
1

Virtual Stationary Automata for Mobile Networks
Shlomi Dolev,� Seth Gilbert,y Limor Lahiani,� Nancy Lynch,y Tina Noltey

Abstract— We define a programming abstraction for
mobile networks called the Virtual Stationary Automata
programming layer, consisting of real mobile clients, virtual
timed I/O automata called virtual stationary automata
(VSAs), and a communication service connecting VSAs and
client nodes. The VSAs are located at prespecifiedregions
that tile the plane, defining a static virtual infrastructur e.
We present a self-stabilizing algorithm to emulate a VSA
using the real mobile nodes that are currently residing
in the VSA’s region. We also describe several examples
of applications whose implementations benefit from the
simplicity obtained through use of the VSA abstraction.

I. I NTRODUCTION

The task of designing algorithms for constantly chang-
ing networks is difficult. Highly dynamic networks,
however, are becoming increasingly prevalent, especially
in the context of pervasive and ubiquitous computing,
and it is therefore important to develop new techniques
to simplify this task.

In this paper we focus on mobile ad-hoc networks,
where mobile processors wander the world, coordinating
their computation despite minimal infrastructure support.
We develop new techniques to cope with this dynamic,
heterogeneous, and chaotic environment. In particular,
we attempt to mask the unpredictable behavior by em-
ulating a staticvirtual infrastructure that mobile nodes
can interact with. The static virtual infrastructure allows
for simpler algorithms — including many previously
developed for fixed networks.

Virtual Stationary Automata programming layer.
The static infrastructure consists of fixed, timed virtual
machines, calledVirtual Stationary Automata(VSAs),
that are tiled over the entire plane. We develop a
programming layer (which might be implemented as
middleware) in which mobile nodes can take advantage
of the virtual infrastructure to coordinate their actions.
Each VSA represents a predetermined geographic area�Department of Computer Science, Ben-Gurion University,
Beer-Sheva, 84105, Israel. Partially supported by IBM faculty
award, NSF grant and the Israeli ministry of defense. Email:fdolev,lahianig@cs.bgu.ac.il.yMIT Computer Science and Artificial Intelligence Laboratory,
The Stata Center 32-G670, Cambridge, MA 02139, USA. Sup-
ported by DARPA contract F33615-01-C-1896, NSF ITR contract
CCR-0121277, and USAF,AFRL contract FA9550-04-1-0121. Email:fsethg, lynch, tnolteg@theory.csail.mit.edu.

and has broadcast capabilities similar to those of the
mobile nodes, allowing nearby VSAs and mobile nodes
to communicate with one another.

Many practical algorithms depend significantly on
timing, and it seems reasonable to assume that mobile
nodes have access to a synchronized clock. In the VSA
programming layer, the virtual automata, too, have ac-
cess to avirtual clock. Moreover, the VSA programming
layer guarantees that the virtual clock never drifts too far
from the real clock. This requirement introduces signifi-
cant difficulty in implementing the virtual infrastructure.

The virtual infrastructure that we propose differs in
key ways from prior attempts to design abstractions for
mobile ad-hoc networks. The GeoQuorums algorithm [9]
proposes storing data at fixed locations; however it only
supports atomic objects, rather than general automata.
Another earlier attempt at defining a virtual infrastruc-
ture, the “Virtual Mobile Node Abstraction” proposed
in [8], supports general automata; however the automata
do not have access to a virtual clock. Moreover, the state
machine replication algorithm described there cannot
support a virtual clock. It is of interest to note that
these abstractions could easily be implemented using the
virtual infrastructure we describe here.

Emulating the virtual infrastructure. The VSA layer
is emulated by the real mobile nodes in the network. In
particular, a VSA is emulated by a bounded-size subset
of the mobile nodes currently populating its geographic
region: a mobile node that enters the geographic region
of a VSA attempts to participate in the emulation of the
region’s VSA; a mobile node that leaves the geographic
region ceases to emulate the VSA. If all the mobile nodes
leave a VSA’s region, then the VSA fails; if mobile nodes
return, then the VSA restarts.

The state of the VSA is maintained in the memory
of the participants, allowing them to perform actions
on behalf of the virtual automaton. The implementation
uses a “round-robin” approach in which participants take
turns emulating the virtual automaton.

An important property of our implementation is that it
is self-stabilizing. Self-stabilization [6], [7] is the ability
to recover from an arbitrarily corrupt state. This prop-
erty is important in long-lived, chaotic systems where
certain events can result in unpredictable faults. For
example, transient interference may disrupt the wireless
communication, violating our assumptions about the

2

broadcast medium. This might result in inconsistency
and corruption in the emulation of the VSA. Our self-
stabilizing implementation, however, can recover after
corruptions to correctly emulate a VSA.

We present an algorithm that is a significant im-
provement over the prior attempts to emulate a virtual
infrastructure described in [9], [8]. It is much more
power efficient, limiting the number of participants to the
minimum necessary to guarantee reliability. Moreover,
the new algorithm reduces the number of messages
broadcast and eliminates the duplicated messages that
are possible in [8]. The current implementation also
allows for faster emulation, introducing significantly less
overhead into computation. Finally, the prior implemen-
tations are not self-stabilizing.

Applications. We present in this paper an overview
of some applications that are significantly simplified
by the VSA infrastructure. We consider both low-level
services, such as routing and location management, as
well as more sophisticated applications, such as pursuer
identification and tracking. The key idea in all cases is to
locate data and computation at virtual automata through-
out the network, thus relying on the fixed, predictable
infrastructure to simplify coordination. It is interesting
to note that this infrastructure can be used to implement
services that are oftentimes thought of as the lowest-level
services in a network.

Our contributions. This paper contains three main
contributions. First, we define a new VSA program-
ming layer that supports timing dependent applications.
Second, we present an energy efficient, self-stabilizing
implementation of this virtual infrastructure. Finally,
we discuss some applications that take advantage of
the virtual infrastructure. We are currently working on
understanding real-world implementation concerns.

Other prior work. There are a number of prior
papers that take advantage of geography to facilitate the
coordination of mobile nodes. For example, the GeoCast
algorithms [19], [4], GOAFR [16], and algorithms for
“routing on a curve” [18] route messages based on the
location of the source and destination, using geography
to delivery messages efficiently. A number of other
papers [17], [12], [20] use geographic locations as a
repository for data. These algorithms associate each
piece of data with a region of the network and store
the data at certain nodes in the region. This data can
then be used for routing or other applications. All of
these papers take a relatively ad hoc approach to using
geography and location. In this paper we suggest a more
general approach; all the algorithms presented in these
papers would be simplified by using VSAs.

Organization. The rest of the paper is organized as
follows. The system settings are described in Section II.

We then define the virtual stationary automata (VSA)
layer in Section III. Next we present a “round-robin”
implementation of the virtual infrastructure in IV. We
then describe some extensions and applications of VSAs
in Section V.

II. DATATYPES AND MOBILE AD HOC SYSTEM

MODEL

The system consists of a finite collection of mobile
client processes moving in a closed region of the plane
(see e.g., [9], [10]). In this section we formally describe
the system, including: (1) datatypes used in the system
description, (2) the model for the GPS automaton pro-
viding location and timing information to nodes, (3) the
specification for a generic broadcast service, and (4) the
model for the mobile clients deployed in the network.

A. Datatypes

Here we list the globally known constants. These
define the regions (or tiles) of the netwotk, as well as
the identifiers of the real mobile nodes:� R, a fixed closed connected region of the two-

dimensional plane. Our results should be extend-
able to larger dimensions given appropriate distance
metrics in Section 3.� U , a finite set ofregion identifiersfor subregions
of R.� nbrs, a symmetric neighbor relation between ele-
ments ofU .� m = jU j.� region, a mapping fromU to connected subsets ofR. We assume thatfregion(u) : u 2 Ug forms a
partition ofR into tiles. In practice, one might want
the regions that tileR to be regular polygons such
as squares or hexagons.� regid, a mapping from R to U , such thatregid(x; y) is equal to the uniqueu 2 U such that(x; y) 2 region(u).� P , a finite set ofnode identifiers. We restrictP andU so thatP \ U = ;.

B. GPS

The system is assumed to include a GPS automaton,
providing location information to real mobile nodes. The
GPS automaton is described formally in Figure 1. It is
a timed I/O automaton (TIOA [15]) with access to a
real time clock and that keeps the current location of all
mobile nodes.

The main pieces of data kept by GPS are:� now 2 R, a clock variable, representing real time.

3

Signature:
2 Output GPSupdate(u)p, u 2 U; p 2 P

Internal updatefin
4

State:
6 analog now2 R, current real time

sample2 R, the next sample time, initiallynow
8 analog loc, an array of(x,y) coordinates inR, indexed byP

analog vel, an array of(x,y) velocities inR, indexed byP
10 updated, an array of Booleans, indexed byP , initially all true
12 Derived variables:

maxdist(a, b) =
14 if a,b 2 P:jloc[a ℄-loc[b ℄j
16 if a,b 2 U:supi2region(a);j2region(b) jloc[i ℄-loc[j ℄j
18 if a 2 U, b 2 P:supi2region(a) jloc[i ℄-loc[b ℄j
20 if a 2 P, b 2 U:supi2region(b) jloc[i ℄-loc[a ℄j

Actions:
24Output GPSupdate(u)p

Precondition:
26now= sample

updated[p ℄ = false
28u = regid(loc[p ℄)

Effect:
30updated[p ℄ true

32Internal updatefin
Precondition:

348p 2 P. updated[p ℄ = true
Effect:

368p 2 P. updated[p ℄ false
sample now + �sample

38

Trajectories:
40satisfies

d(now) = 1
428p 2 P.jvel[p ℄.x, vel[p ℄.yj � vmax
44

d(lo[p℄:x)dt = vel[p℄:xd(lo[p℄:y)dt = vel[p℄:y
46constant updated, sample

stops when
48now= sample

Fig. 1. GPS automaton� lo, the continuously changing array of coordinates
in R, indexed by node id.

We restrict the rate of change in locations, and hence
the speed of the mobile nodes, to be at mostvmax. To
facilitate the task of updating processes with their region
locations, we use two additional pieces of state:� sample 2 R, the next sample time.� updated, an array of Booleans indexed by process

id, keeping track of whether an update for a partic-
ular process has occurred in this sample period.

We also define a derived variable based on the GPS state
that is used throughout the paper:� maxdist, an overloaded function from(P [U) �(P [U) to R that gives the distance between two

nodes, the supremum distance between points in
two regions, or the supremum distance between a
node and a point in a region.

The GPS automaton has no input actions and performs
only one kind of output and internal action:� Output GPSupdate(u)p; u 2 U; p 2 P : GPS

is responsible for alerting each mobile nodep
of the identifier of the regionu where p is cur-
rently residing. When a sample period deadline
arrives (sample = now), the automaton performs
a GPSupdate(u)p whereu = regid(lo[p℄), for
eachp 2 P . It then updatesupdated[p℄ to true,
indicating the update has been performed.� Internal updatefin: When all updates have oc-
curred, theupdatefin action changesupdated[p℄

to false for allp 2 P and sets the time for the nextlo sampling to be�sample from now.

C. Broadcast service specification

Communication in the system is in the form of a local
broadcast service. Here we provide a generic broadcast
specification that is instantiated in the paper for various
participants. We call the generic service bcast, parame-
terized by:� r, the broadcast radius.� d, the message delay.� I , the set of port identifiers.

A service with these parameters is then called
bcast[r; d; I ℄. It includes one piece of state:� msg, an array of messages indexed byI .

The service provides one output and one input action:� Input bcast(m)i: The service allows for a porti 2 I to broadcast a message throughbcast(m)i.
For eachj in a set of identifiersI 0 � I , the
bcast(m)i action puts a copy ofm into a buffermsg[j℄.� Output brcv(m)i: A messagem in msg[j℄ is
delivered at portj through abrcv(m)j action,
resulting in removal ofm from msg[j℄.

The service guaranteesreliable deliveryand integrity:� Reliable delivery guarantees that if a porti trans-
mits a message, then every portj such that

4maxdist(i; j) � r during the entire time interval
starting from transmission and endingd time later
receives the message withind time of transmission.� Integrity guarantees that for anybrcv(m)i that oc-
curs, abcast(m)j previously occurred, for somej 2 I .

We also require that the service guarantees that for any
messagesm 6= m0, if a port broadcastsm and later
broadcastsm0, any port that receives both messages
receivesm beforem0. This guarantee is assumed for
convenience; it is possible to guarantee this property
by supplementing messages with additional information
to allow recipients to reorder broadcasts from the same
sender. However, this is not the focus of the paper, so
we simply assume we are guaranteed this property.

In practice, a broadcast service would have bounded
message buffers. Bounded buffers are also necessary to
guarantee self-stabilization in the face of corruption er-
rors. Here we assume that in the event of buffer overflow,
overflow messages are lost. Buffer sizes are oftentimes
chosen by considering the maximum node density of the
network and maximum frequency of message broadcasts.
Here we assume the buffers are sufficiently large that
overflows do not occur in normal operation.

The model can be extended to incorporate collisions.
A brief discussion of the impact of collisions on our
work can be found in Section V-A.

D. Client nodes andP -bcast

.

.

.
GPS

p

p

p

bcast(m)

brcv(m)
C

.

.

.

msg[q], q in P

P−bcast

msg[p], p in P

q

qbrcv(m)
Cq

bcast(m)

restart q

restart p

fail q

fail p

GPSupdate(u)p

GPSupdate(v)q

Fig. 2. P-bcast and client node interface. Client nodes can receive
GPS updates and communicate together through the P-bcast service.

For eachp 2 P , we assume a timed I/O automatonCp
(Figure 2) with access to the following local variable:

� now 2 R, a clock variable, representing real time
and synchronized across clients. For simplicity’s
sake, we treatnow as a local variable that pro-
gresses exactly like real time. Thisnow variable
could, alternatively, be a variable frequently updated
by a GPS automaton.

Client also have access to a local broadcast service
that is defined as an instantiation of the generic bcast
service described in the last section, calledP -bcast and
parameterized by the following:� rreal, the broadcast radius.� d, the message delay.� P , the node ids, meaning there is one communica-

tion port per process.

A client Cp is assumed to have at least the following
external interface, allowing the client to broadcast and
receive messages and receive GPS region updates. The
interface also allows the possibility that nodes may
crash-stop and later restart:� Output bcast(m)p: A node p may broadcast a

message throughbcast(m).� Input brcv(m)p: A node p receives messages
throughbrcv(m).� Input GPSupdate(u)p: GPS updates for a nodep occur through theGPSupdate(u)p action, indi-
cating thatp is currently located in regionu.� Input failp: A nodep can be halted by afailp
input and then performs no local steps unless it later
recovers through arestartp input.� Input restartp: The restartp action restarts
the node automaton from an initial state.

In addition we assume that there may exist arbitrary
input and output actions with the external environment
and there may be other pieces of local state used by an
algorithm running at the node.

For convenience we assume local steps take no time.
Also, for simplicity of presentation, we assume for now
that the nodes do not suffer from corruption failures.
When a node suffers from a corruption failure, the node
suffers from nondeterministic changes to its program
state. We discuss the case where corruption faults may
occur in Section IV-D.

III. V IRTUAL STATIONARY AUTOMATA

PROGRAMMING LAYER

The Virtual Stationary Automataprogramming ab-
straction includes both the real mobile nodes discussed
in the last section and virtual stationary automata (VSAs)
the real nodes emulate, as well as a local broadcast
service, V-bcast, between them (see Figure 3). This
abstraction allows users to write programs for stationary

5

.

.

.

.

.

.

 .
 .
 .

restart

.

.

.

fail v

fail u

vV

uV

v

urestart

restart

vbcast(m)

vDout[e]

vbrcv(m)

GPS

q

qbrcv(m)
Cq

pbcast(m)

pbrcv(m)
Cp

u

u

bcast(m)

brcv(m)

bcast(m)
msg[v], v in U

msg[u], u in U

V−bcast

msg[p], p in P

msg[q], q in P

p

restart q

uDout[e]

GPSupdate(u)p

GPSupdate(v)q

fail p

fail q

Fig. 3. Virtual Stationary Automata abstraction. VSAs and clients communicate using the V-bcast service. VSA bcasts may be delayed in
Dout buffers.

regions of the network as though broadcast-equipped
virtual machines exist in those regions. In this section
we define what we can support in this layer, given that
the VSAs and the V-bcast service must be implemented
by the underlying real mobile nodes.

Here we describe the properties of VSAs we can
support. We then describe the V-bcast service. The V-
bcast service is similar to the mobile nodes’P -bcast
service except that: (1) it allows communication between
neighboring VSAs and nearby mobile nodes, and (2) the
broadcast radius supported is slightly smaller than that
of P -bcast, for reasons we will explain. Finally, a VSA
is emulated by real mobile nodes that coordinate their
emulation and may fail. This emulation by real nodes
can introduce delays in the emulation of the VSA which
we describe with the concept ofdelay augmentation.

A. Virtual Stationary Automata

A VSA is an abstraction describing a virtual machine
that may be emulated by the underlying real mobile
nodes residing in particular regions in the network. The
VSA is permitted to use timing. We formally describe
such a timed machineVu as a TIOA whose program
can be referred to as a tuple of its action signature,
valid states, its start state, a discrete transition func-
tion, and the set of valid trajectories of the machine:hsig; states; start; Æ; �i. Trajectories [15] describe the
evolution of the state over intervals of time.

To guarantee that we can emulate the machine we
must guarantee that inputs and outputs are such that

they can be emulated by the real mobile nodes. Hence,
the automaton’s external interface is restricted to include
only failure/restart inputs and the ability to broadcast and
receive messages. In other words, we restrict this virtual
automatonVu to have only four external actions:� Input failu: A VSA can be crashed by afailu

input, making no local steps unless it later recovers.� Input restartu: A failed VSA makes no local
steps unless it later recovers through arestartu
input, resulting in a reset ofvstate to a state instart.� Input brcv(m)u: The VSA at regionu receives a
broadcast messagem from the V-bcast service.� Output bcast(m)u: The VSA broadcasts a mes-
sagem through the V-bcast service.

The current state of all variables ofVu can be referred
to collectively and is assumed to include a variable
corresponding to real time:� vstate 2 statesu, the current state ofVu.� vstate:now 2 R, the clock time ofVu.

While we do not explicitly do so in this section for pre-
sentation reasons, the VSA programming layer has been
extended to incorporate corruption failures. This is mod-
eled using an additional input action calledcorruptu,
resulting in a nondeterministic change to any portion ofvstate exceptvstate:now. A corrupt action at this
layer is restricted to only occur if acorrupt action
occurs in the mobile node layer. If the model is extended
to incorporate corruption failures, users of the model
must be careful to programVu with the possibility of

6

corruption in mind, meaning programs forVu must be
self-stabilizing.

B. V-bcast service

The V-bcast service is a local broadcast service similar
to that of the mobile nodes’P -bcast service and im-
plemented using the real mobile nodes and theP -bcast
service. It allows communication between neighboring
VSAs and between VSAs and nearby nodes. It supports
a slightly smaller broadcast radius than that ofP -bcast.

We again define the V-bcast service as an instantiation
of the bcast service. In this case it is instantiated with:� rvirt, the broadcast radius.� d, the message delay, equal to that ofP -bcast.� P [U , meaning there is a communication port for

every process and virtual automaton.

The V-bcast service provides the same guarantees as the
generic bcast specification described in the prior section.
This service allows a VSA for regionu and a real mobile
nodep to communicate as long as the node is at mostrvirt distance from any point in regionu and a VSA to
communicate with another VSA as long as the maximum
distance between points in either VSA is at mostrvirt.

In order to guarantee that two neighboring VSAs may
communicate we require that the tiling described byregion and the region neighbor relationnbrs satisfies
the restriction that for any neighboring regionsu; v 2 U ,
the supremum distance between a point inu and a point
in v is at mostrvirt.

The implementation of the V-bcast service using the
mobile clients’P -bcast service also introduces the re-
quirement thatrreal � rvirt + 2�sample � vmax. This
guarantees that two nodes that are unknowingly emulat-
ing VSAs for regions they have just left (because they
have not yet receivedGPSupdates to change regions)
can still receive messages transmitted to each other.

Messages intended for a nodep are stored in buffermsg[p℄ until delivery and messages intended for a VSAu are stored inmsg[u℄.
C. Delay augmentation

A VSA Vu is an abstraction that is emulated by under-
lying real mobile nodes. While the resulting emulation ofVu would ideally look identical to a legitimate execution
of Vu, the abstraction must reflect the possibility that,
due to delays resulting from message delay or real node
failure, the emulation ofVu might be slightly behind
real time and appear to be delayed in performing output
actions of Vu by up to some time that we’ll calle.
The emulation ofVu is then called adelay-augmented

TIOA, an augmentation ofVu with timing perturbations
composed withVu’s output interface. These timing per-
turbations of up toe time are represented with a buffer
Dout[e℄u, composed withVu’s bcast output. The buffer
is a message multiset that delays delivery of messages by
some nondeterminstic time[0; e℄. The program actions
of Vu must be written taking into account the emulation
parametere, just as it presumably takes into account the
message delay factord.

IV. ROUND-ROBIN IMPLEMENTATION OF A VSA

We describe the implementation of an abstract VSA by
mobile clients in its region. We then give several proof
sketches and discuss the self-stabilizing extension of the
implementation.

A. Implementation description

Here we describe, at a high leve,l a fault-tolerant
implementation of a VSA emulator. We begin by de-
scribing a single emulator solution. We then extend the
solution to be fault-tolerant by using multiple emulators
and describe around-robin mechanism to manage the
multiple emulators.

Single emulator solution. In the simplest version
of virtual machine emulation, there is one designated
mobile node called aleader that emulates the VSA.
The leader has sole responsibility for the emulation,
performing all actions of the VSA based on its locally
stored version of the VSA state, identical to the state of
the abstract VSA, and messages it has received.

Multiple emulator extension. For fault-tolerance and
load balancing reasons, it is necessary to have more
than one process emulating a VSA. In the more general
multiple emulator approach a VSA for a regionu is
emulated by up tok (a constant) mobile nodes located
in regionu calledguards. At any time, there is at most
one guard that is designated leader that emulates the
VSA. As before, the leader emulates actions of the VSA
based on its locally stored version of the VSA state and
messages it has received. Occasionally the leader hands
off responsibility for emulating the VSA to another guard
by sending a special hand-off message, containing a copy
of the leader’s current emulated VSA state. When a
guard receives this message it updates its local copy of
the VSA state to be consistent.

This hand-off introduces several complications in the
VSA emulation, resulting both from message delivery
delays and failures of leaders that are emulating the
VSA. The first is that a messagem could bebcast
to the VSA but not received by the leader before it
bcasts a hand-off message; if non-leaders do not save

7

such messages they would hearm, discard it, receive
the hand-off message, and (if now a leader) continue to
emulate the VSA as thoughm was never received. To
prevent the emulation from failing to eventually process
messages, all guards save received messages locally for
use when it is their turn to emulate the VSA. To ensure
that multiple-processing of messages at the VSA does
not result, the emulators need to know which of the saved
messages have already been processed by the leader. To
answer this, the leader sends more than its emulated
VSA state with a hand-off message — it also sends a
queue of the messages it processed for the VSA while
leader. When a guard receives the hand-off message it
updates its local VSA state as before and then deletes
those messages already processed by the VSA from its
local queue of messages to be processed.

Message delays complicate matters for another reason
as well. A leader could, for example, receive a messagem, process it, and send a hand-off message. The next
leader could receive the leader’s message, update its local
state, andthenreceive the messagem. It would then re-
processm, which is undesirable. This is easily solved
by having all messages timestamped with the time they
were sent and all guards wait for the fulld message
delay time after a message’s timestamp before handling
it for any reason. Any message received or handled is
guaranteed to have been seen by other processes as well.
This proves to be useful later in several places.

Due to message delays that occur during hand-off and
additional delays that can occur because of failures of
leaders, the emulation of the VSA may be behind in real
time by a considerable amount. Intuitively, the VSA em-
ulation runs on a virtual clock that is stopped whenever
a hand-off message is in transit and whenever no leader
is currently emulating the VSA. In order to guarantee
that the VSA emulation satisfies the specifications from
Section 3, the virtual clock must be able to catch up
to real time during periods when the VSA emulation is
running (the specification bounds the amount of time the
output trace of the VSA emulation may be behind that
of the VSA being emulated by a parametere). This is
done by having the virtual clock advance faster than real
time until both are equal, at which point they increase at
the same rate. This is illustrated in Figure 4, where the
progress of the virtual clock proceeds in fits and starts
relative to real time, occasionally falling behind and then
having to catch up. The magnitude of speed-up of the
virtual clock is dependent on how long the leader hand-
offs take and how often guards fail or leave the region.

A related problem occurs in the processing of mes-
sages. Since the virtual time may be behind real time, it
is possible that there are messages that should eventually
be processed but that were sent at a real time after the

t’

t

t−t’<e

virtual clock

real clock t’’

t’’

Fig. 4. Relationship between virtual and real time. Virtualclocks that
are behind real clocks run faster until they catch up.

virtual time. Delivery of future messages from the per-
spective of the emulated VSA is undesirable; it violates
the requirement that the VSA emulation produces an
execution that looks like one of the abstract VSA with
additional message delays. This problem is solved by
simply waiting to process a message until the virtual
clock passes the message’s timestamp.

Another complication results when a leaderbcasts
messages on the VSA’s behalf but fails before sending a
hand-off message. In this case, the next leader emulating
the VSA has an out-of-date version of both the emulated
VSA state and the queue of messages already “received”
by the VSA. Based on this out-of-date information, the
new leader may re-perform actions already performed by
a prior leader. As a result, the external trace, andbcasts
in particular, might not be consistent with a trace of the
abstract VSA. To handle this, when a leader performs a
bcast action for the VSA it attaches its version of the
post-bcast VSA state and processed messages to the
message. If the leader fails to transmit a hand-off, the
next leader will pick up emulation at the state attached
to the last output, guaranteeing consistent traces.

Round-robin emulator management. The multiple
emulator approach relies on a fault-tolerant algorithm
for managing leadership. In theround-robin approach
this is done by defining globally known synchronized
timeslicesand maintaining ak-bounded rotatingguards
vector of process id/timestamp pairs, defining revolving
responsibility for VSA emulation. The timestamp is the
time when the guard requested to join the vector and is
explained later. Whichever guard’s pair is currently at
the head of the rotating vector is designated the leader.

Each timeslice is of a predetermined lengthtslie such
that tslie � e=k and tslie > d. A round lengthis the
amount of time it takes fork timeslices to pass.

For consistency reasons, as before, anybcasts for
the VSA performed by the leader have attached to
them the leader’s latest version of the emulated VSA
state and the messages processed by the VSA during
the leader’s emulation period. Now, to keep leadership

8

views consistent, we also transmit the leader’sguards
vector. The tuple of the three pieces of information is
called theemulation state. When a guard receives the
emulation state, in addition to prior changes to its local
state, it updates itsguards vector to match that of the
leader. It uses the newguards vector to clean up too
old or unsuccessful requests to join theguards vector
(described later).

<q,t >q <w,t >w <x,t >x <y,t >y

<q,t >q <w,t >w <x,t >x <y,t >y

<w,t >w <x,t >x <y,t >y <q,t >q

<x,t >x <y,t >y <q,t >q

process w fails:

timeslice ts:

timeslice ts+1:

timeslice ts+2:

Fig. 5. Handling failures in the guards vector. Process w fails in
timeslice ts. In timeslice ts+1, after the vector rotates, wis supposed
to be leader. Other guards do not receive a hand-off from w andremove
w from the vector at the beginning of timeslice ts+2.

At the end of a timeslice, the leader broadcasts a hand-
off message. It then becomes a regular guard. All guards
should receive this message byd time into the next
timeslice, if it was sent. If it was not, then all guards
will remove the previous leader’s entry from their local
versions of theguards vector (Figure 5).

All guards then rotate the vector once. The new head
of the guards vector becomes leader for the timeslice
and starts emulating the VSA based on its local version
of the emulation state. In order to make up the time that
is lost between the last sending of the emulation state by
a leader and its own pick-up of the emulation, the new
leader emulates the VSA using a sped-up virtual clock
as described before.

The magnitude of the speed-up is determined as fol-
lows: Assume that we are considering a VSA emulation
where at least one leader completes his timeslice in each
round. With this assumption, the furthest that the virtual
clock could be behind when a leader starts emulating the
VSA is (k�1) � tslie+d, since at worstk�1 leaders in
a row could have failed without sending any emulation
state, followed byd time for the one alive leader to start
emulating the VSA again. To ensure that by the end of
the timeslicetslie� d later the virtual clock has caught
up to real time, the virtual clock must emulate a total ofk � tslie time in the time that the leader is emulating the
VSA, namelytslie � d time. Together, this gives that
the leader must advance the virtual clock at a speed of

at leasts > k�tslietslie�d times the rate of real time.

<x,t >x <y,t >y <q,t >q

<x,t >x <p,t >p<y,t >y <q,t >q

join request: <p,t >p

Fig. 6. Adding a join request to the guards vector. Process p sends
a join request at time tp. If the vector is not too large, the leader
processes the request, addinghp, tpi to the end of the guards vector.

A process that enters a region attempts to become
a guard by broadcasting a specialjoin message and
then collecting messages just as guards would. All guard
processes save the process id and time the message was
sent in a local queue of join requests. A leader processes
a request from its local queue by adding the process id
and timestamp pair to the end of its localguards vector,
if there is room (Figure 6). A processp that started trying
to join at timet examines any messages broadcast by the
leader for the attached emulation state’sguards vector
to determine if its pairhp; ti has been added. If so, it
changes its status to beguard. If not and enough time
has passed since its request that the leader would have
added it if there was room,p just tries to re-join.

Notice that when joining, processp only deems itself
successful if it sees itshp; ti pair in theguards vector,
rather than any pairhp; t0; i where t 6= t0. This deals
with the case wherep might be a guard in regionu,
leave the region, and then try to rejoin the region before
it is removed from theguards vector. If p were to
immediately start emulating the VSA at this point, it
would run the risk of not having received and queued
all messages for the VSA that it should have. Insteadp waits to see that its newest join request is reflected
in the guards vector before becoming a guard. This
is safe since its join request is not seen by it in aguards vector until at least2d time after p sent it
(due to mandatory waiting before delivering messages),
guaranteeing it has collected all the broadcast messages
that are not summarized in the emulation state.

If a process tries to join but a round goes by without
it hearing any broadcasts by a VSA emulator, it con-
cludes there are no emulators for the VSA. In this case,
it broadcasts arestart message and collects other
restart messages that are broadcast. The senders of these
messages are sorted by id in theguards vector and the
one with the lowest id becomes leader in the next round.

B. Detailed code description

The emulators for the VSA (VSAEs) run on individ-
ual mobile nodes. Formally, there exists one emulator

9

automaton VSAEu;p for each pair(u; p) 2 U � P .
This automaton handles mobile nodep’s portion of the
emulation of Vu. Here we describe in detail the actions
described in Figure 8, the locally checked and corrected
actions, and the trajectories described in Figure 9.

Discrete action descriptions. We begin by describing
the code for VSAEu;p in Figure 8.� GPSupdate(v), Line 1: This input indicates

process p is in region u. Processp changes
its reg to the region v. If the region is dif-
ferent from p’s previous region,p changes itsstatus to startjoin, which in turn enables the
bcast(hhjoin; ui; p; nowi) action.� brcv(msg), Line 7: Messages sent to and from
the VSA are of a special form. In particular, they are
three-place tuples, including the message one wants
to send, the source (whether it be a VSA or a client),
and the timestamp of the message. For convenience,
we refer to these portions of the messagemsg asmsg:m;msg:sr; andmsg:ts respectively. We will
assume in the implementation of the VSAs that any
messages received through thebrcv action are of
this special form. We note that any messages not of
this form can simply be “filtered out.”
When a processp receives such a messagemsg
from a client or from a neighboring VSA through
the brcv(msg) action, it places the message into
theholdq queue.� bcast(hhjoin; ui; p; nowi), Line 12: This broad-
casts a join request byp for the VSA atu. This
changesp’s status totrying, sets itsjoinreqts
timestamp (used to keep track of when it asked
to join the guards vector), sets the start time
for the next global timeslice, setsround (a dead-
line to determine that no guards are emulating
the VSA), and initializes itsguard vector and itssimq; holdq; guards, andjoinreqs queues.� bcast(hhrestart; ui; p; nowi), Line 23: If the VSA
has failed, the joining node (p) will receive no
broadcasts from guards fork time slices. After theround deadline is reached, the node broadcasts a
restart message. This results in a reset ofp’sjoinreqts to the current time and an emptying of
theguards vector, in preparation for starting a new
one.� delayrcv(msg), Line 32: When d time
has passed from the timestamp ofmsg, the
delayrcv(msg) action removes the message
from holdq and handles it depending on the kind
of message.
If the message is a restart message andp has a status
of trying and around deadline that has passed,p places the sender’s id with the message timestamp

into its guards vector, sorted in ascending order by
id. If p is either nottrying or its round deadline
has not passed, it tries again to join.
The delayrcv action processes a join request
message by adding the join request id and times-
tamp pair to its localjoinreqs queue.
For any process, whendelayrcvi handles a mes-
sage inholdq that is not ajoin, restart, or
end message, it puts it into the localsimq, which
acts as a virtual message buffer for the VSA.
If the message’s sourcemsg:sr is the VSA forp’s
region, the emulation state attached to the message
is used to updatep’s emulation state. If the receivedguards vector indicates a different leader than the
one p currently has (and theguards vector isn’t
empty, which only happens fortrying processes
that have not processed any emulation state message
yet), it re-joins; something went wrong someplace
for this to happen. Ifp is not the leader, it copies
the vstate and guards vector indicated in the
emulation state (the leader does not copy over his
up-to-date state of emulation with the outdated state
it may have sentd time ago, since the emulation
state should have progressed since that time). For
any status,p updates itssimq by cleaning out those
messages already processed by the leader and those
messages that are simply too old relative to the
time when the state was sent. Similarly, it cleans
out its list of outstanding join requests by removing
those join requests from its localjoinreqs that are
already reflected in theguards vector, as well as
those requests that are old enough that they would
have been seen by the leader.
If the guard vector incorporatesp’s join request andp is still trying, then its status becomesguard
andleadup gets initialized tofalse. If, however, the
node’s request is not reflected and the message’s
timestamp is more thand time after its join request
then the node restarts its join.
If the specialend message is received, theleadup
variable is updated to indicate that the leader sent
out an end-of-timeslice message.� tsBegin, Line 68: In actiontsBegin, d time af-
ter the beginning of a timeslice, all guards perform
some guards vector upkeep. Ifleadup is false,
indicating the leader failed in the last timeslice, the
head of theguards queue is dropped. Otherwise,
the vector is rotated once.
If p is still trying, it’s id andjoinreqts are in theguards vector, and the deadline for hearing from a
guard has passed, then the VSA emulation has been
restarted andp is a guard. As a resultp changes
its status toguard, starts the VSA again in an
initial state, and initializes the list of outstanding

10

Bcast Messages:
2 M0 = M � (P [U) � R, whereM may be arbitrary.

For convenience, we viewmsg 2M 0 as a record:
4 msg = hm; sr; tsi.

We allow the use ofmsg:m:first (or seond) to access
6 the first or second field ofm in the eventm is a tuple.

8 Signature:
Input GPSupdate(v)p, v 2 U

10 Input brcv(msg)p, msg2 M0
Output bcast(msg)p, msg2 M0

12 Internal delayrcv(msg)u;p, msg2 M0
Internal tsBeginu;p

14 Internal joinhandle(hq, ti)u;p, q 2 P, t 2 R
Internal VSArcv(m)u;p, m 2 M0

16 Internal VSAint(at)u;p, act 2 internal actions ofsigu
18State:

vstate2 statesu, the state ofVu
20analog now2 R, the current real time

reg 2 U, p0s region location, initiallyinit(p)
22status2 fguard, leader, trying, startjoing, initially startjoin

timeslice2 R, the next timeslice
24round2 R, a deadline for a new round

holdq, a queue of messages inM 0 without repetition
26simq, a queue of messages inM 0 without repetition

procedq, a queue of messages inM 0
28guards, a vector of pairs of ids inP and times(of form hid; tsi),

of size at mostk
30joinreqs, a vector of pairs of ids inP and times(of form hid; tsi)

joinreqts, the time of the last join request
32leadup, a Boolean

Fig. 7. VSAEu;p emulating Vu running hsigu; statesu; startu; Æu; �ui: Signature and State

join requests and the queue of messages intended
for the VSA.
If p is the head of the vector and has status of
guard, it changes itsstatus to leader.
Theleadup variable is reset tofalse, theproedq is
cleared for the timeslice, and the time for the next
timeslice is stored.� joinhandle(hq; ti), Line 87: When the leader
processes a join requesthq; ti in its local joinreqs
queue, it cleans out older entries for the same
processq. If the vector of guards is smaller thank the leader addsq’s id and join request time to
the end of the vector. If the vector is full, the join
request is simply removed.� VSArcv(m), Line 98: The leader emulates receipt
of VSA messages by performingVSArcv(msg)
actions on messages sent no later than timevstate:now in its local simq. The action removesmsg from the simq and emulates the receipt ofmsg:m at the VSA. The resulting change of the
state of the VSA is stored invstate. The messagemsg is then added toproedq, the queue of mes-
sages “received” by the VSA in this timeslice.� VSAint(at), Line 108: A valid internal actionat of the VSA is emulated with theVSAint(at)
action at the leader. The action results in a change
of vstate to the resulting state of the VSA.� bcast(hhm; h; vstate0; proedq; guardsii; u; nowi),
Line 116: A broadcast by the VSA
of a message m is emulated through a
bcast(hhm; emulation statei; u; nowi) action
at a leader. We attach the post-broadcast VSA
emulation state to the message being sent.� bcast(hhend; hvstate; proedq; guardsii; u; nowi),
Line 124: The leader performs the emulation
until the end of his timeslice and no outstanding
requests or messages exist, at which point it
again broadcasts the emulation state through a

bcast(hend; emulation state; u; nowi) action and
changes to being just aguard.

Trajectories. The trajectory in Figure 9 describes the
development of the variables in the implementation
outside what is described through the discrete actions.

Of particular interest are lines 5 through 8, which
dictate that, if a leader, the virtual clock that is behind
real time in the emulation runss > k�tslietslie�d times faster
than the real clock, guaranteeing that the maximum break
between the broadcasting of emulation state between
two leaders in an alive VSA can be overcome in one
leader’s timeslice. Once the fast virtual clock catches up
to real time, the virtual clock progresses as real time
until the end of the timeslice, where the leader gives up
leadership.

In line 11, we relate the emulated machine’s tra-
jectories�u to the emulator’s trajectories� . This line
states that if we examine the current trajectories of the
emulator,vstate is the same as the trajectory that would
have been observed at the emulated machine at timevstate:now.

The stopping conditions described in the second col-
umn are a means by which to force discrete actions in
Figure 8 to occur when they are enabled.

Client bcast and brcv. Client broadcasts and receives
are implemented using theP -bcast service. To distin-
guish messages asV -bcast messages, we use messages
of the special form used above. In particular, a client at
nodep implements abcast(m)p in theV -bcast service
by performing abcast(hm; p; nowi)p in the P -bcast
service. The same client implements abrcv(m)p in theV -bcast service if it performs abrcv(hm;u; ti)p in theP -bcast service whereu = regp and t 2 R.

11

Input GPSupdate(v)p
2 Effect:

if reg 6= v then
4 status startjoin

reg v
6

Input brcv(msg)p
8 Effect:

if (msg.src 2 P or msg.src 2 nbrs(u)) then
10 holdq holdq[fmsgg
12 Output bcast(hhjoin; ui; p; nowi)p

Precondition:
14 reg = u

status= startjoin
16 Effect:

status trying
18 joinreqts now

timeslice nextTS(now)
20 round timeslice+ k �tslie + d

simq, holdq, guards, joinreqs, procedq ;
22

Output bcast(hhrestart; ui; p; nowi)p
24 Precondition:

reg = u
26 status= trying

now= round
28 Effect:

joinreqts now
30 guards ;
32 Internal delayrcv(msg)u;p

Precondition:
34 msg2 holdq

msg.ts = now-d
36 Effect:

holdq holdq / fmsgg
38 if msg.m = hrestart,ui then

if (status= trying and round< now) then
40 insertsort(guards, hmsg.src, msg.tsi)

elsestatus startjoin
42 else if msg.m = hjoin, ui then

joinreqs joinreqs[fhmsg.src, msg.tsig
44 else if (msg.m).first 6= end then

simq simq[fmg
46 if msg.src = u then

let hvstate0, procedq0, guards0i = (msg.m).secondin
48 if (head(guards) 6= head(guards0) and guards 6= ;) then

status startjoin
50 if status 6= leaderthen

vstate vstate0
52 guards guards0

simq simq / procedq0
54 simq simq / fms: (ms.ts < msg.ts-d and

ms.ts � vstate.now)g
56 joinreqs joinreqs / guards

joinreqs joinreqs / fhq, ti : t < msg.ts-dg
58 if hi, joinreqtsi 2 guards then

if status= trying then
60 status guard

leadup false
62 else if joinreqts< msg.ts-d then

status startjoin
64 if (msg.m).first = end then

leadup true

Internal tsBeginu;p
68Precondition:

now= timeslice+ d
70Effect:

if status= guard then
72if leadup= false then

guards remove(guards, head(guards))
74elseguards rotate(guards)

if (status= trying and hp, joinreqtsi 2 guardsand round< now)
76then

vstate startu
78simq, joinreqs ;

status guard
80if (status= guardand hp, joinreqtsi = head(guards)) then

status leader
82leadup false

procedq ;
84timeslice nextTS(now)
86Internal joinhandle(hq, ti)u;p

Precondition:
88status= leaderhq, ti 2 joinreqs
90Effect:

while 9 t0 2 R: (t > t0 and hq, t0i 2 guards)
92guards guards / fhq, t0ig

if (jguardsj < k and 6 9 t0 2 R: hq, t0i 2 guards) then
94append(guards, hq, ti)

joinreqs joinreqs / fhq, tig
96

Internal VSArcv(m)u;p
98Precondition:

status= leader
100m 2 simq

m.ts � vstate.now
102Effect:

vstate Æu(vstate, brcv(msg.m))
104simq simq / fmg

procedq procedq[fmg
106

Internal VSAint(act)u;p
108Precondition:

reg = u
110status= leaderÆu(vstate, act) 6= ?
112Effect:

vstate Æu(vstate, act)
114

Output bcast(hhm; hvstate0 ; proedq; guardsii; u; nowi)p
116Precondition:

reg = u
118status= leaderÆu(vstate, bcast(m)) = vstate0 6= ?
120Effect:

vstate vstate0
122

Output bcast(hhend; hvstate; proedq; guardsii; u; nowi)p
124Precondition:

reg = u
126status= leader

now= timeslice
128simq, joinreqs= ;

Effect:
130status guard

Fig. 8. VSAEu;p emulating Vu running hsigu; statesu; startu; Æu; �ui: Actions

12

satisfies
2 d(now) = 1

constant timeslice, round, status, reg, simq, holdq,
4 procedq, guards, joinreqs, leadup, joinreqts

if status= leaderthen
6 if vstate.now< now then

d(vstate.now) > k�tslietslie�d
8 elsevstate.now= now

else constantvstate
10 � also satisfies�(now).vstate= �u(�(now).vstate.now)

12stops when
reg = u and

14f 9 msg2 holdq: [msg.ts = now -d ℄ or
now= timeslice+ d or

16status= startjoin or(status= leaderand (now= timeslice or
18joinreqs 6= ; or 9 m 2 simq: m.ts � vstate.now)) or(status= trying and now= round and joinreqts< now) g

Fig. 9. VSAEu;p emulating Vu running hsigu; statesu; startu; Æu; �ui: Trajectories

C. Proof sketches

We sketch the proof that the emulator implementa-
tion is correct. First, we show that the implementation
manages guards sensibly. We then demonstrate a forward
simulation relation [15] between the implementation and
the VSA abstraction described in Section III, implying
the VSA emulator correctly implements the VSA ab-
straction.

For the rest of this section, consider one regionu and
its corresponding VSAVu and an execution where each
processp in regionu starts with knowledge it is inu.
For simplicity, we do not consider corruption faults here.

Guards management. The implementation guarantees
certain properties of theguards vector. We can show
the following lemmas:

Lemma 4.1:At most one process is a leader and at
mostk are either a leader or guard.

Lemma 4.2:A process that is a guard or leader re-
mains a guard or leader until it leaves the region or fails.

Lemma 4.3:A process that is a guard and remains
alive and in the region fork timeslices will be a leader
in at least one of those timeslices.

The next lemma guarantees that, subject to certain as-
sumptions about mobile node movement and failure,
some processes will become guards, which is necessary
for an emulation to be of a non-failed VSA:

Lemma 4.4:If there are fewer thank guards and
leaders and a set of processesP 0 that are trying to
become guards that remain alive in the region for “long
enough”, then a nonempty subset ofP 0 become guards.
Proof sketch: The proof has two main cases. The first
is where no processes are guards or leaders: Consider
the id-ordered subset ofP 0 that remains alive throughd
into thek+1st next full timeslice. If any of the firstk in
the subset remains alive for another timeslice, then they
become guards. This is throughrestart messages.
The second is the easier case where there is a guard or
leader that remains alive long enough to add join requests
to theguards vector.

Simulation relation. The next step is to show through
use of a forward simulation relation and history variables
that the emulation results in a correct implementation of
the VSA abstraction, allowing applications built for the
VSA abstraction to run on the VSA emulators.

We define the emulation of a VSAVu asfailed during
an execution fragment if there is a state where there is
no process that is a guard or leader. We now define the
simulation relation on states where the emulation has
not failed. It consists of several parts, relating state of
emulators to the state of the abstract VSA and state of
message buffers in the implementation to those of the
abstract system.

If processp is not a leader and there is a messagem
from the VSA with attached emulation state containingvstate0 in P -bcast.msg[p℄ or p’s queue of messages it
is waiting to deliver, thenvstate0 from the latest such
message is equivalent toVu:vstate. If no such message
exists andp is a guard, thenp’s own local value of the
virtual state is equivalent. If there is only a leader and
no guards, then the leader’s local version of the virtual
state is equivalent toVu:vstate.

If m is a message inP -bcast.msg[p℄, in p’s queue
of messages it is holding until old enough, or inp’s
queue of messages it is saving for the VSA such that
it is not a processed message in the emulation state of
some message in transit, and ifm was sent no later than
the time on the virtual clock as figured from the virtual
state above, then it is also waiting inV -bcast.msg[u℄.

Lastly, if m is a message inP -bcast.msg[p℄ that was
sent byVu then the message is either in Dout[e℄u (if
the virtual clock as figured from above is behind the
timestamp of the message) or else inV -bcast.msg[p℄.

Using the simulation relation we can prove the main
theorem by induction on implementation actions:

Theorem 4.5:The VSA emulator and the trivial client
implementation correctly implement the VSA abstrac-
tion: LetA be the abstract VSA model, and letS be the
implementation. Thentraes(S) � traes(A):

13

D. Self-stabilization

The implementation described here has been extended
to be self-stabilizing, guaranteeing that despite possibly
arbitrary initial states of real nodes in a VSA’s region,
the real nodes eventually converge to properly emulate
the VSA. To do this, the implementation described
above is extended with several trivial local checking and
correction actions, as well as a rule that if a broadcast
is received at a processp indicating a different head of
the guards vector thanp has, thenp quits emulating
the VSA and tries to rejoin the emulation. This rule is
an important one, helping us guarantee convergence of
emulators to one consistent emulation state rather than
competing versions.

Locally checked/corrected variables.In the implemen-
tation in Figure 8 we did not describe the local correction
actions that clients should perform when elements of
their state are obviously corrupted. Rather than write
explicit actions for local correction, we describe them
briefly here.

There are several local state configurations that indi-
cate to a client VSAEu;p that its state is one that could
not have occurred unless it had been corrupted. These
configurations are:� status = leader and hp; joinreqtsi 6=

head(guards)� status = guard andhp; joinreqtsi =2 guards� joinreqts > now� round > timeslie+ k � tslie + d� timeslie 6= nextTS(now) or nextTS(now)�tslie� 9m 2 (proedq [simq) : m:ts > now � d� 9hq; tsi 2 joinreqs : ts > now � d� 9m 2 simq : m:ts < now � [(k + 1) � tslie + 2d℄
In each of these cases, the client sets itsstatus to
startjoin to clear its variables and try to re-join.

There are also configurations that indicate that a
corruption or failure has occurred, though not necessarily
at client VSAEu;i. In these cases we simply update the
variables to remove the inconsistencies:� If vstate:now < now � e

thenvstate:now now � e� If 9m 2 holdq : m:ts > now or m:ts < now � d
thenholdq holdq=fmg� If 9hq; tsi 2 guards : ts > now � d thenguards guards=fhq; tsig

Correctness of self-stabilization. Consider those pro-
cesses withreg = u and an execution starting from a
time t that is�sample time after no additional corruption
failures occur. The following then hold:� Consider a regionu and a timeslicets. If exactly

one process broadcasts emulation state for region

u in timeslice ts, then by d time into the next
timeslice, all processes withstatus =guard will
have the same values forvstate andguards.� Consider a regionu and a timeslicets. If more
than one process broadcasts emulation state for
region u in timeslice ts then by d time into the
next timeslice, all processes in the region will havestatus =startjoin or trying.� Consider a regionu and timeslicets such that all
processes withreg = u have status =trying
or startjoin. Consider the subsetS of these
processes that are alive in the region throughd time
after the start of thets + k + 1st timeslice. Order
the members ofS by process id. If at least one of
the firstk processes inS remains alive in the region
through the nextk timeslices, then by the end of
the ts+2k+1st timeslice a message with attached
emulation state will be broadcast by exactly one
process.� Eventually, every process withstatus =guard is
in guards.� By d time aftert, any messages added tosimq were
actually sent and any join requests injoinreqs were
actually sent.� Consider the case where the emulation state is sent
by one process at leastd time after t in some
timeslice ts. By d time into timeslicets + 1, all
processes withstatus =guard will have the samesimq andjoinreqs.

These together imply that eventually the emulation of
the VSA converges so that all guard processes in the
emulation share a consistent view of the emulation state.

V. CURRENT AND FUTURE WORK

Here we describe some current and future work for
the VSA layer, including the examination of more re-
alistic system models, consideration of more efficient
implementations, and design of applications for the VSA
layer.

A. Model extensions and implementation optimizations

The system model assumed here makes optimistic
assumptions about clock synchronization and accurate
region knowledge that we are addressing. We are also
working on several other model extensions and im-
plementation optimizations. There is current work in
simulating and implementing this layer in more realistic
system models that we hope will help guide improve-
ments and realistic implementations of this layer.

Incorporating collisions. Our implementation should
be extended to a more realistic communication model
that allows message collisions. In particular, consider

14

the availability of four channels per region in the net-
work, provided either through frequency allocation or
additional timeslicing.

Theguards vector used to maintain consistency of the
emulation of the VSA defines an orderly timeslicing of
one communication channel. This channel is dedicated to
use by the current leader of theguards vector. Since in
normal operation, communication on this channel results
in transmissions by at most process per timeslice, any
collisions on this channel are treated as errors that result
in processes in the region re-joining.

For the other three channels, it is convenient to
considerconsensus channels, a communication channel
abstraction in networks with collisions. If a collision
occurs, the channel produces one winning message that
is succesfully transmitted, representing the result of a
successful back-off protocol or completion of an execu-
tion of consensus.

We dedicate one consensus channel each for join and
restart requests and for client-to-VSA communication.
The implementation described here is modified slightly
to incorporate extra delays that may result from having
to re-submit transmissions. To be certain that schemes
for neighboring regions do not result in collisions with
each other, we either further timeslice the communi-
cation channel or use different sets of frequencies at
neighboring regions.

Leader election alternatives. The bulk of the imple-
mentation presented in this paper consists of performing
a simple leader election. We are separating the leader
election portion of the algorithm from the the rest of the
implementation in order to more easily take advantage
of superior region-based leader election algorithms for
mobile networks. These leader election algorithms could
be designed to produce stable outputs that take into ac-
count factors such as location, speed, power constraints,
and reliability of individual nodes in a region.

Implementation optimizations. There are a number
of ways in which we can optimize the current VSA
implementation for various network scenarios and ap-
plications. One simple optimization would be to attach
message identifiers, rather than whole messages, to the
the emulated state being sent in the algorithm. These
identifiers are sufficient to allow guards to determine
which saved messages can be thrown out. Also, as
implemented now, everybody in a region who is not a
guard is trying to become one. One might modify the
implementation to be more power consumption friendly
by not requiring mobile nodes to always attempt to
emulate the VSA.

It is also possible to use state replication approaches
that are hybrids of the ones presented here and in [8].
For example, to simplify the discussion we are assuming

that the transmitting guard (the current leader) transmits
its view concerning the guard vector as well as the latest
value of the simulated VSA state. The rest of the guards
copy the state and use it as the current most updated
version of the data on which any queued actions for
the VSA are performed. This simple strategy results in
simple self-stabilization and correctness proofs, but im-
plies high communication overhead. However, it allows
joining guard nodes to be updated instantly and aids
in fast stabilization of the VSA after corruption faults.
Optimizations are possible to avoid sending identical
shared data if these issues are relatively unimportant; for
example we can repeatedly use a random key and hash
function that verifies with high probability that the data
is identical and transmits the data only when required,
or we can allow guards to independently maintain the
replicated state in parallel by determinizing the abstract
machine being emulated and ensuring all guards receive
the same input messages.

B. Applications for the VSA layer

We believe that the VSA layer can be very useful in
a number of applications, including some of the more
difficult coordination applications for nonhomogenous
networks oftentimes desired in true mobile ad hoc de-
ployments. In this section we list several applications
that would benefit from the VSA abstraction. We start
with basic communication primitives and then go on to
describe some more complicated applications.

VSA to VSA communication. One important ap-
plication would be a means by which remote VSAs
can communicate. To implement this service, we would
program VSAs to utilize the fixed tiling of the network
to forward messages to other VSAs. A message would
be forwarded from the source VSA to the destination
VSA along a path of neighboring VSAs.

Each VSA chooses a neighboring VSA to forward
the message to. The choice of a particular neighbor
may be made according to the criteria of shortest path
to the destination or greedy DFS as suggested in [10].
Here, however, we would have the advantage of a fixed
tiling, rather than the ad-hoc imaginary tiling used in that
algorithm. Retransmissions along greedy DFS explored
links may be used to cope with repeated crashes and
recoveries [11]. The GOAFR algorithm [16], combining
greedy routing and face routing, can also be used to give
efficient routing in the face of “holes” in the VSA tiling.

Location management. Location management is a
complicated task to achieve in Ad-Hoc networks. The
VSA abstraction associates (virtual) memory and actions
(virtual automata) to fixed geographic regions. We can
use one VSA for each client which serves the client

15

as its home location. The home location VSA is re-
sponsible for maintaining location information for the
mobile client. Whenever a clientp would like to locate/-
communicate with another clientq, p uses the result of
(a predefined global) hash function on the identifier ofq for computing the region identifier of the VSA that
serves as the home location forq. In order to ensure a
more robust scheme that tolerates deserted/temporarily-
crashed virtual automata, the above basic scheme is
extended in [11] to use several VSAs as the home
locations of a mobile client. In this case the hash function
returns a sequence of region identifiers used to update
location information and to support queries concerning
location information.

Population attribute directories. Location manage-
ment schemes may be extended to support queries for
mobile clients with special characteristics. One example
would be to search for a medical doctor in an area
during an emergency. The VSA abstraction serves such
applications well by recording attributes of clients at
VSAs. When a query for a certain client type arrives,
the VSA checks its record (and possibly its neighboring
VSAs) for clients matching the query and responds.

HikerNet database. VSAs that correspond to ge-
ographical locations of interest like a mountain top,
campsite in a forest, or riverside picnic area could be
used by hikers as a source of on-line information. It is
oftentimes infeasible to have a fixed computer station at
these regions. However, transient occupancy by hikers on
popular trails, on good hiking days, should be enough to
maintain VSAs and connectivity. A VSA could maintain
a database of summary information about its own local
conditions such as temperature, wind speed, and the
number of hikers in its area. It could also be extended to
maintain a message board of comments such as “the river
is impassable” or “a dangerous animal is nearby.” This
database can then be queried by hikers curious about
conditions in the area.

The database information could be maintained in a
history format. At any time, from anywhere in the area
of the network of VSAs, someone can query using
the VSA-to-VSA communication service to get recent
information about a designated location. Regions can
become unoccupied, in which case the history disappears
and starts over when new people arrive. The history will
be complete for as long as a VSA is maintained by
continuing occupancy of the forest location.

Some resiliency can be built in by automatically keep-
ing copies of histories backed up at neighboring VSAs.
In addition, the collected information could be sent to
a central, reliable, known location by a background
convergecast algorithm that is executed by the VSA
network. This backup concept is useful in general for

a number of database applications.

Virtual fence/ Virtual border control. The Ad-Hoc
nature of a system is not necessarily due to mobility.
Oftentimes new sensors are deployed in an area to restore
sensor density after failure of some sensors. The VSA
abstraction is useful in handling such changes. A “fence”
of VSAs could be useful in this case for applications
such as tracking and summarizing events, as well as
triggering particular response actions such as “report to
command and control” or “light the beacon.”

Hierarchical distributed data structures. In large
deployments it can be desirable to establish a multi-
layer hierarchy in the network. Hierarchies are used in
a variety of algorithms in order to guarantee attractive
locality properties. We consider overlaying an tree on
the VSA regions. These trees could, for example, be
used to allow clients to register attributes with various
nodes. Other clients can query the attribute tree to find
collections of nodes that have some set of attributes.
These queries can be designed to return local answers.

Acknowledgements.We would like to thank Rui Fan for
providing helpful comments on drafts of this paper.

REFERENCES

[1] ACM Transactions on Sensor Networks.
[2] Ad Hoc Networks Journal, Elsevier.
[3] Akylidz, I.F., Su, W., Sankarasubramanian, Y., and Cayirci,

E., “Wireless sensor networks: a survey”,Computer Networks
(Elsevier), 38(4), pp. 393–422, 2002.

[4] Camp, T., Liu, Y., “An adaptive mesh-based protocol for geocast
routing”, Journal of Parallel and Distributed Computing: Special
Issue on Mobile Ad-hoc Networking and Computing, pp. 196–
213, 2002.

[5] Demers, A., Gehrke, J., Rajaraman, R., Trigoni, N.,
and Yao, Y., “Energy-Efficient Data Management for
Sensor-Networks: A Work-In-Progress Report”,2nd
IEEE Upstate New York Workshop on Sensor Networks,
comlab.ecs.syr/edu/workshop, 2003.

[6] Dijkstra, E.W., “Self stabilizing systems in spite of distributed
control”, Communications of the ACM, vol. 17, pp. 643–644,
1974.

[7] Dolev, S.,Self-Stabilization, MIT Press, 2000.
[8] Dolev, S., Gilbert, S., Lynch, N., Schiller, E., Shvartsman, A., and

Welch, J., “Virtual Mobile Nodes for Mobile Ad Hoc Networks”,
International Conference on Principles of Distributed Comput-
ing (DISC), 2004. Also Brief announcement inProceedings of
the 23th Annual ACM Symposium on Principles of Distributed
Computing (PODC), 2004.

[9] Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J.,
“GeoQuorums: Implementing Atomic Memory in Ad Hoc Net-
works”, 17th International Conference on Principles of Dis-
tributed Computing (DISC), Springer-Verlag LNCS:2848, pp.
306-320, 2003.

[10] Dolev, S., Herman, T., and Lahiani, L., “Polygonal Broadcast,
Secret Maturity and the Firing Sensors”,Third International
Conference on Fun with Algorithms (FUN), pp. 41-52, May
2004. Also Brief announcement inProceedings of the 23th
Annual ACM Symposium on Principles of Distributed Computing
(PODC), 2004.

[11] Dolev, S., Lahiani, L., Lynch, N., Nolte, T., “Self-Stabilizing
Mobile-Sensor Home Location Management”, Manuscript, 2004.

16

[12] Hubaux, J.P., Le Boudec, J.Y., Giordano, S., and Hamdi,M.,
“The Terminodes Project: Towards Mobile Ad-Hoc WAN”,Pro-
ceedings of MOMUC, 1999.

[13] IEEE Pervasive Computing: Mobile and Ubiquitous Systems.
[14] IEEE Transactions on Mobile Computing.
[15] Kaynar, D., Lynch, N., Segala, R., and Vaandrager, F., “The

Theory of Timed I/O Automata”, Technical Report MIT-LCS-
TR-917a, MIT Laboratory for Computer Science, Cambridge,
MA, 2004.

[16] Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A., “Geometric
Ad-Hoc Routing: Of Theory and Practice”,Proceedings of the
22nd Annual ACM Symposium on Principles of Distributed
Computing (PODC), 2003.

[17] Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., and Morris, R.,
“A Scalable Location Service for Geographic Ad Hoc Routing”,
Proceedings of Mobicom, 2000.

[18] Nath, B., Niculescu, D., “Routing on a curve”,ACM SIGCOMM
Computer Communication Review, 33(1), pp. 150 – 160, 2003.

[19] Navas, J.C., Imielinski, T., “Geocast – geographic addressing
and routing”, Proceedings of the 3rd MobiCom, 1997.

[20] Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan,
R., and Shenker, S., “GHT: A Geographic Hash Table for Data-
Centric Storage”,First ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA), 2002.

