
Consensus and Collision Detectors in Wireless Ad Hoc Networks

Calvin Newport

July 10, 2006

Abstract

In this study, we consider the fault-tolerant consensus problem in wireless ad hoc networks with crash-

prone nodes. Specifically, we develop lower bounds and matching upper bounds for this problem in

single-hop wireless networks, where all nodes are located within broadcast range of each other. In a

novel break from existing work, we introduce a highly unpredictable communication model in which

each node may lose an arbitrary subset of the messages sent byits neighbors during each round. We

argue that this model better matches behavior observed in empirical studies of these networks.

To cope with this communication unreliability we augment nodes with receiver-sidecollision de-

tectorsand present a new classification of these detectors in terms of accuracy and completeness. This

classification is motivated by practical realities and allows us to determine, roughly speaking, how much

collision detection capability is enough to solve the consensus problem efficiently in this setting. We

consider ten different combinations of completeness and accuracy properties in total, determining for

each whether consensus is solvable, and, if it is, a lower bound on the number of rounds required. Fur-

thermore, we distinguish anonymous and non-anonymous protocols—where “anonymous” implies that

devices do not have unique identifiers—determining what effect (if any) this extra information has on

the complexity of the problem. In all relevant cases, we provide matching upper bounds.

Our contention is that the introduction of (possibly weak) receiver-side collision detection is an im-

portant approach to reliably solving problems in unreliable networks. Our results, derived in a realistic

network model, provide important feedback to ad hoc networkpractitioners regarding what hardware

(and low-layer software) collision detection capability is sufficient to facilitate the construction of reli-

able and fault-tolerant agreement protocols for use in real-world deployments.

1

Contents

1 Introduction 4

1.1 Wireless Ad Hoc Networks 4

1.2 The Total Collision Model 8

1.3 Our Network Model 10

1.4 The Consensus Problem In Wireless Ad Hoc Networks 14

1.5 Our Results 16

2 Preliminaries 20

3 The System Model 21

3.1 Model Definitions 21

3.2 Executions and Indistinguishability 24

3.3 Process Failures and Message Loss 27

4 Contention Managers 29

4.1 The Wake-up and Leader Election Services 29

4.2 Contention Manager Classes 30

4.3 The Maximal Leader Election Service 30

5 Collision Detectors 31

5.1 Completeness Properties 31

5.2 Accuracy Properties 32

5.3 Collision Detector Classes 33

5.4 Maximal Collision Detectors 34

5.5 The Noise Lemma 35

6 The Consensus Problem and Related Definitions 36

7 Consensus Algorithms 38

7.1 Anonymous Consensus with ECF and Collision Detectors inmaj-♦AC 39

2

7.2 Anonymous Consensus with ECF and Collision Detectors in0-♦AC 42

7.3 Non-Anonymous Consensus with ECF and Collision Detectors in 0-♦AC 46

7.4 Anonymous Consensus with NOCF and Collision Detectors in 0-AC 49

8 Lower Bounds 53

8.1 Impossibility of Consensus with No Collision Detection. 54

8.2 Impossibility of Consensus with No Accuracy Guarantees. 56

8.3 Impossibility of Constant Round Consensus with ECF and half-AC 56

8.3.1 Definitions 56

8.3.2 Key Lemmas .. 58

8.3.3 Impossibility of constant round consensus with an anonymous (E(half-AC,LS),V ,ECF)-

consensus algorithm .. 65

8.3.4 Impossibility of constant round consensus with a non-anonymous (E(half-AC,LS),V ,ECF)-

consensus algorithm .. 66

8.4 Impossibility of Consensus with Eventual Accuracy but without ECF 70

8.5 Impossibility of Constant Round Consensus with Accuracy but without ECF 71

9 Conclusion 74

3

1 Introduction

1.1 Wireless Ad Hoc Networks

Properties of Wireless Ad Hoc Networks. Wireless ad hoc networks are an important platform for bring-

ing computational resources to diverse contexts. These networks are characterized by limited devices, de-

ployed in novel environments in an ad hoc fashion (that is, typically, noa priori knowledge of the environ-

ment or connection topology is assumed). Direct communication is possible only with neighbors through

the use of local radio broadcast. It is often the case, thoughnot always, that the devices have limited compu-

tational capability, local memory, and power. Depending onthe context, location information is sometimes

available; perhaps derived from a GPS unit or through the useof special ranging hardware (e.g. [62]) coupled

with distance-based localization schemes; c.f. [55,65].

Because devices in ad hoc networks are commonly low-cost (toease the expense of large, rapid, and

temporary deployments), they are prone to unpredictable crash failures. Similarly, their local clocks can

operate at varying rates depending on temporal environmental effects such as temperature; complicating the

task of maintaining synchronized clocks. See [24] for a moreextensive discussion of clock behavior and

expected skew under different conditions.

GPS units, on the other hand, can be used to provide high precision time values. In practice, however,

the rate at which these values are obtained from the unit is reduced by the demands of the device driver and

operating system. The delay between timer updates can therefore be sufficiently large for the intervening

clock drift to cause non-trivial skew. Gray et al. encountered this problem when trying to calculate message

latency values from a mobile ad hoc network deployment [31].Here, the skew accumulated between GPS

time updates was sufficient to require the use of an alternative clock synchronization scheme based on the

approach presented in [25]

There exists, however, a strong body of both experimental and theoretical research on protocols that

overcome these timing-related difficulties to achieve reasonably close clock synchronization; c.f. [4, 25,

26, 66]. For example, in [25], clock synchronization within3.68 ± 2.57µsec was achieved for a multihop

network deployed over4 communication hops.

In many networks, devices have unique identifiers, derived through randomization or provided in ad-

4

vance (such as a MAC Address read from a wireless adapter). These identifiers, however, are not always

present. For example, in an extremely dense network of tiny devices—such as the cubic millimeter sized

motes envisioned for “smart dust” deployments [35,60]—thesize of the random numbers needed to ensure

uniqueness, with high probability, or the effort required to provide identifiers in advance, might be pro-

hibitive. Also, in some scenarios, the use of unique identifiers might induce privacy concerns. Consider,

for example, a wearable wireless device that interacts withstatic devices, with known positions, deployed

throughout a hospital. Perhaps the device provides its userwith an interactive map of the building or mon-

itors his vital signs so that it can report an medical emergency to the hospital staff. If this wearable device

made use of a unique identifier during these interactions, itwould, in effect, be leaving a trace of the user’s

movement through the hospital; potentially revealing private information about the owner’s health status.

This type of concern motivated the design of the identifier-free location service in [62].

Finally, we note that radio broadcast communication, the only means of communication available to

devices in wireless ad hoc networks, is inherently unreliable. Two (or more) nearby radios broadcasting at

the same time can interfere with each others’ transmissions. This could lead to the loss of all messages at a

given receiver as the signal-to-noise ratio grows too largeto distinguish one transmission from another.

It’s also likely, however, as a result of the well-know capture effect [71], that in this scenario one

of the messages is successfully received while the others are lost. This capture behavior is unpredictable

and can lead, in practice, to non-uniform receive sets amongmultiple receivers within range of multiple

simultaneous transmissions. For example, assume, in an area contained within a single broadcast radius,

that two devices,A andB, broadcast a message at the same time, while two devices,C andD, are listening.

Multiple outcomes are possible: perhaps bothC andD receive no message, orC receivesA’s message and

D receivesB’s message, or bothC andD receiveA’s message, orC receives nothing andD receivesB’s

message,etc.

Many solutions have been proposed to mitigate some of this uncertainty. For example, the most widely-

used MAC layers in wireless ad hoc networks make use of physical carrier sensing and exponential backoff

to help reduce contention on the channel; c.f. [1, 61, 68, 72]. For unicastcommunication with a known

recipient, virtual carrier sensing (the use ofclear to sendandready to sendcontrol messages) can be used to

help eliminate the well-knownhidden terminal problemandexposed terminal problem(see [9] for a more

5

extensive discussion of these common problems and how virtual carrier sensing attempts to solve them).

Similarly, in these situations where the recipients are known, link-layer acknowledgments can be used to

help the sender verify the success or failure of its transmission and potentially trigger re-transmissions as

needed.

In many cases, however, the recipients are unknown, rendering virtual carrier sensing and link-layer

acknowledgments unusable. And though physical carrier sensing goes a long way toward reducing message

loss on the wireless medium, it does not eliminate it. To verify this reality, consider empirical studies

of ad hoc networks, such as [30, 38, 70, 73], which show that even with sophisticated collision avoidance

mechanisms (e.g., 802.11 [1], B-MAC [61], S-MAC [72], and T-MAC [68]), and even assuming low traffic

loads, the fraction of messages being lost can be as high as20− 50%.

Accordingly, algorithm design for these networksmusttake into account the expectation of lost mes-

sages. Either they feature a built-in resiliency to lost communication, or expend the computational and time

resources required to build a higher-level solution; such as constructing a global TDMA schedule that pre-

vents nearby nodes from broadcasting during the same slot; c.f. [7, 8, 10, 12, 43, 51]. Notice, however, that

the TDMA approach incurs a heavy static overhead, relies on knowing the local topology and membership

information, and therefore, does not scale. This makes it inappropriate for many scenarios.

Mobile Ad Hoc Networks. An important subclass of wireless ad hoc networks areMobile Ad Hoc Net-

works. In such networks, the devices are assumed to be attached to mobile agents whose movements patterns

cannot be controlled or predicted. Clearly, this situationintroduces new problems for coordination as the

topology of the underlying connection graph is constantly changing. The point-to-point routing problem—

where a named source needs to route a message to a named destination—is the most widely studied prob-

lem in these networks; c.f. [29, 34, 36, 58, 59]. This is perhaps a reflection of the difficulty of performing

more complicated coordination under such dynamic conditions. Recent work, however, such as the vir-

tual infrastructure systems developed at MIT [20–22]—which makes use of the underlying mobile devices

to emulate arbitrary automaton at fixed locations or following well-defined movement patterns—and the

NASCENT system developed by Luo and Hubaux [52]—which provides several group-management primi-

tives for small networks of mobile devices—facilitate the design of more complex coordination algorithms

for this challenging environment.

6

Static Ad Hoc Networks. Among the different static wireless ad hoc networks discussed in the literature,

perhaps the most widely cited are so-called “sensor networks.” These networks, typically consisting of small

devices running Berkley’s TinyOS [32] operating system andequipped with some manner of environmental

sensing equipment, are used to gather, analyze, and aggregate data from the environment in which they are

deployed. For example, in [67] a dense sensor network was used to monitor climate conditions on a remote

island off the coast of Maine.

Research involving static ad hoc networks, such as sensor networks, can be, roughly speaking, divided

into three main categories. The first isinformation dissemination. Protocols such as TRICKLE [48] (and

a similar scheme proposed by Lynch and Livadas [50])—which first flood a message through the network

and then later have devices “gossip” with their neighbors tosee if they missed any recent messages—and

GLIDER [27]—which first builds up a synthetic coordinate system based upon distances to pre-determined

“landmarks” and then uses greedy geographic routing techniques to route messages—are among many that

have been proposed as a practical method for delivering a message to an entire network or specific desti-

nation. Of course, the point-to-point routing algorithms developed for mobile ad hoc networks can also be

used in these static networks. But their mechanisms for coping with mobility tend to produce an unnecessary

degree of overhead.

Starting with a paper by Bar-Yehuda et. al. [7], and followedby many others (e.g., [6, 39, 41]), there

have also been many strictly theoretical examinations of the broadcast problem in such static networks; with

a focus on producing lower bounds. These studies describe, for example, a logarithmic, in the number of de-

vices, deterministic lower bound on the time required to broadcast a message under certain conditions [39].

And a randomized lower bound, in terms of the expected numberof rounds to complete a broadcast, of

Ω(D log (N
D

)) [46] (whereD is the maximum minimum hop-count between two devices—sometimes called

thenetwork diameter—andN is an upper bound on the number of devices).

The second category isdata aggregation. Almost all of the original uses of sensor networks involved

gathering data over time and aggregating it at a central source. Systems such as Madden’s TinyDB [54] focus

on efficient structures for accomplishing this task with a minimum of energy expenditure. More recently,

some attention has been diverted toward more responsive data gathering applications, such as the tracking

of a mobile agent through a field of sensor-equipped devices;c.f. [17,45]

7

The final category islocal coordination. To facilitate the achievement of higher-level goals, suchas

information dissemination or data aggregation, it is oftenhelpful to first tame some of the unpredictability

introduced by an ad hoc deployment. For example, there has been much work on the topology control

problem (e.g. [5, 49]), which attempts to have nodes reduce their transmit power to a minimum level that

still provides sufficient connectivity throughout the network. By reducing transmit power one can reduce

the number of devices within range of each other’s radio. This, in turn, reduces the overall contention in

the network. It also preserves energy, which, as mentioned,is an omnipresent goal in resource-constrained

networks.

Another local coordination problem of interest is the construction of clusters, such that each device

ends up belonging to a single cluster with a well-defined “clusterhead.” This goal is considered useful

for coordinating both local and global communication. Early work focused on clusters that represented

dominating sets—a collection (preferably minimal) of “clusterheads,” such that each device in the network

is either a clusterhead or within communication range of a clusterhead; c.f. [2,33,42]. More recent research

(e.g. [56]) considersmaximal independent sets, which add the additional restriction that the cluster heads

themselves are not within communication range of each other. This extra property is advantageous as it

allows these cluterheads to communicate with their respective clusters while minimizing interference with

the transmissions at neighboring clusters.

Examples of other local coordination problems include leader election in a single-hop radio network

(e.g. [57]), in which a single device from among many competing declares itself a “leader,” and thek-

selection problem (e.g. [16,40]), also considered in single-hop regions, in whichk active devices coordinate

such that each gets a time slot to broadcast its message.

1.2 The Total Collision Model

A claim we first made in [13] and expanded upon in [14,15], is that there exists a considerable gap between

theory and reality when it comes to the study of wireless ad hoc networks. This gap is caused, in our opinion,

by differing treatments of message loss. As mentioned in thepreceding discussion of ad hoc networks, radio

behavior in these settings is inherently unpredictable. When producing theoretical results for these networks,

however, precise communication models are required. Thesemodels, in the interest of clarity and simplicity,

8

often replace the unpredictable behavior of real networks with a set of well-defined rules. Perhaps the most

widely-used communication model, which we refer to as thetotal collision model, specifies:

1. If no neighbor of deviced broadcasts, thend receives nothing.

2. If two or more neighbors ofd broadcast, thend receives nothing.

3. If a single neighbor ofd broadcasts, thend receives its message.

This model was first introduced, in the context of wireless adhoc networks, with the Bar-Yehuda et al. [7]

broadcast paper mentioned previously. It was later adoptedin almost every subsequent theoretical study of

the broadcast problem, as well as in most theoretical studies of local coordination problems. A variant on this

model, sometimes referenced, is to provide the devices withstrong receiver-side collision detection. Here, it

is possible for a device to distinguish cases1 and2. The introduction of this strong collision detection can,

in some instances, significantly change the costs of basic operations. For example, in [19] it is shown that,

under certain assumptions, aΩ(n) lower bound for broadcast in a network ofn nodes and diameterD can

be reduced toΩ(D + log n) with the availability of collision detection.

The problem with the total collision model is that it is unrealistic. As we described previously, it

is not true that two or more neighbors of deviced, broadcasting at the same time, willalways lead tod

losing all messages. It’s certainly possible thatd, due to the capture effect [71], receives one of these

messages. Furthermore, though synchronized broadcast rounds can be a reasonable assumption (as clock

synchronization is, as mentioned, a well-studied problem in practice), it’s not always reasonable to imagine

that these rounds are tightly tuned to the exact time required to broadcast a single packet. Such a goal might

require a degree of synchrony that defeats what can actuallybe achieved. It also neglects the sometimes

significant degree of non-determinism that exists in the time between an application deciding to broadcast a

message and a packet actually being transmitted. It is reasonable, therefore, to expect that communication

rounds are large relative to the time required to send a single packet. In this case,d might receive more than

one, but perhaps not all, of the many messages sent during thesame round.

Clearly, the total collision model failures to capture these possibilities; and this failure has significant

implications. For example, Kowalski and Pelc [39], using the total collision model, construct a broadcast

algorithm that operates inO(log n) rounds in small diameter networks ofn devices. They also provide a

9

lower bound that shows this result to be tight in this context. Their algorithm, however, fails in a slightly

less predictable variant of this model where, in the case of two or more neighbors ofd broadcasting,d might

receive no messageor one message. In fact, Bar Yehuda et al. [7] show that in this new model the lower

bound on broadcasting is increased toΩ(n) rounds.1

We claim that an important first step toward closing the gap between theory and practice with regard

to wireless ad hoc networks is to replace the total collisionmodel with one that better captures the unpre-

dictability of this setting. In the next sub-section we describe a network model, inspired by the weaker

model introduced (somewhat unintentionally) by Bar Yehudaet al. in [7], that we feel achieves this goal.

1.3 Our Network Model

Here we present an overview of our network model and justifications for its constituent assumptions. Be-

cause this study focuses on fault-tolerant consensus—a local coordination problem—our model captures

only a single-hop network of static nodes. Other local coordination problems—such as leader election [57]

andk-selection [16,40]—have also been studied mainly in the context of a single-hop static network. As we

describe in Section 1.4, local consensus provides a fundamental building block for building reliable services

at a network-wide scale. This study, therefore, representsan important first step toward understanding the

necessary conditions for bringing reliability to this unreliable setting.

Basic Assumptions. We model a fully-connected single-hop collection ofn crash-prone wireless devices

running deterministic protocols. By “single-hop,” we meanthat every device is within communication range

of every other device. We assume no mobility. To match the realities of ad hoc deployment, we assume the

valuen is a priori unknown to the devices. And, as both are common, we will consider the case where

devices have access to unique identifiers and the case where they do not. Indeed, one of the questions we

investigate in this study is the advantage of identifiers when attempting to coordinate in such a network.

Synchronized Rounds. We assume synchronized rounds with all devices starting during the same round.

These rounds could be implemented with a well-known clock synchronization algorithm such as RBS [25];

1Note, in the original version of [7] Bar Yehuda et al. mistakenly specified that they were, in fact, working in the total collision
model. As pointed out in [39], and in an errata published later, these results require the ability of a single message to beoccasionally
received in the case of two or more neighbors of a single device broadcasting during the same round.

10

which has proved to work well in practice. For the sake of theoretical consistency, however, we also describe,

in [14], a fault-tolerant round synchronization algorithmthat is provably correct in a partially synchronous

variant of our model. In other words, we show how, starting with drifting clocks, wireless devices can

efficiently build and maintain synchronized broadcast rounds under the various realistic communication

restraints assumed in our model.2

Message Loss. Communication in our model is unpredictable. Specifically,in any round, any device can

lose any subset of the messages broadcast by other devices during the round. Of course, in real networks, it is

usually the case that if asingledevice broadcasts, thenall devices should receive its message. To capture this

reality, we introduce a property calledeventual collision freedom, which states that there exists some round

in every execution after which if a single device broadcaststhen all devices receive its message. The reason

we don’t always assume this property to hold from the first round is that our single-hop network might be a

clique in the middle of a larger multi-hop network. In this case, interference, in the form of broadcasts from

neighboring regions, can cause a single message to be lost. If one assumes eventual collision freedom, then

one is assuming that eventually, through some sort of higher-level coordination, that neighboring regions

will be quiet long enough for the region of interest to accomplish what it needs to accomplish without

outside interference. We study coordination both in executions that satisfy this property and those that do

not.

Collision Detectors. To help mitigate the complications introduced by our communication model, we

also assume receiver-side collision detectors. These detectors are binary. Each round they return to each

device eithernull—a rough indication that the receiver didn’t lose any messages this round—or±—a rough

indication that the receiver lost a message during the round. Notice, these detectors offer no information

concerning the number, content, or source of lost messages.

In a novel break from past work, we do not necessarily assume that these detectors are “perfect.” (that

is, return± if and only if that device lost a message). Though such perfect detectors might be useful in

2The algorithm described in [14] works for an arbitrary multi-hop network of diameterD. It requires aΘ(D) delay to resyn-
chronize everyΘ(1) time. For the special case of a single-hop network, however,whereD = 1, this is quite reasonable, especially
considering the constant factor within theΘ(D) term is less than one round length, and the constant factor intheΘ(1) term is, for
reasonable values of round length and clock drift rates, around1000.

11

theory, they might also be more difficult to realize in practice. Accordingly, we consider many variants of

collision detectors. Specifically, we classify collision detectors in terms of theircompletenessandaccuracy

properties. The former describes the conditions under which a detector guarantees to report a collision. The

latter describes the conditions under which a detector guaranteesnot to report a collision when none actually

occurred. We define them as follows:

• Completeness:A detector satisfies completeness if it guarantees to return± to a device if that device

lost one or more messages during the round.

• Majority Completeness: A detector satisfies majority completeness if it guaranteesto return± to

a device if that device didn’t receive a strict majority of the messages sent during that round. This

property corresponds to the practical reality that often, when many messages are sent, it is possible

for a smallnumber of these messages to be lost in the clutter without detection, but, if too many are

lost, the detector will be able to detect some noise on the channel indicative of this loss.

• Half Completeness: Similar to majority completeness, a detector satisfies halfcompleteness if it

guarantees to return± to a device if that device didn’t receive half or more of the messages sent during

that round. The difference between this property and the last appears to be slight. We introduce them

both, however, because we are able to find a significant complexity gap between them concerning the

number of rounds required to solve consensus.

• Zero Completeness:A detector satisfies zero completeness if it guarantees to return± to a device

if that device lost all of the messages sent during that round. This property is particularly appealing

because of its practicality. A zero complete detector is required only to distinguish between silence

and the loss of all messages. In other words, it need only conduct physical carrier sensing, a process

already well studied and commonly implemented as part of most CSMA protocols used in many

wireless MAC layers; c.f. [1, 61, 68, 72]. In fact, in a study by Deng et al. [18], it is suggested that

there currently exists no technical obstacle to adding carrier-sensing based collision detection support

to the current 802.11 protocol.

• Accuracy: A detector satisfies accuracy if it guarantees to returnnull to a device if that device

received all messages sent during the round.

12

• Eventual Accuracy: A detector satisfies eventual accuracy if there exists a round in every execution

after which it guarantees to be accurate. This weaker property is meant to capture the possibility of

the occasional false positive that might be generated by practical collision detection schemes.

We have begun to explore implementations of collision detectors that match these properties. Early exper-

iments have shown that simple detection schemes can achievezero completeness in 100% of rounds, and

majority completeness in over 90% of rounds. We are confidentthat with further refinement the majority

completeness property can be satisfied in much closer to 100%of rounds. See [14] for a more detailed

discussion of the techniques used in these early detector implementations.

Contention Managers. We also introduce a service, which we call a contention manager, that encapsulates

the task of reducing contention on the broadcast channel. Ineach round, the manager suggests that each

device either beactive or passive. Informally, the former is meant to indicate that a device can try to

broadcast in the upcoming round, and the latter indicates that a device should be silent. Most reasonable

contention manager properties should eventually stabilize on only a small number of devices (namely,1)

being labeled asactive, thus allowing, in executions satisfying eventual collision freedom, for messages to

be delivered without collision. One could imagine, for example, such a service being implemented in a real

system by a backoff protocol. Such protocols have been studied extensively; cf. [16,69].

Our motivation behind encapsulating this task into an abstract service is to free both the designer of

algorithms and the designer of lower bounds from the concerns specific to contention management. As

mentioned, much work has already been done in this field, and we don’t desire, for example, to re-prove

the properties of various backoff protocols for each problem we consider. Instead, we specify time bounds

relative to stabilization points of the contention manager. For example, we show that, using certain types of

collision detectors, consensus can be solved within a constant number of rounds after the contention manager

stabilizes to a single broadcaster, while, using differenttypes of collision detectors, consensus requires an

additionalΘ(log |V |) rounds after this stabilization point (whereV is the set of possible initial values for

consensus).

Exactlywhenthis stabilization point occurs is a property of a specific contention manager implementa-

tion, and it is a detail we do not concern ourselves with in this study. In a sense, by encapsulating contention

13

management in an abstract service we make it easier to focus on the complexity unique to specific problems

separate from the complexity of reducing contention.

Furthermore, this encapsulation provides an important separation between safety and liveness. That is,

if one relies on the contention manager only to ensure liveness (as is the case for all protocols described in

this study), then, even if, in practice, the contention manager satisfies its property only with high probabil-

ity, only the liveness of the protocol becomes probabilistic in nature. This separation, between a guaranteed

safety property and a (potentially) probabilistic liveness property is important for the design ofrobust ap-

plications—such as coordinating actuator-equipped wireless devicesto reconfigure a factor assembly line,

or using a sensor network to aim a missile strike—where the violation of certain safety properties, even

with only a low probability of occurrence, is unacceptable.See [14] for a more detailed discussion of such

applications.

Of course, for the designer who is specifically interested inconstructing exact contention management

bounds in our model, one can simply disregard the contentionmanager, and handle this problem of con-

tention explicitly in their protocol design. We introduce this abstraction only to simplify the examination of

problems, such as consensus, for which the reduction of contention is not the most important issue.

1.4 The Consensus Problem In Wireless Ad Hoc Networks

The focus of this paper is the fault-tolerant consensus problem. In this problem, all devices in a single-hop

network are provided with some initial value from a known value setV . They then execute a protocol that

results in each device deciding somev ∈ V . This protocol must satisfy three properties:

1. Agreement: No two devices decide a different value.

2. Strong Validity: If a device decides valuev, thenv is the initial value of some device. A variant

to this property isUniform Validity , which requires that if all devices share the same initial value

v, thenv is the only possible decision value. To obtain the strongestpossible results, we consider

uniform validity (the weaker of the two) when composing our lower bounds, and strong validity when

composing our matching upper bounds.

3. Termination: All devices that do not crash eventually decide.

14

Fault-tolerant consensus is an important building block for wireless ad hoc networks, as it is a fundamental

primitive for many local coordination activities. For example, devices within a single region of a sensor

network may need to decide on a new offset parameter to calibrate their sensors. It is important that all

devices agree on the same parameter, as, otherwise, some device might produce sensor readings that are

incomparable with the others, destroying attempts to perform meaningful data aggregation.

Similarly, for many activities, such as the selection of a clusterhead for a network clustering scheme,

leader election is necessary. Consensus run on unique identifiers is an obvious, reliable solution to this

problem. Furthermore, many data aggregation systems (e.g.[54]) aggregate data by passing values up a

spanning tree. Due to unreliable communication some valuesmight get lost, weakening the guarantees

that can be made about the final output of the aggregation. To help counter this unreliability, a consensus

protocol can be run among the children of each parent in the tree to agree on the values to be disseminated.

And, as Kumar proposes in [44], consensus can be used to simplify the dissemination of information

from a large sensor network to a common source. Specifically,he suggests that first the devices sub-divide

themselves into non-overlapping clusters. Then, within each cluster, consensus is executed to decide on what

information that cluster wants to return to the source. Thisprocess has the effect of reducing the number of

messages traveling through the network while ensuring thatall devices still have a “vote” in deciding what

information is ultimately returned.

There has been extensive prior work on fault-tolerant consensus in synchronous [53], partially syn-

chronous [23], asynchronous with failure detectors [11, 47] and fully asynchronous [28] message passing

systems with reliable or eventually reliable point-to-point channels. In particular, to tolerate message loss

the work of [23, 47] assumes eventually connected majority component and an a priori known number of

participants. Both of these assumptions are unavailable inthe wireless ad hoc environments we consider.

Santoro and Widmayer [63, 64] study consensus in the presence of unreliable communication, and

show that consensus is impossible if as few as(n−1) of then2 possible messages sent in a round can be

lost. In this study, we circumvent this impossibility result with both our collision detectors and contention

managers; which can be used, in executions that satisfy eventual collision freedom, to provide eventual

message reliability. Also, algorithms in [64] are not applicable in our setting since they rely on a priori

known number of participants, and do not tolerate node failures.

15

In [44], Kumar presents a quorum-based solution to solving fault-tolerant consensus among subsets of

nodes in a multi-hop wireless sensor network. The model, however, differs from ours in that it requires

nodes to have significant advance knowledge of the network topology, and failure behavior is constrained to

maintain specific redundancy guarantees.

Aspnes et al. [3] present a solution for consensus in wireless networks with anonymous but reliable

nodes, and reliable communication. Although anonymity is not a primary focus of our paper, most of our

algorithms are, in fact, anonymous as they do not use node identifiers. In addition, our algorithms work

under more realistic environment assumptions as they tolerate unreliable communication and node crashes.

Koo [37] presents an (almost) tight lower bound for the minimum fraction of Byzantine neighbors

that allows atomic broadcast to be solved in radio networks where each node adheres to a pre-defined

transmission schedule. We do not consider Byzantine failures and, unlike Koo, we do assume unreliable

broadcast.

We presented the justification and main properties of our model in [13]. Many of the algorithms and

lower bounds examined in this study were first described in [15]. And, in [14], we discussed how to imple-

ment the elements of our model in practice.

1.5 Our Results

In this study we examine the fault-tolerant consensus problem under different conditions. We are interested

in determining both how much collision detection information is necessary to solve the problem, and, for

the cases where the problemis solvable, how many rounds are required. We also examine the effect of the

eventual collision freedom property and the availability of unique identifiers on our results. Specifically, we

produce the following:

Impossibility Results Under Eventual Collision Freedom Assumption.

• In Theorem 4 in Section 8.1 we show consensus cannot be solvedwith no collision detector, and in

Theorem 5 in Section 8.2, we show that consensus cannot be solved with a collision detector that

doesn’t satisfy eventual accuracy. These results hold evenif we assume a contention manager that

eventually stabilizes to a singleactive device, and the eventual collision freedom property. In other

words, eventually electing a leader, and giving it the ability to communicate reliably, is not enough

16

to solve consensus. The reason is that without a useful collision detector, one cannot tell when the

system has stabilized to this good point.

Impossibility Result Under No Eventual Collision Freedom Assumption.

• In Theorem 8 in Section 8.4, we show that for executions that do not satisfy eventual collision free-

dom, consensus cannot be solved with a collision detector that satisfies only eventual accuracy. This

holds even if the detector also satisfies completeness and weassume a contention manager that even-

tually stabilizes to a singleactive device. In other words, having a collision detector that is always

complete and eventually accurate is not enough to solve consensus in an environment with no mes-

sage delivery guarantees, as, in this context, collision notifications are the only way to communicate,

and the eventual accuracy conditions makes it difficult to tell whether a notification is real or a false

positive.

Round Complexity Lower Bounds Under Eventual Collision Freedom Assumption.

• In Theorem 6 in Section 8.3.3, we show that, using a collisiondetector that satisfies half complete-

ness and accuracy, no anonymous algorithm can guarantee to solve consensus in less thanΘ(log |V |)

rounds3 for all initial value assignments from value setV . This holds even if we assume a contention

manager that eventually stabilizes to a singleactive device and the eventual collision freedom prop-

erty. In other words, if devices are equipped with detectorsthat can allow half of the messages in a

round to be lost without notification, then they are reduced to transmitting their values at a rate of one

bit per round. Roughly speaking, this is due to the fact that such a detector can allow the network to

partition into two equal-sized groups that will remain unaware of each other unless their exists a round

in which processes from one group broadcast while processesfrom the other are silent. The only way

for anonymous processes to generate such an asymmetry is to use the bits of their initial values as a

broadcast pattern.

• In Theorem 7 and Corollary 3 in Section 8.3.4, we show that, for the case of non-anonymous al-

gorithms, the previous half completeness bound can be refined to Ω(min{log |V |, log |I|
n
}) rounds,

3All bounds described in this sub-section are relative to thefirst round after which the contention manager has stabilized to a
singleactive process and the eventual collision freedom property holds.

17

whereI is the set of all possible identifiers, andn is the number of nodes participating. Once again,

this holds even if we assume a contention manager that eventually stabilizes to a singleactive device

and the eventual collision freedom property. This indicates the perhaps surprising reality that unique

identifiers, roughly speaking, do not help solve consensus faster. That is, ifI is large relative toV (as

is often the case, because identifiers in most real networks either consist of many randomly chosen

bits or a long MAC address), then the lower bound is asymptotically the same for both the anonymous

and non-anonymous case.

Round Complexity Lower Bound Under No Eventual Collision Freedom Assumption.

• In Theorem 9 in Section 8.5, we show that, for executions thatdo not satisfy eventual collision free-

dom, no anonymous protocol that does not use a contention manager can solve consensus in less

thanΘ(log |V |) rounds, even if we assume a perfect detector (e.g. complete and accurate). In other

words, for an environment that never guarantees the successful transmission of a message, processes

are reduced to spelling out their value bit-by-bit (i.e., a silent round indicates0, a collision notification

indicates1). We conjecture that this bound holds even if we assume a leader election service and

unique identifiers, as neither helps processes communicatea value faster than one bit per round.

Upper Bounds Under Eventual Collision Freedom Assumption

• In Section 7.1 we present ananonymousprotocol (Algorithm 1) that solves consensus inO(1) rounds

if: (1) each process has access to a collision detector that is majority complete and eventually accurate,

and a contention manager that eventually stabilizes to no more than oneactive process per round; (2)

the execution satisfies eventual collision freedom.4

• In Section 7.2 we present ananonymousprotocol (Algorithm 2) that solves consensus inΘ(log |V |)

rounds if: (1) each process has access to a collision detector that is zero complete and eventually

accurate, and a contention manager that eventually stabilizes to no more than oneactive process per

round; (2) the execution satisfies eventual collision freedom. This algorithm matches theΘ(log |V |)

lower bound for collision detectors that are half-completeor weaker.

4As with the lower bounds, all upper bounds are relative to thefirst round after which the contention manager has stabilized to
a singleactive process and the eventual collision freedom property holds.

18

• In Section 7.3 we describe, informally, anon-anonymousprotocol that solves consensus inΘ(min{log |V |, log |I|})

rounds, whereI is the size of the ID space, if: (1) each process has access to acollision detector that is

zero complete and eventually accurate, and a contention manager that eventually stabilizes to no more

than oneactive process per round; (2) the execution satisfies eventual collision freedom. This protocol

is a simple variant of Algorithm 2, and, for the case ofI being large relative toV (which is typically

true in real deployments), matches our non-anonymous lowerbound ofΩ(min{log |V |, log |I|
n
}). For

the case whereI is small, this algorithm comes within a factor of1
n

of this bound. Note, however,

thatn describes only the number of nodes in a single-hop area of a network—n is, in this respect, a

constant, as only so many devices can physically be fit into a single broadcast radius (V andI, on the

other hand, can be arbitrarily large).

Upper Bounds Under No Eventual Collision Freedom Assumption

• In Section 7.4, we present ananonymousprotocol (Algorithm 3) that solves consensus inΘ(log |V |)

rounds if the process has access to a collision detector thatis zero complete and accurate. This

algorithm matches theΘ(log |V |) lower bound for collision detectors that are accurate and executions

that do not satisfy eventual collision freedom.

19

2 Preliminaries

• Given two multisetsM1 andM2, M1 ⊆M2 indicates that for allm ∈ M1: m ∈M2 andm does not

appear inM1 more times than it appears inM2.

• Given two multisetsM1 andM2, M1
⋃

M2 indicates the multiset union ofM1 andM2 in which any

elementm ∈M1 (resp.m ∈M2) appears the total number of times thatm appears inM1 andM2.

• We say a multisetM is finite if it is described by only a finite number of (value, number) pairs.

• For a finite multisetM , described by a sequence of (value, number) pairs, we use|M | to indicate the

sum of the number components of these pairs, that is, the total number of instances of all values inM .

• For a finite set of valuesV , we useMulti(V) to indicate the set of all possible finite multisets defined

overV .

• For a finite setS, we useMS(S) to indicate the multiset containing one of each element inS.

• For a finite multisetM , we use the notationSET (M) to indicate the set containing every unique

value that appears inM .

20

3 The System Model

3.1 Model Definitions

We model a synchronous single-hop broadcast network with non-uniform message loss, contention man-

agement, and collision detection. Formally, we defineI to be the finite set of all possible process indices,

andM to be a fixed message alphabet. We then provide the following definitions:

Definition 1 (Process).A processis some automatonA consisting of the following components:

1. statesA, a potentially infinite set ofstates. It describes all possible states ofA.

2. startA, a non-empty subset ofstatesA known as thestart states. It describes the states in whichA

can begin an execution.

3. failA, a single state fromstatesA known as thefail state. We will use this state to model crash

failures in our model.

4. msgA, a message generation function that mapsstatesA × {active, passive} to M
⋃
{null}, where

M is our fixed message alphabet andnull is a placeholder indicating no message. We assume

msgA(failA, ∗) = null. This function describes what message (ornull if no message) is gener-

ated byA for each combination of a state and advice from a contention manager. As we will soon

describe, the adviceactive indicates that a process should try to send a message, whilepassive indi-

cates that it should not (due to contention). As is made obvious by this definition, the process is under

no obligation to follow this advice. For the special case of the fail state, we constrain the function to

always returnnull regardless of the contention manager advice.

5. transA, a state transition function mappingstatesA×Multi(M)×{±, null} × {active, passive}

to statesA, whereMulti(M) is the set of all possible finite multisets defined overM . We assume

transA(failA, ∗, ∗, ∗) = failA. This function describes the evolution of the states ofA based on the

current state, the received messages, the collision detector advice, and the contention manager advice.

For the special case of the fail state, we force the process tostay in the fail state. This models a process

crash failure (from which there is not restarting).

21

Definition 2 (Algorithm). An algorithm is a mapping fromI to processes.

Notice, by this definition, it is perfectly valid for some algorithmA to encodei in the state of automaton

A(i), for all i ∈ I. In some scenarios, however—especially those involving adhoc wireless networks

consisting of a large number of small, low-cost devices—it might be useful to consider only algorithms that

provideno differentiation among the processes. This corresponds to the practical case where devices are

assumed to have no unique IDs. We capture this possibility with the following algorithm property:

Definition 3 (Anonymous). An algorithmA is anonymousif and only if: ∀i, j ∈ I,A(i) = A(j).

Next, we define aP -transmission traceand aP -CD trace, each defined over a non-empty subsetP of I.

The former will be used to describe, for a given execution involving the indices inP , how many processes

broadcast a message and how many receive a message, at each round. The latter will be used to describe,

for a given execution also involving processes inP , what collision detector advice each process receives at

each round.

Definition 4 (P -transmission trace). An P -transmission trace, whereP is a non-empty subset ofI, is an

infinite sequence of ordered pairs(c1, T1), (c2, T2), ... where eachci is a natural number less than or equal

to |P |, and eachTi is a mapping fromP to [0, ci].

Definition 5 (P -CD trace). A P -CD trace, whereP is a non-empty subset ofI, is an infinite sequence of

mappings,CD1, CD2, ... where eachCDi maps fromP to {±, null}.

We can now formally define a collision detector, for a given set, P , of indices, as a function fromP -

transmission traces to a set ofP -CD traces. That is, given a description of how many message were sent in

each round, and how many messages each process received in each round, the collision detector describes

which sequences of collision detector advice are valid. Notice, this definition prevents the collision detector

from making use of the identity of the senders or the contentsof the messages. This captures our practically

motivated ideal of a receiver-side device that only attempts to distinguish whether or not some messages

broadcast during the round were lost.

22

Definition 6 (P -Collision Detector). A P -collision detector, whereP is a non-empty subset ofI, is a

function fromP -transmission traces to non-empty sets ofP -CD traces.

To define a contention manager, we first define, as we did for thecollision detector, the relevant type of

trace. Here, this is aP -CM trace which simply describes which contention manager advice (eitheractive

or passive) is returned to each process during each round.

Definition 7 (P -CM trace). A P -CM trace, whereP is a non-empty subset ofI, is an infinite sequence of

mappings,CM1, CM2, ... where eachCMi maps fromP to {active, passive}.

We can now formally define a contention manager, for a given set, P , of indexes, as a set ofP -CM traces.

That is, a contention manager is simply defined by the full setof possible advice sequences that it might

return. Notice, this separates the contention manager fromthe communication behavior occurring during

the execution. We do not mean to imply that our model capturesonly oblivious contention management

schemes. The separation of the formal contention manager definition from other aspects of the execution

was enacted to promote clarity in our theoretical model. We assume, in practice, that a contention manager

might be actively monitoring the channel and, perhaps, evengenerating control messages of its own. For the

purposes of this framework, however, we are concerned only with the eventual guarantees of a contention

manager (i.e., it eventually stabilizes to a singleactive process) not the details of how these guarantees are

met. As we described in the introduction, this latter point is already well-studied and can obscure other

aspects of the problem at hand that might be interesting in their own right.

Definition 8 (P -Contention Manager). A P -contention manager, whereP is a non-empty subset ofI, is

a non-empty set ofP -CM traces.

Next we define an environment, which describes a group of process indices, a collision detector, and a

contention manager. Roughly speaking, an environment describes the platform on which we can run an

algorithm.

23

Definition 9 (Environment). An environment in our model consists of:

• P , a non-empty subset ofI,

• aP -collision detector, and

• aP -contention manager.

For a given environmentE, we use the notationE.P to indicate the set of process indices described by

E, E.CD to indicate the collision detector described byE, andE.CM to indicate the contention manager

described byE.

Finally, we define a system, which is the combination of an environment with a specific algorithm.

Because an environment describes a set of process indexes, and an algorithm is a mapping from process

indexes to processes, a system describes a set of specific processes and the collision detector and contention

manager that they have access to. Notice, because we can combine any algorithm with any environment, the

processes described by a system will have noa priori knowledge of the number of other processes also in

the system.

Definition 10 (System).A system in our model is a pair(E,A), consisting of an environment,E, and an

algorithm,A.

3.2 Executions and Indistinguishability

Given a system(E,A), we introduce the following definitions:

• A state assignmentfor E.P is a mappingS from E.P to
⋃

i∈E.P statesA(i), such that for every

i ∈ E.P , S(i) ∈ statesA(i). It will be used, in the context of an execution, to describe,for a single

round, the current state of each process in the system.

• A message assignmentfor E.P is a mapping fromE.P to M ∪{null}. It will be used, in the context

of an execution, to describe, for a single round, the messagebroadcast (if any) by each process in the

system.

24

• A message set assignmentfor E.P is a mapping fromE.P to Multi(M). It will be used, in the

context of an execution, to describe, for a single round, themessages received (if any) by each process

in the system.

• A collision advice assignmentfor E.P is a mapping fromE.P to {null,±}. It will be used, in the

context of an execution, to describe, for a single round, thecollision detector advice returned to each

process in the system.

• A contention advice assignmentfor E.P is a mapping fromE.P to {active, passive}. It will be

used, in the context of an execution, to describe, for a single round, the contention manager advice

returned to each process in the system.

We can now provide the following formal definition of an execution:

Definition 11 (Execution). An executionof a system(E,A) is an infinite sequence

C0,M1, N1,D1,W1, C1,M2, N2,D2,W2, C2, ...

where eachCr is a state assignment forE.P , eachMr is a message assignment forE.P , eachNr is a

message set assignment forE.P , eachDr is a collision advice assignment forE.P , and eachWr is a

contention advice assignment forE.P . Informally speaking,Cr represents the system state afterr rounds,

while Mr andNr represent the messages that are sent and received at roundr, respectively.Dr describes the

advice returned from the collision detector to each processin roundr, andWr describes the advice returned

from the contention manager to each process in roundr. We assume the following constraints:

1. For alli ∈ E.P : C0[i] ∈ startA(i).

2. For all i ∈ E.P and r > 0: either Cr[i] = transA(i)(Cr−1[i], Nr [i],Dr[i],Wr[i]) or Cr[i] =

failA(i).

3. For alli ∈ E.P andr > 0: Mr[i] = msgA(i)(Cr−1[i],Wr[i]).

4. Nr[i] ⊆
⋃

j∈E.P MS({Mr[j]} − {null}).

5. If Mr[i] 6= null, thenMr[i] ∈ Nr[i].

25

6. LettT be theP -transmission trace(c1, T1)(c2, T2), ... where for alli > 0: ci = |{j|j ∈ P and Mi[j] 6=

null}|; and, for alli > 0 andj ∈ P : Ti[j] = |Ni[j]|. That is,tT is the uniqueP -transmission trace

described by the message assignments in this execution. LettCD be theP -CD traceCD1, CD2, ...

where for alli > 0 and for allj ∈ P : CDi[j] = Di[j]. That is,tCD is the uniqueP -CD trace

described by the collision advice assignments. ThentCD ∈ E.CD(tT).

7. Let tCM be theP -CM traceCM1, CM2, ... where for alli > 0 and for allj ∈ P : CMi[j] = Wi[j].

That is,tCM is the uniqueP -CM trace described by the contention advice assignments. ThentCM ∈

E.CM .

Informally, constraints1 and2 require that each process start from an initial state and subsequently evolve

its state according to its transition function. Notice, in constraint2 it is possible for a process to instead enter

its fail state. Once here, by the constraints of our process definition, it can never leave this state or broadcast

messages for the remainder of an execution. We use this to model crash failures.

Constraint3 requires that processes broadcast according to their message transition function. Constraint

4 requires the receive behavior to uphold integrity and no-duplication, as it specifies that the receive set of a

process for a given round must be a sub-multiset of the mutliset defined by the union of all messages broad-

cast that round. Constraint5 requires broadcasters to always receive their own message.Notice, however,

that message loss is otherwise un-constrained.Any process can lose any arbitrary subset of messages sent

by other processes during any round.Similarly, we never force message loss. Even if every process in

the system broadcasts, it is still possible that all processes will receive all messages. Finally, constraints6

and7 require the collision advice and contention advice to conform to the definitions of the environment’s

collision detector and contention manager, respectively.

We use the terminologyk-round execution prefixto describe a prefix of an execution sequence that describes

only the firstk rounds (i.e., the sequence throughCk).

Definition 12 (Indistinguishability). Let α andα′ be two executions, defined over systems(E,A) and

(E′,A), respectively—that is, the same algorithm in possibly different environments. For a giveni ∈

E.P ∩E′.P , we sayα is indistinguishable fromα′, with respect toi, through roundr, if C0[i] is the same in

26

both executions, and, for allk, 1 ≤ k ≤ r, the state (Ck[i]), message (Mk[i]), message set (Nk[i]), collision

advice (Dk[i]), and contention advice (Wk[i]) assignment values for roundk and indexi are also the same in

both. That is, inα andα′,A(i) has the same sequence of states, the same sequence of outgoing messages, the

same sequence of incoming messages, and the same sequence ofcollision detector and contention manager

advice up to the end of roundr.

3.3 Process Failures and Message Loss

Process Failures Any number of processes can fail by crashing (that is, permanently stop executing). This

is captured in our formal model by the fail state of each process. As described in our execution definition,

any process, during any round, can be non-deterministically transitioned into its fail state. Once there, by

the definition of our process, it can never leave the fail state and never broadcast any message. We use the

following definition to distinguish crashed processes fromnon-crashed processes:

Definition 13 (Correct). Let α be an execution of system(E,A). For a giveni ∈ E.P , we say process

A(i) is correct inα if and only if for all Cr ∈ α, Cr[i] 6= failA(i). That is,A(i) never enters its fail state

duringα.

Message Loss As described above, our execution formalism places no explicit limit on message loss. Any

process in any round can fail to receive any subset of messages sent by other processes. Recall, however,

that in real systems, if only a single process broadcasts during a given round, we might reasonably expect

that message to be successfully received. This might notalwaysbe true, as, for example, interference

from outside of our single-hop area could occasionally cause non-uniform message disruption, but we could

expect this property to holdeventually.5 Accordingly, we define a communication property, which we refer

to as theeventual collision freedom (ECF)property, that captures this behavior.

Property 1 (Eventual Collision Freedom).

Let α be an execution of system(E,A), and lettT be the uniqueP -transmission trace described byα. We

sayα satisfies the eventual collision freedom property if there exists a roundrcf such that for allr ≥ rcf

5As is often the case in distributed system definitions, the notion that a property holds for the rest of an execution starting at a
certain, unknown point, is a generalization of the more realistic assumption that the property holds for a sufficiently long duration.

27

and all i ∈ E.P : if tT (r) = (c, T) and c = 1, thenT (i) = 1. That is, there exists a roundrcf such that

for any round greater than or equal torcf , if only a single process broadcasts then all processes receive its

message.

28

4 Contention Managers

As described in the introduction, in our model, the contention manager encapsulates the task of reducing

contention on the broadcast channel. In each round, the manager suggests that each process either beactive

or passive. Informally, the former is meant to indicate that a process can try to broadcast in the upcoming

round, and the latter indicates that a process should be silent. Most reasonable contention manager properties

should eventually stabilize on only a small number of processes (namely,1) being labeled asactivein each

round, thus allowing, in executions satisfying eventual collision freedom, for messages to be delivered

without collisions.

4.1 The Wake-up and Leader Election Services

A natural contention manager property can be defined as follows:

Property 2 (Wake-up Service). A givenP -contention manager,SCM , is a wake-up service if for eachP -

CM tracetCM ∈ SCM there exists a roundrwake such that for allr ≥ rwake: |{i|i ∈ P and tCM(r)(i) =

active}| = 1. That is, for all rounds greater than or equal torwake, only a single process is told to be

active.

Notice, however, that this property maintains no fairness conditions. That it is, it only specifieshow many

processes will eventually be active in a given round, notwhichprocesses these will be. A reasonable exten-

sion of this property might guarantee stabilization to a single leader:

Property 3 (Leader Election Service). A givenP -contention manager,SCM , is a leader election

service if for eachP -CM tracetCM ∈ SCM there exists a roundrlead such that for allr ≥ rlead, |{i|i ∈

P and tCM (r)(i) = active}| = 1, and for all r > rlead , if tCM (r)(i) = active, thentCM (r − 1)(i) =

active. That is, for all rounds greater than or equal torlead, the same single process is told to beactive.

Notice, by definition, a leader election service is also a wake-up service. To obtain the strongest possible

results, we will use the stronger leader election service when constructing lower bounds and the weaker

wake-up service when constructing the matching upper bounds.

To solve other interesting problems, one could might imagine a more expansive property that includes,

29

for example, the guarantee thatall processes get a chance to be the singleactiveprocess. For example, one

might describe ak-wake-up service that guaranteesall processesk rounds of being the onlyactive process

in the system. There exist simple problems, such as countingthe number of anonymous processes in the

system, that can easily be shown to be solvable with ak-wake-up service, but impossible with a leader

election service (and, thus, wake-up service as well).

4.2 Contention Manager Classes

A contention manager class is simply the set ofall contention managers that satisfy a specific property. In

this paper, we consider three such classes. The first is theWS class which we define to include all wake-up

services. The second is theLS class which we define to include all leader-election services. To aid the

definition of our third class, we first define theP -contention managerNOCMP , whereP is a non-empty

subset ofI, to be the trivial contention manager that assignsactive to all process indices in all rounds. Using

this definition, we define theNoCM class to be the set consisting ofNOCMP for all non-empty subsets

P ⊆ I.

4.3 The Maximal Leader Election Service

To aid the construction of lower bounds, it will prove usefulto define a contention manager that captures, for

a given set,P , of process indices, all possible contention manager behaviors that satisfy the leader election

service property for this set. We call this themaximal leader election service forP as it represents the

maximal element in the set of allP -contention managers that satisfy the leader election service property.

Formally, we use the notationMAXLSP to refer to this contention manager for a givenP , and provide the

following definition:

Definition 14 (MAXLSP). LetP be any non-empty subset ofI, and letCMP be the set of allP -contention

managers that are leader election services.MAXLSP is theP -contention manager described by the set

{tCM |∃S ∈ CMP s.t. tCM ∈ S}.

30

5 Collision Detectors

We classify collision detectors in terms of theircompletenessandaccuracyproperties. The former describes

the conditions under which a detector guarantees to report acollision. The latter describes the conditions

under which a detector guaranteesnot to report a collision when none actually occurred.

5.1 Completeness Properties

We say that a collision detector satisfiescompletenessif it guarantees to report a collision at any process that

lost a message. We formalize this property as follows:

Property 4 (Completeness). A givenP -collision detector,Q, satisfies completeness if and only if for all

pairs (tT , tCD)—wheretT is anP -transmission trace,tCD is anP -CD trace, andtCD ∈ Q(tT)—and for

all r > 0 andi ∈ P , the following holds: iftT (r) = (c, T) andT (i) < c, thentCD(r)(i) = ±. That is, if a

process fails to receive all messages then that process detects a collision.

As we discuss in the introduction, in many practical scenarios, the MAC layer can reliably detect collisions

only if a certain fraction of the messages being broadcast ina round is lost. To this end, it is reasonable to

consider weaker completeness properties, such as the following:

A collision detector satisfiesmajority completenessif it guarantees to report a collision at any process that

did not receive a majority of the messages sent during the round. We formalize this property as follows:

Property 5 (Majority Completeness).

A givenP -collision detector,Q, satisfies majority completeness if and only if for all pairs(tT , tCD)—where

tT is anP -transmission trace,tCD is anP -CD trace, andtCD ∈ Q(tT)—and for allr > 0 andi ∈ P , the

following holds: iftT (r) = (c, T) andc > 0 andT (i)/c ≤ 0.5, thentCD(r)(i) = ±. That is, if a process

fails to receive a strict majority of the messages then that process detects a collision.

A collision detector satisfieshalf completenessif it guarantees to report a collision at any process that re-

ceives less than half of the messages sent during the round. Notice the close similarity between this property

and majority completeness. The two properties differ only by a single message. That is, the half complete-

31

ness property allows a process to lose one more message than the majority completeness property before

guaranteeing to report a collision. We formalize this property as follows:

Property 6 (Half Completeness).

A givenP -collision detector,Q, satisfies half completeness if and only if for all pairs(tT , tCD)—wheretT

is anP -transmission trace,tCD is anP -CD trace, andtCD ∈ Q(tT)—and for allr > 0 and i ∈ P , the

following holds: iftT (r) = (c, T) andc > 0 andT (i)/c < 0.5, thentCD(r)(i) = ±. That is, if a process

fails to receive half of the messages then that process detects a collision.

Finally, a collision detector satisfieszero completenessif it guarantees to report a collision at any process

that losesall of the messages broadcast during that round. This final definition is appealing because of its

practicality. It requires only the ability to distinguish silence from noise (a problem already solved by the

carrier sensing capabilities integrated into many existing wireless MAC layers). We formalize this property

as follows:

Property 7 (Zero Completeness).

A givenP -collision detector,Q, satisfies zero completeness if and only if for all pairs(tT , tCD)—wheretT

is anP -transmission trace,tCD is anP -CD trace, andtCD ∈ Q(tT)—and for allr > 0 and i ∈ P , the

following holds: iftT (r) = (c, T) andc > 0 andT (i) = 0, thentCD(r)(i) = ±. That is, if a process fails

to receive any message then that process detects a collision.

5.2 Accuracy Properties

A collision detector satisfiesaccuracyif it guarantees to report a collision to a process only if that process

failed to receive a message. We formalize this property as follows:

Property 8 (Accuracy).

A givenP -collision detector,Q, satisfies accuracy if and only if for all pairs(tT , tCD)—wheretT is an

P -transmission trace,tCD is anP -CD trace, andtCD ∈ Q(tT)—and for allr > 0 andi ∈ P , the following

holds: if tT (r) = (c, T) andT (i) = c, thentCD(r)(i) = null. That is, if a process receives all messages

then that process does not detect a collision.

32

Complete maj-Complete half-Complete 0-Complete

Accurate AC maj-AC half-AC 0-AC

Eventually Accurate ♦AC maj-♦AC half-♦AC 0-♦AC

Figure 1: A summary of collision detector classes.

In order to account for the situation in which arbitrary noise can be mistaken for collisions (for example,

colliding packets from a neighboring region of a multi-hop network) we will also consider collision detec-

tors satisfying a weaker accuracy property. Specifically, we say that a collision detector satisfieseventual

accuracyif in every execution there exists a round after which the detector becomes accurate. Because this

round differs in different executions, algorithms cannot be sure of when this period of accuracy begins, so

they must be resilient to false detections.

Property 9 (Eventual Accuracy).

A givenP -collision detector,Q, satisfies eventual accuracy if and only if there exists a round racc such that

for all pairs (tT , tCD)—wheretT is anP -transmission trace,tCD is anP -CD trace, andtCD ∈ Q(tT)—

and for all r > 0 and i ∈ P , the following holds: iftT (r) = (c, T) and r ≥ racc and T (i) = c, then

tCD(r)(i) = null. That is, starting at some roundracc, if a process receives all messages than that process

does not detect a collision.

Notice that we don’t consider eventual completeness properties. It is easy to show that consensus is im-

possible if a collision detector might satisfy no completeness properties for ana priori unknown number of

rounds. It remains an interesting open question, however, to consider what might be possible with detectors

that guarantee a weak completeness property at all times andsatisfy a stronger completeness property even-

tually. For example, using such a detector, can one design analgorithm that terminates quickly in the case

where the strong property holds from the first round?

5.3 Collision Detector Classes

In this paper, we focus, for the most part, on collision detectors that satisfy various combinations of the

completeness and accuracy guarantees described above. To aid this discussion we define severalcollision

detector classes, where a collision detector class is simply the set ofall collision detectors that satisfy a

33

specific collection of properties. The main classes we consider are described in Table 1. You will notice

that we provide notation for eight different classes, each representing a different combination of the two

accuracy and four completeness properties presented in this section. For example, the half-♦AC class is the

set of all collision detectors, defined over all index setsP , that satisfy both half completeness and eventual

accuracy.

When we construct upper bounds, we assume only that we have some detector from a given class. When

we derive lower bounds for a given class, we, as the lower bound designer, are free to choose any detector

from this class.

Before continuing, we introduce two special collision detection classes for which notation is not in-

cluded in Figure 1. The first is theNoACC class, which we define to include all collision detectors that

satisfy completeness.

To aid the definition of our second special class, we first define theP -collision detectorNOCDP ,

whereP is a non-empty subset ofI, to be the trivial detector that assigns± to all process indices in all

rounds for allP -transmission traces. Using this definition, we define theNoCD class to be the set consisting

of NOCDP for all non-empty subsetsP ⊆ I. We establish the following useful lemma which will aid our

lower bound construction:

Lemma 1. The collision detector class NoCD is a subset of the class NoACC (NoCD⊆ NoACC).

Proof. Follows directly from the definitions. �

5.4 Maximal Collision Detectors

It will prove useful, in the construction of lower bounds, todefine collision detectors that capture all possible

behaviors for a given class. Specifically, we use the notation MAXCDP (C) to describe theP -collision

detector that returns, for a givenP -transmission trace, everyP -CD trace that results from aP -collision

detector inC. Formally:

Definition 15 (MAXCDP (C)). Let P be any non-empty subset ofI, and letC be a set of collision

detectors that includes at least oneP -collision detector. ThenMAXCDP (C) is a P -collision detector

defined as follows: For anyP -transmission tracet, MAXCDP (C)(t) =
⋃

Q∈C,Q is a P−CD Q(t).

34

5.5 The Noise Lemma

Before continuing, we note the following lemma (and associated corollary), that capture an important guar-

antee about the behavior shared by all collision detector classes considered in this study:

Lemma 2. For any executionα of system(E,A), whereE.CD satisfies zero completeness, andtT and

tCD are the unique transmission and collision advice traces described byα, respectively, the following

guarantee is satisfied: For allr > 0 and i ∈ E.P , if tT (r) = (c, T) and c > 0, then eitherT (i) > 0 or

tCD(r)(i) = ±. That is, if one more or processes broadcast in roundr, then all processes either receive

something or detect a collision.

Proof. The zero completeness properties guarantees a collision notification in the case where one or mes-

sages are broadcast but none are received. �

Notice that, by definition, completeness, majority completeness, and half completeness all imply zero com-

pleteness. Accordingly, Lemma 2 holds for systems containing a collision detector that satisfiesanyof our

completeness properties.

Corollary 1 (Lemma 2). For any executionα of system(E,A), whereE.CD satisfies zero complete-

ness, andtT and tCD are the unique transmission and collision advice traces described byα, respectively,

the following guarantee is satisfied: For allr > 0 and i ∈ E.P , if tT (r) = (c, T) and T (i) = 0 and

tCD(r)(i) = null, thenc = 0. That is, if any process receives nothing and detects no collision, then no

process broadcast.

Proof. Follows directly from Lemma 2. �

35

6 The Consensus Problem and Related Definitions

In the consensus problem, each process receives as input, atthe beginning of the execution, a value from

a fixed setV , and eventually decides a value fromV .6 We say the consensus problem issolvedin this

execution if and only if the following three properties are satisfied:

1. Agreement: No two processes decide different values.

2. Strong Validity: If a process decides valuev, thenv is the initial value of some process. A variant

to this property isUniform Validity , which requires that if all processes share the same initialvalue

v, thenv is the only possible decision value. To obtain the strongestpossible results, we consider

uniform validity (the weaker of the two) when proving our lower bounds, and strong validity when

proving our matching upper bounds.

3. Termination: All correct processes eventually decide.

These properties should hold regardless of the number of process failures. To reason about the guarantees

of a given consensus algorithm we need a formal notation for describing exactly the conditions under which

the algorithm guarantees to solve the consensus problem. Toaccomplish this, we first offer the following

two definitions that describe large classes of environmentsthat share similar properties:

Definition 16 (E(D,M)). For any set of collision detectors,D, and set of contention managers,M ,

E(D,M) = {E|E is an environment such thatE.CD ∈ D andE.CM ∈M}.

Definition 17 (En(D,M)). For any set of collision detectors,D, set of contention managers,M , and

positive integern, En(D,M) = {E|E ∈ E(D,M) and|E.P | = n}.

To obtain the strongest possible results, we use the first definition when proving upper bounds and the

second when proving lower bounds. We now offer two differentnotations for describing the guarantees of

an algorithm. The first specifies correctness only for executions that satisfy eventual collision freedom, the

second requires correctness for all executions.
6To capture the notion of an “input value” in our formal model,assume a process has one initial state for each possible initial

value. Therefore, the collection of initial states at the beginning of an execution (that is, the vectorC0) describes the initial value
assignments for that execution. To capture the notion of “deciding” in our model, assume each process has one (or potentially
many) special decide states for each initial value. By entering a decide state forv, the process decidesv.

36

Definition 18 ((E ,V ,ECF)-consensus algorithm).For any set of environments,E , and value set,V , we

say algorithmA is an (E ,V ,ECF)-consensus algorithm if and only if for all executionsα of system(E,A),

whereE ∈ E , initial values are assigned fromV , andα satisfies eventual collision freedom,α solves

consensus.

Definition 19 ((E ,V ,NOCF)-consensus algorithm).For any set of environments,E , and value set,V , we

say algorithmA is an (E ,V ,NOCF)-consensus algorithm if and only if for all executionsα of system(E,A),

whereE ∈ E and initial values are assigned fromV , α solves consensus.

Finally, before addressing specific algorithms, we presentthe following general definition, and associated

lemma, which will facilitate the discussion to follow:

Definition 20 (Communication Stabilization Time (CST)). Let α be an execution of system(E,A),

whereα satisfies eventual collision freedom,E.CM is a wake-up service, andE.CD satisfies eventual accu-

racy. TheCommunication Stabilization Timeof α (also denotedCST (α)) is equal tomax{rcf , racc, rwake},

wherercf , racc, andrwake are the rounds posited by the eventual collision freedom, eventual accuracy, and

wake-up service properties, respectively.

Lemma 3. Letα be an execution of system(E,A), whereα satisfies eventual collision freedom,E.CM is

a wake-up service, andE.CD satisfies eventual accuracy. For any roundr ≥ CST (α), where no process

returnedpassive by the contention manager broadcasts, the following conditions are true:

1. Each process receives every message broadcast inr.

2. No process detects a collision inr.

Proof. Because theCST (α) occurs at or afterrwake, only a single process will be returnedactive by

the contention manager in roundr. By assumption, therefore, if any process broadcasts during r, it will

be this single process returnedactive. Because the execution satisfies eventual collision freedom, and

CST (α) ≥ rcf , if this process broadcasts, then every process receives its message. And, finally, because

CST (α) ≥ racc, we are guaranteed no spurious collision notifications inr. The two hypotheses follow

directly. �

37

7 Consensus Algorithms

Pseudocode conventions.To simplify the presentation of the algorithms we introducethe following pseu-

docode conventions: For a given round and processpi, bcast(m)i specifies the message,m, broadcast by

pi during the current round, andrecv()i describes the multiset of messages (potentially empty) that pi re-

ceives during the current round. As defined in Section 2, we use the notationSET (recv()i) to indicate the

set containing every unique value in the multisetrecv()i. We useCD()i andCM()i to refer to the advice

returned topi, during the current round, by its collision detector and contention manager, respectively. In

Algorithm 2, we use the conventionV 0,1 to indicate a binary representation of value setV . That is,V 0,1

replaces each value inV with a unique binary string. We assume that these sequences are each of length

⌈lg |V |⌉ (which is, of course, enough to encode|V | unique values). Similarly, we use bracket-notation to

access a specific bit in one of these strings. For example, ifestimatei ∈ V 0,1, thenestimatei[b], for

1 ≤ b ≤ ⌈lg |V |⌉, indicates thebth bit in the binary sequenceestimatei. And, finally, we usedecide(v)i to

indicate that processpi decides valuev, andhalti to indicated that processpi halts.

Roadmap. We start in Section 7.1 by describing an anonymous algorithmthat solves consensus, in ex-

ecutions satisfying eventual collision freedom, using a wake-up service and any collision detector from

maj-♦AC. As, by definition,AC, ♦AC, and maj-AC are all subsets of the class maj-♦AC, this algorithm

solves consensus for these detectors as well. The algorithmguarantees termination in a constant number of

rounds after the communication stabilization time.

We then proceed in Section 7.2 to describe an anonymous algorithm that solves consensus, in executions

satisfying eventual collision freedom, using a wake-up service and any collision detector from 0-♦AC. All

other collision detector classes we consider (with the exception of NoCD and NoACC) are subset of 0-

♦AC, making this a general solution to the problem in all practical contexts. The algorithm guarantees

termination inΘ(lg(|V |) rounds after the communication stabilization time. In Section 7.3 we describe a

non-anonymous variant of this algorithm that guarantees termination inmin{lg |V |, lg |I|} rounds after the

communication stabilization time.

Finally, in Section 7.4 we describe an anonymous algorithm that solves consensus, even in executions

that don’t satisfy eventual collision freedom, using any collision detector from 0-AC. The algorithm termi-

nates inO(lg(|V |) rounds after failures cease.

38

Algorithm 1: Solving consensus with ECF and a collision detector from maj- ♦AC.

1 Process Pi:
2 estimatei ∈ V, initially set to the initial value of processPi

3 phasei ∈ {proposal, veto}, initially proposal
4 For each roundr, r ≥ 1 do:
5 if (phasei = proposal) then
6 if CM()i = activethen
7 bcast(estimatei)i

8 messagesi← SET(recv()i)
9 CD-advicei← CD()i

10 if (CD-advicei 6= ±) and (|messagesi| > 0) then
11 estimatei←min{messagesi}
12 phasei← veto
13 else if(phasei = veto) then
14 if (CD-advicei = ±) or (|messagesi| > 1) then
15 bcast(veto)i

16 veto-messagesi← recv()i

17 CD-advicei← CD()i

18 if (veto-messagesi = ∅) and (CD-advicei = null) and (|messagesi| = 1) then
19 decide(estimatei)i and halti
20 phasei← proposal
21

7.1 Anonymous Consensus with ECF and Collision Detectors inmaj-♦AC

The pseudo-code in Algorithm 1 describes an anonymous (E(maj-♦AC,WS),V ,ECF)-consensus algorithm.

That is, it guarantees to solve consensus in any execution, satisfying eventual collision freedom, of an

environment with a wake-up service and collision detector from maj-♦AC. This implementation tolerates

any number of process failures and terminates byCST + 2.

The algorithm consists of two alternating phases: aproposalphase and avetophase. In the proposal

phase, every process that was returned the adviceactive from its contention manager broadcasts its current

estimate. If a process hears no collisions and receives at least one value, then it updates its estimate to the

minimum value received. If a process detects a collision, orreceives no messages, then it does not update

its estimate. During the next round, which is aveto-phase round, a process broadcasts a “veto” message

if it heard a collision notification or received more than oneunique value in the preceding round. We are,

therefore, using a negative acknowledgment scheme in whichprocesses use the veto phase to notify other

processes about bad behavior observed in the preceding phase. A process can decide its estimate if it makes

it through a veto-phase round without receiving a veto message7 or detecting a collision.

The basic idea is that a “silent” veto round indicates that noprocess has any reason to complain about

7Remember, by the definition of our model, processes always receive their own broadcasts, so if a process broadcasts a vetoit
will definitely not decide this round.

39

the preceding proposal round. If no process has any reason tocomplain about a proposal round, this means

that each process received a single value and no collision notifications. If a process received no collision

notification, then it received a majority of the messages (bythe definition of majority completeness). There-

fore, because majority sets intersect, we conclude that allprocesses must have received thesamevalue.

Therefore, any process making it through a “silent” veto round can safely decide—even it false collision

notifications delay other processes from deciding that round—because it can be assured that no value, other

than its decision value, is currently alive in the network. We formalize this argument as follows:

Theorem 1. For any non-empty value setV , Algorithm 1 is an anonymous (E(maj-♦AC,WS),V ,ECF)-

consensus algorithm that terminates by roundCST + 2.

The proofs of validity, agreement, and termination rely on the following two lemmas:

Lemma 4. For r ≥ 0, let Er = {v | v equals theestimate value of some non-crashed process afterr

rounds.}. For anys andr, where0 ≤ r ≤ s, Es ⊆ Er.

Proof. To prove this statement we demonstrate thatv ∈ Er ⇒ v ∈ Er−1, for r ≥ 1. By definition of

Algorithm 1,estimate can be altered only on line11 of theproposal phase, where it is assigned the value

of a message received during aproposal-phase round. By line7, only estimate values are broadcast in

these rounds. Therefore, if some processpi ends roundr with estimatei = v, then only two cases are

possible. (1)pi ends roundr− 1 with estimatei = v and maintains it throughr; or, (2) some other nodepj

endsr − 1 with estimatej = v, and then broadcast the value topi in r. In either case:v ∈ Er−1. �

Lemma 5. If, for every processespi that is not crashed afterproposal-round r, |messagesi| = 1 and

CD-advicei = null, then|Er| = 1.

Proof. By the lemma assumptions, each process receives exactly onevalue and no collision notification

during roundr. Assume, for the sake of contradiction, that some processpi receives only the valuev in

r, and some other nodepj receives only the valuev′ in r (v 6= v′). Because neitherpi nor pj receives

a collision notification, by the definition of majority completeness each must receive a majority of the

messages broadcast duringr. Becausepi receives only valuev, a majority of the messages broadcast in

r must containv. Similarly, becausepj receives only valuev′, a majority of the messages broadcast inr

40

must containv′. This is, of course, impossible, as majority sets intersect. A contradiction. It follows that

each process receives the same value. Furthermore, becauseno process, by assumption, receives a collision

notification, then, by lines10 and11, all processes setestimate to this single value during roundr. �

Lemma 6 (Validity). If some process decides valuev, thenv is the initial value of some process.

Proof. A process decides only itsestimate value. Accordingly, if a processp decides in roundr, then it

decides a value fromEr−1. From Lemma 4, we knowEr−1 ⊆ E0, whereE0 is the set of initial values.�

Lemma 7 (Agreement). No two processes decide different values.

Proof. Let r be the first round in which a process decides. Letpi be a process that decides inr. By line18,

sincepi decides inr, then it receives exactly one unique value inr − 1. It follows that at least one message

is sent inr − 1. Therefore, we can apply Lemma 2, which provides thatall non-crashed processes must

therefore receive at least one unique value or a collision notification inr − 1.

Line 18 also provides thatpi receives no messages or collision notifications duringveto-phase round

r. By Corollary 1, it follows that no process broadcasts a vetoin r. By line 14, a process vetos during

roundr if it receives more than one unique value or a collision notification inr − 1. Therefore, we know

that any process that is non-crashed though roundr does not receive a collision notification or more than

one unique value inr − 1 (as they would have then send a veto at line15 during r). We also know, from

our proceeding observation, that each of these processes receive at least one unique value or a collision

notification inr − 1. Combined, this tells us that each of these processes receives exactlyoneunique value

and no collision notifications during roundr − 1.

This matches the assumptions for Lemma 5, which provide that|Er−1| = 1. Becausepi decidesv in

r, we further concludeEr−1 = {v}. By Lemma 4, we know for allr′ ≥ r − 1, Er′ ⊆ Er−1. Because

processes only decide theirestimate value, any process that decides in roundr′ ≥ r − 1, must decidev.

�

Lemma 8 (Termination). All correct processes decide and halt by roundCST + 2.

Proof. Let r equal the firstproposal-phase round such thatr ≥ CST . Because Algorithm 1 has only

active processes (that is, processes that were returnedactive from the contention manager) broadcast during

41

the proposal phase we can apply Lemma 3 tor, which provides that: (1) every process receives every

message broadcast inr; (2) no process receives a collision notification inr. By our algorithm, and the fact

thatCST ≥ rwake, we also know a single process broadcasts.

Every process receives the lone broadcaster’s value (whichwe will call vr) and no collision notification.

By lines10 and11, every non-crashed process therefore adoptsvr as itsestimate during this round.

During the next round,r+1, no process sends a veto, as each non-crashed process receives one message

and no collision notifications inr. Therefore, it is trivially true that no process that is returnedpassive during

the round broadcasts inr + 1, as no process broadcasts inr + 1. Thus, we can apply Lemma 3 once again,

which provides that there are no collision notifications inr + 1. Accordingly, every non-crashed process

will pass the test on line18 and decide.

In the worst case,CST is a veto-phase round. This means thatr = CST + 1. Since all processes

decide byr + 1, we get the desired result that all processes decide byCST + 2. �

Proof (Theorem 1). Correctness follows from Lemmas 6, 7 and 8. �

7.2 Anonymous Consensus with ECF and Collision Detectors in0-♦AC

The pseudo-code in Algorithm 2 describes an anonymous (E(0-♦AC,WS),V ,ECF)-consensus algorithm.

That is, it guarantees to solve consensus in any execution, satisfying eventual collision freedom, of an

environment with a wake-up service and collision detector from 0-♦AC. This implementation tolerates any

number of process failures and terminates by roundCST + 2(⌈lg |V |⌉+ 1).

Algorithm 2 consists of three alternating phases. In the first phase, calledprepare, every process

returnedactive from its contention manager broadcasts its current estimate. Every process that receives at

least one estimate and no collision notifications will adoptthe minimum estimate it receives. In the second

phase, calledpropose, the processes attempt to check that they all have the same estimate. There is one

round dedicated to each bit in the estimate. If a process has an estimate with a one in the bit associated

with that round, then it broadcasts a message. If a process has an estimate with a zero in the bit associated

with that round, it listens for broadcasts, and decides to reject (by settingdecide ← false) if it hears any

broadcasts or collisions. In the third phase, calledaccept, any processes that decided to reject in the previous

42

Algorithm 2: Solving consensus with ECF and a 0-♦ACcollision detector.

1 Process Pi:
2 estimatei ∈ V 0,1, initially set to a binary rep. ofPi

′s initial value
3 phasei ∈ {prepare, propose, accept}, initially prepare
4 size← ⌈lg |V |⌉
5 For each roundr, r ≥ 1 do:
6 if (phasei = prepare) then
7 if CM()i = activethen
8 bcast(estimatei)i

9 messagesi← SET(recv()i)
10 CD-advicei← CD()i

11 if (CD-advicei 6= ±) and (|messagesi| > 0) then
12 estimatei←min{messagesi}
13 decidei← true
14 biti← 1
15 phasei← propose
16 else if(phasei = propose) then
17 if (estimatei[biti] = 1) then
18 bcast(veto)i

19 votesi← recv()i

20 CD-advicei← CD()i

21 if ((|votesi| > 0) or (CD-advicei = ±)) and (estimatei[biti] = 0) then
22 decidei← false
23 biti← biti + 1
24 if (biti > size) then
25 phasei ← accept
26 else if(phasei = accept) then
27 if (not decidei) then
28 bcast(veto)i

29 veto-messagesi← recv()i

30 CD-advicei← CD()i

31 if (|veto-messagesi| = 0) and (CD-advicei 6= ±) then
32 decide(estimatei)i and halti
33 phasei← prepare

phase will broadcast a veto. Any process that receives a vetomessage (or collision notification) realizes that

there is a lack of consistency, and will cycle back to the firstphase.

The basic idea is that if two processes have different estimates, there will be at least one round during

thepropose phase where one process is broadcasting and one is listening. The listening process will receive

either a message or a collision notification, so it will successfully discover the lack of agreement so far. It

can now veto in theaccept phase to prevent any process from deciding a value at this round.

Theorem 2. For any non-empty value setV , Algorithm 2 is an anonymous (E(0-♦AC,WS),V ,ECF)-consensus

algorithm that terminates by roundCST + 2(⌈lg |V |⌉+ 1).

43

The proofs of validity, agreement, and termination rely on the following two lemmas:

Lemma 9. For r > 0, let Er = {v | v equals theestimate value of some non-crashed process afterr

rounds.} For anys andr, where0 ≤ r ≤ s, Es ⊆ Er.

Proof. The proof follows from the same logic as Lemma 4. As in Algorithm 1, processes can only alter

their estimate value to a value received in a round where onlyestimate values are broadcast (see line12).

Therefore, if some processpi ends roundr with estimatei = v, then only two cases are possible. (1)pi

ends roundr − 1 with estimatei = v and maintains it throughr; or, (2) some other nodepj endedr − 1

with estimatej = v, and then broadcast the value topi in r. In either case: ifv ∈ Er, thenv ∈ Er−1 �

Lemma 10. If all non-crashed processes beginaccept-phase roundr with decide = true, then all non-

crashed processes beginr with the sameestimate value.

Proof. Preceding roundr, each process executed onepropose-phase round for each bit of theirestimate

value. Each process broadcasts only during rounds corresponding to bits that equaled1. If a process re-

ceives a message or collision notification during a round where it does not broadcast, then that process sets

decide← false.

Because all processes beginr with decide = true, we know that no process receives a message or

collision notification during apropose-phase round in which it did not broadcast. It follows from Corol-

lary 1, which states that silence implies no one broadcast, that there was never a round during this phase

where two (non-crashed) processes behaved differently (i.e., one broadcast, one did not). Therefore, all

processes that make it through thispropose-phase without failing must have started the phase with the same

estimate value. Because this value is only modified during theprepare-phase, these processes all begin

the subsequentaccept-phase with the sameestimate. �

Lemma 11 (Validity). If some process decides valuev, thenv is the initial value of some process.

Proof. By the definition of Algorithm 2, processes only decide theirestimate value (line32). Accord-

ingly, if some processp decides in roundr, thenp decides a value fromEr. By Lemma 9, we know

Er ⊆ E0, whereE0 is the set of initial values. �

44

Lemma 12 (Agreement).No two processes decide different values.

Proof. Let r be the first round in which a process decides. Letpi be a process that decides inr. Assume

it decidesv. Line 31 provides that|veto-messagesi| = 0 andCD-advicei 6= ± during this round, where

veto-messagesi andCD-advicei are the veto messages received and collision detector advice, respectively.

By Corollary 1, we conclude that no process broadcasts a vetoduringr. Processes would broadcast a veto in

r if their decide value equalsfalse. Therefore, all non-crashed processes startr with decide equal totrue.

Lemma 10 provides that, in this case, all non-crashed processes also started roundr with the sameestimate

value. Becausepi decidesv during this round, and processes decide theirestimate value, it follows that

this commonestimate value isv. ThusEr−1 = {v}. By Lemma 9, for allr′ ≥ r, Er′ ⊆ Er−1. Therefore,

any process that decides in roundr′ ≥ r, must also decidesv. �

Lemma 13 (Termination). All correct processes decide and halt by roundCST + 2(⌈log |V |⌉+ 1).

Proof. Let r be the firstprepare-phase round such thatr ≥ CST . Because Algorithm 2 has onlyactive

processes broadcast during theprepare phase (line7), we can apply Lemma 3 to roundr, which provides

that for this round: (1) every process receive every messagebroadcast; (2) no process receives a collision

notification. By our algorithm, and the fact thatCST ≥ rwake, we know that a single process will broadcast

in r.

By our results from above, all non-crashed processes receive this process’s value (which we will call

vr) and no collision notification. By lines11 and12, all non-crashed processes therefore adoptvr as their

estimate during this round.

It follows that all processes start thepropose phase with the sameestimate. This implies, by the

definition of the algorithm, that all processes broadcast onthe same schedule for thesize = ⌈lg |V |⌉ rounds

of this phase. We want to show that no process will setdecide ← false during this phase. To do so, we

consider only rounds corresponding to a0 bit in vr, as, by the definition of the algorithm, these are the only

rounds in which a process with estimatevr can setdecide ← false.

It is trivially true that no process returnedpassive during one of these rounds broadcasts, asnoprocess

broadcast in these rounds. Thus, we can apply Lemma 3 once again, which provides that no collision

notifications are received during these listening rounds.

45

Accordingly, all non-crashed processes begin theaccept phase withdecide still equal totrue. Thus,

no process broadcasts aveto. By the same logic used above to reason about the listening rounds during the

propose phase, no process will receive a collision notification during thisaccept-phase round. Therefore,

all non-crashed processes pass the tests on line31 and decide and halt.

In the worst case,CST occurs during the first round of thepropose phase. This meansr would fall

⌈lg |V |⌉ + 1 rounds afterCST . Since all processes decide byr + ⌈log |V |⌉ + 1, we get the desired result

that all processes decide byCST + 2(⌈lg |V |⌉+ 1). �

Proof (Theorem 2). Correctness follows from Lemmas 11, 12 and 13. �

7.3 Non-Anonymous Consensus with ECF and Collision Detectors in 0-♦AC

In this section, we briefly describe a non-anonymous (E(0-♦AC,WS),V ,ECF)-consensus algorithm, based

on Algorithm 2, that can solve consensus faster than Algorithm 2 in the special case where the space of

possible IDs (I) is small relative to the space of decision values (V). This algorithm (almost) matches8 our

non-anonymous lower bound for this setting (Corollary 3 in Section 8).

We do not provide formal pseudo-code or a rigorous correctness proof as we maintain that Algorithm 2

is the best option for an (E(0-♦AC,WS),V ,ECF)-consensus algorithm. The version described here outper-

forms Algorithm 2 only in the unlikely case of an ID space being smaller then the consensus value space,

and we present it only for completeness. It works as follows:

• If |V | ≤ |I|, then every process runs Algorithm 2 without modification.

• If |V | > |I|, then every process divides up the rounds into repeated groups of three consecutive

phases, which we will call phase1, phase2, and phase3. During the phase1 rounds, each process

runs an instance of Algorithm 2 on the set of possible IDs, using its own ID as its initial value. The

decision value of this instance of Algorithm 2 describes a leader. Once a process has been identified as

a leader, it begins to broadcast its real initial value (fromV) during phase2 rounds. Every process that

8The lower bound presented in Corollary 3 requiresΩ(min{lg |V |, lg |I|
n
}) rounds, whereas our upper bound presented here

works in Θ(min{lg |V |, lg |I |}) rounds. Therefore, in one case, there is a gap of1

n
between the two. As mentioned earlier,

however,n is, practically speaking, a small constant, as it describesonly the number of devices within a single broadcast radius.
The values|V | and|I |, on the other hand, can be arbitrarily large, and can easily swamp the1

n
factor. In Conjecture 1, we claim

thatΩ(min{lg |V |, lg |I |}) is, in fact, the real lower bound.

46

has not yet heard the leader’s value by phase2 roundr, will broadcast “veto” in phase3 roundr + 1.

The leader keeps broadcasting its value in phase2 until it hears a silent phase3 round. Non-leaders

decide the value in the first phase2 message that they receive. They then halt. The leader decides its

own value and halts after it hears a silent phase3 round following a phase2 broadcast.

In the first case (|V | ≤ |I|), this algorithm finishes byCST + Θ(lg |V |). In the second case (|V | > |I|),

the leader election finishes byCST + Θ(log |I|). The first successful broadcast and subsequent silent veto

round will happen within2 rounds after whichever comes later: leader election orCST . This provides

a worse case termination ofCST + Θ(log |I|). Combined, we get a termination guarantee ofCST +

Θ(min{lg |V |, lg |I|}) rounds.

This algorithm, as described so far, is not fault-tolerant.Specifically, a leader can fail after being elected

but before it broadcasts its value. Fortunately, there is aneasy criteria for detecting the failure of a leader:

a silent phase2 round after a phase1 decision has been reached. Any process that notices these conditions

knows definitively that the leader has failed. This can trigger a new leader election among the remaining

processes.

There are, however, difficulties in coordinating the start of this new leader election, as false collision

notifications can prevent all processes from learning of theleader’s death during the same round. To circum-

vent this problem, processes could run consecutive instances of consensus. During the first instance they

try to elect a leader as specified. They then move directly into the second instance, setting theirestimate

value back to their unique ID. The trick is that during this new instance, processes do not broadcast in the

prepare phase unless they detect the current leader to be failed. This ensures that the second run of consen-

sus cannot terminate until all non-crashed processes have detected the current leader’s failure. If the second

leader crashes, the same rules will ensure all processes participate in the third instance of consensus, etc.

After each leader failure, all non-crashed processes will eventually learn of the failure and participate fully

in the current instance of consensus, electing a new leader.Eventually, a correct process will be elected and

successfully broadcast its value.

47

Algorithm 3: Solving consensus with a 0-ACcollision detector but without ECF.

1 Process Pi:
2 estimatei ∈ V, initially set to the initial value of processPi

3 phasei ∈ {vote-val, vote-left, vote-right, recurse}, initially vote-val
4 curri, A node pointer, initially set to the root of a balanced binary search tree representation ofV

5 For each roundr, r ≥ 1 do:
6 if (phasei = vote-val) then
7 if (estimatei = val[curri]) then
8 bcast(‘‘ vote′′)i

9 msgs(1)i← recv()i

10 CD(1)i ← CD()i

11 phasei← vote-left
12 else if(phasei = vote-left) then
13 if (estimatei ∈ left[curri]) then
14 bcast(‘‘ vote′′)i

15 msgs(2)i← recv()i

16 CD(2)i← CD()i

17 phasei← vote-right
18 else if(phasei = vote-right) then
19 if (estimatei ∈ right[curri]) then
20 bcast(‘‘ vote′′)i

21 msgs(3)i← recv()i

22 CD(3)i← CD()i

23 phasei← recurse
24 else if(phasei = recurse) then
25 if (|msgs(1)i| > 0) or (CD(1)i = ±) then
26 decide(val[curri])i

27 halti
28 else if(|msgs(2)i| > 0) or (CD(2)i = ±) then
29 curri← left[curri]
30 else if((|msgs(3)| > 0) or (CD(3)i = ±)) then
31 curri← right[curri]
32 else
33 curri← parent[curri]
34 phasei← vote-val
35

48

7.4 Anonymous Consensus with NOCF and Collision Detectors in 0-AC

It is a natural question to ask whether some collision detector classes can be powerful enough to solve

consensus even if message loss is unrestricted. Surprisingly, the answer to this question is yes. Algorithm 3

can be used to solve the problem inO(log |V |) rounds with a collision detector in 0-AC. This algorithm

circumvents the problem of never-ending collisions by performing a search through a balanced binary search

tree representation of the possible initial value space. Specifically, each iteration of the search is represented

by four consecutive phases. In the first phase, calledvote-val, processes can vote for the value represented

by the current node in the tree by broadcasting. A process will vote in this phase if and only if this value is

its initial value. In the second phase, calledvote-left, processes can vote to descend to the left child of the

current node by broadcasting. A process will vote in this phase if and only if its initial value is in the sub-tree

rooted at this child. In the third phase, calledvote-right, processes behave symmetrically tovote-left. In

the fourth phase, calledrecurse, processes decide what action to take depending on the results of the voting

from the previous three phases. If they registered a vote in thevote-val phase, they will decide the current

value and halt. If, instead, they registered a vote in only one of theleft andright phases, they will descend

to the appropriate child. If they register a vote for both, they will, by default, descend to the left child. And,

finally, if no votes are registered (due to a process failure), they ascend to the parent of the current node.

The alert reader will notice that therecurse phase does not need its own round, as no message is

broadcast and the receive set is ignored. For the sake of efficiency, this final phase could be appended to

the end of thevote-right phase as an additional local computation. We leave it as its own round only to

simplify the presentation and description of the algorithm. By eliminating this round we could, however,

reduce the factor of8 to a factor of6 in the termination bound.

Notice, also, that this algorithm does not use a contention manager. This is because it is designed for

executions that do not necessarily satisfy eventual collision freedom. Without this property, identifying a

single broadcaster is no longer so important, as its messages are not guaranteed to ever be delivered (as they

would be in an ECF execution).

Finally, note that the termination of Algorithm 3 is affected by failures. Imagine, for example, that a

certain process, with a small initial value, leads, by voting, all other processes deep into the left side of the

search tree. Assume this process then crashes before it can vote for its value. Under certain initializations,

49

all other processes might have initial values that are foundin the right subtree of the root. This would then

require all processes to traverse all the way back up the root, and then descend again into the right sub-tree

before they can decide. In other words, this one failure added a O(log |V |) cost to our time complexity.

For simplicity, we give our termination time relative to failures ceasing—preventing the need to introduce a

term,f , describing the total number of failures, into our termination bound.

Theorem 3. For any non-empty value setV , Algorithm 3 is an anonymous (E(0-AC,NoCM),V ,NOCF)-

consensus algorithm that terminates in at most8 lg |V | rounds after failures cease.

Because the 0-AC collision detector class maintains accuracy at every round, we can extend Lemma 2 and

Corollary 1 to the following, more powerful claim:

Lemma 14. For any roundr of an execution of Algorithm 3, one of the following two behaviors occurs:

1. Every process receives at least one message or a collisionnotification inr.

2. Every process receives no messages and no collision notification inr.

Proof. Lemma 2 provides that if any process broadcasts inr, then every process receives at least one

message or a collision notification. By the definition of accuracy, if no process broadcasts inr, then no

process will receive a collision notification (and, by the definition of an execution, no process will receive a

message either). �

To simplify the discussion of this proof, we introduce the following terminology which succinctly captures

the state of the several important variables at the beginning of arecurse-phase round.

Definition 21 (Navigation Advice). For any processpi andrecurse-phase roundr, the navigation advice

for pi at r is described by the binary3-vectornavi, where, forj, 1 ≤ j ≤ 3, nav[j]i = 1 if and only if, at

the beginning of roundr, |msgs(j)i| > 0 or CD(j)i = ±.

Lemma 15. For any recurse-phase roundr, all non-crashed processes startr with the same navigation

advice.

Proof. By the definition of navigation advice and Algorithm 3, for any non-crashed processpi, and integer

50

j, 1 ≤ j ≤ 3, nav[j]i = 1 if and only if pi received a message or collision notification in roundr − 4 + i.

By Lemma 14, which states all processes receive something orall processes receive silence, ifpi sets

nav[j]i ← 1, then all other non-crashed processes do the same. �

Lemma 16. For any roundr, all non-crashed processes startr with curr pointing to the same node in the

binary search tree.

Proof. The result follows from a simple inductive argument on the number of rounds. All processes are

initialized with curr pointing to the root of the tree. Processes updatecurr during eachrecurse-phase

round based only upon their navigation advice during that round. By Lemma 15, all process therefore

update theircurr pointer in the same manner each time it is updated. �

Lemma 17 (Validity). If some process decides valuev, thenv is the initial value of some process.

Proof. A process decides inrecurse-phase roundr if and only if it receives a message or a collision

notification during thevote-val-phase roundr − 3. It it received a message, then, by the definition of an

execution, some process sent a message. If it received a collision notification, then, by accuracy, some

process sent a message that was lost. Either way, a process sent a message inr− 3, which, by line7, occurs

only if the value associated withcurr is the broadcaster’s initial value. Because our decider decided the

value associated withcurr (line 26), then it follows that it decided some process’s initial value. �

Lemma 18 (Agreement).No two processes decide different values.

Proof. Nodes can decide only on line23 of the recurse-phase. The decision to decide and the choice

of value is entirely a function of their navigation advice and the curr pointer at the start of this round.

By Lemma 15, all non-crashed processes start eachrecurse-phase round with the same navigation advice,

and by Lemma 16 all non-crashed processes start eachrecurse-phase round with the samecurr pointer.

Therefore, if any process decides inr, then all non-crashed processes decide inr and decide the same value.

�

Lemma 19 (Termination). All correct processes decide and halt within8 lg |V | rounds after failures cease.

51

Proof. By Lemmas 15 and 16, processes move through the binary tree together. In the worst-case, the last

process to fail first brought all correct process to a leaf before crashing, and, now, all processes must ascend

all the way back to the root before hearing another vote. Thisascension requires up to4 lg |V | rounds (the

height of the tree islg |V |, and there are4 rounds per movement in the tree). From here, it is at most another

4 lg |V | rounds for processes to arrive at a node in the tree corresponding to a correct process’s value. �

Proof (Theorem 3). Correctness follows from Lemmas 17, 18 and 19. �

52

8 Lower Bounds

In this section, we show lower bounds that match (or, in the case of Theorem 7, come close to matching) the

upper bounds of the previous section. We start, in Section 8.1, by examining systems with collision detectors

from the NoCD class. We show with Theorem 4 that consensus is impossible in this context; even if the

system includes a leader election service and we consider only executions that satisfy eventual collision

freedom. This highlights the necessity of collision detection, and underscores the following observation:

Eventual reliable communication (i.e., as provided by eventual collision freedom and a leader election

service) is not useful without a means to determine when thisperiod of reliability has begun (i.e., a non-

trivial collision detector). It then follows directly from Lemma 1 (in Section 5)—which states that the

collision detector class NoCD is a subset of the class NoACC—that consensus is also impossible in systems

with collision detectors from the NoACC class. This is formalized with Theorem 5 in Section 8.2.

Next, in Section 8.3.3, we examine systems with anonymous algorithms and collision detectors from

the half-AC class. We show with Theorem 6 that, in this context, consensus cannot be solved in a constant

number of rounds after the communication stabilization time; even if the system includes a leader election

service and we consider only executions that satisfy eventual collision freedom. Specifically, we prove the

existence of an execution that does not terminate beforeCST + Θ(log |V |).

We continue, in Section 8.3.4, to consider this same question in the context of non-anonymous algo-

rithms. We prove with Theorem 7 the existence of an executionthat does not terminate beforeCST +

lg (|V ||I|
n|V |+|I|)

1
2 . With Corollary 3 we simplify this expression to obtain the cleaner asymptotic result:CST +

Ω(min{log |V |, log |I|
n
}). We conclude this particular line of questioning by conjecturing, in Conjecture 1,

that the real bound isCST + Ω(min{log |V |, log |I|}).

The anonymous bound is matched by Algorithm 2 from Section 7,and the non-anonymous bound is

(almost) matched by the variant of Algorithm 2 described in Section 7.3. Note: because we demonstrated in

Section 7 a constant-round solution that uses a detector from the maj-♦AC class, these result demonstrates

a substantial complexity gap between the half-complete andmajority-complete properties.

We next consider executions that do not necessarily satisfyeventual collision freedom. One might

expect that under such conditions consensus cannot be solved. Indeed, with Theorem 8, in Section 8.4, we

show that consensus cannot be solved with a collision detector that does not satisfy accuracy in all rounds.

53

With an accurate detector, however, consensusis solvable. This was demonstrated by Algorithm 3 which

solves consensus inO(lg |V |) rounds using a detector from0-AC and no contention manager. We show,

with Theorem 9, in Section 8.5, that this algorithm is optimal by proving that its logarithmic complexity is

necessary for any solution to consensus in this context.

To obtain the strongest possible results, all bounds that follow assume the weakeruniform validity

property for consensus, as defined in Section 7. We also assume the stronger leader election service property

for the contention managers used in this section, whereas the matching upper bounds use the weaker wake-

up service property.

8.1 Impossibility of Consensus with No Collision Detection

We show that no algorithm can solve consensus in a system witha collision detector from the NoCD class.

This holds even if we only consider executions that satisfy eventual collision freedom, and we assume the

system contains a leader election service.

Theorem 4. For every value setV , where|V | > 1, there exists no (E(NoCD,LS),V ,ECF)-consensus algo-

rithm.

Proof. Assume by contradiction that an (E(NoCD,LS),V ,ECF)-consensus algorithm,A, exists. First, we

fix two disjoint and non-empty subsets ofI, Pa andPb. Next, we define three environmentsA, B, C as

follows: Let A.P = Pa, B.P = Pb, andC.P = Pa ∪ Pb. Let A.CD = NOCDPa, B.CD = NOCDPb
,

and C.CD = NOCDPa∪Pb
. And let A.CM = MAXLSPa , B.CM = MAXLSPb

, andC.CM =

MAXLSPa∪Pb
. By definition,A,B,C ∈ E(NoCD,LS).

Next, we construct an executionα, of the system(A,A), and an executionβ, of the system(B,A), as

follows:

1. Fix the executions so there is no message loss in eitherα or β.

2. In α, fix the contention manager, starting with round1, to returnactive only to the process described

by min(Pa). In β, fix the contention manager to behave the same, with respect to min(Pb).

3. Fix the collision detector in both executions to return± to all processes in all rounds (the only allow-

able behavior for the NoCD class).

54

4. In α, have all process start with initial valuev, and inβ have all processes start with initial valuev′,

wherev, v′ ∈ V andv 6= v′.

It is clear that these executions satisfy the constraints oftheir environments, as, in both, the contention man-

agers satisfy the leader election service property, and thecollision detector returns± to all processes in all

rounds (the only allowable behavior from aNOCD detector). Furthermore, we notice that both executions

trivially satisfy eventual collision freedom (as there is no message loss). Therefore, by the definition of an

(E(NoCD,LS),V ,ECF)-consensus algorithm, consensus is solved in both. Let k be the smallest round after

which all processes have decided in bothα andβ.

We next construct an executionγ, of the system(C,A), as follows:

1. Fix the execution such that for the firstk rounds all processes described by indices inPa lose all (and

only) messages from processes described by indices inPb, and vice versa. Starting with roundk + 1,

there is no further message loss.

2. Fix the collision detector to return± to all processes in all rounds, as it must.

3. Fix the contention manager, for the firstk rounds, to returnactive only to the processes described by

min(Pa) andmin(Pb). Starting with roundk + 1, the contention manager returnsactive only to the

process described bymin(Pa).

4. All process described by indices inPa start with initial valuev, and all processes described by indices

in Pb start with initial valuev′.

Again, it is clear that this execution satisfies the constraints of its environment. The contention manager

satisfies the leader election service property by stabilizing to a singleactive process (in roundk + 1) and

the collision detector returns± to all processes in all rounds, as required by its definition.Furthermore, we

note that this execution satisfies eventual collision freedom as message loss ceases at roundk + 1. Once

again, by the definition of an (E(NoCD,LS),V ,ECF)-consensus algorithm, consensus is solved inγ.

To reach a contradiction, we first note that, by construction, for all i in Pa, the executionγ is indistinguish-

able fromα, with respect toi, through roundk. And for all j in Pb, the executionγ is indistinguishable

55

from β, with respect toj, through roundk. Therefore, by roundk, all processes described by indices inPa

will decide the same value in bothα andγ, and all processes described by indices inPb will decide the same

value in bothβ andγ. By uniform validity, however, processes decidev in α andv′ in β; thus both values

will be decided inγ—violating agreement. A contradiction. �

8.2 Impossibility of Consensus with No Accuracy Guarantees

Theorem 5. For every value setV , where|V | > 1, there exists no (E(NoACC,LS),V ,ECF)-consensus

algorithm.

Proof. Lemma 1, from Section 5, establishes that NoCD⊆ NoACC. Therefore, if an algorithmA is an

(E(NoACC,LS),V ,ECF)-consensus algorithm, thenA is an (E(NoCD,LS),V ,ECF)-consensus algorithm.

By Theorem 4, there exists no (E(NoCD,LS),V ,ECF)-consensus algorithm. Therefore, there exists no

(E(NoACC,LS),V ,ECF)-consensus algorithm. �

8.3 Impossibility of Constant Round Consensus with ECF and half-AC

We next show that no algorithm can guarantee to always solve consensus in a constant number of rounds

after the communication stabilization time if half of the messages sent in a round can be lost without de-

tection. Specifically, we provide two main results. In Theorem 6, presented in Section 8.3.3, we show that

for any anonymous (E(half-AC,LS),V ,ECF)-consensus algorithm, there exists an execution thatdoes not

terminate beforeCST + Θ(log |V |). In Corollary 3, presented in Section 8.3.4, we show that forany non-

anonymous (E(half-AC,LS),V ,ECF)-consensus algorithm, there exists an execution thatdoesn’t terminate

beforeCST + Ω(min{log |V |, log |I|
n
}).

We start, however, with some general defintions and lemmas, presented in Section 8.3.1 and Sec-

tion 8.3.2, which aid the discussion to follow.

8.3.1 Definitions

Definition 22 (Basic Broadcast Count Sequence).The Basic Broadcast Count Sequence of an execution

α is the infinite sequence of values drawn from{0, 1, 2+} where, for allr > 0, the rth position in the

sequence is:

56

• 0 if and only if no process broadcasts during roundr of α,

• 1 if and only if exactly one process broadcasts during roundr of α,

• 2+ if and only if two or more processes broadcast during roundr of α.

We say two executions,α andβ, have the same broadcast count sequence through roundk, for somek > 0,

if and only if the basic broadcast count sequence of both executions are the same through the firstk values.

Next, we introduce two definitions that will help us identifya specific type of “well-behaved” execution:

Definition 23 (V -start algorithm). Let V be a non-empty set of values. We say algorithmA is aV -start

algorithm if and only if for all i ∈ I,A(i) has|V | initial states described by the set{initi(v)|v ∈ V }.

Notice that any algorithm that solves consensus over a valuesetV is, by definition, aV -start algorithm.

This holds because a consensus algorithm must have a unique initial state for each possible initial value.

For simplicity of presentation, throughout this section, whenever we discuss aV -start algorithm,A, that

happens solves consensus for value setV , we assume for alli ∈ I andv ∈ V , that initial stateiniti(v) for

A(i) is the initial state of this process that corresponds to initial valuev.

We now define a specific execution type forV -start algorithms:

Definition 24 (αP (v) (Alpha Execution)). Let A be aV -start algorithm, whereV is some non-empty

set of values,v ∈ V , andP is a non-empty subset ofI. Let EP be an environment withEP .P = P ,

EP .CD = MAXCDP (AC), andEP .CM = MAXLSP . ThenαP (v) describes the unique execution of

system(EP ,A) that results when we:

1. FixA(i), for all i ∈ P , to start with initial stateiniti(v),

2. Fix EP .CM to designate only the process corresponding tomin(P) asactive,

3. Fix the execution such that in any given round, if a single process broadcasts, then all processes receive

the message, if more than one process broadcasts, then (as required by the model) the receivers each

receive their own message, but all other messages are lost, and

4. Fix EP .CD to satisfy completeness and accuracy (as it must by the definition of EP).

57

5. Fix the execution such that there are no failures.

This execution satisfies the constraints ofEP as the collision detector, by definition, satisfies completeness

and accuracy, and the contention manager satisfies the leader election service property by stabilizing to a

singleactive process starting in the first round.

A few points to notice. First, by definition,EP ∈ E(half-AC,LS). We also note that this execution sat-

isfies eventual collision freedom (assumption3 makes this explicit). Thus, ifA happens to be an (E(half-

AC,LS),V ,ECF)-consensus algorithm (as it will be when we use this definition later in the section), then

any alpha execution defined overA, solves consensus.

8.3.2 Key Lemmas

We first introduce a lemma, and an associated corollary, the prove some important properties regarding the

behavior of anonymous algorithms:

Lemma 20. LetA be an anonymousV -start algorithm, whereV is a non-empty set of values, letP and

P ′ be two disjoint subsets ofI such that|P | = |P ′| > 0, let f be a bijectionf : P → P ′ such that

f(min(P)) = min(P ′), and letv be an element ofV . For everyi ∈ P , the sequence of states, message

receive sets, contention manager advice, and collision detector advice, describing the execution ofA(i)

in αP (v), is the same as the sequence describing the execution ofA(f(i)) in αP ′(v), where both alpha

executions are defined overA.

Proof. We prove this lemma by induction on the round number,r, showing that afterr rounds, for every

i ∈ P , the state, messages received, contention manager advice,and collison detector advice, forA(i) in

roundr of αP (v), is the same as forA(f(i)) in αP ′(v) .

Basis (r = 0): BecauseA is anonymous, all processes start with the same initial state in bothαP (v) and

αP ′(v).

Inductive Step (r > 0): Here we show, for everyi ∈ P , that forA(i) in αP (v) andA(f(i)) in αP ′(v):

1. A(i) andA(f(i)) receive the same contention manager advice in roundr

2. A(i) andA(f(i)) receive the same messages in roundr.

58

3. A(i) andA(f(i)) receive the same collision detector advice in roundr.

4. A(i) andA(f(i)) have the same state afterr rounds.

(1)A(i) andA(f(i)) receive the same contention manager advice in roundr.

If i = min(P), then, by the definition of an alpha execution,A(i) will receiveactive from its contention

manager in roundr of αP (v). By definition of f , if i = min(P), thenf(i) = min(P ′), meaning that

A(f(i)) will also receiveactive during this round in its execution; keeping the contention manager advice

the same for both. If, on the other hand,i 6= min(P) thenA(i) will receive the advicepassive from its

contention manager in roundr of αP (v). By definition off , if i 6= min(P), thenf(i) 6= min(P ′), meaning

thatA(f(i)) will also receivepassive during this round of its execution; once again keeping the advice the

same for both.

(2) A(i) andA(f(i)) receive the same messages in roundr.

The decision to broadcast (and what message to broadcast) inroundr is a function of the state after round

r−1 and the contention manager advice inr. By our inductive hypothesis,A(i) andA(f(i)) have the same

state afterr − 1. By our above discussion (element (1)), they will also have the same contention manager

advice. Therefore, a processA(i) in αP (v) broadcasts in this round if and only if processA(f(i)) broad-

casts the same message in this round ofαP ′(v). Thus, we know there are the same number of broadcasters

and the same messages sent in both executions. This leaves three cases to consider regarding the common

broadcast behavior in both executions in this round:

Case1: If there is a single broadcaster in each execution, then, bythe definition of alpha executions,

every process receives the message; keeping element (2) thesame for every process in both.

Case2: If there are no broadcasters in either execution, then every process receives nothing; again,

keeping element (2) the same in both.

Case3: If there is more than one broadcaster in each execution, then, by the definition of alpha ex-

ecutions, ifA(i) broadcastsm in αP (v), then it receivesm and no other message, andA also sends and

receives onlym in this round. Otherwise, both processes receive no messages. Once again, element (2) is

the same in both.

59

(3)A(i) andA(f(i)) receive the same collision detector advice in roundr .

The equivalence of the collision detector advice inr follows from the argument presented for element (2).

That is, processes receive± during this round only in case3 of the broadcast behaviors discussed above. As

described, this case occurs in both executions or neither.

(4) A(i) andA(f(i)) have the same state afterr rounds.

The state of a process afterr rounds is a function of the state of the process afterr− 1 rounds, the messages

received duringr, the collision detector advice inr, and the contention manager advice inr. For every

i ∈ P , we know, by our hypothesis, that the state ofA(i) in αP (v) afterr−1 rounds is the same as the state

of A(f(i)) in αP ′(v) after r − 1 rounds. We also know, by our discussion of elements (1) – (3),that the

same equivalence holds for the messages, collision detector advice, and contention manager advice received

by these two processes inr. �

Corollary 2 (Lemma 20). LetA be an anonymousV -start algorithm, whereV is a non-empty set of values.

LetP andP ′ be two disjoint subsets ofI such that|P | = |P ′| > 0. For all v ∈ V , andr ∈ I+, αP (v) and

αP ′(v) have the same basic broadcast count sequence through the first r rounds, where bothα executions

are defined overA.

Proof. The decision to broadcast in a given round is a function of a process’s state at the beginning of

the round and the contention manager advice during the round. Therefore, by Lemma 20, we know that for

everyi ∈ P , processA(i) broadcasts in roundr of αP (v) if and only if processA(f(i)) broadcasts in round

r of αP ′(v). Becausef is a bijection fromP to P ′, the corollary follows directly. �

The next two lemmas are counting arguments that bound the number of basic broadcast sequences that can

exist among pairs of executions over short execution prefixes. Lemma 21 considers anonymous algorithms,

and Lemma 22 considers non-anonymous algorithms.

Lemma 21. LetA be an anonymousV -start algorithm, whereV is a set of values such that|V | > 1, and

let P be a non-empty subset ofI. There exist two alpha executions,αP (v) and αP (v′), defined overA,

wherev, v′ ∈ V , v 6= v′, andαP (v) andαP (v′) have the same basic broadcast count sequence through the

first lg |V |
2 − 1 rounds.

60

Proof. We have|V | different alpha executions to consider; one for each value in V . At each round of each

execution three behaviors can occur that are relevant to thebasic broadcast count: 1) no process broadcasts;

2) one process broadcasts; and 3) more than one process broadcasts. Therefore, for any sequence ofk

rounds, there are3k basic broadcast count sequences. We claim that fork = lg |V |
2 − 1, the total number

of sequences of lengthk is less than|V |. Thus, by the pigeon-hole principle, at least two values inV must

produce the same sequence. We verify this claim by plugging in for k and solving:

3(
lg |V |

2
−1)

< 3(
lg |V |
lg 3

−log3 2)

= 3(log3 |V |)3(−log32)

=
|V |

2

< |V |

�

Lemma 22. LetA be aV -start algorithm, whereV is a set of values such that|V | > 1, and letn be an

integer such that1 < n ≤ ⌊ |I|2 ⌋ and |I| = nk for some integerk > 1. There exist two alpha executions,

αP (v) andαP ′(v′), defined overA, whereP,P ′ ⊆ I, |P | = |P ′| = n, P ∩ P ′ = φ, v, v′ ∈ V , v 6= v′, and

αP (v) andαP ′(v′) have the same basic broadcast count sequence through the first lg (|V ||I|
n|V |+|I|)

1
2 rounds.

Proof. Let Π be a partition ofI into disjoint sets of sizen. Let S be the set of alpha executions defined

overA, all index sets inΠ, and all values inV . It follows that we have|V ||Π| different alpha executions

in S to consider. Note that for anyP ∈ Π andv ∈ V , there are exactly|V | + |Π| − 1 alpha executions

in S of the formαP (∗) or α∗(v) (that is, defined over the same process index setP or valuev). Also note

that, as described in the previous lemma, for any sequence ofk rounds, there are3k basic broadcast count

sequences. We claim that fork = lg (|V ||I|
n|V |+|I|)

1
2 : |V ||Π|

3k ≥ |V |+ |Π|. If true, this implies, by the pigeon-hole

principle, that there exist at least|V |+ |Π| alpha executions inS that share the same basic broadcast count

sequence. Because no more than|V | + |Π| − 1 executions can share the same process set or value, then at

61

least two of these|V | + |Π| sequence-sharing executions must be defined over differentprocess index sets

and values. These are the two executions posited by our Lemmastatement.

We verify this claim by plugging in fork and showing that the following equation holds:

|V ||Π|

3k
≥ |V |+ |Π|

First, however, we note that|Π| = |I|
n

, and substitute accordingly:

|V ||I|

n3k
≥ |V |+

|I|

n

Next, we replacek with the following larger expression:k′ = lg (|V ||I|
n|V |+|I|) lg−1 3. This is valid because,

clearly, if our above equation is true fork′ > k then it is also true fork. We now subsitute fork′ and

simplify:

|V ||Π|

n3k′

=
|V ||Π|

n3
lg (|V ||I|

n|V |+|I|
) lg−1 3

=
|V ||Π|

n3
log3 (

|V ||I|
n|V |+|I|

)

=
|V ||Π|

n |V ||I|
n|V |+|I|

=
|V ||I|(n|V |+ |I|)

n|V ||I|

=
n|V |+ |I|

n

≥ |V |+
|I|

n

�

We conclude this sub-section with a general indistinguishability lemma, involving alpha executions with

similar basic broadcast count sequences.

62

Lemma 23. LetA be aV -start algorithm, whereV is a set of values such that|V | > 1. Supposev, v′ ∈ V ,

k > 0, andR,R′ ⊆ I, such thatv 6= v′, |R| = |R′| > 1, andR ∩ R′ = φ. Suppose alpha executions

αR(v) andαR′(v′), defined overA, have the same basic broadcast count sequence for the firstk rounds.

Let ER∪R′ be an environment whereER∪R′ .P = R ∪ R′, ER∪R′ .CD = MAXCDR∪R′(half-AC), and

ER∪R′ .CM = MAXLSR∪R′ .

Then there exists an execution,γ of system(ER∪R′ ,A), that satisfies eventual collision freedom, such that

γ is indistinguishable fromαR(v) (resp.αR′(v′)), through roundk, with respect to processes described by

indices inR (resp.R′).

Proof. We start by constructing an executionγ that satisfies our desired indistinguishabilities and eventual

collision freedom. We then show that this execution satisfies the constraints of its environment. Specifically,

let γ be the unique execution of system(ER∪R′ ,A) where:

1. For everyi ∈ R,A(i) starts with stateiniti(v), and for allj ∈ R′,A(j) starts with stateinitj(v
′).

2. For the firstk rounds, we fix the execution to generate the following receive behavior: If a single

process described by an index inR broadcasts, then all processes described by indices inR receive

its message. If a single process described by an index inR′ broadcasts, then all processes described

by indices inR′ receive its message. Broadcasters always receive their ownmessage (as required by

the model). All other messages are lost. Starting with roundk + 1, there is no further message loss.

3. For the firstk rounds,ER∪R′ .CD returns± toA(i) for somei ∈ R (resp.A(j) for somej ∈ R′)

if and only if it returned± toA(i) (resp.A(j)) during this round ofαR(v) (resp.αR′(v′)). Starting

with roundk + 1, the detector returnsnull to all processes.

4. For the firstk rounds,ER∪R′ .CM returnsactive to the two processes described bymin(R) and

min(R′). Starting with roundk + 1, it returnsactive only to the process described bymin(R).

We constructedγ such that for everyi ∈ R, αR(v) is indistinguishable fromγ, with respect toi, through

roundk, and for everyj ∈ R′, αR′(v′) is indistinguishable fromγ, with respect toj, through roundk. The

collision detector and contention manager advice for theserounds, by definition, are the same with respect

to the alpha executions. To see why the message receive behavior is the same, we turn to assumption2 of

63

our γ definition. First, notice that no process described by an index in R ever receives a message from a

process described by an index inR′, and vice versa. Second, a process described by an index inR (resp.

R′) only receives a messagem if a single process described by an index inR (resp.R′) broadcasts (and it

broadcastm), and/or the receiving process broadcast itself. This matches the definition of receive behavior

in our alpha executions. Also notice thatγ satisfies eventual collision freedom as message loss stops at

roundk + 1.

We must next show thatγ is valid. In other words, we must show that the contention manager and

collision detector behavior we describe satisifes the constraints of the environment. It is easy to see that

this is the case for the contention manager, as, by construction, it stabilizes to a singleactive process

in round k + 1, thus satisfying the leader election service property. Thecollision detector behavior is

more complicated. Because we specified thatER∪R′ .CD = MAXCDR∪R′(half-AC) we must ensure that

neither half-completeness nor accuracy is ever violated inγ. This is obvious starting with roundk + 1, so

we focus only on the firstk rounds.

Two factors are key in this argument: First, the indistinguishability betweenγ and the alpha executions

for these firstk rounds, and second, the fact that the basic broadcast count sequence is the same for both of

these alpha executions for these firstk rounds. Let us examine the possible cases from the point of view of

an arbitrary processA(i), for a single roundr ≤ k, where we assume, without loss of generality, thati ∈ R.

• Case 1:A(i) receivesnull from the collision detector.

If A(i) receivesnull in this round ofγ, then, by assumption3 of our γ definition,A(i) receives

null in this round ofαR(v) as well. By the definition of an alpha execution, this means either a

single process or no process broadcast during this round ofαR(v). By our indistinguishability and

basic broadcast count equality, this implies that either: a) no process broadcast in this round ofγ;

or b) exactly one process described by an index inR and one process described by an index inR′

broadcast in this round ofγ. Accuracy is trivially satisfied in both a) and b) (as the detector returned

null in both). And half-completeness is satisfied in both, as in a)no messages are lost, and in b)

A(i) lost exactly half of the messages—making it acceptable for it to returnnull by the definition

of half-completeness. (This is where we first notice the separation between half-completeness and its

64

close neighbor majority completeness. If we were dealing with a majority complete collision detector,

then returningnull in case b would be unacceptable.)

• Case 2:A(i) receives± from the collision detector.

If A(i) receives± in this round ofγ, then, by assumption3 of our γ definition,A(i) receives± in

this round ofαR(v) as well. By the definition of an alpha execution this means twoor more processes

broadcast during this round ofαR(v). By our indistinguishability and basic broadcast count equality,

two or more processes described by indices inR and two or more processes described by indices inR′

broadcast during this round ofγ. Therefore, by assumption2 of ourγ definition, all processes lose at

least one message in this round (as the only messages received in this case are broadcasters receiving

their own message). Because there was message loss, and the detector returned±, half-completeness

and accuracy are clearly satsified.

�

8.3.3 Impossibility of constant round consensus with an anonymous (E(half-AC,LS),V ,ECF)-consensus

algorithm

Theorem 6. Let V be a value set such that|V | > 1, and letn be an integer such that1 < n ≤ ⌊ |I|2 ⌋. For

any anonymous (E(half-AC,LS),V ,ECF)-consensus algorithm,A, there exists an environmentE ∈ En(half-

AC,LS), and an executionα of the system(E,A), whereα satisfies eventual collision freedom,CST (α) =

1, and some process inα doesn’t decide until after roundlg |V |
2 − 1.

Proof. LetA be any anonymous (E(half-AC,LS),V ,ECF)-consensus algorithm. FixP andP ′ to be two

disjoint subsets ofI such that|P | = |P ′| = n. In this proof we will consider alpha executions defined over

A, P or P ′, and values fromV . (Notice, by virtue of being a consensus algorithm,A is clearly also aV -start

algorithm). These executions satisfy eventual collision freedom, have a communication stabilization time of

1, and are defined by an environment inEn(half-AC,LS). Therefore, if we can find such an alpha execution

that does not decide for a logarithmic number of rounds, our theorem will be proved

First, we apply Lemma 21 toA, V , andP , which provides two alpha executions,αP (v) andαP (v′),

that have the same basic broadcast count sequence through the first lg |V |
2 − 1 rounds. By Corollary 2,

65

we know this, therefore, is also true ofαP (v) andαP ′(v′) (by this corollary,αP ′(v′) has the same ba-

sic broadcast count sequence asαP (v′)). We can now apply Lemma 23 toαP (v), αP ′(v′), andk =

lg |V |
2 − 1. This produces an executionγ of system(EP∪P ′ ,A)—whereEP∪P ′ .P = P ∪P ′, EP∪P ′ .CD =

MAXCDP∪P ′(half-AC), andEP∪P ′ .CM = MAXLSP∪P ′—that satisfies eventual collision freedom,

such thatγ is indistinguishable fromαP (v) (resp. αP ′(v′)), through roundk, with respect to processes

described by indices inP (resp.P ′).

Let us assume, for the sake of contradiction, that bothαP (v) andαP ′(v′) terminate by roundk =

lg |V |
2 − 1. By the definition of an (E(half-AC,LS),V ,ECF)-consensus algorithm,γ must solve consensus.

By assumption, in bothαP (v) andαP ′(v′), all processes decide by roundk in these executions. By our

indistinguishability, these processes decide the same values inγ. By uniform validity, processes described

by indices inP decidev, and processes described by indices inP ′ decidev′. Thus, both values are decided

in γ—violating agreement. A contradiction. �

Making the Bound Tight We match this lower bound with Algorithm 2, described in Section 7, which

is an anonymous (E(0-♦AC,WS),V ,ECF)-consensus algorithm that guarantees termination byCST +

Θ(lg |V |).

8.3.4 Impossibility of constant round consensus with a non-anonymous (E(half-AC,LS),V ,ECF)-

consensus algorithm

We now turn our attention to the case of non-anonymous algorithms. Here, we derive a more complicated

bound, but then show, in Corollary 3, that for reasonable parameters it performs no worse, roughly speaking,

than its anonymous counterpart.

Theorem 7. Let V be a value set such that|V | > 1, and letn be an integer such that1 < n ≤ ⌊ |I|2 ⌋ and

|I| = nk for some integerk > 1. For any (E(half-AC,LS),V ,ECF)-consensus algorithm,A, there exists

an environmentE ∈ En(half-AC,LS), and an executionα of the system(E,A), whereα satisfies eventual

collision freedom,CST (α) = 1, and some process inα doesn’t decide until after roundlg (|V ||I|
n|V |+|I|)

1
2 .

Proof. Let A be any (E(half-AC,LS),V ,ECF)-consensus algorithm. For this proof we consider alpha

executions defined over algorithmA, value setV , and all subsets of sizen of I. These executions satisfy

66

eventual collision freedom, have a communication stabilization time of1, and are defined by an environment

in En(half-AC,LS). Therefore, if we can find such an alpha execution that doesn’t decide for the desired

number of rounds, our theorem will be proved.

First, we apply Lemma 22, which provides two such executions, αP (v) andαP ′(v′), where|P | =

|P ′| = n, P∩P ′ = φ, and both have the same basic broadcast count sequence through the firstlg (|V ||I|
n|V |+|I|)

1
2

rounds. We can now apply Lemma 23 toαP (v), αP ′(v′), andk = lg (|V ||I|
n|V |+|I|)

1
2 , which, as before, provides

an executionγ of system(EP∪P ′ ,A)—whereEP∪P ′ .P = P ∪ P ′, EP∪P ′.CD = MAXCDP∪P ′(half-

AC), andEP∪P ′ .CM = MAXLSP∪P ′—that satisfies eventual collision freedom, such thatγ is indistin-

guishable fromαP (v) (resp.αP ′(v′)), through roundk, with respect to processes described by indices inP

(resp.P ′).

Let us assume, for the sake of contradiction, that bothαP (v) andαP ′(v′) terminate by roundk =

lg (|V ||I|
n|V |+|I|)

1
2 By the definition of an (E(half-AC,LS),V ,ECF)-consensus algorithm,γ solves consensus.

By assumption, in bothαP (v) andαP ′(v′), all processes decide by roundk. By our indistinguishability,

these processes decide the same values inγ. By uniform validity, processes described by indices inP

decidev, and processes described by indices inP ′ decidev′. Thus, both values are decided inγ—violating

agreement. A contradiction. �

The obvious next question to ask is how the result of Theorem 7compares to the result of Theorem 6. At first

glance, the two results seem potentially incomparable, as the former contains both|I| andn in a somewhat

complex fraction, while the latter does not contain either of these two terms. In the following corollary,

however, we show that these two results are, in reality, quite similar:

Corollary 3. Let V be a value set such that|V | > 1, and letn be an integer such that1 < n ≤ ⌊ |I|2 ⌋ and

|I| = nk for some integerk > 1. For any (E(half-AC,LS),V ,ECF)-consensus algorithm,A, there exists

an environmentE ∈ En(half-AC,LS), and an executionα of the system(E,A), whereα satisfies eventual

collision freedom,CST (α) = 1, and some process inα doesn’t decide forΩ(min{log |V |, log |I|
n
}) rounds.

Proof. We consider the two possible cases:

67

Case 1:min{log |V |, log |I|
n
} = log |V |.

This implies that|V | ≤ |I|
n

. Therefore, we can express the two terms as follows, wherec is a constant

greater than or equal to1:

|I|

n
= c|V |

Solving for|I| we get|I| = nc|V |. We can now make this substitution for|I| in the bound from Theorem 7

and simplify:

k = lg (
|V ||I|

n|V |+ |I|
)
1

2

= lg (
|V |nc|V |

n|V |+ nc|V |
)
1

2

= lg (
nc|V |2

(c + 1)n|V |
)
1

2

= lg (
c

c + 1
|V |)

1

2

= (lg (
c

c + 1
) + lg (|V |))

1

2

= Ω(lg |V |)

Case 2:min{log |V |, log |I|
n
} = log |I|

n
.

This implies that|I|
n
≤ |V |. As before, we can express the two terms as follows, wherec is a constant greater

than or equal to1:

|V | =
c|I|

n

We can now make this substitution for|V | in the bound from Theorem 7 and simplify:

k = lg (
|V ||I|

n|V |+ |I|
)
1

2

68

= lg (
c|I|
n
|I|

n c|I|
n

+ |I|
)
1

2

= lg (
c|I|2

n(c + 1)|I|
)
1

2

= lg (
c|I|

(c + 1)n
)
1

2

= (lg (
c

c + 1
) + lg (

|I|

n
))

1

2

= Ω(lg
|I|

n
)

And, of course, for the case where|V | = |I|
n

, we can setc = 1 in either equation to reduce the result of

Theorem 7 to eitherΩ(lg |V |) or Ω(lg |I|
n

); meaning any tie-breaking criteria for themin function is fine.

�

Making the Bound Tight To match this bound, we can use the algorithm informally described in Sec-

tion 7.3. This algorithm uses Algorithm 2 when|I| ≥ |V |, and runs Algorithm 2 on the IDs—to elect

a leader which can then broadcast its value—in the case where|I| < |V |. It runs in timeCST +

Θ(min{lg |V |, lg |I|) which comes within a factor of1
n

of our lower bound. In the following conjecture

we posit that this algorithm is, in fact, optimal, and that this gap can be closed through a more complicated

counting argument in the lower bound.

Conjecture 1. LetV be a value set such that|V | > 1, and letn be an integer such that1 < n ≤ ⌊ |I|2 ⌋ and

|I| = nk for some integerk > 1. For any (E(half-AC,LS),V ,ECF)-consensus algorithm,A, there exists

an environmentE ∈ En(half-AC,LS), and an executionα of the system(E,A), whereα satisfies eventual

collision freedom,CST (α) = 1, and some process inα doesn’t decide forΩ(min{lg |V |, lg |I|}) rounds.

The |I|
n

term in our previous result stems from the counting argumentin lemma 22, where we consider only

|I|
n

non-overlapping subsets ofI. This restriction simplifies the counting argument, but potentially provides

some extra information to the algorithm by restricting the sets of processes that can be participating in an

69

execution. We conjecture that a more complicated counting argument, that considers more possible sets of

n nodes (some overlapping), could replace this termlg |I|.

8.4 Impossibility of Consensus with Eventual Accuracy but without ECF

In this section and the next, we consider executions that do not necessarily satisfy eventual collision freedom.

This might represent, for example, a noisy network where processes are never guaranteed to gain solo access

to the channel long enough to successfully transmit a full message. We start by showing that consensus is

impossible in this model if the collision detector is only eventually accurate.

Theorem 8. For every value setsV , where|V | > 1, there exists no (E(♦AC,LS),V ,NOCF)-consensus

algorithm.

Proof. Assume by contradiction that an (E(♦AC,LS),V ,NOCF)-consensus algorithm,A, exists. First, we

fix two disjoint and non-empty subsets ofI, Pa andPb. Next, we define three environmentsA, B, C as

follows: Let A.P = Pa, B.P = Pb, andC.P = Pa ∪ Pb. Let A.CD = MAXCDPa(♦AC), B.CD =

MAXCDPb
(♦AC), andC.CD = MAXCDPa∪Pb

(♦AC). LetA.CM = MAXLSPa , B.CM = MAXLSPb
,

andC.CM = MAXLSPa∪Pb
. By definition,A,B,C ∈ E(♦AC,LS). We next define an executionγ, of

the system(C,A), as follows:

1. Fix the execution such that all processes described by indices inPa lose all (and only) messages from

processes described by indices inPb, and vice versa.

2. Fix the collision detector to satisfy completeness and accuracy in all rounds.

3. Fix the contention manager to returnactive only to the process described bymin(Pa).

4. Fix the execution so that all processes described by indices inPa start with initial valuev, and all

processes described by indices inPb start with initial valuev′, wherev, v′ ∈ V , v 6= v′.

It is clear thatγ satisfies the constraints of its environment, as, by definition, the collision detector satisfies

completeness and eventual accuracy (in fact, it satisfies accuracy), and the contention manager stabilizes to

a singleactive process starting in the first round. Therefore, by the definition of an (E(♦AC,LS),V ,NOCF)-

consensus algorithm, consensus is solved inγ. Assume all processes decide by roundk. Let x ∈ {v, v′} be

the single value decided.

70

We will now construct an executionα, of the system(A,A), and an executionβ, of the system(B,A),

as follows:

1. All processes inα are initialized withv, and all processes inβ are initialized withv′.

2. Fix the environments so there is no message loss in either execution.

3. In α, fix the contention manager to returnactive only to the process described bymin(Pa), in β, for

the firstk rounds, fix the contention manager to returnpassive to all processes, and, starting at round

k + 1, have it returnactive only to the process described bymin(Pb).

4. For all i ∈ Pa andr, 1 ≤ r ≤ k, we fix A.CD to return± to A(i) during roundr, if and only if

A(i) received a collision notification during roundr of γ. We defineB.CD in the same way with

respect toPb. Starting with roundk + 1, we fix the collision detectors, in both executions, to satisfy

completeness and accuracy.

We now validate thatα and β satisfy the constraints of their respective environments.The contention

manager in both executions stabilizes to a singleactive process (Starting at round1 in α, and roundk+1 in

β). As there is no message loss, then clearly the collision detector satisfies completeness. Finally, we note

note that the detector satisfies eventual accuracy as, starting with roundk + 1, by construction, the detectors

in both executions become accurate.

Next, we note, by construction, for alli in Pa, the executionγ is indistinguishable fromα, with respect

to i, through roundk. And for all j in Pb, the executionγ is indistinguishable fromβ, with respect toj,

through roundk. As noted above, all processes decidex ∈ {v, v′}, by roundk in γ. Therefore, all processes

also decidex in their respectiveα or β execution. Assume, without loss of generality, thatx = v. This

implies processes decidev in β—violating uniform validity. A contradiction. �

8.5 Impossibility of Constant Round Consensus with Accuracy but without ECF

In this section, we consider the consensus problem with accurate collision detectors but no ECF guaran-

tees. In Section 7, we presented Algorithm 3, an anonymous algorithm which solves consensus inO(lg |V |)

rounds using a collision detector in0-AC and no contention manager (i.e., the trivialNOCM contention

71

manager that returnsactive to all processes in all rounds). Here, we show this bound to beoptimal by sketch-

ing a proof for the necessity oflg |V | rounds for any anonymous (E(AC,NoCM),V ,NOCF)-consensus algo-

rithm to terminate. Intuitively, this result should not be surprising. Without the ability to ever successfully

deliver a message, processes are reduced to binary communication in each round (i.e., silence =0, collision

notification =1). At a rate of one bit per round, it will, of course, requirelg |V | rounds to communicate an

arbitrary decision value fromV .

Theorem 9. Let V be a value set such that|V | > 1, and letn be an integer such that1 < n ≤ ⌊ |I|2 ⌋.

For any anonymous (E(AC,NoCM),V ,NOCF)-consensus algorithm,A, there exists an environmentE ∈

En(AC,NoCM), and an executionα of the system(E,A), where some process inα doesn’t decide until

after roundlg |V | − 1

Proof (Sketch). With no unique identifiers or meaningful contention manageradvice to break the sym-

metry, if we start all processes with the same initial value,and fix the execution such that all messages are

lost (except, of course, for senders receiving their own message), then the processes will behave identically.

That is, in each round, either all processes broadcast the same message, or all processes are silent.

For a givenn value,1 < n ≤ ⌊ |I|2 ⌋, andv ∈ V , let β(v) be such an execution containingn pro-

cesses. Let thebinary broadcast sequenceof executionβ(v) be the infinite binary sequence defined such

that positionr is 1 if and only if processes broadcast in roundr of β(v).

By a simple counting argument (i.e., as we saw in Lemma 21), wecan show that there must exist two

values,v, v′ ∈ V (v 6= v′) such thatβ(v) andβ(v′) have the same binary broadcast sequence through round

lg |V | − 1. Specifically, there are2k different binary broadcast count sequences of lengthk. Therefore,

for k = lg |V | − 1 there are2lg |V |−1 = |V |/2 different sequences. Because we have|V | different β

executions, one for each value inV , by the pigeon-hole principle at least two such executions must have the

same binary broadcast count sequence through roundk. We obtain our needed result through the expected

indistinguishability argument (i.e., in the style of Lemma23). If we compose these twoβ executions into a

larger execution,γ, processes cannot distinguish this composition until after roundlg |V | − 1. Before this

point, there is never a round in which processes from one partition are broadcasting while processes from

the other are silent. Therefore, it cannot be the case that processes decide in bothβ executions by roundk,

as they would then decide the same values inγ—violating agreement. �

72

Making the Bound Tight This bound is matched by Algorithm 3, which is an anonymous (E(0-AC,NoCM),V ,NOCF)-

consensus algorithm that terminates by roundΘ(lg |V |).9

The Non-Anonymous Case It remains an interesting open question to prove a bound for the case where

processes have access to IDs and/or a leader election service. Both cases break the symmetry that forms the

core of the simple argument presented above. Intuitively, however, this extra information should not help the

processes decide faster. Without guaranteed message delivery, they are still reduced to, essentially, binary

communication. Even if we explicitly told each process everyone who is in the system, this still would

not circumvent the need for some process to spell out its initial value, bit by bit—therefore requiringlg |V |

rounds.

9This upper bound holds after failures cease. Because, however, there are no failures in the executions considered in our
above proof, it matches the lower bound. It remains an interesting open question to see if either: 1) one can construct an (E(0-
AC,NoCM),V ,NOCF)-consensus algorithm that terminates inΘ(lg |V |) rounds regardless of failure behavior; or 2) one can refine
the previous bound to account for delays caused by failures.

73

9 Conclusion

In this study we investigated the fault-tolerant consensusproblem in a single-hop wireless network. In a

novel break from previous work, we considered a realistic communication model in which any arbitrary

subset of broadcast messages can be lost at any receiver. To help cope with this unreliability, we introduced

(potentially weak) receiver-side collision detectors anddefined a new classification scheme to precisely

capture their power. We considered, separately, devices that have unique identifiers, and those that do not,

as well as executions that allow messages to be delivered if there is a single broadcaster, and executions that

do not.

For each combination of these properties—collision detector, identifiers, and message delivery behavior—

we explored whether or not the consensus problem is solvable, and, if it was, we proved a lower bound on the

round complexity. In all relevant cases, matching upper bounds were also provided. Our results produced

the following observations regarding the consensus problem in a realistic wireless network model:

• Consensuscannotbe solved in a realistic wireless network model withoutsomecollision detection

capability.

• Consensuscanbe solved efficiently (i.e., in a constant number of rounds) if devices are equipped with

receiver-side collision detectors that can detect the lossof half or more of the messages broadcast

during the round.

• For small value spaces (i.e., deciding tocommitor abort), consensuscan still be solved efficiently

even with a very weak receiver-side collision detector thatcan only detect the loss of all messages

broadcast during the round.

• Collision detectors that produce false positivesare tolerableso long as they stabilize to behaving

properly and the network eventually allows a message to be transmitted if there is only a single broad-

caster.

• In the adversarial case of a network that never guarantees totransmit a message, consensuscan still

be solved so long as devices have collision detectors that never produce false positives.

74

• Perfect collision detection—detects all message loss—does notprovide significant advantages over

“pretty good” detection—detects if half or or more of the messages are lost—for solving consensus.

• Unique identifiersdo not facilitate consensus unless the space of possible identifiers is smaller than

the set of values being decided.

There are, of course, many interesting open questions motivated by this research direction. For example,

what properties, besides the six completeness and accuracyproperties described here, might also be useful

for defining a collision detector? Similarly, the zero complete detector seems, intuitively, to be the “weakest”

useful detector for solving consensus. Is this true? Are their weaker properties that are still powerful

enough to solve this problem? It might also be interesting toconsider occasionally well-behaved detectors.

For example, a collision detector that is always zero complete and occasionally fully complete. Given

such a service, could we design a consensus algorithm that terminates efficiently during the periods where

the detector happens to behave well? Such a result would be appealing as this definition of a detector

matches what we might expect in the real world (i.e., a devicethat can usually detect any lost message, but,

occasionally—for example, under periods of heavy message traffic—it can’t do better than the detection of

all messages being lost).

In the near future, we plan to extend our formal model to describe a multihop network. We are interested

in exploring the consensus problem in this new environment,as well as reconsidering already well-studied

problems, such as reliable broadcast, and seeing if we can replicate, extend, or improve existing results

within this framework.

In conclusion, we note that much of the early work on wirelessad hoc networks used simplified commu-

nication models. This was sufficient for obtaining the best-effort guarantees needed for many first-generation

applications, such as data aggregation. In the future, however, as more and more demanding applications

are deployed in this context, there will be an increased needfor stronger safety properties. These stronger

properties require models that better capture the reality of communication on a wireless medium. As we

show in this study, in such models, collision detection is needed to solve even basic coordination problems.

Accordingly, we contend that as this field matures, the concept of collision detection should be more widely

studied and employed by both theoreticians and practitioners.

75

References
[1] IEEE 802.11. WirelessLAN MAC and physical layer specifications, June 1999.

[2] K. Alroubi, P. J. Wan, and 0. Frieder. Message-optimal connected dominating sets in mobile ad hoc
networks. Inin Proceedingrs of the 3rd ACM International Symposium on Mobile Ad Hoc Networking
and Computing, 2002.

[3] J. Aspnes, F. Fich, and E. Ruppert. Relationships between broadcast and shared memory in reliable
anonymous distributed systems. In18th International Symposium on Distributed Computing, pages
260–274, 2004.

[4] H. Attiya, D. Hay, and J. Welch. Optimal clock synchronization under energy constraints in wireless
ad hoc networks. InProceedings of the ninth International conference on Principles of Distributed
Systems, 2005.

[5] M. Bahramgiri, M. T. Hajiaghayi, and V.S. Mirrokni. Fault-tolerant and three-dimensional distributed
topology control algorithms in wireless multi-hop networks. InProceedings of the 11th IEEE Interna-
tional Conference on Computer Communications and Networks, 2002.

[6] R. Bar-Yehuda, O. Goldreich, and A. Itai. Efficient emulation of single-hop radio network with colli-
sion detection on multi-hop radio network with no collisiondetection.Distributed Computing, 5:67–
71, 1991.

[7] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of broadcast in multi-hop radio
networks: An exponential gap between determinism and randomization. Journal of Computer and
System Sciences, 45(1):104–126, 1992.

[8] R Bar-Yehuda, A Israeli, and A Itai. Multiple communication in multi-hop radio networks.SIAM
Journal on Computing, 22(4):875–887, 1993.

[9] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. Macaw: A media access protocol for wire-
less lans. InProceedings of the ACM SIGCOMM ’94 Conference on Communications Architectures,
Protocols, and Applications, 1994.

[10] Bluetooth. http://www.bluetooth.com.

[11] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.Journal of
the ACM, 43(2):225–267, 1996.

[12] I. Chlamtac and S. Kutten. On broadcasting in radio networks - problem analysis and protocol design.
IEEE Transactions on Communications, 33(12):1240–1246, 1985.

[13] G. Chockler, M. Demirbas, S. Gilbert, N. Lynch, C. Newport, and T. Nolte. Reconciling the theory
and practice of (un)reliable wireless broadcast.International Workshop on Assurance in Distributed
Systems and Networks (ADSN), 2005. To appear.

[14] Gregory Chockler, Murat Demirbas, Seth Gilbert, and Calvin Newport. A middleware framework for
robust applications in wireless ad hoc networks. InProceedings of the 43rd Allerton Conference on
Communication, Control, and Computing, 2005.

76

[15] Gregory Chockler, Murat Demirbas, Seth Gilbert, Calvin Newport, and Tina Nolte. Consensus and
collision detectors in wireless ad hoc networks. InProceedings of the twenty-fourth annual ACM
Symposium on Principles of Distributed Computing. ACM Press, 2005.

[16] Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Selective families, superimposed codes,
and broadcasting on unknown radio networks. InProceedings of the twelfth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 709–718, Philadelphia, PA, USA, 2001. Society for Industrial
and Applied Mathematics.

[17] M. Demirbas, A. Arora, T. Nolte, and N. Lynch. A hierarchy-based fault-local stabilizing algorithm
for tracking in sensor network. InProceedings of the 8th International Conference on Principles of
Distributed Systems, Grenoble, France, dec 2004.

[18] J. Deng, P. K. Varshney, and Z. J. Haas. A new backoff algorithm for the IEEE 802.11 distributed
coordination function. InCommunication Networks and Distributed Systems Modeling and Simulation
(CNDS ’04), 2004.

[19] Anders Dessmark and Andrzej Pelc. Tradeoffs between knowledge and time of communication in
geometric radio networks. InProceedings of the 13th ACM Symposium on Parallel Algorithms and
Architectures, pages 59–66, 2001.

[20] Shlomi Dolev, Seth Gilbert, Limor Lahiani, Nancy A. Lynch, and Tina Nolte. Timed virtual stationary
automata for mobile networks. InProceedings of the 9th International Conference on Principles of
Distributed Systems, 2005.

[21] Shlomi Dolev, Seth Gilbert, Nancy A. Lynch, Elad Schiller, Alex A. Shvartsman, and Jennifer L.
Welch. Virtual mobile nodes for mobile adhoc networks. InProceeding of the 18th International
Conference on Distributed Computing, 2004.

[22] Shlomi Dolev, Seth Gilbert, Elad Schiller, Alex A. Shvartsman, and Jennifer L. Welch. Autonomous
virtual mobile nodes. InProceedings of the 3rd Workshop on Foundations of Mobile Computing, 2005.

[23] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.Journal of
the ACM, 35(2):288–323, 1988.

[24] J. Elson and D. Estrin. Time synchronization for wireless sensor networks. InProceedings of the 15th
International Parallel and Distributed Processing Symposium, 2001.

[25] J. Elson, L. Girod, and D. Estrin. Fine-grained networktime synchronization using reference broad-
casts. InProceedings of the Symposium on Operating System Design andImplementation, 2002.

[26] R. Fan, I. Chakraborty, and N. Lynch. Clock synchronization for wireless networks. InProceedings of
the 8th International Conference on Principles of Distributed Systems, Grenoble, France, dec 2004.

[27] Q. Fang, J. Gao, L. Guibas, V. de Silva, and L. Zhang. Glider: Gradient landmark-based distributed
routing for sensor networks. InProceedings of the 24th Annual INFOCOM Conference, 2005.

[28] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process.Journal of the ACM, 32(2):374–382, 1985.

77

[29] E. Gafni and D. Bertsekas. Distributed algorithms for generating loop-free routes in networks with
frequently changing topology.IEEE transactions on communications, 1981.

[30] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. Complex behavior
at scale: An experimental study of low-power wireless sensor networks. UCLA Computer Science
Technical Report UCLA/CSD-TR, 2003.

[31] R. S. Gray, D. Kotz, C. Newport, N. Dubrovsky, A. Fiske, J. Liu, C. Masone, S. McGrath, and
Y. Yuan. Outdoor experimental comparison of four ad hoc routing algorithms. InProceedings of the
ACM/IEEE International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWiM), pages 220–229, October 2004. Finalist for Best Paper award.

[32] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.Pister. System architecture directions for
network sensors.ASPLOS, pages 93–104, 2000.

[33] L. Jia, R. Rajaruman, and R. Suel. An efficient distributed algorithm for constructing small dominating
sets. InProceedings of the 2Oth ACM Symposium on Principles of Distributed Computing, 2001.

[34] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless network.Mobile Comput-
ing, 5:153–181, 1996.

[35] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile networking for smart dust. InProceedings of the
ACM/IEEE International Conference on Mobile Computing andNetworking, 1999.

[36] B. Karp and H. T. Kung. Greedy perimeter stateless routing for wireless networks. InProceedings of
the sixth International conference on Mobile Computing andNetworking, 2000.

[37] C-Y. Koo. Broadcast in radio networks tolerating byzantine adversarial behavior.ACM Symposium on
Principles of Distributed Computing (PODC), pages 275–282, 2004.

[38] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott. Experimental evaluation of wire-
less simulation assumptions. InProceedings of the 7th ACM International Symposium on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, pages 78–82, 2004.

[39] D. Kowalski and A. Pelc. Time of deterministic broadcasting in radio networks with local knowledge.
SIAM Journal on Computing, 33(4):870–891, 2004.

[40] Dariusz R. Kowalski. On selection problem in radio networks. InProceedings of the twenty-fourth
annual ACM SIGACT-SIGOPS symposium on Principles of distributed computing, pages 158–166,
New York, NY, USA, 2005. ACM Press.

[41] E. Kranakis, D. Krizanc, and A. Pelc. Fault-tolerant broadcasting in radio networks. InProceedings
of the 6th Annual European Symposium on Algorithms, pages 283–294, 1998.

[42] E. Kuhn and K. Wattenhofer. Constant-time distributeddominating set approximation. InProceedings
of 22nd ACM International Symposium on the Principles of Distributed Computing, 2003.

[43] S. S. Kulkarni and U. Arumugam. Tdma service for sensor networks. In Proceedings of the Third
International Workshop on Assurance in Distributed Systems and Networks (ADSN), March 2004.

78

[44] M. Kumar. A consensus protocol for wireless sensor networks. Master’s thesis, Wayne State Univer-
sity, 2003.

[45] H.T. Kung and D. Vlah. Efficient location tracking usingsensor networks,. InProceedings of the IEEE
Wireless Communications and Networking Conference, mar 2003.

[46] E. Kushelevitz and Y. Mansour. An omega(d log(n/d)) lower bound for broadcast in radio networks.
In Proceedings of the Twelth Annual ACM Symposium on Principles of Distributed Computing, 1993.

[47] L. Lamport. Paxos made simple.ACM SIGACT News, 32(4):18–25, 2001.

[48] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: Aself-regulating algorithm for code propagation
and maintenance in wireless sensor networks.First USENIX/ACM Symposium on Networked Systems
Design and Implementation, 2004.

[49] L. Li, J. Halpern, V. Bahl, M. Wang, and R. Wattenhofer. Analysis of a cone-based distributed topology
control algorithm for wireless multi-hop networks. InProceedings of the Twentieth ACM Symposium
on Principles of Distributed Computing, 2001.

[50] C. Livadas and N. Lynch. A reliable broadcast scheme forsensor networks. Technical Report MIT-
LCS-TR-915, MIT CSAIL, 2003.

[51] E. L. Lloyd. Broadcast scheduling for tdma in wireless multihop networks. pages 347–370, 2002.

[52] Jun Luo and Jean-Pierre Hubaux. Nascent: Network layerservice for vicinity ad-hoc groups. InPro-
ceedings of the 1st IEEE Communications Society Conferenceon Sensor and Ad Hoc Communications
and Networks, 2004.

[53] N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

[54] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tinydb: An acqusitional query processing
system for sensor networks.ACM TODS, 2005.

[55] D. Moore, J. Leonard D. Rus, and S. Teller. Robust distributed network localization with noisy range
measurements. InProceedings of ACM Sensys’04, 2004.

[56] T. Moscibroda and R. Wattenhofer. Efficient computation of maximal independent sets in unstructured
multi-hop radio networks. InProceedings of the first IEEE International Conference on Mobile Ad-hoc
and Sensor Systems, 2004.

[57] K. Nakano and S. Olariu. Uniform leader election protocols in radio networks. InICPP ’02: Proceed-
ings of the 2001 International Conference on Parallel Processing, pages 240–250. IEEE Computer
Society, 2001.

[58] V. Park and M. Corson. A highly adaptive distributed routing algorithm for mobile ad hoc networks.
In Proceedings of the sixteenth annual joint conference of theIEEE Computer and Communications
Societies, Driving the Information Revolution, 1997.

[59] C. Perkins and E. Royer. Ad hoc on-demand distance-vector routing. InProceedings of the 2nd
workshop on Mobile Computing Systems and Applications, 1999.

79

[60] K. S. J. Pister, J. M. Kahn, and B. E. Boser. Smart dust: Wireless networks of millimeter-scale sensor
nodes. InHighlight Article in 1999 Electronics Research LaboratoryResearch Summary, 1999.

[61] J. Polastre and D. Culler. Versatile low power media access for wireless sensor networks.The Second
ACM Conference on Embedded Networked Sensor Systems (SENSYS), pages 95–107, 2004.

[62] N. Priyantha, A. Chakraborty, and H. Balakrishnan. Thecricket location-support system. InProceed-
ings of the sixth International conference on Mobile Computing and Networking, 2000.

[63] N. Santoro and P. Widmayer. Time is not a healer. InProceedings of the 6th Annual Symposium on
Theoretical Aspects of Computer Science, pages 304–313. Springer-Verlag, 1989.

[64] N. Santoro and P. Widmayer. Distributed function evaluation in presence of transmission faults.Proc.
Int. Symp. on Algorithms (SIGAL), pages 358–367, 1990.

[65] A. Savvides, C. Han, and M. Strivastava. Dynamic fine-grained localization in ad-hoc networks of
sensors. InProceedings of the seventh annual International conference on Mobile Computing and
Networking, 2001.

[66] W. Su and I. F. Akyildiz. Time-diffusion synchronization protocol for wireless sensor networks.
IEEE/ACM Transactions on Networking, 13(2):384–397, 2005.

[67] Robert Szewczyk, Joseph Polastre, Alan Mainwaring, and David Culler. Lessons from a sensor net-
work expedition.Lecture Notes in Computer Science, 2920:307–322, 2004.

[68] T. van Dam and K. Langendoen. An adaptive energy-efficient MAC protocol for wireless sensor
networks.The First ACM Conference on Embedded Networked Sensor Systems (SENSYS), pages 171–
180, 2003.

[69] D. E. Willard. Log-logarithmic selection resolution protocols in a multiple access channel.SIAM
Journal of Computing, 15(2):468–477, 1986.

[70] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of multihop routing in sensor
networks.The First ACM Conference on Embedded Networked Sensor Systems (SENSYS), pages 14–
27, 2003.

[71] A. Woo, K. Whitehouse, F. Jiang, J. Polastre, and D. Culler. Exploiting the capture effect for collision
detection and recovery. InProceedings of the 2nd IEEE Workshop on Embedded Networked Sensors,
pages 45–52, May 2005.

[72] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wireless sensor networks.
In Proceedings of the 21st International Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM), 2002.

[73] J. Zhao and R. Govindan. Understanding packet deliveryperformance in dense wireless sensor net-
works. The First ACM Conference on Embedded Networked Sensor Systems (SENSYS), pages 1–13,
2003.

80

