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Abstract We describe a modeling framework and collection
of foundational composition results for the study of proba-
bilistic packet-level distributed algorithms in synchronous
radio networks. Existing results in this setting rely on infor-
mal descriptions of the channel behavior and therefore
lack easy comparability and are prone to error caused by
definition subtleties. Our framework rectifies these issues by
providing: (1) a method to precisely describe a radio chan-
nel as a probabilistic automaton; (2) a mathematical notion
of implementing one channel using another channel, allow-
ing for direct comparisons of channel strengths and a nat-
ural decomposition of problems into implementing a more
powerful channel and solving the problem on the powerful
channel; (3) a mathematical definition of a problem and solv-
ing a problem; (4) a pair of composition results that simplify
the tasks of proving properties about channel implementation
algorithms and combining problems with channel implemen-
tations. Our goal is to produce a model streamlined for the
needs of the radio network algorithms community.
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1 Introduction

In this paper we describe a modeling framework, includ-
ing a collection of foundational composition results, for the
study and comparison of packet-level distributed algorithms
in synchronous radio networks. (Notice, this paper extends
a preceding conference version [24] by adding additional
explanation and techincal details). In the two decades that
followed the deployment of AlohaNet [1]—the first radio data
network—theoreticians invested serious effort in the study
of distributed algorithms in this setting; c.f., [17,18,25].
This early research focused on the stability of ALOHA-style
MAC layers under varying packet arrival rates. In a seminal
1992 paper, Bar-Yehuda, Goldreich, and Itai (BGI) [3] ush-
ered in the modern era of radio network analysis by intro-
ducing a synchronous multihop model and a more general
class of problems, such as reliable broadcast. Beyond broad-
cast, a variety of other radio network problems have also
since received attention, including: wake-up [6,9,14]; gossip
[10,15]; leader election [21]; and consensus [7,8,22].Vari-
ants of this model have been studied extensively in the inter-
vening years; c.f., [5,11,19].

Numerous workshops and conferences are dedicated
exclusively to radio network algorithms—e.g., POMC and
ADHOCNETS—and all major distributed algorithms con-
ference have sessions dedicated to the topic.In short, dis-
tributed algorithms for radio networks is an important and
well-established field.

The vast majority of existing theory concerning radio net-
works, however, relies on informal English descriptions of
the communication model (e.g., “If two or more processes
broadcast at the same time then…”). This lack of formal rigor
can generate subtle errors. For example, the original BGI
paper [3] claimed a �(n) lower bound for multihop broadcast
in small diameter graphs. It was subsequently discovered that
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due to a small ambiguity in how they described the collision
behavior (whether or not a message might be received from
among several that collide at a receiver), the bound is actually
logarithmic [20]. In our work on consensus [7], for another
example, how we treated transmitters receiving their own
messages—a detail often omitted in informal model descrip-
tions—affected the achievable lower bounds. And so on.

We also note that informal model descriptions prevent
comparability between different results. Given two such
descriptions, it is often difficult to infer whether one model
is strictly stronger than the other or if the pair is incompa-
rable. And without an agreed definition of what it means
to implement one channel with another, algorithm designers
are denied the ability to build upon existing results to avoid
having to resolve the same problems in every model variant.

Contributions. In this paper we describe a modeling
framework that addresses these issues.Specifically, we use
probabilistic automata to describe executions of distributed
algorithms in a synchronous radio network.1 We were faced
with the decision of whether to build a custom framework or
use an existing formalism for modeling probabilistic distrib-
uted algorithms, such as [27,26,4]. We opted for the custom
approach as we focus on the restricted case of synchronous
executions of a fixed set of components. We do not the need
the full power of general models which, among other things,
must reconcile the nondeterminism of asynchrony with the
probabilistic behavior of the system components.

In our framework: The radio network is described by a
channel automaton; the algorithm is described by a collection
of n process automata; and the environment—which inter-
acts with the processes through input and output ports—is
described by its own automaton. In addition to the basic sys-
tem model, we present a rigorous definition of a problem and
solving a problem, and cast the task of implementing one
channel with another as a special case of solving a problem.

We then describe two foundational composition results.
The first shows how to compose an algorithm that solves a
problem P using channel C1 with an algorithm that imple-
ments C1 using channel C2. We prove the resulting composi-
tion solves P using C2. (The result is also generalized to work
with a chain of channel implementation algorithms). The sec-
ond composition result shows how to compose a channel
implementation algorithm A with a channel C to generate a
new channel C′. We prove that A using C implements C′. This
result is useful for proving properties about a channel imple-
mentation algorithm such as A. We conclude with a case
study that demonstrates the framework and the composition
theorems in action. (Extensive examples of the framework

1 We restrict our attention to synchronous settings as the vast majority
of existing theoretical results for radio networks share this assumption.
A more general asynchronous model remains important future work.

in action—including the definition of multiple well-known
channel properties, efficient channel implementation algo-
rithms, and solutions to problems such as consensus, gossip,
and broadcast that make use of these implementation algo-
rithms—can be found in [23]).

Discussion. The study of radio networks covers a wide
diversity of topics, and our modeling framework is not appli-
cable to all such topics. In this discussion we clarify where
our results are useful.

To start, we note that the term channel, which we use to
describe the radio network automaton, is a slight misnomer,
as this automaton can capture more than a simple single hop
broadcast channel. Its definition can encode, for example, a
complex multihop topology with receive decisions depend-
ing on nuanced signal to noise ratio calculations, or mesh
networks with some users acting as base stations and others
as clients, or networks suffering from adversarial behavior,
such as jamming or unpredictable disruption. (In theory, the
channel automaton definition is flexible enough to capture
any networking technology based on packet broadcast—e.g.,
Ethernet—though in this paper, for the sake of concision, we
focus only on the wireless setting).

The framework is limited, however, in that it is designed
for the study of synchronous packet-level algorithms. (The
interface to the channel, detailed in the next section, operates
in time slots, accepting and returning messages to the users
in each slot). We focus on this style of algorithm because it
matches the vast majority of theoretical work on distributed
algorithms for radio networks, and our goal is to simplify
and improve such results. Accordingly, the framework is not
useful for the study of cross-layer algorithms that interact
with and/or control the physical layer.

Finally, we note that an interesting open question is the
proper treatment of mobility. The channel automaton, of
course, could determine device movement patterns (in which
case, the user automata can be understood to model the com-
putational processes on the devices, with the physical state of
the devices controlled by the channel), but in some scenarios
it might be more natural to imagine the movement defined
by the user automata. As currently structured, the interface
for our framework does not allow for the communication of
such physical state information between users and the chan-
nel. More generally, it can be argued that all physical state
information, including, for example, the network topology,
is more cleanly modeled in a separate real world automa-
ton. We combine all such information into the single channel
automaton for the sake of modeling simplicity.

2 Model

We model n processes that operate in synchronized time
slots and communicate on a radio network comprised of F
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Modeling radio networks 103

independent communication frequencies. The processes can
also receive inputs from and send outputs to an environment.
We formalize this setting with automata definitions. Specif-
ically, we use a probabilistic automaton for each of the n
processes (which combine to form an algorithm), another
to model the environment, and another to model the com-
munication channel. A system is described by an algorithm,
environment, and channel.

Preliminiaries. For any positive integer x > 1 we use the
notation [x] to refer to the integer set {1, . . . , x}, and use
Sx , for some set S, to describe all x-vectors with elements
from S. Let M,R, I, and O be four non-empty value sets
that do not include the special placeholder value ⊥. We use
the notation M⊥,R⊥, I⊥, and O⊥ to describe the union of
each of these sets with {⊥}. Finally, we fix n and F to be
positive integers. They describe the number of processes and
frequencies, respectively.

2.1 Systems

The primary object in our model is the system, which
consists of an environment automaton, a channel automaton,
and n process automata that combine to define an algorithm.
We define each component below:

Definition 1 (Channel) A channel is an automaton C con-
sisting of the following components:

− cstatesC , a potentially infinite set of states.
− cstartC , a state from statesC known as the start state.
− crandC , for each s ∈ cstatesC , a discrete probability

distribution with finite support over cstatesC .
(This distribution captures the probabilistic behavior of
the automaton).

− crecvC , a message set generation function that maps
cstatesC × (M⊥)n × [F]n to (R⊥)n .
(Given the message sent—or ⊥ if the process is receiv-
ing—and frequency used by each process, the channel
returns the message received—or ⊥ if no messages is
received—by each process).

− ctransC , a transition function that maps cstatesC ×
(M⊥)n × [F]n to cstatesC .
(The function transforms the current state based on the
messages sent and frequencies chosen by the processes
during this round).

As discussed in the introduction, because we model a
channel as an arbitrary automaton, we can capture a wide
variety of possible channel behavior—from simple determin-
istic receive rules to complex, probabilistic multihop propa-
gation.

Definition 2 (Environment) A environment is an automaton
E consisting of the following components:

− estatesE , a potentially infinite set of states.
− estartE , a state from estatesE known as the start state.
− erandE , for each s ∈ estatesE , a discrete probability

distribution with finite support over estatesE .
(This distribution captures the probabilistic behavior of
the automaton).

− einE , an input generation function that maps
estatesE to (I⊥)n .
(This function generates the input the environment will
pass to each process in the current round. The ⊥ place-
holder represents no input).

− etransE , a transition function that maps estatesE × O⊥
to estatesE .
(The function transforms the current state based on
the current state and the outputs generated by the pro-
cesses during the round. The ⊥ placeholder represents no
output).

Definition 3 (Process) A process is an automaton P con-
sisting of the following components:

− statesP , a potentially infinite set of states.
− startP , a state from statesP known as the start state.
− randP , for each s ∈ statesP , is a discrete probabil-

ity distribution with finite support over statesP . (This
distribution captures the probabilistic behavior of the
automaton).

− msgP , a message generation function that maps
statesP × I⊥ to M⊥.
(Given the current process state and input from the envi-
ronment—or ⊥ if no input—this process generates a
message to send—or ⊥ if it plans on receiving).

− freqP , a frequency selection function that maps
statesP × I⊥ to [F].
(This function is defined the same as msgP , except
it generates a frequency to participate on instead of a
message to send).

− outP , an output generation function that maps
statesP × I⊥ × R⊥ to O⊥.
(Given the current process state, input from the environ-
ment, and message received, it generates an output—or
⊥ if no output—to return to the environment).

− transP , a state transition function that maps
statesP × R⊥ × I⊥ to statesP .
(This function transforms the current state based on the
input from the environment and the received message).

We combine the processes into an algorithm, and then
define a system and an execution of a system.
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Definition 4 (Algorithm) An algorithm A is a mapping from
[n] to processes.

Definition 5 (System) A system (E,A, C), consists of an
environment E , an algorithm A, and a channel C.

Definition 6 (Execution) An execution of a system (E,A, C)

is a (potentially infinite) sequence

S0, C0, E0, RS
1 , RC

1 , RE
1 , I1, M1, F1, N1, O1, S1, C1, E1 . . .

where for all r ≥ 0, Sr and RS
r are n-vectors, where for

each i ∈ [n], Sr [i], RS
r [i] ∈ statesA(i), Cr and RC

r are
in cstatesC, Er and RE

r are in estatesE , Mr is in (M⊥)n,

Fr is in [F]n, Nr is in (R⊥)n, Ir is in (I⊥)n , and Or is in
(O⊥)n .

We assume the following constraints:

1. If finite, the sequence ends with an environment state Er ,
for some r ≥ 0.

2. ∀i ∈ [n] : S0[i] = startA(i).
3. C0 = cstartC .
4. E0 = estartE .
5. For every round r > 0:

(a) ∀i ∈ [n] : RS
r [i] is selected according to distribution

randA(i)(Sr−1[i]).
(b) RC

r is selected according to crandC(Cr−1).
(c) RE

r is selected according to distribution erandE
(Er−1).

(d) Ir = einE (RE
r ).

(e) ∀i ∈ [n] : Mr [i] = msgA(i)(RS
r [i], Ir [i]) and

Fr [i] = f reqA(i)(RS
r [i], Ir [i]).

(f) Nr = crecvC(RC
r , Mr , Fr ).

(g) ∀i ∈ [n] : Or [i] = outA(i)(RS
r [i], Ir [i], Nr [i]).

(h) ∀i ∈ [n] : Sr [i] = transA(i)(RS
r [i], Nr [i], Ir [i]).

(i) Cr = ctransC(RC
r , Mr , Fr ).

(j) Er = etransE (RE
r , Or ).

In each round: first the processes, environment, and chan-
nel transform their states (probabilistically); then the envi-
ronment generates inputs to pass to the processes; then the
processes each generate a message to send (or ⊥ if they plan
on receiving) and a frequency to use; then the channel returns
the received messages to the processes; then the processes
generate output values to pass back to the environment; and
finally all automata transition to a new state.

Much of our later analysis concerns finite executions. Keep
in mind, by condition 1, a finite execution must end with an
environment state assignment, Er , for r ≥ 0. That is, it con-
tains no partial rounds.

2.2 Trace probabilities

To capture the probability of various system behaviors we
start by defining the function Q:

Definition 7 (Q) For every system (E,A, C), and every
finite execution α of this system, Q(E,A, C, α) describes the
probability that (E,A, C) generates α. That is, Q(E,A, C, α)

is the product of the probabilities of probabilistic state trans-
formations inα as described by randA, crandC , and erandE .

Next, we define a trace to be a (potentially infinite)
sequence of vectors from (I⊥)n ∪ (O⊥)n ; i.e., a sequences
of inputs and outputs passed between an algorithm and an
environment. And we use T to describe the set of all traces

Using Q, we can define functions that return the probabil-
ity that a system generates a given trace. First, however, we
need a collection of helper definitions to extract traces from
executions. Specifically, the function io maps an execution
to the subsequence consisting only of the (I⊥)n and (O⊥)n

vectors. The function cio, by contrast, maps an execution α

to io(α) with all ⊥n vectors removed (The “c” in cio indi-
cated the word clean, as the functions cleans empty vectors
from a trace). Finally, the predicate term returns true for a
finite execution α if and only if the output vector in the final
round of α is not equal to ⊥n .

Definition 8 (D and Dt f ) For every system (E,A, C), and
every finite trace β, we define the trace probability func-
tions D and Dt f as follows:

− D(E,A, C, β) = ∑
α|io(α)=β Q(E,A, C, α).

− Dt f (E,A, C, β) = ∑
α|term(α)∧cio(α)=β Q(E,A, C, α).

Both D and Dt f return the probability of a given sys-
tem generating a given trace. The difference between D and
Dt f is that the latter ignores empty vectors—that is, input
or output vectors consisting only of ⊥. (The t f indicates it
is time-free; e.g., it ignores the time required between the
generation of trace elements).

2.3 Problems

We define a problem and provide two definitions of solving a
problem—one that considers empty rounds (those with ⊥n)
and one that does not. In the following, let E be the set of all
possible environments. Recall that a trace probability func-
tion is a function from traces (defined in the previous section)
to probabilities.

Definition 9 (Problem) A problem P is a mapping from E
to sets of trace probability functions.

Given a problem P , for each environment E, P(E) returns
the set of trace probability functions that define what it means
to solve the problem in that environment. We map to a set
of trace probability functions, and not a single function,
because some problems are more easily defined with a set.
For example, imagine a toy problem in which all processes
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have to output the same integer value from 1 to 10. Any algo-
rithm that has all processes output the same value from this
range should be considered a solution to this problem. The
easiest way to define this problem is to have P(E), for any
E , map to the set containing 10 trace probability functions,
F1, . . . , F10: one for each value from 1 to 10. The function Fi

should assign all of the probability mass on the trace where
every process outputs i . To attempt to define this problem
with a single trace probability function eliminates the possi-
bility of allowing for 10 different, deterministic solutions.

Definition 10 (Solves and Time-Free Solves) We say algo-
rithm A solves problem P using channel C if and only if:

− ∀E ∈ E, ∃F ∈ P(E),∀β ∈ T : D(E,A, C, β) = F(β).
(Or, equivalently: ∀E ∈ E : λβ D(E,A, C, β) ∈ P(E)).

We say A time-free solves P using C if and only if:

− ∀E ∈ E, ∃F ∈ P(E),∀β ∈ T : Dt f (E,A, C, β) =
F(β).
(Or, equivalently: ∀E ∈ E : λβ Dt f (E,A, C, β) ∈
P(E)).

In other words, an algorithm solves a problem with a given
channel, if and only if for every environment, the trace proba-
bility function defined by combining that environment, algo-
rithm, and channel, is one of the trace probability functions
the problem defines as valid for that environment.

For some of the proofs that follow, we need to restrict
our attention to environments that are indifferent to delays.
We capture this concept with the notion of delay tolerance.

Definition 11 (Delay Tolerant Environment) We say an
environment E is delay tolerant if and only if for every state
s ∈ estatesE and ŝ = etransE (s,⊥n), the following condi-
tions hold:

1. einE (ŝ) = ⊥n .
(If the environment is in a marked version of state s—
i.e., the state, ŝ, generated when the environment is in
some state s, and then receives output ⊥n from the algo-
rithm—the environment always returns ⊥n as input).

2. erandE (ŝ)(ŝ) = 1.
(If the environment is in a marked state, the environment
stays in that state during the probabilistic state transfor-
mation at the beginning of each round).

3. etransE (ŝ,⊥n) = ŝ.
(If the environment is in a marked state and receives ⊥n

from the algorithm, it stays in the same state when the
transition function is applied at the end of the round).

4. For every non-empty output assignment O , etransE
(ŝ, O) = etransE (s, O).

(If the environment is in a marked version of state s, and
then receives an output assignment O 
= ⊥n , then it tran-
sitions as if it were in state s receiving this output—in
effect, ignoring the rounds spent marked).

When a delay tolerant environment receives output ⊥n in
some state s, it transitions to a special marked version of the
current state, denoted ŝ, and cycles on this state until it next
receives a non-⊥n output. In other words, it behaves the same
regardless of how many consecutive ⊥n outputs it receives.
We use this definition of a delay tolerant environment to
define a delay tolerant problem.

Definition 12 (Delay Tolerant Problem) We say a problem
P is delay tolerant if and only if for every non-delay tolerant
environment E, P(E) returns the set containing every trace
probability function.

3 Implementing channels

Here we define a precise notion of implementing a channel
with another channel as a special case of solving a problem.
We begin with some useful notation:

− We say an input value v ∈ I⊥ is send-encoded if and
only if v ∈ (send ×M⊥ ×F). Note, in the above, send
is a literal.

− We say an input assignment (i.e., vector from In⊥) is send-
encoded if and only if all input values in the assignment
are send-encoded.

− We say an output value v ∈ O⊥ is receive-encoded if
and only if v ∈ (recv × R⊥). Note, in the above, recv
is a literal.

− We say an output assignment (i.e., vector from On⊥) is
receive-encoded if and only if all output values in the
assignment are send-encoded.

− We say an input or output assignment is empty if it equals
⊥n .

We now continue with the three components—the channel
environment, the channel algorithm, and the channel identity
algorithm needed to define channel implementation.

Definition 13 (Channel Environment) An environment E is
a channel environment if and only if it satisfies the following
conditions: (1) It is delay tolerant; (2) it generates only send-
encoded and empty input assignments; and (3) it generates a
send-encoded input assignment in the first round and in every
round r > 1 such that it received a receive-encoded output
vector in r − 1. In every other round it generates an empty
input assignment.
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This constraint requires the environment to pass down
messages to send as inputs and then wait for the correspond-
ing received messages, encoded as algorithm outputs, before
continuing by passing down the next batch messages to send.
The natural counterpart to a channel environment is a channel
algorithm, which behaves symmetrically.

Definition 14 (Channel Algorithm) We say an algorithm A
is a channel algorithm if and only if it satisfies the following
conditions: (1) It generates only receive-encoded and empty
output assignments; (2) it never generates two consecutive
receive-encoded output assignments without a send-encoded
input in between; and (3) given a send-encoded input, it even-
tually generates a receive-encoded output.

Definition 15 (AI ) Each process AI (i), i ∈ [n], of the
channel identity algorithm AI , behaves as follows. If AI (i)
receives a send-enabled input, (send, m, f ), it sends mes-
sage m on frequency f during that round and generates out-
put (revc, m′), where m′ is the message it receives in this
same round. Otherwise it receives on frequency 1 and gen-
erates output ⊥.

Definition 16 (Channel Problem) For a given channel C we
define the corresponding (channel) problem PC as follows:
∀E ∈ E , if E is a channel environment, then PC(E) = {F},
where, ∀β ∈ T : F(β) = Dt f (E,AI , C, β). If E is not a
channel environment, then PC(E) is the set containing every
trace probability function.

The effect of combining E with AI and C is to connect E
directly with C. With the channel problem defined, we can
conclude with what it means for an algorithm to implement
a channel.

Definition 17 (Implements) We say an algorithm A imple-
ments a channel C using channel C′ only if A time-free solves
PC using C′.

4 Composition

We prove two useful composition results. The first simplifies
the task of solving a complex problem on a weak channel
into implementing a strong channel using a weak channel,
then solving the problem on the strong channel. The sec-
ond result simplifies proofs that require us to show that the
channel implemented by a channel algorithm satisfies given
automaton constraints.

4.1 The composition algorithm

Assume we have an algorithm AP that time-free solves a
delay tolerant problem P using channel C, and an algorithm

Fig. 1 A system including environment E , algorithm A (which con-
sists of n processes, A(1), . . . , A(n)), and channel C . The arrows
connecting the environment and processes indicate that the environ-
ment passes inputs to the processes and the processes return outputs in
exchange. The arrows between the processes and the channel capture
the broadcast behavior: the processes pass a message and frequency to
the channel which returns a received message

AC that implements channel C using some other channel
C′. In this section we describe how to construct algorithm
A(AP ,AC) that combines AP and AC . We then prove that
this composition algorithm solves P using C′.

This result frees algorithm designers from the responsibil-
ity of manually adapting their algorithms to work with imple-
mented channels (which introduce unpredictable delays
between messages being sent and received). The composition
algorithm, and its accompanying theorem, can be viewed as
a general strategy for this adaption (Fig. 1).

4.1.1 Composition algorithm definition

Below we provide a formal definition of our composition
algorithm. Though the details are voluminous, the intuition is
straightforward. At a high-level, the composition algorithm
A(AP ,AC ) calculates the messages generated by AP for
the current round of AP being emulated. It then pauses AP

and executes AC to emulate the messages being sent on C.
This may require many rounds (during which the environ-
ment is receiving only ⊥n from the composed algorithm—
necessitating its delay tolerance property). When AC finishes
computing the received messages, we unpause AP , and then
finish the emulated round by passing these messages to the
algorithm. The only tricky point in this construction is that
when we pause AP we need to also store a copy of its input,
as we will need this later to complete the simulated round
once we unpause. Specifically, the transition function applied
at the end of the round requires this input as a parameter.
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Fig. 2 The composition algorithm A(B, C), where B is an algorithm
that solves a delay tolerant problem, and C is a channel algorithm that
emulates a channel. The outer rectangle denotes the composition algo-
rithm. Each of the inner rectangles is a process of the composition
algorithm. Each of these processes, in turn, internally simulates run-
ning B and C , which is denoted by the labelled dashed boxes within
the processes

See Fig. 2 for a diagram of the composition algorithm.The
formal definition follows.

Definition 18 (The Comp. Alg.: A(AP ,AC)) Let AP be an
algorithm and AC be a channel algorithm.

Fix any i ∈ [n]. To simplify notation, let A =
A(AP ,AC)(i), B = AP (i), and C = AC(i). We define
process A as follows:

− statesA ∈ statesB ×statesC ×{active, paused}×I⊥.
Given such a state s ∈ statesA, we use the notation
s.prob to refer to the statesB component, s.chan to
refer to the statesC component, s.status to refer to the
{active, paused} component, and s.input to refer to the
I⊥ component.
The following two helper function simplify the remain-
ing definitions of process components:

siminput (s ∈ statesA, in ∈ I⊥)

=
{

⊥ if s.status = paused,

(send, m, f ) else,

where m = msgB(s.prob, in) and f = f reqB(s.prob,

in).
(This helper function determines the input that
should be passed to the C component of the composition
process A. If the B component has a message to send,
then the function returns this message as a send-encoded
input, otherwise it returns ⊥).

simrec(s ∈ statesA, in ∈ I⊥, m ∈ R⊥)

=
{

⊥ if o = ⊥,

m′ if o = (recv, m′),

where o = outC (s.chan, siminput (s, in), m).
(This helper function determines the message, as

generated by the C component of A, that should be
received by the B component. If the C component does
not have a received message to return—i.e., it is still
determining this message—the helper function evaluates
to ⊥).

− startA = (startB, startC , active,⊥).
(The B and C components start in their start states, the
B component is initially active, and the input compo-
nent contains only ⊥).

− msgA(s, in) = msgC (s.chan, siminput (s, in)).
(Process A sends the message generated by the C
component).

− freqA(s, in) = f reqC (s.chan, siminput (s, in)).
(As with msgA, process A also the frequency generated
by the C component).

− The outA function is defined as follows:

outA(s, in, m)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⊥ if m′ = ⊥,

outB(s.prob, s.input, m′) if m′ 
= ⊥,

s.status = paused,

outB(s.prob, in, m′) if m′ 
= ⊥,

s.status = active,

where m′ = simrec(s, in, m).
(The process A will generate ⊥ as output unless it is in a
round in which the C component is returning a message
to the B component—as indicated by simrec. This event
indicates that A should unpause the B component and
complete its simulated round by generating its output
with the outB function. It is possible, however, that the
C component responds with a message by simrec in
the same round that it was passed a send-encoded input
by siminput . In this case, there is no time to pause the
B component—i.e., set status to paused—so its output
is generated slightly differently. Namely, in this fast case
it is not necessary to retrieve the input from the s.input
component, as there was no time to store it in that com-
ponent; the outB function can simply be passed the input
from the current round).

− The randA distribution is defined as follows:

randA(s)(s′)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pC if s.status = s′.status = paused,

s.input = s′.input ,

s.prob = s′.prob,

pB · pC if s.status = s′.status = active,

s.input = s′.input ,

0 else,
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where pC = randC (s.chan)(s′.chan) and pB =
randB(s.prob)(s′.prob).
(If the B component is paused, then the probability is
determined entirely by the probability of the transfor-
mation of the C component in s to s′. By contrast, if the
B component is active, then we multiple the probabili-
ties of both the B and C component transformations).

− Let transA(s, m, in) = s′.
As in our definition of outA, let m′ = simrec(s,
in, m). We define the components of state s′ below:

− s′.chan = transC (s.chan, m, siminput (s, in)).

(The C component transitions according to its transition
function being passed: its state, the received message for
the round, and the simulated input for the round).

− s′.prob is defined as follows:

s′.prob =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

transB(s.prob, m′, s.input) if m′ 
= ⊥,

s.status =
paused,

transB(s.prob, m′, in) if m′ 
= ⊥,

s.status =
active,

s.prob else.

(The B component transformation depends on whether
or not the C component has a receive message to return.
If it does not, then the B component remains paused and
therefore stays the same. If the C component does have
a message to return, it transitions according to its tran-
sitions function being passed:the message from C , and
the appropriate input. As in the definition of outA, the
input returned depends on whether or not there was time
to store it in the input component).

− s′.input is defined as follows:

s′.input =
{

in if s.status = active,

s.input else.

(If the B component is active then we store the input
from the current round in the input component. Other-
wise, we keep the same value in input).

− s′.status is defined as follows:

s′status =
{

active if m′ 
= ⊥,

paused else.

(If the C component has a message to return to the
B component, then we can unpause the B component
by setting the status component to active. Otherwise
we set it to paused).

In this definition, the process A simulates passing the mes-
sages from B through the channel protocol C , pausing B, and
storing the relevant input in s.input , while waiting for C to
calculate the message received for each given message sent.

4.1.2 Composition algorithm theorems

We now prove that this composition works (i.e., solves P
on C′). Our strategy uses channel-free executions: executions
with the channel states removed. We define two functions
for extracting these executions. The first, simpleReduce,
removes the channel states from an execution. The second,
compReduce, is defined for an execution of the composition
algorithm. Given such an execution, it extracts the channel-
free execution described by the states of the environment and
those in the prob component of the composition algorithm
states.

Definition 19 (Channel-Free Execution) We define a
sequence α to be a channel-free execution of an environment
E and algorithm A if and only if there exists an execution α′,
of a system including E and A, such that α is generated by
removing the channel state assignments from α′.

Definition 20 (simpleReduce) Let E be a delay tolerant envi-
ronment, A be an algorithm, and C a channel. Let α be an
execution of the system (E,A, C). Then simpleReduce(α)

returns the channel-free execution of E and A that is gener-
ated by removing the channel state assignments from α.

Before defining compReduce, we introduce a helper
function that simplifies discussions of executions that contain
the composition algorithm.

Definition 21 (Emulated Round) Let E be an environment,
A be an algorithm, AC be a channel algorithm, and C′ a chan-
nel. Let α be an execution of the system (E,A(A,AC), C′).
The emulated rounds of α are the collections of consecu-
tive real rounds that capture the emulation of a single com-
munication round by AC . Each collection begins with a
real round in which siminput returns a send-encoded input
for all processes, and ends with the next round in which
simrec returns a message at every process, where
siminput and simrec are defined in the definition of the
composition algorithm (Definition 18).

Definition 22 (compReduce) Let E be a delay tolerant
environment, AP be an algorithm, AC be a channel algo-
rithm, and C′ a channel. Let α′ be an execution of the sys-
tem (E,A(AP ,AC), C′). Then compReduce(α′) returns the
channel-free execution of E and AP defined as follows:
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1. Divide α′ into emulated rounds.
2. If α′ is a finite execution and ends with a partial emulated

round, then compReduce(α′) = null, where null is a
special marker indicating bad input to the function.

3. Else, compReduce(α′) = α, where α is a channel-
free execution of E and AP , constructed as follows.
For each emulated round r of α′, add a correspond-
ing single round r to α, where we define the rele-
vant assignments—RS

r , RE
r , Ir , Mr , Fr , Or , Sr , Er —of

this round as follows:

(a) ∀i ∈ [n] : RS
r [i] = S[i].prob, where S is the first

state assignment of the composition algorithm in
the first real round of emulated round r from α′.2

(b) ∀i ∈ [n] : Fr [i] equals the [F] component, and
Mr [i] equals the M⊥ component, of
siminput (S[i], ini ), where S is described as in the
previous item, and ini is the input received by pro-
cess i at the beginning of the first real round of
emulated round r from α′.

(c) ∀i ∈ [n] : Nr [i] equals the R⊥ component of
simrec(S′[i], ini , mi ), where S′ is the first algo-
rithm state assignment, ini is the input received by
process i , and mi is the message received by i , in
the last real round of emulated round r from α′.

(d) Ir equals the input assignment from the first real
round of emulated round r from α′.

(e) Or equals the output assignment from the last real
round of emulated round r from α′.

(f) ∀i ∈ [n] : Sr [i] = S′′[i].prob, where S′′ is the last
algorithm state from the last real round of emulated
round r from α′.

(g) RE
r equals the environment state in the first real

round of emulated round r from α′.
(h) Er equals the last environment state from the last

real round of emulated round r of α′.

At a high-level, the above definition first extracts from α′:
the environment states, input and output assignments, and
the AP states encoded in the prob component of the compo-
sition algorithm. It then cuts out all but the first and last state
of the emulated round (which could be the same state if the
channel behavior required only a single round to emulate).
Finally, it adds the send, frequency, and receive assignments
that were used in the emulated round. The resulting channel-
free execution captures the behavior of AP and E executing
in a system that appears to also include channel C.

2 Recall, in each round of an execution, there are two state assignments
for algorithms, channels, and environments. The first is chosen accord-
ing to the relevant distribution defined for the final state assignment of
the previous round, and the second is the result of applying the transition
function to the appropriate assignments in the round.

We continue with a helper lemma that proves that the exe-
cution of AP emulated in an execution of a composition
algorithm that includes AP , has the same behavior as AP

running by itself.

Lemma 1 Let E be a delay tolerant environment, AP be an
algorithm, and AC be a channel algorithm that implements
C with C′. Let α be a channel-free execution of E and AP .
It follows:
∑

α′|simpleReduce(α′)=α Q(E,AP , C, α′)
= ∑

α′′|compReduce(α′′)=α Q(E,A(AP ,AC ), C′, α′′)

Proof To simplify notation, let S′
s be the set that contains

every execution α′ of (E,AP , C) such that
simpleReduce(α′) = α, and let S′

c be the set that con-
tains every execution α′′ of (E,A(AP ,AC), C′) such that
compReduce(α′′) = α. (The inclusion of a prime symbol, ′,
in this notation, is to ensure forward compatibility with the
notation from the theorem that follows).

In the proof that follows, we determine the probability of
various executions that result from applying Q to the execu-
tion and its system. Recall that Q(E,A, C, α), for a system
(E,A, C) and execution α of the system, simply multiplies
the probabilities of the state transformations that occur at
the beginning of each round for each of the automata in the
system (the environment, channel, and n processes).

We begin by establishing several facts about S′
s . For every

α′ ∈ S′
s :

1. The sequence of states of E in α′ is the same as in α.
This follows from the definition of simpleReduce.

2. The sequence of states of AP in α′ is the same as in α.
This also follows from the definition of simpleReduce.

3. It follows from observation 1 that the product of proba-
bilities of environment state transformations is the same
in α and α′. Call this product pE .

4. It follows from observation 2 that the product of prob-
abilities of algorithm state transformations is the same
in α and α′. Call this product pA.

We can use these observations to reformulate the first
sum from the lemma statement in a more useful form. From
observations 1 and 2, we know that the prefixes in Ss differ
only in their channel states. The reason why multiple exe-
cutions might reduce to the same channel-free execution, by
simpleReduce, is that it is possible that different channel
states might produce the same received messages as in α,
given the sent messages and frequencies of α.

With this in mind, we rewrite the first sum from the lemma
as:

pE pA

∑

α′∈S′
s

pC(α′),
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where pC(α′) returns the product of the probabilities of the
channel state transformations in α′. By the definition of S′

s ,
we can also describe

∑
α′∈S′

s
pC(α′) as follows:

The probability that C generates the receive assign-
ments in α, given the message and frequency assign-
ments from α as input.

With this in mind, let Eα be the simple channel environment
that passes down the sequence of send-encoded inputs that
match the message and frequency assignments in α. Let β be
the trace the encodes the message, frequency, and received
message assignments in α as alternating send-encoded inputs
and receive-encoded outputs. We can now formalize our
above observation as follows:
∑

α′∈S′
s

pC(α′) = Dt f (Eα,AI , C, β)

We now establish several related facts about S′
c. For every

α′′ ∈ S′
c:

5. The sequence of states of E in α can be generated
by potentially removing some marked states from the
sequence of these states in α′′. (Recall, “marked” is from
the definition of delay-tolerant. These extra marked states
in α′′ correspond to the rounds in which the composition
algorithm paused AP while running AC on C′ to emulate
C). This follows from the definition of compReduce.

6. The sequence of states of AP in α can be generated
by taking these states encoded in the the prob compo-
nent of the composition algorithm states in α′′, and then
removing those from a composition algorithm state with
status = paused. This also follows from the definition
of compReduce.

7. It follows from observation 5, and the fact that a marked
state transforms to itself with probability 1, that the prod-
uct of the environment state transformations probabilities
in α′′ equal pE , as in α.

8. To calculate the product of the algorithm state
transformation probabilities in α′′, we should first review
the definition of the state distribution for the composition
algorithm. Recall that for such a state, there are two cases.
In the first case, status = paused. Here, the probability
of transformation to a new state is determined only by the
chan component. In the second case, status = active.
Here, the transformation probability is the product of the
transformation probabilities of both the prob and chan
components.
It follows from this fact, and observation 6, that the
product of the probabilities of the algorithm state trans-
formations in α′′ equal pA times the product of the prob-
abilities of the AC state transformations encoded in the
chan components.

As when we considered S′
s , we can use these observations

to reformulate the second sum from the lemma statement.
Specifically, we rewrite it as:

pE pA

∑

α′′∈S′
c

pC,C′(α′′),

where pC,C′(α′′) is the product of the state transformation
probabilities of both C′ and the chan component of the com-
position algorithm. By the definition of S′

c and the compo-
sition algorithm, we can also describe

∑
α′′∈S′

c
pC,C′(α′′) as

follows:

The probability that AC running on C′ outputs the
receive assignments in α, given the corresponding
message and frequency assignments passed as send-
encoded inputs to AC .

Let Eαand β be described as above. We can now formalize
our above observation as follows:
∑

α′′∈S′
c

pC,C′(α′′) = Dt f (Eα,AC, C′, β)

By assumption, AC implements C with C′. If we unwind
the definition of implements (Definition 17), it follows that
AC solves the channel problem PC using C′. If we then
unwind the definition of this channel problem
(Definition 16), it follows that:

Dt f (Eα,AC, C′, β) = Dt f (Eα,AI , C, β)

We combine this equality with our rewriting of the pC and
pC,C′ sums from above, to conclude:

pE pA

∑

α′∈S′
s

pC(α′) = pE pA

∑

α′′∈S′
c

pC,C′(α′′).

Because these two terms were defined to be equivalent to
the two sums from the lemma statement, we have shown the
desired equality.

We can now prove our main theorem and then a corol-
lary that generalizes the result to a chain of implementation
algorithms.

Theorem 1 (Algorithm Composition) Let AP be an algo-
rithm that time-free solves delay tolerant problem P using
channel C. Let AC be an algorithm that implements
channel C using channel C′. It follows that the composition
algorithm A(AP ,AC ) time-free solves P using C′.

Proof By unwinding the definition of time-free solves, we
rewrite our task as follows:

∀E ∈ E, ∃F ∈ P(E),∀β ∈ T :
Dt f (E,A(AP ,AC ), C′, β) = F(β).

Or, equivalently:

∀E ∈ E [λβ Dt f (E,A(AP ,AC ), C′, β) ∈ P(E)].
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Fix some E . Assume E is delay tolerant (if it is not, then
P(E) describes every trace probability function, and we
are done). Define trace probability function F such that
∀β ∈ T : F(β) = Dt f (E,AP , C, β). By assumption
F ∈ P(E). It is sufficient, therefore, to show that ∀β ∈ T :
Dt f (E,A(AP ,AC ), C′, β) = F(β) = Dt f (E,AP , C, β).
Fix some β. Below we prove the equivalence. We begin,
however, with the following helper definitions:

− Let ccp(β) be the set of every channel-free execution α

ofE andAP such that term(α) = true and cio(α) = β.3

− Let Ss(β), for trace β, describe the set of executions
included in the sum that defines Dt f (E,AP , C, β), and
Sc(β) describe the set of executions included in the
sum that defines Dt f (E,A(AP ,AC), C′, β). (The s and
c subscripts denote simple and complex, respectively).
Notice, for an execution to be included in Sc it cannot
end in the middle of an emulated round, as this execution
would not satisfy term.

− Let S′
s(α), for channel-free execution α of E and AP ,

be the set of every execution α′ of (E,AP , C) such
that simpleReduce(α′) = α. Let S′

c(α) be the set of
every execution α′′ of (E,A(AP ,AC), C′) such that
compReduce(α′′) = α. Notice, for a execution α′′ to
be included in S′

c, it cannot end in the middle of an emu-
lated round, as this execution would cause compReduce
to return null.

We continue with a series of four claims that establish that
{S′

s(α) : α ∈ ccp(β)} and {S′
c(α) : α ∈ ccp(β)} partition

Ss(β) and Sc(β), respectively.

− Claim 1:
⋃

α∈ccp(β) S′
s(α) = Ss(β).

We must show two directions of inclusion. First, given
some α′ ∈ Ss(β), we know α = simpleReduce(α′) ∈
ccp(β), thus α′ ∈ S′

s(α). To show the other direc-
tion, we note that given some α′ ∈ S′

s(α), for some
α ∈ ccp(β), simpleReduce(α′) = α. Because α gen-
erates β by cio and satisfies term, the same holds for α′,
so α′ ∈ Ss(β).

− Claim 2:
⋃

α∈ccp(β) S′
c(α) = Sc(β).

As above, we must show two directions of inclu-
sion. First, given some α′′ ∈ Sc(β), we know α =
compReduce(α′′) ∈ ccp(β), thus α′′ ∈ S′

c(α). To show
the other direction, we note that given some α′′ ∈ S′

c(α),
for some α ∈ ccp(β), compReduce(α′′) = α. We know

3 This requires some abuse of notation as cio and term are defined for
executions, not channel-free executions. These extensions, however,
follow naturally, as both cio and term are defined only in terms of the
input and output assignments of the executions, and these assignments
are present in channel-free executions as well as in standard execution
executions.

α generates β by cio and satisfies term. It follows that
α′′ ends with the same final non-empty output as α, so it
satisfies term. We also know that compReduce removes
only empty inputs and outputs, so α′′ also maps to β by
cio. Therefore, α′′ ∈ Sc(β).

− Claim 3: ∀α1, α2 ∈ ccp(β), α1 
= α2 : S′
s(α1) ∩

S′
s(α2) = ∅.

Assume for contradiction that some α′ is in the inter-
section. It follows that simpleReduce(α′) equals both
α1 andα2. Because simpleReduce returns a single chan-
nel-free execution, and α1 
= α2, this is impossible.

− Claim 4: ∀α1, α2 ∈ ccp(β), α1 
= α2 : S′
c(α1) ∩

S′
c(α2) = ∅.

Follows from the same argument as claim 3 with
compReduce substituted for simpleReduce.

The following two claims are a direct consequence of the
partitioning proved above and the definition of Dt f :

− Claim 5:
∑

α∈ccp(β)

∑
α′∈S′

s (α) Q(E,AP , C, α′) =
Dt f (E,AP , C, β).

− Claim 6:
∑

α∈ccp(β)

∑
α′∈S′

c(α)

Q(E,A(AP ,AC ), C′, α′)
= Dt f (E,A(AP ,AC ), C′, β).

We conclude by combining claims 5 and 6 with Lemma 1 to
prove that:

Dt f (E,A(AP ,AC ), C′, β) = Dt f (E,AP , C, β),

as needed.

Corollary 1 (Generalized Alg. Comp.) Let A1,2, . . . ,

A j−1, j , j > 2, be a sequence of algorithms such that each
Ai−1,i , 1 < i ≤ j , implements channel Ci−1 using channel
Ci . Let AP,1 be an algorithm that time-free solves delay tol-
erant problem P using channel C1. It follows that there exists
an algorithm that time-free solves P using C j .

Proof Given an algorithm AP,i that time-free solves P with
channel Ci , 1 ≤ i < j , we can apply Theorem 1 to prove that
AP,i+1 = A(AP,i , Ai,i+1) time-free solves P with channel
Ci+1. We begin with AP,1, and apply Theorem 1 j − 1 times
to arrive at algorithm AP, j that time-free solves P using C j .

4.2 The composition channel

Given a channel implementation algorithm A and a channel
C′, we define the channel C(A, C′). This composition channel
encodes a local emulation of A and C′ into its probabilistic
state transitions. We formalize this notion by proving that
A implements C(A, C′) using C′.
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To understand the utility of this result, assume you have a
channel implementation algorithm A and you want to prove
that A using C′ implements a channel that satisfies some use-
ful automaton property. (As demonstrated in the case study
in the next section, it is often easier to talk about all channels
that satisfy a property than to talk about a specific channel).
You could apply our composition channel result to estab-
lish that A implements C(A, C′) using C′. This reduces the
task to showing that C(A, C′) satisfies the relevant automaton
properties.

4.2.1 Composition channel definition

At a high-level, the composition channel C(A, C′), when
passed a message and frequency assignment, emulates
A using C′ being passed these messages and frequencies
as input and then returning the emulated output from A as
the received messages. This emulation is encoded into the
crand probabilistic state transition of C(A, C′). To accom-
plish this feat, we define two types of states: simple and com-
plex. The composition channel starts in a simple state. The
crand distribution always returns complex states, and the
ctrans transition function always returns simple states, so we
alternate between the two. The simple state contains a com-
ponent pre that encodes the history of the emulation of A and
C′ used by C(A, C′) so far. The complex state also encodes
this history in pre, in addition it encodes the next random-
ized state transitions of A and C′ in a component named ext ,
and it stores a table, encoded in a component named oext ,
that stores for each possible pair of message and frequency
assignments, an emulated execution that extends ext with
those messages and frequencies arriving as input, and end-
ing when A generates the corresponding received messages.
The crecv function, given a message and frequency assign-
ment and complex state, can look up the appropriate row
in oext and return the received messages described in the
final output of this extension. This approach of simulating
execution extensions for all possible messages in advance is
necessitated by the fact that the randomized state transition
occurs before the channel receives the messages being sent
in that round. See Fig. 3 for a diagram of the composition
channel.

Below we provide a collection of helper definitions which
we then use in the formal definition of the composition chan-
nel.

Definition 23 (toinput) Let the function toinput map pairs
from (M⊥)n×[F]n to the corresponding send-encoded input
assignment describing these messages and frequencies.

Definition 24 (Environment-Free Execution) We define a
sequence of assignments α to be an environment-free exe-
cution of a channel algorithm A and channel C, if and only if
there exists an execution α′, of a system including A, C, and

Fig. 3 The composition channel C(AC , C ′), where AC is a channel
algorithm and C ′ is a channel. The outer rectangle denotes the com-
position channel. The AC and C ′ dashed rectangles inside the algo-
rithm capture the fact that the composition channel internally simulates
running AC on C ′

a channel environment, such that α is generated by removing
the environment state assignments from α′. If α is finite then
the final output assignment in α must be receive-encoded.

Definition 25 (State Extension) Let α be a finite environ-
ment-free execution of some channel algorithm A and chan-
nel C. We define a state extension of α to be α extended
by any RS, RC , where ∀i ∈ [n] : RS[i] ∈ statesA(i), RC ∈
cstatesC , and the final process and channel state assignments
of α can transform to RS and RC with non-0 probability by
randA and crandC , respectively.

In other words, we extend the execution α by the next
states of the channel and algorithm. We continue, next, with
a longer extension.

Definition 26 (I -Output Extension) Let α be a finite envi-
ronment-free execution of some channel algorithm A and
channel C. Let α′ be a state extension of α. We define an
I -output extension ofα′, for some I ∈ (I⊥)n , to be any exten-
sion of α′ that has input I in the first round of the extension, an
empty input assignment (i.e., ⊥n) in every subsequent round,
and that ends in the first round with a receive-encoded output
assignment, thus forming a new environment-free execution.

In other words, we extend our state extension with a par-
ticular input, I , after which we run it with empty inputs until
it returns a receive-encoded output assignment.

We can now provide the formal definition of the compo-
sition channel:

Definition 27 (The Comp. Chan.:C(A, C′)) LetA be a chan-
nel algorithm and C′ be a channel. To simplify notation, let
C = C(A, C′). We define the composition channel C as
follows:

1. cstatesC = simpleStatesC ∪ complex StatesC ,
where simpleStatesC and complex StatesC are defined
as follows:

− The set simpleStatesC (of simple states) consists of
one state for every finite environment-free execution
of A and C′.
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− The set complex StatesC (of complex states) con-
sists of one state for every combination of: a finite
environment-free execution α of A and C′; a state
extension α′ of α; and a table with one row for
every pair (M ∈ (M⊥)n, F ∈ [F]n), such that this
row contains an (toinput (M, F))-output extension
of α′.

Notation: For any simple state s ∈ simpleStatesC , we
use the notation s.pre to describe the
environment-free execution corresponding to s. For
any complex state c ∈ complex StatesC , we use
c.pre to describe the environment-free execution, c.ext
to describe the state extension, and c.oext (M, F) to
describe the toinput (M, F)-output extension, corre-
sponding to c.

2. cstartC = s0 ∈ simpleStatesC ,
where s0.pre describes the 0-round environment-free
execution of A and C′. (That is, it consists of only the
start state assignment for A and start channel assignment
for C′).

3. crandC(s ∈ simpleStatesC)

(q ∈ complexStatesC)

is defined as follows:

− If q.pre 
= s.pre, then crandC (s)(q) = 0.
− Else, crandC (s)(q) equals the product of the

probability, for each row q.oext (M, F) in q.oext ,
that q.pre extends to q.oext (M, F), given input
toinput (M, F).

By contrast, crandC (s′ ∈ cstatesC )(s ∈
simpleStatesC ) = 0. (That is, crandC assign proba-
bility mass to complex states only).

4. ctransC(q ∈ complexStatesC, M, F) = s
∈ simpleStatesC ,
where s.pre = q.oext (M, F). Notice that we do not
need to define ctransC for a simple state, as our defi-
nition of crandC prevents the function from ever being
applied to such a state.

5. crecvC(q ∈ complexStatesC, M, F) = N ,
where N is contains the messages from the receive-
encoded output of the final round of q.oext (M, F). As
with ctransC , we do not need to define crecvC for a
simple state, as our definition of crandC prevents the
function from ever being applied to such a state.

4.2.2 Composition channel theorems

To prove that A implements C(A, C′) on C′, we begin with a
collection of helper definitions and lemmas.

Definition 28 (ex) Let α be an execution of system
(E,AI , C(A, C′)), where E is a channel environment, A is

a channel algorithm, and C′ is a channel. We define ex(α)

to return the execution α′, of system (E,A, C′), defined as
follows:

1. We construct α′ in increasing order of rounds. Start by
setting round 0 to contain the starts states of E,A, and C′.

2. We then proceed, in increasing order, through each round
r > 0 of α, expanding α′ as follows:

(a) Add the sequence of algorithm and channel states
that results from taking RC

r .oext (Mr , Fr ) and then
removing the prefix RC

r .pre, where RC
r is the

random channel state in round r of α, and Mr

and Fr are the message and frequency assignments
from this round, respectively.

(b) Add RE
r as the random environment state in the first

round of this extension, where RE
r is the random

environment state in round r of α.
(c) Add Er as the second environment state in the

last round of the extension, where Er is the
second environment state in round r of α (i.e.,
the result of applying the environment transition
function to RE

r ).
(d) Add R̂E

r as the environment state for all other posi-
tions and rounds in the extension, where R̂E

r is the
marked version of state RE

r , where “marked” is
defined in the definition of delay tolerant. (Recall,
E is a channel environment which implies that it is
delay tolerant).

That is, we extract the simulated execution of A on C′
encoded in the composition channel in α, and then add in the
states of E from α, using marked states to fill in the environ-
ment state gaps for the new rounds added by the extraction.

The following definition uses ex to capture a key prop-
erty about the relationship between systems with channel
algorithms and systems with those algorithms encoded in a
composition channel.

Definition 29 (comp) Let E be a channel environment, A
be a channel algorithm, C′ be a channel, and α′ be an execu-
tion of the system (E,A, C′). Let X be the set of all execu-
tions of (E,AI , C(A, C′)). Then comp(α′) = {α : α ∈ X,

ex(α) = α′}.
It might seem surprising that multiple executions of

(E,AI , C(A, C′)), can expand to α′ by ex , as ex is
deterministic—it simply extracts an environment-free exe-
cutions encoded in the C(A, C′) state, and then adds envi-
ronment states in a fixed manner. The explanation, however,
concerns the unused rows of the oext table in the states of
C(A, C′). For every execution α of (E,AI , C(A, C′)) that
generates α′ by ex , the rows in the oext table that corre-
spond to the messages and frequencies in α′, are the same.
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These are the rows that ex uses to construct its expanded
execution. The other rows, however, which are not used, can
be different, as they are discarded by ex .

We proceed by proving an important lemma about the
probabilities associated with states that share a given row
entry. Let s be a simple state. Let X be the set of complex
states that are compatible with s (that is, their pre compo-
nents match s.pre), and all have the same output extension
α′′ in a fixed oext row. The lemma says that the probability
that s transitions to a state in X , by the composition channel
state distribution crand(s), equals the probability of s.pre
extending to α′′.

Lemma 2 Let A be a channel algorithm, C′ be a channel,
M be a message assignment, F be a frequency assign-
ment, α be a finite environment-free execution of A and
C′, α′ be a state extension of α, α′′ be a toinput (M, F)-
output extension of α′, s be the simple state of C(A, C′) with
s.pre = α, and:

X = {s′ ∈ cstatesC(A,C′) : s′ is complex, s′.pre = α,

s′.oext (M, F) = α′′}.
It follows:
∑

s′∈X

crandC(A,C′)(s)(s
′) = Pr [α′′|α],

where Pr [α′′|α] is the probability that A using C′ extend
α to α′′, given the input assignments in α′′.

Proof Let pext describe the probability that A using
C′ extends α to α′. (That is, pext is the product of the prob-
abilities assigned to algorithm and channel states added to
α in α′. Recall, these probabilities are determined by the
state distributions corresponding to the final algorithm and
channel states in α).

Also recall that every complex state has an oext table with
one row for every possible message and frequency assign-
ment pair. Label the non-(M, F) rows in the oext table
with incrementing integers, j = 1, . . .; i.e., there is one row
index j for every row except the (M, F) row.

For every such row j , number the possible I j -output
extensions of α′ with incrementing integers, k = 1, . . .,
where I j is the message and frequency assignment pair cor-
responding to row j . And let p j,k , for some row index j and
output extension index k, equal the probability that A and C
produce extension k of α′, given input I j . (As with pext , this
probability is the product of the probabilities of the algorithm
and channel state transformations in the extension).

Because we do not have a j defined for row (M, F),
we separately fix p f i x to describe the probability that A
using C extends α′ to α′′, given the input toinput (M, F)

For any fixed j , we know:
∑

k

p j,k = 1. (1)

This follows from the constraint that A is a channel algo-
rithm. Such an algorithm, when passed a send-encoded input,
must eventually return a receive-encoded output in every
extension.

To simplify our use of the p j,k notation, let Y be a set of
vectors that have one position for every row index, j . Let
each entry contain an extension index, k, for that row. Fix Y
such that it contains every such vector. Each v ∈ Y , therefore,
describes a unique configuration for the non-(M, F) rows in
the oext table, and Y contains a vector for every such unique
configuration.

Using our new notation, and the definition of crand for a
composition channel, we can rewrite our sum from the lemma
statement as follows:
∑

s′∈X

crandC(A,C′)(s)(s
′) = pext p f i x

∑

v∈Y

∏

j

p j,v[ j].

To understand the right-hand side of this equation, recall
that crandC(A,C′)(s)(s′), for any s′ ∈ X , returns the prod-
uct of the probabilities, for each row in s′.oext , that A and
C′ extend α to the extension in that row, given the corre-
sponding input. Since every extension of α in s′.oext starts
with α′, we pull out from the product, the probability, pext of
α′. And because every state in s′ has the same extension in
the (M, F) row, we can pull the probability of that extension,
p f i x , from the product as well.

To simplify this sum, we note that the sum of products,∑
v∈Y

∏
j p j,v[ j], consists of exactly one term of the form

p1,∗ p2,∗ . . ., for each unique combination of extension indi-
ces. Applying some basic algebra, we can therefore rewrite
this sum of products as the following product of sums:
∑

v∈Y

∏

j

p j,v[ j] = (p1,1 + p1,2 + . . .)(p2,1 + p2,2 + . . .) . . .

We apply Equation 4.1 from above, to reduce this to
(1)(1) . . . = 1. It follows that:
∑

s′∈X

crandC(A,C′)(s)(s
′) = pext p f i x .

Finally, we note that pext p f i x matches our definition of
Pr [α′′|α] from the lemma statement, completing the proof.

This lemma is used in the proof of the following result.

Lemma 3 Let α′ be an execution of system (E,A, C′), where
E is a channel environment, A is a channel algorithm, C′
is a channel, and the final output in α′ is receive-encoded.
It follows:

Q(E,A, C′, α′) =
∑

α∈comp(α′)
Q(E,AI , C(A, C′), α)

Proof Divide α′ into execution fragments, each beginning
with a round with a send-encoded input and ending with the
round containing the corresponding receive-encoded output.
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We call these fragments, in this context, emulated rounds.
(This is similar to how we defined the term with respect
to a channel algorithm execution in the composition algo-
rithm section). By our assumption that α′ ends with a receive-
encoded output, no part of α′ falls outside of an emulated
round.

Fix some emulated round er of α′. Let I be the send-
encoded input passed down by the environment during er .
Let M and F be the message and frequency assignments
encoded in I (i.e., I = toinput (M, F)).

To simplify notation, in the following we use C as short-
hand for the composition channel C(A, C′). Let s be the
simple state of C that encodes in s.pre the environment-
free execution obtained by removing the environment state
assignments from the execution of α′ through emulated round
er − 1. Let X be the set containing every complex state q
such that: q.pre = s.pre and q.oext (M, F) extends q.pre
as described by er . (There is only one such extension for
q.oext (M, F). There can be multiple complex states includ-
ing this extension, however, because the entries can vary
in the other rows of oext). Let p describe the probability
that A using C′ extends s.pre to q.oext (M, F), given
input I .

We can apply Lemma 2 for A, C′, M, F, α = s.pre, s,
α′′ = q.oext (M, F), and X , to directly prove the following
claim:

Claim:
∑

q∈X crandC(s)(q) = p

We now apply this claim, which concerns only a single
emulated round, to prove the lemma, which concerns the
entire execution α′.

We use induction on the emulated round number of α′.
Let R be the total number of emulated rounds in α′. Let
α′[r ], 0 ≤ r ≤ R, describe the prefix of α′ through emulated
round r . Notice, because we assumed that α′ ends with a
receive-encoded output: α′[R] = α′. Our hypothesis for any
emulated round r ≤ R states:

Q(E,A, C′, α′[r ]) =
∑

α∈comp(α′[r ])
Q(E,AI , C, α)

We now prove our inductive step. Assume our hypothe-
sis holds for some r < R. Every execution in comp(α′[r ])
concludes with the same simple channel state sr , where
sr .pre describes the environment-free execution generated
by removing the environment assignment states from α′[r ].

We know the probability that E passes down I =
toinput (M, F) to begin the next emulated round of α′ is
the same as the probability that it passes down I in round
r + 1 of any of the executions in comp(α′[r ]). This follows
from the delay-tolerance of E , which has it behave the same
upon receiving a given receive-encoded output, regardless of
the pattern or preceding empty outputs.

Finally, by applying the above claim, we determine that
given a execution that ends in sr , the probability that it trans-
form by crandC to a state q, such that q.oext (M, F) =
α′[r + 1], equals the probability that α′[r ] transforms to
α′[r +1], given input I . This combines to prove the inductive
step.

We conclude the proof by noting that the base case follows
from the fact that the probability of α[0] and comp(α[0]) is
1 in both systems.

Theorem 2 (Channel Composition) Let A be a
channel algorithm and C′ be a channel. It follows that
A implements C(A, C′) using C′.

Proof By unwinding the definition of implements, we can
rewrite the theorem statement as follows: for every channel
environment E and trace β ∈ T :

Dt f (E,A, C′, β) = Dt f (E, AI , C(A, C′), β)

Fix one such channel environment E . To prove equality, it is
sufficient to show that for every β ∈ T , the two trace proba-
bility functions return the same probability. We first introduce
some simplifying notation: Scomp = (E, AI , C(A, C′)), and
S = (E,A, C′). We now rewrite our equality regarding Dt f

in terms of Q:

∀β ∈ T :
∑

α′|term(α′)∧cio(α′)=β

Q(S, α′)

=
∑

α|term(α)∧cio(α)=β

Q(Scomp, α)

For simplicity, we will call the Q(S, ∗) sum the first sum and
the Q(Scomp, ∗) sum the second sum. We restrict our atten-
tion to traces that end with a non-empty output, as any other
trace would generate 0 for both sums. Fix one such trace β.
For this fixed β, consider each α′ included in the first sum.
(By the definition of term, each such α′ must also end with
a non-empty output). By Lemma 3, we know:

Q(S, α′) =
∑

α∈comp(α′)
Q(Scomp, α)

Recall that α ∈ comp(α′) ⇒ cio(α′) = cio(α) and
term(α) = true, so each execution in our comp set is
included in the second sum.

We next note that for every pair of executions α′
1 and

α′
2 of S, such that α′

1 
= α′
2: comp(α′

1) ∩ comp(α′
2) = ∅.

In other words, each execution included from S is associ-
ated with a disjoint set of matching executions from Scomp.
To see why, assume for contradiction that there exists some
α ∈ comp(α′

1) ∩ comp(α′
2). It follows that ex(α) equals

both α′
1 and α′

2. However, because ex is deterministic, and
α′

1 
= α′
2, this is impossible.

It follows that for each α′ included in the first sum there
is a collection of executions included in the second sum that
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add the same probability mass. Furthermore, none of these
collections overlap.

To prove that the probability mass is exactly equal, we
are left only to argue that every execution included in the
second sum is covered by one of these comp sets. Let
α be a execution included in the second sum. We know that
cio(α) = β and term(α) = true, therefore the same holds
of ex(α) which implies that α is covered by comp(ex(α)).

5 Case study

We highlight the power and flexibility of our framework with
a simple example. We begin by defining two types of chan-
nels: p-reliable and t-disrupted. The former is an idealized
single-hop single-frequency radio channel with a probabi-
listic guarantee of successful delivery (e.g., as considered
in [2]). The latter is a realistic single-hop radio channel,
comprised of multiple independent frequencies, up to t of
which might be permentantly disrupted by outside sources
of interference (e.g., as considered in [12,13,16]). We then
describe a simple algorithm Arel and sketch a proof that it
implements the reliable channel using the disrupted channel.
Before defining the two channel types, however, we begin
with this basic property used by both:

Definition 30 (Basic Broadcast Property) We say a chan-
nel C satisfies the basic broadcast property if and only if for
every state s, message assignment M , and frequency assign-
ment F, N = crecvC(s, M, F) satisfies the following:

1. If M[i] 
= ⊥ for some i ∈ [n]: N [i] = M[i].
(Broadcasters receive their own messages).

2. If N [i] 
= ⊥, for some i ∈ [n], then there exists a j ∈
[n] : M[ j] = N [i] ∧ F[ j] = F[i].
(If i receives a message then some process sent that mes-
sage on the same frequency as i).

We can now define our two channel properties:

Definition 31 (p-Reliable Channel) We say a channel C sat-
isfies the p-reliable channel property, p ∈ [0, 1], if and
only if C satisfies the basic broadcast property, and there
exists a subset S of the states, such that for every state s,
message assignment M , and frequency assignments F, N =
crecvC(s, M, F) satisfies the following:

1. If F[i] > 1 ∧ M[i] = ⊥, for some i ∈ [n], then
N [i] = ⊥.
(Receivers on frequencies other than 1 receive nothing).

2. If s ∈ S and |{i ∈ [n] : F[i] = 1, M[i] 
= ⊥}| = 1,
then for all j ∈ [n] such that F[ j] = 1 and M[ j] = ⊥:
N [ j] = M[i].
(If there is a single broadcaster on frequency 1, and the

channel is in a state from S, then all receivers on fre-
quency 1 receive its message).

3. For any state s′,
∑

s∈S crandC(s′)(s) ≥ p.
(The probability that we transition into a state in S—i.e.,
a state that guarantees reliable message delivery—is at
least p).

Definition 32 (t-Disrupted Channel) We say a channel C
satisfies the t-disrupted property, 0 ≤ t < F , if and only
if C satisfies the basic broadcast channel property, and there
exists a set Bt ⊂ [F], |Bt | ≤ t , such that for every state s,
message assignment M , and frequency assignment F, N =
crecvC(s, M, F) satisfies the following:

1. If M[i] = ⊥ and F[i] ∈ Bt , for some i ∈ [n]: N [i] = ⊥.
(Receivers receive nothing if they receive on a disrupted
frequency).

2. If for some f ∈ [F], f /∈ Bt , |{i ∈ [n] : F[i] =
f, M[i] 
= ⊥}| = 1, then for all j ∈ [n] such that
F[ j] = f and M[ j] = ⊥, N [ j] = M[i], where i is
the single process from the above set of broadcasters
on f .
(If there is a single broadcaster on a non-disrupted fre-
quency then all receivers on that frequency receive the
message).

Consider the channel algorithm, Arel , that works as fol-
lows: The randomized transition randArel (i) encodes a ran-
dom frequency fi for each process i in the resulting state. This
choice is made independently and at random for each pro-
cess. If a process Arel(i) receives an input from (send, m ∈
M, f ∈ [F]), it outputs (recv, m). If f = 1, it also
broadcasts m on frequency fi If the process receives input
(send,⊥, 1) it receives on fi , and then outputs (recv, m′),
where m′ is the message it receives. Otherwise, it outputs
(recv,⊥).

We now prove that Arel implements a reliable channel
using a disrupted channel.

Theorem 3 Fix some t, 0 ≤ t < F . Given any channel C
that satisfies the t-disrupted channel property, the algorithm
Arel implements a channel that satisfies the (F−t

Fn )-reliable
channel property using C.

Proof By Theorem 2 we know Arel implements C(Arel , C)

using C. We are left to show that C(Arel , C) satisfies the
(F−t

Fn )-reliable channel property.
Condition 1 of this property follows from the definition

of Arel . More interesting is the combination of 2 and 3. Let
Bt be the set of disrupted frequencies associated with C. Let
a state s returned by crandC(Arel ,C) be in S if the final state
of Arel in s.ext encodes the same f value for all processes,
and this value is not in Bt . Because each process chooses
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this f value independently and at random, this occurs with
probability at least (F−t

Fn ).

Next, imagine that we have some algorithm AP that solves
a delay tolerant problem P (such as randomized consen-
sus, which is easily defined in a delay tolerant manner) on a
(F−t

Fn )-reliable channel. We can apply Theorem 1 to directly
derive that A(AP ,Arel) solves P on any t-disrupted chan-
nel C′.

In a similar spirit, imagine we have an algorithm A+
rel that

implements a (1/2)-reliable channel using a (F−t
Fn )-reliable

channel, and we have an algorithm AP ′ that solves delay
tolerant problem P ′ on a (1/2)-reliable channel. We could
apply Corollary 1 to AP ′ ,A+

rel , and Arel , to identify an algo-
rithm that solves P ′ on our t-disrupted channel. And so
on. (For numerous additional examples of the framework
in action, see [23]).

Discussion. For this case study, we chose two simple chan-
nel definitions. Our goal was to demonstrate the framework
in action, not detail complex definitions or implementation
proofs (see [23] for many examples of such complexity). That
being said, even this simple example highlights the advantage
of using our framework over a more informal approach.

First, even though these channels are simple to describe at
a high-level, our definitions make precise small details that
might easily be overlooked in an informal description. For
example, our definition of a t-disrupted channel specifies the
exact dependencies of the disrupted frequencies on the algo-
rithms and executions (a subtle issue that arises often in the
study of such disruption). If one informally specifies a model
with up to t frequencies disrupted, it is possible, for example,
that the channel waits to observe the processes’ broadcast
behavior before choosing which frequencies to disrupt—a
behavior that can complicate correctness proofs for algo-
rithms attempting to overcome such disruption. Our formal
definition of this property, by contrast, requires the disrup-
tion decisions to be encoded in the state of channel automaton
itself, eliminating the possibility of such behaviors.

Second, our example highlights the usefulness of our
implementation results. It follows directly that algorithms
proved correct in a p-reliable model will remain correct when
combined with an implementation of such a model using a
t-disrupted model. Proving such results from scratch is diffi-
cult, especially when the properties of the channels become
more complex.

6 Conclusion

In this paper we present a modeling framework for synchro-
nous (potentially probabilistic) radio networks. The frame-
work allows for the precise definition of radio networks and

includes a pair of composition results that simplify a lay-
ered approach to network design (e.g., implementing stronger
networks with weaker networks). We argue that this frame-
work can help algorithm designers sidestep problems due to
informal model definitions and more easily build new results
using existing results. Much future work remains regarding
this research direction, including the formalization of well-
known results, exploration of more advanced channel def-
initions (e.g., multihop networks or adversarial sources of
error), and the construction of implementation algorithms to
link existing channel definitions.
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