Timed Virtual Stationary Automata
for Mobile Networks

Shlomi DoleV, Seth Gilber, Limor Lahiani', Nancy LyncR, and Tina Nolté

! Dep. of Computer Science, Ben-Gurion University of the Negeer-Sheva, 84105, Israel
2 MIT CSAIL, Cambridge, MA 02139, USA

Abstract. We define a programming abstraction for mobile networksedaihe
Timed Virtual Stationary Automagaogramming layer, consisting of mobile clients,
virtual timed 1/0 automata called virtual stationary autden(VSAs), and a com-
munication service connecting VSAs and client nodes. ThA3/&e located at
prespecified regions that tile the plane, defining a stattoad infrastructure. We
present a self-stabilizing algorithm to emulate a timed &g the real mobile
nodes that are currently residing in the VSA's region. We discuss examples of
applications whose implementations benefit from the sicitglobtained through
use of the VSA abstraction.

Keywords: Ad-hoc networks, mobile computing, location-aware dstted comput-
ing, fault tolerance/availability, virtual infrastructy state replication, virtual machine

1 Introduction

The task of designing algorithms for constantly changingvoeks is difficult. Highly
dynamic networks, however, are becoming increasinglyglest, especially in the con-
text of pervasive and ubiquitous computing, and it is thenefmportant to develop new
techniques to simplify this task. Here we focus on mobilénad-networks, where mo-
bile processors attempt to coordinate despite minimahgtfucture support. This paper
develops new techniques to cope with this dynamic, hetewmgs, and chaotic envi-
ronment.

We mask the unpredictable behavior of mobile networks byndefiand emulat-
ing avirtual infrastructure, consisting dfming-awareand location-awaremachines
at fixed locations, that mobile nodes can interact with. Ttaéicsvirtual infrastructure
allows application developers to use simpler algorithmsnehiding many previously
developed for fixed networks.

There are a number of prior papers that take advantage ofrggogto facili-
tate the coordination of mobile nodes. For example, the Gsb&lgorithms [1, 19],

! partially supported by IBM faculty award, NSF grant and thgRltura chair in computer
sciences. Emaidol ev, | ahi ani }@s. bgu. ac.il.

2Supported by DARPA contract F33615-01-C-1896, NSF ITR it CCR-
0121277, and USAF, AFRL contract FA9550-04-1-0121. Emdset hg, |ynch,
tnolte}@heory.csail.mt.edu.

GOAFR [13], and algorithms for “routing on a curve” [18] reunessages based on the
location of the source and destination, using geographglieety messages efficiently.
Other papers [10, 14, 21] use geographic locations as aitepof®r data. These algo-
rithms associate each piece of data with a region of the nm&teuad store the data at
certain nodes in the region. This data can then be used fongoar other applications.
All of these papers take a relatively ad-hoc approach togugeography and location.
We suggest a more systematic approach; many algorithmergegsin these papers
could be simplified by using a fixed, predictable timing-dedbnfrastructure.

In industry there have been a number of attempts to provieeialized applications
for ad-hoc networks by organizing some sort of virtual isfracture over the mobile
nodes. PacketHop and Motorola envision mobile devices e@ting to form mesh
networks to provide communication in areas with wirelessaldcast devices but little
fixed infrastructure [15,26]. These virtual infrastruasicould allow on-the-fly network
formation that can be used at disaster sites, or areas wikeddfifrastructure does not
exist or has been damaged. BMW and other car manufactuesteseloping systems
that allow cars to communicate about local road or car candif aiding in accident
avoidance [11,17,22,25].

Each of the above examples tackles very specific problekestduting or distribu-
tion of sensor data. A more general-purpose virtual inftestire, that organizes mobile
nodes into general programmable entities, can make a isehef applications easier to
provide. For example, with the advent of autonomous comtmattess [24], the complex-
ity of algorithms coordinating the drones can make it difficoiprovide assurance to an
understandably concerned public that these firepowelppgdiautonomous units are
coordinating properly. With a formal model of a general aagyeto-understand virtual
infrastructure available, it would be easier to both prevatid prove correct algorithms
for performing sophisticated coordination tasks.

Virtual Stationary Automata programming layer. The programming abstraction we
introduce in this paper consists of a static infrastructfréixed, timed virtual ma-
chines with an explicit notion of real-time, call&fttual Stationary AutomatéVSAs),
distributed at known locations over the plane, and emulbtethe real mobile nodes
in the system. Each VSA represents a predetermined gedgraqga and has broad-
cast capabilities similar to those of the mobile nodesyaiig nearby VSAs and mo-
bile nodes to communicate with one another. This programgaiyer provides mobile
nodes with a virtual infrastructure with which to coordie#tteir actions. Many practi-
cal algorithms depend significantly on timing, and many rfeobbdes have access to
reasonably synchronized clocks. In the VSA programmingiathe virtual automata
also have access trtual clocks, guaranteed to not drift too far from real-time. Tehes
virtual automata can then run programs whose behaviourtrhigtidependent on the
continuous evolution of timing variables.

Our virtual infrastructure differs in key ways from othehsit have previously been
proposed for mobile ad-hoc networks. The GeoQuorums algo(i6, 7] was the first to
use virtual nodes; the virtual nodes in that work are atorbjects at fixed geographical
locations. More general virtual mobile automata were satggkin [5]; our automata are
stationary, and are arranged in a connected pattern thiatilsusto a traditional wired
network. Our automata also have more powerful computatiagzabilities than those

in [5] in that ours include timing capabilities, which areportant for many applica-
tions. Finally, we use a different implementation stategyvirtual nodes than in [5],
incurring less communication cost and enabling us to pevidual clocks that are
never far from real-time.

Emulating the virtual infrastructure. Our clock-enabled VSA layer is emulated by
the real mobile nodes in the network. Each mobile node isnasduo have access
to a GPS service informing it of the time and region it is cathgin. A VSA for

a geographic region is then emulated by a subset of the mpbdes populating its
region; the VSA state is maintained in the memory of the readles emulating it, and
the real nodes perform VSA actions on behalf of the VSA. Thelation is shared by
the nodes while one leader node is responsible for perfaythia outputs of the VSA
and keeping the other emulators consistent. If no mobileeaa@de in the region, the
VSA fails; if mobile nodes later arrive, the VSA restarts.

An important property of our implementation is that it isfsghbilizing. Self-
stabilization [3,4] is the ability to recover from an arhitity corrupt state. This property
is important in long-lived, chaotic systems where certaiengs can result in unpre-
dictable faults. For example, transient interference miayugt the wireless commu-
nication, violating our assumptions about the broadcastiune. This might result in
inconsistency and corruption in the emulation of the VSAr €eif-stabilizing imple-
mentation, however, can recover after corruptions to ctiremulate a VSA.
Applications. We present in this paper an overview of some applicatiortsaifeasig-
nificantly simplified by the VSA infrastructure. We consid®th low-level services,
such as routing and location management, as well as morésticpted applications,
such as motion coordination, tracking, traffic managense traffic coordination. The
key idea in all cases is to locate data and computation atti®@As throughout the
network, thus relying on the virtual infrastructure to slifypcoordination in ad-hoc
networks. This infrastructure can be used to implemeniges\such as routing that are
oftentimes thought of as the lowest-level services in a agkw

2 Datatypes and system model

The system consists of a finite collection of mobile cliertqasses moving in a closed,
connected, and bounded region of the 2D plane cdlleRegionR is partitioned into
predetermined connected subregions catlkx$ or regions labeled with unique ids
from the set of tile identifier§/. In practice it may be convenient to restrict tiles to be
regular polygons such as squares or hexagons. We definelzboeiglationnbrs on

ids fromU': two tilesu andv are neighbors iff the supremum distance between points
in tile(u) andtile(v) is bounded by a constant;, .

Each mobile nod€’,, p € P, the set of mobile node ids, is modeled as a mobile
timed I/O automaton whose location i at any time is referred to dsc(p). Mobile
node speed is bounded by a constapt, . We assume each node occasionally receives
information about the time and its current regigna GPSupdate(u, now), happens
everyesompie time. While GPS is not entirely accurate in reality, as losgaa error
bound is known, its effects here are small. We assume théslodal clocknow pro-
gresses at the rate of real-time.

Each client is equipped with a local broadcast communioatirvice calledP-
bcast, with a minimum broadcast radius-pf,; and a message deldyThis service al-
lows each clienC), to broadcast a message to all nearby clients thréaeght(m), and
receive messages broadcast by other clients thrbrmyt{m),, actions. We assume that
alocal broadcast service guarantees two propertiesrityt@nd reliable local delivery.
Integrity guarantees that every message received was previousiydasideliable lo-
cal delivery(roughly) guarantees that a transmission will be receiyeddarby nodes:
If client C}, broadcasts a message, then every cligntvithin r,.q; distance ofC)’s
transmission location during the transmission intervdéafjthd receives the message
before the end of the interval.

Clients are susceptible to stopping and corruption fadufdter a stopping failure,
a client performs no additional local steps until restartbdestarted, it starts operating
again from an initial state. If a node is corrupted, it sudflom a nondeterministic
change to its program state.

Additional arbitrary external interface actions and lostdte used by algorithms
running at the client are allowed. For simplicity local sepe assumed to take no time.

3 Virtual Stationary Automata programming layer

Here we describe th¥ir-

tual Stationary Automata
programming layer. This
abstraction includes the
real mobile nodes dis- beast(m)

bcast(m) n

cussed in the last section, e . " V-beast v
the virtual stationary au- — ey '
tomata (VSASs) that the cpsudaety,
real nodes emulate, and a
local broadcast service, V-
bcast, between them (seé
Figure 1). The layer al- cesupmeny; s,
lows developers to write

programs for both mobile

clients and stationary tiles

of the network as though

broadcast-equipped virtual

brev(m) |, Vv
machines exist in those

tiles. We begin by describ-Fi19- 1. Virtual Stationary Automata abstraction. VSAs
ing the properties of VSAs and clients communicate using the V-bcast service. VSA
and then describe the V-bcasts may be delayed in Dout buffers.

bcast service.

3.1 Virtual Stationary Automata

An abstract VSA is a timing-capable virtual machine. We fali;ndescribe such a
timed machine for a tile:, V,,, as a TIOA whose program can be referred to as a tuple

of its action signaturesig,,, valid statesstates,,, a start state functiortart,,, mapping
clock values to appropriate start states, a discrete trangunction,d,,, and a set of
valid trajectories of the machine,,. Trajectories [12] describe state evolution over
intervals of time.

A virtual automatonV,’s external interface is restricted to include only stogpin
failure, corruption, and restart inputs and the ability todzlcast and receive messages
(the restriction guarantees the VSA can be emulated by metutles). Corruptions
result in a nondeterministic change to any portiol/p® state,vstate, including the
virtual clockuvstate.now. As with mobile clients, thisow value is assumed to progress
at the rate of real-time and, outside of failure, equal temaé. Since a VSA is emulated
by physical nodes (corresponding to clients) in its regitfailures are defined in
terms of client movements and failures in its region: (1)dfatients are in the region,
the VSA is crashed, (2) IV, is failed but a clieniC, enters the region and remains
for at leastt,.s;4¢ time, then in that interval of tim&,, restarts, (3) If no client failure
(corruption or stopping) occurs in an alive VSA's region ngeme interval, the VSA
does not suffer a failure during that interval, and (4) A VSAynsuffer a corruption only
if a mobile client in its region suffers a corruption; ourfsefabilizing implementation
of a VSA guarantees that starting from an arbitrary confijoineof the emulation, the
emulation’s external trace will eventually look like thdtthe abstract VSA, starting
from a corrupted abstract state.

3.2 V-bcast service

The V-bcast service is a “virtual” broadcast communicagervice with transmission
radiusr,;,;. It is similar to that of the real node#-bcast service and implemented us-
ing the P-bcast service. It allows broadcast communication betwegyhboring VSAs,
between VSAs and nearby clients, and between clients throcast andbrcv actions,

as before. V-bcast guarantees the integrity property destfor P-bcast, as well as a
similar reliable local delivery property. Theliable local deliveryproperty for V-bcast

is as follows: If a client or VSA in a region transmits a message, then every client
or VSA in regionu or neighboring regions during the entire time interval titgr at
transmission and ending later receives the message by the end of the interval. (For
this definition, due t&sPSupdate lag, a client is still said to be “in” region even if it
has just left regiom but has not yet received@PSupdate with the change.)

Notice that V-bcast’s broadcast radius is different froat thf P-bcast; since virtual
broadcasts are performed using real broadcasts, the Mirinsmission radius cannot
be larger than the real. Recall;,.; is the supremum distance between points in two
neighboring tiles. V-bcast then allows a real ngdend a VSA for tileu to communi-
cate as long as the node is at mogt.; distance from any point in tile and a VSA
to communicate with another VSA as long as they are in neighfailes. The imple-
mentation of the V-bcast service using the mobile cliefdcast service introduces
the requirement that,;.s < rreal — 2€sample * UVmaz- TN€2€5ample * Umaz adjustment
guarantees that two nodes emulating VSAs for tiles they hasteleft (because they
have not yet receive@PSupdates that they've change tiles) can still receive messages
transmitted to each other. If GPS error is considered, wddvoampensate by further
decreasing,;-; by twice the error bound.

3.3 Delay augmentation

The overhead of emulating, may introduce additional delays in the broadcasting of
messages. The emulation 6f is then called alelay-augmented TIQA4&n augmenta-
tion of V,, with timing perturbations composed with 's output interface. These timing
perturbations are represented with a buffer gyt composed wittV,,’s bcast output.
The buffer delays delivery of messages by some nondetetimtitae [0, e]. Program
actions ofV/,, must be written taking into account the emulation parametgrst as it
must the message delay factbrA discussion of the value efis in Section 4.4.

4 Implementation of the VSA layer

We describe the implementation of a VSA by mobile clientgdrtile in the network.
At a high level, the individual mobile clients in a tile sham@ulation of the virtual ma-
chine through a deterministic state replication algoritihile also being coordinated
by a leader. We begin by describing a totally-ordered brasgervice and leader elec-
tion service for individual regions, also implemented gdiine underlying real mobile
nodes, that we will use in our replication algorithm. We tliecus on describing the
core emulation algorithm, briefly sketch correctness, aradyae emulation overhead.

4.1 TOBcast service

In order to keep emulators’ state consistent, emulators pragess the same sets of
messages in the same order. We accomplish this by using thietens’ clocks and-
bcast service to implement a TOBcast service for each regjidrclient. This service
allows a clientC,, in tile u to broadcastn, TOBcast(m),,,, and to have the message
be receivedTOBrcv(m, u), 4, by clients intile(u) and neighboring tiles exactly
time later. To implement this service, when a client want§@Bcast m from itself

or its tile, it tagsm with its current tile, time, message sequence number (inented
when the client sends multiple messages at once), and #net @i, and broadcasts
it using P-bcast. When a client receives such a message from a cliest fite or a
neighboring tile it holds the message in a queue until exattime has passed since
the message’s timestamp. Messages that are exaottyare theriTOBrcved in order
of sender id and sequence number, ordering the messageasstaimps are also used to
ensure self-stabilization; this is similar to the use of GiP&cles in [9]. To avoid the
use of shared variables, we include input and output actiorise TOBcast service can
inform the client whether all messages sent ug tome ago have been received. Most
complications in the use of these actions come from selfilstation.

4.2 Leader election service

Here we describe the specification for a leader electioricergquired for our emulator
implementation. We divide time up into segments of lertgth. called timeslices, that
begin on multiples of ;... ASSumet ;.. > 4d. When there are no corruption failures,
the leader election service for a regioiguarantees:

(1) There is at most one leader of a region at a time, and tlieids in the region

(or within esample - Umaz) distance,

(2) If a proces® becomes leader of regianat some time, then at that time either:

(a) there was a prior leader of regiarduring an interval starting at leagtafterp

enteredu and ending after some multiple of;.. at least2d later, or

(b) there is no process imwhere a prior leader such as in (a) can be found,

(3) If a process ceases being leader at tirtieen it will be at least! time before a new
leader is chosen,
(4) For any two consecutive timeslices such that at leasponeess is alive im for

both timeslices and no failures occur in the latter timesltbere will be a leader in

one of the two timeslices from at leakt time before the end of the timeslice to the

end of the timeslice.
Property (2) guarantees that either the process that ienhassa leader has been in the
region long enough to have interacted with a prior leadethere are no processes for
which that is true. Property (3) provides a time gap betweadérs that will later be
useful in guaranteeing that a new leader had heard all praatdr broadcasts before it
became a leader.

One example of a self-stabilizing heartbeat implememaitthis leader election
specification is as follows: if a process is leader, it br@atie aleaderhb message
everytg;.. amount of time. Once it fails or leaves the tile, the othercpsses in the
region will synchronously timeout the heartbeat and sesthrt messages, from which
the lowest id process that had previously heard a heartlawatthe leader at leas
time after entering the tile is chosen as leader; this esstina property (2a) holds.
If there is no such process, then the lowest id process bextaader. This simplistic
strategy ignores issues of network contention or power gramant. We briefly discuss
alternative leader election strategies in Section 6.

4.3 Emulator implementation

Here we describe a fault-tolerant implementation of a VSAlkator. We first describe
how our leader-based emulation generally works and thereaddietails in the emu-
lation. The signature, state, and trajectories for therélyo are in Figure 2 and the
actions are in Figure 3. Line numbers refer to lines in Figlre
Leader-based virtual machine emulation. In our virtual machine emulation, at most
one of the mobile nodes in a VSA tile is a leader (chosen byléader election ser-
vice), with primary responsibility for emulating the VSA&performing VSA outputs.
A leader stores and updates the state of the VSA (includiay®A's clock value) lo-
cally, simulating all actions of the VSA based on it. Whenltaler receives a TOBcast
message, it places the message in a local saved messagélonesL&3-37) from which
it simulates the VSArcving (processing) the message (lines 39-45). If the VSA is to
perform a local action, the leader simulates its effect a\{BA state (lines 47-54).
If the VSA action is tobcast a message, the leader places the message in an outgoing
VSA queue (lines 53-54), to be removed dr@Bcasted with the tile as the source by
the leader, in the VSA's stead (lines 56-61).

For fault-tolerance and load balancing reasons, it is reacg$0 have more than just
the leader maintaining a VSA. In our multiple emulator aguto a VSA is maintained
by several emulators, including at most one leader, eachtaiaing and updating its

Signature: Trajectories: 24

2 Input GPSupdate(v,t),,ve U,teR satisfies

Input leader(val).,p, val € Bool d(now) =1 24
4 Input TOBnext(t).,p, t € R constantreg, joinTS joinreq, oldsavedgsavedq

Input TOBrev(m, v)w,p, v € {u}U nbrs(u) outq, nextrcy leadTS checksunz
6 Output TOBprobe,,,, 7(now).vstate= 7, (T(now).vstatenow)

Output TOBcast(m).,,, me (Msg x R)U {join} U if (vstate#£ L A vstatenow> now-d) then 24
8 ({update} x states,)U ({check} x (hashx N)x Bool) if vstatenow < nowthen

Internal VSArcv(m).,p d(vstatenow) = x, x > 2 3q
10 Internal VSAlocal(act).,p, act € internal, output sig., elsevstatenow = now

Internal correctqueues., else constanvstate 33
12 Internal checksum,, stops when

Any precondition is satisfied. 34

14 State:
analognow € R, current real time
16 rege U, currentreg, initiallyL
nextrey joinTS leadTS joinreq € R
18 vstatec states,
oldsavedgsavedgoutg queues of msg, timestamp pairg
20 checksuntriple of hashed/,, state, a natural, and a boo

Fig. 2. VSAE..», emulator ap of V., = (sigu, statesy, start., du, Tu) - Signature, state
trajectories.

local copy of the VSA state and saved message queue as abmwvevet, non-leader
emulators, unlike leaders, do not transmit messages fov8#e from their outgoing
VSA queues, preventing multiple transmission of messagen the VSA. To keep
emulators consistent, the emulation trajectories arethas@ determinized version of
the VSA trajectories.

Emulation details. There are several complications in VSA emulation that atise
to both message delays and process failure:

Joining: When a node discoversitis in a new regio,@Bcasts ajoin message (lines
23-31). Any process that receives this message storesiikstimp of the message as
the latest join request (lines 63-65). If a leader has pExRall messages in its saved
message queue affBcasted all messages in its outgoing VSA queue, it answers
outstanding join requests BYDBcasting anupdate message, containing a copy of the
leader’s current emulated VSA state (lines 67-75). Thedehdlds off on performing
any additional VSA-related transmissions until it recsitleis message (line 75). When
any process that has been in the region at I2ésime receives theipdate, it adopts
the attached VSA state as its own local VSA state and erasesiigoing VSA queue
(lines 77-91). (If it has not been in the regiddtime, its saved message queue may not
have all messages that were too recent to be reflected uptiege.)

Catching up to real time:After receipt of anupdate message, the VSA's clock (and
state) can bd behind real time. Intuitively, the VSA emulation is “set Bagvhenever
an update message is received. To guarantee the VSA emulation sattsiespeci-
fications from Section 3 (bounding the time the output trafcéhe emulation may be
behind that of the VSA being emulated), the virtual clock taatch up to real time.
This is done by having the virtual clock advance more thanewis fast as real time un-
til both are equal, after which they increase at the same Tais is formally described
in Figure 2, lines 28-32. To guarantee that the virtual cloak catch up beforeé time,

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

Output TOBprobe,,,,
Precondition:
nextrcv< now -d

Input TOBnext(t) .,
Effect:
nextrcv«— t

Input GPSupdate(v, t),
Effect:
now«—t
if reg# vthen
reg«— v
joinTS«— oo

Input leader(val),p
Effect:
if (!valV joinTS> now-d) then
leadTS— oo
else ifleadTS> now+ d then
leadTS— now

Output TOBcast(join).,
Precondition:
reg= u A joinTS> now
Effect:
joinTS« now
nextrcv<— now -d
leadTSjoinreq < oo

Output TOBcast({update, vstaté))., ,
Precondition: 68
reg = UA leadTS< now < nextrcv+ d
(vstaté= vstaten [vstate= L V (vstatenow= now 70
A outq= ()= savedg\ joinreq# co) |) V (vstaté = L
A [vstatenow < now-d V 3 (m, t) € outq t < now-elj
Effect:
joinreq «— oo 74
leadTS— now+ d
76

Input TOBrev((update, vstaté), u) ., »

Effect: 78
if joinreq < now-2d then
joinreq «— oo 80
if (joinTS< now-2d A vstaté =) then
vstate«— start,, (now) 82
savedg— ()
else ifjoinTS < now-2d then 84
if vstate= _L then
oldsavedg— 0 86
vstate— vstaté
savedg— append(oldsavedgsavedq 88
— {(m,t): t < now-2d}
oldsavedgoutq < 90

checksum— L
92
Internal correctqueues.,,,
Precondition: 94

savedgoldsavedgoutq «— 3 (mt) € oldsavedqJ savedqt > now-d
vstate checksum— L Vv 3 {mt) € outqg t > now %
Effect:
Input TOBrev(m,s),,,», mfirst¢ {check,update,join}| savedqoldsavedq- = {{(m, t):t > now-d} 98

Effect:
savedg— append(savedq (mfirst, now-d))
if (s=u A 3 xy:[outq= append(append(x, m), y)]
thenoutq«— y

Internal VSArcv(m).,, ,
Precondition:
vstate# LA (m, t) = head(savedq
Effect:
vstate— 4, (vstate brev(m))
oldsavedg— append(oldsavedghead(savedq)
savedg— tail (savedq

Internal VSAlocal(act).,,
Precondition:

vstate£ L # &, (vstate act) A savedg= ()

nextrcv> now -d A act= next(vstate &,)
Effect:

vstate— 4., (vstate act)

if act= bcast(m) then

outq < append(outq, (m, vstatenow))

Output TOBcast(m).,p
Precondition:

outq— = {(m, t): t > now}
10

Internal checksum,, ,

Precondition: 10
vstatenowmod ttlypdate = O A nextrcv> now-d
savedg= DA Vacte sig,, -{brcv(m) }:6,, (vstateact)= 1o
checksurg (checksum(vstate vstatenowttl, paate *)

Effect: 10
checksum—

(checksum(vstatg), vstatenow/ ttl, pqqte. false) 10
if (joinreq# oo A joinreq > now -d) then

joinreq «— now -d 11
Output TOBcast((check, (csumt), jr))w,p 11
Precondition:

reg=u AleadTS< now< nextrcv+d Aoutq=0 11
now+d < (t+1)-ttlypdate

checksum= (csumt, false) A jr = = (joinreq# oo) 11
Effect:

checksum— (csumt, true) 11
Input TOBrev((check, (csum, t'), jr), u)u,p 12
Effect:

outg— = {(M 1t < tarice} 12

reg= u A leadTS< now < nextrcv+ d A vstate# L | if (jr A joinreq= o) then

vstatenow > now-d A V(m, t) € outq t > now-e
m = head(outq)
Effect: outq« tail (outq)

Input TOBrev(join, U)., p
Effect:
joinreq «— now-d

joinreq «— now-2d 12
if ([vstate= LA joinTS< now-2d A!jr]
V [vstate# LA checksung (csuml, t/, *)]) then 12
joinTS+ oo
elsechecksum— (csuni, t’, true) 12

Fig. 3. VSAE,,,, emulator ap of V,,

= (8igu, statesy, starty, du, T) - actions.

we require a leader to only transmit apdate message once its virtual clock is caught
up to real time (line 70).

Message processingvlessages to be received by the VSA are placed in a saved mes-
sage queue from which emulators simulate receiving the agess If arupdate mes-
sage is received, setting back the state of the VSA, emslatast be able to resimulate
receiving messages that were sent u@ time before theupdate was sent. In order

to guarantee this, whenever an emulator processes a mdesagie saved message
queue for the VSA, it moves the message into an old saved gegs&ue (line 44); if

a process receives apdate message, it moves all messages in that queue that were
received after thepdate was sent back into its saved message queue to be reprocessed
(line 88-89).

Making up leader broadcastsif a leader is supposed to perform broadcasts on the
VSA's behalf, but fails or leaves before sending them, the leader needs to transmit
the messages. Since emulators store outgoing VSA messegéscal outgoing queue,
the new leader just transmits any messages stored in iteiagtgueue (lines 56-61)
and removes them. To prevent messages from being rebrodydasure leaders, em-
ulators that receive a VSA message broadcast by the leateveeit from their own
outgoing queues (lines 36-37).

Restarting a VSA:If a process is leader and has no value for the VSA state or has
messages in its outgoing queue with timestamps older traddlay augmentation pa-
rametere, it restarts the emulation. It does this by sendinguadate message with
attached state aof and then waiting to receive the message (lines 67-75). When p
cesses that have been in the redidiime receive the messagdater, they initialize the
VSA state and messaging queues and begin emulating a eelsY8® (lines 77-91).
Self-stabilization. Our implementation is self-stabilizing through the useoafdl cor-
rection andupdate andchecksum messages. Thepdate messages sent by a leader
contain state information which overwrites any VSA stafelimation at other emula-
tors, bringing emulators into agreement about VSA statthdrevent that join requests

do not occur very often, if the virtual clock is divisible by, pqq:c, the emulators calcu-
late and store a checksum of the VSA state. The leader is #sgonsible for sending
out checksum messages with the attached checksum. Emulators, when gbeive

this message, compare the attached checksum to the vehnsiothey have stored. If
the versions differ, they re-join. This ensures that enautatvill have state consistent
with the leader’s.

4.4 Correctness and performance evaluation

Correctness roughly consists of guaranteeing livenesgeamulation under certain cir-
cumstances and guaranteeing that emulations of an abgBacimplement the VSA.

We say a VSA emulation iiledif no process in the region has VSA statéate #
L such thatvstate.now > now — d and its outgoing queue has no messages with
timestamps more thanbefore real-time.

Assume that as a parameter of the system, there is somevpastégerk such that
if a process is alive in a region from the beginning of any shoe¢ through the end of
timeslicet + k, then there is at least one timeslicetia- 1. ..t + k where no failures
or leaves of processes occur in the region. We can then steofeltbwing:

Lemma 1. For any non-failed VSA emulation, VSA outputs are not deldyemore
thane = (k + 1) - tqice — d time, and as long as from the beginning of any timeslice
there is at least one alive process in the VSA's region witlate # L, vstate.now >
now — d, and an outgoing queue without messages that are olderdhhat remains
alive in the region through the following timeslices, the VSA emulation does not fail
or restart.

Lemma 2. Ifa VSA s failed in some timeslice but there is an alive psséa the VSA's
region from the beginning of the timeslice through the fellgy & timeslices, then the
VSA will be restarted withia time.

Theorem 1. The VSA emulator and client implementatiéf) ¢orrectly implement the
VSA abstractiondl): timed-traces(S) C timed-traces(A).

Proof sketch: We introduce an intermediate layer, and describe a (singote)lation
relation [12] between this layer and the abstract layer. Ném tdescribe a simulation
relation from our implementation to the intermediate layergether, this shows the
implementation implements the abstract layer.

The intermediate layer is similar to the abstract layergexthat VSAs may have
clocks that are behind real-time and have incoming deldglaifhat hold each message
bound for the VSA until the VSA's clock passes the messagmestamp. This layer
captures the idea that VSA state in the emulation can be b&¥tiat the corresponding
abstract VSA state would be. A simulation relation is thefirgel to show that this
intermediate layer implements the abstract layer, by irgjahe state of a VSA, its
incoming message buffer, and outgoing message buffer intdenediate layer to what
will be the state of that VSA and its delayed outgoing mesdagter in the abstract
layer, once its virtual clock equals the current real-time.

We then describe a forward simulation relation betweenrtipgémentation and the
intermediate VSA abstraction for non-failed VSA emulatofhere are several parts,
relating state of emulators to the state of the abstract Vi8hstate of message buffers
in the implementation to those of the abstract system:

(1) For any process whetstate # L, the value obstate is equivalenttd/, .vstate
unless there is anpdate message in transit, in which ca¥g.vstate is equal to the
attached state in thgpdate message.

(2) If m is a message either in transitgoor in p's saved message queue, then
is in virtual transmission ta. If there is anupdate message in transit and is in p's
old saved message queue anthifvas sent less thahbefore theupdate, theniitis in
virtual transmission ta.

(3) If m is a message in transit wand was sent by, then the message is in
virtual transmission t@.

(4) If m is a message in the outgoing queue and not currently in traarsil no
update message is in transit then is in Doufe]. O

Message complexity.There are two parts to the message overhead introducedsy thi
algorithm. The first is that of the overhead in normal operaintroduced over that

of the virtual machine if it was real. This is just one cheakssized message every
ttlupdate time (used for self-stabilization). The second is that & dverhead from

dealing with processes joining the emulation. In this cagen a successful join occurs
it results in a broadcast of the VSA state and saved message gquhich could contain
as many messages as could be receivettime. If M’ is the number of messages that
can be received id time, then the bit overhead of a join@¥(|vstate| + |msg| - M').

5 Applications for the VSA layer

We believe the VSA layer will be helpful for many applicat&gincluding some of the
more difficult coordination problems for nonhomogenousuoeks oftentimes desired
in true mobile ad-hoc deployments. It allows applicationedepers to re-use many al-
gorithms originally designed for the fixed network or basgish setting, and to design
different services for different regions. Here we list sav@pplications whose imple-
mentations would benefit from use of the VSA abstraction.
Geo-routing. One important application is to allow arbitrary regions toranunicate.
This can be easily implemented by VSAs that utilize the fivitedgt of the network to
forward messages [9]. Each VSA chooses a neighboring VSartedrd a message to
according to criteria of shortest path to destination oedyeDFS as suggested in [8].
The VSA layer offers a fixed tiled infrastructure to depend @ther than the ad-hoc
imaginary tiling used in that algorithm. Retransmissioteg greedy DFS explored
links can be used to cope with repeated crashes and receyglieThe GOAFR al-
gorithm [13], combining greedy routing and face routing) && used to give efficient
routing in the face of “holes” in the VSA tiling.
Location management and end-to-end routing.Location management is a difficult
task in ad-hoc networks, as many algorithms assume fixedsinércture and raise
difficult-to-analyze concerns about data consistency. él@y home locationalgo-
rithms are easily implemented using the VSA layer [9]. Edi#nts id can be hashed to
a set of VSAs (home locations) that would store the cliewigstion. The client would
occasionally inform its local VSA of its presence. That lo¢8A would then inform
the client's home locations, using a Geo-routing servi€gh@region. Anyone search-
ing for the client would have their local VSA query the clisrftome location VSAS,
again using the a Geo-routing service, for the client’s ioca

The home location service can then be used to provide trgdenvices or end-
to-end communication between individual clients [9]. A sage is sent to a client by
looking up its location using the home location service dr@htusing Geo-routing to
send the message to VSAs close to the returned locationeTW®As that receive the
message broadcast it to local clients for delivery by therided recipient.
Distributed coordination. VSAs corresponding to geographic regions can be a source
of on-line information and coordination, directing molsleents to help them complete
distributed systemwide missions. The virtual infrastouetcan make it easier to handle
coordination of many clients when tasks are complex. Alsanpyncoordination prob-
lems can tolerate a VSA in an empty region failing since s@gfians have no clients
to coordinate. The use of a virtual infrastructure to enafddile clients to coordinate
and equally space themselves along a target curve was lgedentonstrated in [16].
The paper provides a simple framework for coordinatingntli@des through interac-
tion with virtual nodes. It also demonstrates a simplisémtilator-aware” approach to

maintenance of virtual automata; a VSA makes decisionstaboget destinations for
participating clients based partly on information abowsalopopulation density in an
attempt to keep the VSA alive. The approach could be extetmémke into account
more client or network factors and even to provide activeuitment, where virtual
automata can request emulator aid from distant virtualraata regions.

An example of a timed coordination application is that ofidual traffic light. A
VSA for aregion corresponding to the intersection of roadsiiemote area can provide
a virtual traffic light that keeps the light green in each dii@n for a specific amount of
time, providing a substitute for the fixed infrastructurelimg in the region. The VSA
would be emulated by computers on vehicles approachingntieesection. Multiple
traffic VSAs can also coordinate to facilitate optimal mosrnof mobile clients.

Another coordination application is the Virtual Air-TraffiController [20]. The
VSA controller uses detailed knowledge of time in order tanpivhere and when air-
borne planes should fly. The burden of regulating laterahssjon of aircraft could
be allocated in a distributed fashion by VSAs, where VSAsgaskcal planes dif-
ferent time separations and altitudes based on aircradtayg heading. By devolving
some decision-making to aircraft, we can both alleviataigthbased bottlenecks and
allow for more local control of flight plans, resulting in @pized routes and better fuel
economy [23]. Airspace VSAs are easy to envision, giventjgrsng, long-range com-
munications, and computing resources increasingly aailan commercial aircraft.
Data collection and dissemination.A VSA could maintain a summary database of in-
formation about its local conditions and those of otherargi Clients could then query
their local VSA to get recent information about a locatioheThistory is complete as
long as the VSAs tile remains occupied. Resiliency can bk imby using techniques
already designed for static but failure-prone networkshss automatically backing up
data at neighboring VSAs or sending data to a central, fellabation by a background
convergecast algorithm executed by the VSA network.

Hierarchical distributed data structures. Here, tile size is constrained by the broad-
cast range of the underlying nodes. An hierarchical emaraif the model, where mul-
tiple nodes coordinate to emulate larger tiles, can proaid®re general infrastructure.
The VSA layer can be a basic building block to implement highies in a network that
could, for example, be used to allow clients to register amerygjattributes.

6 Current and future work

The system model assumed so far abstracts away details oitterlying physical
layer in order to clearly describe algorithmic issues. Heeediscuss some implemen-
tation issues and extensions. We also hope that current sumikating this layer and
implementing it will guide improvements in our layer implentation.
Non-synchronized clocks. The VSA layer model and implementation could be ex-
tended to allow for a known bound on mobile node clock driftisTresults in the addi-
tion of incoming message delay buffers for VSAs in the alestnaodel, in addition to
the outgoing ones already present.

Emulation strategies to accommodate message collision®ur work is being ex-
tended to a communication model allowing message colksjgh One approach is to

relax the physical and VSA layer broadcast models to allowgage loss in the pres-
ence of contention, but guarantee the VSA emulation isbildiby taking advantage of
the fact that leader election effectively defines an ordimheslicing of a communica-
tion channel for at least one process. Consider two chapeelile in the network, pro-
vided either through frequency allocation or additionadeslicing. Assuming a leader
election service for this setting, whichever process isiéeaan have one channel to
itself, allowing it to perform VSA related broadcasts witlianterference from other
processes. The other channel could be used by nodes trysammunicate with the
VSA; message loss on this channel would be possible since tloelld be contention.
The leader can then become the arbiter of which messagestaaiya received by
the VSA, by rebroadcasting received messages; other esnsiatiopt these as the in-
coming messages for the VSA. Alternatively, a more statestrassion heavy approach
could be adopted, where non-leader emulators are passiteha leader periodically
broadcasts up-to-date state to them.

Leader election algorithms. Our emulation algorithm utilizes a basic leader election
service with a simple interface. Alternative leader etatstrategies can be considered.
For example, a round-robin strategy can help relieve nétwongestion. Such a strat-
egy could periodically select a new leader frorkh-Aounded vector of mobile nodes in
a region calledyuards. This is done by defining globally knowtmeslicesof length
tsiice @nd rotating theyuards vector each timeslice, defining revolving responsibility
for leadership. Whichever process’s id and join timesta@pip currently at the head
of the rotating vector is the leader. Processes trying to flo¢ guards vector are ap-
pended to it if there is room while leaders that fail to traitgturing their timeslice are
subsequently dropped from the vector.

A promising area for further research is into region-basadér election algorithms
for mobile networks that are designed to produce stableutsithat take into account
factors such as location, speed, power constraints, arabitil of individual nodes.
Improved leader election guarantees can lead to improvedbgion guarantees.

In addition, a leader election service could be extendeaftmin client nodes if they
should participate in emulation at all. Some clients cowdddid they are not needed
for emulation for some period, allowing them to conserve gow
Extensions to non-homogenous networks.In many cases, there are portions of a
deployment area that have fixed infrastructure or sensipghibities and portions that
do not. While the model we introduced here does not take intownt the fact that
some deployments may have some access to fixed infrasteyttiarmodel in this paper
should easily be extended to accommodate these mixed depitsy.

References

1. Camp, T. and Liu, Y., “An adaptive mesh-based protocoldeocast routing”Journal of
Parallel and Distributed Computing: Special Issue on Meld-hoc Networking and Com-
puting pp. 196-213, 2002.

2. Chockler, G., Demirbas, M., Gilbert, S., Newport, C., &tlte, T., “Consensus and Colli-
sion Detectors in Wireless Ad Hoc Network#roceedings of the 24th Annual ACM Sym-
posium on Principles of Distributed Computing (PODEJ05.

w

[S2 3

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.
24.
25.
26.

Dijkstra, E.W., “Self stabilizing systems in spite ofwiilsuted control”,Communications of
the ACM 1974.

. Dolev, S.Self-StabilizationMIT Press, 2000.
. Dolev, S., Gilbert, S., Lynch, N., Schiller, E., ShvartsmA., and Welch, J., “Virtual Mobile

Nodes for Mobile Ad Hoc Networks'International Conference on Principles of Distributed
Computing (DISG)2004.

. Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., and&el., “GeoQuorums: Implement-

ing Atomic Memory in Ad Hoc Networks”17th International Conference on Principles of
Distributed Computing (DISCSpringer-Verlag LNCS:2848, 2003.

. Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., and&iiel., “GeoQuorums: Implement-

ing Atomic Memory in Ad Hoc Networks”, Technical Report MIOES-TR-900, MIT Lab-
oratory for Computer Science, Cambridge, MA, 02139, 2003.

. Dolev, S., Herman, T., and Lahiani, L., “Polygonal Broast¢c Secret Maturity and the Firing

Sensors” Third International Conference on Fun with Algorithms (FY)p. 41-52, May
2004. Also to appear iAd Hoc Networks JournaElseiver.

. Dolev, S., Lahiani, L., Lynch, N., and Nolte, T., “Selfé®ilizing Mobile Node Location

Management and Message Routing”, Symposium on Self StalgjlSystems (SSS), 2005.
Hubaux, J.P., Le Boudec, J.Y., Giordano, S., and Hamdi;The Terminodes Project: To-
wards Mobile Ad-Hoc WAN",Proceedings of MOMU(C1999.

Kan, M., Pande, R., Vinograd, P., and Garcia-Molina,“Byent Dissemination in High-
Mobility Ad-hoc Networks”, Technical Report, 2005.

Kaynar, D., Lynch, N., Segala, R., and Vaandrager, he'Theory of Timed I/0O Automata”,
Technical Report MIT-LCS-TR-917a, MIT LCS, Cambridge, MZQ04.

Kuhn, F., Wattenhofer, R., Zhang, Y., and Zollinger, #&&gometric Ad-Hoc Routing: Of
Theory and PracticeProceedings of the 22nd Annual ACM Symposium on Princifdles o
Distributed Computing (PODCR003.

Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., Budris, R., “A Scalable Location
Service for Geographic Ad Hoc Routing?roceedings of Mobicon2000.

Lok, C., “Instant Networks: Just Add Softwar&gchnology Reviewlune, 2005.

Lynch, N., Mitra, S., and Nolte, T., “Motion coordinatiasing virtual nodes”, To appear:
IEEE Conference on Decision and Control, 2005.

Morris, R., Jannotti, J., Kaashoek, F., Li, J., and DezoD., “CarNet: A Scalable Ad Hoc
Wireless Network System”, 9th ACM SIGOPS European Workshapding, Denmark,
September 2000.

Nath, B. and Niculescu, D., “Routing on a curveGM SIGCOMM Computer Communica-
tion Review2003.

Navas, J.C. and Imielinski, T., “Geocast- geographtregsing and routing’Proceedings
of the 3rd MobiCom1997.

Neogi, N., “Designing Trustworthy Networked Systems:CAse Study of the National
Airspace System”, International System Safety ConfereBtiawa, Canada, 2003.
Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Gwan, R., and Shenker, S., “GHT:
A Geographic Hash Table for Data-Centric Storadgei'st ACM International Workshop on
Wireless Sensor Networks and Applications (WSIRB0)2.

Sun, Q., and Garcia-Molina, H., “Using Ad-hoc Inter-ioddn Networks for Regional Alerts”,
Technical Report, 2004.

Talbot, D., “Airborne Networks Technology Revievway, 2005.

Talbot, D., “The Ascent of the Robotic Attack Jef&chnology RevieviMarch, 2005.

Vasek, T., “World Changing Ideas: Germany&chnology ReviewApril, 2005.

Woolley, S., “Backwater Broadband®orbes 2005.

