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Abstract—We define a programming abstraction for and has broadcast capabilities similar to those of the

mobile networks called the Virtual Stationary Automata mobile nodes, allowing nearby VSAs and mobile nodes
programming layer, consisting of real mobile clients, virual to communicate with one another.

timed I/O automata called virtual stationary automata ) ) o

(VSAs), and a communication service connecting VSAs and  Many practical algorithms depend significantly on
client nodes. The VSAs are located at prespecifiecegions timing, and it seems reasonable to assume that mobile
that tile the plane, defining a static virtual infrastructur e.  nodes have access to a synchronized clock. In the VSA
We present a self-stabilizing algorithm to emulate a VSA .49 mming layer, the virtual automata, too, have ac-
using the real mobile nodes that are currently residing . .

in the VSA's region. We also describe several examples cess to airtual clock. Morepver, the VSA progrf’;\mmlng
of applications whose implementations benefit from the layer guarantees that the virtual clock never drifts too far
simplicity obtained through use of the VSA abstraction. from the real clock. This requirement introduces signifi-

cant difficulty in implementing the virtual infrastructure

The virtual infrastructure that we propose differs in
key ways from prior attempts to design abstractions for
mobile ad-hoc networks. The GeoQuorums algorithm [9]

The task of designing algorithms for constantly changroposes storing data at fixed locations; however it only
ing networks is difficult. Highly dynamic networks, supports atomic objects, rather than general automata.
however, are becoming increasingly prevalent, especialynother earlier attempt at defining a virtual infrastruc-
in the context of pervasive and ubiquitous computingure, the “Virtual Mobile Node Abstraction” proposed
and it is therefore important to develop new techniqués [8], supports general automata; however the automata
to simplify this task. do not have access to a virtual clock. Moreover, the state

In this paper we focus on mobile ad-hoc networkdgnachine replication algorithm described there cannot
where mobile processors wander the world, coordinatig§Pport a virtual clock. It is of interest to note that
their computation despite minimal infrastructure supporfese abstractions could easily be implemented using the
We develop new techniques to cope with this dynami¥irtual infrastructure we describe here.
heterogeneous, and chaotic environment. In particul&mulating the virtual infrastructure. The VSA layer
we attempt to mask the unpredictable behavior by ens emulated by the real mobile nodes in the network. In
ulating a staticvirtual infrastructure that mobile nodesparticular, a VSA is emulated by a bounded-size subset
can interact with. The static virtual infrastructure alow of the mobile nodes currently populating its geographic
for simpler algorithms — including many previouslyregion: a mobile node that enters the geographic region
developed for fixed networks. of a VSA attempts to participate in the emulation of the

Virtual Stationary Automata programming layer. region’s VSA; a mobile node that leaves the geographic
The static infrastructure consists of fixed, timed virtudlgion ceases to emulate the VSA. If all the mobile nodes
machines, calledVirtual Stationary AutomatgVSAs), leave a VSA's region, then the VSA fails; if mobile nodes

that are tiled over the entire plane. We develop Bturn, then the VSA restarts.

programming layer (which might be implemented as The state of the VSA is maintained in the memory

middleware) in which mobile nodes can take advantagé the participants, allowing them to perform actions

of the virtual infrastructure to coordinate their actionson behalf of the virtual automaton. The implementation
Each VSA represents a predetermined geographic auses a “round-robin” approach in which participants take

turns emulating the virtual automaton.
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broadcast medium. This might result in inconsistencye then define the virtual stationary automata (VSA)
and corruption in the emulation of the VSA. Our selflayer in Section Ill. Next we present a “round-robin”
stabilizing implementation, however, can recover aftémplementation of the virtual infrastructure in IV. We
corruptions to correctly emulate a VSA. then describe some extensions and applications of VSAs

We present an algorithm that is a significant iml? Section V.
provement over the prior attempts to emulate a virtual
infrastructure described in [9], [8]. It is much more ||. DATATYPES AND MOBILE AD HOC SYSTEM
power efficient, limiting the number of participants to the MODEL

minimum necessary to guarantee reliability. Moreover, . - . .
the new algorithm reduces the number of messagesThe system consists of a finite collection of mobile

broadcast and eliminates the duplicated messages thNt Processes moving in a closed region of the plane
are possible in [8]. The current implementation als§€€ €-9- [3], [10]). In this section we formally describe
allows for faster emulation, introducing significantlyges tNe System, including: (1) datatypes used in the system

overhead into computation. Finally, the prior implemerf€Scription, (2) the model for the GPS automaton pro-
tations are not self-stabilizing. viding location and timing information to nodes, (3) the

specification for a generic broadcast service, and (4) the

Applications. .We. present in this_ paper an qverv.i.e\’\fnodel for the mobile clients deployed in the network.
of some applications that are significantly simplified

by the VSA infrastructure. We consider both low-level
services, such as routing and location management, AasDatatypes
We" as more sophlsnc_ated appllcat_lons,_such as pursuet e we list the globally known constants. These
identification and tracking. The key idea in all casesis tQ .. : .

; : é]:efme the regions (or tiles) of the netwotk, as well as
locate data and computation at virtual automata througth- . o . )

. : . e identifiers of the real mobile nodes:

out the network, thus relying on the fixed, predictable _ _
infrastructure to simplify coordination. It is intereggin « £, a fixed closed connected region of the two-
to note that this infrastructure can be used to implement dimensional plane. Our results should be extend-
services that are oftentimes thought of as the lowest-level able to larger dimensions given appropriate distance
services in a network. metrics in Section 3.

Our contributions. This paper contains three main * U, a finite set ofregion identifiersfor subregions
contributions. First, we define a new VSA program- of R. _ _ _

ming layer that supports timing dependent applications.® ":b7's: & Symmetric neighbor relation between ele-
Second, we present an energy efficient, self-stabilizing Ments ofU.

implementation of this virtual infrastructure. Finally, * "= U1 _

we discuss some applications that take advantage of "¢gt0n, @ mapping fronU to connected subsets of
the virtual infrastructure. We are currently working on ~ 1i- We assume thafregion(u) : u € U} forms a

understanding real-world implementation concerns. partition of R into tiles. In practice, one might want
Other prior work There are a number of prior the regions that tilek to be regular polygons such

. as squares or hexagons.
papers that take advantage of geography to facilitate the. regid, a mapping from R to U, such that
coordination of mobile nodes. For example, the GeoCast S . . '

) o d(z,y) is equal to the unique € U such that
algorithms [19], [4], GOAFR [16], and algorithms for ?;g;)(g fe)g;mgg unique € )
‘routing on a curve” [18] route messages based on the. P,a finite set ofnode identifiersWe restrictP and
location of the source and destination, using geography U'so thatP N U =
to delivery messages efficiently. A number of other '
papers [17], [12], [20] use geographic locations as a
repository for data. These algorithms associate eaBh GPS
piece of data with a region of the network and store The system is assumed to include a GPS automaton,

the data at certain nodes in the region. This data can .. o . .
: -~ roviding location information to real mobile nodes. The
then be used for routing or other applications. All o

these papers take a relativelv ad hoc aporoach to usinPS automaton is described formally in Figure 1. It is
pap . y PP 2%imed 1/0 automaton (TIOA [15]) with access to a
geography and location. In this paper we suggest a matre | .. ;
. . : real time clock and that keeps the current location of all
general approach; all the algorithms presented in these

papers would be simplified by using VSAs. mobile nodes.

Organization. The rest of the paper is organized as
follows. The system settings are described in Section Il.« now € R, a clock variable, representing real time.

The main pieces of data kept by GPS are:
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Signature:

Output GPSupdate(u),, u € U,p € P
Internal updatefin

State:

analog now € R, current real time

samplee R, the next sample time, initially:ow

analog loc, an array of(x,y) coordinates inR, indexed byP
analog vel, an array of(x,y) velocities in R, indexed byP
updated an array of Booleans, indexed 9, initially all true

Derived variables:

Actions:
Output GPSupdate(u),
Precondition:
now = sample
updatedp] = false
u = regid(loc[p])
Effect:
updatedp] <« true

Internal updatefin
Precondition:
Vp € P. updatedp] = true

24
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28
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32

34

maxdisfa, b) = Effect:
14 if abe P: Vp € P. updatedp] « false 36
|loc[a]-loc[b]| sample«— NOW + €54 pie
14 if a,b e U: 38
. SUPicregion(a),jEregion(b) ||OC[i }'IOCU ” Trajer_:to_riES:
14 ifaeUbeP: satisfies 40
' sul’iertte)gion(a) “OC[i]'IOC[bH 3(”0\/\?3 =1
2d ifaecP,becU: peP. 2
SUPjcregion(b) |Ioc[i]-loc[a}\ |;/(el!)[g[]p]x;\)/el[p]y‘ S Umazx
=== = vellp].x 44
d(l .
dlloclpl-y) o;[ip] v = vel[p).y
constant updated sample 46
stops when
now = sample 48

Fig. 1. GPS automaton

« loc, the continuously changing array of coordinates  to false for allp € P and sets the time for the next
in R, indexed by node id. loc sampling to begqpmpre from now.

We restrict the rate of change in locations, and hence
the speed of the mobile nodes, to be at mgsi.. To C. Broadcast service specification
facilitate the task of updating processes with their region

locations, we use two additional pieces of state: Communication in the system is in the form of a local

lec R th le ti broadcast service. Here we provide a generic broadcast
« sample € R, the next sample time. specification that is instantiated in the paper for various

» updated, an array of Booleans indexed by procesg, icinants. We call the generic service bcast, parame-
id, keeping track of whether an update for a parti erized by:

ular process has occurred in this sample period.

We also define a derived variable based on the GPS staté 2 mz zgggga:tgggus'
that is used throughout the paper: ¢ g y.

o I, the set of port identifiers.

« mazdist, an overloaded function froriP? U U) x
(PUU) to R that gives the distance between tw
nodes, the supremum distance between points
two regions, or the supremum distance between ae. msg, an array of messages indexed hy
node and a point in a region.

service with these parameters is then called
ast [r,d, I]. It includes one piece of state:

The service provides one output and one input action:

The GPS automaton has no input actions and performs ) .
; . L « Input bcast (m);: The service allows for a port
only one kind of output and internal action:

i € I to broadcast a message throughast (m);.
o Output GPSupdat e(u),,u € U,p € P: GPS

_ _ . : For eachj in a set of identifiersI’ C I, the
is responsible for alerting each mobile noge bcast (m); action puts a copy ofr into a buffer

of the identifier of the regioru wherep is cur- msglj)-
reqtly residing. When a sample period deadline , output brcv(m);: A messagem in msglj] is
arrives gample = now), the automaton performs  gelivered at portj through abr cv(m); action,

a GPSupdat e(u), whereu = regid(loclp]), for resulting in removal ofn from msgl[j].
eachp € P. It then updatesupdated[p] to true,

indicating the update has been performed.
« Internal updat ef i n: When all updates have oc- « Reliable delivery guarantees that if a peértrans-
curred, theupdat ef i n action changespdated|p] mits a message, then every pojt such that

The service guaranteesliable deliveryandintegrity:



mazdist(i,j) < r during the entire time interval
starting from transmission and endidgtiime later
receives the message withirtime of transmission.
Integrity guarantees that for aty cv (m); that oc-
curs, abcast (m); previously occurred, for some
jel.

o now € R, a clock variable, representing real time
and synchronized across clients. For simplicity’s
sake, we treahow as a local variable that pro-
gresses exactly like real time. Thisow variable
could, alternatively, be a variable frequently updated
by a GPS automaton.

We also require that the service guarantees that for a@lient also have access to a local broadcast service
messagesn # m', if a port broadcastsn and later that is defined as an instantiation of the generic bcast
broadcastsn/, any port that receives both messageservice described in the last section, calleécast and
receivesm beforem'. This guarantee is assumed foparameterized by the following:

convenience; it is possible to guarantee this property
by supplementing messages with additional information
to allow recipients to reorder broadcasts from the same
sender. However, this is not the focus of the paper, so
we simply assume we are guaranteed this property.

In practice, a broadcast service would have boundéyClient Cp is assumed to have at least the following

message buffers. Bounded buffers are also necessar)?)ﬂ)ernal interface, aII(()jwmg Fhe g::egt to.broadgaft an_I(_jh
guarantee self-stabilization in the face of corruption gf€CEIVE MESSages and receve region updates. the

rors. Here we assume that in the event of buffer overflo! ,terface also allows the possibility that nodes may

overflow messages are lost. Buffer sizes are oftentim%@Sh'StOp and later restart:

chosen by considering the maximum node density of thes Output bcast (m),: A nodep may broadcast a
network and maximum frequency of message broadcasts. message throughcast (m).

Here we assume the buffers are sufficiently large thate Input brcv(m),: A node p receives messages
overflows do not occur in normal operation. throughbr cv (m).

The model can be extended to incorporate collisions.* [NPUt GPSupdat e(u),: GPS updates for a node
A brief discussion of the impact of collisions on our P occur through thesPSupdat e(u), action, indi-

work can be found in Section V-A. cating thatp is currently located in region.
Input fail ,: A nodep can be halted by &ai | ,

input and then performs no local steps unless it later
recovers through aest art , input.

Input restart,: Therestart, action restarts
the node automaton from an initial state.

e Treal, the broadcast radius.

« d, the message delay.

o P, the node ids, meaning there is one communica-
tion port per process.

D. Client nodes and’-bcast

restart
P

\fail p
beast(m) ,
brev(m)

GPSupdale(u)p

In addition we assume that there may exist arbitrary
input and output actions with the external environment
and there may be other pieces of local state used by an
algorithm running at the node.

For convenience we assume local steps take no time.
Also, for simplicity of presentation, we assume for now
that the nodes do not suffer from corruption failures.
When a node suffers from a corruption failure, the node
suffers from nondeterministic changes to its program
state. We discuss the case where corruption faults may
occur in Section IV-D.

P-bcast

msg[p], p in P

msg[q], qin P

IIl. VIRTUAL STATIONARY AUTOMATA
PROGRAMMING LAYER

restart

q

Fig. 2. P-bcast and client node interface. Client nodes eanive
GPS updates and communicate together through the P-beastese

For eaclp € P, we assume a timed I/O automatoip
(Figure 2) with access to the following local variable:

The Virtual Stationary Automatgprogramming ab-
straction includes both the real mobile nodes discussed
in the last section and virtual stationary automata (VSAS)
the real nodes emulate, as well as a local broadcast
service, V-bcast, between them (see Figure 3). This
abstraction allows users to write programs for stationary



restart _
tail p fail |,
ail

restart u
V-bcast {
beast(m) beast(m) , S

€ D

brev(m) brev(m) |, u
,pinP

GPSupdate(u mSQ[?] pin

msgfal, q in P

msg[u], uin U

GPSupdate(v;

q beast(m) ,

bcast(m) q
msg[v], vin U brev(m) |,

brev(m)

ﬁrestan q
fail
q restart ,

fail ,

Fig. 3. Virtual Stationary Automata abstraction. VSAs afidrnts communicate using the V-bcast service. VSA bcastg beadelayed in
Dout buffers.

regions of the network as though broadcast-equippttey can be emulated by the real mobile nodes. Hence,
virtual machines exist in those regions. In this sectioiie automaton’s external interface is restricted to inelud
we define what we can support in this layer, given thainly failure/restart inputs and the ability to broadcast an
the VSAs and the V-bcast service must be implementegceive messages. In other words, we restrict this virtual
by the underlying real mobile nodes. automatonV,, to have only four external actions:

Here we describe the properties of VSAs we can, Input fail ,: A VSA can be crashed byfaai | ,,
support. We then describe the V-bcast service. The V- input, making no local steps unless it later recovers.
bcast service is similar to the mobile node®-bcast o Input restart,: A failed VSA makes no local
service except that: (1) it allows communication between  steps unless it later recovers throughest art ,,
neighboring VSAs and nearby mobile nodes, and (2) the input, resulting in a reset ofstate to a state in
broadcast radius supported is slightly smaller than that s¢qrt.
of P-bcast, for reasons we will explain. Finally, a VSA + Input br cv(m),: The VSA at region: receives a
is emulated by real mobile nodes that coordinate their broadcast message from the V-bcast service.
emulation and may fail. This emulation by real nodes « Output bcast (m),: The VSA broadcasts a mes-
can introduce delays in the emulation of the VSA which  sagem through the V-bcast service.

we describe with the concept dklay augmentatian The current state of all variables &f, can be referred

to collectively and is assumed to include a variable
A. Virtual Stationary Automata corresponding to real time:

A VSA is an abstraction describing a virtual machine e vstate € states,, the current state of,.
that may be emulated by the underlying real mobile « vstate.now € R, the clock time ofV,.

nodes residing in particular regions in the network. Thgyhjle we do not explicitly do so in this section for pre-
VSA is permitted to use timing. We formally describesentation reasons, the VSA programming layer has been
such a timed machin&, as a TIOA whose program extended to incorporate corruption failures. This is mod-
can be referred to as a tuple of its action signaturgied using an additional input action calledr r upt .,
valid StateS, its start State, a discrete transition funfesumng in a nondeterministic Change to any portion of
tion, and the set of valid trajectories of the maching;sz,te exceptvstate.now. A corrupt action at this
(sig, states, start, d, 7). Trajectories [15] describe the|ayer s restricted to only occur if @or r upt action
evolution of the state over intervals of time. occurs in the mobile node layer. If the model is extended
To guarantee that we can emulate the machine we incorporate corruption failures, users of the model
must guarantee that inputs and outputs are such tinatist be careful to prograri, with the possibility of



corruption in mind, meaning programs fof, must be TIOA, an augmentation of,, with timing perturbations

self-stabilizing. composed withl,,’s output interface. These timing per-

turbations of up tce time are represented with a buffer

Doutle],,, composed with,’'s bcast output. The buffer

is a message multiset that delays delivery of messages by
The V-bcast service is a local broadcast service similagme nondeterminstic tim@, e]. The program actions

to that of the mobile nodesP-bcast service and im- of V,, must be written taking into account the emulation

plemented using the real mobile nodes and Fhbcast parametee, just as it presumably takes into account the

service. It allows communication between neighboringiessage delay factak.

VSAs and between VSAs and nearby nodes. It supports

a slightly smaller broadcast radius than thatfobcast. IV. ROUND-ROBIN IMPLEMENTATION OF A VSA

We again define the V-bcast service as an instantiationW d ibe the imol i ¢ bstract VSA b
of the bcast service. In this case it is instantiated with; ‘*_ ccocro€ e implementation ot an abstrac y

_ mobile clients in its region. We then give several proof
e Tyirt, the broadcast radius. sketches and discuss the self-stabilizing extension of the
« d, the message delay, equal to that/obcast. implementation.

« PUU, meaning there is a communication port for
every process and virtual automaton.

B. V-bcast service

) ) A. Implementation description
The V-bcast service provides the same guarantees as the

generic bcast specification described in the prior section.Here we describe, at a high leve,l a fault-tolerant
This service allows a VSA for regiomand a real mobile implementation of a VSA emulator. We begin by de-
nodep to communicate as long as the node is at mogeribing a single emulator solution. We then extend the
rvire distance from any point in regiom and a VSA to solution to be fault-tolerant by using multiple emulators
communicate with another VSA as long as the maximugd describe aound-robin mechanism to manage the
distance between points in either VSA is at mogt,. Multiple emulators.

In order to guarantee that two neighboring VSAs ma§ingle emulator solution. In the simplest version
communicate we require that the tiling described b9f virtual machine emulation, there is one designated
region and the region neighbor relationbrs satisfies Mobile node called deader that emulates the VSA.
the restriction that for any neighboring regioms € U, The leader has sole responsibility for the emulation,

the supremum distance between a pointiand a point Performing all actions of the VSA based on its locally
in v is at Mostry;,;. stored version of the VSA state, identical to the state of

The implementation of the V-bcast service using thtge abstract VSA, and messages it has received.

mobile clients’ P-bcast service also introduces the reMultiple emulator extension. For fault-tolerance and
quirement thatr,ca; > Tyirt + 2€sampie - Vmaz- ThIS load balancing reasons, it is necessary to have more
guarantees that two nodes that are unknowingly emul#fan one process emulating a VSA. In the more general
ing VSAs for regions they have just left (because thefpultiple emulator approach a VSA for a regianis
have not yet receive@PSupdat es to change regions) émulated by up td (a constant) mobile nodes located

can still receive messages transmitted to each other. in regionu called guards At any time, there is at most
one guard that is designated leader that emulates the

A/SA. As before, the leader emulates actions of the VSA
based on its locally stored version of the VSA state and
messages it has received. Occasionally the leader hands
off responsibility for emulating the VSA to another guard

C. Delay augmentation by sending a special hand-off message, containing a copy

A VSA V, is an abstraction that is emulated by underqlc the leader's current emulated VSA state. When a

. i . . . uard receives this message it updates its local copy of
lying real mobile nodes. While the resulting emulation Otghe VSA state to be consistent.

V.. would ideally look identical to a legitimate execution ] i o .
of V,, the abstraction must reflect the possibility that, This hand-off introduces several complications in the

due to delays resulting from message delay or real noeA e€mulation, resulting both from message delivery
failure, the emulation of/, might be slightly behind delays and failures of leaders that are emulating the

real time and appear to be delayed in performing outp¥A- The first is that a message could bebcast
actions of V, by up to some time that we'll cal. (0 the VSA but not received by the leader before it

The emulation of, is then called adelay-augmented P¢ast s a hand-off message; if non-leaders do not save

Messages intended for a nogeare stored in buffer
msg[p] until delivery and messages intended for a VS
u are stored inmsg[u].



such messages they would hear discard it, receive

the hand-off message, and (if now a leader) continue to
emulate the VSA as though was never received. To
prevent the emulation from failing to eventually process
messages, all guards save received messages locally for
use when it is their turn to emulate the VSA. To ensure
that multiple-processing of messages at the VSA does o
not result, the emulators need to know which of the saved tr<e

messages have already been processed by the leader. To

answer this, the leader sends more than its emulatagl 4. Relationship between virtual and real time. Virtalicks that
VSA state with a hand-off message — it also sendsas behind real clocks run faster until they catch up.

gueue of the messages it processed for the VSA while

leader. When a guard receives the hand-off message it ) )
updates its local VSA state as before and then delefddual time. Delivery of future messages from the per-

those messages already processed by the VSA from SRective of the emulated VSA is undesirable; it violates
local queue of messages to be processed. the requirement that the VSA emulation produces an

. execution that looks like one of the abstract VSA with
Message delays complicate matters for another reasoilitional message delays. This problem is solved by
as well. A leader could, for example, receive a messa

fmply waiting to process a message until the virtual
m, process it, and send a hand-off message. The n%?gciypassesgthe rr?essage’s timesta?np

leader could receive the leader’'s message, update its local o
state, andhenreceive the message. It would then re-  Another comphcauop results when a leaderast s
processm, which is undesirable. This is easily solvedn€Ssages on the VSAs behalf but fails before sending a

by having all messages timestamped with the time th&}nd—oﬁ message. In this case, t_he next leader emulating
were sent and all guards wait for the full message the VSA has an out-of-date version of both the emulated
delay time after a message’s timestamp before handlifg” State and the queue of messages already “received
it for any reason. Any message received or handled % the VSA. Based on this out-of-date information, the

guaranteed to have been seen by other processes as WEN éader may re-perform actions already performed by
This proves to be useful later in several places. a prior leader. As a result, the external trace, bodst s

D del h during hand-off in particular, might not be consistent with a trace of the
ue to message delays that occur during hand-o aﬁ%stract VSA. To handle this, when a leader performs a

additional delays that can occur because of failures Btast action for the VSA it attaches its version of the

iime b iderabl © Intuitivelv. the VSA ﬁbstbcast VSA state and processed messages to the
Ime Dy a considerable amount. Intuitively, the emr'nessage. If the leader fails to transmit a hand-off, the

ulztlor:j ruf?s ona wrtpa_l C:OCk t{\at Ids str:)pped wher|1ev lext leader will pick up emulation at the state attached
a hand-olr message IS In transit and Wnenever no 1eaqgfy, o |4t output, guaranteeing consistent traces.

is currently emulating the VSA. In order to guarantee . ]
that the VSA emulation satisfies the specifications frofgund-robin emulator management. The multiple
Section 3, the virtual clock must be able to catch upmulator approach relies on a fault-tolerant algorithm
to real time during periods when the VSA emulation i&" managing leadership. In theund-robin approach
running (the specification bounds the amount of time tHBiS 1S done by defining globally known synchronized
output trace of the VSA emulation may be behind thdtmeslicesand maintaining &-bounded rotatinguards

of the VSA being emulated by a parametdr This is vector o_f process |d/t|mestam_p pairs, d_eflnlng rev_olvmg
done by having the virtual clock advance faster than regSPonsibility for VSA emulation. The timestamp is the
time until both are equal, at which point they increase 4M€ when the guard requested to join the vector and is
the same rate. This is illustrated in Figure 4, where tfPlained later. Whichever guard's pair is currently at
progress of the virtual clock proceeds in fits and startd€ head of the rotating vector is designated the leader.
relative to real time, occasionally falling behind and then Each timeslice is of a predetermined lengif.. such
having to catch up. The magnitude of speed-up of thBat ¢y < e/k andty;.. > d. A round lengthis the
virtual clock is dependent on how long the leader hané@mount of time it takes fok timeslices to pass.

offs take and how often guards fail or leave the region. For consistency reasons, as before, aspst s for

A related problem occurs in the processing of meg¢he VSA performed by the leader have attached to
sages. Since the virtual time may be behind real time,them the leader’s latest version of the emulated VSA
is possible that there are messages that should eventualte and the messages processed by the VSA during
be processed but that were sent at a real time after the leader’'s emulation period. Now, to keep leadership

virtual clock

real clock N ot t



views consistent, we also transmit the leadetigirds at leasts > t’”lt—’_d times the rate of real time.
vector. The tuple of the three pieces of information is

called theemulation stateWhen a guard receives the -<XI Neyin | <ars
emulation state, in addition to prior changes to its local -
state, it updates itguards vector to match that of the foin request: <py

leader. It uses the newuards vector to clean up too
old or unsuccessful requests to join theards vector
(described later).

Kb> <yt > | <at> | <p.t,>

Fig. 6. Adding a join request to the guards vector. Processnps
a join request at time,t If the vector is not too large, the leader
processes the request, addiffg t,) to the end of the guards vector.

timeslice ts:

<q,tq> <w,tw> <x,tx> <y,ty>

process w fails:

A process that enters a region attempts to become
a guard by broadcasting a specjadi n message and
then collecting messages just as guards would. All guard
timeslice ts+1; |, processes save the process id and time the message was
sent in a local queue of join requests. A leader processes

< > < > | < >
a.t, x> | <yt

<
.

<vy«tw> <xt> | <yt > | <qt> ; i ¢

s — a request from its local queue by adding the process id
timeslice ts+2: and timestamp pair to the end of its logalards vector,

if there is room (Figure 6). A procegghat started trying

to join at timet examines any messages broadcast by the
leader for the attached emulation statgisirds vector

Fig. 5. Handling failures in the guards vector. Process Usfal 14 getermine if its pair(p,t) has been added. If so, it
timeslice ts. In timeslice ts+1, after the vector rotatesisvgupposed ’ ’

to be leader. Other guards do not receive a hand-off from wamdve Changes its St_atus _to fgiar d. If not and enough time
w from the vector at the beginning of timeslice ts+2. has passed since its request that the leader would have

added it if there was roony just tries to re-join.

At the end of a timeslice, the leader broadcasts a hand-Notice that when joining, procegsonly deems itself
off message. It then becomes a regular guard. All guardisccessful if it sees itép, t) pair in theguards vector,
should receive this message kytime into the next rather than any paifp,t’,) wheret # t'. This deals
timeslice, if it was sent. If it was not, then all guardsvith the case wherg might be a guard in region,
will remove the previous leader’s entry from their localeave the region, and then try to rejoin the region before
versions of theguards vector (Figure 5). it is removed from theguards vector. If p were to

All guards then rotate the vector once. The new hedmediately start emulating the VSA at this point, it
of the guards vector becomes leader for the timeslicavould run the risk of not having received and queued
and starts emulating the VSA based on its local versigdl messages for the VSA that it should have. Instead
of the emulation state. In order to make up the time thatwaits to see that its newest join request is reflected
is lost between the last sending of the emulation state By the guards vector before becoming a guard. This
a leader and its own pick-up of the emulation, the neig safe since its join request is not seen by it in a
leader emulates the VSA using a sped-up virtual clogkiards vector until at least2d time after p sent it
as described before. (due to mandatory waiting before delivering messages),

The magnitude of the speed-up is determined as f§uaranteeing it has c_:oIIec_ted all the br_oadcast messages
lows: Assume that we are considering a VSA emulatidjat aré not summarized in the emulation state.
where at least one leader completes his timeslice in eacHf a process tries to join but a round goes by without
round. With this assumption, the furthest that the virtudl hearing any broadcasts by a VSA emulator, it con-
clock could be behind when a leader starts emulating tiekides there are no emulators for the VSA. In this case,
VSAis (k—1) - tgic. +d, since at worsk — 1 leaders in it broadcasts a estart message and collects other
a row could have failed without sending any emulatiorestart messages that are broadcast. The senders of these
state, followed byl time for the one alive leader to startmessages are sorted by id in theards vector and the
emulating the VSA again. To ensure that by the end ohe with the lowest id becomes leader in the next round.
the timeslicet ;.. — d later the virtual clock has caught
up to real time, the virtual clock must emulate a total oé
k- tsice time in the time that the leader is emulating the ™
VSA, namelyty;.. — d time. Together, this gives that The emulators for the VSA (VSAES) run on individ-
the leader must advance the virtual clock at a speed wdl mobile nodes. Formally, there exists one emulator

Detailed code description



automaton VSAE, for each pair(u,p) € U x P.
This automaton handles mobile nogs portion of the
emulation of \V,,. Here we describe in detail the actions

described in Figure 8, the locally checked and corrected

actions, and the trajectories described in Figure 9.

Discrete action descriptions. We begin by describing
the code for VSAE , in Figure 8.

o GPSupdat e(v), Line 1: This input indicates
processp is in region u. Processp changes
its reg to the regionw. If the region is dif-
ferent from p's previous region,p changes its
status to st artj oi n, which in turn enables the
bcast (((join, u), p, now)) action.

« brcv(msg), Line 7: Messages sent to and from
the VSA are of a special form. In particular, they are
three-place tuples, including the message one wants
to send, the source (whether it be a VSA or a client),
and the timestamp of the message. For convenience,
we refer to these portions of the messageg as
msg.m,msg.src, andmsg.ts respectively. We will
assume in the implementation of the VSAs that any
messages received through thecv action are of
this special form. We note that any messages not of
this form can simply be “filtered out.”

When a proces® receives such a messagesg
from a client or from a neighboring VSA through
the br cv(msg) action, it places the message into
the holdq queue.

« bcast (((join,u), p, now)), Line 12: This broad-
casts a join request by for the VSA atu. This
changeg’s status tot r yi ng, sets itsjoinregts
timestamp (used to keep track of when it asked
to join the guards vector), sets the start time
for the next global timeslice, set®und (a dead-
line to determine that no guards are emulating
the VSA), and initializes itgyuard vector and its
simgq, holdq, guards, andjoinreqs queues.

» bcast (((restartu), p, now)), Line 23: If the VSA
has failed, the joining nodep) will receive no
broadcasts from guards fértime slices. After the
round deadline is reached, the node broadcasts a
restart message. This results in a resetys
joinregts to the current time and an emptying of
the guards vector, in preparation for starting a new
one.

» del ayrcv(msg), Line 32: When d time
has passed from the timestamp ofsg, the
del ayrcv(msg) action removes the message
from holdq and handles it depending on the kind
of message.

If the message is a restart messagejahds a status
of t ryi ng and around deadline that has passed,
p places the sender’s id with the message timestamp

into its guards vector, sorted in ascending order by
id. If p is either nott r yi ng or its round deadline
has not passed, it tries again to join.

The del ayr cv action processes a join request
message by adding the join request id and times-
tamp pair to its localjoinregs queue.

For any process, whetkel ayr cv; handles a mes-
sage inholdg that is not aj oi n, restart, or

end message, it puts it into the localmg, which
acts as a virtual message buffer for the VSA.

If the message’s soureesg.src is the VSA forp’s
region, the emulation state attached to the message
is used to updatg’s emulation state. If the received
guards vector indicates a different leader than the
one p currently has (and theuards vector isn't
empty, which only happens fdrr yi ng processes
that have not processed any emulation state message
yet), it re-joins; something went wrong someplace
for this to happen. Ifp is not the leader, it copies
the vstate and guards vector indicated in the
emulation state (the leader does not copy over his
up-to-date state of emulation with the outdated state
it may have sentl time ago, since the emulation
state should have progressed since that time). For
any statusp updates itsimg by cleaning out those
messages already processed by the leader and those
messages that are simply too old relative to the
time when the state was sent. Similarly, it cleans
out its list of outstanding join requests by removing
those join requests from its locgbinregs that are
already reflected in theuards vector, as well as
those requests that are old enough that they would
have been seen by the leader.

If the guard vector incorporateg’s join request and

p is still t ryi ng, then its status becomeguar d
andleadup gets initialized tdfalse If, however, the
node’s request is not reflected and the message’s
timestamp is more thati time after its join request
then the node restarts its join.

If the specialend message is received, thendup
variable is updated to indicate that the leader sent
out an end-of-timeslice message.

t sBegi n, Line 68: In actiort sBegi n, d time af-

ter the beginning of a timeslice, all guards perform
some guards vector upkeep. Ifleadup is false,
indicating the leader failed in the last timeslice, the
head of theguards queue is dropped. Otherwise,
the vector is rotated once.

If pisstilltryi ng, it's id andjoinreqts are in the
guards vector, and the deadline for hearing from a
guard has passed, then the VSA emulation has been
restarted ang is a guard. As a resulp changes

its status toguar d, starts the VSA again in an
initial state, and initializes the list of outstanding
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Bcast Messages: State: 18
M =M x (PU U) x R, whereM may be arbitrary. vstatee states,, the state ofl,
For convenience, we viewwsg € M’ as a record: analog now € R, the current real time 20
msg = (m, sre,ts). reg € U, p’s region location, initiallyinit(p)
We allow the use ofnsg.m.first (or second) to access statuse {guard, leader, trying, startjojn initially startjoin 22
the first or second field ofn in the eventm is a tuple. timeslicee R, the next timeslice
round € R, a deadline for a new round 2
Signature: holdg, a queue of messages M’ without repetition
Input GPSupdate(v),, v € U simg a queue of messages M’ without repetition 26
Input brcv(msg,, msge M’ procedq a queue of messages M’
Output bcast(msg,, msge M’ guards a vector of pairs of ids in? and times(of form (id, ts)), | 2s
Internal delayrcv(msgy,, msge M’ of size at mosk
Internal tsBegin,, , joinreqgs a vector of pairs of ids iP and times(of form (id, ts)) | so
Internal joinhandle({(q, t))u,p, q € P,t € R joinreqts the time of the last join request
Internal VSArcv(m)y,p, me M leadup a Boolean 32
Internal VSAint(act).,p, act € internal actions ofsig,,
Fig. 7. VSAE, , emulating \, running (sigu, states, starty, dy, 7 ): Signature and State

join requests and the queue of messages intended bcast ({(end, emulation statg:, now)) action and
for the VSA. changes to being just guar d.

If p is the head of the vector and has status (‘\lfrajectories. The trajectory in Figure 9 describes the

guard, it changes itsstatus to | eader. development of the variables in the implementation

Theleadup variable is reset tfaise theprocedq is — isige what is described through the discrete actions.
cleared for the timeslice, and the time for the next

timeslice is stored. Of particular interest are lines 5 through 8, which
j oi nhandl e((¢,t)), Line 87: When the leader dictate that, if a leader, the wrtuallc i:lqck that is behind
processes a join requelt, ¢) in its local joinregs real time in the emulation runs> ;=li«s; times faster
queue, it cleans out older entries for the sanmBan the real clock,guargnteelngthatthe maximum break
processg. If the vector of guards is smaller thanPetween the_ broadc_astlng of emulation state b_etween
k the leader addg’s id and join request time to two Ieadgrs in an alive VSA can be overcome in one
the end of the vector. If the vector is full, the joinleader’s timeslice. Once the fast virtual clock catches up

request is simply removed. to real time, the virFuaI c_Iock progresses as regl time
VSAr cv (m), Line 98: The leader emulates receip‘cmt'l the _end of the timeslice, where the leader gives up
of VSA messages by performingSAr cv(msg) eadership.

actions on messages sent no later than timeln line 11, we relate the emulated machine’s tra-
vstate.now in its local simg. The action removes jectoriest, to the emulator’s trajectories. This line
msg from the simg and emulates the receipt ofstates that if we examine the current trajectories of the
msg.m at the VSA. The resulting change of theemulatorystate is the same as the trajectory that would
state of the VSA is stored instate. The message have been observed at the emulated machine at time
msg is then added tgrocedq, the queue of mes- vstate.now.

sages “received” by the VSA in this timeslice. The stopping conditions described in the second col-

VSAI nt (act), Line 108: A valid internal action ymn are a means by which to force discrete actions in
act of the VSA is emulated with th¥'SAi nt (act)  Figure 8 to occur when they are enabled.

action at the leader. The action results in a Chan%ﬁient bcast and brcv. Client broadcasts and receives
of vstate to the resulting state of the VSA. are implemented using th&-bcast service. To distin-
beast ({(m, (, vstate’, procedq, guards)), u,now)), 4 ish messages dé-bcast messages, we use messages
Line 116 A b_roadcast by the VSA of the special form used above. In particular, a client at
of a message moIs emulated through 2 hodep implements @cast (m), in theV-bcast service
bcast (((m, emulation statg u, now)) action  py performing abcast ((m, p, now)), in the P-bcast

at a leader. We attach the post-broadcast VS rvice. The same client implementbiacv (m),, in the

emulation state to the message being sent. V-bcast service if it performs lar cv ((m, u, t)), in the
bcast tat d d b

cast (({end (vstate, procedq, guards)), u,now)), p peact service where = reg, andt € R.
Line 124: The leader performs the emulation b

until the end of his timeslice and no outstanding
requests or messages exist, at which point it
again broadcasts the emulation state through a
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18

2(q

22

24

2§

2§

39

32

34

34

4q

42

44

44

48

5q

52

54

54

54

6q

62

64

Input GPSupdate(v),
Effect:
if reg # v then
status<— startjoin
reg < v

Input brev(msgy
Effect:
if (msgsrc € P or msgsrc € nbrs(u)) then
holdqg < holdgq U {msg

Output beast(((join, u), p, now))p
Precondition:

reg=u

status= startjoin
Effect:

status+«— trying

joinreqts <— now

timeslice < nextT now)

round < timeslice+ K “tg;ce + d

simg holdg, guards joinregs procedq«— 0

Output bcast(((restartu), p, now)),
Precondition:

reg=u

status= trying

now = round
Effect:

joinreqts <— now

guards< 0

Internal delayrcv(msg.,p
Precondition:

msg e holdg
msgts = now-d
Effect:

holdq <+ holdg/ {msg
if msgm = (restart,u) then
if (status= trying and round < now) then
insertsortguards (msgsrc, msgts))
elsestatus«— startjoin
else if msgm = (join, u) then
joinreqgs « joinreqs U {{msgsrc, msgts) }
else if (msgm).first # endthen
simg <« simqu {m}
if msgsrc = u then
let (vstaté, procedd, guards) = (msgm).secondin
if (headguardg # headguardd) and guards# @) then
status<— startjoin
if status# leaderthen
vstate < vstaté
guards<— guards
simq «+ simq/ procedd
simq <+ simq/ {ms (msts < msgts-d and
msts < vstatenow) }
joinregs « joinreqs/ guards
joinregs « joinreqgs/ {(q, t) : t < msgts-d}
if (i, joinreqts € guardsthen
if status= trying then
status«+— guard
leadup < false
else if joinregts < msgts-d then
status<— startjoin
if (msgm).first = endthen
leadup«+ true

Internal tsBeginy,p
Precondition:
now = timeslice+ d
Effect:
if status= guardthen
if leadup= false then
guards «+— removéguards headguards)
elseguards «+ rotatg guardy
if (status= trying and (p, joinreqts) € guardsand round < now)
then
vstate<— start,
simq joinregs < 0
status<— guard
if (status= guardand (p, joinreqts) = headguards) then
status<— leader
leadup « false
procedg« 0
timeslice<— nextT§now)

Internal joinhandle((q, t))u,p
Precondition:
status= leader
(g, ty € joinregs
Effect:
while 3t € R: (t > t' and (g, t') € guardy
guards«— guards/ {(q, t')}
if (Jguardg < kand At € R: (q, t') € guardg then
appendguards (q, t))
joinregs « joinregs/ {(q, t)}

Internal VSArcv(m), p
Precondition:
status= leader
m € simq
mits < vstatenow
Effect:
vstate<— 4§, (vstate brev(msgm))
simqg < simqg/ {m}
procedq+« procedqu {m}

Internal VSAint(act),p
Precondition:

reg=u

status= leader

du(vstate act) # L
Effect:

vstate<— 4, (vstate act)

Output bcast({(m, (vstate', procedq, guards)), u,now)),
Precondition:

reg=u

status= leader

0. (vstate bcast(m)) = vstaté # L
Effect:

vstate<— vstaté

Output bcast({(end (vstate, procedg, guards)), u, now))p
Precondition:

reg=u

status= leader

now = timeslice

simq joinreqs = 0
Effect:

status«+ guard

Fig. 8. VSAE, , emulating \,, running (sigu, statesy, starty, v, 7 ): Actions
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satisfies stops when 12
2 d(now) =1 reg=uand
constant timeslice round, status reg, simg holdg, { 3 msge holdg [msgts = now -d] or 14
4 procedq guards joinreqgs leadup joinreqgts now = timeslice+ d or
if status= leaderthen status= startjoin or 16
o if vstatenow < now then (status= leaderand (now = timeslice or
d(vstatenow) > % joinregs #_0 or 3 m € simg mits Z_V_statenow)) or 18
o elsevstatenow = now (status= trying and now = round and joinreqts< now) }
else constantvstate
1q 7 also satisfies
7(now).vstate= 7 (7(now).vstatenow)
Fig. 9. VSAE, , emulating \, running (sigu, states, starty, d,, 7. ): Trajectories

C. Proof sketches Simulation relation. The next step is to show through

We sketch the oroof that the emulator imolementi'S€ of a forward simulation relation and history variables
P P Fhat the emulation results in a correct implementation of

tion is correct. First, we show that the |mplementatlon1 VSA abstraction, allowing applications built for the
manages guards sensibly. We then demonstrate a forw; I\ abstraction to run on the VSA emulators

simulation relation [15] between the implementation and ] ) i )
the VSA abstraction described in Section IlI, implying Ve define the emulation of a VSK, asfailed during

the VSA emulator correctly implements the VSA ab@n execution fragment if there is a state where there is
straction. no process that is a guard or leader. We now define the

simulation relation on states where the emulation has

For the rest of this section, consider one regioand . . .
. . . not failed. It consists of several parts, relating state of
its corresponding VSA/, and an execution where each

X . . L emulators to the state of the abstract VSA and state of
processp in regionw starts with knowledge it is in. . . .
o . ) message buffers in the implementation to those of the
For simplicity, we do not consider corruption faults here,
_ _ abstract system.
Guards management. The implementation guarantees . .
If processp is not a leader and there is a message

certain pro perties of _th@uards vector. We can show from the VSA with attached emulation state containing
the following lemmas: ' ; .
) vstate’ in P-bcastmsg[p] or p's queue of messages it
Lemma 4.1:At most one process is a leader and 3% waiting to deliver, thervstate’ from the latest such
mostk are either a leader or guard. message is equivalent 14,.vstate. If no such message
Lemma 4.2:A process that is a guard or leader reexists andp is a guard, themp’s own local value of the
mains a guard or leader until it leaves the region or failgirtual state is equivalent. If there is only a leader and

Lemma 4.3:A process that is a guard and remain§0 guards, then the leader’s local version of the virtual
alive and in the region fok timeslices will be a leader State is equivalent o', .vstate.
in at least one of those timeslices. If m is a message iP-bcastmsg[p], in p's queue

The next lemma guarantees that, subject to certain £§-messages it is holding until old enough, or jifs
sumptions about mobile node movement and failur§Ueue of messages it is saving for the VSA such that

some processes will become guards, which is necesshr{® Not a processed message in the emulation state of
for an emulation to be of a non-failed VSA: some message in transit, anchifwas sent no later than

the time on the virtual clock as figured from the virtual

Lemma 4.4:If there are fewer thark guards and state above, then it is also waiting r-bcastmsg[u].

leaders and a set of processE$ that are trying to S )
become guards that remain alive in the region for “long Lastly, if m is a message i-bcastnsg[p] that was

enough”, then a nonempty subset@f become guards. Sent by V. then the message is either in Dfpdif (if

Proof sketch: The proof has two main cases. The firsEhe virtual clock as figured from above is behind the
stamp of the message) or elselirbcastmnsg[p].

is where no processes are guards or leaders: Consiti®e
the id-ordered subset @' that remains alive througth ~ Using the simulation relation we can prove the main
into thek + 1°* next full timeslice. If any of the firsk in  theorem by induction on implementation actions:

the subset remains alive for another timeslice, then theyTheorem 4.5:The VSA emulator and the trivial client
become guards. This is throughest art messages. implementation correctly implement the VSA abstrac-
The second is the easier case where there is a guardion: Let A be the abstract VSA model, and I§tbe the

leader that remains alive long enough to add join requestsplementation. Therraces(S) C traces(A).
to the guards vector. ]



D. Self-stabilization

The implementation described here has been extended
to be self-stabilizing, guaranteeing that despite pogsibl
arbitrary initial states of real nodes in a VSA’s region,
the real nodes eventually converge to properly emulate
the VSA. To do this, the implementation described
above is extended with several trivial local checking and
correction actions, as well as a rule that if a broadcast
is received at a procegsindicating a different head of
the guards vector thanp has, thenp quits emulating
the VSA and tries to rejoin the emulation. This rule is
an important one, helping us guarantee convergence of
emulators to one consistent emulation state rather than
competing versions.

Locally checked/corrected variables.In the implemen-
tation in Figure 8 we did not describe the local correction
actions that clients should perform when elements of
their state are obviously corrupted. Rather than write
explicit actions for local correction, we describe them
briefly here.

There are several local state configurations that indi- «
cate to a client VSAE,, that its state is one that could
not have occurred unless it had been corrupted. These
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w in timeslice ts, then by d time into the next
timeslice, all processes witktatus =guar d will
have the same values fostate and guards.

« Consider a regioru and a timeslicets. If more

than one process broadcasts emulation state for
region v in timeslice ts then byd time into the
next timeslice, all processes in the region will have
status =startjoi nortrying.

« Consider a region: and timeslicets such that all

processes withreg = u have status =tryi ng

or startj oi n. Consider the subsef of these
processes that are alive in the region throddime
after the start of theés + k + 1%t timeslice. Order
the members of by process id. If at least one of
the firstk processes ity remains alive in the region
through the next timeslices, then by the end of
thets + 2k + 1°¢ timeslice a message with attached
emulation state will be broadcast by exactly one
process.

« Eventually, every process witktatus =guar d is

in guards.

By d time aftert, any messages addedsiong were
actually sent and any join requestsiinnreqs were
actually sent.

configurations are: « Consider the case where the emulation state is sent
o status = leader and (p,joinregts) # by OT_e procgss ai[ Iea.ﬁ tlme aflt.ert n Som”e
headguards) timeslice ts. By d time into timeslicets + 1, a

processes witktatus =guar d will have the same

o status = guard and(p, joinreqts) ¢ guards . o
simgq and joinreqs.

e joinreqts > now

o round > timeslice + k - tgice +d

o timeslice # nextTSnow) or nextTInow) —tsyice
o dm € (procedq U simgq) : m.ts > now — d

o I(g,ts) € joinregs : ts > now — d

o dm € simq : m.ts < now — [(k + 1) - tsice + 2d]

These together imply that eventually the emulation of
the VSA converges so that all guard processes in the
emulation share a consistent view of the emulation state.

V. CURRENT AND FUTURE WORK

In each of these cases, the client sets sitstus to Here we describe some current and future work for

startj oi n to clear its variables and try to re-join.  {ha yvsSA layer, including the examination of more re-
There are also configurations that indicate that aistic system models, consideration of more efficient

corruption or failure has occurred, though not necessarilyplementations, and design of applications for the VSA

at client VSAE, ;. In these cases we simply update théayer.

variables to remove the inconsistencies:

o If vstate.now < now —e
thenwstate.now < now — e

o If Im € holdq : m.ts > now or m.ts < now — d
then holdq < holdgq/{m}

o If 3(g,ts) € guards : ts > now — d then
guards < guards/{{q,ts)}

A. Model extensions and implementation optimizations

The system model assumed here makes optimistic
assumptions about clock synchronization and accurate
region knowledge that we are addressing. We are also
working on several other model extensions and im-
plementation optimizations. There is current work in
Correctness of self-stabilization. Consider those pro- simulating and implementing this layer in more realistic
cesses withreg = u and an execution starting from asystem models that we hope will help guide improve-

time ¢ that is€sqmpie time after no additional corruption ments and realistic implementations of this layer.

failures occur. The following then hold: Incorporating collisions. Our implementation should

« Consider a region. and a timeslices. If exactly be extended to a more realistic communication model
one process broadcasts emulation state for regitirat allows message collisions. In particular, consider
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the availability of four channels per region in the netthat the transmitting guard (the current leader) transmits
work, provided either through frequency allocation oits view concerning the guard vector as well as the latest
additional timeslicing. value of the simulated VSA state. The rest of the guards

The guards vector used to maintain consistency of th60Py the state and use it as the current most updated
emulation of the VSA defines an orderly timeslicing o¥ersion of the data on which any queued actions for
one communication channel. This channel is dedicatedtft VSA are performed. This simple strategy results in
use by the current leader of theards vector. Since in Simple self-stabilization and correctness proofs, but im-
normal operation, communication on this channel resulies high communication overhead. However, it allows
in transmissions by at most process per timeslice, ai§fning guard nodes to be updated instantly and aids
collisions on this channel are treated as errors that restiitfast stabilization of the VSA after corruption faults.
in processes in the region re-joining. Optimizations are possible to avoid sending identical
it is convenient tBhared data if these issues are relatively unimportant; for
Iexample we can repeatedly use a random key and hash

abstraction in networks with collisions. If a collision]cunCtlon that verifies with high probability that the data

occurs, the channel produces one winning message tﬁafdent'cal and transmits the data only when required,

is succesfully transmitted, representing the result of Y We can allow guards to mdepeno!e.ntlly maintain the
successful back-off protocol or completion of an execdgphcated state in parallel by determinizing the abstract
tion of consensus machine being emulated and ensuring all guards receive

: .. the same input messages.
We dedicate one consensus channel each for join ang P g

restart requests and for client-to-VSA communication.

The implementation described here is modified slightl. Applications for the VSA layer

to mcorporgte extra.dellays that may res.ult from having We believe that the VSA layer can be very useful in

to re-submit transmissions. To be certain that schemes o . .
. . . . - _..a number of applications, including some of the more

for neighboring regions do not result in collisions with

each other, we either further timeslice the Communclll_lfhcult coordination applications for nonhomogenous

X . . networks oftentimes desired in true mobile ad hoc de-
cation channel or use different sets of frequencies : ; . L

. . . ployments. In this section we list several applications
neighboring regions.

. ) . that would benefit from the VSA abstraction. We start
Leader election alternatives. The bulk of the imple- yith pasic communication primitives and then go on to
mentation presented in this paper consists of performiggscripe some more complicated applications.

a simple leader election. We are separating the lea _ .
election portion of the algorithm from the the rest of th(({jéA _to VSA communication. Ong Important: ap
lication would be a means by which remote VSAs

implementation in order to more easily take advantadge . . . .
of superior region-based leader election algorithms G communicate. To implement this service, we would
ogram VSAs to utilize the fixed tiling of the network

mobile networks. These leader election algorithms coufé forward messages to other VSAs. A message would

be designed to produce stgble outputs that take into % forwarded from the source VSA to the destination
count factors such as location, speed, power constrai ; :
A along a path of neighboring VSAs.

and reliability of individual nodes in a region. ) .
Implementation optimizations. There are a number Each VSA chooses a n¢|ghbor|ng VSA to for_vvard
the message to. The choice of a particular neighbor

of ways in which we can optimize the current VSA b q dina to th iteria. of shortest path
implementation for various network scenarios and a 1ay b€ made according 1o the criteria ot shortest pa

plications. One simple optimization would be to attac p the hdestlnatlon or grlede(rj]y DFtﬁ anSUQ?EStedfm f[lOL.
message identifiers, rather than whole messages, to g &, however, we would have the advantage ot a fixe
the emulated state being sent in the algorithm. The hg, rather than the ad-hoc imaginary tiling used in that

identifiers are sufficient to allow guards to determin?‘%or'thm' Retransmissions along greedy DFS explored

which saved messages can be thrown out. Also, é@ks may be used to cope with repeated crashes and

implemented now, everybody in a region who is not 5ec0veries [.11]' The GOAFR. algorithm [16], combining
guard is trying to become one. One might modify thgreedy routing and face routing, can also be used to give

implementation to be more power consumption friendl?ﬁ'c'em routing in the face of “holes” in the VSA tiling.

by not requiring mobile nodes to always attempt tbocation management. Location management is a
emulate the VSA. complicated task to achieve in Ad-Hoc networks. The

It is also possible to use state replication approach¥§A abstraction associates (virtual) memory and actions

that are hybrids of the ones presented here and in [é _irtual automata) to fixed geographic regions. We can
e one VSA for each client which serves the client

For example, to simplify the discussion we are assumi

For the other three channels,
considerconsensus channela communication channe
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as its home location The home location VSA is re- a number of database applications.

sponsible for maintaining location information for theyrtyal fence/ Virtual border control. The Ad-Hoc
mobile cI_ient. W_henever a cIi(_amtwouId like to locate/- pature of a system is not necessarily due to mobility.
communicate with another clieqt p uses the result of oftentimes new sensors are deployed in an area to restore
(a predefined global) hash function on the identifier afensor density after failure of some sensors. The VSA
¢ for computing the region identifier of the VSA thatapstraction is useful in handling such changes. A “fence”
serves as the home location fgrin order to ensure a of VSAs could be useful in this case for applications
more robust scheme that tolerates deserted/temporaridych as tracking and summarizing events, as well as
crashed virtual automata, the above basic schemeyiggering particular response actions such as “report to

extended in [11] to use several VSAs as the hom&mmand and control” or “light the beacon.”
locations of a mobile client. In this case the hash functi(%l

returns a sequence of region identifiers used to upd
location information and to support queries concerniq
location information.

Eerarchical distributed data structures. In large
eployments it can be desirable to establish a multi-
gyer hierarchy in the network. Hierarchies are used in

a variety of algorithms in order to guarantee attractive
Population attribute directories. Location manage- locality properties. We consider overlaying an tree on
ment schemes may be extended to support queries fR VSA regions. These trees could, for example, be
mobile clients with special characteristics. One exampifeq to allow clients to register attributes with various
would be to search for a medical doctor in an areégpdes. Other clients can query the attribute tree to find
during an emergency. The VSA abstraction serves sughjlections of nodes that have some set of attributes.

applications well by recording attributes of clients afhese queries can be designed to return local answers.

VSAs. When a query for a certain client type arrlVesAcknowIedgementSNe would like to thank Rui Fan for

the VSA checks its record (and possibly its neighborin . :
VSAs) for clients matching the query and responds. growdlng helpful comments on drafts of this paper.

HikerNet database. VSAs that correspond to ge-
ographical locations of interest like a mountain top,
campsite in a forest, or riverside picnic area could b¢l] ACM Transactions on Sensor Netwarks

; i ; ; :d2] Ad Hoc Networks JournaElsevier.
used by hikers as a source of on-line information. It i 3] Akylidz, LF. Su. W, Sankarasubramanian, Y. and @ayi

Often“mes InfeaSIb|e to have a f|Xed Computer Stat'on at E., “Wireless sensor networks: a Survey:pmputer Networks
these regions. However, transient occupancy by hikers on (Elsevier), 38(4), pp. 393-422, 2002.

; iy 4] Camp, T., Liu, Y., “An adaptive mesh-based protocol feogast
popular trails, on gOOd hlklng days' should be enoth té routing”, Journal of Parallel and Distributed Computing: Special

maintain VSAs and connectivity. A VSA could maintain  |ssue on Mobile Ad-hoc Networking and Computipg. 196—
a database of summary information about its own local 213, 2002.

e ; Demers, A., Gehrke, J., Rajaraman, R., Trigoni, N.,
conditions such as temperature, wind speed, and tHd and Yao, Y. “Energy-Efiicient Data Management for

number of hikers in its area. It could also be extended t0  sensor-Networks: A~ Work-In-Progress ~ Report”, 2nd
maintain a message board of comments such as “the river IEEE Upstate New York Workshop on Sensor Networks

PO ” « ; ; ” ; conl ab. ecs. syr/ edu/ wor kshop, 2003.
IS |mpassable or-a dangerous animal is nearby' Thl?Gl Dijkstra, E.W., “Self stabilizing systems in spite ofstlibuted

database can then be queried by hikers curious about control’, Communications of the ACMol. 17, pp. 643644,

conditions in the area. 1974.
. . . . . [7] Dolev, S.,Self-Stabilization MIT Press, 2000.
The database information could be maintained in gg] polev, S., Gilbert, S., Lynch, N., Schiller, E., Shvarian, A., and

history format. At any time, from anywhere in the area  Welch, J., “Virtual Mobile Nodes for Mobile Ad Hoc Networks”

; International Conference on Principles of Distributed Cart
of the network of VSAs, someone can query using ing (DISC) 2004. Also Brief announcement roceedings of

the VSA-to-VSA communication service to get recent  the 23th Annual ACM Symposium on Principles of Distributed
information about a designated location. Regions can Computing (PODGC)2004.

; ; ; ; ; Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch,
become unoccupied, in which case the history d|sappea[(%} "GeoQuorums: Implementing Atomic Memory in Ad Hoc Net-

and starts over when new people arrive. The history will  works”, 17th International Conference on Principles of Dis-
be complete for as long as a VSA is maintained by tributed Computing (DISC) Springer-Verlag LNCS:2848, pp.

T ; 306-320, 2003.
continuing occupancy of the forest location. [10] Dolev, S., Herman, T., and Lahiani, L., “Polygonal Bdeast,

Some resiliency can be built in by automatically keep- ~ Secret Maturity and the Firing SensorsThird International
i i i i i i Conference on Fun with Algorithms (FUNpp. 41-52, May
ng COF.)I.eS of histories baqked up .at neighboring VSAs. 2004. Also Brief announcement iffroceedings of the 23th
In addition, the collected information could be sent to  annual ACM Symposium on Principles of Distributed Computin
a central, reliable, known location by a background (PODC) 2004.
convergecast algorithm that is executed by the VS! Dolev. S., Lahiani, L., Lynch, N., Nolte, T., 'Self-Siéizing

. . . Mobile-Sensor Home Location Management”, Manuscript,200
network. This backup concept is useful in general for
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