
Brief Announcement: STALK — A SelfStabilizing
Hierarchical Tracking Service for Sensor Networks

Murat Demirbas, Anish Arora
Computer Science & Engineering

The Ohio State University
Columbus, OH 43210

{demirbas, arora}@cis.ohiostate.edu

Tina Nolte, Nancy Lynch
MIT Computer Science & Artificial Intelligence

Laboratory
Cambridge, MA 02139

{tnolte, lynch}@csail.mit.edu

Categories and Subject Descriptors: C.2.4 [Computer-
Communication Networks]: Distributed Systems
General Terms: Algorithms
Keywords: sensor networks, self-stabilization, tracking,
fault-containment, distributed data structures

We present Stalk, a hierarchy-based fault-local stabiliz-
ing algorithm for tracking in sensor networks. Starting from
an arbitrarily corrupted state, Stalk satisfies its specifica-
tion within time and communication cost proportional to
the size of the faulty region instead of the network size.
Local stabilization is achieved by slowing propagation of in-
formation as the levels of the hierarchy underlying Stalk

increase, enabling the more recent information propagated
by lower levels to override misinformation at higher levels.
While achieving fault-local stabilization, Stalk also adheres
to the locality of tracking operations: an operation to find

a mobile object at a distance d away requires O(d) amount
of time and communication cost to intercept the moving ob-
ject, and a move of an object to a distance d away requires
O(d∗ log(network diameter)) amount of time and communi-
cation cost to update the tracking structure. Furthermore,
Stalk achieves seamless tracking of a continuously moving
object by enabling concurrent executions of move and find
operations.
Overview of Stalk. For achieving scalability, Stalk em-
ploys a hierarchical structure. For ensuring the locality of
both find and move operations, Stalk adopts a partial in-
formation strategy. The tracking information is maintained
with accuracy related to the distance from the mobile object:
Nearby nodes that are relatively cheap to update have more
recent and accurate information about the object, whereas
far away nodes that are relatively expensive to update have
older and more approximate information about the object.

Tracking structure. We assume a hierarchical partitioning
of the sensor network into clusters based on radius. The
tracking structure is a path rooted at the highest level of
the hierarchy. Each process in the tracking path has at most
one child, either at its level or one below it in the hierarchy,
and the mobile object resides at the leaf of the tracking
path, at the lowest level. Each process in the path points to
a process that is generally closer to the object and has more
recent information about its location.

Copyright is held by the author/owner.
PODC’04, July 25–28, 2004, St. Johns, Newfoundland, Canada.
ACM 1581138024/04/0007.

Find operation. A find operation invoked at a process
queries neighboring processes at increasingly higher levels
of the clustering hierarchy until it encounters a process on
the tracking path. Once the tracking path is found, the find
operation follows it to its leaf to reach the mobile object.

Move operation. We implement move-triggered updates
by means of two local actions, grow and shrink. The grow
action enables a path to grow from the new location of the
object to increasingly higher levels of the hierarchy and con-
nect to the original path. The shrink action cleans branches
deserted by the object. Shrinking also starts at the lowest
level and climbs to increasingly higher levels. Despite that
grow and shrink occur concurrently, we achieve the move op-
eration successfully by using suitable values for the process
timers, which actuates the execution of these actions.

Fault-local stabilization. After state corruption of a region
of (potentially all) processes, our tracking path heals itself in
a fault-local manner within work proportional to perturba-
tion size. We use two concepts for achieving fault-locality:
hierarchical partitioning and level-based timeouts for exe-
cution of actions. The key idea is to wait for more time
before updating a wider region’s view. We employ larger
timeouts when propagating an update to a higher level of
the hierarchy, and thus, more recent updates coming from
lower levels can catch-up to misinformed updates at higher
levels. We achieve this by delaying a shrink/grow action
for longer periods as the level of the process executing the
action increases. The latency imposed by delaying is a con-
stant factor of the communication delay to higher levels and
does not affect the quality and accessibility of the tracking
structure.

Concurrent move and find operations. Stalk achieves
seamless tracking of a continuously moving object: An ob-
ject can relocate before the effects of its previous move op-
erations finish updating the tracking path, and a find op-
eration may be concurrently in progress with these move
operations. During concurrent move operations, it is not
possible to achieve a complete tracking path; there will be
discontinuities in the path. By giving an upperbound on
the speed of the object, we prove a reachability condition
on the tracking path and ensure that if a find encounters a
dead-end while following a path, there is always an available
newer path nearby.

FULL VERSION is available as a Technical Report, OSU-
CISRC-5/04-TR38, Ohio State University, May 2004.


