Consensus and Collision Detectors in Wireless Ad Hoc Ndts/or

Calvin Newport

July 10, 2006

Abstract
In this study, we consider the fault-tolerant consensublpro in wireless ad hoc networks with crash-
prone nodes. Specifically, we develop lower bounds and rimgfakpper bounds for this problem in
single-hop wireless networks, where all nodes are locatinbroadcast range of each other. In a
novel break from existing work, we introduce a highly unpetable communication model in which
each node may lose an arbitrary subset of the messages sisti@yghbors during each round. We
argue that this model better matches behavior observedjirieal studies of these networks.

To cope with this communication unreliability we augmentes with receiver-sideollision de-
tectorsand present a new classification of these detectors in tefascaracy and completeness. This
classification is motivated by practical realities andwaiiais to determine, roughly speaking, how much
collision detection capability is enough to solve the cossis problem efficiently in this setting. We
consider ten different combinations of completeness awdracy properties in total, determining for
each whether consensus is solvable, and, if it is, a lowendon the number of rounds required. Fur-
thermore, we distinguish anonymous and non-anonymous@ist—where “anonymous” implies that
devices do not have unique identifiers—determining whagoceffif any) this extra information has on
the complexity of the problem. In all relevant cases, we ewnatching upper bounds.

Our contention is that the introduction of (possibly weaQaiver-side collision detection is an im-
portant approach to reliably solving problems in unrekatétworks. Our results, derived in a realistic
network model, provide important feedback to ad hoc netwwéctitioners regarding what hardware
(and low-layer software) collision detection capabilisysufficient to facilitate the construction of reli-

able and fault-tolerant agreement protocols for use inw@ald deployments.

Contents

1

Introduction

1.1 Wireless AdHoc Networks e
1.2 The Total Collision Model e
1.3 OurNetworkModel e
1.4 The Consensus Problem In Wireless Ad Hoc Networks

1.5 OurResults e e

Preliminaries

The System Model
3.1 Model Definitions L e
3.2 Executions and Indistinguishability 0 0 0oL,

3.3 Process Failuresand Message LOSS e e

Contention Managers
4.1 The Wake-up and Leader Election Services
4.2 Contention Manager Classes i e e

4.3 The Maximal Leader Election Service e

Collision Detectors

5.1 Completeness Properties e e e
5.2 Accuracy Properties e e e e e
5.3 Collision Detector Classes e e
5.4 Maximal Collision Detectors e

5.5 The Noise Lemma. e e

The Consensus Problem and Related Definitions

Consensus Algorithms

7.1 Anonymous Consensus with ECF and Collision DetectonsdpO.AC

20

21
21
24
27

29
29
30
30

31
31
32
33
34
35

36

38

7.2 Anonymous Consensus with ECF and Collision Detecto@sodC

7.3 Non-Anonymous Consensus with ECF and Collision Deted¢mo0-0.AC 46
7.4 Anonymous Consensus with NOCF and Collision Detecto€s4lC 49

Lower Bounds 53
8.1 Impossibility of Consensus with No Collision Detection 54
8.2 Impossibility of Consensus with No Accuracy Guarantees 56
8.3 Impossibility of Constant Round Consensus with ECFaidiC 56
8.3.1 Definitions e 56

58

8.3.2 KeylLemmas e e
8.3.3 Impossibility of constant round consensus with amgmwus € (half-AC,LS),V ,ECF)-

consensus algorithm

8.3.4 Impossibility of constant round consensus with aaosonymous{ (half-AC,LS),V ,ECF)-

consensus algorithm e 66
8.4 Impossibility of Consensus with Eventual Accuracy biubeut ECF. 70
8.5 Impossibility of Constant Round Consensus with Accptad without ECF 71
74

9 Conclusion

1 Introduction

1.1 Wireless Ad Hoc Networks

Properties of Wireless Ad Hoc Networks. Wireless ad hoc networks are an important platform for bring
ing computational resources to diverse contexts. Theseonket are characterized by limited devices, de-
ployed in novel environments in an ad hoc fashion (that {gically, noa priori knowledge of the environ-
ment or connection topology is assumed). Direct commuioicas possible only with neighbors through
the use of local radio broadcast. It is often the case, thowghlways, that the devices have limited compu-
tational capability, local memory, and power. Dependingt@ncontext, location information is sometimes
available; perhaps derived from a GPS unit or through thelsgecial ranging hardware (e.g. [62]) coupled
with distance-based localization schemes; c.f. [55, 65].

Because devices in ad hoc networks are commonly low-costia@e the expense of large, rapid, and
temporary deployments), they are prone to unpredictalashcfailures. Similarly, their local clocks can
operate at varying rates depending on temporal envirorahefiects such as temperature; complicating the
task of maintaining synchronized clocks. See [24] for a nettensive discussion of clock behavior and
expected skew under different conditions.

GPS units, on the other hand, can be used to provide highspyadime values. In practice, however,
the rate at which these values are obtained from the unitliscesd by the demands of the device driver and
operating system. The delay between timer updates carfaherge sufficiently large for the intervening
clock drift to cause non-trivial skew. Gray et al. encouetethis problem when trying to calculate message
latency values from a mobile ad hoc network deployment [Bldre, the skew accumulated between GPS
time updates was sufficient to require the use of an alteenatock synchronization scheme based on the
approach presented in [25]

There exists, however, a strong body of both experimentdltheoretical research on protocols that
overcome these timing-related difficulties to achieve saably close clock synchronization; c.f. [4, 25,
26, 66]. For example, in [25], clock synchronization witlBi68 + 2.57usec was achieved for a multihop
network deployed ovet communication hops.

In many networks, devices have unique identifiers, deriteduigh randomization or provided in ad-

vance (such as a MAC Address read from a wireless adapteBseTidentifiers, however, are not always
present. For example, in an extremely dense network of tawcds—such as the cubic millimeter sized
motes envisioned for “smart dust” deployments [35, 60]—dize of the random numbers needed to ensure
uniqueness, with high probability, or the effort requiredprovide identifiers in advance, might be pro-
hibitive. Also, in some scenarios, the use of unique idemtfimight induce privacy concerns. Consider,
for example, a wearable wireless device that interacts stitic devices, with known positions, deployed
throughout a hospital. Perhaps the device provides itswiseran interactive map of the building or mon-
itors his vital signs so that it can report an medical emergéda the hospital staff. If this wearable device
made use of a unique identifier during these interactiongoitld, in effect, be leaving a trace of the user’s
movement through the hospital; potentially revealing ggvinformation about the owner’s health status.
This type of concern motivated the design of the identifieeflocation service in [62].

Finally, we note that radio broadcast communication, thg ameans of communication available to
devices in wireless ad hoc networks, is inherently unrédiafwo (or more) nearby radios broadcasting at
the same time can interfere with each others’ transmissibhis could lead to the loss of all messages at a
given receiver as the signal-to-noise ratio grows too l&ogdistinguish one transmission from another.

It's also likely, however, as a result of the well-know captweffect [71], that in this scenario one
of the messages is successfully received while the othertoat. This capture behavior is unpredictable
and can lead, in practice, to non-uniform receive sets anmouigjple receivers within range of multiple
simultaneous transmissions. For example, assume, in ancargained within a single broadcast radius,
that two devicesA and B, broadcast a message at the same time, while two devicasd D, are listening.
Multiple outcomes are possible: perhaps b6thnd D receive no message, 6freceivesA’s message and
D receivesB’s message, or bot' and D receiveA’s message, of' receives nothing ané) receivesB’s
messageetc.

Many solutions have been proposed to mitigate some of tlusrtainty. For example, the most widely-
used MAC layers in wireless ad hoc networks make use of palysarrier sensing and exponential backoff
to help reduce contention on the channel; c.f. [1, 61, 68, FJr unicastcommunication with a known
recipient, virtual carrier sensing (the usectdar to sencandready to senatontrol messages) can be used to

help eliminate the well-knowhidden terminal problenandexposed terminal probleifgsee [9] for a more

extensive discussion of these common problems and howalictrrier sensing attempts to solve them).
Similarly, in these situations where the recipients arewkmdink-layer acknowledgments can be used to
help the sender verify the success or failure of its transionsand potentially trigger re-transmissions as
needed.

In many cases, however, the recipients are unknown, rergleiitual carrier sensing and link-layer
acknowledgments unusable. And though physical carriesisgmgoes a long way toward reducing message
loss on the wireless medium, it does not eliminate it. Tofyethis reality, consider empirical studies
of ad hoc networks, such as [30, 38, 70, 73], which show thah evith sophisticated collision avoidance
mechanisms (e.g., 802.11 [1], B-MAC [61], S-MAC [72], andMRC [68]), and even assuming low traffic
loads, the fraction of messages being lost can be as high-a$50%.

Accordingly, algorithm design for these netwonksisttake into account the expectation of lost mes-
sages. Either they feature a built-in resiliency to lost camication, or expend the computational and time
resources required to build a higher-level solution; sushanstructing a global TDMA schedule that pre-
vents nearby nodes from broadcasting during the same dlof7 @8, 10, 12, 43, 51]. Notice, however, that
the TDMA approach incurs a heavy static overhead, reliesnaing the local topology and membership

information, and therefore, does not scale. This makegjipropriate for many scenarios.

Mobile Ad Hoc Networks. An important subclass of wireless ad hoc networksMaobile Ad Hoc Net-
works In such networks, the devices are assumed to be attachambiteragents whose movements patterns
cannot be controlled or predicted. Clearly, this situaiiminoduces new problems for coordination as the
topology of the underlying connection graph is constantignging. The point-to-point routing problem—
where a named source needs to route a message to a namedtiestiis the most widely studied prob-
lem in these networks; c.f. [29, 34, 36, 58, 59]. This is ppsha reflection of the difficulty of performing
more complicated coordination under such dynamic conwstioRecent work, however, such as the vir-
tual infrastructure systems developed at MIT [20—-22]—Whitakes use of the underlying mobile devices
to emulate arbitrary automaton at fixed locations or follugvivell-defined movement patterns—and the
NASCENT system developed by Luo and Hubaux [52]—which ptesiseveral group-management primi-
tives for small networks of mobile devices—facilitate thesiyn of more complex coordination algorithms

for this challenging environment.

Static Ad Hoc Networks. Among the different static wireless ad hoc networks disedss the literature,
perhaps the most widely cited are so-called “sensor nesvorkese networks, typically consisting of small
devices running Berkley’s TinyOS [32] operating system aqdipped with some manner of environmental
sensing equipment, are used to gather, analyze, and atgdaga from the environment in which they are
deployed. For example, in [67] a dense sensor network waktaseonitor climate conditions on a remote
island off the coast of Maine.

Research involving static ad hoc networks, such as senswoores, can be, roughly speaking, divided
into three main categories. The firstildormation disseminatianProtocols such as TRICKLE [48] (and
a similar scheme proposed by Lynch and Livadas [50])—whicdi fiood a message through the network
and then later have devices “gossip” with their neighborsae if they missed any recent messages—and
GLIDER [27]—which first builds up a synthetic coordinate t&ya based upon distances to pre-determined
“landmarks” and then uses greedy geographic routing teclesi to route messages—are among many that
have been proposed as a practical method for delivering aagedo an entire network or specific desti-
nation. Of course, the point-to-point routing algorithneveloped for mobile ad hoc networks can also be
used in these static networks. But their mechanisms fongopith mobility tend to produce an unnecessary
degree of overhead.

Starting with a paper by Bar-Yehuda et. al. [7], and follovilgdmany others (e.g., [6, 39, 41]), there
have also been many strictly theoretical examinationsebtioadcast problem in such static networks; with
a focus on producing lower bounds. These studies descabexample, a logarithmic, in the number of de-
vices, deterministic lower bound on the time required tadaast a message under certain conditions [39].
And a randomized lower bound, in terms of the expected nurabesunds to complete a broadcast, of
Q(Dlog (%)) [46] (whereD is the maximum minimum hop-count between two devices—sionestcalled
thenetwork diameter-and NV is an upper bound on the number of devices).

The second category @ata aggregation Almost all of the original uses of sensor networks involved
gathering data over time and aggregating it at a centratso@ystems such as Madden’s TinyDB [54] focus
on efficient structures for accomplishing this task with aimum of energy expenditure. More recently,
some attention has been diverted toward more responsigegd#ttering applications, such as the tracking

of a mobile agent through a field of sensor-equipped devicéq17, 45]

The final category idocal coordination To facilitate the achievement of higher-level goals, sash
information dissemination or data aggregation, it is oftefpful to first tame some of the unpredictability
introduced by an ad hoc deployment. For example, there haxs imeich work on the topology control
problem (e.g. [5, 49]), which attempts to have nodes redneg transmit power to a minimum level that
still provides sufficient connectivity throughout the netk. By reducing transmit power one can reduce
the number of devices within range of each other’s radio.s,Tini turn, reduces the overall contention in
the network. It also preserves energy, which, as mentiaseat) omnipresent goal in resource-constrained
networks.

Another local coordination problem of interest is the camdion of clusters, such that each device
ends up belonging to a single cluster with a well-defined stdthead.” This goal is considered useful
for coordinating both local and global communication. Eawork focused on clusters that represented
dominating sets-a collection (preferably minimal) of “clusterheads,” bubat each device in the network
is either a clusterhead or within communication range ofiaterhead; c.f. [2,33,42]. More recent research
(e.g. [56]) considersnaximal independent setwhich add the additional restriction that the cluster lsead
themselves are not within communication range of each othkis extra property is advantageous as it
allows these cluterheads to communicate with their regectusters while minimizing interference with
the transmissions at neighboring clusters.

Examples of other local coordination problems include ¢gaglection in a single-hop radio network
(e.g. [67]), in which a single device from among many compuetileclares itself a “leader,” and the
selection problem (e.g. [16,40]), also considered in sifigip regions, in whick active devices coordinate

such that each gets a time slot to broadcast its message.

1.2 The Total Collision Model

A claim we first made in [13] and expanded upon in [14,15], & there exists a considerable gap between
theory and reality when it comes to the study of wireless adhsdworks. This gap is caused, in our opinion,
by differing treatments of message loss. As mentioned iptaeeding discussion of ad hoc networks, radio
behavior in these settings is inherently unpredictableelMffroducing theoretical results for these networks,

however, precise communication models are required. Tineskels, in the interest of clarity and simplicity,

often replace the unpredictable behavior of real networikis avset of well-defined rules. Perhaps the most

widely-used communication model, which we refer to asttital collision modelspecifies:
1. If no neighbor of devicd broadcasts, thed receives nothing.
2. If two or more neighbors af broadcast, ther receives nothing.
3. If a single neighbor off broadcasts, thed receives its message.

This model was first introduced, in the context of wireleshad networks, with the Bar-Yehuda et al. [7]
broadcast paper mentioned previously. It was later addptatinost every subsequent theoretical study of
the broadcast problem, as well as in most theoretical sudilcal coordination problems. A variant on this
model, sometimes referenced, is to provide the devicesstritimg receiver-side collision detection. Here, it
is possible for a device to distinguish cagemnd2. The introduction of this strong collision detection can,
in some instances, significantly change the costs of bagatpns. For example, in [19] it is shown that,
under certain assumptions{¥n) lower bound for broadcast in a networkohodes and diametdp can
be reduced t6)(D + log n) with the availability of collision detection.

The problem with the total collision model is that it is urlisiéc. As we described previously, it
is not true that two or more neighbors of devi¢ebroadcasting at the same time, valwayslead tod
losing all messages. It's certainly possible thatdue to the capture effect [71], receives one of these
messages. Furthermore, though synchronized broadcasts@an be a reasonable assumption (as clock
synchronization is, as mentioned, a well-studied problepractice), it's not always reasonable to imagine
that these rounds are tightly tuned to the exact time reduodroadcast a single packet. Such a goal might
require a degree of synchrony that defeats what can actbalpchieved. It also neglects the sometimes
significant degree of non-determinism that exists in the tmtween an application deciding to broadcast a
message and a packet actually being transmitted. It ismaa®s therefore, to expect that communication
rounds are large relative to the time required to send aesipatket. In this casd,might receive more than
one, but perhaps not all, of the many messages sent durirsgquhe round.

Clearly, the total collision model failures to capture #agmssibilities; and this failure has significant
implications. For example, Kowalski and Pelc [39], using thtal collision model, construct a broadcast

algorithm that operates i@ (log n) rounds in small diameter networks ofdevices. They also provide a

lower bound that shows this result to be tight in this cont&@tteir algorithm, however, fails in a slightly
less predictable variant of this model where, in the caseofir more neighbors af broadcastingd might
receive no messag@ one message. In fact, Bar Yehuda et al. [7] show that in this medel the lower
bound on broadcasting is increasedX@:) rounds!

We claim that an important first step toward closing the gaméen theory and practice with regard
to wireless ad hoc networks is to replace the total collisiardel with one that better captures the unpre-
dictability of this setting. In the next sub-section we dése a network model, inspired by the weaker

model introduced (somewhat unintentionally) by Bar Yehatal. in [7], that we feel achieves this goal.

1.3 Our Network Model

Here we present an overview of our network model and justifina for its constituent assumptions. Be-
cause this study focuses on fault-tolerant consensus—aa ¢oordination problem—our model captures
only a single-hop network of static nodes. Other local cow@iibn problems—such as leader election [57]
andk-selection [16,40]—have also been studied mainly in théecdrof a single-hop static network. As we
describe in Section 1.4, local consensus provides a fundafriguilding block for building reliable services
at a network-wide scale. This study, therefore, represemisnportant first step toward understanding the

necessary conditions for bringing reliability to this urable setting.

Basic Assumptions. We model a fully-connected single-hop collectionnofrash-prone wireless devices
running deterministic protocols. By “single-hop,” we mehat every device is within communication range
of every other device. We assume no mobility. To match thitiesaof ad hoc deployment, we assume the
valuen is a priori unknown to the devices. And, as both are common, we will ciamsihe case where
devices have access to unique identifiers and the case wiegreld not. Indeed, one of the questions we

investigate in this study is the advantage of identifiersméigempting to coordinate in such a network.

Synchronized Rounds. We assume synchronized rounds with all devices startiniggltine same round.

These rounds could be implemented with a well-known clocickyonization algorithm such as RBS [25];

INote, in the original version of [7] Bar Yehuda et al. mistalyespecified that they were, in fact, working in the totallisibn
model. As pointed out in [39], and in an errata published ditese results require the ability of a single message taxbasionally
received in the case of two or more neighbors of a single ddwioadcasting during the same round.

10

which has proved to work well in practice. For the sake of thBcal consistency, however, we also describe,
in [14], a fault-tolerant round synchronization algorithihat is provably correct in a partially synchronous
variant of our model. In other words, we show how, startinghvdrifting clocks, wireless devices can

efficiently build and maintain synchronized broadcast dsunnder the various realistic communication

restraints assumed in our modél.

Message Loss. Communication in our model is unpredictable. Specificafiyany round, any device can
lose any subset of the messages broadcast by other devigas tthe round. Of course, in real networks, itis
usually the case that ifgingledevice broadcasts, thal devices should receive its message. To capture this
reality, we introduce a property calledentual collision freedopmwhich states that there exists some round
in every execution after which if a single device broadctsts all devices receive its message. The reason
we don't always assume this property to hold from the firshbis that our single-hop network might be a
clique in the middle of a larger multi-hop network. In thiseainterference, in the form of broadcasts from
neighboring regions, can cause a single message to beflose hssumes eventual collision freedom, then
one is assuming that eventually, through some sort of hilgivet coordination, that neighboring regions
will be quiet long enough for the region of interest to acctsipwhat it needs to accomplish without
outside interference. We study coordination both in exenstthat satisfy this property and those that do

not.

Collision Detectors. To help mitigate the complications introduced by our comitation model, we
also assume receiver-side collision detectors. Thesetdeteare binary. Each round they return to each
device eithernull—a rough indication that the receiver didn't lose any messdlgis round—ot-—a rough
indication that the receiver lost a message during the rolNwtice, these detectors offer no information
concerning the number, content, or source of lost messages.

In a novel break from past work, we do not necessarily asstateliese detectors are “perfect.” (that

is, return+ if and only if that device lost a message). Though such pedetectors might be useful in

The algorithm described in [14] works for an arbitrary mihitip network of diameteD. It requires a©(D) delay to resyn-
chronize every (1) time. For the special case of a single-hop network, howewleere D = 1, this is quite reasonable, especially
considering the constant factor within tB€ D) term is less than one round length, and the constant factbei®@(1) term is, for
reasonable values of round length and clock drift ratesjrat®000.

11

theory, they might also be more difficult to realize in preeti Accordingly, we consider many variants of
collision detectors. Specifically, we classify collisioatéctors in terms of thezompletenesandaccuracy
properties. The former describes the conditions underméidetector guarantees to report a collision. The
latter describes the conditions under which a detectoragii@eshot to report a collision when none actually

occurred. We define them as follows:

e CompletenessA detector satisfies completeness if it guarantees to retuma device if that device

lost one or more messages during the round.

e Majority Completeness: A detector satisfies majority completeness if it guaranteagturn+ to
a device if that device didn't receive a strict majority oétmessages sent during that round. This
property corresponds to the practical reality that oftehemmany messages are sent, it is possible
for asmallnumber of these messages to be lost in the clutter withoettien, but, if too many are

lost, the detector will be able to detect some noise on thereHandicative of this loss.

e Half Completeness: Similar to majority completeness, a detector satisfies tatfipleteness if it
guarantees to returh to a device if that device didn’t receive half or more of thessages sent during
that round. The difference between this property and theagzears to be slight. We introduce them
both, however, because we are able to find a significant coiypap between them concerning the

number of rounds required to solve consensus.

e Zero Completeness:A detector satisfies zero completeness if it guaranteesuonre: to a device
if that device lost all of the messages sent during that rodridls property is particularly appealing
because of its practicality. A zero complete detector islireg only to distinguish between silence
and the loss of all messages. In other words, it need onlyumimhysical carrier sensing, a process
already well studied and commonly implemented as part oftr@&MA protocols used in many
wireless MAC layers; c.f. [1, 61, 68, 72]. In fact, in a study Deng et al. [18], it is suggested that
there currently exists no technical obstacle to addingerasensing based collision detection support

to the current 802.11 protocol.

e Accuracy: A detector satisfies accuracy if it guarantees to retunfi to a device if that device

received all messages sent during the round.

12

e Eventual Accuracy: A detector satisfies eventual accuracy if there exists adauevery execution
after which it guarantees to be accurate. This weaker pipgemeant to capture the possibility of

the occasional false positive that might be generated Igtiped collision detection schemes.

We have begun to explore implementations of collision detsdhat match these properties. Early exper-
iments have shown that simple detection schemes can aceevecompleteness in 100% of rounds, and
majority completeness in over 90% of rounds. We are confittaitwith further refinement the majority
completeness property can be satisfied in much closer to X0%unds. See [14] for a more detailed

discussion of the techniques used in these early detecpieinentations.

Contention Managers. We also introduce a service, which we call a contention manadgat encapsulates
the task of reducing contention on the broadcast channetath round, the manager suggests that each
device either beactive or passive Informally, the former is meant to indicate that a devica tg to
broadcast in the upcoming round, and the latter indicatasaldevice should be silent. Most reasonable
contention manager properties should eventually st&bdiz only a small number of devices (hamdly,
being labeled aactive thus allowing, in executions satisfying eventual caliisfreedom, for messages to
be delivered without collision. One could imagine, for exden such a service being implemented in a real
system by a backoff protocol. Such protocols have beenesduglitensively; cf. [16, 69].

Our motivation behind encapsulating this task into an abstservice is to free both the designer of
algorithms and the designer of lower bounds from the corcspecific to contention management. As
mentioned, much work has already been done in this field, andom’t desire, for example, to re-prove
the properties of various backoff protocols for each pnoblee consider. Instead, we specify time bounds
relativeto stabilization points of the contention manager. For exatnwe show that, using certain types of
collision detectors, consensus can be solved within aanhstimber of rounds after the contention manager
stabilizes to a single broadcaster, while, using diffetgpés of collision detectors, consensus requires an
additional®(log |V|) rounds after this stabilization point (wheveis the set of possible initial values for
consensus).

Exactlywhenthis stabilization point occurs is a property of a specifinteation manager implementa-

tion, and it is a detail we do not concern ourselves with ia #tidy. In a sense, by encapsulating contention

13

management in an abstract service we make it easier to foctiea@omplexity unique to specific problems
separate from the complexity of reducing contention.

Furthermore, this encapsulation provides an importardrsgipn between safety and liveness. That is,
if one relies on the contention manager only to ensure lisgifas is the case for all protocols described in
this study), then, even if, in practice, the contention ng@naatisfies its property only with high probabil-
ity, only the liveness of the protocol becomes probabdistinature. This separation, between a guaranteed
safety property and a (potentially) probabilistic livemgsoperty is important for the design wfbust ap-
plications—such as coordinating actuator-equipped wireless devicesconfigure a factor assembly line,
or using a sensor network to aim a missile strike—where tb&aton of certain safety properties, even
with only a low probability of occurrence, is unacceptaliiee [14] for a more detailed discussion of such
applications.

Of course, for the designer who is specifically interestechbinstructing exact contention management
bounds in our model, one can simply disregard the contemtianager, and handle this problem of con-
tention explicitly in their protocol design. We introdudeg abstraction only to simplify the examination of

problems, such as consensus, for which the reduction oéntiah is not the most important issue.

1.4 The Consensus Problem In Wireless Ad Hoc Networks
The focus of this paper is the fault-tolerant consensusl@nebln this problem, all devices in a single-hop
network are provided with some initial value from a knownueaketl’. They then execute a protocol that

results in each device deciding some V. This protocol must satisfy three properties:
1. Agreement: No two devices decide a different value.

2. Strong Validity: If a device decides value, thenwv is the initial value of some device. A variant
to this property isUniform Validity , which requires that if all devices share the same initifllera
v, thenwv is the only possible decision value. To obtain the strongessible results, we consider
uniform validity (the weaker of the two) when composing awér bounds, and strong validity when

composing our matching upper bounds.

3. Termination: All devices that do not crash eventually decide.

14

Fault-tolerant consensus is an important building bloclkafweless ad hoc networks, as it is a fundamental
primitive for many local coordination activities. For expl®, devices within a single region of a sensor
network may need to decide on a new offset parameter to atdittheir sensors. It is important that all
devices agree on the same parameter, as, otherwise, soime deght produce sensor readings that are
incomparable with the others, destroying attempts to perfmeaningful data aggregation.

Similarly, for many activities, such as the selection of astérhead for a network clustering scheme,
leader election is necessary. Consensus run on uniqudfielents an obvious, reliable solution to this
problem. Furthermore, many data aggregation systems[gl]).aggregate data by passing values up a
spanning tree. Due to unreliable communication some vatught get lost, weakening the guarantees
that can be made about the final output of the aggregation.elfodounter this unreliability, a consensus
protocol can be run among the children of each parent in #eettr agree on the values to be disseminated.

And, as Kumar proposes in [44], consensus can be used toifsirtip@ dissemination of information
from a large sensor network to a common source. Specifitalguggests that first the devices sub-divide
themselves into non-overlapping clusters. Then, withoheduster, consensus is executed to decide on what
information that cluster wants to return to the source. phixess has the effect of reducing the number of
messages traveling through the network while ensuringaaevices still have a “vote” in deciding what
information is ultimately returned.

There has been extensive prior work on fault-tolerant awise in synchronous [53], partially syn-
chronous [23], asynchronous with failure detectors [1],atid fully asynchronous [28] message passing
systems with reliable or eventually reliable point-tofiothannels. In particular, to tolerate message loss
the work of [23, 47] assumes eventually connected majootymonent and an a priori known number of
participants. Both of these assumptions are unavailalileeinvireless ad hoc environments we consider.

Santoro and Widmayer [63, 64] study consensus in the presehanreliable communication, and
show that consensus is impossible if as few(ras 1) of the n? possible messages sent in a round can be
lost. In this study, we circumvent this impossibility retswith both our collision detectors and contention
managers; which can be used, in executions that satisfytielecollision freedom, to provide eventual
message reliability. Also, algorithms in [64] are not apable in our setting since they rely on a priori

known number of participants, and do not tolerate hoderidlu

15

In [44], Kumar presents a quorum-based solution to solvengtftolerant consensus among subsets of
nodes in a multi-hop wireless sensor network. The model,elrew differs from ours in that it requires
nodes to have significant advance knowledge of the netwpidagy, and failure behavior is constrained to
maintain specific redundancy guarantees.

Aspnes et al. [3] present a solution for consensus in wisetetworks with anonymous but reliable
nodes, and reliable communication. Although anonymityasanprimary focus of our paper, most of our
algorithms are, in fact, anonymous as they do not use nodwifides. In addition, our algorithms work
under more realistic environment assumptions as theyatelemreliable communication and node crashes.

Koo [37] presents an (almost) tight lower bound for the mummfraction of Byzantine neighbors
that allows atomic broadcast to be solved in radio networkerer each node adheres to a pre-defined
transmission schedule. We do not consider Byzantine &sland, unlike Koo, we do assume unreliable
broadcast.

We presented the justification and main properties of ourehimd[13]. Many of the algorithms and
lower bounds examined in this study were first described 5 [And, in [14], we discussed how to imple-

ment the elements of our model in practice.

1.5 Our Results

In this study we examine the fault-tolerant consensus prohinder different conditions. We are interested
in determining both how much collision detection infornoatiis necessary to solve the problem, and, for
the cases where the problassolvable, how many rounds are required. We also examineffibet ef the
eventual collision freedom property and the availabilityinique identifiers on our results. Specifically, we

produce the following:
Impossibility Results Under Eventual Collision Freedom Asumption.

e In Theorem 4 in Section 8.1 we show consensus cannot be saftledho collision detector, and in
Theorem 5 in Section 8.2, we show that consensus cannot bedswaifth a collision detector that
doesn't satisfy eventual accuracy. These results hold gwga assume a contention manager that
eventually stabilizes to a singte-tive device, and the eventual collision freedom property. Irepth

words, eventually electing a leader, and giving it the &bilb communicate reliably, is not enough

16

to solve consensus. The reason is that without a usefukioollidetector, one cannot tell when the

system has stabilized to this good point.
Impossibility Result Under No Eventual Collision Freedom Assumption.

¢ In Theorem 8 in Section 8.4, we show that for executions tbhatat satisfy eventual collision free-
dom, consensus cannot be solved with a collision detecarstitisfies only eventual accuracy. This
holds even if the detector also satisfies completeness amgsugne a contention manager that even-
tually stabilizes to a singlective device. In other words, having a collision detector thatvsags
complete and eventually accurate is not enough to solveeosns in an environment with no mes-
sage delivery guarantees, as, in this context, collisidifications are the only way to communicate,
and the eventual accuracy conditions makes it difficult bonteether a notification is real or a false

positive.
Round Complexity Lower Bounds Under Eventual Collision Freedom Assumption.

e In Theorem 6 in Section 8.3.3, we show that, using a colligietector that satisfies half complete-
ness and accuracy, no anonymous algorithm can guarantelréoccensensus in less th&tlog |V])
rounds for all initial value assignments from value gét This holds even if we assume a contention
manager that eventually stabilizes to a singtéive device and the eventual collision freedom prop-
erty. In other words, if devices are equipped with detectioas can allow half of the messages in a
round to be lost without notification, then they are reducetiadnsmitting their values at a rate of one
bit per round. Roughly speaking, this is due to the fact thahsa detector can allow the network to
partition into two equal-sized groups that will remain usagvof each other unless their exists a round
in which processes from one group broadcast while procéssmaghe other are silent. The only way
for anonymous processes to generate such an asymmetryde thaubits of their initial values as a

broadcast pattern.

e In Theorem 7 and Corollary 3 in Section 8.3.4, we show thattlie case of non-anonymous al-

gorithms, the previous half completeness bound can be defm@(min{log |V |, log %}) rounds,

3All bounds described in this sub-section are relative tofitse round after which the contention manager has stakiilinea
singleactive process and the eventual collision freedom property holds.

17

wherel is the set of all possible identifiers, ands the number of nodes participating. Once again,
this holds even if we assume a contention manager that eignstabilizes to a singlective device
and the eventual collision freedom property. This indisdbe perhaps surprising reality that unique
identifiers, roughly speaking, do not help solve consenssief. That is, i is large relative td/ (as

is often the case, because identifiers in most real netwdtthkasreconsist of many randomly chosen
bits or along MAC address), then the lower bound is asynyathyi the same for both the anonymous

and non-anonymous case.
Round Complexity Lower Bound Under No Eventual Collision Freedom Assumption.

e In Theorem 9 in Section 8.5, we show that, for executionsdbatot satisfy eventual collision free-
dom, no anonymous protocol that does not use a contentiorageartan solve consensus in less
than©(log |V'|) rounds, even if we assume a perfect detector (e.g. compietaecurate). In other
words, for an environment that never guarantees the sdatéssismission of a message, processes
are reduced to spelling out their value bit-by-bit (i.e.ilerg round indicate$, a collision notification
indicates1). We conjecture that this bound holds even if we assume ategdction service and

unigue identifiers, as neither helps processes commurdacaiie faster than one bit per round.
Upper Bounds Under Eventual Collision Freedom Assumption

e In Section 7.1 we present @amonymougprotocol (Algorithm 1) that solves consensugi(il) rounds
if: (1) each process has access to a collision detectorginadjority complete and eventually accurate,
and a contention manager that eventually stabilizes to ne than oneictive process per round; (2)

the execution satisfies eventual collision freedbm.

e In Section 7.2 we present amonymougprotocol (Algorithm 2) that solves consensusdfiog |V])
rounds if: (1) each process has access to a collision detdebis zero complete and eventually
accurate, and a contention manager that eventually gabitd no more than onetive process per
round; (2) the execution satisfies eventual collision foeeedThis algorithm matches the(log V)

lower bound for collision detectors that are half-complateveaker.

“As with the lower bounds, all upper bounds are relative tditiseround after which the contention manager has stabiliae
a singleactive process and the eventual collision freedom property holds.

18

e In Section 7.3 we describe, informallynan-anonymouprotocol that solves consensusdmin{log |V|, log |I|})

rounds, wherd is the size of the ID space, if: (1) each process has accesstlision detector that is

zero complete and eventually accurate, and a contentioageathat eventually stabilizes to no more

than onexctive process per round; (2) the execution satisfies eventu@ioolifreedom. This protocol

is a simple variant of Algorithm 2, and, for the casel/dfeing large relative t& (which is typically

true in real deployments), matches our non-anonymous Iband ofQ2(min{log |V, log ‘—g}). For

the case wheré is small, this algorithm comes within a factor Qfof this bound. Note, however,

thatn describes only the number of nodes in a single-hop area ofisorie—n is, in this respect, a

constant, as only so many devices can physically be fit intogdesbroadcast radiud/(and/, on the

other hand, can be arbitrarily large).
Upper Bounds Under No Eventual Collision Freedom Assumptio

e In Section 7.4, we present amonymougprotocol (Algorithm 3) that solves consensugdfiog |V])
rounds if the process has access to a collision detectorigtmdro complete and accurate. This
algorithm matches th@(log |V|) lower bound for collision detectors that are accurate aed@ions

that do not satisfy eventual collision freedom.

19

2 Preliminaries

e Given two multisetsV/; andM,, M; C Ms indicates that for alln € M;: m € My andm does not

appear inM; more times than it appears 5.

e Given two multisets\/; and Ms, M; | J M, indicates the multiset union dff; and M, in which any

elementm € M; (resp.m € M) appears the total number of times thaappears in\/; and Ms.
e We say a multised/ is finite if it is described by only a finite number of (value, numberirpa

e For a finite multiset\/, described by a sequence of (value, number) pairs, weM$éo indicate the

sum of the number components of these pairs, that is, thentataber of instances of all values .

e For afinite set of value¥®’, we useM ulti(V') to indicate the set of all possible finite multisets defined

overV.
e For a finite setS, we use)M S(.S) to indicate the multiset containing one of each elemerst.in

e For a finite multiset), we use the notatio ET'(M) to indicate the set containing every unique

value that appears i/ .

20

3 The System Model

3.1 Model Definitions

We model a synchronous single-hop broadcast network withumiform message loss, contention man-
agement, and collision detection. Formally, we define be the finite set of all possible process indices,

and M to be a fixed message alphabet. We then provide the followgfigidons:

Definition 1 (Process).A processs some automatod consisting of the following components:
1. states 4, a potentially infinite set o$tates It describes all possible states 4f

2. start 4, a non-empty subset atates 4 known as thestart states It describes the states in which

can begin an execution.

3. faila, a single state fromstates s known as thefail state We will use this state to model crash

failures in our model.

4. msga, a message generation function that mapsges 4 x {active, passive} to M | J{null}, where
M is our fixed message alphabet andll is a placeholder indicating no message. We assume
msga(faila,*) = null. This function describes what message @il if no message) is gener-
ated by A for each combination of a state and advice from a contentianager. As we will soon
describe, the advicective indicates that a process should try to send a message, pulsidéve indi-
cates that it should not (due to contention). As is made alsviry this definition, the process is under
no obligation to follow this advice. For the special casehef fail state, we constrain the function to

always returmull regardless of the contention manager advice.

5. trans 4, a state transition function mappirgutes x Multi(M) x {£, null} x {active, passive}
to states 4, WwhereMulti(M) is the set of all possible finite multisets defined oyér We assume
transa(faila,*,x,*) = fails. This function describes the evolution of the statesidfased on the
current state, the received messages, the collision detdvice, and the contention manager advice.
For the special case of the fail state, we force the procestaydn the fail state. This models a process

crash failure (from which there is not restarting).

21

Definition 2 (Algorithm). An algorithm is a mapping froni to processes.

Notice, by this definition, it is perfectly valid for some alithm A to encode; in the state of automaton
A(i), for all i« € I. In some scenarios, however—especially those involvindi@a wireless networks
consisting of a large number of small, low-cost devices—ghhbe useful to consider only algorithms that
provide no differentiation among the processes. This correspondse@tactical case where devices are

assumed to have no unique IDs. We capture this possibility the following algorithm property:
Definition 3 (Anonymous). An algorithm A4 is anonymousf and only if: Vi, j € I, A(i) = A(j).

Next, we define a-transmission traceand aP-CD trace each defined over a non-empty subBeof 1.

The former will be used to describe, for a given executiomlving the indices inP, how many processes
broadcast a message and how many receive a message, atwathThe latter will be used to describe,
for a given execution also involving processediinwhat collision detector advice each process receives at

each round.

Definition 4 (P-transmission trace). An P-transmission trace, whei is a non-empty subset df is an
infinite sequence of ordered paiis,T1), (c2, 1), ... where each; is a natural number less than or equal

to | P|, and eacHl; is a mapping fromP to [0, ¢;].

Definition 5 (P-CD trace). A P-CD trace, whereP is a non-empty subset df is an infinite sequence of

mappingsC' D, CD,, ... where eachC D; maps fromP to {+, null}.

We can now formally define a collision detector, for a giveh $& of indices, as a function fron#-
transmission traces to a setBfCD traces. That is, given a description of how many message gent in
each round, and how many messages each process receiveth iroead, the collision detector describes
which sequences of collision detector advice are validideothis definition prevents the collision detector
from making use of the identity of the senders or the contefitise messages. This captures our practically
motivated ideal of a receiver-side device that only attemiptdistinguish whether or not some messages

broadcast during the round were lost.

22

Definition 6 (P-Collision Detector). A P-collision detector, wherd” is a non-empty subset df, is a

function from P-transmission traces to non-empty sets?e€D traces.

To define a contention manager, we first define, as we did focalision detector, the relevant type of
trace. Here, this is #-CM trace which simply describes which contention manageica (eitheractive

or passive) Is returned to each process during each round.

Definition 7 (P-CM trace). A P-CM trace, whereP is a non-empty subset df is an infinite sequence of

mappingsC My, C M, ... where eachC M; maps fromP to {active, passive}.

We can now formally define a contention manager, for a givén/seof indexes, as a set @¢*-CM traces.
That is, a contention manager is simply defined by the fullogtossible advice sequences that it might
return. Notice, this separates the contention manager fhencommunication behavior occurring during
the execution. We do not mean to imply that our model captardy oblivious contention management
schemes. The separation of the formal contention manadi@itide from other aspects of the execution
was enacted to promote clarity in our theoretical model. ¥#ime, in practice, that a contention manager
might be actively monitoring the channel and, perhaps, gemerating control messages of its own. For the
purposes of this framework, however, we are concerned oitlythve eventual guarantees of a contention
manager (i.e., it eventually stabilizes to a singleive process) not the details of how these guarantees are
met. As we described in the introduction, this latter posmaiready well-studied and can obscure other

aspects of the problem at hand that might be interestingeiin ¢tlvn right.

Definition 8 (P-Contention Manager). A P-contention manager, whefe is a non-empty subset df is

a non-empty set aP-CM traces.

Next we define an environment, which describes a group ofgsdindices, a collision detector, and a
contention manager. Roughly speaking, an environmentribescthe platform on which we can run an

algorithm.

23

Definition 9 (Environment). An environment in our model consists of:
e P, anon-empty subset df
e a P-collision detector, and

e a P-contention managetr.

For a given environmenk’, we use the notatio. P to indicate the set of process indices described by
E, E.CD to indicate the collision detector described ByandE.C M to indicate the contention manager
described by.

Finally, we define a system, which is the combination of anrenment with a specific algorithm.
Because an environment describes a set of process indexkanaalgorithm is a mapping from process
indexes to processes, a system describes a set of specifaspes and the collision detector and contention
manager that they have access to. Notice, because we camecgmnly algorithm with any environment, the
processes described by a system will haveaqwiori knowledge of the number of other processes also in

the system.

Definition 10 (System). A system in our model is a pailZZ, .A), consisting of an environmenk;, and an

algorithm, A.

3.2 Executions and Indistinguishability

Given a systentE, A), we introduce the following definitions:

e A state assignmerfor £.P is a mappingS from E.P to (J,cp p states 4;), such that for every
i € B.P, S(i) € states 4. It will be used, in the context of an execution, to describea single

round, the current state of each process in the system.

e A message assignmefor £.P is a mapping from. P to M U {null}. It will be used, in the context
of an execution, to describe, for a single round, the messagglcast (if any) by each process in the

system.

24

e A message set assignmdot E.P is a mapping fromE. P to Multi(M). It will be used, in the
context of an execution, to describe, for a single roundntbesages received (if any) by each process

in the system.

e A collision advice assignmeffior E.P is a mapping fromE. P to {null,+}. It will be used, in the
context of an execution, to describe, for a single roundctiksion detector advice returned to each

process in the system.

e A contention advice assignmeftr E.P is a mapping fromE.P to {active, passive}. It will be
used, in the context of an execution, to describe, for a singlind, the contention manager advice

returned to each process in the system.

We can now provide the following formal definition of an exgon:

Definition 11 (Execution). An executiorof a system(E, A) is an infinite sequence
Co, My, N1, D1, Wy, Cy, M, No, Do, Wa, Co, ...

where each”, is a state assignment fdr. P, eachM,. is a message assignment fBrP, eachN, is a
message set assignment BrP, eachD, is a collision advice assignment f@.P, and eachV, is a
contention advice assignment &t P. Informally speaking(, represents the system state afteounds,
while M, andN,. represent the messages that are sent and received atfagesgectively.D, describes the
advice returned from the collision detector to each progessundr, and¥V,. describes the advice returned

from the contention manager to each process in rounle assume the following constraints:
1. Foralli € E.P: C(][’L] S startA(Z-).

2. Foralli € E.Pandr > 0: either C.[i] = trans ;) (Cr—1[i], Ny [i], D, [i], W;[i]) or C[i] =

fail .
3. Foralli € B.P andr > 0: M,[i] = msg.a(Cr_1i], W [i]).
4. N,[i] € Ujep.p MSUM,[j]} — {null}).

5. If M,[i] # null, thenM, [i] € N,[i].

25

6. Lettr be theP-transmission tracé:, 71)(co, Ts), ... where foralli > 0: ¢; = |{j|j € P and M;[j] #
null}|; and, for alli > 0 andj € P: T;[j] = |N;[j]|. That is,tz is the uniqueP-transmission trace
described by the message assignments in this executiontopdbe the P-CD traceC' Dy, C Do, ...
where for all; > 0 and for allj € P: CD;[j| = D;[j]. Thatis,tcp is the uniqueP-CD trace

described by the collision advice assignments. Thene E.CD(tr).

7. Lettons be theP-CM traceC My, C' M, ... where for alli > 0 and for allj € P: CM;[j] = W;[j].
That is,tc)y is the uniqueP-CM trace described by the contention advice assignmetisnit, €

E.CM.

Informally, constraintd and2 require that each process start from an initial state andesjuently evolve
its state according to its transition function. Notice, amstraint2 it is possible for a process to instead enter
its fail state. Once here, by the constraints of our procefigition, it can never leave this state or broadcast
messages for the remainder of an execution. We use this telraash failures.

Constraint3 requires that processes broadcast according to their geessasition function. Constraint
4 requires the receive behavior to uphold integrity and nplidation, as it specifies that the receive set of a
process for a given round must be a sub-multiset of the netitlisfined by the union of all messages broad-
cast that round. Constraifitrequires broadcasters to always receive their own mesdémjece, however,
that message loss is otherwise un-constraiat; process can lose any arbitrary subset of messages sent
by other processes during any roun&imilarly, we never force message loss. Even if every podaes
the system broadcasts, it is still possible that all prazessll receive all messages. Finally, constraifts
and7 require the collision advice and contention advice to confto the definitions of the environment’s

collision detector and contention manager, respectively.

We use the terminologk-round execution prefito describe a prefix of an execution sequence that describes

only the firstk rounds (i.e., the sequence through).

Definition 12 (Indistinguishability). Let o anda’ be two executions, defined over syste(#s .4) and
(E', A), respectively—that is, the same algorithm in possiblyedéht environments. For a givene

E.PNE'.P,we say is indistinguishable froma’, with respect ta, through round-, if Cy|¢] is the same in

26

both executions, and, for &, 1 < k < r, the state (s [i]), messageN/;[i]), message sef\;[i]), collision
advice (Dr[i]), and contention advicéi(y [:]) assignment values for rourkdand index: are also the same in
both. Thatis, inx anda/, A(i) has the same sequence of states, the same sequence ofguigssages, the
same sequence of incoming messages, and the same sequeollisioh detector and contention manager

advice up to the end of round

3.3 Process Failures and Message Loss

Process Failures Any number of processes can fail by crashing (that is, peemiystop executing). This

is captured in our formal model by the fail state of each pseceé\s described in our execution definition,
any process, during any round, can be non-deterministitighsitioned into its fail state. Once there, by
the definition of our process, it can never leave the faikestaid never broadcast any message. We use the

following definition to distinguish crashed processes fimn-crashed processes:

Definition 13 (Correct). Let o be an execution of syste(#, A). For a giveni € E.P, we say process
A(i) is correct ina if and only if for all C; € a, C.[i] # fail 4;). Thatis, A(7) never enters its fail state

during a.

Message Loss As described above, our execution formalism places no@kpinit on message loss. Any
process in any round can fail to receive any subset of messaye by other processes. Recall, however,
that in real systems, if only a single process broadcasisglargiven round, we might reasonably expect
that message to be successfully received. This mighalvedysbe true, as, for example, interference
from outside of our single-hop area could occasionally eanos-uniform message disruption, but we could
expect this property to holdventually? Accordingly, we define a communication property, which wierre

to as theeventual collision freedom (ECyoperty, that captures this behavior.

Property 1 (Eventual Collision Freedom).
Let « be an execution of systef#, .A), and lett; be the uniqueP-transmission trace described by We

say « satisfies the eventual collision freedom property if thediste a roundr.; such that for allr > r.,

®As is often the case in distributed system definitions, th@éndhat a property holds for the rest of an execution stgréit a
certain, unknown point, is a generalization of the moreiséalassumption that the property holds for a sufficientlyd duration.

27

and alli € E.P: if tp(r) = (¢,T) andc = 1, thenT'(:) = 1. That is, there exists a roung; such that
for any round greater than or equal tg, if only a single process broadcasts then all processesvedts

message.

28

4 Contention Managers

As described in the introduction, in our model, the contamtinanager encapsulates the task of reducing
contention on the broadcast channel. In each round, thegeasaggests that each process eitheadtive

or passive Informally, the former is meant to indicate that a procems ty to broadcast in the upcoming
round, and the latter indicates that a process should b#.siMost reasonable contention manager properties
should eventually stabilize on only a small number of preeegnamely]) being labeled aactivein each
round, thus allowing, in executions satisfying eventudlision freedom, for messages to be delivered

without collisions.

4.1 The Wake-up and Leader Election Services
A natural contention manager property can be defined asafsilo

Property 2 (Wake-up Service). A givenP-contention managefcyy, is a wake-up service if for eadh-
CM tracetcy € Sc there exists a round,, k. such that for allr > ryake: [{i|i € P and top(r)(i) =
active}| = 1. That is, for all rounds greater than or equal Q,.x., only a single process is told to be

active.

Notice, however, that this property maintains no fairnessddions. That it is, it only specifielsow many
processes will eventually be active in a given round,wloich processes these will be. A reasonable exten-

sion of this property might guarantee stabilization to gl&neader:

Property 3 (Leader Election Service). A given P-contention managerScyy, is a leader election
service if for eachP-CM tracetcns € Scas there exists a round;.,q such that for allr > re.4, [{i]i €
P and ton(r)(i) = active}| = 1, and for allr > reqq , if toar(r)(i) = active, thentop (r — 1)(i) =

active. That is, for all rounds greater than or equal t1@..4, the same single process is told todgive.

Notice, by definition, a leader election service is also aevaj service. To obtain the strongest possible
results, we will use the stronger leader election servicenmtonstructing lower bounds and the weaker
wake-up service when constructing the matching upper bmund

To solve other interesting problems, one could might imagirmore expansive property that includes,

29

for example, the guarantee thadl processes get a chance to be the siagteve process. For example, one
might describe &-wake-up service that guarantesksprocesse$ rounds of being the onlyctive process

in the system. There exist simple problems, such as couttimgiumber of anonymous processes in the
system, that can easily be shown to be solvable withveake-up service, but impossible with a leader

election service (and, thus, wake-up service as well).

4.2 Contention Manager Classes

A contention manager class is simply the sealbfcontention managers that satisfy a specific property. In
this paper, we consider three such classes. The first /Belass which we define to include all wake-up
services. The second is thé class which we define to include all leader-election sesricko aid the
definition of our third class, we first define tl#&contention manageN OC Mp, whereP is a non-empty
subset off, to be the trivial contention manager that assigetgve to all process indices in all rounds. Using
this definition, we define thBloCM class to be the set consisting 8FOC M p for all non-empty subsets

PClI

4.3 The Maximal Leader Election Service

To aid the construction of lower bounds, it will prove usdfutlefine a contention manager that captures, for
a given setpP, of process indices, all possible contention manager betsathat satisfy the leader election
service property for this set. We call this theaximal leader election service fdr as it represents the
maximal element in the set of alf-contention managers that satisfy the leader electioncgeproperty.
Formally, we use the notatiol/ AX LSp to refer to this contention manager for a givenand provide the

following definition:

Definition 14 (M AX LSp). Let P be any non-empty subset bfand letC' M p be the set of alP-contention
managers that are leader election servickSA X LSp is the P-contention manager described by the set

{tCM|E|S € CMp s.t.toy € S}.

30

5 Collision Detectors

We classify collision detectors in terms of thegmpletenesandaccuracyproperties. The former describes
the conditions under which a detector guarantees to repastligion. The latter describes the conditions

under which a detector guarante®s to report a collision when none actually occurred.

5.1 Completeness Properties

We say that a collision detector satisfasnpleteness it guarantees to report a collision at any process that

lost a message. We formalize this property as follows:

Property 4 (Completeness). A givenP-collision detector(), satisfies completeness if and only if for all
pairs (tr, tcp)—wheretr is an P-transmission traceicp is an P-CD trace, andi¢cp € Q(t7)—and for
all » > 0 andi € P, the following holds: ifr(r) = (¢,T) andT'(i) < ¢, thentcp(r)(i) = £. Thatis, if a

process fails to receive all messages then that processtdeteollision.

As we discuss in the introduction, in many practical scersarthe MAC layer can reliably detect collisions
only if a certain fraction of the messages being broadcaatround is lost. To this end, it is reasonable to

consider weaker completeness properties, such as theiiadjo

A collision detector satisfiesajority completenes§ it guarantees to report a collision at any process that

did not receive a majority of the messages sent during thed.oWe formalize this property as follows:

Property 5 (Majority Completeness).

A givenP-collision detector(, satisfies majority completeness if and only if for all pdirs, tcp)—where
tr is an P-transmission traceicp is an P-CD trace, and.cp € Q(tr)—and for allr > 0 andi € P, the

following holds: iftz(r) = (¢,T) andc > 0 andT'(i)/c < 0.5, thentcp(r)(i) = +. That s, if a process

fails to receive a strict majority of the messages then thatgss detects a collision.

A collision detector satisfiesalf completeness it guarantees to report a collision at any process that re-
ceives less than half of the messages sent during the rowtteNhe close similarity between this property

and majority completeness. The two properties differ ogyalsingle message. That is, the half complete-

31

ness property allows a process to lose one more messagehthamajority completeness property before

guaranteeing to report a collision. We formalize this propas follows:

Property 6 (Half Completeness).

A given P-collision detector(, satisfies half completeness if and only if for all pdits, tcp)—wheret
is an P-transmission tracetcp is an P-CD trace, andtcp € Q(tr)—and for allr > 0 andi € P, the
following holds: iftz(r) = (¢,T) andc > 0 andT'(i)/c < 0.5, thentcp(r)(i) = +. That s, if a process

fails to receive half of the messages then that processtdetamllision.

Finally, a collision detector satisfiezero completenessit guarantees to report a collision at any process
that losesall of the messages broadcast during that round. This final tlefiris appealing because of its
practicality. It requires only the ability to distinguisiiesice from noise (a problem already solved by the
carrier sensing capabilities integrated into many exgstuireless MAC layers). We formalize this property

as follows:

Property 7 (Zero Completeness).

A givenP-collision detector(), satisfies zero completeness if and only if for all p&its, t-p)—wherety
is an P-transmission traceicp is an P-CD trace, andtcp € Q(tr)—and for allr > 0 andi € P, the
following holds: ift7(r) = (¢, T) andec > 0 and7'(i) = 0, thentcp(r)(i) = £. That s, if a process fails

to receive any message then that process detects a callision

5.2 Accuracy Properties

A collision detector satisfieaccuracyif it guarantees to report a collision to a process only it {hrcess
failed to receive a message. We formalize this property lksAfs:

Property 8 (Accuracy).

A given P-collision detector,, satisfies accuracy if and only if for all paifgr, tcp)—wheretr is an
P-transmission trace,cp is an P-CD trace, and¢p € Q(tr)—and for allr > 0 andi € P, the following
holds: ift7(r) = (¢, T) andT'(i) = ¢, thentcp(r)(i) = null. Thatis, if a process receives all messages

then that process does not detect a collision.

32

Complete | maj-Complete | half-Complete | 0-Complete
Accurate AC maj-AC half-AC 0-AC
Eventually Accurate OAC maj-).AC half-0.AC 0-0.AC

Figure 1: A summary of collision detector classes.

In order to account for the situation in which arbitrary motsan be mistaken for collisions (for example,
colliding packets from a neighboring region of a multi-hagtwork) we will also consider collision detec-
tors satisfying a weaker accuracy property. Specifically,say that a collision detector satisfegentual
accuracyif in every execution there exists a round after which thedeatr becomes accurate. Because this
round differs in different executions, algorithms cannetdoire of when this period of accuracy begins, so

they must be resilient to false detections.

Property 9 (Eventual Accuracy).

A givenP-collision detector(), satisfies eventual accuracy if and only if there exists adat,.. such that

for all pairs (¢, tcp)—wherety is an P-transmission traceicp is an P-CD trace, andtcp € Q(tr)—

and for all» > 0 andi € P, the following holds: iftr(r) = (¢,T) andr > rq.c andT'(i) = ¢, then
tep(r)(i) = null. That is, starting at some roung,.., if a process receives all messages than that process

does not detect a collision.

Notice that we don't consider eventual completeness ptiggerlt is easy to show that consensus is im-
possible if a collision detector might satisfy no completenproperties for aa priori unknown number of
rounds. It remains an interesting open question, howevegnsider what might be possible with detectors
that guarantee a weak completeness property at all timesadisfly a stronger completeness property even-
tually. For example, using such a detector, can one desigiganithm that terminates quickly in the case

where the strong property holds from the first round?

5.3 Collision Detector Classes

In this paper, we focus, for the most part, on collision detecthat satisfy various combinations of the
completeness and accuracy guarantees described abovi thisaliscussion we define severllision

detector classeswhere a collision detector class is simply the setlbfcollision detectors that satisfy a

33

specific collection of properties. The main classes we demsare described in Table 1. You will notice
that we provide notation for eight different classes, eagrasenting a different combination of the two
accuracy and four completeness properties presentedsiadbtion. For example, the h&f4C class is the
set of all collision detectors, defined over all index setghat satisfy both half completeness and eventual
accuracy.

When we construct upper bounds, we assume only that we heneedetector from a given class. When
we derive lower bounds for a given class, we, as the lower dai@signer, are free to choose any detector
from this class.

Before continuing, we introduce two special collision dgéte classes for which notation is not in-
cluded in Figure 1. The first is thidoACC class, which we define to include all collision detectord tha
satisfy completeness.

To aid the definition of our second special class, we first defire P-collision detectorNOC Dp,
where P is a non-empty subset df, to be the trivial detector that assigrsto all process indices in all
rounds for allP-transmission traces. Using this definition, we defineNb€D class to be the set consisting
of NOC Dp for all non-empty subsetB® C 1. We establish the following useful lemma which will aid our

lower bound construction:

Lemma 1. The collision detector class NoCD is a subset of the classO®MoCDC NoACC).

Proof. Follows directly from the definitions. d

5.4 Maximal Collision Detectors

It will prove useful, in the construction of lower bounds diefine collision detectors that capture all possible
behaviors for a given class. Specifically, we use the notatibA X C'Dp(C) to describe theP-collision
detector that returns, for a giveA-transmission trace, every-CD trace that results from &-collision

detector inC'. Formally:

Definition 15 (M AXCDp(C)). Let P be any non-empty subset éf and letC' be a set of collision
detectors that includes at least oRecollision detector. Thel AXCDp(C) is a P-collision detector

defined as follows: For any-transmission trace M AXCDp(C)(t) = Ugec.g is o P—cp Q1)

34

5.5 The Noise Lemma

Before continuing, we note the following lemma (and asdedi@orollary), that capture an important guar-

antee about the behavior shared by all collision detectmsels considered in this study:

Lemma 2. For any executior of system(F, .A), where E.C' D satisfies zero completeness, andand
top are the unique transmission and collision advice tracescdiesd by «, respectively, the following
guarantee is satisfied: For all > 0 andi € E.P, if tp(r) = (¢,T") andc > 0, then eitherT'(i) > 0 or
tep(r)(i) = £. That s, if one more or processes broadcast in rounthen all processes either receive

something or detect a collision.

Proof. The zero completeness properties guarantees a collistiditation in the case where one or mes-

sages are broadcast but none are received. O

Notice that, by definition, completeness, majority cormgetss, and half completeness all imply zero com-
pleteness. Accordingly, Lemma 2 holds for systems contgiai collision detector that satisfiaay of our

completeness properties.

Corollary 1 (Lemma 2). For any executionv of system(E, A), where E.C' D satisfies zero complete-
ness, andy andtcp are the unique transmission and collision advice tracexdeed bya, respectively,
the following guarantee is satisfied: For all > 0 andi € E.P, if t7(r) = (¢,T) andT'(i) = 0 and
tep(r)(i) = null, thenc = 0. That is, if any process receives nothing and detects nisimi] then no

process broadcast.

Proof. Follows directly from Lemma 2. d

35

6 The Consensus Problem and Related Definitions

In the consensus problem, each process receives as inphg lginning of the execution, a value from
a fixed setl/, and eventually decides a value from® We say the consensus problemsisvedin this

execution if and only if the following three properties aadisfied:

1. Agreement: No two processes decide different values.

2. Strong Validity: If a process decides valug thenv is the initial value of some process. A variant
to this property idJniform Validity , which requires that if all processes share the same indilale
v, thenwv is the only possible decision value. To obtain the strongessible results, we consider
uniform validity (the weaker of the two) when proving our lembounds, and strong validity when

proving our matching upper bounds.

3. Termination: All correct processes eventually decide.

These properties should hold regardless of the number oepsofailures. To reason about the guarantees
of a given consensus algorithm we need a formal notationdeciibing exactly the conditions under which
the algorithm guarantees to solve the consensus problerac&mmplish this, we first offer the following

two definitions that describe large classes of environmignatisshare similar properties:

Definition 16 (£(D, M)). For any set of collision detectord), and set of contention managers,

E(D,M) = {E|FE is an environment such th&t.CD € D andE.CM € M}.

Definition 17 (€™ (D, M)). For any set of collision detectord), set of contention managers/, and

positive integen, E"(D, M) = {E|E € £(D, M) and|E.P| = n}.

To obtain the strongest possible results, we use the firstitiefi when proving upper bounds and the
second when proving lower bounds. We now offer two differeotiations for describing the guarantees of
an algorithm. The first specifies correctness only for exenstthat satisfy eventual collision freedom, the

second requires correctness for all executions.

%To capture the notion of an “input value” in our formal mode$sume a process has one initial state for each possikil init
value. Therefore, the collection of initial states at thgibring of an execution (that is, the veciOr) describes the initial value
assignments for that execution. To capture the notion ofitlileg” in our model, assume each process has one (or pallgnti
many) special decide states for each initial value. By émjex decide state far, the process decides

36

Definition 18 ((£,V,ECF)-consensus algorithm).For any set of environmentsg,, and value set}/, we
say algorithmA is an €,V ,ECF)-consensus algorithm if and only if for all executiensf system(E, A),
where £ € &, initial values are assigned froi, and o satisfies eventual collision freedom, solves

consensus.

Definition 19 ((¢,V,NOCF)-consensus algorithm).For any set of environments, and value setl’, we
say algorithmA is an €,V ,NOCF)-consensus algorithm if and only if for all execuenof system(E, A),

whereE € £ and initial values are assigned frdh) o solves consensus.

Finally, before addressing specific algorithms, we pretiemfollowing general definition, and associated

lemma, which will facilitate the discussion to follow:

Definition 20 (Communication Stabilization Time (CST)). Let o be an execution of systeffF, A),
whereq satisfies eventual collision freedoifi,C M is a wake-up service, ard.C' D satisfies eventual accu-
racy. TheCommunication Stabilization Tinoé « (also denoted’ST'(«v)) is equal tonax{r.f, Tace, Twake }»
wherer.y, Tqcc, andry,qie are the rounds posited by the eventual collision freedoentesal accuracy, and

wake-up service properties, respectively.

Lemma 3. Let« be an execution of systef, .A), wherea satisfies eventual collision freedod,C M is
a wake-up service, anf.C' D satisfies eventual accuracy. For any round> C'ST(«), where no process

returnedpassive by the contention manager broadcasts, the following cambtare true:
1. Each process receives every message broadcast in

2. No process detects a collisionsin

Proof. Because th&’' ST («)) occurs at or after,,,.., only a single process will be returne@tive by
the contention manager in roumd By assumption, therefore, if any process broadcasts glutift will

be this single process returnedtive. Because the execution satisfies eventual collision freedmnd
CST(a) > 7y, if this process broadcasts, then every process recewveseissage. And, finally, because
CST(a) > raee, We are guaranteed no spurious collision notifications. imhe two hypotheses follow

directly. O

37

7 Consensus Algorithms

Pseudocode conventions.To simplify the presentation of the algorithms we introdtloe following pseu-
docode conventions: For a given round and proggsBcast(m); specifies the message,, broadcast by
p; during the current round, armécv(); describes the multiset of messages (potentially empty)pthee-
ceives during the current round. As defined in Section 2, veetlus notationS ET'(recv();) to indicate the
set containing every unique value in the multisetv();. We useCD(); andCM(); to refer to the advice
returned top;, during the current round, by its collision detector andteation manager, respectively. In
Algorithm 2, we use the conventiori®! to indicate a binary representation of value getThat is, V%!
replaces each value ¥ with a unique binary string. We assume that these sequeneesaah of length
[lg |[V|] (which is, of course, enough to encoflé| unique values). Similarly, we use bracket-notation to
access a specific bit in one of these strings. For examplsstifnate; € V%!, thenestimate;[b], for

1 <b < [lg|V]], indicates thé!” bit in the binary sequencestimate;. And, finally, we uselecide(v); to
indicate that procesgs decides value, andhalt; to indicated that process halts.

Roadmap. We start in Section 7.1 by describing an anonymous algoritineth solves consensus, in ex-
ecutions satisfying eventual collision freedom, using &evap service and any collision detector from
maj<0.AC. As, by definition, AC, 0.AC, and majAC are all subsets of the class m@yC, this algorithm
solves consensus for these detectors as well. The algogtiamantees termination in a constant number of
rounds after the communication stabilization time.

We then proceed in Section 7.2 to describe an anonymoustalgdhat solves consensus, in executions
satisfying eventual collision freedom, using a wake-upiserand any collision detector from®AC. All
other collision detector classes we consider (with the gxme of NoCD and NoACC) are subset of 0-
0.AC, making this a general solution to the problem in all pradtmontexts. The algorithm guarantees
termination in©(lg(|V'|) rounds after the communication stabilization time. In ®ec?.3 we describe a
non-anonymous variant of this algorithm that guaranteesiteation inmin{lg |V'|,1g |I|} rounds after the
communication stabilization time.

Finally, in Section 7.4 we describe an anonymous algorithat $olves consensus, even in executions
that don't satisfy eventual collision freedom, using anlfision detector from QAC. The algorithm termi-

nates inO(lg(|V]) rounds after failures cease.

38

Algorithm 1: Solving consensus with ECF and a collision detetor from maj- $.AC.

1 Process P;:
2 estimate € V, initially set to the initial value of process;
3 phase € {proposal, veto}, initially proposal

4 For each round, r > 1 do:

5 if (phase = proposal) then

6 if CM(); = activethen

7 bcast(estimate);

8 messages— SETrecv();)

9 CD-advice <— CD();

10 if (CD-advice # +) and (|message$ > 0) then
1 estimate < min{message$

12 phase < veto

13 else if(phase = veto) then

14 if (CD-advice = +) or (Jmessages$ > 1) then
15 bcast(veto);

16 vetomessages— recv();

17 CD-advice «— CD();

18 if (vetomessages= () and (CD-advice = null) and (|message$ = 1) then
19 decide(estimate), and halt;

20 phase «+ proposal

7.1 Anonymous Consensus with ECF and Collision Detectors imaj-). AC

The pseudo-code in Algorithm 1 describes an anonyméus§j-<>.AC,WS),V ,ECF)-consensus algorithm.
That is, it guarantees to solve consensus in any executadisfysng eventual collision freedom, of an
environment with a wake-up service and collision deteatomf maj<).AC. This implementation tolerates
any number of process failures and terminate€’'$y" + 2.

The algorithm consists of two alternating phasegraposalphase and &etophase. In the proposal
phase, every process that was returned the advigee from its contention manager broadcasts its current
estimate. If a process hears no collisions and receivesstt ¢me value, then it updates its estimate to the
minimum value received. If a process detects a collisiorreoeives no messages, then it does not update
its estimate. During the next round, which ivetaphase round, a process broadcasts a “veto” message
if it heard a collision notification or received more than ameque value in the preceding round. We are,
therefore, using a negative acknowledgment scheme in witmtesses use the veto phase to notify other
processes about bad behavior observed in the preceding.phasocess can decide its estimate if it makes
it through a veto-phase round without receiving a veto ngg=£sar detecting a collision.

The basic idea is that a “silent” veto round indicates thaprazess has any reason to complain about

"Remember, by the definition of our model, processes alwaysive their own broadcasts, so if a process broadcasts étveto
will definitely not decide this round.

39

the preceding proposal round. If no process has any reasmmiplain about a proposal round, this means
that each process received a single value and no collisitfications. If a process received no collision
notification, then it received a majority of the messagedlfleydefinition of majority completeness). There-
fore, because majority sets intersect, we conclude thairaiesses must have received fiagnevalue.
Therefore, any process making it through a “silent” vetonaean safely decide—even it false collision
notifications delay other processes from deciding thatdedbecause it can be assured that no value, other

than its decision value, is currently alive in the networle ¥rmalize this argument as follows:

Theorem 1. For any non-empty value sé&f, Algorithm 1 is an anonymous (maj<).AC, WS,V ,ECF)-

consensus algorithm that terminates by rodn87" + 2.

The proofs of validity, agreement, and termination rely lo@ following two lemmas:

Lemma 4. For r > 0, let £, = {v | v equals theestimate value of some non-crashed process after

rounds}. For anys andr, where0 < r < s, Es C E,.

Proof. To prove this statement we demonstrate that £, = v € E,_q1, forr > 1. By definition of
Algorithm 1, estimate can be altered only on lingl of the proposal phase, where it is assigned the value
of a message received duringyeoposal-phase round. By lin&, only estimate values are broadcast in
these rounds. Therefore, if some procgsgnds round- with estimate; = v, then only two cases are
possible. (1p; ends round — 1 with estimate; = v and maintains it through; or, (2) some other node;

endsr — 1 with estimate; = v, and then broadcast the valuepian r. In either casev € E,_;. O

Lemma 5. If, for every processeg; that is not crashed afteproposal-round r,

messages;| = 1 and

CD-advice; = null, then|E,| = 1.

Proof. By the lemma assumptions, each process receives exactlyatuee and no collision notification
during roundr. Assume, for the sake of contradiction, that some propgssceives only the value in

r, and some other node; receives only the value’ in » (v # v’). Because neithep; nor p; receives

a collision notification, by the definition of majority congbéness each must receive a majority of the
messages broadcast during Becausep; receives only value, a majority of the messages broadcast in

r must containv. Similarly, because; receives only value’, a majority of the messages broadcast in

40

must containy’. This is, of course, impossible, as majority sets inters@ctontradiction. It follows that
each process receives the same value. Furthermore, bewapsecess, by assumption, receives a collision

notification, then, by line30 and11, all processes settimate to this single value during round O

Lemma 6 (Validity). If some process decides valugthenw is the initial value of some process.

Proof. A process decides only itsstimate value. Accordingly, if a procegs decides in round, then it

decides a value from,_;. From Lemma 4, we know,_; C E,, whereEj is the set of initial values.

Lemma 7 (Agreement). No two processes decide different values.

Proof. Letr be the first round in which a process decides. j;dte a process that decidesrinBy line 18,
sincep; decides irr, then it receives exactly one unique value-in 1. It follows that at least one message
is sent inr — 1. Therefore, we can apply Lemma 2, which provides #ihthon-crashed processes must
therefore receive at least one unique value or a collisidificetion inr — 1.

Line 18 also provides thap; receives no messages or collision notifications dutieg-phase round
r. By Corollary 1, it follows that no process broadcasts a wete. By line 14, a process vetos during
roundr if it receives more than one unique value or a collision rzdifon inr — 1. Therefore, we know
that any process that is non-crashed though rouddes not receive a collision notification or more than
one unique value im — 1 (as they would have then send a veto at lideduring). We also know, from
our proceeding observation, that each of these processeweaeat least one unique value or a collision
notification inr — 1. Combined, this tells us that each of these processes escexactlyoneunique value
and no collision notifications during round- 1.

This matches the assumptions for Lemma 5, which provide|fhat;| = 1. Becausep; decidesv in
r, we further conclude&®,_; = {v}. By Lemma 4, we know for alt/ > r — 1, E.» C E,_;. Because
processes only decide theistimate value, any process that decides in rouhd> r» — 1, must decidey.

0

Lemma 8 (Termination). All correct processes decide and halt by routid7 + 2.

Proof. Letr equal the firsproposal-phase round such that> C'ST. Because Algorithm 1 has only

active processes (that is, processes that were retureigde from the contention manager) broadcast during

41

the proposal phase we can apply Lemma 3 tp which provides that: (1) every process receives every
message broadcastin (2) no process receives a collision notification-inBy our algorithm, and the fact
thatC'ST > ryake, We also know a single process broadcasts.

Every process receives the lone broadcaster’s value (wieaolill call v,.) and no collision notification.
By lines10 and11, every non-crashed process therefore adopss itsestimate during this round.

During the next round;+1, no process sends a veto, as each non-crashed processserehmessage
and no collision naotifications in. Therefore, itis trivially true that no process that is ragdpassive during
the round broadcasts in+ 1, as no process broadcasts-in- 1. Thus, we can apply Lemma 3 once again,
which provides that there are no collision notifications-is- 1. Accordingly, every non-crashed process
will pass the test on liné8 and decide.

In the worst case(’ST is aveto-phase round. This means that= CST + 1. Since all processes

decide byr + 1, we get the desired result that all processes decidé &y + 2. O

Proof (Theorem 1). Correctness follows from Lemmas 6, 7 and 8. d

7.2 Anonymous Consensus with ECF and Collision Detectors +-().AC

The pseudo-code in Algorithm 2 describes an anonyméy8-¢.AC,WS),V ,ECF)-consensus algorithm.
That is, it guarantees to solve consensus in any executadisfysng eventual collision freedom, of an
environment with a wake-up service and collision deteatmmfO<0.AC. This implementation tolerates any
number of process failures and terminates by rotsd” + 2([lg [V'[] + 1).

Algorithm 2 consists of three alternating phases. In the firese, callechrepare, every process
returnedactive from its contention manager broadcasts its current estintatery process that receives at
least one estimate and no collision notifications will adbetminimum estimate it receives. In the second
phase, calleghropose, the processes attempt to check that they all have the saimeats There is one
round dedicated to each bit in the estimate. If a process m&stamate with a one in the bit associated
with that round, then it broadcasts a message. If a procesarhastimate with a zero in the bit associated
with that round, it listens for broadcasts, and decides ject€by settingdecide < false) if it hears any

broadcasts or collisions. In the third phase, callegpt, any processes that decided to reject in the previous

42

Algorithm 2: Solving consensus with ECF and a 03.ACcollision detector.

Process P;:
estimate € V%!, initially set to a binary rep. oP,’s initial value
phase € {prepare, propose, accept}, initially prepare
size— [Ig|V]]
For each round, r > 1 do:
if (phase = prepare) then
if CM(); = activethen
bcast(estimate);
messages— SETrecv();)
CD-advice «— CD();
if (CD-advice # +) and (Jmessages$ > 0) then
estimate — min{message$
decide « true
bit; — 1
phase « propose
else if(phase = propose) then
if (estimatelbit; | = 1) then
bcast(veto);
votes — recv();
CD-advice «— CD();
if ((Jvotes| > 0) or (CD-advice = +)) and (estimate[bit;] = 0) then
decide « false
bit; < bit; + 1
if (bit; > size) then
phase « accept
else if(phase = accept) then
if (not decide) then
bcast(veto);
vetomessages— recv();
CD-advice «— CD();
if (Jlvetomessage$ = 0) and (CD-advice # +) then
decide(estimate); and halt;
phase « prepare

phase will broadcast a veto. Any process that receives awessage (or collision notification) realizes that
there is a lack of consistency, and will cycle back to the pisse.

The basic idea is that if two processes have different etggnghere will be at least one round during
thepropose phase where one process is broadcasting and one is listdrirdistening process will receive
either a message or a collision notification, so it will sstelly discover the lack of agreement so far. It

can now veto in theccept phase to prevent any process from deciding a value at thiglrou

Theorem 2. For any non-empty value sgt, Algorithm 2 is an anonymous (0-0.AC, WS,V ,ECF)-consensus

algorithm that terminates by round ST + 2([1g |V]] + 1).

43

The proofs of validity, agreement, and termination rely lo@ following two lemmas:

Lemma 9. For » > 0, let £, = {v | v equals theestimate value of some non-crashed process after

rounds.} For anys andr, where0 < r < s, Es C E,.

Proof. The proof follows from the same logic as Lemma 4. As in Alduoritl, processes can only alter
their estimate value to a value received in a round where aflyimate values are broadcast (see lifd.
Therefore, if some procegs ends round- with estimate; = v, then only two cases are possible. 1)
ends round- — 1 with estimate; = v and maintains it through; or, (2) some other node; endedr — 1

with estimate; = v, and then broadcast the valueptan r. In either case: it € E,, thenv € E,_; O

Lemma 10. If all non-crashed processes begincept-phase round- with decide = true, then all non-

crashed processes begtrwith the samestimate value.

Proof. Preceding round, each process executed gnepose-phase round for each bit of theigtimate
value. Each process broadcasts only during rounds comdsmpto bits that equaletl. If a process re-
ceives a message or collision notification during a roundrevitedoes not broadcast, then that process sets
decide «— false.

Because all processes begiwith decide = true, we know that no process receives a message or
collision notification during aropose-phase round in which it did not broadcast. It follows fromr@e
lary 1, which states that silence implies no one broadchat,there was never a round during this phase
where two (non-crashed) processes behaved differendly @ne broadcast, one did not). Therefore, all
processes that make it through thispose-phase without failing must have started the phase withdhges
estimate value. Because this value is only modified during phepare-phase, these processes all begin

the subsequeniccept-phase with the samestimate. O

Lemma 11 (Validity). If some process decides valugthenv is the initial value of some process.

Proof. By the definition of Algorithm 2, processes only decide thsitimate value (line32). Accord-
ingly, if some proces® decides in round-, thenp decides a value front’,. By Lemma 9, we know

E, C Ey, whereE), is the set of initial values. O

44

Lemma 12 (Agreement). No two processes decide different values.

Proof. Letr be the first round in which a process decides. j;die a process that decidesrinAssume

it decidesv. Line 31 provides thatveto-messages;| = 0 andC D-advice; # + during this round, where
veto-messages; andC D-advice; are the veto messages received and collision detectoregdegpectively.
By Corollary 1, we conclude that no process broadcasts adugtogr. Processes would broadcast a veto in
r if their decide value equalgalse. Therefore, all non-crashed processes starith decide equal totrue.
Lemma 10 provides that, in this case, all non-crashed psesealso started roumdvith the same:stimate
value. Becausg; decidesv during this round, and processes decide thetimate value, it follows that
this commorestimate value isv. ThusE,_; = {v}. By Lemma 9, for alt’ > r, E.. C E,_;. Therefore,

any process that decides in rourid> r, must also decides. O

Lemma 13 (Termination). All correct processes decide and halt by rol@d7 + 2([log |V|] + 1).

Proof. Letr be the firstprepare-phase round such that> C'ST. Because Algorithm 2 has onbttive
processes broadcast during thepare phase (liner), we can apply Lemma 3 to round which provides
that for this round: (1) every process receive every mesbempedcast; (2) no process receives a collision
notification. By our algorithm, and the fact thaS7T > r,.x., We know that a single process will broadcast
inr.

By our results from above, all non-crashed processes eeteiy process’s value (which we will call
v,) and no collision notification. By line$l and12, all non-crashed processes therefore adpgs their
estimate during this round.

It follows that all processes start theopose phase with the samestimate. This implies, by the
definition of the algorithm, that all processes broadcashersame schedule for théze = [lg |V'|| rounds
of this phase. We want to show that no process will&eide — false during this phase. To do so, we
consider only rounds corresponding t6 kit in v,., as, by the definition of the algorithm, these are the only
rounds in which a process with estimatecan setlecide < false.

It is trivially true that no process returnedssive during one of these rounds broadcastsy@process
broadcast in these rounds. Thus, we can apply Lemma 3 onde agaich provides that no collision

notifications are received during these listening rounds.

45

Accordingly, all non-crashed processes begindbept phase withdecide still equal totrue. Thus,
no process broadcastseto. By the same logic used above to reason about the listenimgisoduring the
propose phase, no process will receive a collision notification grihis accept-phase round. Therefore,
all non-crashed processes pass the tests o limad decide and halt.

In the worst case(’’ST occurs during the first round of the-opose phase. This meanswould fall
[lg |[V|] + 1 rounds aftelC’'ST. Since all processes decide by- [log |V|| + 1, we get the desired result
that all processes decide BYST + 2([1g |V[] + 1). O

Proof (Theorem 2). Correctness follows from Lemmas 11, 12 and 13. O

7.3 Non-Anonymous Consensus with ECF and Collision Detea®in 0-0.AC
In this section, we briefly describe a non-anonymafi®{).AC,WS),V ,ECF)-consensus algorithm, based
on Algorithm 2, that can solve consensus faster than Algari2 in the special case where the space of
possible IDs [) is small relative to the space of decision valu&3.(This algorithm (almost) match&sur
non-anonymous lower bound for this setting (Corollary 3 @ci®n 8).

We do not provide formal pseudo-code or a rigorous corrastpeoof as we maintain that Algorithm 2
is the best option for ar€(0-0.AC,WS),V ,ECF)-consensus algorithm. The version described hepeput
forms Algorithm 2 only in the unlikely case of an ID space lgegmaller then the consensus value space,

and we present it only for completeness. It works as follows:

o If V] <|I

, then every process runs Algorithm 2 without modification.

e If |V| > |I], then every process divides up the rounds into repeatedogrofithree consecutive
phases, which we will call phase phase2, and phas&. During the phasé rounds, each process
runs an instance of Algorithm 2 on the set of possible ID:)qi#is own ID as its initial value. The
decision value of this instance of Algorithm 2 describesaalés. Once a process has been identified as

aleader, it begins to broadcast its real initial value (fidjrduring phas& rounds. Every process that

8The lower bound presented in Corollary 3 requifsnin{lg|V|,lg ‘in‘}) rounds, whereas our upper bound presented here
works in ©(min{lg|V|,1g|I|}) rounds. Therefore, in one case, there is a gag dfetween the two. As mentioned earlier,
however,n is, practically speaking, a small constant, as it descrilvéyg the number of devices within a single broadcast radius.
The valuegV| and|I|, on the other hand, can be arbitrarily large, and can easdyrg the% factor. In Conjecture 1, we claim
thatQ(min{lg |V|,1g|I|}) is, in fact, the real lower bound.

46

has not yet heard the leader’s value by phassundr, will broadcast “veto” in phas@ roundr + 1.
The leader keeps broadcasting its value in pl2asstil it hears a silent phasround. Non-leaders
decide the value in the first pha8enessage that they receive. They then halt. The leader deitsde

own value and halts after it hears a silent ph#aseund following a phaseé broadcast.

),

the leader election finishes layST + ©(log |1|). The first successful broadcast and subsequent silent veto

In the first case|{/| < |I]), this algorithm finishes by'ST + ©(lg |V]). In the second caséW| > |I

round will happen withir2 rounds after whichever comes later: leader electiod'6f". This provides
a worse case termination 6fST + ©(log|I|). Combined, we get a termination guaranteeCt§7" +
©(min{lg |V|,1g|I|}) rounds.

This algorithm, as described so far, is not fault-toler&gecifically, a leader can fail after being elected
but before it broadcasts its value. Fortunately, there isamy criteria for detecting the failure of a leader:
a silent phase round after a phask decision has been reached. Any process that notices thediicos
knows definitively that the leader has failed. This can &igg new leader election among the remaining
processes.

There are, however, difficulties in coordinating the stdithis new leader election, as false collision
notifications can prevent all processes from learning ofghder’s death during the same round. To circum-
vent this problem, processes could run consecutive insgaatconsensus. During the first instance they
try to elect a leader as specified. They then move directly tim¢ second instance, setting theitimate
value back to their unique ID. The trick is that during thiswiastance, processes do not broadcast in the
prepare phase unless they detect the current leader to be failed.eéRisures that the second run of consen-
sus cannot terminate until all non-crashed processes legetdd the current leader’s failure. If the second
leader crashes, the same rules will ensure all processtsigste in the third instance of consensus, etc.
After each leader failure, all non-crashed processes walhtially learn of the failure and participate fully
in the current instance of consensus, electing a new leBdentually, a correct process will be elected and

successfully broadcast its value.

a7

Algorithm 3: Solving consensus with a 0ACcollision detector but without ECF.

Process P;:
estimate € V, initially set to the initial value of procesB;
phase € {vote-val, vote-left, vote-right, recurse}, initially vote-val
curr;, A node pointer, initially set to the root of a balanced bjnsearch tree representationiof

For each rouna, r > 1 do:
if (phase = vote-val) then
if (estimate = val[curr;]) then
bcast(“ vote’);
msg$1); < recv();
CD(1); « CD();
phase < vote-left
else if(phase = vote-left) then
if (estimate € left[curr;]) then
bcast(“ voté’);
msg$2); < recv();
phase «— vote-right
else if(phase = vote-right) then
if (estimate € right[curr;]) then
bcast(“ voté’);
msg$3); < recv();
phase « recurse
else if(phase = recurse) then
if (l/msg¢1);| > 0) or (CD(1); = =£) then
decide(val[curr;]);
halti
else if (jmsg$2);:| > 0) or (CD(2); = +) then
curr; < leftfcurr; |
else if ((Jmsgg3)| > 0) or (CD(3); = £)) then
curr; < right[curr; |
else
curr; < parenfcurr; |
phase < vote-val

48

7.4 Anonymous Consensus with NOCF and Collision Detectors i0-AC

It is a natural question to ask whether some collision detediasses can be powerful enough to solve
consensus even if message loss is unrestricted. Suryiding answer to this question is yes. Algorithm 3
can be used to solve the problemdtlog |V|) rounds with a collision detector in @€. This algorithm
circumvents the problem of never-ending collisions by @ening a search through a balanced binary search
tree representation of the possible initial value spaceciBpally, each iteration of the search is represented
by four consecutive phases. In the first phase, called-val, processes can vote for the value represented
by the current node in the tree by broadcasting. A procesvati in this phase if and only if this value is
its initial value. In the second phase, callege-left, processes can vote to descend to the left child of the
current node by broadcasting. A process will vote in thissghifiand only if its initial value is in the sub-tree
rooted at this child. In the third phase, callegte-right, processes behave symmetricallytge-le ft. In

the fourth phase, callectcurse, processes decide what action to take depending on thésre$tiie voting
from the previous three phases. If they registered a voteeindte-val phase, they will decide the current
value and halt. If, instead, they registered a vote in only @inthele ft andright phases, they will descend
to the appropriate child. If they register a vote for botleytlwill, by default, descend to the left child. And,
finally, if no votes are registered (due to a process faiJutey ascend to the parent of the current node.

The alert reader will notice that theecurse phase does not need its own round, as no message is
broadcast and the receive set is ignored. For the sake akaffi; this final phase could be appended to
the end of thevote-right phase as an additional local computation. We leave it asaitsround only to
simplify the presentation and description of the algorithBy eliminating this round we could, however,
reduce the factor df to a factor of6 in the termination bound.

Notice, also, that this algorithm does not use a contentianager. This is because it is designed for
executions that do not necessarily satisfy eventual amflif'eedom. Without this property, identifying a
single broadcaster is no longer so important, as its messagenot guaranteed to ever be delivered (as they
would be in an ECF execution).

Finally, note that the termination of Algorithm 3 is affedtby failures. Imagine, for example, that a
certain process, with a small initial value, leads, by vgtiall other processes deep into the left side of the

search tree. Assume this process then crashes before ibtafov its value. Under certain initializations,

49

all other processes might have initial values that are faarilde right subtree of the root. This would then
require all processes to traverse all the way back up the andtthen descend again into the right sub-tree
before they can decide. In other words, this one failure add@(log |[V'|) cost to our time complexity.
For simplicity, we give our termination time relative toltaies ceasing—preventing the need to introduce a

term, f, describing the total number of failures, into our termimatound.

Theorem 3. For any non-empty value sét, Algorithm 3 is an anonymoug (0-AC,NoCM),V,NOCF)-

consensus algorithm that terminates in at molgt|V| rounds after failures cease.

Because the 04C collision detector class maintains accuracy at every roudcan extend Lemma 2 and

Corollary 1 to the following, more powerful claim:

Lemma 14. For any roundr of an execution of Algorithm 3, one of the following two bétiavoccurs:

1. Every process receives at least one message or a colhsitification inr.
2. Every process receives no messages and no collisioncattf inr.

Proof. Lemma 2 provides that if any process broadcasts, ithen every process receives at least one
message or a collision notification. By the definition of aecy, if no process broadcastsinthen no
process will receive a collision notification (and, by théimion of an execution, no process will receive a

message either). d

To simplify the discussion of this proof, we introduce thédwing terminology which succinctly captures

the state of the several important variables at the begioifimrecurse-phase round.

Definition 21 (Navigation Advice). For any procesg; andrecurse-phase round, the navigation advice
for p; atr is described by the binarvectornav;, where, forj, 1 < j < 3, nav[j]; = 1 if and only if, at

the beginning of round,

msgs(j)i| > 00rCD(j); = +.

Lemma 15. For any recurse-phase round-, all non-crashed processes startvith the same navigation

advice.

Proof. By the definition of navigation advice and Algorithm 3, folyaron-crashed procegs, and integer

50

J,» 1 <j <3, nav[j]; = 1 if and only if p; received a message or collision notification in round 4 + 1.
By Lemma 14, which states all processes receive somethirall @rocesses receive silence,pif sets

nav[j]; < 1, then all other non-crashed processes do the same. O

Lemma 16. For any roundr, all non-crashed processes startvith curr pointing to the same node in the

binary search tree.

Proof. The result follows from a simple inductive argument on thenber of rounds. All processes are
initialized with curr pointing to the root of the tree. Processes update- during eachrecurse-phase
round based only upon their navigation advice during thahdo By Lemma 15, all process therefore

update theicurr pointer in the same manner each time it is updated. d

Lemma 17 (Validity). If some process decides valugthenv is the initial value of some process.

Proof. A process decides inecurse-phase round- if and only if it receives a message or a collision
notification during thevote-val-phase round — 3. It it received a message, then, by the definition of an
execution, some process sent a message. If it receivedisi@olhotification, then, by accuracy, some
process sent a message that was lost. Either way, a procgssmeessage in— 3, which, by line7, occurs
only if the value associated witkurr is the broadcaster’s initial value. Because our decideidddcthe

value associated witturr (line 26), then it follows that it decided some process’s initialuel O

Lemma 18 (Agreement). No two processes decide different values.

Proof. Nodes can decide only on lir#8 of the recurse-phase. The decision to decide and the choice
of value is entirely a function of their navigation advicedathe curr pointer at the start of this round.
By Lemma 15, all non-crashed processes start eaeityse-phase round with the same navigation advice,
and by Lemma 16 all non-crashed processes start maeh se-phase round with the samarr pointer.
Therefore, if any process decidesrirthen all non-crashed processes decideand decide the same value.

O

Lemma 19 (Termination). All correct processes decide and halt witlitg |V'| rounds after failures cease.

51

Proof. BylLemmas 15 and 16, processes move through the binary fyethtr. In the worst-case, the last
process to falil first brought all correct process to a leabtmeé€rashing, and, now, all processes must ascend
all the way back to the root before hearing another vote. abiension requires up #dg |V| rounds (the

height of the tree i& |V|, and there aré rounds per movement in the tree). From here, it is at moshanot

41g|V'| rounds for processes to arrive at a node in the tree corrdBpgpto a correct process’s value. [

Proof (Theorem 3). Correctness follows from Lemmas 17, 18 and 19. O

52

8 Lower Bounds

In this section, we show lower bounds that match (or, in thee cd Theorem 7, come close to matching) the
upper bounds of the previous section. We start, in Sectibrb§.examining systems with collision detectors
from the NoCD class. We show with Theorem 4 that consensuspsssible in this context; even if the
system includes a leader election service and we considgregrcutions that satisfy eventual collision
freedom. This highlights the necessity of collision dategtand underscores the following observation:
Eventual reliable communication (i.e., as provided by @wa&ncollision freedom and a leader election
service) is not useful without a means to determine whenptniwd of reliability has begun (i.e., a non-
trivial collision detector). It then follows directly from Lemma 1 (in Section 5)—whichats that the
collision detector class NoCD is a subset of the class NoA@t&teonsensus is also impossible in systems
with collision detectors from the NOACC class. This is fotimed with Theorem 5 in Section 8.2.

Next, in Section 8.3.3, we examine systems with anonymagarihms and collision detectors from
the half-AC class. We show with Theorem 6 that, in this context, consenannot be solved in a constant
number of rounds after the communication stabilizatioretigven if the system includes a leader election
service and we consider only executions that satisfy ea¢ctllision freedom. Specifically, we prove the
existence of an execution that does not terminate b&fsié + O (log |V |).

We continue, in Section 8.3.4, to consider this same quegtidthe context of non-anonymous algo-
rithms. We prove with Theorem 7 the existence of an executiah does not terminate befo€@ST +
lg (%)%. With Corollary 3 we simplify this expression to obtain tHeaner asymptotic resul€? ST +
Q(min{log |V|,log ‘—fl‘}). We conclude this particular line of questioning by conjeicty, in Conjecture 1,
that the real bound i€'ST' + Q(min{log |V|,log|I|}).

The anonymous bound is matched by Algorithm 2 from Sectioand, the non-anonymous bound is
(almost) matched by the variant of Algorithm 2 describedestidn 7.3. Note: because we demonstrated in
Section 7 a constant-round solution that uses a detectar thie maj¢$.AC class, these result demonstrates
a substantial complexity gap between the half-completenaajdrity-complete properties.

We next consider executions that do not necessarily satiantual collision freedom. One might
expect that under such conditions consensus cannot balsdhseed, with Theorem 8, in Section 8.4, we

show that consensus cannot be solved with a collision detdtat does not satisfy accuracy in all rounds.

53

With an accurate detector, however, consensig®lvable. This was demonstrated by Algorithm 3 which
solves consensus iA(lg [V|) rounds using a detector frofr. AC and no contention manager. We show,
with Theorem 9, in Section 8.5, that this algorithm is opfitmaproving that its logarithmic complexity is
necessary for any solution to consensus in this context.

To obtain the strongest possible results, all bounds tHeEdwicassume the weakarmniform validity
property for consensus, as defined in Section 7. We also asthanstronger leader election service property
for the contention managers used in this section, whereasm#tching upper bounds use the weaker wake-

up service property.

8.1 Impossibility of Consensus with No Collision Detection
We show that no algorithm can solve consensus in a systemaveiditlision detector from the NoCD class.
This holds even if we only consider executions that satisgneual collision freedom, and we assume the

system contains a leader election service.

Theorem 4. For every value seV’, where|V| > 1, there exists nog(NoCD,LS,V ,ECF)-consensus algo-

rithm.

Proof. Assume by contradiction that aéi(NoCD,LS),V ,ECF)-consensus algorithm, exists. First, we
fix two disjoint and non-empty subsets bf P, and P,. Next, we define three environments B, C as
follows: LetA.P = P,, B.P = F,, andC.P = P, U P,. Let ACD = NOCDp,, B.CD = NOCDp,,
andC.CD = NOCDp,,p,- And let ACM = MAXLSp,, BCM = MAXLSp,, andC.CM =
MAXLSp,up,. By definition, A, B,C € £(NoCD,LS).

Next, we construct an executien of the systen{ A, .4), and an executiof, of the systen{B, A), as

follows:

1. Fix the executions so there is no message loss in itloers.

2. In «, fix the contention manager, starting with roundo returnactive only to the process described

by min(P,). In 3, fix the contention manager to behave the same, with respectit(F;).

3. Fix the collision detector in both executions to retdro all processes in all rounds (the only allow-

able behavior for the NoCD class).

54

4. In o, have all process start with initial valuge and in3 have all processes start with initial valug

wherev, v’ € V andv # v'.

Itis clear that these executions satisfy the constraintsesf environments, as, in both, the contention man-
agers satisfy the leader election service property, anddhision detector returns: to all processes in all
rounds (the only allowable behavior fromM\a0OC' D detector). Furthermore, we notice that both executions
trivially satisfy eventual collision freedom (as there @ message loss). Therefore, by the definition of an
(£(NoCD,LS),V ,ECF)-consensus algorithm, consensus is solved in both: be the smallest round after

which all processes have decided in bathndg.

We next construct an execution of the systen{C, A), as follows:

1. Fix the execution such that for the fiksstounds all processes described by indicegjnose all (and
only) messages from processes described by indic&, iand vice versa. Starting with rourd4- 1,

there is no further message loss.
2. Fix the collision detector to returh to all processes in all rounds, as it must.

3. Fix the contention manager, for the fikstounds, to returmctive only to the processes described by
min(P,) andmin(F). Starting with round: + 1, the contention manager returea&ive only to the

process described byin(P,).

4. All process described by indices &) start with initial valuev, and all processes described by indices

in P, start with initial valuev’.

Again, it is clear that this execution satisfies the constsaof its environment. The contention manager
satisfies the leader election service property by stabgito a singleactive process (in round + 1) and
the collision detector returns to all processes in all rounds, as required by its definitteurthermore, we
note that this execution satisfies eventual collision foee@ds message loss ceases at raurd1l. Once

again, by the definition of ar€(NoCD,LS),V ,ECF)-consensus algorithm, consensus is solved in

To reach a contradiction, we first note that, by construc¢tionall i in P,, the executiony is indistinguish-

able froma, with respect ta, through roundk. And for all j in P,, the executiony is indistinguishable

55

from (3, with respect tg, through round:. Therefore, by round, all processes described by indicesAn
will decide the same value in bothand-y, and all processes described by indice®&jwill decide the same
value in both3 and~. By uniform validity, however, processes decida o andv’ in 3; thus both values

will be decided im—violating agreement. A contradiction. O

8.2 Impossibility of Consensus with No Accuracy Guarantees

Theorem 5. For every value seV/, where|V| > 1, there exists nog(NoACC,LS,V ,ECF)-consensus

algorithm.

Proof. Lemma 1, from Section 5, establishes that NOCINOACC. Therefore, if an algorithrd is an
(E(NOACC,LS),V,ECF)-consensus algorithm, thetis an €(NoCD,LS),V,ECF)-consensus algorithm.
By Theorem 4, there exists n& (NoCD,LS),V,ECF)-consensus algorithm. Therefore, there exists no

(£(NoACC,LS),V ,ECF)-consensus algorithm. O

8.3 Impossibility of Constant Round Consensus with ECF and &lf- AC
We next show that no algorithm can guarantee to always s@msensus in a constant number of rounds
after the communication stabilization time if half of the ssages sent in a round can be lost without de-
tection. Specifically, we provide two main results. In Thar6, presented in Section 8.3.3, we show that
for any anonymousé(half-AC,LS),V ,ECF)-consensus algorithm, there exists an executiondihes not
terminate before&”’'ST + O(log |V]). In Corollary 3, presented in Section 8.3.4, we show thaafgr non-
anonymous & (half-AC,LS),V ,ECF)-consensus algorithm, there exists an executiordtiegn’t terminate
beforeC'ST + Q(min{log |V, log %})

We start, however, with some general defintions and lemm&septed in Section 8.3.1 and Sec-

tion 8.3.2, which aid the discussion to follow.

8.3.1 Definitions

Definition 22 (Basic Broadcast Count Sequence)The Basic Broadcast Count Sequence of an execution
« is the infinite sequence of values drawn frd® 1,2+} where, for allr > 0, ther*" position in the

sequence is:

56

e 0if and only if no process broadcasts during rounaf «,
e 1if and only if exactly one process broadcasts during rountlc,

e 2+ if and only if two or more processes broadcast during rounéa.

We say two executiong; and, have the same broadcast count sequence through kgdiodsomek > 0,

if and only if the basic broadcast count sequence of bothutiets are the same through the fikstalues.

Next, we introduce two definitions that will help us ident#yspecific type of “well-behaved” execution:

Definition 23 (V -start algorithm). Let V' be a non-empty set of values. We say algoritdns a V' -start

algorithmif and only if for all i € I, A(i) has|V| initial states described by the sgnit;(v)|v € V'}.

Notice that any algorithm that solves consensus over a \s8ti¥ is, by definition, al/-start algorithm.
This holds because a consensus algorithm must have a umitjaé state for each possible initial value.
For simplicity of presentation, throughout this sectiorhemever we discuss Wd-start algorithm,A4, that
happens solves consensus for valuelsetve assume for all € I andv € V, that initial stateinit;(v) for
A(i) is the initial state of this process that corresponds tainialuew.

We now define a specific execution type forstart algorithms:

Definition 24 (ap(v) (Alpha Execution)). Let A be aV-start algorithm, wheré” is some non-empty
set of valuespy € V, and P is a non-empty subset df. Let Ep be an environment wittEp.P = P,
Ep.CD = MAXCDp(AC),andEp.CM = MAXLSp. Thenap(v) describes the unique execution of

system(Ep, A) that results when we:

1. Fix A(7), for all ¢ € P, to start with initial staténit;(v),
2. Fix Ep.C M to designate only the process corresponding:to(P) asactive,

3. Fix the execution such that in any given round, if a singtepss broadcasts, then all processes receive
the message, if more than one process broadcasts, them@redeby the model) the receivers each

receive their own message, but all other messages areraist, a
4. Fix Ep.C'D to satisfy completeness and accuracy (as it must by the tlefirf £p).

57

5. Fix the execution such that there are no failures.

This execution satisfies the constraintskyf as the collision detector, by definition, satisfies compless
and accuracy, and the contention manager satisfies ther lelsdéion service property by stabilizing to a

singleactive process starting in the first round.

A few points to notice. First, by definitionZp € FE(half-AC,LS). We also note that this execution sat-
isfies eventual collision freedom (assumpti®makes this explicit). Thus, 4 happens to be arf(half-
AC,LS),V ,ECF)-consensus algorithm (as it will be when we use thisdigin later in the section), then

any alpha execution defined ovdr solves consensus.
8.3.2 KeyLemmas

We first introduce a lemma, and an associated corollary, inepome important properties regarding the

behavior of anonymous algorithms:

Lemma 20. Let .4 be an anonymou¥ -start algorithm, wherd/ is a non-empty set of values, |Btand

P’ be two disjoint subsets df such that|P| = |P’| > 0, let f be a bijectionf : P — P’ such that
f(min(P)) = min(P’), and letv be an element of. For every: € P, the sequence of states, message
receive sets, contention manager advice, and collisioeadet advice, describing the execution éf)

in ap(v), is the same as the sequence describing the executigt{ ffi)) in ap/(v), where both alpha
executions are defined ovel.

Proof. We prove this lemma by induction on the round numbeghowing that after rounds, for every

i € P, the state, messages received, contention manager adutepllison detector advice, fot(:) in

roundr of ap(v), is the same as fol(f (7)) in ap/(v) .

Basis ¢ = 0): BecauseA is anonymous, all processes start with the same initia¢ stabothap(v) and

ap(v).

Inductive Steps(> 0): Here we show, for every e P, that for A(i) in ap(v) and A(f(¢)) in ap(v):
1. A(i) and.A(f(7)) receive the same contention manager advice in reund
2. A(i) and A(f (7)) receive the same messages in round

58

3. A(i) and.A(f(i)) receive the same collision detector advice in round

4. A(i) and A(f (7)) have the same state afterounds.

(1) A(i) and A(f (7)) receive the same contention manager advice in raund

If i = min(P), then, by the definition of an alpha executioii) will receive active from its contention
manager in round of ap(v). By definition of f, if i = min(P), then f(i) = min(P’), meaning that
A(f(7)) will also receiveactive during this round in its execution; keeping the contenticanager advice
the same for both. If, on the other harid# min(P) then A(7) will receive the advicgassive from its
contention manager in roundf ap(v). By definition of f, if i £ min(P), thenf (i) # min(P’), meaning
that. A(f(z)) will also receivepassive during this round of its execution; once again keeping thécadhe

same for both.

(2) A(i) and A(f(i)) receive the same messages in round
The decision to broadcast (and what message to broadcast)ndr is a function of the state after round
r — 1 and the contention manager advice-iBy our inductive hypothesis4 (i) and.A(f(i)) have the same
state afterr — 1. By our above discussion (element (1)), they will also hdaedame contention manager
advice. Therefore, a procegi) in ap(v) broadcasts in this round if and only if procedséf(i)) broad-
casts the same message in this round gf(v). Thus, we know there are the same number of broadcasters
and the same messages sent in both executions. This leaes#ses to consider regarding the common
broadcast behavior in both executions in this round:

Casel: If there is a single broadcaster in each execution, therhéydefinition of alpha executions,
every process receives the message; keeping element @rtieefor every process in both.

Case2: If there are no broadcasters in either execution, thenygwarcess receives nothing; again,
keeping element (2) the same in both.

Case3: If there is more than one broadcaster in each execution, thethe definition of alpha ex-
ecutions, if.A(i) broadcastsn in ap(v), then it receivesn and no other message, ajddalso sends and
receives onlym in this round. Otherwise, both processes receive no mess&yyece again, element (2) is

the same in both.

59

(3) A(2) and A(f (7)) receive the same collision detector advice in round
The equivalence of the collision detector advice- ifollows from the argument presented for element (2).
That is, processes receideduring this round only in casgof the broadcast behaviors discussed above. As

described, this case occurs in both executions or neither.

(4) A(i) and A(f(7)) have the same state afterounds.

The state of a process afterounds is a function of the state of the process afterl rounds, the messages
received during-, the collision detector advice in, and the contention manager advicerin For every

i € P, we know, by our hypothesis, that the state4gf) in ap(v) afterr — 1 rounds is the same as the state
of A(f(7)) in ap/(v) afterr — 1 rounds. We also know, by our discussion of elements (1) —ti¢3}, the
same equivalence holds for the messages, collision de@yie, and contention manager advice received

by these two processesiin O

Corollary 2 (Lemma 20). Let.4 be an anonymoug -start algorithm, wheré’ is a non-empty set of values.
Let P and P’ be two disjoint subsets dfsuch thafP| = |P’| > 0. Forallv € V, andr € I'", ap(v) and
ap/(v) have the same basic broadcast count sequence through the fiinsnds, where botlx executions

are defined oveA.

Proof. The decision to broadcast in a given round is a function ofczgss’s state at the beginning of
the round and the contention manager advice during the rolimerefore, by Lemma 20, we know that for
everyi € P, processA(i) broadcasts in roundof ap(v) if and only if processA4(f(i)) broadcasts in round

r of ap/(v). Becausef is a bijection fromP to P’, the corollary follows directly. O

The next two lemmas are counting arguments that bound thé&uaf basic broadcast sequences that can
exist among pairs of executions over short execution prefixemma 21 considers anonymous algorithms,
and Lemma 22 considers non-anonymous algorithms.

Lemma 21. Let.A be an anonymou¥'-start algorithm, wheré/ is a set of values such thét| > 1, and

let P be a non-empty subset &f There exist two alpha executionsp(v) and ap(v'), defined over4,
wherev, v’ € V, v # ¢/, andap(v) andap(v') have the same basic broadcast count sequence through the

first % — 1 rounds.

60

Proof. We haveV| different alpha executions to consider; one for each valié.iAt each round of each
execution three behaviors can occur that are relevant toabie broadcast count: 1) no process broadcasts;
2) one process broadcasts; and 3) more than one processdstsad Therefore, for any sequencekof
rounds, there arg* basic broadcast count sequences. We claim that f@r% — 1, the total number

of sequences of lengthis less tharjV’|. Thus, by the pigeon-hole principle, at least two value® imust

produce the same sequence. We verify this claim by pluggirigrit and solving:

3(5374-1)
< 3(131;;,‘3:‘ —logg 2)

— 3(logs [V]) 3(—logs2)

Vi
2

<[V

0

Lemma 22. Let .4 be aV-start algorithm, wheréd/ is a set of values such thét'| > 1, and letn be an
integer such that < n < L'—Qj and |I| = nk for some integek > 1. There exist two alpha executions,

ap(v) andap/ (v'), defined overd, whereP, P' C I, |P| = |P'| =n,PN P = ¢,v,v' € V,v # ', and

V|||

1
|+m)§ rounds.

ap(v) andap/ (v') have the same basic broadcast count sequence through tinlg figs

Proof. LetII be a partition ofl into disjoint sets of sizex. Let S be the set of alpha executions defined
over A, all index sets i1, and all values irfi/. It follows that we haveV'||II| different alpha executions
in S to consider. Note that for ani € II andv € V, there are exactlyV’| + |II| — 1 alpha executions
in S of the formap(x) or a.(v) (that is, defined over the same process index’set valuev). Also note

that, as described in the previous lemma, for any sequenkeamfnds, there arg” basic broadcast count

sequences. We claim that fbr= lg (n||\‘//||-||{\|f\)%: |V3|z|€m

> |V |+|H]. If true, this implies, by the pigeon-hole
principle, that there exist at leadt| + |II| alpha executions iy that share the same basic broadcast count

sequence. Because no more theih+ |II| — 1 executions can share the same process set or value, then at

61

least two of thesél’| + |II| sequence-sharing executions must be defined over diffpreness index sets
and values. These are the two executions posited by our Lestateanent.

We verify this claim by plugging in fok and showing that the following equation holds:

V][]
3k

> [V]+ [

=

First, however, we note thall| = =, and substitute accordingly:

V1]
n3k

I
> v+ 4
n

Next, we replacé: with the following larger expressiort’ = Ig (%) lg~! 3. This is valid because,

clearly, if our above equation is true f&f > k then it is also true fok. We now subsitute fok’ and

simplify:

(V1T
n3k’
V1T

=
n3'e Gvm)le 3

V[
3083 ()

Ll
V]

NRlvIH

_ VIII(nlV] + 1)
VI

_ Vi +|]
N n

1

> |V +—
n

0

We conclude this sub-section with a general indistingugiig lemma, involving alpha executions with

similar basic broadcast count sequences.

62

Lemma 23. Let.A be aV-start algorithm, wheré/ is a set of values such thét| > 1. Suppose, v’ € V,

k > 0,andR, R’ C I, such thatv # ¢/, |[R| = |R'| > 1,and RN R’ = ¢. Suppose alpha executions
ar(v) andag (v'), defined overd, have the same basic broadcast count sequence for thé: ficatnds.
Let Er_r be an environment whetBr r.P = RU R/, Eg r.CD = MAXCDpgyr (half-AC), and
Erop.CM = MAXLSpup .

Then there exists an executionpf system Er g, A), that satisfies eventual collision freedom, such that
v is indistinguishable fronavz(v) (resp. ag:(v')), through roundk, with respect to processes described by
indices inR (resp. R).

Proof. We start by constructing an executigithat satisfies our desired indistinguishabilities and aan
collision freedom. We then show that this execution satigfie constraints of its environment. Specifically,

let v be the unique execution of systéfiz, r,.A4) where:
1. Foreveryi € R, A(i) starts with staténit;(v), and for allj € R’, A(j) starts with staténit;(v').

2. For the firstk rounds, we fix the execution to generate the following rexdighavior: If a single
process described by an indexfihbroadcasts, then all processes described by indic&sraceive
its message. If a single process described by an indéX broadcasts, then all processes described
by indices inR’ receive its message. Broadcasters always receive theimnmgsage (as required by

the model). All other messages are lost. Starting with raundl, there is no further message loss.

3. For the firstk rounds,Eg g -C D returns+ to .A(i) for somei € R (resp..A(j) for somej € R’)
if and only if it returned+ to A(4) (resp..A(j)) during this round ofvz(v) (resp.ag:(v')). Starting

with roundk + 1, the detector returnsul! to all processes.

4. For the firstk rounds, Er g .C M returnsactive to the two processes described fyn(R) and

min(R'). Starting with round: + 1, it returnsactive only to the process described byin(R).

We constructedy such that for every € R, ar(v) is indistinguishable fromy, with respect ta, through
roundk, and for everyj € R/, ar/(v') is indistinguishable fromy, with respect tgj, through round:. The
collision detector and contention manager advice for theseds, by definition, are the same with respect

to the alpha executions. To see why the message receiveitelsathe same, we turn to assumptipmof

63

our v definition. First, notice that no process described by aexrid R ever receives a message from a
process described by an index /iy, and vice versa. Second, a process described by an ind@xrnesp.
R’) only receives a message if a single process described by an indexAr{resp. R’) broadcasts (and it
broadcasin), and/or the receiving process broadcast itself. This hegt¢he definition of receive behavior
in our alpha executions. Also notice thatsatisfies eventual collision freedom as message loss stops a
roundk + 1.

We must next show thai is valid. In other words, we must show that the contention agan and
collision detector behavior we describe satisifes the traims of the environment. It is easy to see that
this is the case for the contention manager, as, by consnidt stabilizes to a singlective process
in round k£ + 1, thus satisfying the leader election service property. Gbléision detector behavior is
more complicated. Because we specified that r.CD = M AXC Dpg g (half-AC) we must ensure that
neither half-completeness nor accuracy is ever violated ifihis is obvious starting with round + 1, so
we focus only on the first rounds.

Two factors are key in this argument: First, the indististpability between, and the alpha executions
for these first rounds, and second, the fact that the basic broadcast cegqumtisce is the same for both of
these alpha executions for these fitgpbunds. Let us examine the possible cases from the pointof of

an arbitrary procesd(i), for a single round < k, where we assume, without loss of generality, thatR.

e Case 1:A(7) receivesnhull from the collision detector.
If A(7) receivesnull in this round ofy, then, by assumptiofi of our v definition, A(i) receives
null in this round ofagr(v) as well. By the definition of an alpha execution, this meatiseeia
single process or no process broadcast during this rouad; 0f). By our indistinguishability and
basic broadcast count equality, this implies that eithg¢maprocess broadcast in this round-of
or b) exactly one process described by an indeXiand one process described by an indexin
broadcast in this round of. Accuracy is trivially satisfied in both a) and b) (as the d&iereturned
null in both). And half-completeness is satisfied in both, as in@messages are lost, and in b)
A(i) lost exactly half of the messages—making it acceptabletftr feturnnull by the definition

of half-completeness. (This is where we first notice the isjmmn between half-completeness and its

64

close neighbor majority completeness. If we were dealirng imajority complete collision detector,

then returningrull in case b would be unacceptable.)

e Case 2:A(7) receivest from the collision detector.
If A(7) receivest in this round ofy, then, by assumptioB of our ~ definition, A(7) receivest in
this round ofar(v) as well. By the definition of an alpha execution this meansdwmore processes
broadcast during this round afz (v). By our indistinguishability and basic broadcast countadity
two or more processes described by indiceR @mnd two or more processes described by indice® in
broadcast during this round of Therefore, by assumptidhof our -~ definition, all processes lose at
least one message in this round (as the only messages kaeibés case are broadcasters receiving
their own message). Because there was message loss, amtatdreturned:, half-completeness

and accuracy are clearly satsified.

0

8.3.3 Impossibility of constant round consensus with an amyymous € (half- AC,LS),V ,ECF)-consensus

algorithm

Theorem 6. Let V' be a value set such thdlt’| > 1, and letn be an integer such that < n < L'—QJ. For
any anonymous£(half-AC,LS),V ,ECF)-consensus algorithmi, there exists an environmeht € £" (half-
AC,LS), and an execution of the systeniE, A), wherea satisfies eventual collision freedofmST («) =

1, and some process imdoesn't decide until after roun&% - 1.

Proof. Let.4 be any anonymou<(half-AC,LS),V ,ECF)-consensus algorithm. Fixand P’ to be two
disjoint subsets of such thai P| = | P’| = n. In this proof we will consider alpha executions defined over
A, P or P, and values fron¥V. (Notice, by virtue of being a consensus algorithins clearly also d&/-start
algorithm). These executions satisfy eventual collisreedlom, have a communication stabilization time of
1, and are defined by an environmentifi(half-AC,LS). Therefore, if we can find such an alpha execution
that does not decide for a logarithmic number of rounds, loeottem will be proved

First, we apply Lemma 21 tel, V', and P, which provides two alpha executionsp(v) andap(v'),

that have the same basic broadcast count sequence thrcmginstH# — 1 rounds. By Corollary 2,

65

we know this, therefore, is also true of>(v) and ap/(v') (by this corollary,ap:(v') has the same ba-
sic broadcast count sequence@s(v’)). We can now apply Lemma 23 top(v), ap/(v'), andk =
% — 1. This produces an executionof system(Eppr, A)—whereEp p:.P = PU P', Epyp.CD =
MAXCDpyp(half-AC), and Epypr.CM = M AX LSp,p—that satisfies eventual collision freedom,
such thaty is indistinguishable fromup(v) (resp. ap:(v')), through roundk, with respect to processes
described by indices i@ (resp.P’).

Let us assume, for the sake of contradiction, that kotiv) and ap/(v') terminate by round: =
% — 1. By the definition of an{(half-AC,LS),V ,ECF)-consensus algorithm,must solve consensus.
By assumption, in botlwp(v) andap:(v'), all processes decide by rouidn these executions. By our
indistinguishability, these processes decide the samusah~y. By uniform validity, processes described

by indices inP decidev, and processes described by indice®irdecidev’. Thus, both values are decided

in v—violating agreement. A contradiction. O

Making the Bound Tight We match this lower bound with Algorithm 2, described in 8&t7, which
is an anonymous&(0-0.AC,WS),V ,ECF)-consensus algorithm that guarantees terminatiod' 8y +
O(g|V]).

8.3.4 Impossibility of constant round consensus with a noanonymous € (half-AC,LS),V ,ECF)-

consensus algorithm

We now turn our attention to the case of non-anonymous dlgos. Here, we derive a more complicated
bound, but then show, in Corollary 3, that for reasonablamaters it performs no worse, roughly speaking,

than its anonymous counterpart.

Theorem 7. LetV be a value set such thg’| > 1, and letn be an integer such thdt < n < L'—QJ and
|I| = nk for some integek > 1. For any ¢ (half-AC,LS),V ,ECF)-consensus algorithry, there exists
an environmenty € £"(half-AC,LS), and an executiom of the systeniE, A), where« satisfies eventual
collision freedom(’'ST'(a) = 1, and some process tmdoesn't decide until after rounig (%)%.

Proof. Let A be any €(half-AC,LS),V ,ECF)-consensus algorithm. For this proof we consideralph

executions defined over algoriths, value setl”, and all subsets of size of I. These executions satisfy

66

eventual collision freedom, have a communication stadditin time of1, and are defined by an environment
in £™(half-AC,LS). Therefore, if we can find such an alpha execution that doeetide for the desired
number of rounds, our theorem will be proved.

First, we apply Lemma 22, which provides two such executions(v) and ap/(v'), where|P| =

V1])4

|P'| = n, PNP’' = ¢, and both have the same basic broadcast count sequencgttlinetfirsig (n\VIHI\ 5

2

V]I])L
n[VI+|1]/2?

an executiony of system(Epp/, A)—where Ep p/.P = P U P', Epyp.CD = MAXCDpyp: (half-

rounds. We can now apply Lemma 23d@ (v), ap:(v'), andk = g (which, as before, provides
AC), andEp,p.CM = M AX LSp,p—that satisfies eventual collision freedom, such that indistin-
guishable fromup(v) (resp.ap/(v')), through round:, with respect to processes described by indice? in
(resp.P’).

Let us assume, for the sake of contradiction, that kotfiv) and ap/(v') terminate by round: =

lg (n““/f"ﬂf"ﬂ)% By the definition of an §(half-AC,LS),V ,ECF)-consensus algorithm, solves consensus.

By assumption, in botlvp(v) andap(v'), all processes decide by rouid By our indistinguishability,
these processes decide the same values iBy uniform validity, processes described by indicesAn
decidev, and processes described by indice®irdecidev’. Thus, both values are decidediin-violating

agreement. A contradiction. d

The obvious next question to ask is how the result of Theoreompares to the result of Theorem 6. At first
glance, the two results seem potentially incomparablehe@$ormer contains botfI| andn in a somewhat
complex fraction, while the latter does not contain eithiethese two terms. In the following corollary,

however, we show that these two results are, in realityecgiiilar:

Corollary 3. LetV be a value set such thél'| > 1, and letn be an integer such that < n < L%j and
|I| = nk for some integek > 1. For any € (half-AC,LS),V ,ECF)-consensus algorithmd, there exists
an environmenty € £"(half-AC,LS), and an executiom of the systeniE, A), wherea satisfies eventual

collision freedom('ST'(«) = 1, and some process indoesn't decide fof(min{log |V, log %}) rounds.

Proof. We consider the two possible cases:

67

Case 1L:min{log |V, log %} =log |V|.
This implies that|V| < % Therefore, we can express the two terms as follows, whésea constant

greater than or equal th

I
I)
n

Solving for|I| we get|I| = nc|V|. We can now make this substitution fdt in the bound from Theorem 7

and simplify:

Vi |1

fe=1g (— 2L 2
g(n|V|—|—|I|)2

[VincV| 1

=lg(———— " __
e VT navy)2

nclV2 1

=)z

c 1
V=
c—i—l’ ’)2

=lg(

= (g () + 15 (VD)

= Qg [V])

Case 2:min{log |V|,log L} = log 2.
This implies thatZl < [V/|. As before, we can express the two terms as follows, wihira constant greater

than or equal td:
_ <
We can now make this substitution fdr| in the bound from Theorem 7 and simplify:

Vi |1

AV + 1)z

k=1lg(5

68

A
=lg(—r——)5

ndl 4172
c|I? 1

=l om)s

cIl |1
(c+ 1)n)§

= lg (

1|

= (g (—) +1g (5h);

~age 1)

7]

And, of course, for the case whej| = ', we can set = 1 in either equation to reduce the result of

Theorem 7 to eithef2(1g |V]) or Q(1g ‘_i‘); meaning any tie-breaking criteria for thein function is fine.

O

Making the Bound Tight To match this bound, we can use the algorithm informally dieed in Sec-
tion 7.3. This algorithm uses Algorithm 2 wheh| > |V|, and runs Algorithm 2 on the IDs—to elect
a leader which can then broadcast its value—in the case wfiere: |V|. It runs in timeCST +
©(min{lg |V],1g|I|) which comes within a factor of of our lower bound. In the following conjecture
we posit that this algorithm is, in fact, optimal, and thastigap can be closed through a more complicated

counting argument in the lower bound.

Conjecture 1. LetV be a value set such théit'| > 1, and letn be an integer such that < n < L%j and
|I| = nk for some integek > 1. For any € (half-AC,LS),V ,ECF)-consensus algorithnd, there exists
an environmen® € £"(half-AC,LS), and an executiom of the systeniE, A), wherea satisfies eventual

collision freedom('ST'(a)) = 1, and some process i doesn't decide fof(min{lg|V|,1g|I|}) rounds.

The % term in our previous result stems from the counting argurirel@mma 22, where we consider only
1] \p . . .
1 non-overlapping subsets &f This restriction simplifies the counting argument, buigptially provides

some extra information to the algorithm by restricting tleésf processes that can be participating in an

69

execution. We conjecture that a more complicated countiggraent, that considers more possible sets of

n nodes (some overlapping), could replace this teri]|.

8.4 Impossibility of Consensus with Eventual Accuracy but whout ECF

In this section and the next, we consider executions thabtnetessarily satisfy eventual collision freedom.
This might represent, for example, a noisy network wheregsses are never guaranteed to gain solo access
to the channel long enough to successfully transmit a fubsage. We start by showing that consensus is

impossible in this model if the collision detector is onlyeaetually accurate.

Theorem 8. For every value set¥’, where|V| > 1, there exists no&(0.AC,LS),V,NOCF)-consensus
algorithm.
Proof. Assume by contradiction that aé((0.AC,LS),V,NOCF)-consensus algorithid, exists. First, we
fix two disjoint and non-empty subsets bf P, and P,. Next, we define three environments B, C as
follows: Let A.P = P,, B.P = P,, andC.P = P, U P,. Let A.CD = MAXCDp, (0.AC), B.CD =
MAXCDp,(0AC), andC.CD = MAXCDp,,p,(0AC). LetA.CM = MAXLSp,, B.CM = MAXLSp,,
andC.CM = MAXLSp,up,.- By definition, 4, B,C € E(Q.AC,LS). We next define an executiop of
the systen(C, A), as follows:

1. Fix the execution such that all processes described ligeisih P, lose all (and only) messages from

processes described by indiceshy) and vice versa.
2. Fix the collision detector to satisfy completeness amtigcy in all rounds.
3. Fix the contention manager to returerive only to the process described hyin(FP,).
4. Fix the execution so that all processes described byeasditP, start with initial valuev, and all

processes described by indicesHpstart with initial valuev’, wherev, v’ € V, v # v/,

It is clear thaty satisfies the constraints of its environment, as, by defimijtihe collision detector satisfies
completeness and eventual accuracy (in fact, it satisfiesgacy), and the contention manager stabilizes to
a singleactive process starting in the first round. Therefore, by the déimiof an €(0.AC,LS),V,NOCF)-
consensus algorithm, consensus is solved iAssume all processes decide by rodnd.etx € {v,v'} be

the single value decided.

70

We will now construct an executiam, of the systen{ 4, .4), and an executiofi, of the systen{ B, A),

as follows:
1. All processes imv are initialized withv, and all processes if are initialized witho'.
2. Fix the environments so there is no message loss in eitkeugon.

3. Ina, fix the contention manager to retuintive only to the process described hyin(P,), in 3, for
the firstk rounds, fix the contention manager to retprizsive to all processes, and, starting at round

k + 1, have it returructive only to the process described byin(P,).

4. Foralli € P, andr,1 < r < k, we fix A.CD to return+ to .A(i) during roundr, if and only if
A(i) received a collision notification during roundof v. We defineB.C'D in the same way with
respect taP,. Starting with roundk + 1, we fix the collision detectors, in both executions, to $atis

completeness and accuracy.

We now validate thaty and § satisfy the constraints of their respective environmeriffie contention
manager in both executions stabilizes to a siagléve process (Starting at rouridn «, and rounds + 1 in
0B). As there is no message loss, then clearly the collisioadtlet satisfies completeness. Finally, we note
note that the detector satisfies eventual accuracy asngtaith roundk + 1, by construction, the detectors
in both executions become accurate.

Next, we note, by construction, for dlin P,, the executiony is indistinguishable frona, with respect
to ¢, through roundk. And for all j in Py, the executiony is indistinguishable fron®, with respect tgj,
through round:. As noted above, all processes decide {v,v’}, by roundk in . Therefore, all processes
also decider in their respectivex or 3 execution. Assume, without loss of generality, that v. This

implies processes decidan —violating uniform validity. A contradiction. O

8.5 Impossibility of Constant Round Consensus with Accurag but without ECF

In this section, we consider the consensus problem withratewollision detectors but no ECF guaran-
tees. In Section 7, we presented Algorithm 3, an anonymaasiiim which solves consensusiilg |V])

rounds using a collision detector (i3.AC and no contention manager (i.e., the trivieOC M contention

71

manager that returng:tive to all processes in all rounds). Here, we show this bound tpbeal by sketch-
ing a proof for the necessity & |V'| rounds for any anonymous (AC,NoCM),V,NOCF)-consensus algo-
rithm to terminate. Intuitively, this result should not herising. Without the ability to ever successfully
deliver a message, processes are reduced to binary cormationio each round (i.e., silenceOz=collision
notification =1). At a rate of one bit per round, it will, of course, requigdV'| rounds to communicate an

arbitrary decision value frorir.

Theorem 9. Let V' be a value set such that’| > 1, and letn be an integer such that < n < L'—QJ.
For any anonymousé(.AC,NoCM),V,NOCF)-consensus algorithmd, there exists an environmeiit
E"(AC,NoCM), and an executiomr of the systen{E, .A), where some process im doesn't decide until

after roundlg |[V| — 1

Proof (Sketch). With no unique identifiers or meaningful contention manaapvrice to break the sym-
metry, if we start all processes with the same initial value] fix the execution such that all messages are
lost (except, of course, for senders receiving their ownsags), then the processes will behave identically.
That is, in each round, either all processes broadcast the saessage, or all processes are silent.

For a givenn value,1 < n < L‘—QJ, andv € V, let 5(v) be such an execution containimgpro-
cesses. Let thbinary broadcast sequenc# executiong(v) be the infinite binary sequence defined such
that positionr is 1 if and only if processes broadcast in roundf 3(v).

By a simple counting argument (i.e., as we saw in Lemma 21);ameshow that there must exist two
values,w, v’ € V (v # v') such thaf3(v) and3(v") have the same binary broadcast sequence through round
lg|V| — 1. Specifically, there aré” different binary broadcast count sequences of leigtiTherefore,
for k = lg|V| — 1 there are2'2lVI=1 = |V7|/2 different sequences. Because we h#v¢ different 3
executions, one for each valuelif) by the pigeon-hole principle at least two such executionstrhave the
same binary broadcast count sequence through rbulfde obtain our needed result through the expected
indistinguishability argument (i.e., in the style of Lem2). If we compose these twexecutions into a
larger executionyy, processes cannot distinguish this composition untir aéiendlg |V| — 1. Before this
point, there is never a round in which processes from onétiparare broadcasting while processes from
the other are silent. Therefore, it cannot be the case thatpses decide in bothexecutions by round,

as they would then decide the same valueg-rviolating agreement. d

72

Making the Bound Tight This bound is matched by Algorithm 3, which is an anonymai{€{AC,NoCM),V ,NOCF)-

consensus algorithm that terminates by ro@rdg |V]).°

The Non-Anonymous Case It remains an interesting open question to prove a bounchiocase where
processes have access to IDs and/or a leader electionesdBath cases break the symmetry that forms the
core of the simple argument presented above. Intuitivelydver, this extra information should not help the
processes decide faster. Without guaranteed messagergethey are still reduced to, essentially, binary
communication. Even if we explicitly told each process ggee who is in the system, this still would
not circumvent the need for some process to spell out itsinialue, bit by bit—therefore requirinig; |V |

rounds.

This upper bound holds after failures cease. Because, lepwihere are no failures in the executions considered in our
above proof, it matches the lower bound. It remains an istemg open question to see if either: 1) one can construct &b+ (
AC,NoCM),V,NOCF)-consensus algorithm that terminate®itlg |V|) rounds regardless of failure behavior; or 2) one can refine
the previous bound to account for delays caused by failures.

73

9 Conclusion

In this study we investigated the fault-tolerant consermablem in a single-hop wireless network. In a
novel break from previous work, we considered a realistimmmnication model in which any arbitrary
subset of broadcast messages can be lost at any receiveglplodpe with this unreliability, we introduced
(potentially weak) receiver-side collision detectors aladined a new classification scheme to precisely
capture their power. We considered, separately, devieggshtve unigue identifiers, and those that do not,
as well as executions that allow messages to be deliverbdri is a single broadcaster, and executions that
do not.

For each combination of these properties—collision deteirtentifiers, and message delivery behavior—
we explored whether or not the consensus problem is solvaik if it was, we proved a lower bound on the
round complexity. In all relevant cases, matching uppemisuvere also provided. Our results produced

the following observations regarding the consensus pnolitea realistic wireless network model:

e Consensusannotbe solved in a realistic wireless network model witheamecollision detection

capability.

e Consensusanbe solved efficiently (i.e., in a constant number of rountidgvices are equipped with
receiver-side collision detectors that can detect the dbdsalf or more of the messages broadcast

during the round.

e For small value spaces (i.e., decidingcmmmitor abort), consensugan still be solved efficiently
even with a very weak receiver-side collision detector ttzat only detect the loss of all messages

broadcast during the round.

e Collision detectors that produce false positias tolerableso long as they stabilize to behaving
properly and the network eventually allows a message tcdositnitted if there is only a single broad-

caster.

¢ In the adversarial case of a network that never guaranteteartemit a message, consensas still

be solved so long as devices have collision detectors tivat peoduce false positives.

74

e Perfect collision detection—detects all message ladses notprovide significant advantages over

“pretty good” detection—detects if half or or more of the weges are lost—for solving consensus.

¢ Unique identifiersdo notfacilitate consensus unless the space of possible idestifiesmaller than

the set of values being decided.

There are, of course, many interesting open questions atetivby this research direction. For example,
what properties, besides the six completeness and accprapgrties described here, might also be useful
for defining a collision detector? Similarly, the zero costpldetector seems, intuitively, to be the “weakest”
useful detector for solving consensus. Is this true? Ardé theaker properties that are still powerful
enough to solve this problem? It might also be interestingptwsider occasionally well-behaved detectors.
For example, a collision detector that is always zero cotapded occasionally fully complete. Given
such a service, could we design a consensus algorithm tinaintges efficiently during the periods where
the detector happens to behave well? Such a result would feakipg as this definition of a detector
matches what we might expect in the real world (i.e., a detriaécan usually detect any lost message, but,
occasionally—for example, under periods of heavy mesgaffict—it can’t do better than the detection of
all messages being lost).

In the near future, we plan to extend our formal model to dee@ multihop network. We are interested
in exploring the consensus problem in this new environmasityell as reconsidering already well-studied
problems, such as reliable broadcast, and seeing if we qdicake, extend, or improve existing results
within this framework.

In conclusion, we note that much of the early work on wirek$soc networks used simplified commu-
nication models. This was sulfficient for obtaining the befedrt guarantees needed for many first-generation
applications, such as data aggregation. In the future, Y'eyvas more and more demanding applications
are deployed in this context, there will be an increased heestronger safety properties. These stronger
properties require models that better capture the realitgopmmunication on a wireless medium. As we
show in this study, in such models, collision detection isdesl to solve even basic coordination problems.
Accordingly, we contend that as this field matures, the cphokcollision detection should be more widely

studied and employed by both theoreticians and practitone

75

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

IEEE 802.11. WirelessAN MAC and physical layer specifications, June 1999.

K. Alroubi, P. J. Wan, and 0. Frieder. Message-optimairected dominating sets in mobile ad hoc
networks. Inin Proceedingrs of the 3rd ACM International Symposium orliécAd Hoc Networking
and Computing2002.

J. Aspnes, F. Fich, and E. Ruppert. Relationships batieeadcast and shared memory in reliable
anonymous distributed systems. 18th International Symposium on Distributed Computipgges
260-274, 2004.

H. Attiya, D. Hay, and J. Welch. Optimal clock synchroaiion under energy constraints in wireless
ad hoc networks. IfProceedings of the ninth International conference on Hples of Distributed
Systems2005.

M. Bahramgiri, M. T. Hajiaghayi, and V.S. Mirrokni. Fattiolerant and three-dimensional distributed
topology control algorithms in wireless multi-hop netwsrkn Proceedings of the 11th IEEE Interna-
tional Conference on Computer Communications and Netwa@0@2.

R. Bar-Yehuda, O. Goldreich, and A. Itai. Efficient entida of single-hop radio network with colli-
sion detection on multi-hop radio network with no collisidatection. Distributed Computing5:67—
71, 1991.

R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-gdexity of broadcast in multi-hop radio
networks: An exponential gap between determinism and raigion. Journal of Computer and
System Science45(1):104-126, 1992.

R Bar-Yehuda, A Israeli, and A Itai. Multiple communigat in multi-hop radio networks.SIAM
Journal on Computing22(4):875-887, 1993.

[9] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. Madawnedia access protocol for wire-

[10]
[11]

[12]

[13]

[14]

less lans. IfProceedings of the ACM SIGCOMM '94 Conference on CommuaitatArchitectures,
Protocols, and Applicationsl994.

Bluetooth. http://www.bluetooth.com.

T. D. Chandra and S. Toueg. Unreliable failure detexfor reliable distributed systemsournal of
the ACM 43(2):225-267, 1996.

I. Chlamtac and S. Kutten. On broadcasting in radio oek® - problem analysis and protocol design.
IEEE Transactions on Communicatior&3(12):1240-1246, 1985.

G. Chockler, M. Demirbas, S. Gilbert, N. Lynch, C. Newip@nd T. Nolte. Reconciling the theory
and practice of (un)reliable wireless broadcdsiternational Workshop on Assurance in Distributed
Systems and Networks (ADSRQ05. To appear.

Gregory Chockler, Murat Demirbas, Seth Gilbert, andvdaNewport. A middleware framework for
robust applications in wireless ad hoc networks.Phaceedings of the 43rd Allerton Conference on
Communication, Control, and Computirg005.

76

[15] Gregory Chockler, Murat Demirbas, Seth Gilbert, Caliewport, and Tina Nolte. Consensus and
collision detectors in wireless ad hoc networks. Rroceedings of the twenty-fourth annual ACM
Symposium on Principles of Distributed ComputiA@M Press, 2005.

[16] Andrea E. F. Clementi, Angelo Monti, and Riccardo Sslire Selective families, superimposed codes,
and broadcasting on unknown radio networksPinceedings of the twelfth annual ACM-SIAM sym-
posium on Discrete algorithmpages 709-718, Philadelphia, PA, USA, 2001. Society fdusirial
and Applied Mathematics.

[17] M. Demirbas, A. Arora, T. Nolte, and N. Lynch. A hieragehased fault-local stabilizing algorithm
for tracking in sensor network. IRroceedings of the 8th International Conference on Prilesof
Distributed Systemg$srenoble, France, dec 2004.

[18] J. Deng, P. K. Varshney, and Z. J. Haas. A new backoffrdlgn for the IEEE 802.11 distributed
coordination function. l€ommunication Networks and Distributed Systems ModelwagSamulation
(CNDS '04) 2004.

[19] Anders Dessmark and Andrzej Pelc. Tradeoffs betweawlatdge and time of communication in
geometric radio networks. IRroceedings of the 13th ACM Symposium on Parallel Algorsttamd
Architectures pages 59-66, 2001.

[20] Shlomi Dolev, Seth Gilbert, Limor Lahiani, Nancy A. Lgh, and Tina Nolte. Timed virtual stationary
automata for mobile networks. IRroceedings of the 9th International Conference on Prilesjof
Distributed System2005.

[21] Shlomi Dolev, Seth Gilbert, Nancy A. Lynch, Elad Scéill Alex A. Shvartsman, and Jennifer L.
Welch. Virtual mobile nodes for mobile adhoc networks. Aroceeding of the 18th International
Conference on Distributed Computirz004.

[22] Shlomi Dolev, Seth Gilbert, Elad Schiller, Alex A. Smte&man, and Jennifer L. Welch. Autonomous
virtual mobile nodes. IiProceedings of the 3rd Workshop on Foundations of Mobile @dimg, 2005.

[23] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in tfesence of partial synchronyournal of
the ACM 35(2):288-323, 1988.

[24] J. Elson and D. Estrin. Time synchronization for wisdeensor networks. FProceedings of the 15th
International Parallel and Distributed Processing Symipog 2001.

[25] J. Elson, L. Girod, and D. Estrin. Fine-grained netwtirke synchronization using reference broad-
casts. InProceedings of the Symposium on Operating System Desigimgaheinentation2002.

[26] R. Fan, I. Chakraborty, and N. Lynch. Clock synchroti@afor wireless networks. IRroceedings of
the 8th International Conference on Principles of Distitid System<srenoble, France, dec 2004.

[27] Q. Fang, J. Gao, L. Guibas, V. de Silva, and L. Zhang. @&@lidsradient landmark-based distributed
routing for sensor networks. roceedings of the 24th Annual INFOCOM Confererg@05.

[28] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impodsisjbof distributed consensus with one faulty
process.Journal of the ACM32(2):374-382, 1985.

e

[29] E. Gafni and D. Bertsekas. Distributed algorithms fengrating loop-free routes in networks with
frequently changing topologyEEE transactions on communicatiqri981.

[30] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D.ribstand S. Wicker. Complex behavior
at scale: An experimental study of low-power wireless semstworks. UCLA Computer Science
Technical Report UCLA/CSD-TR003.

[31] R. S. Gray, D. Kotz, C. Newport, N. Dubrovsky, A. Fiske,Liu, C. Masone, S. McGrath, and
Y. Yuan. Outdoor experimental comparison of four ad hocingualgorithms. InProceedings of the
ACM/IEEE International Symposium on Modeling, Analysid &mulation of Wireless and Mobile
Systems (MSWiMpages 220-229, October 2004. Finalist for Best Paper award

[32] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and Rister. System architecture directions for
network sensorsASPLOSpages 93—-104, 2000.

[33] L. Jia, R. Rajaruman, and R. Suel. An efficient distréslialgorithm for constructing small dominating
sets. InProceedings of the 20th ACM Symposium on Principles of ibiged Computing2001.

[34] D. B. Johnson and D. A. Maltz. Dynamic source routing dnhec wireless networkiMobile Comput-
ing, 5:153-181, 1996.

[35] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile netwogkfor smart dust. IiProceedings of the
ACM/IEEE International Conference on Mobile Computing &tetworking 1999.

[36] B. Karp and H. T. Kung. Greedy perimeter stateless noutor wireless networks. IRroceedings of
the sixth International conference on Mobile Computing &etworking 2000.

[37] C-Y.Koo. Broadcast in radio networks tolerating bytiae adversarial behavioACM Symposium on
Principles of Distributed Computing (PODJ)ages 275-282, 2004.

[38] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C.i&ll. Experimental evaluation of wire-
less simulation assumptions. Rroceedings of the 7th ACM International Symposium on Modgl
Analysis and Simulation of Wireless and Mobile Sysigrages 7882, 2004.

[39] D. Kowalski and A. Pelc. Time of deterministic broaditiag in radio networks with local knowledge.
SIAM Journal on Computing3(4):870-891, 2004.

[40] Dariusz R. Kowalski. On selection problem in radio netks. InProceedings of the twenty-fourth
annual ACM SIGACT-SIGOPS symposium on Principles of Higedd computingpages 158-166,
New York, NY, USA, 2005. ACM Press.

[41] E. Kranakis, D. Krizanc, and A. Pelc. Fault-toleranb&dcasting in radio networks. FProceedings
of the 6th Annual European Symposium on Algorithpagies 283—294, 1998.

[42] E. Kuhn and K. Wattenhofer. Constant-time distributiedninating set approximation. Proceedings
of 22nd ACM International Symposium on the Principles otiitisted Computing2003.

[43] S. S. Kulkarni and U. Arumugam. Tdma service for sensgworks. In Proceedings of the Third
International Workshop on Assurance in Distributed Systanmd Networks (ADSNMarch 2004.

78

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

M. Kumar. A consensus protocol for wireless sensor oeka. Master’s thesis, Wayne State Univer-
sity, 2003.

H.T. Kung and D. Vlah. Efficient location tracking usisgnsor networks,. IRroceedings of the IEEE
Wireless Communications and Networking Conferentar 2003.

E. Kushelevitz and Y. Mansour. An omega(d log(n/d)) ésvbound for broadcast in radio networks.
In Proceedings of the Twelth Annual ACM Symposium on Prireipi®istributed Computingl993.

L. Lamport. Paxos made simpl&CM SIGACT News32(4):18-25, 2001.

P. Levis, N. Patel, D. Culler, and S. Shenker. Tricklesé)f-regulating algorithm for code propagation
and maintenance in wireless sensor netwoFksst USENIX/ACM Symposium on Networked Systems
Design and Implementatio2004.

L. Li, J. Halpern, V. Bahl, M. Wang, and R. Wattenhofemaysis of a cone-based distributed topology
control algorithm for wireless multi-hop networks. Rroceedings of the Twentieth ACM Symposium
on Principles of Distributed Computing001.

C. Livadas and N. Lynch. A reliable broadcast schemesérsor networks. Technical Report MIT-
LCS-TR-915, MIT CSAIL, 2003.

E. L. Lloyd. Broadcast scheduling for tdma in wirelessltimop networks. pages 347—370, 2002.

Jun Luo and Jean-Pierre Hubaux. Nascent: Network Isgerice for vicinity ad-hoc groups. Iro-
ceedings of the 1st IEEE Communications Society Confe@mm&ensor and Ad Hoc Communications
and Networks2004.

N. Lynch. Distributed Algorithms Morgan Kaufman, 1996.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. yoih: An acqusitional query processing
system for sensor network&CM TODS 2005.

D. Moore, J. Leonard D. Rus, and S. Teller. Robust diated network localization with noisy range
measurements. IRroceedings of ACM Sensys,®20D04.

T. Moscibroda and R. Wattenhofer. Efficient computatid maximal independent sets in unstructured
multi-hop radio networks. IRroceedings of the first IEEE International Conference orbN&oAd-hoc
and Sensor Systen004.

K. Nakano and S. Olariu. Uniform leader election pratigdan radio networks. INCPP '02: Proceed-
ings of the 2001 International Conference on Parallel Pexirg pages 240-250. IEEE Computer
Society, 2001.

V. Park and M. Corson. A highly adaptive distributed ting algorithm for mobile ad hoc networks.
In Proceedings of the sixteenth annual joint conference ofEf#E Computer and Communications
Societies, Driving the Information RevolutiatB97.

C. Perkins and E. Royer. Ad hoc on-demand distancesvacting. InProceedings of the 2nd
workshop on Mobile Computing Systems and Applicatih@99.

79

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

K. S. J. Pister, J. M. Kahn, and B. E. Boser. Smart dustel&ss networks of millimeter-scale sensor
nodes. InHighlight Article in 1999 Electronics Research Laboratdgsearch Summarg999.

J. Polastre and D. Culler. Versatile low power mediaegsdor wireless sensor networkihe Second
ACM Conference on Embedded Networked Sensor Systems (SEpEg€és 95-107, 2004.

N. Priyantha, A. Chakraborty, and H. Balakrishnan. Theket location-support system. Rroceed-
ings of the sixth International conference on Mobile Cormmuand Networking2000.

N. Santoro and P. Widmayer. Time is not a healerPtaceedings of the 6th Annual Symposium on
Theoretical Aspects of Computer Scieneages 304—313. Springer-Verlag, 1989.

N. Santoro and P. Widmayer. Distributed function ewadilon in presence of transmission faulB&roc.
Int. Symp. on Algorithms (SIGALpages 358—-367, 1990.

A. Sawvides, C. Han, and M. Strivastava. Dynamic finekggd localization in ad-hoc networks of
sensors. IrProceedings of the seventh annual International confexemt Mobile Computing and
Networking 2001.

W. Su and I. F. Akyildiz. Time-diffusion synchronizati protocol for wireless sensor networks.
IEEE/ACM Transactions on Networking3(2):384-397, 2005.

Robert Szewczyk, Joseph Polastre, Alan Mainwaringl, Bavid Culler. Lessons from a sensor net-
work expedition.Lecture Notes in Computer Scien@920:307-322, 2004.

T. van Dam and K. Langendoen. An adaptive energy-efitcMAC protocol for wireless sensor
networks.The First ACM Conference on Embedded Networked Senson®y§ENSY Spages 171—
180, 2003.

D. E. Willard. Log-logarithmic selection resolutiorrgiocols in a multiple access channeklAM
Journal of Computing15(2):468-477, 1986.

A. Woo, T. Tong, and D. Culler. Taming the underlying tbbages of multihop routing in sensor
networks. The First ACM Conference on Embedded Networked Senson®y6B=NSY Spages 14—
27, 2003.

A. Woo, K. Whitehouse, F. Jiang, J. Polastre, and D. &ulExploiting the capture effect for collision
detection and recovery. IAroceedings of the 2nd IEEE Workshop on Embedded NetwoskesbS
pages 45-52, May 2005.

W. Ye, J. Heidemann, and D. Estrin. An energy-efficierg@cnprotocol for wireless sensor networks.
In Proceedings of the 21st International Annual Joint Confeeeof the IEEE Computer and Commu-
nications Societies (INFOCOM2002.

J. Zhao and R. Govindan. Understanding packet deliperjormance in dense wireless sensor net-
works. The First ACM Conference on Embedded Networked Sensom®yBENSY Spages 1-13,
2003.

80

