the specification for the system and the
structure of a solution using the VSA layer.

A. Tracking service specification

The mobile object tracking problem, for a system with
a mobile object and clients with a mobile object detector,
requires that queries to clients for the mobile object’s region
eventually produce responses at the object’s region.
Mobile object. The mobile object being tracked, Evader,
resides at exactly one region, and can nondeterministically
move to a neighboring region. It is modeled with the GPS
service; we assume the GPS service is augmented to provide
a move input to a client exactly when the evader enters its
region, and a left when the evader leaves.
Clients. In addition to the capabilities described in the
system model, clients receive move, left inputs, as above.
They also receive find inputs from the outside (queries for
evader region) and output founds (at a current evader region).
Tracking service. The tracking service is a composition of
the GPS service (modeling the mobile object) and clients
such that an execution starting from an initial state with no
mobile object detections and no outstanding find requests,
where the first move input precedes the first find, and there
is at least one alive client in a region whenever the mobile
object enters or leaves it, satisfies the following:

1. A find is eventually followed by a found,
2. Each found occurs in a region hosting the mobile object,

and is in response to a prior find.

B. Implementation using the VSA layer

Our tracking service implementation, VINESTALK, de-
scribed in the next two sections, is built on the VSA layer.
For each region u, VSA Vu runs a Trackeru,l subautomaton
for each level l cluster the region heads. (We refer to
Trackeru,l as process clust, where clust = cluster(u, l).)

The VSAs maintain a tracking structure by propagating
mobile object information obtained through client broadcasts
of object detections, and use this structure to help clients
answer find queries. We show that, assuming each VSA is
always alive, VINESTALK implements the tracking service
with the following work/time complexity on a grid:

1. A find initiated distance d from the mobile object takes
O(d) time and work (communication) to service,

2. If the object moves d distance, the amortized time and
work to update the tracking structure is O(d ∗ log(D)).

IV. VINESTALK: ATOMIC MOVE OPERATIONS

Here we describe VINESTALK, assuming that the mobile
object does not relocate until the updates are completed.

A. Client algorithm

Any client that receives a move input, indicating the
evader has just arrived in the region, sends a grow message
to its local level 0 cluster. A client receiving a left sends a
shrink message to its level 0 cluster. Since this implemen-
tation is so simple, we do not include the code for it.

B. VSA algorithm

The Trackers together maintain a tracking path, rooted at
the level MAX cluster, with pointers to successively lower
levels of the hierarchy, and terminating at the mobile object’s
region. When a client grow or shrink message about an
evader move is received at a VSA, it triggers updates to the
tracking path. Updates to the tracking path are implemented
by two local actions, grow and shrink. The grow action
enables a new path to grow to increasingly higher levels of
the clustering hierarchy and connect to the original path at
some level. The shrink action cleans old branches deserted
by the mobile object starting from the lowest levels.

A hierarchical partitioning of a network results in multi-
level cluster boundaries: two neighboring regions might be
contained in different clusters at all levels (except the top) of
the hierarchy. If a process were to always propagate grows
and shrinks to its clusterhead, a small movement of the object
back and forth across a multi-level boundary could result in
work proportional to network size. To resolve this “dithering”
problem, but still guarantee locality of finds, we allow up to
one lateral link per level in our tracking path. A process
occasionally connects to the path with a lateral link to a
neighboring process rather than a link to its hierarchy parent.

Secondary tracking pointers, indicating if a neighbor is
on the tracking path, are also maintained. When a process
joins the path, it checks its secondary pointers to determine
whether its path parent should be a neighbor on the path or
its hierarchy parent. It then informs its neighbors and path
parent of its addition and whether it connected via a lateral
link. Neighbors store this data in a secondary pointer.

Grows and shrinks are explained below, with TIOA-style
code for Trackeru,lvl, or cluster process clust, in Figure
2. Each process has a child pointer c, a parent pointer p,
secondary tracking pointers nbrptup and nbrptdown, and a
timer. Initially, pointers are ⊥ and timers=∞. We assume
grow and shrink timers g, s : L−{MAX} → R that satisfy:

l∑

j=0

[s(j)− g(j)] > (δ + e)n(l) (1)

1) Grow action at Trackeru,l (process clust): A grow
updates a path to point to the new location of the object.

If process clust receives a grow, its c gets set to the
sender’s cluster. If p �= ⊥ or level(clust) = MAX , the
grow is done since clust is already on the tracking path.
Otherwise, timer← now + g(l), scheduling a grow.

When timer expires, if c �= ⊥ still, meaning a shrink did
not remove the pointer, and p = ⊥, then a grow is sent to
extend the tracking path. If nbrptup �= ⊥, meaning nbrptup
is a neighbor on the tracking path not connected by a lateral

Signature:
2 Input cTOBrcv(〈m, v〉)u,lvl, v ∈ C, m ∈ {grow,growNbr,

growPar,shrink,shrinkUpd,find,findQuery,findAck}
4 Output cTOBsend(〈m, clust〉, v)u,lvl, v ∈ parent(clust)∪

nbrs(clust), m ∈ {grow, growNbr, growPar, shrink,
6 shrinkUpd, find, findQuery, found}

8 State variables:
c ∈ children(clust) ∪ nbrs(clust) ∪ {clust, ⊥}, initially ⊥

10 p ∈ nbrs(clust) ∪ {parent(clust), ⊥}, initially ⊥
nbrptup, nbrptdown ∈ nbrs(clust) ∪ {⊥}, initially ⊥

12 sendq ∈ C × {growNbr, growPar, shrinkUpd, find,
findQuery}, initially ∅

14 timer ∈ R, a timer, initially ∞
analog now ∈ R, clock indicating current time

16

Move-related actions:
18 Output cTOBsend(〈m, clust〉, dest)u,lvl

Precondition
20 〈dest, m〉 ∈ sendq

Effect
22 sendq ← sendq -{〈dest, m〉}

24 Input cTOBrcv(〈grow, cid〉)u,lvl

Effect
26 if c = p = ⊥∧ lvl
= MAX then

timer ← now + g(lvl)
28 c ← cid

30 Output cTOBsend(〈grow, clust〉, par)u,lvl
Precondition

32 now = timer ∧ c
= ⊥∧ p = ⊥
par = nbrptup
= ⊥∨ (par = parent(clust) ∧ nbrptup = ⊥)

34 Effect
p ← par

36 if par = nbrptup then
for each b ∈ nbrs(clust)

38 sendq ← sendq ∪ {〈b, growNbr〉}
else for each b ∈ nbrs(clust)

40 sendq ← sendq ∪ {〈b, growPar〉}

42 Input cTOBrcv(〈growPar, cid〉)u,lvl

Effect
44 nbrptup ← cid

46 Input cTOBrcv(〈growNbr, cid〉)u,lvl

Effect
48 nbrptdown ← cid

50 Input cTOBrcv(〈shrink, cid〉)u,lvl

Effect
52 if c = cid then

c ← ⊥
54 if lvl
= MAX then

timer ← now + s(lvl)
56

Output cTOBsend(〈shrink, clust〉, p)u,lvl

58 Precondition
now = timer ∧ c = ⊥ ∧ p
= ⊥

60 Effect
p ← ⊥

62 for each b ∈ nbrs(clust)
sendq ← sendq ∪ {〈b, shrinkUpd〉}

64

Input cTOBrcv(〈shrinkUpd, cid〉)u,lvl
66 Effect

if nbrptup = cid then
68 nbrptup ← ⊥

if nbrptdown = cid then
70 nbrptdown ← ⊥

72Additional find-related Signature:
Output cTOBsend(〈findAck, u′〉, v)u,lvl, u′,v ∈ C

74cTOBsend(〈found, clust〉, clust)u,lvl

Internal findQueryu,lvl

76

Additional find-related State variables:
78nbrtimeout ∈ R, a timer, initially ∞

findAckq ⊆ C × C, initially ∅
80finding ∈ Boolean, initially false

82Additional find-related actions:
Output cTOBsend(〈findAck, x〉, dest)u,lvl

84Precondition
〈dest, x〉∈ findAckq

86Effect
findAckq ← findAckq -{〈dest, x〉}

88

Input cTOBrcv(〈find, cid〉)u,lvl

90Effect
finding ← true

92nbrtimeout ← ∞

94Output cTOBsend(〈found, clust〉, clust)u,lvl
Precondition

96finding ∧ c = clust
Effect

98for each j ∈ nbrs(clust)
sendq ← sendq ∪ {〈j, found〉}

100finding ← false

102Internal findqueryu,lvl

Precondition
104finding ∧ c= nbrptdown= ⊥ ∧ nbrptup ∈ {⊥, p}

nbrtimeout > now + 2(δ+e)n(lvl)
106Effect

nbrtimeout ← now + 2(δ+e)n(lvl)
108for each j ∈ nbrs(clust)-{p}

sendq ← sendq ∪ {〈j, findQuery〉}
110

Input cTOBrcv(〈findQuery, cid〉)u,lvl

112Effect
if c
= ⊥ then

114findAckq ← findAckq ∪ {〈cid, c〉}
else if nbrptdown
= ⊥ then

116findAckq ← findAckq ∪ {〈cid, nbrptdown〉}
else if nbrptup
= ⊥ then

118findAckq ← findAckq ∪ {〈cid, nbrptup〉}

120Input cTOBrcv(〈findAck, dest〉)u,lvl

Effect
122if finding ∧ dest
= clust ∧ c= nbrptdown= ⊥ ∧ nbrptup ∈ {⊥, p}

then
124sendq ← sendq ∪ {〈dest, find〉}

finding ← false
126

Output cTOBsend(〈find, clust〉, dest)u,lvl

128Precondition
finding∧ dest/∈ {clust, ⊥}∧ [c = dest∨ (c = ⊥∧ dest = nbrptdown)

130∨ (c= nbrptdown= ⊥∧ (dest= nbrptup
= p∨ (nbrtimeout≤ now
∧ [(dest= parent(clust)∧ nbrptup= ⊥) ∨ dest = nbprtup])))]

132Effect
finding ← false

134

Trajectories
136Evolves

d(now) = 1
138All other variables constant.

Stops when
140Any precondition is satisfied.

Fig. 2. Trackeru,lvl, where clust = cluster(u, lvl) and h(clust) = u.

link, then p ← nbrptup (inserting a lateral link), the grow
is sent to p, and growNbr is sent to neighboring clusters.
Otherwise, p ← parent(clust), the grow is sent up to p,
and growPar is sent to neighbors.

Neighbors that receive a growNbr from clust set their
nbrptdown pointers to clust, indicating clust is connected
to the tracking path via a lateral link. Neighbors that receive
a growPar set their nbrptup pointers, indicating clust is
connected to the tracking path via its hierarchy parent.

2) Shrink action at Trackeru,l: A shrink cleans old, de-
serted branches of the tracking path.

If clust receives a shrink from some clust′, it checks if
c = clust′ (c might not point to clust′; it may have been
updated to a process on a newer path). If c = clust′ then
clust removes itself from the path by setting c← ⊥ and, if
p �= ⊥, sets timer← now + s(l), scheduling a shrink to be
sent to its tracking path parent p. Otherwise, if c �= clust′,
clust ignores the message, ensuring that shrinks clean only
deadwood and not the entire tracking path.

When timer expires, if c = ⊥ still, meaning no new path
connected at clust while timer was counting down, clust
sends a shrink to p and sets p← ⊥. It also sends each of its
neighbors a shrinkUpd. A neighbor receiving the shrinkUpd
erases its nbrptdown or nbrptup pointer if it is set to clust,
removing the defunct secondary tracking pointer.

C. Correctness

We assume executions start in an initial state with no
mobile object moves and no outstanding finds, the first
move precedes the first find, and there is at least one alive
client in a region whenever the object enters or leaves it. We
also assume each VSA is alive throughout the execution.

1) Terminology: We start with some useful terminology:
• A move(c0) occurs when move inputs occur at clients in
a region u where c0 = cluster(u, 0).
•A path segment {cx, cx−1, . . . , c0} is a cluster sequence s.t.:

1) If level(cx) = MAX , then cx.p = ⊥ and cx.c ∈
children(cx) ∪ {⊥},

2) For each k ∈ {x, . . . , 1}, ck.c = ck−1 ∧ (ck.c).p = ck,
3) For each k ∈ {x, . . . , 0}, if ck.p ∈ nbrs(ck), then:

a) If k �= 0 ∨ level(ck) > 0, then ck.c ∈
children(ck) ∪ {⊥},

b) If k = 0 ∧ level(ck) = 0, then ck.c ∈ {⊥, ck},
4) For each k ∈ {x, . . . , 0}, if ck.p = parent(ck), then:

a) If k �= 0 ∨ level(ck) > 0, then ck.c ∈
children(ck) ∪ nbrs(ck) ∪ {⊥},

b) If k = 0∧ level(ck) = 0, then ck.c ∈ nbrs(ck)∪
{⊥, ck}.

• A tracking path {cx, cx−1, . . . , c0} is a path segment s.t.:
1) level(cx) = MAX ,
2) Evader is in region u where c0 = c0.c = cluster(u, 0).
• A consistent state is a state where:

1) One tracking path {cx, cx−1, . . . , c0} exists,
2) For each ck not in the tracking path, ck.c = ⊥ = ck.p,
3) For each ck, cn, ck.nbrptup = cn �= ⊥ ⇔ cn ∈

nbrs(ck) ∧ cn.p = parent(cn),

4) For each ck, cn, ck.nbrptdown = cn �= ⊥ ⇔ cn ∈
nbrs(ck) ∧ cn.p ∈ nbrs(cn),

5) There are no grow, growPar, growNbr, shrink,
shrinkUpd messages in transit or queued.

• The level of a grow is defined as level(m), for process
m such that m.c �= ⊥, m.p = ⊥, and level(m) < MAX ,
or such that a grow message is in transit to m. If no such
m exists, we say the grow is done. We define the level of a
shrink in a similar manner, with m.c = ⊥ and m.p �= ⊥.
• A path segment {cx, cx−1, . . . , c0} is a vertical growth to
cx if for each k ∈ {x− 1, . . . , 0}, ck.p = parent(ck).
• Function init maps any level 0 cluster c0 to a consistent
state with a tracking path terminating in c0 that is a vertical
growth to level MAX .
• Function atomicMove maps a consistent state with track-
ing path {cx, cx−1, . . . , c0} and a new level 0 cluster location
c′0 ∈ nbrs(c0) to a new consistent state with tracking path
{c′x′ , c′x′−1, . . . , c

′
0} such that there exists an index j where:

1) The old and new path share a prefix up to cj :
{c′x′ , . . . , c′0} = {cx, . . . , cj} · {c′j′ , . . . , c′0},

2) {c′j′ , · · · , c′0} and {cj−1, · · · , c0} share no elements,
3) Path segment {c′j′ , . . . , c′0} is a vertical growth to c′j′ ,
4) No cluster in {c′j′ , . . . , c′0} neighbors a cluster ck in
{cj−1, . . . , c0} such that ck.p = parent(ck).

Since c′0 ∈ nbrs(c0), our clustering assumptions imply
each cluster below level(cj) in {c′j′ , . . . , c′0} neighbors some
cluster in segment {cj−1, . . . , c0} such that ck.p ∈ nbrs(ck).
• Derived function atomicMoveSeq maps a sequence of
level 0 clusters {c0, c1, · · · , cx} to the consistent state that
is the result of starting with consistent state init(c0), applying
atomicMove to the result together with location c1, applying
atomicMove to that result together with c2, and so on.

2) Proof sketches: Code examination allows us to easily
show the following two lemmas:

Lemma 4.1: The number of grow messages from clusters
in transit plus |{clust ∈ C|clust.c �= ⊥ ∧ clust.p =
⊥ ∧ level(clust) �= MAX}| ≤ 1. Similarly, the number
of shrink messages in transit plus |{clust ∈ C|clust.c =
⊥ ∧ clust.p �= ⊥ ∧ level(clust) �= MAX}| ≤ 1.

Lemma 4.2: A grow message is sent laterally at most
once per level per move.

We then show the following lemma, which captures the
key to the argument that a grow is never affected by a shrink:

Lemma 4.3: If a grow is in transit from process clust to a
neighboring process clust′, then clust′.p = parent(clust′).
Proof sketch: For contradiction, assume that there is some
execution where a grow is forwarded between an clust
and clust′ as in the lemma statement, but clust′.p �=
parent(clust′). Consider the lowest level l in the execution
where this happens. By Lemma 4.2, this grow is the only
one forwarded between neighbors at this level. Also, no
growPar messages could have been sent at this level for this
grow (or the grow would have been forwarded to a hierarchy
parent instead of a neighbor). Since we had a consistent state
before the move, clust′.p must have been parent(clust′). If
clust′.p �= parent(clust′) now, a shrink arrived at clust′

and erased clust′.p. A shrink is forwarded from level 0 and
takes at least

∑l−1
j=0[s(j) + (δ + e)p(j)] + s(l) time to be

forwarded to level l and complete at process clust′.
Since clust′.p �= parent(clust′), the time for a grow to be

propagated from level 0 to process clust, have clust.timer
expire, and deliver a grow at clust′ must be more than
the shrink time above. If the grow is forwarded only to
cluster parents in levels below l, the grow time would be
at most

∑l−1
j=0[g(j) + (δ + e)p(j)] + g(l) + (δ + e)n(l).

By (1), this is less than the shrink total, so the grow must
also have been propagated between neighbors cl and cl′ at
some level below l. The grow reached level l, so it must not
have terminated at cl′, implying cl′.p was ⊥ when the grow
arrived, contradicting that l was the lowest level where this
could happen.

Using the above lemma, the following is easy to show:
Lemma 4.4: Consider a state with a process clust where

c = ⊥, p �= ⊥, and timer = now. Either the grow is done
or the level of the grow is greater than level(clust) and no
grow-related messages are in transit at level(clust).

Inspection reveals shrinks and grows to be weakly increas-
ing in level. Shrinks are slower than grows, and there are a
finite number of pointers per level, so we can show:

Theorem 4.5: Updates terminate after a move.
To show VINESTALK implements a tracking service, we

define function lookAhead that takes a state of VINESTALK

and produces a new system state (Figure 3), the “future
state”, where outstanding grow-related updates have been
applied, followed by the shrink-related ones. We then show
that future state equals atomicMove’s consistent state.

As a first step, we note that lookAhead after the first
move returns the same result as init at that region:

Lemma 4.6: From an initial state, apply a move(c0) input
to get state s′. lookAhead(s′) = init(c0).

Now we show that lookAhead applied immediately after
a move equals the consistent state of atomicMove:

Lemma 4.7: Consider the state s′ that results from a
move(c′0) input on a consistent state s with tracking path
{cx, cx−1, . . . , c0}, where c′0 ∈ nbrs(c0). lookAhead(s′) =
atomicMove(s, c′0).
Proof sketch: lookAhead(s) = s, since a consistent state
has no messages in transit and has no grow or shrink related
actions enabled. When a move occurs, grow and shrink
messages are put in transit to level 0 clusters, but no other
changes are made to the state, and no other messages are
in transit. Inspection of lookAhead shows that in this case,
the function returns a consistent state (old pointers and their
neighbors’ pointers to them are removed after the new grow
pointers are added and propagated to neighbors, and the grow
and shrink messages are removed from channels).

The grow in lookAhead is propagated to parents in the
hierarchy until a p �= ⊥ or nbrptup is encountered or level
MAX is reached. By definition of a consistent state, a
nbrptup �= ⊥ will be encountered iff that neighbor has p
to its own parent. Hence, lookAhead has the grow travel
vertically, setting c, p, and nbrptup pointers, until it reaches

function lookAhead(s: system state): system state :=
for each growNbr in transit, from a process clust to clust′

clust′.nbrptdown ← clust
Remove growNbr from message channel

for each growPar in transit, from a process clust to clust′
clust′.nbrptup ← clust
Remove growPar from message channel

for each grow in transit, from a process clust to clust′
clust′.c ← clust
Remove grow from message channel

clust ← process cl where cl.c
= ⊥ ∧ cl.p = ⊥
while clust.p = ⊥∧ level(clust)
= MAX %Propagate grow

if clust.nbrptup
= ⊥ then
clust.p ← clust.nbrptup
for each clust′ ∈ nbrs(clust)

clust′.nbrptdown ← clust
if clust.nbrptup = ⊥ then

clust.p ← parent(clust)
for each clust′ ∈ nbrs(clust)

clust′.nbrptup ← clust
(clust.p).c ← clust
clust ← clust.p

for each shrinkUpd in transit, from a process clust to clust′
if clust′.nbrptup = clust then

clust′.nbrptup ← ⊥
if clust′.nbrptdown = clust then

clust′.nbrptdown ← ⊥
Remove shrinkUpd from message channel

for each shrink in transit, from a process clust to clust′
if clust′.c = clust then

clust′.c ← ⊥
Remove shrink from message channel

clust ← process cl where cl.c = ⊥ ∧ cl.p
= ⊥
while clust.p
= ⊥∧ level(clust)
= MAX %Propagate shrink

for each clust′ ∈ nbrs(clust)
if clust′.nbrptup = clust then

clust′.nbrptup ← ⊥
if clust′.nbrptdown = clust then

clust′.nbrptdown ← ⊥
if (clust.p).c = clust then

clust ← clust.p
(clust.c).p, clust.c ← ⊥

else clust.p ← ⊥
return(s)

Fig. 3. lookAhead function.

a cluster in the old tracking path or neighboring one in the
old tracking path that has its p set to its parent, just as in
atomicMove. In this case, lookAhead would set p to that
neighbor, update corresponding nbrptdown pointers, and be
done with the grow, just as in atomicMove. lookAhead will
then remove pointers and neighbors’ pointers bottom up from
the old tracking path until it encounters a place where the c
pointer is different, just as in atomicMove. Since it arrives
at the same tracking path as in atomicMove and the system
state is consistent, lookAhead(s′) = atomicMove(s, c′0).

Correctness of VINESTALK follows from this theorem:
Theorem 4.8: Given an execution fragment starting at

an initial state, ending at some state s, and experiencing
the evader move sequence {c0, c1, · · · , cx}, where for each
k ∈ {1, ldotsx} : ck ∈ nbrs(ck−1), the following holds:
lookAhead(s) = atomicMoveSeq({c0, c1, · · · , cx}).
Proof sketch: By induction on executions. Initially this
holds since no pointers are set in the system and none are set
in the atomicMove object. Next, assume this holds for the
execution up to s, and show it still holds at s′ after any action

occurs. If the action is a move, then the relationship holds
by Lemmas 4.6 and 4.7, and by the induction hypothesis.

For non-move actions, we must show lookAhead(s) =
lookAhead(s′). We include the most interesting cases here:
• cTOBsend(〈grow, clust〉, par)u,lvl: For this to be sent,
c �= ⊥ and p = ⊥, and lookAhead(s) would have started by
delivering any outstanding grow update messages and then
simulating effects of this action. The only update message
that could affect the outcome of this action is growPar,
which is only sent by a process forwarding the grow to a
hierarchy parent, meaning it could not be outstanding. Hence,
lookAhead(s′) would set p and neighbor pointers based on
the same values as before, and the result would not change.
• cTOBrcv(〈shrink, cid〉)u,lvl: This message must have
been in the channel in s and accounted for in lookAhead(s).
The only way for lookAhead to differ now is if the cor-
responding grow was to have changed c from cid, or if c
was something else and was going to be changed to cid. In
the first case, lookAhead(s′) will calculate the result based
on grows being first again, and the value of c will still be
updated to the new value from the grow, and the shrink will
not be further propagated, as in s. In the second case, c must
have changed since the move due to receipt of a grow, and
either lvl = MAX or p �= ⊥, since the move started from
a consistent state and the shrink just arrived (a grow never
changes p unless it was ⊥, and a shrink is only passed along
non-⊥ ps). This implies the grow terminated upon arrival,
and will not update c back to cid.
• cTOBsend(〈shrink, clust〉, p)u,lvl: lookAhead(s) ac-
counted for this shrink since timer was running. By Lemma
4.4, the associated grow is either done or at a higher level,
and no messages related to it are still in transit at this level,
so the state of this process will not be changed due to
a grow. Hence, lookAhead(s′) will simulate finishing the
grows, which won’t change since they are at a higher level,
then simulate the receipt of the new shrinkUpd and shrink
messages, whose effects were modeled in lookAhead(s).

D. Work

To prove work claims, we use the fact that a new path
segment connects to the old path at the first process that is
an iterated cluster of the new object region, or a neighbor of
such a cluster that is not connected via a lateral link:

Theorem 4.9 (Work): Updates for mobile object moves to
a total distance d away take amortized work and time:

O(d[ω(0) +
MAX∑

j=1

n(j)(1 + ω(j))
q(j − 1)

]), and

O(d[s(0) +
MAX∑

j=1

s(j) + (δ + e)n(j)
q(j − 1)

]).

Proof sketch: By our clustering, a level 0 pointer is updated
as often as every step. A level 1 pointer is updated as often
as every two steps. A level l pointer, l ≥ 2, is updated as
often as every q(l − 1) steps, since a level l pointer is only
updated after a non-neighboring level l−1 cluster is reached.

For l ≥ 1, O(p(l− 1)) cost is incurred every time a level
l pointer is updated (for shrink and grow propagation from
level l−1). This can result in O(ω(l)n(l)) communication to
update neighbors and propagate a shrink between neighbors.
Since p(l−1) ≤ n(l), the worst case amortized cost is then:
O(d[ω(0) + p(0) + n(1)ω(1) +

∑MAX
j=2

p(j−1)+n(j)ω(j)
q(j−1)]).

The shrink takes longer than the grow by Lemma 4.4. If
a level l pointer is updated, this could be associated with a
shrink arriving from level l−1 (taking (δ +e)p(l−1) time),
a shrink through two neighbors at level l (taking 2s(l) +
(δ + e)n(l) time), and then a shrink update to neighbors
at the level. Using similar computations to those above,
the worst case amortized time for a move is: O(d[s(0) +∑MAX

j=1
s(j)+(δ+e)(p(j−1)+n(j))

q(j−1)]).

As a corollary, in the grid hierarchy under the assumption
that s(l) = srl for some constant s, the amortized work and
time is O(dr logr D) and O(dr(s + δ + e) logr D).

V. VINESTALK: ATOMIC FIND OPERATIONS

Here we describe finds, assuming find operations are
executed in consistent states.

If a client receives a find input, it informs its region’s VSA
with a find broadcast. The level 0 process at the VSA starts
servicing the find once it receives the message.

A find over VSAs consists of two phases: searching and
tracing. Searching queries neighboring processes at increas-
ing levels of the hierarchy until a tracking path is found.
Tracing follows pointers in the path to the mobile object.

Each Trackeru,l maintains a flag finding, indicating if it is
currently engaged in a find, and a nbrtimeout timer.

If a find message is received and c = ⊥, then clust is in
the search phase. If nbrptdown �= ⊥, then clust forwards
find to nbrptdown. If nbrptdown = ⊥ but nbrptup �= ⊥,
then clust forwards the find to nbrptup. (In these cases,
clust is forwarding the find along secondary pointers to the
tracking path.) If nbrptup = nbrptdown = ⊥, clust has
neither primary nor secondary pointers to the tracking path.
Hence, clust sends a findQuery message to its neighbors,
and sets nbrtimeout to the roundtrip neighbor communi-
cation time. Neighbors answer the query with a findAck
message and a pointer to themselves or a neighbor if they
are on the tracking path or have a secondary pointer to the
tracking path, and ignore it otherwise. If such a findAck
is received before nbrtimeout expires at clust, clust for-
wards the find to the process indicated by the findAck. If
nbrtimeout expires with no reply from a neighbor, clust
forwards the find to its hierarchy parent, parent(clust).

If a find is received and c �= ⊥, the find is tracing. If c �=
clust, the find is forwarded to c. If c = clust, tracing is over,
and clust broadcasts found. Clients in that and neighboring
regions that receive the found and whose last move indicated
the presence of the evader then perform a found output.
Work. Finds are local. To see this, we note the following:

Theorem 5.1: In a consistent state, if region u is at most
q(l) distance from the mobile object’s region, there is some
cluster in {cluster(u, l)}∪nbrs(cluster(u, l)) on the track-
ing path or with a secondary pointer to the tracking path.

Proof sketch: By proximity, the mobile object region’s level
l cluster is on the tracking path, or has a secondary pointer
to a neighbor on the path. If region u is at most q(l) away
from the object, cluster(u, l) is either the object’s level l
cluster or a neighbor. So, cluster(u, l) or a neighbor is on
the tracking path or has a secondary pointer to the path.

Theorem 5.2: A find input invoked distance d from a
mobile object leads to O(

∑l
j=0 n(j)(ω(j) + 1)) work and

O((δ + e)
∑l

j=0 n(j)) time.

Proof sketch: For searching, at each level j, all ω(j) neigh-
bors are queried, until the minimum level l such that d ≤
q(l), when the path will be found, by Theorem 5.1. With
roundtrip communication with each neighbor at each level,
we have

∑l−1
j=0[2ω(j)n(j) + p(j)] + 2ω(l)n(l) work, plus

a possible 2n(l) to follow a secondary and then primary
pointer to the tracking path. For tracing, the cost of following
the path to the object is at most

∑l−1
j=0[n(j) + p(j)] + n(l).

The total cost is then
∑l−1

j=0[2p(j) + n(j)(2ω(j) + 1)] +
2ω(l)n(l) + 3n(l), or O(

∑l
j=0[(1 + ω(j))n(j)]).

The time is O((δ + e)(n(l) +
∑l−1

j=0[p(j) + n(j)])).

In the grid, the work is O(d), and time is O(d(δ + e)).

VI. CONCURRENT OPERATIONS

We can relax move and find restrictions and consider
concurrent execution of move operations, where the mobile
object may relocate before updates to the tracking path are
complete, and finds. The algorithms for move and find in
Figure 2 remain the same, but it is necessary to introduce
restrictions on the speed of the mobile object in order to
continue to guarantee low-cost find and move operations.

During concurrent move operations, at any given instant,
there may be several new paths growing, older deadwood
shrinking, and new deadwood being produced. Under re-
strictions on mobile object speed, we can show that for each
move, the triggered grows and shrinks are the same as in the
atomic case, with the same time/work cost.

For finds, under mobile object speed assumptions, we can
show that a search phase would at worst go up only one
more level than in the atomic case. We can also show that in
the tracing phase, a find that follows a defunct pointer will
be able to make progress down the cluster hierarchy, and
perform a found output within a constant factor of the time
and work required in the atomic case in a grid hierarchy.

VII. EXTENSIONS

We are extending VINESTALK to be self-stabilizing. The
original STALK algorithm is self-stabilizing and hierarchy-
based fault-containing, preventing propagation of faults in
the tracking structure beyond a small number of levels in
the hierarchy. It achieves self-stabilization mainly through
heartbeats. We also argued that our VSA algorithm in [6]
is self-stabilizing: if the physical mobile nodes are started
in arbitrary states, then they eventually converge to correct
emulation of VSAs. Finally, the geocast service that was the
basis of C-gcast used in this paper is also self-stabilizing

[10]. Since each of the building blocks of VINESTALK are
self-stabilizing, the modifications to make it self-stabilizing
should involve just minor tweaks to the techniques in STALK.

We can also try to improve fault-tolerance of VINESTALK

by allowing multiple heads per cluster. Updates to the track-
ing path and queries of clusterheads would involve contacting
multiple heads for each cluster. This quorum-like approach
should result in only an additional constant factor overhead,
but would allow for the failure of limited sets of VSAs.

Another extension to consider is to allow multiple find-
ers and mobile objects, with the goal of coordinating the
behaviour of the finders so as to minimize the time before
all mobile objects are overtaken. VSAs doing the tracking
might occasionally send information to data repository VSAs
acting as command centers. These centers then direct finders
to particular targets to eliminate as much overlap in pursuit
as possible. The use of VSAs to coordinate motion of mobile
units has been explored in a simple scenario in [15].

Lastly, we can examine the performance degradation that
results if mobile objects occasionally move faster than we
allow in our analysis. Such moves can result in suboptimal
tracking path constructions, but if they occur infrequently
enough the structure can still recover to something usable.

REFERENCES

[1] I. Abraham, D. Dolev, and D. Malkhi. LLS: a locality aware location
service for mobile ad hoc networks. Proceedings of the DIALM-POMC
Joint Workshop on Foundations of Mobile Computing, 2004.

[2] A. Arora, M. Demirbas, N. Lynch, and T. Nolte. A hierarchy-
based fault-local stabilizing algorithm for tracking in sensor networks.
8th International Conference on Principles of Distributed Systems
(OPODIS), 2004.

[3] B. Awerbuch and D. Peleg. Sparse partitions (extended abstract). In
IEEE Symposium on Foundations of Computer Science, 1990.

[4] B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal
of the Association for Computing Machinery, 42, 1995.

[5] M. Demirbas, A. Arora, and M. Gouda. A pursuer-evader game for
sensor networks. Symposium on Self-Stabilizing Systems (SSS), 2003.

[6] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and T. Nolte. Brief
announcement: Virtual stationary automata for mobile networks. Pro-
ceedings of the 24th Annual ACM Symposium on Principles of
Distributed Computing (PODC), 2005.

[7] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and T. Nolte. Timed virtual
stationary automata for mobile networks. TR MIT-LCS-TR-979a, 2005.

[8] S. Dolev, S. Gilbert, N. Lynch, E. Schiller, A. Shvartsman, J., and
Welch. Virtual mobile nodes for mobile ad hoc networks. International
Conference on Principles of Distributed Computing (DISC), 2004.

[9] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geo-
quorums: Implementing atomic memory in ad hoc networks. 17th
International Conference on Principles of Distributed Computing
(DISC), 2003.

[10] S. Dolev, L. Lahiani, N. Lynch, and T. Nolte. Self-stabilizing mobile
node location management and message routing. Symposium on Self
Stabilizing Systems (SSS), 2005.

[11] S. Dolev, D. Pradhan, and J. Welch. Modified tree structure for location
management in mobile environments. In INFOCOM (2), 1995.

[12] M.P. Herlihy and S. Tirthapura. Self-stabilizing distributed queueing.
In Proceedings of 15th International Symposium on Distributed Com-
puting, pages 209–219, October 2001.

[13] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of
Timed I/O Automata. Morgan Claypool, 2006.

[14] J. Li, J. Jannotti, D.S.J. De Couto, D.R. Karger, and R. Morris. A
scalable location service for geographic ad hoc routing. Proceedings
of Mobicom, 2000.

[15] N. Lynch, S. Mitra, and T. Nolte. Motion coordination using virtual
nodes. IEEE Conference on Decision and Control, 2005.

[16] V. Mittal, M. Demirbas, and A. Arora. LOCI: Local clustering in large
scale wireless networks. TR OSU-CISRC-2/03-TR07, 2003.

