
Timed Virtual Stationary Automata
for Mobile Networks

Shlomi Dolev1, Seth Gilbert2, Limor Lahiani1, Nancy Lynch2, and Tina Nolte2

1 Dep. of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
2 MIT CSAIL, Cambridge, MA 02139, USA

Abstract. We define a programming abstraction for mobile networks called the
Timed Virtual Stationary Automataprogramming layer, consisting of mobile clients,
virtual timed I/O automata called virtual stationary automata (VSAs), and a com-
munication service connecting VSAs and client nodes. The VSAs are located at
prespecified regions that tile the plane, defining a static virtual infrastructure. We
present a self-stabilizing algorithm to emulate a timed VSAusing the real mobile
nodes that are currently residing in the VSA’s region. We also discuss examples of
applications whose implementations benefit from the simplicity obtained through
use of the VSA abstraction.

Keywords: Ad-hoc networks, mobile computing, location-aware distributed comput-
ing, fault tolerance/availability, virtual infrastructure, state replication, virtual machine

1 Introduction

The task of designing algorithms for constantly changing networks is difficult. Highly
dynamic networks, however, are becoming increasingly prevalent, especially in the con-
text of pervasive and ubiquitous computing, and it is therefore important to develop new
techniques to simplify this task. Here we focus on mobile ad-hoc networks, where mo-
bile processors attempt to coordinate despite minimal infrastructure support. This paper
develops new techniques to cope with this dynamic, heterogeneous, and chaotic envi-
ronment.

We mask the unpredictable behavior of mobile networks by defining and emulat-
ing a virtual infrastructure, consisting oftiming-awareand location-awaremachines
at fixed locations, that mobile nodes can interact with. The static virtual infrastructure
allows application developers to use simpler algorithms — including many previously
developed for fixed networks.

There are a number of prior papers that take advantage of geography to facili-
tate the coordination of mobile nodes. For example, the GeoCast algorithms [1, 19],

1 Partially supported by IBM faculty award, NSF grant and the Rita Altura chair in computer
sciences. Email:{dolev, lahiani}@cs.bgu.ac.il.

2 Supported by DARPA contract F33615-01-C-1896, NSF ITR contract CCR-
0121277, and USAF, AFRL contract FA9550-04-1-0121. Email:{sethg, lynch,
tnolte}@theory.csail.mit.edu.

GOAFR [13], and algorithms for “routing on a curve” [18] route messages based on the
location of the source and destination, using geography to delivery messages efficiently.
Other papers [10,14,21] use geographic locations as a repository for data. These algo-
rithms associate each piece of data with a region of the network and store the data at
certain nodes in the region. This data can then be used for routing or other applications.
All of these papers take a relatively ad-hoc approach to using geography and location.
We suggest a more systematic approach; many algorithms presented in these papers
could be simplified by using a fixed, predictable timing-enabled infrastructure.

In industry there have been a number of attempts to provide specialized applications
for ad-hoc networks by organizing some sort of virtual infrastructure over the mobile
nodes. PacketHop and Motorola envision mobile devices cooperating to form mesh
networks to provide communication in areas with wireless-broadcast devices but little
fixed infrastructure [15,26]. These virtual infrastructures could allow on-the-fly network
formation that can be used at disaster sites, or areas where fixed infrastructure does not
exist or has been damaged. BMW and other car manufacturers are developing systems
that allow cars to communicate about local road or car conditions, aiding in accident
avoidance [11,17,22,25].

Each of the above examples tackles very specific problems, like routing or distribu-
tion of sensor data. A more general-purpose virtual infrastructure, that organizes mobile
nodes into general programmable entities, can make a richerset of applications easier to
provide. For example, with the advent of autonomous combat drones [24], the complex-
ity of algorithms coordinating the drones can make it difficult to provide assurance to an
understandably concerned public that these firepower-equipped autonomous units are
coordinating properly. With a formal model of a general and easy-to-understand virtual
infrastructure available, it would be easier to both provide and prove correct algorithms
for performing sophisticated coordination tasks.

Virtual Stationary Automata programming layer. The programming abstraction we
introduce in this paper consists of a static infrastructureof fixed, timed virtual ma-
chines with an explicit notion of real-time, calledVirtual Stationary Automata(VSAs),
distributed at known locations over the plane, and emulatedby the real mobile nodes
in the system. Each VSA represents a predetermined geographic area and has broad-
cast capabilities similar to those of the mobile nodes, allowing nearby VSAs and mo-
bile nodes to communicate with one another. This programming layer provides mobile
nodes with a virtual infrastructure with which to coordinate their actions. Many practi-
cal algorithms depend significantly on timing, and many mobile nodes have access to
reasonably synchronized clocks. In the VSA programming layer, the virtual automata
also have access tovirtual clocks, guaranteed to not drift too far from real-time. These
virtual automata can then run programs whose behaviour might be dependent on the
continuous evolution of timing variables.

Our virtual infrastructure differs in key ways from others that have previously been
proposed for mobile ad-hoc networks. The GeoQuorums algorithm [6,7] was the first to
use virtual nodes; the virtual nodes in that work are atomic objects at fixed geographical
locations. More general virtual mobile automata were suggested in [5]; our automata are
stationary, and are arranged in a connected pattern that is similar to a traditional wired
network. Our automata also have more powerful computational capabilities than those

in [5] in that ours include timing capabilities, which are important for many applica-
tions. Finally, we use a different implementation stategy for virtual nodes than in [5],
incurring less communication cost and enabling us to provide virtual clocks that are
never far from real-time.
Emulating the virtual infrastructure. Our clock-enabled VSA layer is emulated by
the real mobile nodes in the network. Each mobile node is assumed to have access
to a GPS service informing it of the time and region it is currently in. A VSA for
a geographic region is then emulated by a subset of the mobilenodes populating its
region: the VSA state is maintained in the memory of the real nodes emulating it, and
the real nodes perform VSA actions on behalf of the VSA. The emulation is shared by
the nodes while one leader node is responsible for performing the outputs of the VSA
and keeping the other emulators consistent. If no mobile nodes are in the region, the
VSA fails; if mobile nodes later arrive, the VSA restarts.

An important property of our implementation is that it is self-stabilizing. Self-
stabilization [3,4] is the ability to recover from an arbitrarily corrupt state. This property
is important in long-lived, chaotic systems where certain events can result in unpre-
dictable faults. For example, transient interference may disrupt the wireless commu-
nication, violating our assumptions about the broadcast medium. This might result in
inconsistency and corruption in the emulation of the VSA. Our self-stabilizing imple-
mentation, however, can recover after corruptions to correctly emulate a VSA.
Applications. We present in this paper an overview of some applications that are sig-
nificantly simplified by the VSA infrastructure. We considerboth low-level services,
such as routing and location management, as well as more sophisticated applications,
such as motion coordination, tracking, traffic management,and traffic coordination. The
key idea in all cases is to locate data and computation at timed VSAs throughout the
network, thus relying on the virtual infrastructure to simplify coordination in ad-hoc
networks. This infrastructure can be used to implement services such as routing that are
oftentimes thought of as the lowest-level services in a network.

2 Datatypes and system model

The system consists of a finite collection of mobile client processes moving in a closed,
connected, and bounded region of the 2D plane calledR. RegionR is partitioned into
predetermined connected subregions calledtiles or regions, labeled with unique ids
from the set of tile identifiersU . In practice it may be convenient to restrict tiles to be
regular polygons such as squares or hexagons. We define a neighbor relationnbrs on
ids fromU : two tilesu andv are neighbors iff the supremum distance between points
in tile(u) andtile(v) is bounded by a constantrvirt.

Each mobile nodeCp, p ∈ P , the set of mobile node ids, is modeled as a mobile
timed I/O automaton whose location inR at any time is referred to asloc(p). Mobile
node speed is bounded by a constantvmax. We assume each node occasionally receives
information about the time and its current regionu; a GPSupdate(u, now)p happens
everyǫsample time. While GPS is not entirely accurate in reality, as long as an error
bound is known, its effects here are small. We assume the node’s local clocknow pro-
gresses at the rate of real-time.

Each client is equipped with a local broadcast communication service calledP -
bcast, with a minimum broadcast radius ofrreal and a message delayd. This service al-
lows each clientCp to broadcast a message to all nearby clients throughbcast(m)p and
receive messages broadcast by other clients throughbrcv(m)p actions. We assume that
a local broadcast service guarantees two properties: integrity and reliable local delivery.
Integrityguarantees that every message received was previously broadcast.Reliable lo-
cal delivery(roughly) guarantees that a transmission will be received by nearby nodes:
If client Cp broadcasts a message, then every clientCq within rreal distance ofCp’s
transmission location during the transmission interval oflengthd receives the message
before the end of the interval.

Clients are susceptible to stopping and corruption failures. After a stopping failure,
a client performs no additional local steps until restarted. If restarted, it starts operating
again from an initial state. If a node is corrupted, it suffers from a nondeterministic
change to its program state.

Additional arbitrary external interface actions and localstate used by algorithms
running at the client are allowed. For simplicity local steps are assumed to take no time.

3 Virtual Stationary Automata programming layer

.

.

.

ubcast(m)

ubrcv(m) uV

.

.

.

vDout[e]

vV

vbcast(m)

vbrcv(m)

uDout[e]

GPS

q

qbrcv(m)
Cq

pbcast(m)

pbrcv(m)
Cp

bcast(m)

p

q

V−bcast

GPSupdate(u,t)

GPSupdate(v,t)

Fig. 1. Virtual Stationary Automata abstraction. VSAs
and clients communicate using the V-bcast service. VSA
bcasts may be delayed in Dout buffers.

Here we describe theVir-
tual Stationary Automata
programming layer. This
abstraction includes the
real mobile nodes dis-
cussed in the last section,
the virtual stationary au-
tomata (VSAs) that the
real nodes emulate, and a
local broadcast service, V-
bcast, between them (see
Figure 1). The layer al-
lows developers to write
programs for both mobile
clients and stationary tiles
of the network as though
broadcast-equippedvirtual
machines exist in those
tiles. We begin by describ-
ing the properties of VSAs
and then describe the V-
bcast service.

3.1 Virtual Stationary Automata

An abstract VSA is a timing-capable virtual machine. We formally describe such a
timed machine for a tileu, Vu, as a TIOA whose program can be referred to as a tuple

of its action signature,sigu, valid states,statesu, a start state function,startu, mapping
clock values to appropriate start states, a discrete transition function,δu, and a set of
valid trajectories of the machine,τu. Trajectories [12] describe state evolution over
intervals of time.

A virtual automatonVu’s external interface is restricted to include only stopping
failure, corruption, and restart inputs and the ability to broadcast and receive messages
(the restriction guarantees the VSA can be emulated by mobile nodes). Corruptions
result in a nondeterministic change to any portion ofVu’s state,vstate, including the
virtual clockvstate.now. As with mobile clients, thisnow value is assumed to progress
at the rate of real-time and, outside of failure, equal real-time. Since a VSA is emulated
by physical nodes (corresponding to clients) in its region,its failures are defined in
terms of client movements and failures in its region: (1) If no clients are in the region,
the VSA is crashed, (2) IfVu is failed but a clientCp enters the region and remains
for at leasttrestart time, then in that interval of timeVu restarts, (3) If no client failure
(corruption or stopping) occurs in an alive VSA’s region over some interval, the VSA
does not suffer a failure during that interval, and (4) A VSA may suffer a corruption only
if a mobile client in its region suffers a corruption; our self-stabilizing implementation
of a VSA guarantees that starting from an arbitrary configuration of the emulation, the
emulation’s external trace will eventually look like that of the abstract VSA, starting
from a corrupted abstract state.

3.2 V-bcast service

The V-bcast service is a “virtual” broadcast communicationservice with transmission
radiusrvirt. It is similar to that of the real nodes’P -bcast service and implemented us-
ing theP -bcast service. It allows broadcast communication betweenneighboring VSAs,
between VSAs and nearby clients, and between clients through bcast andbrcv actions,
as before. V-bcast guarantees the integrity property described forP -bcast, as well as a
similar reliable local delivery property. Thereliable local deliveryproperty for V-bcast
is as follows: If a client or VSA in a regionu transmits a message, then every client
or VSA in regionu or neighboring regions during the entire time interval starting at
transmission and endingd later receives the message by the end of the interval. (For
this definition, due toGPSupdate lag, a client is still said to be “in” regionu even if it
has just left regionu but has not yet received aGPSupdate with the change.)

Notice that V-bcast’s broadcast radius is different from that ofP -bcast; since virtual
broadcasts are performed using real broadcasts, the virtual transmission radius cannot
be larger than the real. Recallrvirt is the supremum distance between points in two
neighboring tiles. V-bcast then allows a real nodep and a VSA for tileu to communi-
cate as long as the node is at mostrvirt distance from any point in tileu and a VSA
to communicate with another VSA as long as they are in neighboring tiles. The imple-
mentation of the V-bcast service using the mobile clients’P -bcast service introduces
the requirement thatrvirt ≤ rreal − 2ǫsample · vmax. The2ǫsample · vmax adjustment
guarantees that two nodes emulating VSAs for tiles they havejust left (because they
have not yet receivedGPSupdates that they’ve change tiles) can still receive messages
transmitted to each other. If GPS error is considered, we would compensate by further
decreasingrvirt by twice the error bound.

3.3 Delay augmentation

The overhead of emulatingVu may introduce additional delays in the broadcasting of
messages. The emulation ofVu is then called adelay-augmented TIOA, an augmenta-
tion ofVu with timing perturbations composed withVu’s output interface. These timing
perturbations are represented with a buffer Dout[e]u, composed withVu’s bcast output.
The buffer delays delivery of messages by some nondeterminstic time [0, e]. Program
actions ofVu must be written taking into account the emulation parametere, just as it
must the message delay factord. A discussion of the value ofe is in Section 4.4.

4 Implementation of the VSA layer

We describe the implementation of a VSA by mobile clients in its tile in the network.
At a high level, the individual mobile clients in a tile shareemulation of the virtual ma-
chine through a deterministic state replication algorithmwhile also being coordinated
by a leader. We begin by describing a totally-ordered broadcast service and leader elec-
tion service for individual regions, also implemented using the underlying real mobile
nodes, that we will use in our replication algorithm. We thenfocus on describing the
core emulation algorithm, briefly sketch correctness, and analyze emulation overhead.

4.1 TOBcast service

In order to keep emulators’ state consistent, emulators must process the same sets of
messages in the same order. We accomplish this by using the emulators’ clocks andP -
bcast service to implement a TOBcast service for each regionand client. This service
allows a clientCp in tile u to broadcastm, TOBcast(m)u,p, and to have the message
be received,TOBrcv(m, u)v,q, by clients intile(u) and neighboring tiles exactlyd
time later. To implement this service, when a client wants toTOBcast m from itself
or its tile, it tagsm with its current tile, time, message sequence number (incremented
when the client sends multiple messages at once), and the client id, and broadcasts
it using P -bcast. When a client receives such a message from a client inits tile or a
neighboring tile it holds the message in a queue until exactly d time has passed since
the message’s timestamp. Messages that are exactlyd old are thenTOBrcved in order
of sender id and sequence number, ordering the messages. Timestamps are also used to
ensure self-stabilization; this is similar to the use of GPSoracles in [9]. To avoid the
use of shared variables, we include input and output actionsso the TOBcast service can
inform the client whether all messages sent up tod time ago have been received. Most
complications in the use of these actions come from self-stabilization.

4.2 Leader election service

Here we describe the specification for a leader election service required for our emulator
implementation. We divide time up into segments of lengthtslice called timeslices, that
begin on multiples oftslice. Assumetslice ≥ 4d. When there are no corruption failures,
the leader election service for a regionu guarantees:
(1) There is at most one leader of a region at a time, and the leader is in the region

(or within ǫsample · vmax) distance,
(2) If a processp becomes leader of regionu at some time, then at that time either:

(a) there was a prior leader of regionu during an interval starting at leastd afterp
enteredu and ending after some multiple oftslice at least2d later, or

(b) there is no process inu where a prior leader such as in (a) can be found,
(3) If a process ceases being leader at timet then it will be at leastd time before a new

leader is chosen,
(4) For any two consecutive timeslices such that at least oneprocess is alive inu for

both timeslices and no failures occur in the latter timeslice, there will be a leader in
one of the two timeslices from at least2d time before the end of the timeslice to the
end of the timeslice.

Property (2) guarantees that either the process that is chosen as a leader has been in the
region long enough to have interacted with a prior leader, orthere are no processes for
which that is true. Property (3) provides a time gap between leaders that will later be
useful in guaranteeing that a new leader had heard all prior leader broadcasts before it
became a leader.

One example of a self-stabilizing heartbeat implementation of this leader election
specification is as follows: if a process is leader, it broadcasts aleaderhb message
everytslice amount of time. Once it fails or leaves the tile, the other processes in the
region will synchronously timeout the heartbeat and sendrestart messages, from which
the lowest id process that had previously heard a heartbeat from the leader at least3d

time after entering the tile is chosen as leader; this ensures that property (2a) holds.
If there is no such process, then the lowest id process becomes leader. This simplistic
strategy ignores issues of network contention or power management. We briefly discuss
alternative leader election strategies in Section 6.

4.3 Emulator implementation

Here we describe a fault-tolerant implementation of a VSA emulator. We first describe
how our leader-based emulation generally works and then address details in the emu-
lation. The signature, state, and trajectories for the algorithm are in Figure 2 and the
actions are in Figure 3. Line numbers refer to lines in Figure3.
Leader-based virtual machine emulation. In our virtual machine emulation, at most
one of the mobile nodes in a VSA’s tile is a leader (chosen by the leader election ser-
vice), with primary responsibility for emulating the VSA and performing VSA outputs.
A leader stores and updates the state of the VSA (including the VSA’s clock value) lo-
cally, simulating all actions of the VSA based on it. When theleader receives a TOBcast
message, it places the message in a local saved message queue(lines 33-37) from which
it simulates the VSAbrcving (processing) the message (lines 39-45). If the VSA is to
perform a local action, the leader simulates its effect on the VSA state (lines 47-54).
If the VSA action is tobcast a message, the leader places the message in an outgoing
VSA queue (lines 53-54), to be removed andTOBcasted with the tile as the source by
the leader, in the VSA’s stead (lines 56-61).

For fault-tolerance and load balancing reasons, it is necessary to have more than just
the leader maintaining a VSA. In our multiple emulator approach, a VSA is maintained
by several emulators, including at most one leader, each maintaining and updating its

Signature:
2 Input GPSupdate(v, t)p, v∈ U, t ∈ R

Input leader(val)u,p , val∈ Bool
4 Input TOBnext(t)u,p, t ∈ R

Input TOBrcv(m, v)u,p, v∈ {u}∪ nbrs(u)
6 Output TOBprobeu,p

Output TOBcast(m)u,p, m∈ (Msg× R)∪ {join} ∪
8 ({update}× statesu)∪ ({check}× (hash× N)× Bool)

Internal VSArcv(m)u,p

10 Internal VSAlocal(act)u,p, act∈ internal , output sigu

Internal correctqueuesu,p

12 Internal checksumu,p

14 State:
analognow∈ R, current real time

16 reg∈ U, current reg, initially⊥
nextrcv, joinTS, leadTS, joinreq∈ R

18 vstate∈ statesu
oldsavedq, savedq, outq, queues of msg, timestamp pairs

20 checksum, triple of hashedVu state, a natural, and a bool

22Trajectories:
satisfies

24d(now) = 1
constantreg, joinTS, joinreq, oldsavedq, savedq,

26outq, nextrcv, leadTS, checksum
τ(now).vstate= τu(τ(now).vstate.now)

28if (vstate6=⊥ ∧ vstate.now≥ now-d) then
if vstate.now< nowthen

30d(vstate.now) = x, x > 2
elsevstate.now= now

32else constantvstate
stops when

34Any precondition is satisfied.

Fig. 2. VSAEu,p, emulator atp of Vu = 〈sigu, statesu, startu, δu, τu〉 - signature, state,
trajectories.

local copy of the VSA state and saved message queue as above. However, non-leader
emulators, unlike leaders, do not transmit messages for theVSA from their outgoing
VSA queues, preventing multiple transmission of messages from the VSA. To keep
emulators consistent, the emulation trajectories are based on a determinized version of
the VSA trajectories.

Emulation details. There are several complications in VSA emulation that arisedue
to both message delays and process failure:

Joining: When a node discovers it is in a new region, itTOBcasts ajoin message (lines
23-31). Any process that receives this message stores the timestamp of the message as
the latest join request (lines 63-65). If a leader has processed all messages in its saved
message queue andTOBcasted all messages in its outgoing VSA queue, it answers
outstanding join requests byTOBcasting anupdate message, containing a copy of the
leader’s current emulated VSA state (lines 67-75). The leader holds off on performing
any additional VSA-related transmissions until it receives this message (line 75). When
any process that has been in the region at least2d time receives theupdate, it adopts
the attached VSA state as its own local VSA state and erases its outgoing VSA queue
(lines 77-91). (If it has not been in the region2d time, its saved message queue may not
have all messages that were too recent to be reflected in theupdate.)

Catching up to real time:After receipt of anupdate message, the VSA’s clock (and
state) can bed behind real time. Intuitively, the VSA emulation is “set back” whenever
an update message is received. To guarantee the VSA emulation satisfies the speci-
fications from Section 3 (bounding the time the output trace of the emulation may be
behind that of the VSA being emulated), the virtual clock must catch up to real time.
This is done by having the virtual clock advance more than twice as fast as real time un-
til both are equal, after which they increase at the same rate. This is formally described
in Figure 2, lines 28-32. To guarantee that the virtual clockcan catch up befored time,

Output TOBprobeu,p

2 Precondition:
nextrcv≤ now-d

4

Input TOBnext(t)u,p

6 Effect:
nextrcv← t

8

Input GPSupdate(v, t)p

10 Effect:
now← t

12 if reg 6= v then
reg← v

14 joinTS←∞

16 Input leader(val)u,p

Effect:
18 if (! val∨ joinTS> now-d) then

leadTS←∞
20 else if leadTS> now+ d then

leadTS← now
22

Output TOBcast(join)u,p

24 Precondition:
reg= u∧ joinTS> now

26 Effect:
joinTS← now

28 nextrcv← now-d
leadTS, joinreq←∞

30 savedq, oldsavedq, outq←∅
vstate, checksum←⊥

32

Input TOBrcv(m,s)u,p, m.first /∈ {check,update,join}
34 Effect:

savedq← append(savedq, 〈m.first , now-d〉)
36 if (s= u∧∃ x,y:[outq= append(append(x, m), y)])

then outq← y
38

Internal VSArcv(m)u,p

40 Precondition:
vstate6=⊥∧〈m, t〉= head(savedq)

42 Effect:
vstate← δu(vstate, brcv(m))

44 oldsavedq← append(oldsavedq, head(savedq))
savedq← tail(savedq)

46

Internal VSAlocal(act)u,p

48 Precondition:
vstate6=⊥6= δu(vstate, act) ∧ savedq= ∅

50 nextrcv> now-d∧ act= next(vstate, δu)
Effect:

52 vstate← δu(vstate, act)
if act= bcast(m) then

54 outq← append(outq, 〈m, vstate.now〉)

56 Output TOBcast(m)u,p

Precondition:
58 reg= u∧ leadTS≤ now< nextrcv+ d∧ vstate6=⊥

vstate.now≥ now-d∧∀〈m, t〉 ∈ outq: t≥ now-e
60 m= head(outq)

Effect: outq← tail(outq)
62

Input TOBrcv(join, u)u,p

64 Effect:
joinreq← now-d

Output TOBcast(〈update, vstate′〉)u,p

68Precondition:
reg= u∧ leadTS≤ now< nextrcv+ d

70(vstate′= vstate∧ [vstate=⊥ ∨ (vstate.now= now
∧ outq= ∅= savedq∧ joinreq 6=∞)]) ∨ (vstate′ =⊥

72∧ [vstate.now< now-d∨∃ 〈m, t〉 ∈ outq: t < now-e])
Effect:

74joinreq←∞
leadTS← now+ d

76

Input TOBrcv(〈update, vstate′〉, u)u,p

78Effect:
if joinreq≤ now-2d then

80joinreq←∞
if (joinTS≤ now-2d∧ vstate′ =⊥) then

82vstate← startu(now)
savedq←∅

84else if joinTS≤ now-2d then
if vstate=⊥ then

86oldsavedq←∅
vstate← vstate′

88savedq← append(oldsavedq, savedq)
− {〈m, t〉: t≤ now-2d}

90oldsavedq, outq←∅
checksum←⊥

92

Internal correctqueuesu,p

94Precondition:
∃ 〈m,t〉 ∈ oldsavedq∪ savedq: t > now-d

96∨∃ 〈m,t〉 ∈ outq: t > now
Effect:

98savedq, oldsavedq−= {〈m, t〉: t > now-d}
outq−= {〈m, t〉: t > now}

100

Internal checksumu,p

102Precondition:
vstate.nowmod ttlupdate = 0 ∧ nextrcv> now-d

104savedq= ∅∧∀act∈ sigu-{brcv(m)}:δu(vstate,act)=⊥
checksum6= 〈checksum(vstate),vstate.now/ttlupdate,∗〉

106Effect:
checksum←

108〈checksum(vstate), vstate.now / ttlupdate , false〉
if (joinreq 6=∞∧ joinreq> now-d) then

110joinreq← now-d

112Output TOBcast(〈check, 〈csum, t〉, jr〉)u,p

Precondition:
114reg= u∧ leadTS≤ now< nextrcv+ d∧ outq= ∅

now+ d≤ (t + 1)·ttlupdate

116checksum= 〈csum, t, false〉 ∧ jr = = (joinreq 6=∞)
Effect:

118checksum←〈csum, t, true〉

120Input TOBrcv(〈check, 〈csum′, t′〉, jr〉, u)u,p

Effect:
122outq−= {〈m, t〉: t≤ t′ ·tslice}

if (jr ∧ joinreq=∞) then
124joinreq← now-2d

if ([vstate=⊥∧ joinTS≤ now-2d∧ ! jr]

126∨ [vstate6=⊥∧ checksum6= 〈csum′, t′, ∗〉]) then
joinTS←∞

128elsechecksum←〈csum′, t′, true〉

Fig. 3.VSAEu,p, emulator atp of Vu = 〈sigu, statesu, startu, δu, τu〉 - actions.

we require a leader to only transmit anupdate message once its virtual clock is caught
up to real time (line 70).
Message processing:Messages to be received by the VSA are placed in a saved mes-
sage queue from which emulators simulate receiving the messages. If anupdate mes-
sage is received, setting back the state of the VSA, emulators must be able to resimulate
receiving messages that were sent up tod time before theupdate was sent. In order
to guarantee this, whenever an emulator processes a messagefrom the saved message
queue for the VSA, it moves the message into an old saved message queue (line 44); if
a process receives anupdate message, it moves all messages in that queue that were
received after theupdate was sent back into its saved message queue to be reprocessed
(line 88-89).
Making up leader broadcasts:If a leader is supposed to perform broadcasts on the
VSA’s behalf, but fails or leaves before sending them, the next leader needs to transmit
the messages. Since emulators store outgoing VSA messages in a local outgoing queue,
the new leader just transmits any messages stored in its outgoing queue (lines 56-61)
and removes them. To prevent messages from being rebroadcast by future leaders, em-
ulators that receive a VSA message broadcast by the leader remove it from their own
outgoing queues (lines 36-37).
Restarting a VSA:If a process is leader and has no value for the VSA state or has
messages in its outgoing queue with timestamps older than the delay augmentation pa-
rametere, it restarts the emulation. It does this by sending anupdate message with
attached state of⊥ and then waiting to receive the message (lines 67-75). When pro-
cesses that have been in the region2d time receive the messaged later, they initialize the
VSA state and messaging queues and begin emulating a restarted VSA (lines 77-91).
Self-stabilization. Our implementation is self-stabilizing through the use of local cor-
rection andupdate andchecksum messages. Theupdate messages sent by a leader
contain state information which overwrites any VSA state information at other emula-
tors, bringing emulators into agreement about VSA state. Inthe event that join requests
do not occur very often, if the virtual clock is divisible byttlupdate, the emulators calcu-
late and store a checksum of the VSA state. The leader is then responsible for sending
out checksum messages with the attached checksum. Emulators, when they receive
this message, compare the attached checksum to the version that they have stored. If
the versions differ, they re-join. This ensures that emulators will have state consistent
with the leader’s.

4.4 Correctness and performance evaluation

Correctness roughly consists of guaranteeing liveness of the emulation under certain cir-
cumstances and guaranteeing that emulations of an abstractVSA implement the VSA.

We say a VSA emulation isfailed if no process in the region has VSA statevstate 6=
⊥ such thatvstate.now ≥ now − d and its outgoing queue has no messages with
timestamps more thane before real-time.

Assume that as a parameter of the system, there is some positive integerk such that
if a process is alive in a region from the beginning of any timeslicet through the end of
timeslicet + k, then there is at least one timeslice int + 1 . . . t + k where no failures
or leaves of processes occur in the region. We can then show the following:

Lemma 1. For any non-failed VSA emulation, VSA outputs are not delayed by more
thane = (k + 1) · tslice − d time, and as long as from the beginning of any timeslice
there is at least one alive process in the VSA’s region withvstate 6= ⊥, vstate.now ≥
now − d, and an outgoing queue without messages that are older thane that remains
alive in the region through the followingk timeslices, the VSA emulation does not fail
or restart.

Lemma 2. If a VSA is failed in some timeslice but there is an alive process in the VSA’s
region from the beginning of the timeslice through the following k timeslices, then the
VSA will be restarted withine time.

Theorem 1. The VSA emulator and client implementation (S) correctly implement the
VSA abstraction (A): timed-traces(S) ⊆ timed-traces(A).

Proof sketch: We introduce an intermediate layer, and describe a (simple)simulation
relation [12] between this layer and the abstract layer. We then describe a simulation
relation from our implementation to the intermediate layer. Together, this shows the
implementation implements the abstract layer.

The intermediate layer is similar to the abstract layer, except that VSAs may have
clocks that are behind real-time and have incoming delay buffers that hold each message
bound for the VSA until the VSA’s clock passes the message’s timestamp. This layer
captures the idea that VSA state in the emulation can be behind what the corresponding
abstract VSA state would be. A simulation relation is then defined to show that this
intermediate layer implements the abstract layer, by relating the state of a VSA, its
incoming message buffer, and outgoing message buffer in theintermediate layer to what
will be the state of that VSA and its delayed outgoing messagebuffer in the abstract
layer, once its virtual clock equals the current real-time.

We then describe a forward simulation relation between the implementation and the
intermediate VSA abstraction for non-failed VSA emulations. There are several parts,
relating state of emulators to the state of the abstract VSA and state of message buffers
in the implementation to those of the abstract system:

(1) For any process wherevstate 6= ⊥, the value ofvstate is equivalent toVu.vstate

unless there is anupdate message in transit, in which caseVu.vstate is equal to the
attached state in theupdate message.

(2) If m is a message either in transit top or in p’s saved message queue, thenm

is in virtual transmission tou. If there is anupdate message in transit andm is in p’s
old saved message queue and ifm was sent less thand before theupdate, then it is in
virtual transmission tou.

(3) If m is a message in transit top and was sent byVu, then the message is in
virtual transmission top.

(4) If m is a message in the outgoing queue and not currently in transit, and no
update message is in transit thenm is in Dout[e]. ⊓⊔

Message complexity.There are two parts to the message overhead introduced by this
algorithm. The first is that of the overhead in normal operation introduced over that
of the virtual machine if it was real. This is just one checksum-sized message every
ttlupdate time (used for self-stabilization). The second is that of the overhead from

dealing with processes joining the emulation. In this case,when a successful join occurs
it results in a broadcast of the VSA state and saved message queue, which could contain
as many messages as could be received ind time. If M ′ is the number of messages that
can be received ind time, then the bit overhead of a join isO(|vstate| + |msg| · M ′).

5 Applications for the VSA layer

We believe the VSA layer will be helpful for many applications, including some of the
more difficult coordination problems for nonhomogenous networks oftentimes desired
in true mobile ad-hoc deployments. It allows application developers to re-use many al-
gorithms originally designed for the fixed network or base station setting, and to design
different services for different regions. Here we list several applications whose imple-
mentations would benefit from use of the VSA abstraction.
Geo-routing. One important application is to allow arbitrary regions to communicate.
This can be easily implemented by VSAs that utilize the fixed tiling of the network to
forward messages [9]. Each VSA chooses a neighboring VSA to forward a message to
according to criteria of shortest path to destination or greedy DFS as suggested in [8].
The VSA layer offers a fixed tiled infrastructure to depend on, rather than the ad-hoc
imaginary tiling used in that algorithm. Retransmissions along greedy DFS explored
links can be used to cope with repeated crashes and recoveries [9]. The GOAFR al-
gorithm [13], combining greedy routing and face routing, can be used to give efficient
routing in the face of “holes” in the VSA tiling.
Location management and end-to-end routing.Location management is a difficult
task in ad-hoc networks, as many algorithms assume fixed infrastructure and raise
difficult-to-analyze concerns about data consistency. However, home locationalgo-
rithms are easily implemented using the VSA layer [9]. Each client’s id can be hashed to
a set of VSAs (home locations) that would store the client’s location. The client would
occasionally inform its local VSA of its presence. That local VSA would then inform
the client’s home locations, using a Geo-routing service, of the region. Anyone search-
ing for the client would have their local VSA query the client’s home location VSAs,
again using the a Geo-routing service, for the client’s location.

The home location service can then be used to provide tracking services or end-
to-end communication between individual clients [9]. A message is sent to a client by
looking up its location using the home location service and then using Geo-routing to
send the message to VSAs close to the returned location. Those VSAs that receive the
message broadcast it to local clients for delivery by the intended recipient.
Distributed coordination. VSAs corresponding to geographic regions can be a source
of on-line information and coordination, directing mobileclients to help them complete
distributed systemwide missions. The virtual infrastructure can make it easier to handle
coordination of many clients when tasks are complex. Also, many coordination prob-
lems can tolerate a VSA in an empty region failing since such regions have no clients
to coordinate. The use of a virtual infrastructure to enablemobile clients to coordinate
and equally space themselves along a target curve was recently demonstrated in [16].
The paper provides a simple framework for coordinating client nodes through interac-
tion with virtual nodes. It also demonstrates a simplistic “emulator-aware” approach to

maintenance of virtual automata; a VSA makes decisions about target destinations for
participating clients based partly on information about local population density in an
attempt to keep the VSA alive. The approach could be extendedto take into account
more client or network factors and even to provide active recruitment, where virtual
automata can request emulator aid from distant virtual automata regions.

An example of a timed coordination application is that of avirtual traffic light. A
VSA for a region corresponding to the intersection of roads in a remote area can provide
a virtual traffic light that keeps the light green in each direction for a specific amount of
time, providing a substitute for the fixed infrastructure lacking in the region. The VSA
would be emulated by computers on vehicles approaching the intersection. Multiple
traffic VSAs can also coordinate to facilitate optimal movement of mobile clients.

Another coordination application is the Virtual Air-Traffic Controller [20]. The
VSA controller uses detailed knowledge of time in order to plan where and when air-
borne planes should fly. The burden of regulating lateral separation of aircraft could
be allocated in a distributed fashion by VSAs, where VSAs assign local planes dif-
ferent time separations and altitudes based on aircraft type and heading. By devolving
some decision-making to aircraft, we can both alleviate ground-based bottlenecks and
allow for more local control of flight plans, resulting in optimized routes and better fuel
economy [23]. Airspace VSAs are easy to envision, given positioning, long-range com-
munications, and computing resources increasingly available on commercial aircraft.
Data collection and dissemination.A VSA could maintain a summary database of in-
formation about its local conditions and those of other regions. Clients could then query
their local VSA to get recent information about a location. The history is complete as
long as the VSA’s tile remains occupied. Resiliency can be built in by using techniques
already designed for static but failure-prone networks, such as automatically backing up
data at neighboring VSAs or sending data to a central, reliable location by a background
convergecast algorithm executed by the VSA network.
Hierarchical distributed data structures. Here, tile size is constrained by the broad-
cast range of the underlying nodes. An hierarchical emulation of the model, where mul-
tiple nodes coordinate to emulate larger tiles, can providea more general infrastructure.
The VSA layer can be a basic building block to implement hierarchies in a network that
could, for example, be used to allow clients to register and query attributes.

6 Current and future work

The system model assumed so far abstracts away details of theunderlying physical
layer in order to clearly describe algorithmic issues. Herewe discuss some implemen-
tation issues and extensions. We also hope that current worksimulating this layer and
implementing it will guide improvements in our layer implementation.
Non-synchronized clocks. The VSA layer model and implementation could be ex-
tended to allow for a known bound on mobile node clock drift. This results in the addi-
tion of incoming message delay buffers for VSAs in the abstract model, in addition to
the outgoing ones already present.
Emulation strategies to accommodate message collisions.Our work is being ex-
tended to a communication model allowing message collisions [2]. One approach is to

relax the physical and VSA layer broadcast models to allow message loss in the pres-
ence of contention, but guarantee the VSA emulation is reliable by taking advantage of
the fact that leader election effectively defines an orderlytimeslicing of a communica-
tion channel for at least one process. Consider two channelsper tile in the network, pro-
vided either through frequency allocation or additional timeslicing. Assuming a leader
election service for this setting, whichever process is leader can have one channel to
itself, allowing it to perform VSA related broadcasts without interference from other
processes. The other channel could be used by nodes trying tocommunicate with the
VSA; message loss on this channel would be possible since there could be contention.
The leader can then become the arbiter of which messages are actually received by
the VSA, by rebroadcasting received messages; other emulators adopt these as the in-
coming messages for the VSA. Alternatively, a more state transmission heavy approach
could be adopted, where non-leader emulators are passive, and the leader periodically
broadcasts up-to-date state to them.
Leader election algorithms. Our emulation algorithm utilizes a basic leader election
service with a simple interface. Alternative leader election strategies can be considered.
For example, a round-robin strategy can help relieve network congestion. Such a strat-
egy could periodically select a new leader from ak-bounded vector of mobile nodes in
a region calledguards. This is done by defining globally knowntimeslicesof length
tslice and rotating theguards vector each timeslice, defining revolving responsibility
for leadership. Whichever process’s id and join timestamp pair is currently at the head
of the rotating vector is the leader. Processes trying to join theguards vector are ap-
pended to it if there is room while leaders that fail to transmit during their timeslice are
subsequently dropped from the vector.

A promising area for further research is into region-based leader election algorithms
for mobile networks that are designed to produce stable outputs that take into account
factors such as location, speed, power constraints, and reliability of individual nodes.
Improved leader election guarantees can lead to improved emulation guarantees.

In addition, a leader election service could be extended to inform client nodes if they
should participate in emulation at all. Some clients could be told they are not needed
for emulation for some period, allowing them to conserve power.
Extensions to non-homogenous networks.In many cases, there are portions of a
deployment area that have fixed infrastructure or sensing capabilities and portions that
do not. While the model we introduced here does not take into account the fact that
some deployments may have some access to fixed infrastructure, the model in this paper
should easily be extended to accommodate these mixed deployments.

References

1. Camp, T. and Liu, Y., “An adaptive mesh-based protocol forgeocast routing”,Journal of
Parallel and Distributed Computing: Special Issue on Mobile Ad-hoc Networking and Com-
puting, pp. 196–213, 2002.

2. Chockler, G., Demirbas, M., Gilbert, S., Newport, C., andNolte, T., “Consensus and Colli-
sion Detectors in Wireless Ad Hoc Networks”,Proceedings of the 24th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC), 2005.

3. Dijkstra, E.W., “Self stabilizing systems in spite of distributed control”,Communications of
the ACM, 1974.

4. Dolev, S.,Self-Stabilization, MIT Press, 2000.
5. Dolev, S., Gilbert, S., Lynch, N., Schiller, E., Shvartsman, A., and Welch, J., “Virtual Mobile

Nodes for Mobile Ad Hoc Networks”,International Conference on Principles of Distributed
Computing (DISC), 2004.

6. Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., and Welch, J., “GeoQuorums: Implement-
ing Atomic Memory in Ad Hoc Networks”,17th International Conference on Principles of
Distributed Computing (DISC), Springer-Verlag LNCS:2848, 2003.

7. Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., and Welch, J., “GeoQuorums: Implement-
ing Atomic Memory in Ad Hoc Networks”, Technical Report MIT-LCS-TR-900, MIT Lab-
oratory for Computer Science, Cambridge, MA, 02139, 2003.

8. Dolev, S., Herman, T., and Lahiani, L., “Polygonal Broadcast, Secret Maturity and the Firing
Sensors”,Third International Conference on Fun with Algorithms (FUN), pp. 41-52, May
2004. Also to appear inAd Hoc Networks Journal, Elseiver.

9. Dolev, S., Lahiani, L., Lynch, N., and Nolte, T., “Self-Stabilizing Mobile Node Location
Management and Message Routing”, Symposium on Self Stabilizing Systems (SSS), 2005.

10. Hubaux, J.P., Le Boudec, J.Y., Giordano, S., and Hamdi, M., “The Terminodes Project: To-
wards Mobile Ad-Hoc WAN”,Proceedings of MOMUC, 1999.

11. Kan, M., Pande, R., Vinograd, P., and Garcia-Molina, H.,“Event Dissemination in High-
Mobility Ad-hoc Networks”, Technical Report, 2005.

12. Kaynar, D., Lynch, N., Segala, R., and Vaandrager, F., “The Theory of Timed I/O Automata”,
Technical Report MIT-LCS-TR-917a, MIT LCS, Cambridge, MA,2004.

13. Kuhn, F., Wattenhofer, R., Zhang, Y., and Zollinger, A.,“Geometric Ad-Hoc Routing: Of
Theory and Practice”,Proceedings of the 22nd Annual ACM Symposium on Principles of
Distributed Computing (PODC), 2003.

14. Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., andMorris, R., “A Scalable Location
Service for Geographic Ad Hoc Routing”,Proceedings of Mobicom, 2000.

15. Lok, C., “Instant Networks: Just Add Software”,Technology Review, June, 2005.
16. Lynch, N., Mitra, S., and Nolte, T., “Motion coordination using virtual nodes”, To appear:

IEEE Conference on Decision and Control, 2005.
17. Morris, R., Jannotti, J., Kaashoek, F., Li, J., and Decouto, D., “CarNet: A Scalable Ad Hoc

Wireless Network System”, 9th ACM SIGOPS European Workshop, Kolding, Denmark,
September 2000.

18. Nath, B. and Niculescu, D., “Routing on a curve”,ACM SIGCOMM Computer Communica-
tion Review, 2003.

19. Navas, J.C. and Imielinski, T., “Geocast- geographic addressing and routing”,Proceedings
of the 3rd MobiCom, 1997.

20. Neogi, N., “Designing Trustworthy Networked Systems: ACase Study of the National
Airspace System”, International System Safety Conference, Ottawa, Canada, 2003.

21. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., and Shenker, S., “GHT:
A Geographic Hash Table for Data-Centric Storage”,First ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA), 2002.

22. Sun, Q., and Garcia-Molina, H., “Using Ad-hoc Inter-vehicle Networks for Regional Alerts”,
Technical Report, 2004.

23. Talbot, D., “Airborne Networks”,Technology Review, May, 2005.
24. Talbot, D., “The Ascent of the Robotic Attack Jet”,Technology Review, March, 2005.
25. Vasek, T., “World Changing Ideas: Germany”,Technology Review, April, 2005.
26. Woolley, S., “Backwater Broadband”,Forbes, 2005.

