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a b s t r a c t

How efficiently can a malicious device disrupt a single-hop wireless network? Imagine

two honest players attempting to exchange information in the presence of a malicious

adversary that can disrupt communication by jamming or overwriting messages. Assume

the adversary has a broadcast budget of β—unknown to the honest players. We show that

communication can be delayed for 2β + Θ(lg |V |) rounds, where V is the set of values

that the honest players may transmit. We then derive, via reduction to this 3-player game,

round complexity lower bounds for several classical n-player problems: 2β +Ω(lg |V |) for
reliable broadcast, 2β + Ω(log n) for leader election, and 2β + Ω(k lg |V |/k) for static k-

selection. We also consider an extension of our adversary model that includes up to t crash

failures. Herewe showa bound of 2β+Θ(t) rounds for binary consensus.We provide tight,

or nearly tight, upper bounds for all four problems. From these resultswe canderive bounds

on the efficiency of malicious disruption, stated in terms of two newmetrics: jamming gain

(the ratio of rounds delayed to adversarial broadcasts) and disruption-free complexity (the

rounds required to terminate in the special case of no disruption). Two key conclusions

of this study: (1) all the problems considered feature semantic vulnerabilities that allow

an adversary to disrupt termination more efficiently than simple jamming (i.e., all have a

jamming gain greater than1); and (2) for all the problems considered, the round complexity

grows linearly with the number of bits to be communicated (i.e., all have a Ω(lg |V |) or

Ω(lg n) disruption-free complexity.)

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Ad hoc networks of wireless devices hold significant promise for the future of ubiquitous computing. Unfortunately,
such networks are particularly vulnerable to adversarial interference due to their use of a shared, public communication
medium and their deployment in unprotected environments. For example, a committed adversary can disrupt an ad hoc
network by jamming the communication channel with noise. Continuous jamming, however, might be unwise: it depletes
the adversary’s energy, allows the honest devices to detect its presence, and simplifies its localization—and subsequent
destruction. The adversary, therefore, would rather be more efficient, disrupting the protocol using a minimal number of
transmissions.
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1.1. Metrics for adversarial efficiency

We introduce twonewmetrics formeasuring the efficiencywithwhich an adversary can disrupt a protocol: JammingGain
and Disruption-Free Complexity. Jamming gain captures how efficiently the adversary can disrupt the long-term completion
of the protocol; disruption-free complexity captures how efficiently the adversary can delay the protocol in the short term.

Jamming gain

The efficiency of the adversary can be quantified, roughly speaking, by comparing the duration of the disruption to
the adversary’s cost for causing the disruption. In the systems literature, this metric has been informally referred to as
jamming gain (e.g., [1]). In the context of round-based protocols (time-slotted wireless radio channels), the jamming gain
can be defined as follows. Let DP(t) be the minimal number of broadcasts needed by the adversary to delay protocol P from
terminating for t rounds, for some initial value. Then the jamming gain of protocol P is:

JG(P) = lim
T→∞

T

max(DP(T ), 1)
.

For example, if the adversary must broadcast in every round, the jamming gain is 1. By contrast, if the adversary need never
broadcast to prevent termination, then the jamming gain is infinite.

Disruption-free complexity

A secondmetric, disruption-free complexity, measures how long the adversary can disrupt a protocol without performing
any broadcasts. The uncertainty introduced by the possibility of adversarial broadcasts is sufficient to slow down many
protocols. We formalize this metric as:

DF(P) = max{t : DP(t) = 0}.
If a protocol has large disruption-free complexity, then the adversary can significantly reduce the throughput of multiple
consecutive executions, while avoiding the disadvantages of actually jamming. For example, if the fear of potential
adversarial interference required the addition of a complex initialization procedure to your protocol, this would be captured
by a large disruption-free complexity value.

1.2. The 3-player game

We begin by analyzing a 3-player game that captures many of the fundamental difficulties of wireless coordination in
this setting. We will then extend these results to several classical n-player problems: reliable broadcast, leader election,
static k-selection and consensus.

The 3-player game consists of two honest players—Alice and Bob, and a third malicious player, Collin (the Collider). All
three players share a time-slotted single-hopwireless radio channel. Alice and Bob each begin with a value to communicate.
Collin is determined to prevent them from communicating, in either direction, for as long as possible. Collin can broadcast
in any time slot (i.e., round), potentially destroying honest messages or overwhelming themwithmalicious data. In order to
precisely measure the efficiency of a malicious adversary, we endow Collin with a budget of β messages, and analyze how
long Alice and Bob can be disrupted. The size of β is not known a priori to Alice and Bob. (If it were, then Alice and Bob could
communicate reliably by repeating each message 2β + 1 times.)

1.3. The 3-player game lower bounds

We show that Collin can delay Alice and Bob’s communication for

2β + log |V |/2
rounds, where V is the set of possible values that Alice and Bob may communicate. An immediate corollary is that no
protocol for Alice and Bob can achieve a jamming gain better than 2. This result is surprising as it implies that every
such communication protocol has some semantic vulnerability that the adversary can exploit to gain extra efficiency. A
second corollary is that the disruption-free complexity isΩ(log |V |). Therefore for large V , the passive presence of Collin can
significantly reduce Alice and Bob’s communication throughput. We prove these lower bounds (in Section 4) by exhibiting
a strategy for Collin to delay Alice and Bob, exploiting the fact that they can never trust anymessage, since Collin could have
overwhelmed it with a fake message.

In Section 5 we focus on the natural sub-problem of Alice communicating to Bob, who does not broadcast. We explicitly
model Alice’s broadcast budget as β + Δ (note, in the bounds of Section 4, no restrictions are placed on Alice or Bob’s
broadcast budget).We first show that communication is impossible forΔ ≤ 0, as, in this circumstance, Collin can effectively
simulate Alice starting from a different value—confusing Bob. We then show for Δ ≥ 1 that no communication protocol can
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terminate in less than

2β + max

(
2Δ|V | 1

2Δ

e
− 2Δ,

log |V |
2

)

rounds. This implies that for Δ = Ω(log |V |) the lower bound is the same as the infinite-energy bound of Section 4. For
Δ = o(log |V |), however, the disruption-free complexity increases toward O(|V |) as Δ approaches 1. This highlights an
inherent tradeoff between Alice’s message complexity and her throughput.

1.4. The 3-player game upper bounds

For our upper bound (Section 6), we consider the setting where Alice needs to transmit a value to Bob, who does not
broadcast any messages. We exhibit a protocol that allows Alice—using β + Δ broadcasts—to transmit her value to Bob in

2β + max{2Δ|V | 1
2Δ , 4 log |V |}

rounds. (Notice that if Δ < 1, Alice’s task is impossible.) For Δ = Ω(log |V |), the protocol matches our un-restricted lower
bound of Section 4. For smaller Δ, it matches the limited-energy bound of Section 5.

Finally, we consider a variant of the 3-player game inwhich Alice and Bob do not start in the same round; Bob is activated
asynchronously by the adversary.We present a protocol that solves this problem and still terminateswithin 2β+Θ(log |V |)
rounds (assuming Alice has an unrestricted message budget).

1.5. The n-player implications

The trials and tribulations of Alice and Bob capture something fundamental about how efficiently malicious devices can
disrupt wireless coordination in more general problems.

Lower bounds for n-player problems

In Section 8, we derive new lower bounds – via reduction to our 3-player game – for several classical n-player problems:
Reliable broadcast: 2β + Ω(log |V |);
Leader election: 2β + Ω(log n);
Static k-selection: 2β + Ω(k log

|V |
k

) .

For the last problem, k represents the number of participants contending to transmit their initial value. These represent, to
the best of our knowledge, the first complexity bounds for these problems in a wireless network with an adversary that can
arbitrarily disrupt communication. As before, we draw immediate corollaries regarding the jamming gain and disruption-

free complexity, resulting in a jamming gain of 2, and disruption-free complexity of Ω(log |V |), Ω(log n), and Ω(k log
|V |
k

),
respectively.

Consensus lower bound for model with crash failures

Wenext consider amore general framework that also includes crash failures: themalicious adversary can both broadcast
β messages and crash up to t honest devices. We study binary consensus as an archetypal problem in this framework, and
derive a lower bound of

2β + Θ(t)

rounds. The Θ(t) term is established by a tree-based technique that maintains the indistinguishability of two univalent
configurations for t rounds. The 2β term then follows from a (partial) reduction of the three-player game to consensus. This
shows a jamming gain of 2, as before. By contrast, the disruption-free complexity, Θ(t), is significantly larger than for the
crash-free models: notice that if no nodes are allowed to crash, then consensus can be solved by a simple reliable broadcast
of only one bit. (By contrast, if the adversary cannot disrupt communication, then crash failures have no effect on the round
complexity as we are in a synchronous broadcastmodel in which each message is delivered to every other node).

Upper bounds

Finally, in Section 9, we present tight upper bounds for reliable broadcast and consensus and nearly tight bounds for
leader election and static k-selection.

1.6. Motivations

Underlying our results on jamming gain and disruption-free complexity is an analysis of how long the adversary can
disrupt communication given a limited broadcast budget. This interpretation is interesting in its own right: a limited
broadcast budgetmodels the (limited) energy available to a set ofmalicious devices. (Notice, whenwe assume onemalicious
adversarywith a budget ofβ messages,wemightmodel a networkwith severalmalicious deviceswith a combinedbroadcast
budget of β .)
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Authentication—for example, using cryptographic keys—impacts our lower bounds. With authentication, the 3-player
communication game completes inβ+1 rounds, resulting in a jamming gain and disruption-free complexity of 1. Intuitively,
jamming gain arises from semantic vulnerabilities in the protocol; cryptographic techniques can eliminate this vulnerability
by preventing Collin from spoofing honest communication. In general, however, deploying cryptographic solutions in
wireless networks can be difficult. Public key authentication schemes are often expensive both in computation and, to some
extent, communication. Symmetric key schemes (such as MACs) have been deployed in wireless networks (see, e.g., [2,
3]), yet the focus has generally been link-level security, rather than authenticated broadcast, and there remain issues with
key distribution. For example, if only a single key is used, the system is easily compromised by a single corrupted node; if
multiple keys are used, then keys must be exchanged and communication is complicated.

One interpretation of our bound is that authentication should be deployed only if its cost is less than the cost of waiting
the additional β+Θ(log |V |) rounds imposed in settings without this capability. In fact, our protocols can be viewed as low-
cost (in terms of computation and setup) alternatives to cryptographic authentication. The output of a value by our reliable
broadcast protocol, for example, confirms its validity. Further efficiency can be achieved by first broadcasting a message
directly, and then using our ‘‘secure’’ reliable broadcast protocol to transmit a short hash of the message.

2. Related work

This paper explores the damage that can be caused by a genuinely malicious (Byzantine) device that can reliably disrupt
communication in a wireless ad hoc network. Koo [4], Bhandari and Vaidya [5], as well as Pelc and Peleg [6], study ‘‘t-locally
bounded’’ Byzantine failures in wireless networks, in which the number of Byzantine nodes in a region is bounded. In these
papers, the Byzantine devices are required to follow a strict TDMA schedule, thus preventing them from interfering with
honest communication. Others have consideredmodelswith probabilisticmessage corruption [7,8].Wireless networkswith
crash failures (but not Byzantine failures) have also been studied extensively in both single hop (e.g., [9,10]) and multihop
(e.g., [11,12]) contexts. By contrast, we consider a malicious adversary that can choose to send a message in any round,
potentially destroying honest messages or overwhelming them with malicious data.

Koo, Bhandari, Katz, and Vaidya [13] have recently considered a model where the adversary has a limited broadcast
budget and can send a message in any round, overwhelming honest messages. A key difference, however, is that they
assume that the adversary’s budget is fixed a priori and known to all participants. By contrast, we do not assume that β
is known in advance. Due to this assumption, it is no longer sufficient to simply repeat each message 2β + 1 times as is
done in [13]. Furthermore, an unknown β allows us to directly derive efficiency bounds (e.g., in terms of jamming gain and
disruption free complexity). In addition, this lack of knowledge better captures real world systems; we cannot always assume
that devices know such details about adversaries.We also note that [13] focuses primarily on feasibility, that is, determining
the threshold density of dishonest players for which multihop broadcast is possible. By contrast, our paper focuses on the
time complexity of the protocols and the efficiency of the adversary. Furthermore, we also consider the impact of combining
crash failures with a malicious adversary, and move beyond broadcast to consider other problems such as leader election
and consensus.

Adversarial jamming of physical layer radio communication is a well studied problem in the electrical engineering
community (see, e.g., [14]). In the context ofwireless adhocnetworks, there has been recent interest in studying the jamming
problem at the MAC layer and above. See, for example, [1,15–17], which analyze specific MAC and network layer protocols,
highlighting semantic vulnerabilities that can be leveraged to gain increased jamming efficiency.

3. Preliminaries

We now specify the details of our communication model. and highlight the assumptions underlying our tight bound and
its corollaries. We then describe the 3-player game that forms the foundation for the results to follow.

3.1. Network model

We assume a synchronous round-based Multiple Access Channel (MAC) model with receiver collision detection. We
consider n honest devices, the players, named from the set [1, n], and one additional malicious device incarnating the
adversary. In each round, each device can decide to broadcast a message or listen. If there are no broadcasts in a round,
then none of the players receives a message. If exactly one message is broadcast, then all players receive the message.1 If
two or more messages are broadcast, then each player can either: (1) receive exactly one of the broadcast messages; or
(2) detect noise on the channel, i.e., a collision. (This channel behavior represents the unpredictability of real networks,
for example, shadowing effects [18].) Without loss of generality, we assume that the adversary determines for each honest
player whether option 1 or 2 occurs; in case of option 1, we assume (without loss of generality) that the adversary’s message
is systematically received.

1 For simplicity, we assume that a player receives its own messages; this is, if some player sends message m in round r , then the player itself receives

messagem in round r .
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Throughout this paper, we endow the adversary with a budget of β broadcast messages, where β is a priori unknown to
the players. We assume no message authentication capabilities. That is, a player cannot necessarily distinguish a message
sent from the adversary from a message sent by a fellow honest player.

3.2. The 3-player game

The basic game we consider involves two honest players, Alice and Bob, and an adversary named Collin. For some value
domain V , Alice is initialized with value va ∈ V and Bob with vb ∈ V , where |V | > 1 and V is known to all. Each player
attempts to communicate its initial value to the other. Specifically, the players can perform output(v) for any v ∈ V such
that the following two properties are satisfied:

(1) Safety: Bob only outputs va and Alice only outputs vb; and
(2) Liveness: Eventually, either Alice or Bob outputs a value.

4. Lower bound for the 3-player game

In this section, we prove a lower bound on the round complexity of the 3-player communication game. The bound holds
even if Alice and Bob have an unlimited budget of messages. To obtain our result, we describe a strategy for Collin to frugally
use his β messages to prevent communication. Two assumptions are key to this strategy: (1) Collin’s budget of messages β
is unknown to Alice and Bob; (2) Alice and Bob cannot distinguish a message sent by Collin from an honest message. Thus,
when Bob (for example) receives a message m, he cannot be certain that Alice sent message m. A silent round, on the other
hand, cannot be faked: if Bob (for example) receives no message and no collision notification, then he can be certain that
Alice did not broadcast a message. Therefore, in order to prevent Alice and Bob from communicating, it is sufficient, roughly
speaking, for Collin to disturb silent rounds. The main theorem shown in this section is as follows:

Theorem 1. Every three-player communication protocol for Alice, Bob, and Collin requires at least 2β + log |V |/2 rounds to
terminate.

The proof proceeds as follows. First, we identify two values, v and w, for which Alice and Bob both behave in a similar
manner for the first log |V |/2−1 rounds.We then describe a set of behavioral rules for Collin to delay Alice and Bob by filling
in silent rounds. We next show that neither Alice nor Bob can output a value while Collin continues to follow this strategy.
Finally, we argue that Collin can afford to pursue this strategy for log |V |/2 + 2β − 1 rounds using only β broadcasts.

Assume, for the sake of contradiction, a protocol A that defies this worst-case performance. For any value v ∈ V , denote
by γ (v) the log |V |/2−1 round execution prefix of Awhere Alice and Bob both beginwith initial value v, and Collin performs
no broadcasts. We begin with the following lemma:

Lemma 2. There exist two values v, w ∈ V where v �= w such that:

• Alice broadcasts in round r of γ (v) if and only if Alice broadcasts in round r of γ (w).
• Bob broadcasts in round r of γ (v) if and only if Bob broadcasts in round r of γ (w).

Proof. In each round, there are four possibilities: (1) Alice broadcasts alone, (2) Bob broadcasts alone, (3) Alice and Bob both
broadcast, and (4) neither Alice nor Bob broadcasts. Accordingly, for a sequence of c rounds, there are 4c possible patterns

of broadcast behavior. Thus, there are at most 4log |V |/2−1 = |V |
4

possible broadcast patterns that result from the |V | possible
γ executions. It follows by the pigeonhole principle that at least two such executions have the same behavioral pattern. �

Fix v and w to be the two values identified by Lemma 2. Define α(v) (resp. α(w)) to be the execution of A in which Alice
and Bob both begin with initial value v (resp.w) and Collin applies the α-rules described in Fig. 1 for as long as his broadcast
budget persists (once Collin depletes his budget he remains silent for every subsequent round). Specifically, we construct
α(v) and α(w) one round at a time. At the beginning of a given round, we first determine what behavior Alice and Bob
will take in both executions. Find the corresponding row in Fig. 1 such that the two columns under ‘‘Alice’’ describe Alice’s
behavior during this round in the two executions, and the two columns under ‘‘Bob’’ describe the same with respect to Bob.
Reference the first two columns under ‘‘Collin’’ to determine how Collin will behave in both executions during this round.

The symbol ‘‘−’’ indicates silence, and m,m′,m′′,m′′′ represent different messages that Alice and Bob may broadcast.
The first two columns under ‘‘Result’’ describe the resulting messages transmitted during this round in α(v) and α(w),
respectively.

For example, assume that in the current round Alice will broadcast in α(v) but will be silent in α(w), and Bob will be
silent in both executions. This behavior is described by the first row of Rule #1. Looking to the Collin columns, we see that
the adversary will be silent in α(v) but will transmitm—themessage Alice broadcasts in α(v)—in α(w). The Result columns
correctly indicate thatm is the single message broadcast in both executions during this round.

We define ρ(w, v) (resp. ρ(v, w)) to be the execution of A in which Alice begins with initial valuew (resp. v), Bob begins
with initial value v (resp. w), and Collin applies the ρ-rules described in Fig. 2, for as long as his broadcast budget persists.
Specifically, Collin’s behavior in round r of a ρ execution is determined entirely by Alice and Bob’s behavior in α(v) and
α(w) during this round. This construction relies on the fact (to be shown) that (1) ρ(w, v) is indistinguishable from α(v)
with respect to Bob and indistinguishable from α(w) with respect to Alice, and (2) ρ(v, w) is indistinguishable from α(w)
with respect to Bob and indistinguishable from α(v) with respect to Alice.
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Fig. 1. Collin’s behavioral rules for executions α(v) and α(w). For each of the possible behaviors of Alice and Bob in α(v) and α(w), Collin behaves in

the α executions as specified by the indicated row in the table. The ‘‘Result’’ column indicates the total set of messages broadcast in the two executions

under certain conditions. In rounds where Collin broadcasts concurrently with Alice or Bob, assume that Collin’s message is the only one received by the

non-broadcasting player.

Fig. 2. Collin’s behavioral rules for ρ(w, v) and ρ(v, w) executions. For each of the possible behaviors of Alice and Bob in α(v) and α(w), Collin behaves

in the ρ executions as specified by the indicated row in the table. The ‘‘Result’’ column indicates the total set of messages broadcast in the two executions

under certain conditions. In rounds where Collin broadcasts concurrently with Alice or Bob, assume that Collin’s message is the only one received by the

non-broadcasting player.

For example, in the case considered above—Alice broadcasts only in α(v), and Bob is silent in both—Collin broadcasts m
in ρ(w, v) and broadcasts nothing in ρ(v, w). In rounds when Collin transmits concurrently with either Alice or Bob, we
assume that Collin’s message is the only one received by the non-broadcasting player.
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We use the notation βα(v), βα(w), βρ(v,w), and βρ(w,v) to describe Collin’s broadcast budget in α(v), α(w), ρ(v, w), and
ρ(w, v), respectively. We now make the following claim:

Lemma 3. Assuming that Collin has sufficiently large values βα(v), βα(w), and βρ(w,v) that allow him to follow the rules in Figs. 1
and 2 for t rounds in all three executions α(v), α(w) and ρ(w, v). It follows that, through round t: ρ(w, v) is indistinguishable
from α(v) with respect to Bob and indistinguishable from α(w) with respect to Alice.

Proof. We prove this result by induction on the round number, r , 0 ≤ r ≤ t . Because Bob begins with value v in both
ρ(w, v) and α(v), and Alice begins with valuew in both ρ(w, v) and α(w), the base case (r = 0) is immediate. Consider the
possible behaviors for Alice, Bob, and Collin during round r +1. By the definition of our executions, Alice and Bob’s behavior
is determined by deterministic algorithm A, and Collin’s behavior is determined by the relevant rule in Figs. 1 and 2.

We start with Alice. If she broadcasts in α(w) in round r + 1 then, by our inductive hypothesis, she will also broadcast in
ρ(w, v) in round r+1 since she cannot distinguish the two executions through round r . Thus, at the end of round r+1, Alice
cannot distinguish the two executions: in each case, she simply receives her message and nothing else. Assume, therefore,
that Alice does not broadcast inα(w) in round r+1. This restricts our attention to rules 1(a), 2(b), 3, 4(a), 5(a), 7(a) and 8(b)
in Figs. 1 and 2. For each row, consider the ‘‘Result’’ column for α(w) and ρ(w, v), which indicate the messages broadcast
in round r + 1 (and thus received by Alice) in alpha(w) and ρ(w, v), respectively. (In the case where two messages are
indicated, consider only the message broadcast by Collin—according to our execution definitions, these will be the only
messages received by Alice).

Specifically, the result column for α(w) in Fig. 1 is the combination of Alice, Bob, and Collin’s behavior in α(w), as
described in this row. The result column for ρ(w, v) in Fig. 2 is the combination of Alice’s behavior in α(w), Bob’s behavior
in α(v), and Collin’s behavior as described by ρ(w, v). Since Alice cannot distinguish ρ(w, v) from α(w) through the end of
round r , and since Bob cannot distinguish ρ(w, v) from α(v) through the end of round r , this behavior captures Alice’s and
Bob’s broadcasts in round r + 1.

Notice that these two result columns are equal for all the rows we are considering (or, in rows with more than one
message, there is at least one message that is sent in both cases). Therefore, Alice receives the same message in both α(w)
and ρ(w, v) in every case during which she does not broadcast. Indistinguishability is maintained. A symmetric arguments
shows the same to hold true for Bob with respect to α(v). �

The symmetric claim is true for executions α(v), α(w), and ρ(v, w):

Lemma 4. Assuming that Collin has sufficiently large values of βα(v), βα(w), and βρ(v,w) that allow him to follow the rules in Fig. 1
for t rounds in all three executions α(v), α(w), and ρ(v, w). It follows that, through round t: ρ(v, w) is indistinguishable from
α(w) with respect to Bob and indistinguishable from α(v) with respect to Alice.

Proof. The argument is symmetric to Lemma 3. �
Let β be the broadcast budget given by Theorem 1. To prove this theorem we show that one of the two α executions

requires only β broadcasts by Collin during the first 2β + log |V |/2−1 rounds. Remember, due to our previously established
indistinguishability, neither Alice nor Bob can output during the rounds in which Collin’s budget remains non-empty.

Proof of Theorem 1. Let βα(v), βα(w), βρ(v,w), and βρ(w,v) be sufficiently large to allow Collin to broadcast, when required
by the rules in Figs. 1 and 2, for the first t = 2β + log |V |/2 − 1 rounds of α(v), α(w), ρ(v, w), and ρ(w, v), respectively.
By Lemmas 3 and 4, Alice cannot distinguish α(v) from ρ(v, w) or α(w) from ρ(w, v), and Bob cannot distinguish α(v)
from ρ(w, v) or α(w) from ρ(v, w), through round t . It follows that Alice and Bob cannot output during the first t rounds of
either α execution. If one of the players did output a value, by the demonstrated indistinguishability, the player would have
to output the same value in the corresponding ρ execution—violating the safety of A. For example, if Alice output v prior to
round t of α(v), then she would also output v prior to round t of ρ(w, v), thus reporting the wrong value for Bob.

We start by considering rounds 1 through log |V |/2 − 1 of α(v) and α(w). We show by induction on the round number,
r , 0 ≤ r < log |V |/2 − 1, that Collin does not broadcast in either α execution during these rounds.

The base case (r = 0) is immediate. For r + 1 we note that, by our inductive hypothesis, Collin has not yet broadcast.
Therefore, α(v) and α(w) are indistinguishable from γ (v) and γ (w), respectively, through round r . We can apply Lemma 2
to show that Alice (resp. Bob) broadcasts in round r + 1 of α(v) if and only if Alice (resp. Bob) broadcasts in round r + 1
of α(w). Notice, however, that by the rules in Fig. 1, Collin only broadcasts in an α execution in situations of asymmetric
silence; i.e., when Alice (resp. Bob) broadcasts in one α execution but not the other. Therefore, Collin will not broadcast in
either α execution during r + 1.

We next turn our attention to the 2β rounds that follow. By the rules in Fig. 1, Collin never broadcasts in both α(v) and
α(w) during the same round. Therefore, by a simple counting argument, it is impossible for Collin to broadcast in more than
half of these 2β rounds in both α executions. Without loss of generality, let α(v) be the execution requiring no more than
β broadcasts during the first 2β + log |V |/2 − 1 rounds. It is valid, therefore, to define βα(v) = β . This makes α(v) a valid
execution under the constraints of the theorem statement. By our argument above neither Alice nor Bob can output during
the first 2β + log |V |/2 − 1 rounds of this execution—proving our claim. �
We conclude with an immediate corollary of Theorem 1:

Corollary 5. Any 3-player communication protocol has a jamming gain of at least 2, and a disruption-free complexity of
Ω(log |V |).
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5. Energy-aware lower bounds for the 3-player game

In Section 4 we proved a lower bound of 2β + Ω(log |V |) rounds for the communication game, regardless of the size
of the honest players’ message budgets. Here, we recast the bound to take into account this budget size. For simplicity, we
focus on the natural special case of the communication problemwhere Alice is broadcasting a value to Bob, and Bob does not
broadcast. (It remains an interesting open problem to extend these bounds to the general case of two-way communication.)

In the following,we assumeAlice’s broadcast budget is expressed asβ+Δ.We assume that Bob knows that Alice’s budget
has at least Δ more broadcasts than Collin’s, but, as before, Bob does not know β . We must make a similar assumption for
Alice: she knows Δ, but does not know her total budget of β + Δ (as this would indicate the value of β , which is unknown).

In Section 5.1 we show that communication is impossible for Δ ≤ 0. In Section 5.2, we prove a lower bound of:

2β + max

(
2Δ|V | 1

2Δ

e
− 2Δ,

log |V |
2

)

rounds forΔ > 0. This implies that forΔ = Ω(log |V |) the lower bound is the same as the infinite-energy bound of Section 4.
For Δ = o(log |V |), however, the first term in the max statement increases exponentially to Θ(|V |) as Δ approaches 1.

5.1. Impossibility result for Δ ≤ 0

Theorem 6. There exists no protocol that allows Alice to transmit a value to Bob using less than or equal to β broadcasts.

Proof. Assume, for the sake of contradiction, that such a protocol, A, exists. Let α0 be an execution of A in which Alice is
initialized with value 0 and Collin simulates, using A, Alice starting with value 1. Let α1 be an execution of A in which Alice
is initialized with value 1 and Collin simulates, using A, Alice starting with value 0. Because both Alice and Collin have
the same broadcast budgets, it is easy to see that these two executions will appear indistinguishable with respect to Bob.
Assume, without loss of generality, that Bob outputs 0 in execution α0. Bob, therefore, also outputs 0 in α1, resulting in a
contradiction. �

5.2. Lower bound for Δ > 0

We extend the lower bound of Theorem 1 to explicitly consider Alice’s broadcast budget. At the core of our argument
is the observation that there should not exist two sequences of rounds in which Alice behaves the same for two different
initial values, and uses ≥ 2Δ broadcasts. As we saw in Theorem 1, for sequences in which Alice behaves the same for two
different values, Collin can maintain indistinguishability for Bob without having to broadcast. If Alice uses up her budget
advantage over Collin during rounds in which he does not broadcast, then she has left himwith enough power to effectively
spoof her until her budget expires during the rounds that follow. Accordingly, for smallΔ values, Alice must use manymore
silent rounds when communicating with Bob to prevent exhausting her extra broadcasts with undue haste.

Theorem 7. Let:

k = max

(
2Δ|V | 1

2Δ

e
− 2Δ,

log |V |
2

)
.

If Alice has a budget of size β +Δ where Δ > 0, then there exists no protocol that allows Alice to transmit her initial value to Bob
in less than 2β + k rounds.

We are considering a restricted case of the general lower bound presented in Section 4. If k = log |V |
2

, the theorem follows

directly from our general bound. We assume for the remainder of the proof that k = 2Δ|V | 1
2Δ

e
− 2Δ. Assume, for the sake of

contradiction, the existence of a protocol A that defies our bound.
We begin by defining γ (v), for all v ∈ V , as before, to be the execution that results from starting Alice with value v and

running the protocol A until termination, with no interference from Collin (i.e., Collin never broadcasts).
To continue, we define t(v), for all v ∈ V , to be the minimum of: (1) the round in γ (v) in which Alice uses her 2Δth

broadcast; (2) round k − 1. Finally, let γt(v), for all v ∈ V , to be the execution prefix of γ (v) through round t(v). We claim
the following:

Lemma 8. There exist two values v, w ∈ V where v �= w, such that Alice broadcasts in round r of γt(v) if and only if Alice
broadcasts in round r of γt(w).

Proof. We describe Alice’s broadcast behavior in the first k − 1 rounds of some execution ψ as a binary string of at most
k − 1 bits B(ψ, k − 1): bit i in B(ψ, k − 1) equals 1 if and only if Alice broadcasts during round i of ψ . (If ψ contains fewer
than k−1 rounds, then pad the string with 0 bits until it reaches length k−1). Consider the set of all possible executions γt :

S = {B(γt(v), k − 1) | v ∈ V }.
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Wewant to bound the size of this set. By the definition of γt , we know that there are no more that 2Δ broadcasts by Alice in

any γt execution prefix. Moreover, notice that there are at most
(
(k−1)+2Δ

2Δ

)
binary broadcast sequences of length k − 1 that

include no more than 2Δ ones. Thus, we bound the size of the set S:

|S| ≤
(

(k − 1) + 2Δ

2Δ

)

<

(
k + 2Δ

2Δ

)

≤
(
e(k + 2Δ)

2Δ

)2Δ

=

⎛
⎜⎜⎝

e

([(
|V | 1

2Δ

e

)
2Δ − 2Δ

]
+ 2Δ

)
2Δ

⎞
⎟⎟⎠

2Δ

=
(
|V | 1

2Δ

)2Δ
= |V |.

Having established that |S| < |V |, it follows, by the pigeonhole principle, that there must exist two distinct values v, w ∈ V
such that B(γt(v), k− 1) = B(γt(w), k− 1). It follows directly that for these two values v and w, if Alice broadcasts in some
round i in γt(v) (resp. γt(w)) then Alice broadcasts in round i in γt(w) (resp. γt(v)). �

Fix v andw to be the two values identified by Lemma 8.We next argue that executions γt(v) and γt(w) are both of length
k − 1.

Lemma 9. Both execution prefixes γt(v) and γt(w) are of length k − 1 rounds.

Proof. Assume for the sake of contradiction that γt(v) is of length < k − 1 rounds; that is, t(v) < k − 1. This implies that
Alice broadcasts 2Δ messages in execution γt(v). Since by Lemma 8, Alice broadcasts in some round r of γt(v) if and only
if she also broadcasts in round r of γt(w), we can also conclude that Alice expends 2Δ messages in the first t(v) < k − 1
rounds of γt(w), and hence t(w) = t(v) < k − 1 as well.

Define execution δ(v) of protocol A, as follows. Alice starts with initial value v. For the first t(v) rounds Collin does not
broadcast. After this prefix, Collin simulates Alice running A with initial value w, until he exhausts his budget (i.e., after
β broadcasts). In the case where Collin and Alice broadcast simultaneously, assume Bob receives neither message—and
therefore detects a collision. We argue that Bob cannot output a value in execution δ(v), contradicting the termination
property of A.

To prove this claim,we first construct a second execution: δ(w). Alice starts this executionwith initial valuew. During the
first t(v) rounds, Collin simulates Alice running Awith initial value v, that is, Collin broadcasts the message that Alice sends
in δ(v). During these initial rounds we assume Collin’s messages overwhelm Alice’s, and are, therefore, the only messages
received by Bob. Alice does not notice this behavior as they are broadcast on the same schedule, since by assumption, Alice
broadcasts a message in round r when starting with initial value v if and only if Alice broadcasts a message when starting
with initial value w. For the rounds that follow, Collin continues to simulate Alice running Awith initial value v. As in δ(v),
if simultaneous broadcasts occur during these later rounds, both messages are lost.

Let β be Collin’s broadcast budget at the beginning of execution δ(v), and β ′ = β +Δ be Collin’s broadcast budget at the
beginning of δ(w). (Since Collin’s broadcast budget is unknown to Alice and Bob, it can be different in the two executions.)
Thus, at the beginning of δ(v), Alice has a broadcast budget of β + Δ, and at the beginning of δ(w), Alice has a broadcast
budget of β ′ + Δ = β + 2Δ messages.

We now argue that δ(v) and δ(w) are indistinguishable with respect to Bob at all points during each execution. In both
cases, Bob sees the same messages during the first t(v) rounds: in δ(v), these messages are sent by Alice; in δ(w), these
messages are sent by Collin.

In δ(v), Bob receives up to β − Δ additional messages broadcast by Alice using the β + Δ − 2Δ = β − Δ messages
that remain in her budget after the t(v) round prefix; these messages attempt to convince Bob to output v. Bob will also
receive up to β messages broadcast by Collin who is using his full budget of size β; these messages attempt to convince Bob
to output w.2

In δ(w), after the initial t(v) rounds, Bob will then receive up to β − Δ additional messages broadcast by Collin with the
β ′ − 2Δ = (β + Δ) − 2Δ = β − Δ broadcasts that remain in his budget after the 2Δ expended during the t(v) prefix;

2 In both cases, as in the two that follow, ‘‘receive’’ means either receiving the message or detecting a collision, which could only occur if both message

types where broadcast.
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these are the samemessages that Alice sent in δ(v) to try to convince Bob to output v. Bobwill also receive up to β messages
broadcast by Alice with the β ′ + Δ − 2Δ = (β + Δ) + Δ − 2Δ = β broadcasts that remain in her budget after the 2Δ
expended during the t(v) round prefix); there are the same messages that Collin sent in δ(v).

Notice, in both executions, Bob receives the same set of up to β − Δ messages that recommend value v and the same
set of up to β messages that recommend value w, following the initial indistinguishable t(v) round prefix. Thus, the two
executions are indistinguishable. If Bob outputs v in δ(v) then this violates safety in the context of δ(w); if Bob outputs w
in δ(v) then Bob violates safety in the context of δ(v). �

We now define α(v), α(w), ρ(v, w) and ρ(w, v) in the same manner as in Section 4. Notice, we can ignore the rows in
Fig. 1 that have Bob broadcast as we are considering the special case where only Alice communicates.

Proof of Theorem 7. Let βα(v), βα(w), βρ(v,w) and βρ(w,v) be sufficiently large to allow Collin to broadcast, when required by
the rules in Fig. 1, for the first t = 2β + k− 1 rounds of α(v), α(w), ρ(v, w) and ρ(w, v). Notice, because Bob does not start
with an initial value in the case we consider here, we can disregard the second parameter to the ρ executions. For simplicity,
we will refer to ρ(v, w) as ρ(v) and ρ(w, v) as ρ(w). Because we defined these executions the same as in Section 4, we
can apply Lemma 3 and Lemma 4, which provide that Bob cannot distinguish α(v) from ρ(w), or distinguish α(w) from
ρ(v), through round t . As in the proof for Theorem 1, it follows that Bob cannot output during the first t rounds of either α
execution.

Let � = min{length(γt(v)), length(γt(w))}. Consider rounds 1 through � of α(v) and α(w). We show by induction on the
round number, r , 0 ≤ r < �, that Collin does not broadcast in either α execution during these rounds.

The base case (r = 0) is immediate. For r + 1 we note that, by our inductive hypothesis, Collin has not yet broadcast.
Therefore, α(v) and α(w) are indistinguishable from γt(v) and γt(w), respectively, through round r . We can apply Lemma 8
to show that Alice broadcasts in round r+1 ofα(v) if and only if Alice broadcasts in round r+1 ofα(w). Notice, however, that
by the rules in Fig. 1, Collin only broadcasts in an α execution in situations of asymmetric silence; i.e., when Alice broadcasts
in one α execution but not the other. Therefore, Collin will not broadcast in either α execution during r + 1.

We now turn our attention to the 2β rounds that follow. By the rules in Fig. 1, Collin never broadcasts in both α(v) and
α(w) during the same round. Therefore, as with the proof of 1, we note that by a simple counting argument, it is impossible
for Collin to broadcast in more than half of these 2β rounds in both α executions. Without loss of generality, let α(v) be the
execution requiring nomore than β broadcasts during the first 2β + � rounds. It is valid, therefore, to define βα(v) = β . This
makes α(v) a valid execution under the constraints of the Theorem statement. Remember, by our argument above Bob can
output during the first 2β + � rounds of this execution.

Recall that we have already shown in Lemma 9 that � ≥ k − 1, since both γt(v) and γt(w) are at least k − 1 rounds,
concluding the proof. �

6. Upper bounds for the 3-player game

We prove in this section that our round complexity lower bounds are tight (within a constant factor) by demonstrating
a protocol that achieves a matching running time. To strengthen our result, we consider the (seemingly) harder problem of
Alice transmitting her value to Bob in a setting where Bob does not broadcast. Specifically, we give a protocol that, assuming

Alice has a budget of β + Δ messages, Δ > 0, transmits Alice’s input value to Bob in 2β + max(log |V |, Δ|V | 1
Δ ) rounds. As

in Section 5, the value of Δ is known to Alice and Bob, while β is unknown.
We begin in Section 6.1 by presenting a protocol that transmits a single bit from Alice to Bob. Then, in Section 6.2, we

show how Alice encodes her message to Bob as a sequence of bits so that it can be sent using at most β + Δ messages. (If
Δ = Ω(log |V |), then the natural binary encoding is used.)

Throughout the rest of this paper, we use the following pseudocode convention: for a given value v, each invocation of
bcast-rcv(v) executes a single round of wireless communication. If value v = ⊥, then nomessage is broadcast. The bcast-rcv
invocation returns any messages received in that round, or ⊥ if no message is received. Moreover if a collision is detected
during the communication round, the bcast-rcv invocation returns the special symbol ±.

6.1. Transmitting one bit

The basic protocol, described in Algorithm 1, transmits a single bit b from Alice to Bob. The key idea is to alternate data
rounds and veto rounds, using the former to transmit data, and the later to verify that the data has arrived correctly. (Each
iteration of lines 5–21 by Alice and lines 5–12 by Bob implements two rounds of communication.)

In the data phase, Alice transmits a message if b = 1 and remains silent otherwise. (Lines 7–9 describe the case where
b = 0 and Alice broadcasts nothing; lines 10–11 describe the case where b = 1 and Alice broadcasts a vote message.) The
veto phase is used to confirm the accuracy of the preceding data phase. Silence in the veto phase indicates that the preceding
data phase was accurate and Alice can terminate (lines 20–21). A broadcast in the veto phase, on the other hand, indicates
potential trouble, therefore requiring Alice to try again with a new pair of data and veto rounds.

This provides Collin two means by which to delay termination. First, he can broadcast in the data phase when Alice
would otherwise be silent (i.e., when b = 0). Alice will detect this phony data phase broadcast and subsequently indicate
this deception by broadcasting in the veto phase (line 9). Second, Collin can broadcast in the veto phase when Alice would
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have remained silent. Alice will detect this phony veto (lines 20–21) and then try again with a new pair of rounds. (Note:
Alice knows the veto is phony, but Bob does not, necessitating that Alice continues with two further rounds, just as if she
had sent the veto. Aminor optimization would be to have Bob ignore a vetomessage if the preceding data roundwas empty.
In this instance it is clear that Alice did not send the veto message.)

Bob simply listens in both the data and veto phases, broadcasting nothing. If the veto phase is silent, he returns a value
based on the message (or lack thereof) from the data phase. Notice that Alice and Bob terminate the protocol at the same
round: the first silent veto phase round.

We now discuss some properties of Algorithm 1:

Lemma 10. Assume that Alice has at least one more transmission in her broadcast budget than Collin, and that Alice begins with
initial value b ∈ {0, 1}. If Alice and Bob both invoke Algorithm 1 in the same round, then:

(1) Termination: Alice returns at the end of round r if and only if Bob returns at the end of round r.

(2) Safety: Assume Bob terminates at the end of round r. Then Bob returns value b.

(3) Alice’s energy consumption: If Alice has not terminated by the end of round r,where r is a veto-phase, then Alice has expended
at most r/2 broadcasts. If Alice has terminated by the end of round r then:

• Case 1: b = 0: Alice expends at most r/2 − 1 broadcasts;
• Case 2: b = 1: Alice expends at most r/2 broadcasts.

(4) Collin’s Energy Consumption: If Alice and Bob have not terminated by the end of round r, where r is a veto-phase, then Collin
has expended at least r/2 broadcasts.



S. Gilbert et al. / Theoretical Computer Science 410 (2009) 546–569 557

Proof. We address each of the properties in turn:

(1) Termination: Notice that Alice and Bob both terminate after the first silent veto phase (lines 20–21 for Alice, lines 10–12
for Bob). By the definition of ourmodel, a silent round cannot be faked by Collin: either both processes receive something
(be it a message or collision notification), or both processes receive nothing.

(2) Alice’s energy consumption: Notice that Alice never broadcasts in both the data phase and the veto phase: if b = 0, Alice
will broadcast only in the veto phase (see lines 7–8); if b = 1, then Alice will broadcast only in the data phase. We
conclude that if Alice has not terminated by the end of round r , a veto-phase, then Alice has expended nomore than r/2
broadcasts.

If Alice does terminate at the end of round r , a veto-phase, we first note that by the above argument, through round
r − 2 Alice has expended at most (r − 2)/2 broadcasts. By our assumption that Alice terminates after r and the fact
that Alice and Bob terminate only after a silent round, we know that Alice does not broadcast in round r . (A broadcast
in r would indicate a veto, requiring the protocol to continue.) If b = 0, then Alice does not broadcast in round r − 1.
If b = 1, then Alice does broadcast in r − 1. In the former case, Alice expends at most (r − 2)/2 = r/2 − 1 broadcasts
(note that r is even). In the latter, Alice expends at most r/2 broadcasts.

(3) Collin’s energy consumption: If Collin does not broadcast in either the data phase or the veto phase, then the protocol
terminates: if there is no broadcast in the veto phase, then Alice and Bob both terminate;moreover, Alice only broadcasts
in the veto phase if Collin broadcasts in the data phase when b = 0. It follows: if the protocol has not terminated at the
end of round r , a veto-phase, then Collin has broadcast in either the data or the veto round for each pair of proceeding
rounds, leading to the conclusion that Collin has expended at least r/2 broadcasts.

(4) Safety: Assume that Alice and Bob terminate at the end of round r . By definition, round r is a veto-phase. If Alice and Bob
terminate after round r , then they had not terminated by the end of round r − 2, also a veto phase. By our two claims
regarding energy consumption, shown above, Alice has expended at most (r − 2)/2 broadcasts through round r − 2
and Collin has expended at least the same amount. By assumption, Alice begins with at least one more broadcast in her
budget than Collin, and thus has at least one broadcast left in her budget at the beginning of round r − 1. Consider the
two cases for b:

If b = 1, Alice broadcasts in round r − 1. Bob either receives this message or detects a collision. Because Alice and
Bob terminate in round r we know that round r , the veto phase, is silent. Thus Bob outputs ‘1’.

If b = 0, Alice is silent in round r − 1. If Collin had broadcast in round r − 1 then Alice would have received this
broadcast or detected a collision, and in this case, she would have used her (at least) one remaining broadcast to veto
in round r . Because Alice and Bob terminate, however, we know that round r is silent. This implies that Collin did not
broadcast in round r − 1. Both rounds, therefore, are silent, and Bob correctly outputs ‘0’. �

6.2. Encoding the message one bit at a time

In order to transmit a non-binary value, Alice transmits her message to Bob one bit at a time using Algorithm 1. If the
value to transmit is encoded as a binary string in the natural manner, this leads to a string of length log |V |.

Notice, however, that in order to successfully transmit a ‘1’, Alice expends one more broadcast than Collin. Consider,
for example, the case where Alice is transmitting a ‘1’ to Bob, and both Alice and Bob terminate in round r . By Lemma 10:
through (veto-phase) round r − 2, Alice and Collin have expended the same number of broadcasts (assuming Collin is being
as frugal as possible); in order to terminate in round r , Alice must broadcast in r − 1, while Collin does not. By contrast, to
transmit a ‘0’, Alice does not need to broadcast in r − 1. Thus it is cheaper for Alice to transmit ‘0’s than ‘1’s.

If Δ ≥ log |V |, Alice can use the standard binary encoding for a value v. In the worst-case, value v consists of a sequence
of log |V | 1’s. Since Alice’s broadcast budget is at least log |V | larger than Collin’s, she can afford to transmit this value v.

If Δ < log |V |, then it is necessary to encode the value v more carefully. Specifically, Alice and Bob both know that Alice
has a broadcast budget at least Δ larger then Collin. Thus Alice encodes her messages as a bit string of length k containing

at most Δ bits with value ‘1’. If the bit string is of length k, this implies it can encode up to
(
k

Δ

)
messages. Some simple

approximation allows us to calculate that if k = Δ|V | 1
Δ then:(

k

Δ

)
=
(

Δ|V | 1
Δ

Δ

)

≥
(

Δ|V | 1
Δ

Δ

)Δ

≥ |V |.
Thus, using bit strings of length Δ|V | 1

Δ , Alice can encode all the messages in the set V using no more than Δ bits with value
‘1’ in each encoding.

Once Alice and Bob have chosen an encoding based on the relationship between Δ and the size of V , Alice then sends the
encoded message one bit at a time using the single bit transmission protocol in Algorithm 1, at which point Bob decodes it
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in the natural way. From this, we conclude the following theorem:

Theorem 11. If Alice begins with a budget of β + Δ broadcasts, Δ > 0, and encodes her message v ∈ V as a bit string of length

max(log |V |, Δ|V | 1
Δ ) with at most Δ bit of value ‘1’, and transmits it to Bob one bit at a time using Algorithm 1, then:

(1) Safety: Bob outputs value v.
(2) Liveness: Alice terminates and Bob produces an output in at most:

2β + 2max(log |V |, Δ|V | 1
Δ )

rounds.

Proof. Fix sequence S for Alice to transmit to Bob. By Lemma 10, we know that each bit of S will be transmitted correctly
as long as Alice has more transmissions remaining in her broadcast budget than Collin when the single-bit protocol begins
for that bit. For the first bit, this is true by definition as we assume Δ > 1. If this bit is 0, then by Lemma 10 Alice will
expend no more broadcasts than Collin to transmit it to Bob. If this bit is 1, then by the same lemma Alice must expend at
most one more broadcast then Collin to transmit it to Bob. By definition, no more than Δ bits in S are 1. Because Alice has Δ

more broadcasts than Collin, it follows by simple induction that Alice will have sufficient budget to transmit each bit. Safety
follows from this observation.

We now proceed to calculate the number of rounds required to transmit all the bits. Let R be the total number of rounds
required to send the full sequence. We divide the rounds into R/2 pairs of consecutive data and veto rounds. Each such pair
of rounds either: (1) terminates Algorithm 1 for one of the bits in the sequence; (2) does not terminate Algorithm 1 due to
interference from Collin. Given Collin’s budget of β , at most β of these pairs fall into the second category. Because there are

max(log |V |, Δ|V | 1
Δ ) bits to transmit, exactly this many pairs fall under the first option. It follows that:

R/2 ≤ β + max(log |V |, Δ|V | 1
Δ ).

Therefore:

R ≤ 2β + 2max(log |V |, Δ|V | 1
Δ )

which concludes the proof. �

7. Synchronizing Alice and Bob: The wake-up case

In this section, we consider a variation of the basic broadcast problem where Alice and Bob need to synchronize, that is,
where Alice and Bob do not necessarily begin the broadcast protocol in the same round.

We assume that Alice is always awake, that is, Alice begins her protocol at the very beginning of the execution. At this
point, Alice may not yet have received a value to transmit to Bob; however she still may need to counter Collin’s malicious
behavior, preventing Collin from tricking Bob into receiving an incorrect value. In some round rb ≥ 0, Bob arrives and begins
executing his protocol. Consider, for example, the case where Alice is a base station, and Bob is a sensor or mobile device
that occasionally wakes up to receive data from Alice.

At some point (either before or after Bob arrives) in round ra ≥ 0, Alice is provided with a value v to transmit. (Wemodel
this in the pseudocode as Alice requesting the value in each round via a call to get-value(); once the value is available, this
function returns the value; until then, it returns ⊥.)

The goal is that Bob receives this value as soon as possible. The duration of the protocol is rout − max(ra, rb), where rout
is the round during which Bob first outputs Alice’s value. Because ra and rb are unbounded, we do not restrict Alice’s energy
budget. The presented protocol has a duration of 2β + O(log |V |) rounds.

As in Section 6, the basis of our protocol is a simple subroutine that transmits a single bit of information from Alice to
Bob. It is necessary, however, that Alice and Bob synchronize, and they must continually monitor the channel for Collin’s
attempts to disrupt synchronization. The synchronization compensates for Alice and Bob’s different starting rounds, and is
used to help them start the single-bit subroutine at the same time.

Notice that in the pseudocode (Algorithms 2–5), the state for Alice is presented in Algorithm 2 and is shared by all the
subroutines used by Alice; similarly, the state for Bob is presented in Algorithm 3 and is shared by all the subroutines used
by Bob.

7.1. Synchronization

The synchronization protocol is presented in Algorithm 4. Alice and Bob synchronize via a long sequence of broadcasts.
The key idea is that the number of broadcasts is sufficiently long that it is prohibitively expensive for Collin to fake the
synchronization sequence.

Specifically, when Alice wants to begin synchronization, she first broadcasts a synch message for 5 log |V | rounds,
and then remains silent in round 5 log |V | + 1 of the sequence (see lines 3–12, Algorithm 4). Notice that the Alice’s
synchronization only completes when there is a silent round (lines 8–12, Algorithm 4); Collin can delay the completion
of Alice’s synchronization by disrupting the last round.

When Bob wants to synchronize, he listens for a long sequence of broadcasts, followed by a silent round. Whenever
he observes 5 log |V | consecutive rounds in which a message is broadcast, followed by a single silent round, he starts (or
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re-starts) the protocol. The synch-check routine (lines 20–28, Algorithm4) counts the number of consecutive rounds inwhich
a non-⊥ message has been received; when the count has reached 5 log |V |, it waits for a silent round and then initiates the
restart, resetting the phase, bit and count .

If Alice begins a synch-Alice() any time after Bob begins a synch-Bob(), then both Alice and Bob will return from the
synchronization protocol in the same round, and bothwill begin their respective transmission/receive protocols at the same
time.

7.2. The single-bit transmission sub-protocol

The pseudo-code for the single-bit transmission protocol is depicted in Algorithm 5, and is nearly identical to the single-
bit protocol presented in Algorithm 1 for the case where Alice and Bob are already synchronized. As before, Alice alternates
data and veto rounds until Bob successfully receives the specified bit of information.
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In this case, however, the basic protocol is complicated by the need to detect ‘‘false synchronization’’. In particular, Collin
may choose to broadcast in 5 log |V | consecutive rounds, thus faking the synchronization sequence.Moreover, Bobmaywake
up just in time to detect this synchronization sequence, and hencemay begin receiving data bits (via Bob-recv) immediately
after hearing the 5 log |V |+1 synchronization sequence. Thus, Alice toomust restart the protocol in this case, retransmitting
the entire bit sequence.

Themain difference, then, between algorithmAlgorithm1 and Algorithm5 is that Alice and Bob each call the synch-check
routine after each round, checking whether a restart is necessary. If so, they abort the transmission/reception of this
particular bit (see lines 13–14 and 22–23 for Alice, Algorithm 5; line 7 and 11 for Bob, Algorithm 5).

7.3. The overall protocol

The overall protocol is presented in Algorithm 2 (for Alice) and Algorithm 3 (for Bob). Alice and Bob begin by
synchronizing, and then Alice transmits the value to Bob one bit at a time.

There is one further step needed to ensure that Collin cannot trick Bob. Consider the casewhere Alice has not yet received
the value to transmit. In this case, if Collin broadcasts the synchronization sequence, then Alicemust continually be on guard
to prevent Bob from receiving false data. In particular, Alice must broadcast in every veto round to indicate that she is not
ready to transmit data; this would be very costly, in terms of Alice’s energy budget. Instead, we use the following technique:
in order to ensure that the string is coming from Alice, rather than Collin, Alice appends a ‘1’ to the beginning of her string;
if Bob receives a string beginning with a ‘0’ then he knows that it is not coming from Alice. Moreover, if Alice detects a false
synchronization, she transmits a ‘0’ to Bob, ensuring that Bob can determine that she is not ready to send the value. In this
way, Alice can abort a false synchronization in an energy-efficient manner.

We now proceed to describe Alice’s protocol (Algorithm 2) in more detail. The protocol has two stages:

• Pre-value: Initially, Alice has not yet received a value to transmit; at this point (lines 15–24, Algorithm 2), her only goal
is to prevent Bob from receiving an incorrect value. Thus, if Collin has successfully faked a synchronization (line 17,
Algorithm 2), then Alice broadcasts a ‘0’ to indicate that she is not ready to transmit her value. Otherwise (lines 21–24,
Algorithm 2), Alice listens passively to any messages broadcast by Collin in order to detect fake synchronization.
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• Post-value: Eventually, Alice receives the value to transmit (line 12, Algorithm 2), and attempts to transmit it to Bob (lines
25–40, Algorithm 2). In this case, there are three sub-cases. (1) If Alice and Bob are not yet synchronized (lines 27–29,
Algorithm2), then Alice calls synch-Alice in order to synchronize. (2) If Alice and Bob have completed the synchronization
protocol, but Alice has not yet sent an initial bit (lines 30–33, Algorithm 2), then she broadcasts a ‘1’ indicating a valid
synchronization. (3) If Alice and Bob are synchronized, and if they have completed the initial validation bit, then Alice
transmits her value bit-by-bit (lines 34–37, Algorithm 2). When this is complete, Alice resets the synchronization and
begins again (38–40).

Bob’s protocol (Algorithm3) is somewhat simpler. Initially, Bobwaits to detect a synchronization sequence by Alice (lines
12–13, Algorithm 3). Once synchronization is complete, Bob tries to receive a single-bit; (lines 16–22, Algorithm 3). If the
bit is a ‘1’, then Bob prepares to receive data; otherwise, if the bit is a ‘0’, then Bob resets the phase (line 22, Algorithm 3),
and again waits for synchronization. Once fully synchronized, Bob continues to receive bits (lines 23–25, Algorithm 3) until
the entire value is received.

7.4. Analysis

We now demonstrate that Alice successfully transmits her value to Bob, and that the protocol terminates in at most
2β + Θ(log |V |) rounds. As a notational convention, we use the subscript A to indicate Alice’s state and B to indicate Bob’s
state. For example, valueA represents Alice’s view of the value, while valueB represents Bob’s view.

We begin by examining the modified single-bit transmission protocol (Algorithm 5). The following lemma is almost
identical to Lemma 10with three caveats: (1) No assumption ismade regarding Alice’s broadcast budget, as we have already
assumed that Alice has a sufficient number of broadcasts remaining in her budget. (2) Unlike Algorithm 1, however, Alice
or Bob may terminate without succeeding (when one of the players detects a synchronization sequence); in this case, we
show that either both succeed or both fail in the transmission protocol. (3) We assume that initially, Alice and Bob begin
with the same view of the current synchronization protocol, i.e., countA = countB.

Lemma 12. Assume that Alice begins with initial value b ∈ {0, 1}. If Alice and Bob both invoke Algorithm 5 in the same round
and countA = countB, then:

(1) Termination 1: Alice returns at the end of round r if and only if Bob returns at the end of round r.

(2) Termination 2: Alice returns success if and only if Bob returns a value �= ⊥.
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(3) Safety: Assume Bob terminates at the end of round r. Then Bob either returns value b or ⊥.
(4) Alice’s energy consumption: If Alice has not terminated by the end of round r, where r is a veto phase, then Alice has expended

at most r/2 broadcasts. If Alice has terminated by the end of round r then:
• Case 1: b = 0: Alice expends at most r/2 − 1 broadcasts;
• Case 2: b = 1: Alice expends at most r/2 broadcasts.

(5) Collin’s energy consumption: If Alice and Bob have not terminated by the end of round r, where r is a veto phase, then Collin
has expended at least r/2 broadcasts.

Proof. The only modifications from the proof in Lemma 10 involve checking for synchronization; the safety and energy
consumption properties follow exactly as in Lemma 10. The added synchronization checks, however, can effect termination,
and hence we must argue that they hold.

First, we observe that throughout the invocation of Algorithm 5, we know that countA = countB. This fact holds initially.
In each round, the count variable is modified only by synch-check, which depends only on whether Alice or Bob received
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a message or silence. Since Collin cannot fake a silent round, we know that Alice and Bob either both receive a message or
both receive silence. Thus, Alice and Bob both update count in the same manner when they call synch-check in each round.

Next, we observe that if either Alice or Bob terminates without succeeding, then both Alice and Bob terminate in the
same round without succeeding. This follows immediately from the observation that countA = countB at the end of each
round, and thus if synch-check returns restart for one player, then it returns restart for both players in the same round.

Finally, if neither player returns without succeeding, then it follows exactly as in Lemma 10 that Alice and Bob terminate
in the same round. �

We next show that the synchronization protocol works correctly, that is, if Bob has phase set to in-synch, then Alice also
believes that the system is synchronized, and both Alice and Bob have identical values of count .

Lemma 13. Assume that at the end of round r, phaseB = in-synch and also that neither Alice nor Bob have terminated at the end
of round r. Then (1) phaseA = in-synch, (2) countA = countB, and (3) bitA = bitB.

Proof. First, we argue that countA ≥ countB throughout the entire execution (regardless of the phase). Notice thatwhen Bob
is first awakened, he has countB = 0 and Alice has countA ≥ 0; we need to show that the desired inequality is maintained.
There are two cases to consider:

• Assume that Bob increments countB: In this case, Bob has received amessage �= ⊥ that causes him to increment the count.
We can conclude that either Alice or Collin must have broadcast a message, and hence Alice also must have received a
message or detected a collision in that round. Thus, Alice also increments countA.• Assume that Alice decreases countA in some round: In this case, Alice must have received a message m = ⊥ (either line
11 or 24 of Algorithm 4). Thuswe can conclude that Bob also receivedm = ⊥ (due to the collision detector functionality),
and hence also resets countB = 0 (line 24, Algorithm 4).

Thus in either case, countA remains no smaller than countB.
We now prove inductively that the three claims hold. First, we consider the round r in which Bob sets phaseB = in-synch.

In this case, we can conclude that countB = 0 and bitb = −1 at the end of round r , since the count is reset whenever
the phase is set to in-synch (see lines 21–25, Algorithm 4). We now argue that Alice also executes either lines 21–25 of
synch-check or lines 9–12 of synch-Alice (Algorithm 4), which result in appropriate values for phaseA, countA, and bitA.
Specifically, we know that in round r , Bob detected only silence, and hence Alice too detected silence, since Collin cannot
fake a silent round. Moreover, we know that countA ≥ countB, and also that countB ≥ 5 · size (since Bob detected a complete
synchronization sequence). Thus, countA ≥ 5 · size, and hence Alice also detects a complete synchronization sequence. Thus,
the three claims holds at the end of round r .

Next, we argue that the three claims continue to hold as long as phaseB = in-synch. First, it is easy to see that bitA
continues to equal bitB: by the Termination 2 property of the single-bit transmission protocol (Lemma 12), we know that
Alice-bcast returns success if and only ifBob-recv returns a value �= ⊥; thus Alice increments bitA (lines 33 and 37, Algorithm
2) if and only if Bob increments bitB (lines 19 and 25, Algorithm 3).

Next, observe that in each round, Alice receives a non-⊥message if and only if Bob receives a non-⊥message, and hence
the synch-check function modifies the count and phase of Alice and Bob in the same way. Moreover, the count is modified
only by the synch-check function; thus countA = countB at the end of each round.

There are, however, two other places in Algorithm 2 where phaseA is set to not-in-synch: line 20 (Algorithm 2), where a
false synchronization is detected, and line 40 (Algorithm 2), where the transmission completes. In each case, it remains to
argue that Bob either sets phaseB to not-in-synch or terminates.

• False synchronization is detected (line 20, Algorithm 2): This can occur only immediately after phaseA has been set to
in-synch, which is also immediately after Bob has set phaseB to in-synch. Moreover, it implies thatAlice-bcast(0) returned
success. Thus, we conclude by Lemma 12 (Termination 1 and 2, and Safety properties) that the function Bob-recv returns
‘0’, the value sent by Alice. Hence Bob too sets phaseB = not-in-synch, as required.

• Transmission completes (line 40, Algorithm 2): If Alice sets phaseA to not-in-synch because bitA > size, thenwe can conclude
the bitB > size, and hence Bob returns valueB (line 27, Algorithm 3), terminating the protocol. �

We conclude the section with the main theorem:

Theorem 14. If Alice receives initial value v, then Algorithm 2 and Algorithm 3 guarantee:

(1) Safety: Bob outputs value v.
(2) Liveness: Bob terminates at most 2β + Θ(log |V |) rounds after round max (ra, rb), i.e., after both Alice receives her initial

value and Bob wakes up.

Proof. By combining Lemma 12with Lemma 13, it is easy to see that Bob outputs value v only if Alice receives value v as her
input. Specifically, Lemma 13 shows that once synchronized, Alice and Bob continue to have the same count . This implies
(by induction) via Lemma 12 that each invocation of the single-bit transmission protocol terminates in the same round, and
thus the following invocation of the single-bit transmission protocol begins in the same round. Finally, from Lemma 12, we
conclude that Bob outputs the bit broadcast by Alice. Since bitA = bitB throughout, Bob correctly updates value[bit] with
the correct bit of Alice’s value.
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Wenowargue that Bob eventually terminates. Specifically, the first time Alice calls synch-Alice after Bob awakes, Bobwill
receive an appropriate synchronization sequence and return synched. Moreover, each iteration of Alice-bcast and Bob-recv
terminate as per Lemmas 12 and 13. With no disruption from Collin, the synchronization and data transmission require
Θ(log |V |) rounds. More specifically, with no delays by Collin, Alice and Bob will finish in max(ra, rb) + 14 log |V | + 5
round: in the worst case, Bob awakes one round after Alice begins a synchronization sequence, resulting in two iterations of
synchronization (each of which takes 5 log |V | + 3 rounds), and two iterations of bit transmission (2 log |V |), less the round
Bob arrived too late.

Collin’s β broadcasts may: (1) delay synchronization for up to β rounds; (2) force Alice and Bob to resynchronize, or
(3) disrupt an individual bit transmission. In the first case, each broadcast by Collin causes one round of delay. In the
second case, we can amortize the delay against Collin’s broadcasts and observe that each broadcast causes delay < 1. At
worst, resynchronization delays Alice and Bob by 2 log |V | + 2, more specifically, the 2 log |V | + 1 cost of retransmitting
all but the last bit in Alice’s initial value, and the cost of the first ‘‘validation’’ bit when bit = −1. Bob’s cost for forcing the
resynchronization is at least 5 log |V |/2, more specifically, his optimal strategy is to alternate broadcasts with Alice as she
attempts (and fails) to broadcast a ‘1’ using 5 log |V |/2 broadcast. Thus each broadcast by Collin causes delay < 1. Finally, in
the third case, it follows from Lemma 12 that Collin can delay each bit transmission by only two roundswith each broadcast.

Thus we conclude that the total running time is bounded by 2β + max(ra, rb) + 14 log |V | + 5. �

8. Lower bounds for n-player problems

We now generalize our results to n-player coordination problems. In Section 8.1, we show how to derive lower bounds
for several problems by relating them to the three player game that we have studied in previous sections. In Section 8.2, we
consider the impact of combining malicious behavior with crash failures.

8.1. n-player reductions

We demonstrate how Alice and Bob can together simulate an arbitrary n-player protocol. We then use this simulation
to derive lower bounds, via reduction from the 3-player communication game, for several n-player problems: reliable
broadcast, leader election, and static k-selection. None of our round-complexity lower bounds restrict the message budget
of honest players.

Simulation

A simulation by Alice and Bob is defined by a 5-tuple: {A, n, SA, SB, I}, where: (1) A is the n-player protocol being
simulated; (2) SA and SB partition the n players into two non-empty and non-overlapping sets; (3) I is a mapping of players
to their respective initial values.

Alice simulates the players in SA, initializing them according to I . (Alice is provided only the initial values for nodes in
SA, i.e., I|SA.) In each round, if any of the players in SA choose to broadcast, Alice arbitrarily chooses one of their messages
to broadcast (the remaining messages are ignored). She simulates the receipt of this message at each of the players in SA. If
no player in SA broadcasts, then Alice listens during the round, receivingm, and simulates the receipt ofm at each player in
SA (i.e.,m is either: a message, a collision notification, or silence). Alice outputs any values output by her simulated players.
Bob behaves symmetrically, with respect to SB. We prove the following about the fidelity of these simulations.

Theorem 15. Consider simulation {A, n, SA, SB, I}. For all r-round executions of the simulation, there exists an r-round execution
α of A, initialized according to I, where the outputs of Alice and Bob are equivalent to the outputs in α, and Collin broadcasts the
same number of messages in the simulation and α.

Proof. We prove this claim by a straightforward induction on the round number, showing that after r ′ rounds: (1) the state
of the simulated players corresponds to some r ′-round legal execution of A; and (2) Collin has performed the same number
of broadcasts in both the simulation and the execution of A.

There are two cases of interest. First, consider the case where two or more of Alice’s simulated players broadcast (resp.
Bob’s players), and the simulation algorithm has Alice (resp. Bob) choose only onemessage to broadcast. In our α execution,
this matches the case in which a single message overwhelms others broadcast in the same round. Another interesting case
occurs when Collin broadcasts in the simulation. In our α execution, this matches the case where Collin broadcasts the same
message, overwhelming other messages and/or causing collisions in the same pattern seen in the simulator (which will
depend on whether Alice (resp. Bob) receives Collin’s message or a collision notification). This is the only case in which we
require Collin to broadcast in the α execution, preserving the second property of our hypothesis. �

We now leverage our simulation to reduce the 3-player game to a several classic n-player problems—obtaining new
lower bounds.

Reliable broadcast

In reliable broadcast, one player – the source – is provided with an input value v0 ∈ V . The source must communicate
this value to all other players. Safety requires that each player output only v0, i.e., perform output(v) only if v = v0. Liveness
requires that all players eventually perform an output.
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Theorem 16. Any reliable broadcast protocol requires at least 2β + log |V |/2 rounds to terminate.

Proof. Assume by contradiction that A is a reliable broadcast protocol that terminates in R < 2β + log |V |/2 rounds for
all initial values. We reduce 3-player communication, for value domain V , to A. Alice and Bob simulate A for n players,
where: (1) SA contains the source, SB contains all other players, and (2) I maps the source to va, Alice’s initial value. Bob
outputs the first value output by a simulated player. By Theorem 15, Bob always outputs v0 = va by round R, contradicting
Theorem 1. �

Leader election

In leader election, a group of participants from among the n players contend to become the leader. All n players should
learn the leader, i.e., perform output(�), for the same participant �. To prevent trivial solutions, we assume the full set of
participants is not known a priori. Instead, each players begins with a binary initial value that specifies whether or not it
should participate in the election. The remaining (non-participating) nodes may help with the protocol, but may not be
elected leader. Safety requires that no two processes output a different leader, and that the common leader output is a
participant (i.e., had an initial value of 1). Liveness requires every player to perform an output.

Theorem 17. Any leader election protocol requires at least 2β + log (n − 1)/2 rounds to terminate.

Proof. Assume by contradiction that A is a leader election protocol that terminates in R < 2β + log (n − 1)/2 rounds for all
choices of participants. Let V be the value set containing every integer between 1 and n − 1. We reduce the 3-player game,
for value domain V , to A.

Alice and Bob simulate A for n players where: (1) SA contains players 1 through n − 1, SB contains player n, and (2) I
designates player va ∈ SA (and no one else) to be a participant. The single player in SB is designated as not participating in
the election. Let i be the leader output by Bob’s simulated player. Bob outputs i = va, as required.

By Theorem 15 Bob always outputs va within R rounds, contradicting Theorem 1, as 2β + log V/2 = 2β +
log (n − 1)/2. �

Static k-selection

In static k-Selection, k participants are each provided with a (potentially different) value in V . Each player must receive
and output all k values. Safety requires that the first k outputs of a player equal the k initial values. Liveness requires that
all players eventually perform at least k output actions. The protocol terminates when all players have performed at least k
output actions. (The selection problem is well-studied in radio networks, e.g., [19,20].)3

Theorem 18. Any static k-selection protocol requires at least 2β + Ω(k log
|V |
k

) rounds to terminate.

Proof. Assume by contradiction that A is a protocol that terminates in R < 2β + o(k log |V |/k) rounds, for all initial values
and choices of participants. Let value domain V ′ contain one unique value for every unique multiset of k values drawn from
value domain V . We assume a well-known mapping between the values in V ′ and the multisets. We reduce the 3-player
game, for value domain V ′, to A.

Alice and Bob simulate A for n players where: (1) SA contains players 1 through k, SB contains the remaining players,
and (2) I activates players 1 through k, and provides each a different value from the multiset mapped to va ∈ V ′. Given
k simulated outputs, Bob can reconstruct and output the unique multiset described by these values. By Theorem 15 Bob

will always output va in R rounds, contradicting Theorem 1, since 2β + log |V ′|/2 = 2β + log
|V |k
k! /2 = 2β + Θ(k log

|V |
k

)
rounds. �

We conclude with an immediate corollary of the previous theorems:

Corollary 19. Any protocol for reliable broadcast, leader election or static k-selection has a jamming gain of at least 2 and a

disruption-free running time of Ω(log |V |), Ω(log (n − 1)), and Ω(k log
|V |
k

), respectively.

8.2. Combining malicious and crash behavior

Wenow study the impact of combiningmalicious behaviorwith crash failures.We assume that the adversary, in addition
to having a budget of β messages, can also crash up to t players. We consider binary consensus as an archetypal problem in
this context. In consensus, the the n honest players each propose a value. The following properties must be maintained:

(1) Liveness: all non-crashed players eventually decide a value.

(2) Agreement: all players that decide choose the same value.

(3) Validity: if all non-crashed players propose the same value, then all deciding players choose that value.

3 Often k-selection is oblivious to initial values. We allow a dependence on the initial values, strengthening the lower bound.
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By a simple indistinguishability argument, it is easy to see that consensus is impossible if n ≤ 2t: one cannot distinguish
a correct player from a crashed player that is simulated by the adversary; thus no player can decide in an execution in which
t players propose ‘0’ and t propose ‘1’.

We therefore assume that n = 2t + 1, and establish a lower bound of 2β + Θ(t) on the round complexity of consensus.
Our bound reveals the interesting fact that the possibility of crashed honest devices increases the power of the malicious
adversary. This is perhaps surprising as, if there is no malicious adversary, crash-failures have no effect on termination (in a
synchronous broadcast network).

As before, we use a simulation by Alice and Bob of the (t-resilient) n-player consensus protocol. The simulation, however,
is more challenging than those used for the n-player problems studied previously, as wemust now compensate for the crash
failures. Indeed, we do not start the simulation from the initial configuration of our consensus protocol, but instead from
one of two univalent configurations arising after t rounds. These configurations are constructed in Lemma 21, which is
interesting in its own right as it exhibits executions in which information (about initial values) is transmitted at the rate
of at most one bit per round. By combining this with valency arguments, we show how the 3-player game can then be
employed to finalize our lower bound.

Theorem 20. Any t-resilient binary consensus protocol requires at least 2β + t rounds to terminate.

Assume A is a protocol that defies our theorem.We fix the environment such that ifmultiplemessages are sent in a round,
and the adversary does not broadcast, then the message sent by the player with the smallest id is received by everyone. An
execution (or prefix) of A is failure-free if it includes no crashes or broadcasts by the adversary.

Given these assumptions, it is clear that each initial configuration gives rise to a single deterministic failure-free,
disruption-free execution. We represent all of these possible failure-free, disruption-free executions as a single tree T (A).
Every execution begins at the root, and a node at depth r represents the execution at the beginning of round r . Each node
at depth r contains one outgoing edge for every possible message m that may be received in round r . There is also one
outgoing edge for a silent round (labeled⊥) if silence is possible in round r in some execution that passes through this node.
By definition, every failure-free execution of A is represented by a single path in T (A), where the edge between nodes at
depth r and r + 1 describe what message was received in this execution during round r For each initial configuration c ,
we say that a node x ∈ T (A) is reachable from c—with respect to A—if the path associated with c ’s failure-free execution
includes node x.

Notice that if a depth r node x is reachable for two initial configurations c and c ′, and some player i has the same initial
value in c and c ′, then at the beginning of round r , player i cannot distinguish a failure-free execution starting from c with
one starting from c ′. Through this round, i has received the same messages in both executions. If c is 0-valent (meaning
that ‘0’ is the only possible decision starting from configuration c), and c ′ is 1-valent (meaning that ‘1’ is the only possible
decision starting from configuration c ′), then i cannot decide prior to round r .

Lemma 21. There exists a path of length t in T (A), starting at the root, and ending at node Rt , where Rt is reachable from two
initial configurations, c0 and c1, such that some player pt has the same initial value in c0 and c1, and every crash-free extension of
c0 is 0-valent and every crash-free extension of c1 is 1-valent, with respect to A.

Proof. Starting at the root of T (A), given an initial configuration c0, construct a path of length t by applying the following:
(1) If there exists ≥ 1 outgoing message edges, choose the message from the player with the smallest id. (2) Otherwise,
follow the ⊥ edge. Let Rt be the node reached after t iterations.

Configuration c0 contains either a majority of ‘0’s or a majority of ‘1’s. Notice that a majority contains at least t + 1
players, since n = 2t + 1. Assume without loss of generality that a majority of players (i.e., at least t + 1) propose ‘0’ in
c0. This implies that any crash-free extension of c0 must decide ‘0’, since any such execution is indistinguishable from one
in which all players propose ‘0’, and those ≤ t players that seem to be proposing ‘1’ are actually nodes that crashed at the
beginning of the execution and are now being emulated by the adversary—in which case a decision of ‘1’ violates validity.

We now construct an initial configuration c1. Denote by P the set of players that broadcastmessageswhichwere received
along the path to Rt . Note that P contains ≤ t players (one player for each non-⊥ edge followed in the path). Choose c1 such
that the players in P propose the same initial value as in c0, and the remaining players (of which there are at least t + 1) all
propose ‘1’. Choose some pt ∈ P . (If |P| = 0, then arbitrarily choose one player pt to have the same initial value in c0 and
c1.) By the same reasoning applied to c0, all crash-free extensions of c1 must decide ‘1’. (A majority of processes propose ‘1’,
therefore the ≤ t that appear not to might be emulated by the adversary). We can show, by a straightforward induction
argument, that Rt is reachable from c1. The base case (the root) is trivial. Our hypothesis posits a node Rt ′ , on the path to Rt ,
such that Rt ′ is reachable from c1. Let e be the outgoing edge from Rt ′ on the path to Rt . There are two cases:

(1) Edge e is associated with a message m broadcast by some player i ∈ P . Since player i begins with the same initial
value in both c0 and c1, and has seen the same sequence of messages and silence up to this point, it broadcasts the
same message m in the failure-free execution generated by c1. No player with a smaller id can also broadcast in this
round of the c1 execution as this contradicts the path construction (which would have chosen that edge, not e, when
constructing Rt ).

(2) Edge e is labeled⊥. By the path construction algorithm,⊥must be the only outgoing edge from Rt ′ (It is only chosen if no
edges are labeled withmessages). Therefore, it must describe the behavior in this round for the failure-free c1 execution
as well.
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In both cases we arrive at a new node, Rt ′+1, that is one step closer to Rt on our path. �

With this lemma established, we can now prove our main theorem statement. Our strategy will be to note that the
failure-free execution prefixes described by the path Rt are indistinguishable with respect to pt . Therefore, he cannot have
yet decided. This provides a t rounds delay.

To obtain the additional 2β rounds, we defer to our Alice and Bob simulation. In this case, Alice is attempting to send a
binary value va ∈ {0, 1} to Bob. We have Bob simulate pt and Alice simulate the rest of the nodes, initializing them with
the initial values specified by c0, if va = 0, and the initial values specified by c1, if va = 1. Instead, however, of starting the
simulation from the initial state of A, Alice and Bob start the simulation from the state after the initial t rounds. (This state
is the same for pt regardless of which case Alice chooses, so Bob can perform this initialization without knowing Alice’s
initial value.) Bob outputs what pt decides. If pt can decide in less than 2β rounds than Alice and Bob can solve binary
communication in less than 2β rounds—defying our bound on the 3-player communication game.

Proof of Theorem 20. Let α0 (resp. α1) denote the failure-free execution prefix starting from c0 (resp. c1) and proceeding
as described by the path to the Rt in T (A). Executions α0 and α1 are indistinguishable with respect to pt ; hence pt has not
decided prior to round t . To this point, the adversary has expended no broadcasts. To achieve a further 2β delay, we defer to
Alice and Bob, who can solve the binary communication game by performing a crash-free simulation of the n-player protocol
A. Specifically, Alice simulates all players except pt , starting them in their states at the end of α0, if va = 0, and their states at
the end of α1, if va = 1. Bob simulates pt , starting it in its state after α0 (which is identical to its state after α1). Bob outputs
the value decided by node pt .

By Theorem 15, and our assumption that A defies our bound, pt will decide, and Bob will therefore output, within no
more than 2β rounds of the simulation. The execution of A generated by this simulation contains no crash-failures. By our
assumptions on the univalency of c0 and c1 in crash-free executions (from Lemma 21), we know pt will decide va. Therefore,
our simulation solves the binary consensus problem in nomore than 2β rounds. This violates Theorem1. A contradiction. �

We conclude with an immediate corollary of Theorem 20:

Corollary 22. Any t-resilient binary consensus protocol has a jamming gain of at least 2 and a disruption-free complexity ofΩ(t).

9. Upper bounds for the n-player problems

We now briefly present protocols for reliable broadcast, leader election, static k-selection, and binary consensus. The
round complexities for reliable broadcast and consensus match the lower bounds described in Section 8, within constant
factors. Those for leader election and k-selection leave a gap.

Reliable broadcast

An algorithm for reliable broadcast follows immediately from the algorithm in Section 6. The source runs Alice’s protocol,
and all other players run Bob’s protocol, resulting in a running time of 2β + O(log |V |), matching the lower bound. This
protocol requires the source to have a budget of β + log |V |.
Binary consensus

Assuming t crashes, consensus can be achieved using reliable broadcast: each of 2t + 1 players transmits their initial
value, one at a time. Notice that if one or more of these 2t + 1 are crashed, we can make no guarantee as to which value an
honest player will receive from the crashed player: if there is no malicious interference, the protocol results in each honest
player receiving a ‘0’ (as silence is interpreted as ‘0’); on the other hand, Collin can maliciously trick honest players into
receiving a ‘1’ with only a single broadcast.

Each player, after receiving 2t + 1 values, decides the value received at least t + 1 times, i.e., the majority value. The
running time is 2β + Θ(t): each broadcast by Collin can delay the honest nodes by at most 2 rounds. Each player needs a
budget of β + 1 broadcasts.

Leader election

Recall that in the leader election problem, up to k players are initially contending to become the leader; we refer to these
contendingplayers as participants. The goal of the algorithm is to elect one of the participants. The algorithm is parameterized
by an integer c ≥ 1.

In order to elect a leader, we use a tournament tree, a binary tree with n leaves, each labeledwith a player’s id. Each player
maintains such a tournament tree as a local data structure, and maintains a pointer into that tree. At the beginning of the
protocol, each player begins at the root of the tournament tree, and at each step descends to a child or ascends to the parent.
At each step, the protocol determineswhether any of the nodes represented by the leaves of the left subtree are participants,
or whether any of the nodes represented by the leaves of the right subtree are participants. If there are any participants in
the left subtree, the protocol follows the edge to the left child; if there are any participants in the right subtree, the protocol
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follows the edge to the right subtree; otherwise, the protocol ascends to the parent. (The occurrence of this case implies that
there was some earlier malicious interference which led the protocol to an incorrect subtree.)

In more detail, each step consists of two c-round phases—the left-child phase and the right-child phase. In the left-
child phase, every participating player identified with a leaf of the left subtree broadcasts for at most c consecutive rounds.
Conversely, players in the right subtree broadcast up to c times during the right-child phase. A phase ends after the first
silent round, or after c non-silent rounds. In the latter case, we say that the phase was successful. If the left-child phase was
successful, the protocol descends to the left; otherwise, if the right-child phase was successful, the protocol descends to the
right; if neither round was successful, the protocol ascends to the parent. If there is no parent – because the current tree
node is the root – then there are no participating players. If there is no malicious interference, the protocol reaches a leaf in
2c log n rounds.

On reaching a leaf, the protocol ensures that the identified player is in fact a participant—not simply a product ofmalicious
interference. To achieve this, the identified player uses reliable broadcast to transmit a ‘1’ if she is participating, and a ‘0’
otherwise. In the latter case, the protocol ascends to the parent and continues. The protocol requires each participant to
have a budget of 2c log n + β + 1 broadcasts.

Theorem 23. The leader election protocol terminates after 2β c+1
c

+ 2c log n + 2 rounds, for all c ≥ 1.

Proof (Sketch). We say an edge in the tree connecting a parent to a child is good if there is a participant in the subtree of
the child. Once the protocol traverses a good edge descending the tree, it never re-ascends that edge, since the edge is good.
Thus, at each of the log n levels of the tournament tree, the protocol traverses only one good edge, resulting in a cost of
2c log n. The traversal of each bad edge results in at most 2c + 2 rounds (amortized): 2c rounds to descend and 2 rounds to
later ascend. With β ′ broadcasts, the adversary can cause the protocol to traverse at most β ′/c bad edges, resulting in a cost
of at most 2β ′(c + 1)/c. Finally, the one-bit broadcast to identify the leader takes 2β ′′ + 2 rounds, assuming Collin expends
β ′′ broadcasts in delaying it. Together, this implies the final running time. �

Static k-selection

In the problem of static k-selection, k players are provided with values to transmit. Each player must receive and output
each of the k values. In many ways, this problem combines leader election and broadcast: each of the k players must be
identified, and then each should broadcast its value.

A protocol for static k-selection can be obtained by repeating the leader election protocol k times: each time a leader
is elected, it uses reliable broadcast to transmit its value, and then ceases to contend in future iterations of leader
election. The protocol completes when leader election finds no further contenders. Each participant needs a budget of
2kc log n + β + log |V | broadcasts.
Theorem 24. For all c ≥ 1, the k-selection protocol terminates in at most:

2β
c + 1

c
+ 2kc log n + k log V + 2k + 2

rounds. Under the (common) assumption that log n = O(log |V |), this implies termination within:

2β
c + 1

c
+ O(ck log |V |)

rounds. �

10. Concluding remarks

We have shown how our 3-player game bounds can be interpreted in a larger n-player context to help derive bounds for
several classical problems in distributed computing. We discuss below other interpretations of our 3-player game results.

One possible interpretation can be given in terms of the relative cost of sending amessage—as compared to listening—on
a radio channel. Assume that it takes s units of energy to send amessage, and � units of energy to listen for amessage. In real
systems, the ratio of s to � varies depending on the network configuration and the underlying hardware. For example, by
filtering signals below a certain energy threshold, a network designer can increase the cost of sending a message. In some
networks, s is equal to �; in others, s is larger than �. Assume that Alice, Bob, and Collin all begin with the same amount of
energy. Our result shows that Collin can prevent Alice and Bob from communicating if and only if s ≤ 2�. In other words,
communication can be made more robust against malicious devices if the inherent cost of broadcasting is high relative to
listening.

Another possible interpretation can be given in terms of the cost of provoking a collision versus the actual cost of spoofing
messages. In our 3-player game, we represented the energy available to the adversary, Collin, in terms of the total number of
messages, β , he can broadcast. In practice, one might distinguish the cost of sending a message, K , from the cost of causing
a collision, k, where k would typically be smaller than K . In this sense, our tight bound indicates that, if k < K/2, then the
best strategy for Collin is to jam Alice and Bob with collisions in every round; if k ≥ K/2, then the best strategy for Collin
is to follow the silence-filling approach described in Section 4. In other words, for k < K/2, the cost of causing a collision
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in every round is less than the cost of the deploying the strategy from our main lower bound (which requires Collin to send
spoofed messages).

Finally, it is important to recall that we assumed that Alice and Bob can distinguish a ‘‘silent’’ round from a round in
which a collision occurred. That is, we assume Alice and Bob can detect some electromagnetic noise in the case where all
messages are lost due to collision,which is realistic in practice (carrier sensing iswell-studied).Without such an assumption,
a silent round can no longer be used to encode information. Collin can create any arbitrary sequence, of length β , consisting
of messages and silences. Because β is unknown, it is easy to see that no communication protocol can ever safely terminate.
In this sense, the absence of collision detection provides Collin with infinite power.

While the lower bounds proved in this paper were for deterministic players, we conjecture that they hold even for
randomized protocols. For example, consider the case where Alice and Bob are non-adaptive, i.e., the broadcast schedules
and the contents of themessages are determined only as a function of the initial values and the random choices. In this case,
Collin can delay Alice and Bob for 2β + Θ(log V ) rounds by ignoring rounds in which the behavior is strictly probabilistic,
and filling-in rounds (as in the deterministic lower bound) where the behavior is guaranteed. Following a similar argument
as presented in Section 4, it is possible to show that, in expectation, Alice and Bob do not terminate for 2β rounds. Deriving
an adaptive lower bound is an interesting open problem.

Interestingly, it is straightforward to demonstrate that our lower bounds hold for weaker games. That is, Lemmas 2 and
3 imply that calculating equality, bitwise-and or bitwise-or have the same round complexity as the 3-player game.

An obvious future research direction is to extend our results to multihop environments. For example, when considering
reliable broadcast over multiple hops, will the single-hop bound scale naturally with the hop count, or are the players (or
adversary) able to gain additional advantage in this new setting?
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