
Theorem-Proving Distributed Algorithms with Dynami Analysis

by

Toh Ne Win

Submitted to the Department of Eletrial Engineering and Computer Siene

on May 21, 2003, in partial ful�llment of the

requirements for the degree of

Master of Engineering in Computer Siene and Engineering

Abstrat

Theorem provers are notoriously hard to use beause of the amount of human interation they require, but

they are important tools that an verify in�nite state distributed systems. We present a method to make

theorem-proving safety properties of distributed algorithms more produtive by reduing human intervention.

We model the algorithms as I/O automata, render the automata exeutable, and analyze the test exeutions

with dynami invariant detetion. The human work in using a theorem prover is redued beause our

tehnique provides two forms of assistane: lemmas generated by the dynami invariant detetion for use in

the prover; and prover sripts, or tatis, generated from our experiene with the I/O automaton model and

the knowledge embedded in the test suite used for exeution. We test our tehnique on three ase studies:

the Peterson 2-proess mutual exlusion algorithm, a strong ahing implementation of shared memory, and

Lamport's Paxos algorithm for distributed onsensus.

In the development and implementation of our method, we also improved the tools for formal veri�ation

of I/O automata and for dynami invariant detetion. We desribe a new model for speifying I/O automata

in the Isabelle theorem prover's logi, and prove the soundness of a tehnique for verifying invariants in

this model in the Isabelle prover. We develop methods for generating proofs of I/O automata for two

theorem provers, the Larh Prover and Isabelle/HOL. We show methods for exeuting I/O automata for

testing, by allowing the exeution of some automata de�ned with universal and existential quanti�ers that

were previously non-exeutable. Lastly, we present improvements to dynami invariant detetion in order

to make it more salable | in partiular, we show how to ahieve eÆient inremental dynami invariant

detetion, where the detetion tool is only allowed to make one pass over its input exeutions.

Thesis Supervisor: Mihael D. Ernst

Title: Assistant Professor

Thesis Supervisor: Stephen J. Garland

Title: Prinipal Researh Sientist

Thesis Supervisor: Nany A. Lynh

Title: Professor

1



2



Contents

1 Introdution 9

1.1 Aknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Joint work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Preliminaries and Bakground 13

2.1 Theorem provers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Model hekers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Dynami invariant detetion . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 I/O automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Program properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Forward simulation relation . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.2 Invariant assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.3 Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.4 Other safety properties . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 The IOA language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.1 Abstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.2 Verifying parameterized systems . . . . . . . . . . . . . . . . . . . . . 23

3 Methodology 25

3.1 Speifying algorithms as I/O automata . . . . . . . . . . . . . . . . . . . . . 25

3.2 Exeuting automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Dynami invariant detetion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Paired exeution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Proving properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Proving invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Proving a simulation relation . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Case studies 37

4.1 Peterson mutual exlusion algorithm . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Peterson invariants deteted by Daikon . . . . . . . . . . . . . . . . . 38

4.1.2 Proving Peterson invariants . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Atomi memory for distributed ahes . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Exeuting the ahe automaton . . . . . . . . . . . . . . . . . . . . . 41

3



4.2.2 Invariants required and deteted . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 The simulation relation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.4 Proving the simulation relation . . . . . . . . . . . . . . . . . . . . . 44

4.2.5 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Distributed Consensus with Paxos . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Spei�ation automaton . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Implementation automaton . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Exeuting the Global1 automaton . . . . . . . . . . . . . . . . . . . . 46

4.3.4 Dynami invariant detetion results . . . . . . . . . . . . . . . . . . . 48

4.3.5 Paired exeution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.6 Verifying a simulation relation in LP . . . . . . . . . . . . . . . . . . 51

5 Ahieving fast, salable and orret dynami invariant detetion 55

5.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.2 Naive algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.3 Corretness properties . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.4 Performane analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Goal: eliminate invariants and derived variables . . . . . . . . . . . . . . . . 59

5.2.1 Elimination type: stati, dynami negative or dynami positive . . . 60

5.2.2 Resoures saved in elimination: time, spae or printing . . . . . . . . 60

5.3 Previous optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Hierarhy and ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.2 Nimmer's thesis paste, to be edited . . . . . . . . . . . . . . . . . . . 61

5.3.3 Staged inferene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.4 Variable ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.5 Consequenes of variable ordering . . . . . . . . . . . . . . . . . . . . 63

5.3.6 Invariant ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.7 Sample ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.8 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.9 Hierarhy shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Handling equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Copying and instantiation of invariants . . . . . . . . . . . . . . . . . 68

5.4.2 Sample ounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.3 Missing data samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.4 No more non-instantiation of invariants . . . . . . . . . . . . . . . . . 72

5.4.5 Post proessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Suppression optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.1 Suppression fatories . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.2 Handling suppression during Daikon's run . . . . . . . . . . . . . . . 79

5.5.3 Suppressors that do not have their values set . . . . . . . . . . . . . . 81

5.5.4 Suppression yles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Conditional invariant detetion . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6.1 Inremental detetion of onditional invariants . . . . . . . . . . . . . 82

4



5.7 Funtion parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.8 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.9 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Improving the IOA Simulator 87

6.1 Simulating paired automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Handling quanti�ers in the Simulator . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Sound exeution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.2 Unsound exeution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Conneting to the Daikon invariant detetor . . . . . . . . . . . . . . . . . . 89

6.3.1 Translation of map data strutures . . . . . . . . . . . . . . . . . . . 90

6.3.2 Conditional splitting in IOA . . . . . . . . . . . . . . . . . . . . . . . 90

7 IO automata in Isabelle: enhaning the representation of I/O automata in

the prover 93

7.1 The Mueller model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 The new Isabelle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.1 Meta theory for the new I/O automaton model . . . . . . . . . . . . 100

7.2.2 Simulation relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Disussion 105

8.1 Further researh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.1.1 Improved dynami invariant detetion . . . . . . . . . . . . . . . . . 105

8.1.2 Improved proof sripts from automaton ode . . . . . . . . . . . . . . 105

8.1.3 Programming in the prover language . . . . . . . . . . . . . . . . . . 105

8.1.4 Filtering invariants with automated heuristis for proofs . . . . . . . 106

8.2 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A Soundness proof of invariant method in Isabelle 109

B The Paxos simulation relation proof in Isabelle 115

5



6



List of Figures

2-1 A proof of syllogism in LP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2-2 A proof of syllogism by ases in Isabelle. . . . . . . . . . . . . . . . . . . . . 16

3-1 An overview of our method . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3-2 A proof blok of a forward simulation relation. . . . . . . . . . . . . . . . . 35

3-3 Sample output of the proof tatis generated for invariant proofs in Isabelle. 36

4-1 State-transition diagram for one proess in the Peterson algorithm. . . . . . 38

4-2 The Peterson two-proess mutual exlusion algorithm in IOA. . . . . . . . . 39

4-3 The spei�ation automaton, Mem. . . . . . . . . . . . . . . . . . . . . . . . . 42

4-4 Strongly ahing implementation, Cahe. . . . . . . . . . . . . . . . . . . . . 43

4-5 The simulation relation and exeution annotations between Mem and Cahe. . 44

4-6 Spei�ation of onsensus in IOA . . . . . . . . . . . . . . . . . . . . . . . . 46

4-7 A ballot-based implementation of onsensus in IOA . . . . . . . . . . . . . . 47

4-8 Forward simulation relation and step orrespondene (proof blok) from the

Global1 spei�ation (Figure 4.3.1) to the Cons implementation (Figure 4.3.1). 50

5-1 Variables used in the running time and spae analyses (see Setion 5.1.4 for

details). All variables exept for RI, FI, L, and L

t

are known statially. . . 58

5-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5-5 The advantage of handling equality speially . . . . . . . . . . . . . . . . . . 66

5-6 When b splits o� from fa; g it is not adequate to simply opy the invariants

from the old leader to the new. The two grayed-out invariants, g(a; b) and

h(a; b; x) show what would be missing. . . . . . . . . . . . . . . . . . . . . . 68

5-7 Solving the opying problem by keeping invariants on the same variable. Lines

onneting invariants to variables have been removed for larity. . . . . . . . 70

5-8 Copying of invariants using ombinations with repetition, where a is the old

leader and b is the new leader. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5-9 Optimizing the opying and reexive proess. Some invariants with more than

one instane of a variable do not have to be instantiated. . . . . . . . . . . . 71

5-10 It is wrong, as shown here, to assume even(b) holds even though a is missing.

It ould be the ase that b is not even. . . . . . . . . . . . . . . . . . . . . . 73

5-11 It is wrong, as shown here, to assume even(b) does not hold when a is missing.

It ould be the ase that f is even. . . . . . . . . . . . . . . . . . . . . . . . 74

7



5-12 The sound way to handle missing values: keep a two-way equality invariant

between a and b and split o� the equality sets. . . . . . . . . . . . . . . . . . 75

5-13 The problem with not instantiating invariants and relying on the data ow

hierarhy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5-14 One way to orret the problem of non-instantiation: instantiate invariants

that would hold on equality leaders at every program point. . . . . . . . . . 77

5-15 Another way to orret the problem of non-instantiation: opy relevant in-

variants from upper program points upon splitting the equality set. . . . . . 78

5-16 Suppression in ation for the logial impliations A � B ) A[i℄ 2 B and

A � B ) A[j℄ 2 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7-1 The spei�ation automaton, Mem translated to Isabelle . . . . . . . . . . . . 99

8



Chapter 1

Introdution

As we inreasingly rely on omputers in our lives, the orretness of software systems on

these omputers beomes ruial. The problem of demonstrating the orretness of software

is known as software veri�ation. Verifying software is important beause it gives us on�-

dene that our systems perform as designed and do not behave harmfully. The most diÆult

software systems to verify are distributed, or onurrent, ones: these ombine the om-

plexity of traditional, entralized software systems with the nondeterminism from proesses

interleaving their exeutions.

There are many desirable attributes in software veri�ation tehniques. The tehnique's

orretness guarantee should be as mathematially formal as possible, so that its statement of

orretness is preise and the system an be disussed using the standard tools of mathemat-

is. Yet, the veri�ation should not require extreme amounts of e�ort from the programmer.

The veri�ation should also provide intuition regarding why the software system is inorret.

Lastly, errors should be aught as early as possible in the design proess in order to save

programmer time and minimize harm to the users who rely on the system.

Program analysis methods for veri�ation an be lassi�ed into two ategories: stati

and dynami [JR00℄. Stati methods analyze a program without exeuting it. A sound,

onservative stati method produes formal guarantees beause its results hold for all exeu-

tions. However, verifying general orretness properties (i.e., those that go beyond relatively

simple properties like type orretness) for all exeutions of a program is undeidable. A

stati method that attempts to verify suh general properties either restrits itself to par-

tiular lasses of programs or requires large amounts of human interation. Thus, verifying

orretness with stati methods is an expensive operation in terms of programmer time for

any omplex system.

In ontrast, dynami analysis methods work operationally | that is, by examining exe-

utions. For a program with a large or in�nite set of exeutions, a dynami analysis examines

only a subset of the exeutions. The tehnique is unsound if it attempts to generalize for

all exeutions. Nevertheless, dynami analysis is useful beause it requires omparatively

little programmer time. The programmer merely needs to exeute the program on some test

suite, and pass the exeution data to the dynami analysis. Beause of this low time ost to

programmers, dynami analyses, suh as testing, have proven useful in �nding errors quikly

and early in development.

9



The primary purpose of this thesis is to present a methodology for verifying the orret-

ness of distributed algorithms that ombines the strengths of stati and dynami veri�ation

tehniques. Our method re�nes and integrates two formerly disjoint but useful tehniques.

The �rst tehnique formally models distributed algorithms as I/O automata [LT89℄ and

proves them orret using a theorem prover, a general-purpose stati veri�ation tool. The

seond tehnique, alled dynami invariant detetion [ECGN01b℄, takes in exeution traes

of a program and onjetures possible properties about the program in general. Our method-

ology works as follows:

1. Formally model the algorithm as an I/O automaton. The I/O automaton model is a

mathematial way to desribe distributed algorithms as state mahines whose ations

are labeled.

2. Build a test suite, test the I/O automaton by exeution, and �x any errors that arise.

3. Analyze the exeutions over the test suite using dynami invariant detetion to produe

a set of andidate invariants that are likely to be true for the automaton.

4. Prove the algorithm orret using a theorem prover. This is where the atual orret-

ness proof happens. Traditionally, programmers have found a theorem prover diÆult

to use beause it is not automati and requires human input. We make using a the-

orem prover easier by providing automatially-generated input to the prover that an

redue the human input required. We do this in two ways. First, we develop a set of

tatis, or proof strategy programs, that an be used on all strutured indutive proofs

of I/O automata. Seond, some or all lemmas that are needed for proofs are provided

by dynami invariant detetion rather than by the programmer.

Steps 1, 2 and 4 require some human interation, while step 3 is automati. Part of

minimizing programmer e�ort in veri�ation is reduing the human input in the proess.

We desribe the trade o�s we make on this issue when we desribe our methodology in

detail.

We do not attempt verify all types of program properties, and fous on safety properties

of distributed systems. Safety properties ensure that inorret or damaging behavior never

ours. We fous on safety properties beause they are the most important ones for ensuring

orretness.

In terms of tools to implement our method, we an urrently use two theorem provers

and one dynami invariant detetor. Our method is not fundamentally limited to these tools,

but these are the ones we have spent e�ort developing in order to support the method. The

Isabelle/HOL theorem prover is a supported tool beause of the breadth of its higher order

logi [Pau93℄. The Larh Prover [GG91℄ is supported beause of its already-tight integration

with the I/O automaton model [Bog00℄. On the dynami side, our method uses the Daikon

tool [ECGN01b℄ for dynami invariant detetion.

To more learly introdue our methodology, we �rst present bakground on formal mod-

eling of distributed algorithms and the issues of software veri�ation. Thus, Chapter 2

introdues the I/O automaton model; the two major types of general-purpose stati veri�-

ation tools, model hekers and theorem provers, and their apabilities; a basi overview of

10



dynami invariant detetion; and the types of program properties that we shall attempt to

verify. With this bakground, we desribe our methodology in Chapter 3. Chapter 4 shows

our method in operation on three ase studies: Peterson's two-proess mutual exlusion al-

gorithm, a strong ahing implementation of shared memory; and Lamport's Paxos protool

for distributed onsensus.

In order to implement our method, it was neessary to enhane pre-existing tools for

veri�ation and to develop ways to desribe the formal mathematial models we have in the

language of a omputer theorem prover. Chapter 5 shows how dynami invariant detetion

an be enhaned to make it more salable for larger and longer-running programs. The

primary fous is desribing an inremental algorithm for analyzing exeutions | one that

does not use up spae as the exeution length inreases. Chapter 6 shows enhanements

to the IOA Simulator (interpreter) in to allow it to exeute more programs, so that these

programs an be analyzed via dynami invariant detetion. Chapter 7 desribes how a new

model was developed for I/O automata in the Isabelle theorem prover's language, to inrease

automation in the veri�ation proess, and redue human involvement.

Finally, Chapter 8 suggests further researh and onludes.

1.1 Aknowledgments

I would like to thank Mihael Ernst, my primary researh supervisor, for guiding every aspet

of my work over the last two years, and for providing me enouragement and inspiration dur-

ing the most diÆult times. I would also like to thank Stephen Garland for being the soure

of advie on formal modeling of I/O automata in theorem provers and on using theorem

provers in general. I am also grateful to Nany Lynh for teahing me the fundamentals of

distributed algorithms and formal methods, and for suggesting examples and ways to move

forward in proofs with her immense experiene with the �eld.

I would also like to thank Laura Dean, Jeremy Nimmer, Josh Tauber, and Mihael Tsai,

who taught me how to ode e�etively in a team and orreted and initiated or re�ned

many implementation ideas presented in this thesis. I also express my gratitude to Dilsun

K�rl�Kaynar for helping organize our joint work on this methodology.

1.1.1 Joint work

The improvements to dynami invariant detetion were implemented after extensive disus-

sion with Mihael Ernst. Jeremy Nimmer and Mihael Ernst developed the idea of hierarhi-

ally ordering program points for dynami invariant detetion and implemented the initial

inremental version of the Daikon tool, without the optimizations disussed in this thesis.

Nii Doodoo initially implemented the handling of onditional invariants in the Daikon tool.

Andrej Bogdanov originally developed the IOA translator to the Larh Prover, while

Stephen Garland and Chris Luhrs developed the original Isabelle translator. Bogdanov also

wrote the ode for the strong ahing memory automata in one of the ase studies.

Niole Immorlia was a ollaborator in the proof of the Paxos protool in the Larh

Prover. Roberto DePriso, Nany Lynh and Alex Shvartsman formulated the original I/O

automaton ode for Paxos.

11



Antonio Ramirez-Robredo formulated the original idea of having annotations to IOA

programs in order to desribe orrespondenes in exeution between two automata.

12



Chapter 2

Preliminaries and Bakground

This hapter presents a bakground on software veri�ation and formal modeling of dis-

tributed algorithms in order to better understand our methodology for veri�ation. We

disuss the strengths and weaknesses of the two main general stati veri�ation tehniques,

model heking and theorem proving in Setions 2.1 and 2.2. In examining an analysis teh-

nique, we are interested in three features: the degree of its automation, the expressivity or

limits of its logi, and the variety of programs it an examine. We introdue the onept of

dynami invariant detetion in Setion 2.3.

In Setion 2.4 we introdue the I/O automaton model for distributed systems, the math-

ematial basis for our work, and formally express our veri�ation goals in this model in

Setion 2.5. We desribe alternative, related approahes to veri�ation in Setion 2.7.

2.1 Theorem provers

A theorem prover is a tool that manipulates mathematial fats given to it in order to prove

more fats. Provers use logis of varying expressivity. For example, the Larh Prover (LP)

uses multi-sorted (i.e., expliitly data typed) �rst order logi, while the Isabelle/HOL system

uses higher order logi with ML syntax and typing. If an algorithm and its omputation

model an be expressed in the logi of a prover, then a user an use the prover to verify

properties of the algorithm.

In order to do this, the user has to de�ne for the prover a model of omputation and

the behavior of the algorithm. Then the user states the proof goals, or logial prediates

that he wishes to show. The prover then soundly manipulates mathematial fats implied

by the de�nitions in order to prove the goal. The manipulations are alled proof methods

and an be hained into higher level manipulations alled proof tatis. For example, a proof

method in Isabelle/LP is proof by assumption/impliation. When the proof goal is of the

form A! B, the prover an be asked to assume that A holds, and to let B be the new proof

goal. One B is proven, the prover pops its proof stak and states that A ! B is true. A

simple proof tati might speify that the impliation method is applied whenever A and B

have ommon free variables. The deision to apply proof methods and tatis an be made

manually, automatially, or both, depending on the prover.

A sequene of proof methods and tatis that proves a goal is a proof sript or simply a

13



proof. A prover that supports requires external input at every step is still useful for it an

be a tool for developing and heking the orretness of a proof sript generated by hand or

by another tool.

Sine even �rst order logi is undeidable, provers report failure both when the goal is

untrue, and when they annot prove the goal. If the goal is indeed true at this point, humans

have to step in and diret the prover somehow. This is why, traditionally, theorem provers

have been onsidered diÆult to use by everyday programmers for software veri�ation: they

are not automati and require humans to provide muh of the insight in proofs. Even the

most automati theorem provers only automate small steps using tatis.

In this thesis, we divide the human input into two varieties: lemmas and tatis. Tatis

tell the prover to use pre-existing fats and proof methods to make progress on a proof.

Examples inlude: simpli�ation, ase analysis, assumption/impliation and indution. They

are searhes on fats known to the prover, aompanied by logial uni�ation mehanisms.

Some provers have built-in tatis that automatially attempt to apply themselves on proofs.

Lemmas add new fats to the prover's knowledge base. Before proving a goal, for example,

it may be neessary to state and prove a lemma. For example, lemma A may be needed

to prove fat B. Or, to prove A ! B, it may be neessary to show A ! C and C ! B.

The searh for an appropriate C is a lemma input. In Setion 2.5 we show how lemmas are

used in proofs of distributed algorithms. Finding the right lemmas is muh more diÆult

for a omputer than �nding the right tatis, for it is neessary to reate fats that do not

yet exist, rather than merely searh on the prover's knowledge base. Theoretially, a prover

ould also �nd these fats by searhing on all possible syntatial ombinations, but this

searh spae is enormous, and eah attempt at lemma would have to be veri�ed by a series

of tatis, or worse, more lemmas.

The suess of using a theorem prover depends on how muh of the above human input

an be eliminated. The key to our methodology in Setion 3 is the redution of this human

input. The next two setions desribe in greater detail the two provers we shall use in our

method.

The Larh Prover

The Larh Prover [GG91℄ (LP) is an interative theorem proving system for �rst-order logi.

It admits spei�ations of theories in the Larh Shared Language [GHG

+

93℄ (LSL). It is

strongly data typed, with delared types, and its type system permits polymorphi types,

suh as Set[Int℄, a set of integers. It supports many intuitive proof methods, suh as proof

by impliation and ontradition. However, it does not support the reation of new proof

methods, only the reation of new lemmas whih an be applied using the built-in proof

methods.

As an example, we show a proof of the syllogism rule, (a ) b) ^ (b ) ) ) (a ) ), in

LP in Figure 2-1. We diret LP to perform an exhaustive searh on the values of a and b,

via ase analysis, and LP sueeds.

The underlying data strutures of the IOA language (desribed in Setion 2.6) are based

on LP data libraries, so translating between the two domains is relatively straightforward.

Further, this means that any data strutures used in IOA already have LSL spei�ations

14



% Delare variables and types

delare variable a, b,  : Bool

% The goal

prove (a ) b) ^ (b ) ) ) (a ) )

% Proof method: by ases

resume by ases a = True, a = False

% LP says:

% Creating subgoals for proof by ases

% New onstant: a

% Case hypotheses:

% userCaseHyp.1.1: a

% userCaseHyp.1.2: :a

% Same subgoal for all ases:

% (a ) b) ^ (b ) ) ) (a ) )

% Again follow by ases

resume by ases b = True, b = False

% LP says:

%% Creating subgoals for proof by ases

%% New onstant: b

%% Case hypotheses:

%% userCaseHyp.2.1: b

%% userCaseHyp.2.2: :b

%% Same subgoal for all ases:

%% b ^ (b ) ) ) 

%% Attempting to prove level 3 subgoal for ase 1 (out of 2)

%% Added hypothesis userCaseHyp.2.1 to the system.

%% Level 3 subgoal for ase 1 (out of 2)

%% [℄ Proved by normalization.

%% Attempting to prove level 3 subgoal for ase 2 (out of 2)

%% Added hypothesis userCaseHyp.2.2 to the system.

%% Level 3 subgoal for ase 2 (out of 2)

%% [℄ Proved by normalization.

%% Level 2 subgoal for ase 1 (out of 2)

%% [℄ Proved by ases b.

...

%% Conjeture user.2: (a ) b) ^ (b ) ) ) (a ) )

%% [℄ Proved by ases a.

Figure 2-1: A proof of syllogism in LP.

15



theorem syllogism: "a =) b & b =)  =) a =) "

(* goal (theorem (syllogism), 1 subgoal): *)

(* [ j a; b & b; ; a j ℄ =)  *)

(* 1. [ j a; b & b; ; a j ℄ =)  *)

apply (ases "a")

(* goal (theorem (syllogism), 2 subgoals): *)

(* [ j a; b & b; ; a j ℄ =)  *)

(* 1. [ j a; b & b; ; a; a j ℄ =)  *)

(* 2. [ j a; b & b; ; a; : a j ℄ =)  *)

apply (ases "b")

(* goal (theorem (syllogism), 3 subgoals): *)

(* [ j a; b & b; ; a j ℄ =)  *)

(* 1. [ j a; b & b; ; a; a; b j ℄ =)  *)

(* 2. [ j a; b & b; ; a; a; : b j ℄ =)  *)

(* 3. [ j a; b & b; ; a; : a j ℄ =)  *)

apply (simp_all)

(* goal (theorem (syllogism)): *)

(* [ j a; b & b; ; a j ℄ =)  *)

(* No subgoals! *)

done

Figure 2-2: A proof of syllogism by ases in Isabelle.

generated for the prover.

The Isabelle/HOL system

The Isabelle/HOL system [Pau93, Gor89℄ is a ombination of two parts. The Isabelle system

is an interative theorem prover that veri�es logial statements given to it. Isabelle an

operate with any given logi, when the logi is spei�ed in its \meta-language". The logi we

hose to use for our methodology is HOL, or higher-order logi. Unlike �rst-order logi, HOL

allows funtions to be �rst-lass values | i.e., values that an be passed as parameters to

funtions and returned. HOL also allows quanti�ation on funtions. The advantage of using

higher-order logi is twofold. First, the prover an be used to prove fats about funtions.

For example, we an show that a given prediate is an invariant. Seond, HOL an be used

to prove meta-theory, or theory about proof methods. This is useful for veri�ation beause

it proves that the methods used to verify systems are themselves sound.

Isabelle's syntax is an augmented version of ML. Logial formulae are stated in ML,

using the language's type system (and syntax), but the syntax is augmented to allow for

the stating of quanti�ers. The ommands to ontrol the prover are written in very simple

syntax. The ML logial formulae are written in quotes as arguments to these ommands. A

proof of syllogism in Isabelle is shown in Figure 2-2. At the end of the proof, we invoke the

simp all proof tati, whih invokes a built-in simpli�er.

16



Isabelle/HOL supports the addition of new proof methods and tatis, both in its lan-

guage and in ML, the implementation language of the prover. In the latter, Isabelle an

be used as a standard programming language, so the user an potentially reate powerful

tatis.

Isabelle/HOL also has a relatively large user ommunity, and its data libraries are more

extensive. However, the Isabelle data struture libraries do not diretly math the ones in

IOA, so any IOA data strutures need to be manually translated for Isabelle.

2.2 Model hekers

Model hekers are a possible alternative veri�ation method. Model hekers examine the

entire reahable state spae of a program to determine if a property holds. They work in a

variety of non temporal and propositional temporal logis [CGP99℄ and are fully automated

provided the user knows the property to verify. Their main limit is that by having to examine

all reahable states, their performane an su�er drastially for systems with large state

spaes, and they do not work for in�nite state systems if soundness is to be preserved. For

onurrent systems, models hekers have to examine all interleavings of exeutions, and their

runtime inreases exponentially with the number of proesses unless lever optimizations are

done.

Model heker designers have ome up with some ways to overome the large/in�nite state

spae problem. By using lever data strutures suh as binary deision diagrams, large state

spaes an be heked quikly (log time) for most programs humans would write [CGP99℄.

However, there are programs for whih this tehnique does not work. For an in�nite state

system, model hekers are used to hek �nite state abstrations of the system, but human

work is involved in formulating and proving the onrete to abstrat mapping. Setion 2.7.1

disusses tehniques related to model heking using this abstration and how it relates to

our work.

2.3 Dynami invariant detetion

The Daikon invariant detetor [ECGN01a℄ proposes properties that are likely to be true

throughout a program's exeution. Daikon operates dynamially by examining values om-

puted during exeution and generalizing over those values. Its output is in the form of

invariants over a grammar on the program's variables. Initially, Daikon onjetures that all

properties in its grammar are true on the program. Then Daikon examines the exeution

data and deletes any invariants that are ontradited by the data. Finally, Daikon uses stati

analysis and statistial tests to redue the number of false positives by eliminating some of

the remaining invariants [ECGN00℄. When used in onjuntion with the IOA interpreter,

Daikon expresses this formal spei�ation in IOA as an invariant of the exeuted automaton.

Dynami detetion of invariants is unsound, beause there is no guarantee that the test

suite used to generate exeution traes fully haraterizes the exeution environment. In

pratie, the reported properties are usually true and are generally helpful in expliating the

system under test and/or its test suite. Furthermore, the method desribed in this paper

17



does not rely on unproven lemmas; rather, it uses Daikon to suggest lemmas and a theorem

prover to prove whihever of these lemmas it an and then to use those lemmas in a larger

proof.

Daikon produes output in the form of a formal spei�ation that often mathes what a

human would have written [ECGN00, NE02b℄. Even when Daikon was given inadequate test

suites in order to arti�ially degrade its output, it still improved programmer performane

(to a statistially signi�ant degree) on a program veri�ation task [NE02℄.

Nimmer and Ernst [NE02b℄ have also used dynami analysis from Daikon to help stati

analysis in the ESC/Java tool. Their primary goal was to extrat and verify Java program

spei�ations rather than verifying safety properties in �rst order logi about distributed

algorithms. Groe et al. [Gro02℄ are attempting to use model hekers on programs to

generate test output for dynami invariant detetion with the Daikon tool, rather than

exeuting the programs themselves.

2.4 I/O automata

I/O automata [LT89℄ have been used to model a variety of distributed systems [GL00a℄.

I/O automata are (possibly in�nite, nondeterministi) state mahines in whih transitions

between states are assoiated with named ations. Ations are lassi�ed as either input,

output, or internal. The inputs and outputs are external ations used for ommuniation

with the automaton's environment; internal ations are visible only to the automaton itself.

An automaton ontrols whih output and internal ations it performs, but input ations

are not under its ontrol. Ations an be parametrized. An I/O automaton onsists of its

signature, whih lists its ations; a set of states, some of whih are distinguished as start

states; a state-transition relation, whih ontains triples of the form (state, ation, state);

and an optional set of tasks.

Ation � is enabled in state s if there is a state s

0

suh that (s; �; s

0

) is a transition of the

automaton. Input ations are enabled in every state. The operation of an I/O automaton

is desribed by an exeution � = s

0

; a

1

; s

1

; : : :, whih is an alternating sequenes of states

and ations that is valid with respet to the automaton's transitions. The exeutions of an

automaton are the set of all suh sequenes. A trae � of an exeution � is its projetion

suh that states and internal ations are removed. The traes of an automaton determine,

therefore, its external behavior.

Program properties or spei�ations are desribed formally in terms of automaton traes.

A property is de�ned by the set of traes it admits. For example, property P might require

an automaton to only �re a partiular ation a(n) where n is an even integer. In this ase,

P is the set of all traes ontaining only even invoations of a. An automaton obeys a given

property P if its traes are a subset of P .

2.5 Program properties

Every property of a program trae an be written as an intersetion of a safety and a liveness

property [AS87℄. Informally, a safety property is one where \nothing bad happens", while

18



a liveness property is one where \something good eventually happens", ensuring that the

program makes progress during its exeution.

Formally, a trae property (a set of traes, or alternatively, a prediate on traes) P is a

safety property if:

� P ontains the empty trae, and

� If � is in P , then any �nite pre�x �

0

� � is in P .

If a trae does not satisfy a safety property, then we an �nd the exat plae where the

property was violated with the above de�nition.

Formally, P is a liveness property if:

� For any � there exists an extension �

0

of � suh that �

0

is in P.

In our veri�ation methodology, we do not attempt verify all types of program properties,

but fous on safety properties of distributed algorithms that an be desribed either by

invariant assertions or by a forward simulation relations. We do this beause our tools

allow these two demonstrations of safety to be veri�ed, and beause liveness properties are

not as important for algorithm orretness.

The next two setions show how safety properties apply to I/O automata.

2.5.1 Forward simulation relation

The purpose of a forward simulation relation is to relate two automata, a spei�ation au-

tomaton and an implementation automaton, and to show that the latter implements the

behavior of the former. If the spei�ation automaton is known to behave safely, then so

will the implementation automaton, and the implementation will be veri�ed.

Formally, an automaton A is de�ned to implement a spei�ation automaton B if

traes(A) � traes(B). A forward simulation relation [LV95b℄ is suÆient (but not nees-

sary) to show this implementation. A forward simulation relation f on the states of B and

A satis�es the two following two onditions:

� For all s 2 starts(A), there exists u 2 starts(B) suh that f(s; u).

� For all (s; a; s

0

) 2 trans(A) and for all u suh that f(s; u), there exists an exeution

� 2 exes(B) with �nal state u

0

suh that: trae(�) = trae(a) and f(s

0

; u

0

).

For eah exeution � of A, the above requirement allows us to hoose an exeution � of B

that starts and transitions properly. The suessive re�nement method uses multiple levels

of automata are used to show that a onrete implementation implements a spei�ation

automaton.

19



2.5.2 Invariant assertion

An invariant assertion is simply a statement that the reahable states of an I/O automaton

obey a given prediate. These assertions apply to states and not to ations. To prove that

an automaton obeys an invariant I, it is neessary to show two things:

� For all s 2 starts(A), I(s).

� For all (s; a; s

0

) 2 trans(A), I(s)! I(s

0

).

Invariants are used in three ways. First, it is sometimes onvenient to speify program

properties using an invariant rather than a spei�ation automaton. Seond, invariants may

be needed to show a simulation relation | in the simulation proof, the invariant is used as

a lemma. Third, invariants may be needed to prove other invariants.

We an formalize and prove many safety properties as implementation relations or in-

variants. In the next two setions, we examine possible methods to verify other property

types.

2.5.3 Liveness

Liveness properties are used to show that a system makes eventual progress towards a goal.

A liveness property is either stated expliitly in temporal logi, or relies on the underlying

model to provide the temporal framework and is spei�ed in terms of the model. For an

example of the latter, the I/O automaton framework allows for a set of task partitions, or

sets of ations suh that a partiular set of �rings determine a fair exeution. From these

fair exeutions, whih are simple liveness properties, the designer an argue more omplex

liveness properties.

Live I/O automata [SGSAL98℄ are a more general way to speify liveness. They allow

arbitrary temporal formulae (spei�ed as a set of aeptable traes) for liveness properties,

with the only restrition being that the properties remain satis�able for all inputs. Unfortu-

nately, traditional simulation relations, whih show that one automaton implements another,

do not work for live I/O automata. This is beause a simulation relation shows that eah

of the implementation automaton's traes are a subset of all the traes of the spei�ation

automaton, while the liveness requirements restrit the orret traes of the spei�ation

automaton to a spei� subset.

However, Attie [Att99℄ has a way of speifying liveness that lends itself to formal veri�a-

tion by simulation relation. Intuitively, the live traes of an implementation will be a subset

of the live traes of the spei�ation. In his method, liveness properties must be spei�ed as

pairs of prediates hA;Bi on the automaton state, suh that the following temporal holds:

2 � (A! 2 �B)

This reads \in�nitely often, it is true that an ourrene of the property A leads to an

in�nitely often ourrene of the property B". Thus, the temporal framework is enapsulated

entirely in the model, and the designer only has to work with the �rst order logi of the

prediates. With this speial form of liveness, Attie has developed a formal theory of \liveness

preserving simulation relations", an extension of forward simulation relations for liveness.

20



2.5.4 Other safety properties

Our method requires safety properties to either be invariant assertions or re�nement map-

pings, so it may leave out a few safety properties, espeially the ones relating to adjaent

sets of states. For example, neither invariants nor simulation relations an diretly say that

an ation �

1

is never followed by another ation �

2

. However, there are easy ways to rewrite

all suh safety de�nitions into either invariant assertions or re�nements, with the addition

of history state variables [LV95a℄. In the ase of this example, a ag ould be set whenever

�

1

is exeuted, and the invariant ould be \�

2

is never enabled if flag is on".

2.6 The IOA language

The IOA language [GL00a℄ provides notations for desribing I/O automata and for stating

their properties; it uses Larh Shared Language [GHG

+

93℄ spei�ations to axiomatize the

semantis of I/O automata and the data types used to desribe algorithms. In IOA, transition

relations are de�ned in terms of preonditions and e�ets. These an be written either in

an imperative style (as a sequene of assignment, onditional, and loop statements), or in

delarative style (as a prediate relating state variables in the pre- and post-states, transition

parameters, and other nondeterministially hosen parameters). It is also possible to use a

ombination of these two styles.

Nondeterminism appears in IOA in two ways: expliitly, in the form of hoose onstruts

in state variable initializations and the e�ets of the transition de�nitions, and impliitly, in

the form of ation sheduling unertainty. Nondeterminism allows systems to be desribed in

their most general forms and to be veri�ed onsidering all possible behaviors without being

tied to a partiular implementation of a system design.

Tools in IOA inlude a heker for well-formedness of automata (e.g., input ations are

always enabled), a Simulator (interpreter) [KCD

+

02℄, and a translator from IOA to the

theorem proving language of the Larh Prover [BGL02℄.

We use the I/O automaton model and the IOA language for our veri�ation methodology

for many reasons. First, the model has proven useful in desribing many existing systems

and algorithms [GL00a℄. Seond, we an use the existing tool that translates IOA [Bog00℄

into the �rst order language of the theorem prover LP, and adapt it to generate proof

tatis. We an also retarget the tool to generate and the other provers. Many proofs of

distributed algorithms have already been done with LP [BGL02℄. There is also already

a model for the semantis of I/O automata in Isabelle [M�ul98℄ and Luhrs has reated a

design for a tool to translate IOA to Isabelle [Luh02℄. Third, an IOA program is exeutable

after some modi�ations and the exeutions an be used in dynami analysis. With various

enhanements, the IOA Simulator an produe data the is useful for the Daikon tool to

examine [NE02a℄.

21



2.7 Related work

In the next two setions, we disuss methods developed to improve the range of systems that

an be veri�ed by a model heker. The �rst is abstration, a means to map a large state

spae into a smaller state spae for model heking. The seond is a veri�ation method for

a restrited lass of systems alled parametrized systems.

2.7.1 Abstration

Abstration [CC77a℄ has been inreasingly used by the model heking ommunity [Pod03℄ in

order to deal with both the (�nite) state spae explosion and the in�nite state spae problem.

In this setion, we examine the possible approahes and limitations to using abstration and

model heking for the I/O automaton model. We also desribe our work in the terminology

of abstrat interpretation for omparison.

Abstration is mapping a onrete state spae to an abstrat state spae, a way to

formalize and make sound the approximation of a model. model that may yield useful

information. This mapping is most useful when it is from in�nite to �nite spae, and the

model heking on the abstrat spae produed veri�es the onrete spae. Given a �nite

property, there exists an abstration that maps an in�nite state spae to a �nite one that

represents the property. However, it is undeidable to atually dedue the right abstration,

and the �nite spae might still be too large.

A prediate abstration is a partiular abstration mapping onrete state spae to

boolean variables. It is equivalent to an invariant. The mapping funtion is thus prediates

on onrete variables, like x < y. In theory, for any property, there exists an abstration

suh that any model an be mapped to two states | i.e., a prediate abstration an be

suÆient for model heking, where one state is \good" and another is \bad" and we just

show that \bad" is not reahable from the start states of an automaton. All transitions from

\good" never go to \bad", and this is easy to hek beause the abstration has done all the

work [Pod03℄.

However, �nding the right prediate abstration is also undeidable and diÆult for

humans to do. A prediate I on the onrete state s must have the following three properties

to be useful for veri�ation:

� 8

state

I(state)) good(state). I implies the property to be proved.

� 8

state2start

I(state). I holds on the start.

� 8

state;state

0

(I(state) ^ transition(state; state

0

)) I(state

0

). I is \indutive". That is, if

we know that I holds on a pre state, then I is suÆient to prove that I holds under

any transition to a post state.

The key to suessful veri�ation with abstration is to disover the indutive invariant

I. Note that I is usually a onjuntion of many invariants. Methods inlude \widening"

where I is weakened at every step until it is indutive [CC92℄, or heuristis suh as ab-

strations by \otagons" saying that the values of x and y are within an otagonal region

22



when graphed [Min01℄. In this sense, our methodology, whih also attempts to �nd suitable

invariants for veri�ation, is not that di�erent from the e�orts of researhers of abstration.

However, our work di�ers in the way we disover these invariants and how we verify that

they imply the \good" property. We disover invariants through exeution rather than a

stati methodology like widening. The grammar of our invariants is also wider. Presently,

those who are pratiing automatially generating abstrations for veri�ation seem to be

restriting themselves to arithmeti on integers [Pod03℄ and say nothing, for example, about

subset inlusion on unbounded sets. In some ases, the useful abstrations must be generated

by hand. Sine our method uses a theorem prover rather than a model heker, it may require

more manual intervention to verify that an invariant I obeys the three properties. However,

we an make progress when the invariant is not quite suÆient for veri�ation preisely

beause of the ability to manually intervene.

2.7.2 Verifying parameterized systems

A parametrized system is an unbounded array of �nite state automata that only perform

ommuniation with their neighbors. A parametrized system is still an in�nite state system,

but its in�nity is only in the number of partiipating proesses.

One partiular model heking tehnique, alled \invisible invariants" by Pnueli, et

al. [PRZ01℄, allows a restrited lass of parametrized systems to be model heked for a

ertain lass of properties. By model heking a ertain (omputable) number of these au-

tomata, the result holds for all the automata. For example, they model hek 5 automata

in a solution to the Dining Philosopher's Algorithm to show that the solution holds for an

unbounded system.

Intuitively, the method restrits itself to properties that are loal | related to a handful

of automata interating next to eah other, rather than the global system. Further, the

individual automata not only have to be �nite state, but limited in funtion. The exat

limit has not yet been formalized. An example may provide some intuition, however: the

individual automata annot at as ells on a Turing mahine tape, whereby they simulate

the Turing mahine by passing messages bak and forth. Otherwise, a veri�ation of suh a

parametrized system would be able to tell if the Turing mahine halts.

Further, many distributed algorithms have state variables that are unbounded, in ad-

dition to having an unbounded number of proesses. For example, Lamport's Bakery al-

gorithm [Lam74℄ requires eah proess to have an unbounded integer ounter. For these

systems, model heking has no answer so far. Thus we fous our work on theorem provers

alone in terms of stati veri�ation tools.

23



24



Chapter 3

Methodology

This setion desribes in detail our intended method for verifying distributed algorithms

using a ombination of formal modeling, dynami analysis and theorem proving. Reall that

properties for I/O automata an be stated either as invariant assertions or as spei�ation

automata. We use a slightly di�erent approah for properties stated as invariants versus

properties stated via spei�ation automata, but the �rst three steps are the same. Further,

note that eah invariant needed for veri�ation by simulation relation an use the version of

our method for invariants.

Our method, outlined in Figure 3-1, is summarized by four steps:

1. Model the algorithm as an I/O automaton.

2. Render the nondeterministi and delaratively spei�ed I/O automaton into IOA pro-

grams that are imperatively exeutable. In the ase of veri�ation by simulation rela-

tion, we only need to rewrite the implementation automaton. Exeute the automaton

(automata) using a simple test strategy, and �x any errors that may arise, until what

the programmer believes are orret exeutions are produed.

3. Analyze the exeutions using dynami invariant detetion to produe a set of invariants.

4. Translate all automata into the language of a theorem prover, and verify the safety

properties, with assistane from: the Daikon invariants as lemmas; tatis and proof

struture from the translation tool.

3.1 Speifying algorithms as I/O automata

The �rst step in using our method for verifying a system is to de�ne it as an I/O automaton.

This means that an algorithm should be onverted into a state mahine with eah atomi

step being a transition. Many algorithms have been modeled as I/O automata [PPG

+

96,

SAGG

+

93a, GL00b℄ and we do not delve deeper into how the onversion happens. The �nal

result is an I/O automaton that is a mathematial spei�ation for an algorithm.

Now, the de�nition of safety properties an be done in two ways. Often, it is suÆient

to simply state an invariant on behavior, suh as with the Peterson ase study used in

25



Figure 3-1: An overview of our method. We verify program properties with help from

dynami invariant detetion and proof sripts generated by our IOA to prover translators.

Chapter 4.1. Veri�ation by invariants is supported by our method. Otherwise, the user

may prefer to state safety properties as another I/O automaton [LV95a℄. In this ase, the

user should speify the orret behavior in terms of a spei�ation automaton and veri�ation

shall happen by forward simulation, whih is another method we support. The user also has

to speify the forward simulation relation.

3.2 Exeuting automata

The seond step in using our method to verify an automaton is to test its behavior through

exeution. The IOA Simulator simulates (on a single omputer) exeution of an I/O au-

tomaton, allowing the user to help selet the exeutions and to propose invariants for the

interpreter to hek.

Converting I/O automata into exeutable IOA ode involves two steps: writing the au-

tomata in the IOA language, and resolving nondeterminism by sheduling. Afterward, the

IOA Simulator exeutes the program and writes exeution data (the onrete representation

of interleaved states and ations) to a �le.

The former is neessary and relatively trivial: the IOA Toolkit supports a useful but

limited set of data type libraries written in LSL, and the spei�ed I/O automaton must

be written in terms of these libraries. Other tools like the IOA Composer provide the

onveniene of having to write only one automaton and being able to form a system of

interonneted automata using this automaton as a template.

The latter requires work: we must write determiners [Che98, RR00℄ that hoose between

nondeterministi steps an automaton an take. When verifying by simulation relation, this

is only neessary for implementation automata. The primary plae for this is in sheduling

whih transition �res next among those that are enabled. The IOA language allows us to

append a small program, alled a shedule blok, at the end of the automaton de�nition

to perform this sheduling. The shedule blok not only selets whih transition to per-

form using a language very similar to IOA

1

but also selets whih parameters to supply to

1

It is essentially the same semantis as the eff ode of IOA, exept it only allows imperative ode.

26



the transition. Additionally, where the IOA language allows nondeterministi hoie using

hoose terms within eff bloks, determiners have to be supplied to hoose a spei� hoie.

It is not neessary that a sheduled IOA program is purely deterministi - shedule bloks

an use expliit alls to randomization funtions.

Beause transitions have parameters and beause their preonditions are in �rst-order

logi, it is generally undeidable to automatially shedule transitions. However, it is still

useful to develop methods that either automatially shedule for some types of transitions, or

ways to write shedule bloks that approximate fair (or other desired) sheduling tehniques.

A ommon shedule tehnique used in our ase studies is as follows: pik a node at random,

�nd whih ations the node an take and perform one of these ations. Usually, a partiular

node's hoie of ations is limited to one.

It is important to note why we want a shedule that exhibits all the interesting behavior

of a program: exeutions are the soure of data for dynami invariant detetion to examine.

Although not all possible exeutions have to be seen (this would amount to a very slow form

of model heking), it is desirable to reate representative transition steps. The key insight

here is that the shedule blok an be seen as a test suite from the perspetive of dynami

analysis.

3.3 Dynami invariant detetion

Verifying safety properties often depends on invariants and on auxiliary lemmas. Mahine

veri�ation requires that suh lemmas be stated and proved expliitly, even if they seem

like bookkeeping details to the user. Hene, the third step in our method is to generate

andidate invariants and lemmas automatially by using dynami invariant detetion to

analyze exeution data from the IOA Simulator.

After exeution data is generated from the Simulator, it is given to the Daikon tool to

perform this dynami invariant detetion. Tool support for this data onversion was initially

developed by Dean and Santos [Dea00, NS01℄ and further extensions are shown in Setion 6.3.

Daikon generates onjetures (in �rst-order logi) that are valid IOA syntax in the form of

invariants. These invariants are appended to the automaton, to be used in the next step of

our method.

If any unusual behavior is seen by Daikon at this point, as with the Peterson ase study

in Setion 4.1, it is an early opportunity to �x the algorithm or its implementation in IOA.

This feedbak loop of writing of ode and dynami analysis, often inluding the addition of

more test suites, an happen until the user is satis�ed that what is reported by the dynami

invariant detetor is not unexpeted behavior.

Three potential problems with this third step are that the lemmas it produes may be

unsound, inomplete, or not very useful. Despite these potential pitfalls, this step tends

to perform well in pratie as shown by our ase studies and others [NE02b, NE02℄. We

disuss how to ope with the three potential problems.

Soundness Dynami invariant detetion is unsound: reported properties are true over the

test suite, but there is no guarantee that the test suite fully haraterizes the exeution

27



environment of the program. This does not hinder us, for two reasons. First, we use all

of the dynamially deteted invariants to help in proposing, understanding, and verifying

program properties, but we use a theorem prover to ensure that the lemmas we use in proofs

are sound. Seond, most of the output in our ase studies were orret, and those that were

not were easily orreted artifats of the test suite (exeution sheduling). In general, simply

overing every interesting aspet of eah ation seems to be adequate.

Completeness Dynami invariant detetion is inomplete: the proposed invariants may

be insuÆient for veri�ation, beause some true invariants are not reported. Daikon restrits

the set of invariants it heks for two reasons: to onserve runtime and, more importantly,

to redue the number of false positives that it reports (the more properties it heks, the

larger the number of false or non-useful properties it will report).

Sometimes, as in our Paxos ase study, dynami invariant detetion may report an invari-

ant that is not provable in isolation | another invariant may be neessary but not deteted.

In other words, dynami invariant detetion an postulate a useful property whose proof is

ompliated. This ability to deompose a proof into parts demonstrates a strength of our

tehnique: it is easy to hek properties dynamially, even if they have ompliated proofs

that are beyond the apabilities of ompletely automati stati tools.

Usefulness Third, some reported properties may be true but not useful. Daikon uses

heuristis to prune useless fats, for instane, by limiting output based on variable types.

However, it is impossible for a tool to know what a human will �nd desirable in a given

situation. In pratie, we �nd that it is easy for humans to selet the useful invariants and to

pass over the uninteresting ones|and examining them helped us solidify our understanding

of the algorithm and the implementation. Thus, a moderate amount of extra information

does not distrat or disable users.

Similarly, the reported properties may be more than are really needed: a proof aepted

by a theorem prover may use more invariants than are stritly neessary, thus obsuring

the essential argument. We believe it is better to �rst obtain a working, mahine-veri�ed

proof, and then to simplify it. Possibly automating this task (following Rintanen [Rin00℄ by

iterating unto a minimal �x-point of invariants) is presented as future work in Setion 8.1.

We did not have to perform suh a redution in our ase study. This �nding aords with

other user studies of runtime analysis [NE02℄, where the output from dynami invariant

detetion was able to help verify the absene of ertain runtime errors.

3.4 Paired exeution

The seond step in our method, exeution, is also appropriate when attempting to verify a

simulation relation. As noted in Setion 3.2, the IOA simulator an help users formulate and

test the validity of a forward simulation relation, prior to suh a veri�ation. In this setion,

we disuss how a shedule and other information an help in exeuting paired automata,

while the IOA simulator tests the onditions of the relation. This sheduling will later be

useful in guiding veri�ation.

28



A forward simulation relation is a prediate that relates the states of two automata

(see the de�nition in Setion 2.5.1). Paired exeution requires suh a orrespondene to

resolve nondeterminism. Usually, the designer of an implementation has an idea of the step

orrespondene. The IOA toolkit allows the designer to annotate the program with this

orrespondene.

The proof blok in Figure 3-2 desribes a step orrespondene for use in testing a sim-

ulation relation. The ode is from the Paxos ase study in Setion 4.3.6 but we examine

only the syntax here. With a proof blok, the paired simulator an exeute the spei�a-

tion automaton in lokstep with the implementation automaton. The proof blok ontains

two sub-bloks, orresponding to the two onditions required for a simulation relation (Se-

tion 2.5.1). The �rst sub-blok, started by initially, shows how to start the spei�ation

automaton.

2

The seond sub-blok ontains an entry for eah ation of the implementation

automaton; this entry provides an algorithm for produing an exeution fragment of the

spei�ation automaton. Syntatially, eah entry uses �re statements to tell the simulator

to �re spei�ation ations. A proof blok may also ontain a third sub-blok that delares

auxiliary variables used by the step orrespondene.

3.5 Proving properties

The last step in our method is to prove the simulation relation (or invariant) using a theorem

prover. This guarantees the soundness of our tehnique. As desribed above, theorem provers

generally require human input in the form of lemmas and proof tatis. Here we desribe

how the results of Setions 3.3 and 3.4 an be used to generate this input automatially.

First, the invariants suggested by dynami invariant detetion beome andidates lemmas,

thereby saving the user time in �nding auxiliary invariants needed for veri�ation. Seond,

the annotations for paired exeution provide a proof outline and tatis. In this setion, we

show how to generate the latter.

The outline and tatis are generated from modi�ed versions of the proof translators for

LP and Isabelle. The translators use the struture of the program; the annotations written

by the user for exeution; and our knowledge of ommonalities in proofs of I/O automata

to generate proof sripts. In pratie, we have found that these proof sripts have saved

veri�ation time by automating many steps of a proof.

3.5.1 Proving invariants

Proofs of invariants in a theorem prover follow a strutured methodology:

� Prove the start ondition.

� Prove the transition ondition by strutural indution on the data type of the ation

and its parameters.

2

The set of legal start states of the spei�ation automaton is determined by the states blok in its

ode; the initially blok selets a partiular start state, whih may depend on the start state of the

implementation automaton.

29



There are two tools that translate IOA to prover languages and somewhat automate

providing this kind of assistane. The ioa2lsl tool [BGL02℄ onverts IOA programs and

asserted invariants into LSL, an input language for LP. An example of its output is:

prove Inv(s) ^ isStep(s, a, s

0

) ) Inv(s

0

)

The ioa2Isabelle [Luh02℄ tool provides similar assistane for reasoning about IOA using

Isabelle [NS94, M�ul98℄. We have used a this tool suessfully in ase studies. An example

of its output is:

lemma I_step:

"8 state at .

((reahable aut state) ^

(I state) ^

(enablement_of aut state at)

)!

I(effets_of aut state at)"

Now we desribe the tatis that the Isabelle translator outputs for assisting proofs of

invariants. The LP translator outputs relatively minimal tatis for invariants beause we

have less ontrol over the prover than we do for Isabelle. Figure 3-3 shows the lines generated

by the Isabelle tool for one invariant of the shared memory ase study from Chapter 4.2.

Again, the partiular algorithm is not important. The general methodology we use is as

follows:

1. Prove the start ondition by iting spei� tatis. This is relatively straightforward

and so the tati for this is omitted from the �gure.

2. Split up the proof of the invariant into separate lemmas for eah transition. Prove

eah lemma by iting a spei� sequene of theorems about the automaton as lemmas.

In the �gure, the �rst paragraph shows the proof for one transition, respond, whih

assumes sCahe is reahable and respond is enabled. The ode attempts to prove

that the invariant Inv holds for the post-state. The tatis generator ites the three

premises, p0, p1, and p2. Then it uses the simp and auto? Isabelle tatis with

spei� arguments relating to the automaton de�nition, whih were disovered to be

e�etive in proofs.

3. Try to prove the invariant step ondition by indution on the ation data type and by

iting the lemmas for eah transition. This is shown in the seond paragraph of the

�gure.

4. Prove the invariane of the prediate itself by iting the step ondition and the start

ondition lemmas. Then prove that as a onsequene of the prediate being an invari-

ant, the invariant holds on all reahable states. This last part is useful so that other

invariant proofs an take advantage of the urrent invariant holding should a state be

reahable.

For many simple invariants, like in the memory ase study, these automatially generated

tatis require no human augmentation.

30



3.5.2 Proving a simulation relation

Reall from Setion 2.5.1 that verifying a simulation relation requires verifying both a start

ondition and a step ondition. Translation tools in the IOA toolkit use the proof blok for a

simulation relation to generate proof tatis for eah ondition. The proof blok an be seen

as a test suite that also ontains the programmer's knowledge about how the spei�ation

automaton is supposed to behave | this is why it is useful in a formal proof, one properly

translated. The proof blok from the Paxos ase study in Figure 3-2 will be used as a

running example.

Start ondition

The start ondition requires �nding a witness start state b of the spei�ation automaton.

In LP, the proof obligation is

start(a:States[A℄) ) 9 b:States[B℄ (start(b) ^ F(a, b))

the rules are similar for Isabelle, but wrapped up in a prediate:

theorem FCahe2Mem_start:

"isFwdSim_start Cahe Mem FCahe2Mem"

where the prediate is:

onstdefs isFwdSim_start ::

"(

0

ationA,

0

stateA) ioa ) (

0

ationB,

0

stateB) ioa )

(

0

stateA )

0

stateB ) bool) )

bool"

"isFwdSim_start autA autB F ==

(8 a . a 2 starts_of autA ! (9 b . (b 2 starts_of autB) ^

(F a b)

))

"

The de�nition of the prediate omes in two piees. First, we de�ne the data type of

isFwdSim start, then we de�ne its meaning. The data type says that isFwdSim start

takes in three arguments: two automata (parametrized by their ation type, as explained

in Setion 7) and a relation on their states, and returns a boolean. The de�nition is the

standard start ondition for simulation relations.

The proof translator tools extrat the witness b from the imperative statements in the

initially setion of a proof blok, whih de�ne initial values for the state variables in the

spei�ation automaton in terms of the initial values for the state variables in the imple-

mentation automaton. In the Paxos ase study, the proof sript generator translated the

initially setion of Figure 3-2 into the following ommands for LP:

delare operator StartRel: States[Global1℄ ! States[Cons℄

assert StartRel(a:States[Global1℄) =

[a.initiated, a.proposed, {}, a.deided, a.failed℄

prove start(a:States[Global1℄) )

9 b:States[Cons℄ (start(b) ^ F(a, b))

resume by )

resume by speializing b to StartRel(a)

31



Here, the two 'resume by' ommands diret LP to begin the proof by using its built-in impli-

ation tati, whih assumes the hypothesis and replaes the universally quanti�ed variable

a by a �xed onstant a, and then using StartRel(a) as the witness for the existential

quanti�er 9 b. In the ase study, these ommands are suÆient to omplete the proof of the

start ondition.

The ommands are similar for Isabelle:

"startRelGlobal12Cons sGlobal1 ==

Cons_state.make (Global1.initiated sGlobal1)

(Global1.proposed sGlobal1)

{}

(Global1.deided sGlobal1)

(Global1.failed sGlobal1)"

theorem FGlobal12Cons_start:

"isFwdSim_start Global1 Cons FGlobal12Cons"

...

show "( startRelGlobal12Cons sGlobal1) 2 starts_of Cons ^

FGlobal12Cons sGlobal1 ( startRelGlobal12Cons sGlobal1)"

apply (simp add: startRelGlobal12Cons_def Cons_def

Cons_start_def FGlobal12Cons_def

Cons_state.make_def)

The �rst line de�nes startRel. The seond line proves that startRel satis�es the

start requirement through the use of the simp tati. The arguments to the tati are the

de�nitions of parts of the two automata. They were hosen from our experiene with I/O

automaton proofs and then oded into the Isabelle translator tool to be output for every

automaton.

Step ondition

The step ondition requires �nding a witness exeution � of the spei�ation automaton for

eah transition of the implementation automaton. The proof sript generator formulates this

proof obligation for LP as follows:

prove

F(a:States[A℄, b:States[B℄)

^ step(a, alpha: Ations[A℄, a

0

:States[A℄) )

9 beta:AtionSeq[B℄ ( exeFrag(b, beta) ^ F(a

0

, last(b, beta)) ^

trae(beta) = trae(alpha))

A similar formulation is generated in Isabelle, whih an be found in Appendix B. Both

tools also generate proof sripts that divide the proof into ases based on the kind of the

ation a. In LP, this sript uses the ommand resume by indution on a, whih direts LP

to perform strutural indution on the datatype of a, while in Isabelle, the sript uses the

indut tati. The tools generate lemmas to handle the details of the individual ases. For

example, the LP translator generates the following lemma and proof sript from the proof

blok for the init ation in the Paxos ase study.

prove

F(a:States[Global1℄, b:States[Cons℄)

^ step(a, init(i, v), a

0

) )

9 beta:AtionSeq[Cons℄

32



(exeFrag(b, beta) ^

F(a

0

, last(b, beta)) ^

trae(beta) = trae(alpha))

..

resume by )

resume by speializing beta to init(i, v) * {}

The intelligene of this tati lies in the line that says resume by speializing....

Whih beta to speialize to is derived from the proof blok's fire statements in the orre-

sponding for bloks. An analogous sript is generated for Isabelle.

When proof bloks are more ompliated than those in the Paxos ase study, the job of

the proof sript generator is orrespondingly more ompliated. For example, the generator

must expand a for entry in the proof blok that ontains a sequene of onditional statements

suh as

i f P1 then f i r e a1 e l se f i r e a2 f i

i f P2 then f i r e a3 e l se f i r e a4 f i

into one that ontains nested onditionals suh as

i f P1 then

i f P2 then f i r e a1 f i r e a3 e l se f i r e a1 f i r e a4 f i

e l s e

i f P2 then f i r e a2 f i r e a3 e l se f i r e a2 f i r e a4 f i

f i

in order to generate the appropriate ase splits in the proof sript.

Our tehniques do not ompletely eliminate the need for human guidane in proving

invariants and simulation relations. Some transitions that have omplex semantis may

need the itation of spei� invariants (that have already been proved). We do not yet have

a methodology for hoosing whih invariants to ite. There may also be other ase splits

that are not mentioned in the proof blok. We do not yet onsider these splits.

K�rl�, et al. [KCD

+

02℄ have also manually performed the above proess in LP on Dijkstra's

mutual exlusion algorithm. The di�erene with our method is that our tools now perform

the translation automatially from the proof blok.

3.6 Assessment

The main drawbak of our method is that human intervention is still neessary in two

important plaes. First, the right invariants need to be seleted to use in veri�ation. Seond,

when the prover annot make proess, the user has to enter tatis to omplete proofs.

Nevertheless, our methodology satis�es �ve desirable properties for a veri�ation method:

Ahieving a formal proof of orretness: Our method uses I/O automata for formal

modeling and a theorem prover, whose output is a logially veri�able proof. The method is

thus sound.

33



Cathing errors quikly: Our method exeutes and tests the program before the pro-

grammer has to invest time in formal veri�ation. Exeution is fast and, ompared to formal

veri�ation, easy for the programmer to perform. Tests an reveal deviations from expeted

behavior. Dynami invariant detetion an also reveal suh erroneous behavior.

Working on all distributed algorithms: The I/O automaton model an be used for a

large variety of asynhronous systems [Gol90a, Lyn96℄. By reasoning on mathematial fats,

theorem provers an handle in�nite state, nondeterministi systems. Dynami invariant

detetion an also handle suh systems. Thus with our tools, we an verify any system that

an be modeled as an I/O automaton.

Reduing the programmer e�ort in formal veri�ation: As a onsequene of their

generality, theorem provers have traditionally required signi�ant human interation (i.e.,

programmer e�ort in veri�ation). Our method redues this human e�ort in using the

prover through assistane with lemmas and tatis.

Providing insight for the programmer: Some of the insight stems from the results

of dynami invariant detetion, whih may output useful properties that are not neessarily

used in a partiular orretness proof. More insight is ahieved beause our method produes

a set of fats and their proofs.

34



forward simulation from Global1 to Cons:

Cons.initiated = Global1.initiated ^

Cons.proposed = Global1.proposed ^

Cons.deided = Global1.deided ^

Cons.failed = Global1.failed ^

8 v:Value (v 2 Cons.hosen ,

9 b:Ballot (b 2 Global1.sueeded ^ Global1.val[b℄ = embed(v) ))

proof

i n i t i a l l y

Cons.initiated: Set[Node℄ := Global1.initiated;

Cons.proposed: Set[Value℄ := Global1.proposed;

Cons.hosen: Set[Value℄ := {};

Cons.deided: Set[Node℄ := Global1.deided;

Cons.failed: Set[Node℄ := Global1.failed

for internal start(S: Set[Node℄, B: Set[Ballot ℄) ignore

for input init(i: Node, v: Value) do f i r e input init(i, v) od

for input fail(i: Node) do f i r e input fail(i) od

for output deide(i: Node, v: Value) do f i r e output deide(i, v) od

for internal makeBallot(b: Ballot) ignore

for internal abstain(i: Node, B: Set[Ballot ℄) ignore

for internal vote(i: Node, b: Ballot) ignore

for internal assignVal(b: Ballot , v: Value) do

i f :(b 2 Global1.sueeded) then

ignore

e l s e i f 9 b:Ballot (b 2 Global1.sueeded ^ Global1.val[b℄ 6= nil)

then ignore

e l se

f i r e internal hooseVal(v)

f i od

for internal internalDeide(b: Ballot) do

i f (b 2 Global1.sueeded) then

ignore

e l s e i f (Global1.val[b℄ = nil) then

ignore

e l s e i f 9 b:Ballot (b 2 Global1.sueeded ^ Global1.val[b℄ 6= nil)

then ignore

e l se

f i r e internal hooseVal(Global1.val[b℄.val)

f i od

Figure 3-2: A proof blok of a forward simulation relation.

35



(* One transition *)

theorem Inv_trans_respond:

assumes

p0: " reahable Cahe sCahe"

and p1: "Inv sCahe"

and p2: " enablement_of Cahe sCahe((respond n r))"

shows " Inv (effets_of Cahe sCahe((respond n r)))"

apply (insert p0 p1 p2)

apply (simp_all add: Inv_def Cahe_def Cahe_enablement_def

Cahe_effet_def Cahe_state.make_def)

apply (auto ?)

done

(* The invariant step ondition itself *)

theorem Inv_trans:

assumes

p0: " reahable Cahe sCahe"

and p1: " Inv sCahe"

and p2: " enablement_of Cahe sCahe aCahe"

shows " Inv (effets_of Cahe sCahe aCahe)"

apply (insert p0 p1 p2)

apply (ases aCahe)

apply (simp add: Inv_trans_invoke)

apply (simp add: Inv_trans_respond)

apply (simp add: Inv_trans_read)

apply (simp add: Inv_trans_write)

apply (simp add: Inv_trans_opy)

apply (simp add: Inv_trans_drop)

done

(* Auxiliary proofs *)

theorem Inv_invariant:

" invariant Cahe Inv"

apply (rule invariantI)

apply (simp_all add: Inv_start Inv_trans)

done

theorem Inv_reahable:

"reahable Cahe sCahe =) Inv sCahe"

apply (insert Inv_invariant)

apply (auto intro: invariantReahable)

done

end

Figure 3-3: Sample output of the proof tatis generated for invariant proofs in Isabelle.

36



Chapter 4

Case studies

This hapter desribes three ase studies that were used to test our methodology of us-

ing dynami invariant detetion and model-spei� insights to more eÆiently prove safety

properties in a theorem prover.

� Peterson's mutual exlusion algorithm. This is a lokout-free implementation of mutual

exlusion for two proesses using shared memory, proven by invariant assertions.

� An algorithm that implements atomi shared memory through distributed ahing,

drawn from Bogdanov's M.Eng. thesis [Bog00℄. The implementation of shared memory

is proven orret by simulation relation.

� Lamport's Paxos protool, as written in IOA by De Priso, et al. [DPLS

+

02℄. Paxos

implements onsensus using a ballot and quorum system, and is proved orret by

suessive re�nement.

4.1 Peterson mutual exlusion algorithm

The Peterson two-proess mutual exlusion algorithm [Pet81℄ ahieves lokout-free mutual

exlusion using multi-writer, multi-reader, read-write shared memory. The algorithm we

present here is designed for two proesses, but the algorithm an be staged in a (single

elimination) tournament to support more proesses.

There are three variables in the algorithm: flag

0

, flag

1

and turn. Figure 4-1 shows

the state-transition diagram for a single proess. The algorithm operates as follows. Every

proess p sets flag[p℄ to true, then sets turn to itself. From then on, eah proess heks

the other's flag and turn. If either the other proess's flag is o� (hekFlag), or if the

turn variable points to the other proess (hekTurn), the �rst proess is allowed to go into

the ritial setion. The ritial region onsists of the states in whih the program ounter

has the value ritial0 or ritial1.

Figure 4-2 gives the IOA ode for this algorithm, whih we proved orret with both

LP and Isabelle using only invariants disovered by Daikon. Daikon deteted the mutual

exlusion property that was the �nal goal, along with two invariants required for its proof.

37



Figure 4-1: State-transition diagram for one proess in the Peterson algorithm.

The Peterson IOA program was sheduled for exeution using random sheduling. That

is, the sheduler seleted one of the two proesses at random and advaned its state, if it

was possible. The IOA program was run for 5000 transitions.

This is a good subjet for a ase study beause mutual exlusion algorithms an be subtle

and testing them is rarely suÆient. In IOA, mutual exlusion is expressed as the invariant

that when one automaton is in the set of states designated as the ritial region, the other

automaton is not.

4.1.1 Peterson invariants deteted by Daikon

We now desribe Daikon's output when given the Peterson exeutions.

On an initial run over the Peterson exeutions, Daikon reported that the mutual exlusion

property did not atually hold, for we had made an error in writing the IOA ode: in

our initial implementation, eah proess set its turn variable �rst, then its flag variable.

Running Daikon immediately revealed this error. We ould also have deteted the error

during theorem proving, but again, it was faster, easier, and more onvenient to notie it in

Daikon's summarization of the runtime properties.

After orreting the problem, we reran the IOA Simulator and Daikon. Daikon reported

the mutual exlusion property, namely, that no two proesses may simultaneously be in the

ritial region. Expressed in LP syntax, this invariant is

InvMutex:

p[anIndex℄) = ritial0 ^ anIndex 6= anotherIndex )

p[anotherIndex℄ 6= ritial1

p[anIndex℄) = ritial0 ^ anIndex 6= anotherIndex )

p[anIndex℄ 6= p[anotherIndex℄

p[anIndex℄) = ritial1 ^ anIndex 6= anotherIndex )

p[anotherIndex℄ 6= ritial0

p[anIndex℄) = ritial1 ^ anIndex 6= anotherIndex )

p[anIndex℄ 6= p[anotherIndex℄

Daikon also reported two lemmas needed to prove this property:

InvA:

8 p (p[p℄ = trying1 _ p[p℄ = trying2

_ p[p℄ = ritial0 _ p[p℄ = ritial1

38



% There are two proesses, named p0 and p1.

type ProType = enumeration of p0, p1

% PC stands for program ounter.

type PCType = enumeration of waiting0, trying0, trying1,

trying2, ritial0, ritial1

automaton Peterson

signature

output trying(p:ProType)

internal , setFlag(p:ProType), setTurn(p:ProType),

hekFlag(p:ProType), hekTurn(p:ProType)

output ritial(p:ProType), release(p:ProType)

states

% A program ounter and boolean flag for eah proess are kept

% in arrays of type Array[A,B℄, whih are indexed by keys of type

% A and ontains elements of type B.

p : Array[ProType, PCType ℄ := onstant(waiting0),

flag : Array[ProType, Bool℄ := onstant(false),

turn : ProType

trans i t ions

output trying(p)

pre p[p℄ = waiting0

e f f p[p℄ := trying0

internal setFlag(p)

pre p[p℄ = trying0

e f f p[p℄ := trying1; flag[p℄ := true

internal setTurn(p)

pre p[p℄ = trying1

e f f p[p℄ := trying2; turn := p

internal hekTurn(p)

pre p[p℄ = trying2

e f f i f turn 6= p then p[p℄ := ritial0 f i

internal hekFlag(p)

pre p[p℄ = trying2

e f f i f :flag ( i f p = p0 then p1 e l se p0) then p[p℄ := ritial0 f i

output ritial (p)

pre p[p℄ = ritial0

e f f p[p℄ := ritial1

output release (p)

pre p[p℄ = ritial1

e f f p[p℄ := waiting0; flag[p℄ := false

Figure 4-2: The Peterson two-proess mutual exlusion algorithm in IOA. For brevity, this

�gure omits the sheduling ode that hooses among possible exeutions at runtime.

39



) flag[p℄)

InvB:

8 p (p[p℄ = trying2 ) p[turn℄ = trying2)

Daikon expressed these lemmas as a set of separate terms based on enablement of the or-

responding ations:

enabled(setFlag(p)) ) flag[p℄

enabled(setTurn(p)) ) flag[p℄

enabled(hekFlag(p)) ) flag[p℄

enabled(hekTurn(p)) ) flag[p℄

enabled(ritial(p)) ) flag[p℄

enabled(release(p)) ) flag[p℄

enabled(hekFlag(p)) ) p[turn℄ = trying2

enabled(hekTurn(p)) ) p[turn℄ = trying2

The �rst lause says that whenever the hekFlag transition is enabled in a proess, its flag

is true. These simple onditions are not stated in the ode, but some of them are apparent

from stati inspetion. Daikon also reported some invariants that were not used for our

proof, but might be useful for other proofs. One example is:

enabled(release(p)) ) flag[turn℄

Setion 8.1 disusses possible future methods to �nd suh true but not useful invariants.

4.1.2 Proving Peterson invariants

We used InvB and InvA to prove the mutual exlusion property InvMutex with both LP and

Isabelle.

With Isabelle, our prototype automatially generated tatis that were suÆient to prove

InvA. The tatis proved InvB for all but one transition (hekFlag). For this transition,

we had to supply some proedural steps by hand, reasoning by ase analysis depending on

whether or not anIndex = p. For InvMutex, the same was true for two transitions, hekFlag

and hekTurn.

Beause LP laks programmable tatis, we had to supply all proedural input manually.

That proof, too, went through without diÆulty.

An earlier proof of the algorithm, along with IOA-style pseudoode, appears in Lynh's

book [Lyn96℄. We did not examine the pseudoode or the proof until after ompleting our

own implementation and proof. This proof also used two invariants. The �rst is our InvA.

The seond is like InvB but expliitly mentions the other proess and is written in terms of

program ounters:

InvC:

8 p 8 p

0

(p 6= p

0

^

(p[p℄ = ritial0 _ p[p℄ = ritial1) ^

(p[p

0

℄ = trying2 _ p[p

0

℄ = ritial0

_ p[p

0

℄ = ritial1)

) turn = p

0

))

40



In order to ompare the two pairs of invariants, we performed a seond LP proof, using

InvC instead of InvB. This proof was quite di�erent, but was about the same length in terms

of LP ommands. Both LP proofs took about the same e�ort, but development of the proof

based on InvC had the advantage of our additional experiene.

The invariant proposed by Daikon has several advantages. First, it was provided au-

tomatially, requiring no user e�ort beyond providing test ases. Seond, it was simpler

and easier to understand than the expert-provided invariant. Third, it unexpetedly pro-

vided insight, revealing interesting information about the relationship between p and turn,

information that we put to good use in our proof.

4.2 Atomi memory for distributed ahes

We report on another ase study, a strong ahe for atomi shared memory, where every

proessor has a ahe and there is a entral store. Eah ahe an have a value or be empty.

The ode for this algorithm is based on Bogdanov [BGL02℄, but we analyze the algorithm

di�erently from his proof.

The proof for this algorithm uses a forward simulation relation. The spei�ation au-

tomaton, Mem (Figure 4-3), provides the de�nition for atomi shared memory. The Null[T℄

data type reates a pointed domain for a given data type T so that state variables an hold

nil values. The embed operator takes an element of type T and reates an element of type

Null[T℄ while the .val operator does the reverse.

Eah node an take in an invoation via its invoke ation, and apply the invoation to

the entral memory in the update ation. The entral memory memVar is updated aording

to some funtion perform while a response is alulated by the funtion result. The

node responds to its user with the response. The automaton implements atomi shared

memory beause: 1) the invoations are all serialized on the shared variable Mem and 2) eah

invoation's time interval ontains the exat point of serialization on the shared memory

variable.

The automaton Cahe implements the ahing algorithm. The invoke and respond

ations are the same. When performing a write to shared memory, a proessor updates the

entral memory loation and lears the ahes of other proessors (in one synhronous step).

Proessors an arbitrarily opy from the entral memory loation to their ahes and an

delete their ahed values. When performing a read, a proessor either reads from its ahe

or waits for the ahe to be �lled.

Our goal is to prove the existene of a forward simulation relation between Cahe and

Mem using our methodology.

4.2.1 Exeuting the ahe automaton

A shedule was written for the ahe algorithm in order to exeute it to perform dynami

invariant detetion. As with the Peterson ase study, the shedule selets a node at random

and attempts to move it forward in the algorithm at whatever state the node is. This

randomized shedule was run for 500 steps. No signi�ant hanges needed to be made to the

41



automaton Mem

signature

output invoke(n: Node, a: Ation ), respond(n: Node, r: Response)

internal update(n: Node)

states

memVar : Value := v0, % an arbitrary default value

at: Array[Node, Null[Ation ℄℄ := onstant(nil),

rsp: Array[Node, Null[Response℄℄ := onstant(nil)

trans i t ions

output invoke(n, a)

pre

at[n℄ = nil

e f f

at[n℄ := embed(a)

internal update(n; l o a l a:Ation)

pre

rsp[n℄ = nil ^ at[n℄ = embed(a)

e f f

rsp[n℄ := embed(result(a, memVar ));

memVar := perform(a, memVar);

output respond(n, r)

pre

rsp[n℄ = embed(r)

e f f

rsp[n℄ := nil;

at[n℄ := nil

Figure 4-3: The spei�ation automaton, Mem.

automaton ode itself to render it exeutable | however, for pratial reasons we hose to

implement eah node id as an integer rather than an abstrat data type.

4.2.2 Invariants required and deteted

One invariant is enough to show that this strong ahing algorithm implements shared mem-

ory: when a proessor's ahe is not empty, its value is equal to the entral memory's value.

This invariant was deteted by Daikon as:

8 n : Node (ahe[n℄ 6= nil ) ahe[n℄.value = memVar)

As written in Bogdanov [BGL02℄, this invariant is:

8 n : Node (ahe[n℄ = nil _ ahe[n℄ = embed(memVar))

The results are logially equivalent but syntatially di�erent beause Daikon does not

detet invariants over disjuntions, but rather piked out the values in ahe that were not

nil and saw that the values were equal to memVar. That is, Daikon arrived at the same result

as a human did, but via a di�erent method.

42



automaton Cahe

signature

output invoke(n: Node, a: Ation ), respond(n: Node, r: Response)

internal read(n: Node), write(n: Node), opy(n: Node), drop(n: Node)

states

memVar: Value := v0,

at: Array[Node, Null[Ation ℄℄ := onstant(nil),

rsp: Array[Node, Null[Response℄℄ := onstant(nil),

ahe: Array[Node, Null[Value℄℄ := onstant(nil)

trans i t ions

output invoke(n, a)

pre

at[n℄ = nil

e f f

at[n℄ := embed(a)

internal read(n; l o a l a : Ation)

pre

embed(a) = at[n℄;

isRead(a);

rsp[n℄ = nil;

ahe[n℄ 6= nil

e f f

rsp[n℄ := embed(result(a, ahe[n℄.val))

internal write(n; l o a l a : Ation)

pre

embed(a) = at[n℄;

isWrite(a);

rsp[n℄ = nil

e f f

rsp[n℄ := embed(result(a, memVar));

memVar := perform(a, memVar);

ahe := onstant(nil)

internal opy(n)

e f f

ahe[n℄ := embed(memVar)

internal drop(n)

e f f

ahe[n℄ := nil

output respond(n, r)

pre

rsp[n℄ = embed(r)

e f f

rsp[n℄ := nil;

at[n℄ := nil

invariant Inv of Cahe:

8 n : Node (ahe[n℄ = nil _ ahe[n℄ = embed(memVar))

Figure 4-4: Strongly ahing implementation, Cahe.

43



forward simulation from Cahe to Mem:

Mem.memVar = Cahe.memVar ^ Mem.at = Cahe.at ^ Mem.rsp = Cahe.rsp

proof

start

Mem.at := Cahe.at;

Mem.rsp := Cahe.rsp;

Mem.memVar := Cahe.memVar

for internal opy(n : Node) ignore

for internal drop(n : Node) ignore

for internal write(n : Node, a : Ation ) do

f i r e internal update (n, a)

od

for internal read(n : Node, a : Ation) do

f i r e internal update (n, a)

od

for output respond(n : Node, r : Response) do

f i r e output respond (n, r)

od

for output invoke (n : Node, a : Ation ) do

f i r e output invoke (n, a)

od

Figure 4-5: The simulation relation and exeution annotations between Mem and Cahe.

4.2.3 The simulation relation

The simulation relation between the two automata is shown in Figure 4-5. The simulation

relation says that the all the state variables map via the identity relation, and says nothing

about the ahe variable in the Cahe automaton (this is why the above invariant is nees-

sary). Notie the exeution annotations for eah transition, whih will be used a template

for generating the proof by the LP and Isabelle translation tools.

4.2.4 Proving the simulation relation

Using the proof translator tools, we translated the two automata and the simulation relation

into input for both LP and Isabelle. The �rst step we hose to do before proving the

simulation relation was to prove the ruial invariant.

The proof sripts we generated were quite suessful. In LP, the invariant had to be

done by hand, as we do not generate proof sripts. In Isabelle, the ruial invariant, was

automatially proved just from the proof sript. Thus nearly zero human work was involved

in proving this invariant. Chapter 7 desribes the Isabelle model for the automata in detail

and the methodology for generating proof sripts for invariants.

44



As for the simulation relation, both prover translators generated proof sripts for the

automata following the methodology presented in Chapter 3. In both provers, the proof

sripts proved adequate to automatially prove all transitions exept for one, the read tran-

sition. Here, a few lines of human-generated ommands were neessary to leverage the ruial

invariant: when reading from ahe, the ahe's value ontains the value of memVar. Our

omputer-generated proof was nearly idential to Bogdanov's proof [BGL02℄ for LP.

4.2.5 Assessment

For the memory ase study, little human intervention was required. The steps involving

the most human help were: 1) seleting the invariant that might be useful for the simula-

tion relation proof; 2) 2) giving a few ommands to the prover when it halted. Thus, our

methodology was quite suessful here.

4.3 Distributed Consensus with Paxos

Lamport's Paxos protool [Lam98℄ implements distributed onsensus in an asynhronous

system in whih individual proesses an fail. We de�ne distributed onsensus as follows.

Suppose that I is a �nite set of nodes representing the proesses in the system and V is the

set of possible onsensus values. Proesses in I may propose values in V . The onsensus

servie is allowed to return deisions to proesses that have proposed values. It must satisfy

two onditions: all nodes must reeive the same value (\agreement") and that value must

have been proposed by some proess (\validity").

Paxos implements onsensus through the use of quorums and ballot voting and we prove

the implementation through suessive re�nement of multiple simulation relations. We use

ode from a ase study [DPLS

+

02℄ that de�nes a hierarhy of automata. The highest-level

automaton, Cons, provides a spei�ation for onsensus. The lowest-level automaton, Paxos,

provides a distributed implementation. An intermediate-level automaton, Global1, although

non-distributed, aptures the main idea of Paxos, that of using ballots and quorums to

ahieve onsensus. A orretness proof involves showing the existene of a series of forward

simulation relations between suessive levels in the hierarhy. In this setion, we disuss

the forward simulation between Cons and Global1. This is based on the work by Ne Win,

et. al. in [NEG

+

03℄.

4.3.1 Spei�ation automaton

The signature of the spei�ation automaton Cons (Figure 4.3.1) ontains an input ation

init(i,v), representing the proposal of value v by proess i, an internal ation hooseVal(v),

representing the hoie of a onsensus value v, an output ation deide(i,v), representing

the report of the onsensus value to proess i, and an input ation fail(i), representing the

failure of proess i. The automaton provides the required agreement and validity guarantees:

only a single onsensus value an be hosen, and that value must have been previously

proposed.

45



type Node = tuple of loation: Int

type Value = tuple of value: Int

automaton Cons

signature

input fail(i: Node), init(i: Node, v: Value)

output deide(i: Node, v: Value)

internal hooseVal(v: Value)

states

initiated: Set[Node℄ := {}, proposed: Set[Value℄ := {},

hosen: Set[Value℄ := {}, deided: Set[Node℄ := {},

failed: Set[Node℄ := {}

trans i t ions

input init(i, v)

e f f i f :(i 2 failed) ^ :(i 2 initiated) then

initiated := initiated [ {i};

proposed := proposed [ {v}

f i

internal hooseVal(v)

pre v 2 proposed ^ hosen = {}

e f f hosen := {v};

output deide(i, v)

pre i 2 initiated ^ :(i 2 deided) ^

:(i 2 failed) ^ v 2 hosen

e f f deided := deided [ {i}

input fail(i)

e f f failed := failed [ {i}

Figure 4-6: Spei�ation of onsensus in IOA

4.3.2 Implementation automaton

The automaton Global1 (Figure 4.3.1) spei�es an algorithm that implements onsensus in a

non-distributed setting. This automaton uses a totally ordered set of ballots for values, one

of whih may eventually be hosen as the onsensus value if suÆient approval is olleted

from the proesses in the system.

In addition to the external ations of the automaton Cons, the signature of Global1 in-

ludes internal ations for making ballots, assigning them values, and voting for or abstaining

from ballots. The automaton Global1 determines the fate of a ballot by onsidering the a-

tions of quorums, whih are �nite subsets of I, on that ballot. Global1 allows a ballot to

sueed only if every node in a quorum has voted for it.

4.3.3 Exeuting the Global1 automaton

The seond step in using our method to verify an automaton is to test its behavior by

simulating exeution. The simulator requires that IOA programs be transformed into a form

suitable for exeution. For example, the simulator requires quorums in Paxos to be initialized

operationally, whereas they were spei�ed delaratively in the original I/O automaton model.

46



type Ballot = tuple of ordering: Int

automaton Global1

signature

input fail(i: Node), init(i: Node, v: Value)

output deide(i: Node, v: Value)

internal start(theNodes: Set[Node℄), makeBallot(b: Ballot),

abstain(i: Node, B: Set[Ballot ℄),

assignVal(b: Ballot, v:Value),

vote(i: Node, b: Ballot ), internalDeide(b: Ballot)

states

initiated: Set[Node℄ := {}, proposed: Set[Value℄ := {},

deided: Set[Node℄ := {}, failed : Set[Node℄ := {},

ballots: Set[Ballot ℄ := {}, sueeded: Set[Ballot ℄ := {},

val: Array[Ballot , Null[Value℄℄ := onstant(nil),

voted: Array[Node, Set[Ballot ℄℄ := onstant({}),

abstained: Array[Node, Set[Ballot ℄℄ := onstant({})

quorums: Set[Node℄,

dead: Set[Ballot ℄ := {}

trans i t ions

internal start(theNodes)

e f f quorums := delete ([1℄, theNodes);

for i: Node in theNodes do voted[i℄ := {};

abstained[i℄ := {} od;

input init(i, v)

e f f % As in Cons (Figure 1)

input fail (i)

e f f failed := failed [ {i}

internal makeBallot(b)

pre : (b 2 ballots);

e f f ballots := ballots [ {b};

internal assignVal(b, v)

pre b 2 ballots ^ val[b℄ = nil ^ v 2 proposed

^ 8 b

0

:Ballot (b

0

.ordering < b.ordering )

val[b

0

℄ = embed(v) _ b

0

2 dead)

e f f val[b℄ := embed(v)

internal vote(i, b)

pre i 2 initiated ^ :(i 2 failed) ^

b 2 ballots ^ :(b 2 abstained[i℄)

e f f voted[i℄ := voted[i℄ [ {b}

internal abstain(i, B)

pre i 2 initiated ^ :(i 2 failed) ^ voted[i℄ \ B = {}

e f f abstained[i℄ := abstained[i℄ [ B;

for aBallot:Ballot in B do

i f 8 aNode:Node (aNode 2 quorums )

aBallot 2 abstained[aNode℄)

then dead := insert (aBallot, dead);

f i ;

od;

internal internalDeide(b)

pre b 2 ballots ^ 8 j:Node (j 2 quorums ) b 2 voted[j℄)

e f f sueeded := sueeded [ {b}

output deide(i, v)

pre i 2 initiated ^ :(i 2 deided) ^ :(i 2 failed)

^ 9 b:Ballot (b 2 sueeded ^ embed(v) = val[b℄)

e f f deided := deided [ {i}

Figure 4-7: A ballot-based implementation of onsensus in IOA

47



Aside from suh bookkeeping issues, the ruial problem is resolving nondeterminism by

speifying a shedule. An example shedule is:

shedule

states

theNodes: Set[Node℄ := insert ([0℄, insert ([1℄, insert ([2℄, {}))) [

insert ([3℄, insert ([4℄, insert ([5℄, {})))

do

f i r e internal start(theNodes);

f i r e input init([0℄, [1℄);

f i r e input init([1℄, [2℄);

f i r e input fail([5℄);

f i r e internal makeBallot([0℄);

ausing the IOA simulator to exeute �ve ations. The output is:

1: internal start(([0℄ [1℄ [2℄ [3℄ [4℄ [5℄)) in automaton Global1

2: input init([0℄, [1℄) in automaton Global1

3: input init([1℄, [2℄) in automaton Global1

4: input fail([5℄) in automaton Global1

5: internal makeBallot([0℄) in automaton Global1

For our ase study, we wrote shedules to exeute Global1 with di�erent interleavings

of ations, some of whih ause nodes to fail or to abstain from a ballot. We did not use

strutured test generation methods to produe the shedules, nor did we evaluate them

aording to spei� riteria (e.g., ode overage). Instead, we simply seleted exeutions

that illustrates what we felt was the normal behavior of the automaton (and that exerised

every ation). In our experiene, using simple shedules like these is adequate for the purpose

of dynami invariant detetion.

4.3.4 Dynami invariant detetion results

For Paxos, invariant detetion with Daikon produed 23 invariants, four of whih were helpful

in the simulation relation proof in Setion 4.3.6. The four were:

Inv1: 8 anIndex:Node (size(voted[anIndex℄ \ abstained[anIndex℄) = 0)

Inv2: val.values.val(nonNull) � proposed

Inv3: size(sueeded \ dead) = 0

Inv5: sueeded � ballots

(We have added the names Invi for onveniene in this presentation.)

A full proof of the Paxos simulation relation required six invariants: �ve for the simulation

relation proper, and one more for one of the invariants. The two missing invariants were:

Inv4: 8 b:Ballot 8 b

0

:Ballot (val[b℄ 6= nil ^ b

0

< b )

val[b

0

℄ = val[b℄ _ b

0

2 dead(abstained))

Inv6: 8 b:Ballot (b 2 sueeded )

9 q:Set[Node℄ 8 n:Node

(q 2 wquorums ^

(n 2 q ) b 2 voted[n℄)))

48



These two invariants are outside Daikon's grammar, so it neither heked nor reported

them. Daikon does not report invariants with existential quanti�ers, nor does it report those

with more than a given number of subterms. This is not a fundamental limitation, but

a design hoie that redues Daikon's omputational requirements and, more importantly,

the number of false positives or unhelpful invariants that Daikon would otherwise report.

Setion 5 disusses potential ways of improving this grammar.

In our ase study, Daikon proposed four of the six required invariants. This redued the

amount of human e�ort|partiularly non-imaginative e�ort| required for the orretness

proof, even though it did not eliminate all suh human e�ort.

It is notable that Inv3, although true and neessary for the proof, was not provable in

isolation: establishing it required use of Inv6. In other words, dynami invariant detetion

postulated a useful simple property (inv3) whose proof is ompliated (beause it requires

Inv6). This ability to deompose a proof into parts demonstrates a strength of our tehnique:

it is easy to hek properties dynamially, even if they have ompliated proofs that are

beyond the apabilities of ompletely automati stati tools.

4.3.5 Paired exeution

The fourth step in our method is appropriate when attempting to verify a simulation relation.

As noted in Setion 4.3.3, the IOA simulator an help users formulate and test the validity

of a forward simulation relation, prior to suh a veri�ation. In this setion, we disuss how

a shedule and other information an help in exeuting paired automata, while the IOA

simulator tests the onditions of the relation. This sheduling will later be useful in guiding

veri�ation.

In Figure 4-8, the simulation relation is the identity on all state variables of Cons exept

hosen, whih is not a state variable of Global1. The simulation relation de�nes hosen in

Cons to ontain a value v if and only if there is a suessful ballot in Global1 with value

v. The proof blok is straightforward for the start state and for the external ations: eah

external ation in the implementation automaton is mathed by the ation with the same

name in the spei�ation automaton. The internal ations start, makeBallot, abstain, and

vote are mathed by an empty exeution sequene of the spei�ation automaton.

In our ase study, the IOA simulator an reveal two problems with a more naive treatment

for internal assignVal(b: Ballot , v: Value) ignore

for internal internalDeide(b: Ballot)

do f i r e internal hooseVal(Global1.val[b℄.val) od

in the proof blok for the internal ations assignVal and internalDeide. First, given

a shedule that exeutes internalDeide twie in Global1, the simulator disovers that the

preondition for hooseVal fails the seond time it is exeuted in the lokstep exeution of

Cons. Seond, assignVal needs to �re hooseVal if a ballot has been deided internally but

does not yet have a value assigned; hene we must �re hooseVal when �ring assignVal, but

only if no other ballot in Global1.sueeded has a non-nil value. Most of this ase analysis

is neessary beause Global1 allows ballots to be voted on (and to sueed) before they are

assigned values.

49



forward simulation from Global1 to Cons:

Cons.initiated = Global1.initiated ^

Cons.proposed = Global1.proposed ^

Cons.deided = Global1.deided ^

Cons.failed = Global1.failed ^

8 v:Value (v 2 Cons.hosen ,

9 b:Ballot (b 2 Global1.sueeded ^ Global1.val[b℄ = embed(v) ))

proof

i n i t i a l l y

Cons.initiated: Set[Node℄ := Global1.initiated;

Cons.proposed: Set[Value℄ := Global1.proposed;

Cons.hosen: Set[Value℄ := {};

Cons.deided: Set[Node℄ := Global1.deided;

Cons.failed: Set[Node℄ := Global1.failed

for internal start(S: Set[Node℄, B: Set[Ballot ℄) ignore

for input init(i: Node, v: Value) do f i r e input init(i, v) od

for input fail(i: Node) do f i r e input fail(i) od

for output deide(i: Node, v: Value) do f i r e output deide(i, v) od

for internal makeBallot(b: Ballot) ignore

for internal abstain(i: Node, B: Set[Ballot ℄) ignore

for internal vote(i: Node, b: Ballot) ignore

for internal assignVal(b: Ballot , v: Value) do

i f :(b 2 Global1.sueeded) then

ignore

e l s e i f 9 b:Ballot (b 2 Global1.sueeded ^ Global1.val[b℄ 6= nil)

then ignore

e l se

f i r e internal hooseVal(v)

f i od

for internal internalDeide(b: Ballot) do

i f (b 2 Global1.sueeded) then

ignore

e l s e i f (Global1.val[b℄ = nil) then

ignore

e l s e i f 9 b:Ballot (b 2 Global1.sueeded ^ Global1.val[b℄ 6= nil)

then ignore

e l se

f i r e internal hooseVal(Global1.val[b℄.val)

f i od

Figure 4-8: Forward simulation relation and step orrespondene (proof blok) from the

Global1 spei�ation (Figure 4.3.1) to the Cons implementation (Figure 4.3.1).

50



This nondeterminism makes the algorithm more general, but it ompliates the orret-

ness proof. Hene it was helpful to use paired simulation to debug the details of the step

orrespondene and arrive at the formulation shown in Figure 4-8.

4.3.6 Verifying a simulation relation in LP

The last step in our method is to prove the simulation relation (or invariant) using a theorem

prover. Here we desribe how the results of Setions 4.3.4 and 4.3.5 an be used to generate

this input automatially. First, the invariants suggested by dynami invariant detetion

beome andidates lemmas, thereby saving the user time in �nding auxiliary invariants

needed for veri�ation. Seond, the annotations for paired exeution provide a proof outline.

Reall from Setion 2.5.1 that verifying a simulation relation requires verifying both a

start ondition and a step ondition. Translation tools in the IOA toolkit use the proof

blok for a simulation relation to generate proof tatis for eah ondition.

Start ondition

The start ondition requires �nding a witness start state b of the spei�ation automaton. In

the Paxos ase study, the proof sript generator translated the initially setion of Figure 4-8

into the following ommands for LP:

delare operator StartRel: States[Global1℄ ! States[Cons℄

assert StartRel(a:States[Global1℄) = [{}, {}, {}, {}, {}℄

prove start(a:States[Global1℄) ) 9 b:States[Cons℄ ( start(b) ^ F(a, b))

resume by )

resume by speializing b to StartRel(a)

Here, the two resume by ommands diret LP to begin the proof by using its built-in impli-

ation tati, whih assumes the hypothesis and replaes the universally quanti�ed variable

a by a �xed onstant a, and then using StartRel(a) as the witness for the existential

quanti�er 9 b. In the ase study, these ommands are suÆient to omplete the proof of the

start ondition.

Step ondition

The step ondition requires �nding a witness exeution � of the spei�ation automaton for

eah transition of the implementation automaton. The proof sript generator formulates this

proof obligation for LP as follows:

prove

F(a:States[A℄, b:States[B℄)

^ step(a, alpha: Ations[A℄, a

0

:States[A℄) )

9 beta:AtionSeq[B℄ ( exeFrag(b, beta) ^ F(a

0

, last(b, beta)) ^

trae(beta) = trae(alpha))

It also generates a proof sript that divides the proof into ases based on the kind of the ation

a (using the ommand resume by indution on a, whih direts LP to perform strutural

indution on the datatype of a) and generating lemmas to handle the details of the individual

51



ases. For example, it generates the following lemma and proof sript from the proof blok

for the init ation in the Paxos ase study.

prove

F(a:States[Global1℄, b:States[Cons℄)

^ step(a, init(i, v), a

0

) )

9 beta:AtionSeq[Cons℄ ( exeFrag(b, beta) ^ F(a

0

, last(b, beta)) ^

trae(beta) = trae(alpha))

..

resume by )

resume by speializing beta to init(i, v) * {}

LP �nishes the proof of this lemma automatially, as it also does for the fail, makeBallot,

abstain, and vote ations.

The proof sripts for the lemmas for the assignVal and internalDeide ations are

themselves divided into ases, in aordane with the for statements for those ations in

the proof blok. For example, the proof sript generator produes the following lemma and

sript for the internalDeide ation:

prove

F(a:States[Global1℄, b:States[Cons℄)

^ step(a, internalDeide(b:Ballot, a

0

) )

9 beta:AtionSeq[Cons℄ ( exeFrag(b, beta) ^ F(a

0

, last(b, beta)) ^

trae(beta) = trae(alpha))

..

resume by )

resume by ases b 2 a.sueeded

% True ase

resume by speializing beta to {}

% Elseif ase

resume by ases a.val[b℄ = nil

% True ase

resume by speializing beta to {}

% Elseif ase

resume by ases 9 b:Ballot (b 2 a.sueeded ^ a.val[b℄ 6= nil)

% True ase

resume by speializing beta to {}

% False ase

resume by speializing beta to hooseVal(a.val[b℄.val) * {}

LP needs further assistane to �nish the proof of this lemma, whih uses invariants Inv1

through Inv5. Invariant Inv2 is used when hooseVal is the witness exeution for internalDeide

to show that the value being hosen belongs to Cons.proposed. The other four invariants,

whih show that all ballots not in Global1.dead have idential or nil values, help establish

that hanges to Global1.sueeded and Global1.val preserve the simulation relation.

When proof bloks are more ompliated than those in the Paxos ase study, the job of

the proof sript generator is orrespondingly more ompliated. For example, the generator

must expand a for entry in the proof blok ontains a sequene of onditional statements

suh as

i f P1 then f i r e a1 e l se f i r e a2 f i

i f P2 then f i r e a3 e l se f i r e a4 f i

into one that ontains nested onditionals suh as

52



i f P1 then

i f P2 then f i r e a1 f i r e a3 e l se f i r e a1 f i r e a4 f i

e l s e

i f P2 then f i r e a2 f i r e a3 e l se f i r e a2 f i r e a4 f i

f i

in order to generate the appropriate ase splits in the proof sript.

Of ourse, the invariants used to establish a simulation relation must be veri�ed them-

selves. Here too, the simulator and invariant detetor provide help. First, invariants some-

times require other invariants in their proofs. In the ase study, only Inv3 required auxiliary

invariants (Inv1 and Inv6), one of whih was Daikon deteted. Seond, the statement of om-

pliated invariants suh as Inv6 an be tested via simulated exeution; one stated properly,

the proof of this invariant was rather simple.

Our tehniques do not ompletely eliminate the need for human guidane in proving

invariants and simulation relations. They an automatially disover, and prove with little

human assistane, invariants suh as Inv1, Inv2, and Inv5. They annot yet disover invari-

ants suh as Inv4 and Inv6, even though their proofs are simple. And although they disover

invariant Inv3, whih is simple, the proof of this invariant using LP requires moderate human

guidane.

53



54



Chapter 5

Ahieving fast, salable and orret

dynami invariant detetion

5.1 Introdution

A dynami invariant detetion tool observes program exeutions and outputs properties

(logial formulae) that are true of the exeutions and are likely to be true of the program in

general. For example, an invariant detetor might report that at entry to proedure 2foo,

a 6= null ) x = a:length; that at exit from proedure bar, y

0

= y + 1 (where y is the variable's

value at entry and y

0

is the value at exit); or that at from the point of view of any lient

of lass C, C:x � C:y. The reported properties, whih are syntatially idential to formal

spei�ations, are also known as likely invariants.

Invariant detetion has appliations to program evolution [ECGN01b℄, stati veri�a-

tion [NE01, Nim02a, NE02b, NE02, ?℄, program refatoring [KEGN01℄, automated theo-

rem proving [NE02a, NEG

+

03, ?℄, testing [?, Har02, ?, ?℄, software upgrades [?℄, anomaly

detetion [RKS02℄, fault detetion [DDLE02, Dod02, HL02, ?℄, error isolation [?, ?℄, and

error prevention [?℄, among others.

A naive implementation of dynami invariant detetion is not diÆult. We present an

abstrat algorithm in Setion 5.1.2. Doing it orretly and eÆiently, however, requires

some thought. The two orretness properties we wish to preserve while optimizing an

invariant inferene algorithm are soundness and ompleteness. We formally de�ne these as

in Setion 5.1.3, within the ontext of a grammar, or the set of formulae an algorithm an

output.

An eÆient inferening algorithm is desirable, in terms of time and spae needed. The

primary eÆieny onern, either when adding other optimizations or expanding the gram-

mar, is to keep the algorithm inremental. An inremental algorithm exhibits two properties

that are dual to eah other. First, it onsumes no extra spae with respet to the length

of the exeutions that are given, and it runs linearly in time. Seond, it an run on-line,

alongside the program to be examined, reeiving values as they are generated and disarding

them afterward. For example, an inremental algorithm an monitor a web server over days

or weeks, without having to store the reord of eah transation. This is important as a

week's transations may not even �t on disk. An inremental algorithm is also a one-pass

55



algorithm.

One inrementality is ahieved, there are seondary eÆieny onerns. It is also im-

portant to save spae and time as a funtion of the size of the program, measured in the

number of variables. We optimize along this line by taking advantage of one general idea:

invariants often imply eah other. The spae and/or time resoures used to hek suh im-

plied invariants an often be avoided. We present three optimizations based on the idea of

implied invariants in this hapter.

This hapter is organized as follows. Setion 5.1.2 desribes a naive invariant inferening

algorithm as a benhmark to ompare against. Setion 5.1.4 desribes the di�erent parame-

ters that a�et resoure onsumption and the data struture spae over whih an algorithm

would operate. Setion 5.2.1 lassi�es the di�erent methods by whih optimizations ould

be performed. Setions 5.3.1(largely borrowed from Nimmer [Nim02b℄, but repeated here for

larity of exposition), 5.4, and 5.5 show major optimizations that lead to better use of spae

and time by employing the fat that some invariants imply eah other in some way. These

optimizations are performed on the Daikon invariant detetor [ECGN01b℄, a general purpose

tool with a wide and useful grammar. Setion 5.7 shows extensions to Daikon's grammar

to make it more useful and allow it to extrat more information from any given exeution.

Setion 5.8 presents future work and Setion 5.9 onludes.

5.1.1 Terminology

Here we de�ne terminology, to give a foundation for the rest of this hapter.

A program point is slightly more general than just a spei� loation in the program.

Instead, it represents a spei� sope (set of variables) and its assoiated semantis. For

example, onsider a program point assoiated with the pre-state of a method. Its sope is

all �elds of the lass and any arguments to the method. Its semantis are that every time

the method is alled, a snapshot of all pre-state within sope is taken. For a program point

assoiated with the objet invariants of a lass, its sope is all �elds of the lass, and its

semantis are that every time the any publi method is alled, snapshots of all pre-state and

post-state within sope is taken.

A sample is the snapshot of program state taken for a spei� program point.

An exeution is a sequene of samples taken over the run of a program over time.

A variable is an expression assoiated with a given sope (a program point). It may

be a simple �eld referene (suh as this.x), may involve array indexing or sliing (suh as

this.myArray[this.x..this.y℄), or may involve other ompound expressions. A primitive

variable is one whose value is provided in a sample. The a.[x℄ operator denotes array

subsripting as via C or Java syntax.

A derived variable is a variable whose value is not provided in a sample, but is instead

omputed as a funtion of other variables after the fat. For example, array slies like

this.myArray[this.x..this.y℄ are derived from the full array this.myArray[℄ given in the

sample.

An invariant objet is a data struture that relates variables at a program point. It

represents a boolean formula that will be heked against data from samples in dynami

invariant detetion. For brevity, we will often refer to an invariant objet simply as an

56



invariant, but we do not mean that it is true over all runs of a program.

A grammar is the set of boolean formulae over whih dynami invariant detetion ours.

It is also thus the set di�erent invariant objet types. For example, a grammar might ontain

the equality and less than operators on integers.

There are also some terms spei� to the Daikon dynami invariant detetion system.

A frontend is a tool that exeutes a program, interprets runtime values and outputs the

values into a format understandable by the Daikon bak end, whih analyzes the data samples

in terms of invariants. For example, the IOA Simulator is the IOA front end for Daikon,

and the Daikon Frontend for Java (dfej) instruments Java programs to output values to a

�le readable by Daikon. The Daikon bak end is responsible for omputing derived variables

from primitive variables given in data samples.

5.1.2 Naive algorithm

Reall that an invariant detetor reports all properties in its grammar that are not violated

at runtime. This setion gives a naive algorithm that ahieves that goal. As noted later in

Setion 5.1.4, this algorithm runs too slowly to be pratial.

1. Initially, assume all properties in the grammar to be true. Instantiate an invariant for

eah property and ombination of variables. For example, if the available properties

are odd and =, and the variables are a, b, and , instantiate odd(a), odd(b), odd(),

a = b, a = , and b = .

2. For eah sample, hek eah andidate invariant assoiated with the same program

point as the sample and eliminate (falsify) any that are ontradited by the sample.

For example, the sample h3; 4; 3i eliminates the invariants odd(b), a = b, and b = 

from the above list.

3. Report the invariants that remain after all samples have been proessed.

5.1.3 Corretness properties

This algorithm has two desirable properties, soundness and ompleteness.

Soundness Any invariant reported by a sound invariant detetion algorithm holds for all

samples in the input (that is, in the test exeutions).

Like other dynami tehniques suh as testing, invariant detetion is unsound over all

possible exeutions of a program. The observed exeutions are not guaranteed to haraterize

all possible exeution environments of the program. Our de�nition is for soundness with

respet to observed exeutions.

Completeness A omplete algorithm reports any property that: 1) is expressible in its

grammar, and 2) holds for all samples in the input.

Completeness with respet to all possible properties is possible in theory [CC77b℄ but

unattainable in pratie. An in�nite number of formulae are true of any set of exeutions,

57



Per-program-point variables:

V number of primitive variables at a program point

L number of samples for a program point

I number of instantiated invariants at a program point = O(V

6

)

RI number of reported invariants at a program point = O(I); in ommon ase, = O(1)

FI number of falsi�ed invariants at a program point = O(I)

Total (sum of all program points) variables:

P number of program points

I

t

total number of invariants = O(P � I)

L

t

total exeution length (\exploded") = O(P � L)

Other variables:

G number of invariant templates (grammar)

Figure 5-1: Variables used in the running time and spae analyses (see Setion 5.1.4 for

details). All variables exept for RI, FI, L, and L

t

are known statially.

and many of them are beyond the sope of any stati or dynami analysis. Our de�nition is

ompleteness with respet to a grammar of properties.

Given these de�nitions, the naive algorithm is sound beause every invariant is tested

against every relevant sample in Step 2. It is omplete beause all possible invariants are

instantiated in Step 1. It is inremental beause it runs in one pass.

However, the algorithm ahieves these three goals at a large time and spae ost, as shown

in Setion 5.1.4. By instantiating all invariants, many redundant invariants are instantiated

and tested. For example, if a =  and odd(a) holds, then odd() holds.

5.1.4 Performane analysis

This setion analyzes the time and spae performane of the naive detetion algorithm.

Analysis variables

Figure 5-1 lists the variables that inuene performane:

V denotes the number of primitive variables at a program point. Coneptually, this is

the number of variables in sope. In pratie, it is the number of variables that are measured

by a frontend. The pratial value may be less if the frontend omits ertain variables, or

may be more if it breaks out of sope (for example, by sampling private �elds of lasses in

objet oriented programs).

L denotes the number of samples at a program point.

I denotes the number of instantiated invariants at a program point. V will have a

positive, superlinear e�et on I, for two reasons. First, invariants often involve more than one

variable. For example, there are �(V

2

) pairwise equality invariants. Seond, the grammar of

a tool like Daikon will reate derived variables that represent a omputation on the original

variables. For example, if A is a sequene, and i is an integer, the derived variable A[i℄ may

58



be interesting, even if it is not mentioned in the program text. In general, if the grammar

supports j-way derived variables, k-way invariants, and G di�erent invariant types, then

there ould be as many as I = �(GV

jk

) invariants. In the ase of Daikon, j = 2 and k = 3,

yielding the de�nition of I given in the �gure.

RI and FI, the reported and falsi�ed invariant ounts, respetively, are used to better

eluidate ommon ase analyses where the reported invariants are a minusule subset of the

grammar's andidate set.

P , the number of program points, sales with program size. Also, the \total" values I

t

and L

t

denote the produt of P and their subsript-less ounterpart.

Naive performane

To study the performane of the naive algorithm, we ompute its spae and time performane

both in the worst and ommon ase. We measure spae S by the maximum number of

instantiated invariants, and time T by the number of heks on whether an invariant holds .

The naive algorithm performs quite poorly. Sine the algorithm instantiates every pos-

sible invariant (in step 1), its maximum spae usage is O(I

t

). This is the same for both the

ommon and worst ases, and makes the algorithm inremental.

S = O(I

t

) = O(P � I)

Worst-ase time ours when all invariants are heked against all samples for their

program point; this happens when no invariants are falsi�ed.

T = O(I � L

t

) = O(I

t

� L) = O(P � I � L)

Common-ase time ours when falsi�ed invariants are falsi�ed quikly, so that there are

vanishingly few heks against falsi�ed invariants.

T = O(P � (RI � L+ FI �O(1))) = O(P �RI � L) +O(P � FI �O(1))

The �rst term is for the useful invariants that are atually true on the program, whih are

always heked, while the seond term is for invariants that are untrue and, in the ommon

ase, quikly falsi�ed.

Within the onstraints of soundness, ompleteness and the inremental requirement, a

major way to save spae and/or time, as well as to redue lutter for the user, is to eliminate

some derived variables and invariants. There is no way to avoid examining all program

points and every exeution sample if soundness is to be preserved.

Lastly, it is important to note that the asymptoti notation hides one important detail:

it takes some amount of time to hek if a sample ontradits an invariant. If Daikon

ould disern that no sample may ever falsify a ertain invariant, it ould omit heking the

invariant, leading to signi�ant improvement in the asymptoti onstants.

5.2 Goal: eliminate invariants and derived variables

As mentioned in Setion 5.1.4, the most promising way to optimize invariant inferene is to

eliminate some derived variables and invariants that are uninteresting or logially implied.

This also helps to redue lutter for the user.

When examining whih invariants and derived variables to eliminate, there are two or-

thogonal onerns. The �rst is whether the elimination is stati or dynami, and the seond

59



is how muh it saves in resoures.

5.2.1 Elimination type: stati, dynami negative or dynami pos-

itive

The �rst onern for eliminating invariants and derived variables is whether the proess an

be done statially or must be done dynamially. Dynami elimination an be further split

into two ases: negative and positive.

A stati elimination is one that an be done without exeution trae data. An example is

A[i℄ 2 A[℄, whih is always true. A stati elimination is advantageous, as it an be done even

before data is seen. In ontrast, a dynami elimination needs exeution data. The example

where (x = y) ^ odd(x) eliminates odd(y) is a dynami elimination, for we annot be sure

that x = y until some data is seen. Within dynami elimination, there are two ases:

Nonsensial/Negative elimination is where one sample an forever remove an invariant

or derived variable. For example, if ever x � A:length, then A[x℄ is nonsensial. This is alled

negative elimination beause examples for elimination are ontraditory to the invariant or

derived variable.

Implied/Positive suppression is where an invariant or derived variable is eliminated

only through being implied by some other invariant. For example, (x = y)^odd(x)) odd(y).

Here, a positive statement is being made about the eliminated invariant by the two invariants

on the left. No one sample is enough: we annot be sure of the elimination until all data

has been seen, sine x = y or odd(x) ould be falsi�ed. Thus we use the term \suppression"

beause invariants are never ompletely eliminated.

5.2.2 Resoures saved in elimination: time, spae or printing

The seond onern for elimination is what resoures it saves. At best, it will save spae, save

time and let the inferening algorithm avoid printing out extra information that is obvious

or uninteresting to the user. At worst, it will only redue printing, but have the same time

and spae osts.

To avoid printing extra invariants is relatively simple. Invariant inferene an be run as

before. When invariants are to be output, an invariant that is logially implied by the rest

an be eliminated, and this proess an be repeated.

To save spae, it is neessary to atually delete invariants or never instantiate them.

However, soudness and ompleteness need to be preserved. For example, if x = y^odd(x))

odd(y), then deleting odd(y) might be a good idea. However, this naive deletion produes

an inomplete algorithm: should later x 6= y, yet odd(y) remain true, the user will not be

able to dedue odd(y) from odd(x). The orret solution, if odd(y) is to be eliminated, is to

preserve some mehanism for regenerating odd(y) should x 6= y | i.e., should the dynami

suppression no longer apply.

To save time, invariants an be removed as with for spae. Alternatively, invariants an

be marked so they are not heked. These invariants would take up spae, but they would

60



not need to be heked against data. For omplex invariants like 8

i

A[i℄ > 5 heking an

take up a signi�ant amount of time.

In the following setions, we do not disuss any stati elimination tehniques for there is

already adequate literature on standard stati analysis [CC77b, GC96℄. Similarly, dynami

negative elimination is also relatively straightforward: simply stop keeping trak of the

invariant when it is no longer interesting. Instead, we desribe three tehniques for dynami

positive suppression.

5.3 Previous optimizations

Before this work, three optimizations were already performed on the Daikon system.

First, the onept of invariant weakening was added. For a series of invariants suh as

x � 2; x � 1; x � 0 that imply eah other in a total order, it is only neessary to keep trak

of one of them, and weaken that invariant as fats ome in. With the � invariant, we start

with x � MAX INT. The orret amount of weakening has to be done: if [5; 8; 1; 2℄ are seen,

then the �nal invariant must be x � 1. This ensures soundness and ompleteness.

Seond, a version (V2) of Daikon attempted to eliminate some invariants, but had to

make multiple passes over the data to do so. For example, Daikon V2 did a pass to ollet

whih variables were equal to eah other before any other invariants were generated. If x = y

then only f(x) would be instantiated on the seond pass. Thus V2 eliminated many obvious

invariants and avoided examining extraneous data. This saved time at the expense of spae:

it took up spae in memory that was linear on E and was not inremental.

Third, the onept of a data hierarhy was introdued, to relate variables aross program

points. We desribe this hierarhy in the next setion.

5.3.1 Hierarhy and ow

5.3.2 Nimmer's thesis paste, to be edited

This setion introdues a tehnique to perform dynami positive suppression for invariant

detetion by taking advantage of impliation relationships between di�erent program points,

and organizing program points into a lattie.

5.3.3 Staged inferene

In a previous version(Setion 5.3), the Daikon system operated in multiple passes over the

samples to infer invariants. The multiple passes permited optimizations beause ertain

invariants are always true or false, or ertain derived variables are unde�ned. By testing the

strongest invariants in earlier passes, the weaker invariants or ertain derived variables may

not need to be proessed at all. For example, if x = 0 always holds over an earlier pass, then

x � 0 is neessarily true and need not be instantiated, tested, or reported on a later pass.

Similarly, unless the invariant i < theArray:length holds, the derived variable theArray[i℄ may

be non-sensial.

61



publi lass A f publi lass B f

publi stati int n; private int x;

private B b; publi int m2();

publi int m(B arg); g

g

Figure 5-2: Example delarations for two simple Java lasses.

B.m2:::EXITreturnorig(this) orig(this.x) this.xthis

A:::CLASSA.n

A:::OBJECTthis.b this.b.x A.nthis

A.m:::ENTERarg arg.x this.b this.b.x A.nthis

B.m2:::ENTERthis.xthis

A.m:::EXITarg arg.x return this.b this.b.x A.norig(this)orig(arg) orig(arg.x) orig(this.b) orig(this.b.x) orig(A.n) this

B:::OBJECTthis.xthis

Figure 5-3: Flow relationship between variables for the ode shown in Figure 5-2. Shaded areas

name the program point, while unshaded boxes represent variables at that program point. Lines

show the partial ordering v

D

desribed in Setion 5.3.4, with a nub at the lesser end of the relation.

(For instane, arg v

D

orig(arg) in the lower left orner.) Relations implied by transitivity of the

partial order are not expliitly drawn.

While operating in multiple passes, Daikon also treated eah program point indepen-

dently. Therefore, data from one program point may be disarded before the other points'

data is proessed.

5.3.4 Variable ordering

One major way to improve performane for dynami invariant detetion is for program points

to no longer be proessed independently. Instead, the dynami invariant detetion algorithm

relates variables from all program points in a partial order.

The relationship that de�nes the partial order v

D

is \sees as muh data as". If variables

X and Y satisfy X v

D

Y, then all data seen at Y must also be seen at X | X sees as muh data

62



as Y. As a onsequene, the invariants that hold over X are a subset of those that hold over Y,

sine any data that ontradits an invariant over Y must also ontradit the same invariant

over X.

Figure 5-3 shows the partial order formed by v

D

for the example lasses of Figure 5-

2. Consider the relationship between B:::OBJECT and B.m2:::ENTER. First, reall that all

data from method entries must also apply to the objet invariants. (In other words, ob-

jet invariants must always hold upon method entry.) Therefore, we have this

B:::OBJECT

v

D

this

B:m2:::ENTER

and this:x

B:::OBJECT

v

D

this:x

B:m2:::ENTER

. The same holds true for method exits:

this

B:::OBJECT

v

D

this

B:m2:::EXIT

. Finally, note that this

B:m2:::ENTER

v

D

orig(this)

B:::EXIT

, sine

any pre-state data assoiated with a method exit must have been seen on entry.

For reasons similar to ones that relate B's variables aross program points, the relation-

ships that ontribute to the partial order are as follows.

De�nition of orig().

Variables on ENTER points are v

D

the orresponding orig() variables at all EXIT and

EXCEPTION program points.

Objet invariants hold at method boundaries.

Instane variables from the OBJECT program point are v

D

the orresponding instane

variables on all ENTER, EXIT, and EXCEPTION program points.

Objet invariants hold for all instanes of a type.

Instane variables from the T:::OBJECT program point are v

D

the orresponding in-

stane variables on instrumented arguments and �elds of type T. (For example, see

arg

A:m:::ENTER

and this:b:

A:::OBJECT

in Figure 5-3.)

Sublassing preserves objet invariants.

Instane variables from the T:::OBJECT program point are v

D

the same instane vari-

ables on sublasses or non-stati inner lasses of T.

Overriding methods may only weaken the spei�ation.

Argument(s) to a method m are v

D

argument(s) of methods that override or imple-

ment m, by the behavioral subtyping priniple.

5.3.5 Consequenes of variable ordering

As shown in the previous setion, the partial ordering of variables implies that when invari-

ants hold true over variables at ertain program points, those invariants also must hold true at

lower (as drawn in Figure 5-3) program points. For instane, if we have this:x

B:::OBJECT

� 0,

then we also know that arg:x

A:m:::ENTER

� 0. We all this the hierarhy property of program

points.

Dynami invariant detetion an be optimized by taking advantage of this hierarhy

property. One way to do this, whih we have implemented in the Daikon system, is by

instantiating, heking, and reporting invariants at the most general plae they ould be

63



stated. For instane, if an invariant always holds over an objet's �elds, it would only exist

at the OBJECT program point (instead of eah method's ENTER and EXIT points), and would

only need to be tested one per sample.

For printing invariants for the user, the algorithm ould loate all invariants over a set

of variables V at a program point P by forming the losure of V at P using the partial

ordering, and taking the union (onjuntion) of the invariants present at eah point in the

losure.

However, for this tehnique of minimal invariant instantiation to work, both the samples

and the invariants must ow through the partial order in a spei� way, as explained in the

next two setions.

5.3.6 Invariant ow

The naive algorithm instantiates all possible invariants (modulo type onstraints) at all pro-

gram points. Now the hierarhy property desribed above leads to new rules for instantiating

invariants and for what to do when heking invariants against data.

Instantiation During the setup phase prior to seeing data, instantiate invariants only

where they would not be inferrable from a orresponding version higher in the hierarhy.

For example, the algorithm would not instantiate arg:x

A:m:::ENTER

� 0 sine it would have

instantiated arg:x

A:m:::OBJECT

� 0 (or the equivalent invariant at a higher program point).

Formally, instantiation is only allowed when one or more of the variables of an invariant has

no predeessor in the v

D

partial order. That is, a set V of n variables should be used to

instantiate an n-ary invariant only if 9v 2 V 8x : x 6<

D

v.

Cheking When an invariant is falsi�ed or weakened at a program point during inferene,

opy it \down" to the immediate hild program points. By hild program point, we mean

program point(s) where every variable used by the invariant is less in the partial ordering.

By nearest we mean that there must be no intermediate program points. For example, when

arg:x

A:m:::OBJECT

� 0 is falsi�ed, it is opied down to A.m:::ENTER as arg:x

A:m:::ENTER

� 0.

Formally, a falsi�ed invariant over a set of soure variablesA should be opied to a destination

set B when all variables in B are at the same program point and when 8a 2 A : 9b 2 B :

(a v

D

b) ^ (:9x : a <

D

x <

D

b).

One positive onsequene of this approah is that methods de�ned in interfaes will have

invariants reported over their arguments, even though no samples an ever be taken on

interfaes diretly. For example, if every implementation of an interfae's method is alled

with a non-null argument, Daikon will report this property as a requirement of the interfae,

instead of as a requirement of eah implementation.

5.3.7 Sample ow

In the invariant ow algorithm, invariants ow down as they are falsi�ed. This property

suggests a orresponding ow algorithm to proess samples.

64



A.m:::ENTERthis.b.x A.n

A:::OBJECTthis.b.x A.n

A.m:::EXITthis.b.x A.norig(this.b.x) orig(A.n)

1 10 0

Figure 5-4: Example indiating the need for path information in sample and invariant ow, as

desribed in Setion 5.3.8. A portion of Figure 5-3 is reprodued, along with a potential sample

(0,0,1,1). Given only that sample, the invariant this:b:x = A:n at A:::OBJECT should hold. However,

if the sample ows as indiated by the bold links of the partial order, the invariant would be

inorretly falsi�ed. Therefore, the path taken is important.

1. Identify the exat program point where the sample was drawn from.

2. Form the losure of program points that have any variable �lled in by following the

relations upward in the partial order.

3. Feed the sample to eah of these program points in a topologial order. A sample is

fed to a point after it has been fed to all points where a variable is greater. Therefore,

any falsi�ed invariants are always opied to lower program points before the sample is

fed there to falsify them.

5.3.8 Paths

For both invariant and sample ow, the path taken through the partial order is impor-

tant. For example, onsider Figure 5-4. Given only this data, Daikon should report that

this:b:x = A:n at A:::OBJECT. However, sine we have this:b:x

A:::OBJECT

v

D

orig(this:b:x)

A:m:::EXIT

and A:n

A:::OBJECT

v

D

A:n

A:m:::EXIT

, the values for orig(this.b.x) and A.n would falsify the in-

variant. The problem is that the two paths through the partial order are di�erent | they

traverse di�erent program points.

To address this problem, we annotate eah edge in the partial order with some none. A

pair of variables <A1,A2> is together related to <B1,B2> by the partial order if the path from

A1 to B1 follows the same nones as the path from A2 to B2. The nones must be hosen so

that sets of variables from two program points that are related due to the same item from

the list starting on page 63 must share the same none. In terms of Figure 5-3, parallel or

nearly-parallel lines from one program point to another will have the same none.

5.3.9 Hierarhy shape

An important property of the hierarhy property presented so far is that the variables and

program points form a tree under the v

D

relationship for any one reason that variables

65



Figure 5-5: The advantage of handling equality speially. Without equality handling (above)

there are 4 invariants saying a, b,  and d are even. There are 6 invariants saying the variables

are equal. With equality handling all the equality invariants ollapse into one equality set,

while even invariants are represented by even(a) on the leader of the set.

relate, suh as method instane variables to objet instane variables. The variables of a

program would thus form a forest under the partial order. However, when multiple reasons

are ombined, variables are no longer always related a tree | they an beome a general

direted ayli graph.

For example, with multiple inheritane (due to interfaes), a method's spei�ation ould

be governed by multiple interfaes, so its arguments would have multiple parents in the

partial order.

Thus we an no longer say that \an invariant only appears at the one plae where it may

be most generally stated". Instead, we reword \one plae" to minimal number of plaes.

An implementation would have to take into aount the non-tree nature of the partial order

when owing samples and variables.

5.4 Handling equality

One dynami positive elimination tehnique is to handle equality speially. This saves spae

and time in two ways. Given v variables that are always equal | i.e., belong to the same

equality set: 1) We have one equality invariant for the set rather than �(v

2

) two-way equality

invariants. 2) We have invariants only on one member of eah equality set rather than v

invariants for eah member. With invariants of more than one variable, the savings for the

latter an be enormous.

As seen in Figure5-5, let us say a program point has four variables, a; b; ; d and they are

all equal. There is an invariant f that an apply over any one of them. Normally, we would

need 6 equality invariants to express the equality:

a = b; a = ; a = d; b = ; b = d;  = d

and 4 invariants to show f held on eah:

f(a); f(b); f(); f(d)

With the use of equality sets, we have one data struture that keeps trak of the equality

relationship, and only reate one opy of f for a anonial member, or leader of the set, f(a).

The leader is hosen arbitrarily from the set. This saves spae beause we do not need to

66



keep trak of other instanes of f or equality invariants. Further, this saves time, espeially

when heking f is omputationally expensive.

This is a dynami, positive elimination. f(b) is suppressed by f(a) and a = b, and should

the latter be falsi�ed, f(b) will have to be reated as an invariant to be heked. We do not

have to speially handle f(a) being falsi�ed, sine as long as a = b held, f(b) would also be

falsi�ed.

The equality optimization to the Daikon tool is summarized below, as an augmentation

to the native algorithm.

Initialization Before running the rest of the algorithm, all omparable variables at a

program point are plaed into the same equality set (a data struture). Eah equality set is

given an arbitrary leader from within the set. When the normal algorithm instantiates (non-

equality) invariants, we allow instantiation only for invariants whose variables are leaders of

their equality sets.

During heking At every data sample during heking, eah equality set is �rst heked

to see if its members are still equal. If not, the equality set is split into new sets, so that

variables with same values are plaed into the same set. The invariants of the old set's leader

are opied to eah of the new leaders. After this, all other invariants (some of whih may be

newly opied) are heked as usual.

Post proessing The equality sets an, at the end of the run through the exeution data,

be \devolved" bak into regular two-way equality invariants. How this is done depends on the

user's preferenes. By default, this post proessing stage reates two-way equality invariants

between the leader of eah equality set and its members, rather than between all members

of an equality set.

Notie that the dynamially suppressed invariants, suh as f(b), are kept impliitly by

the equality mehanism: when b no longer equals a, we simply opy f from a. The spae and

time savings depend on how many invariants are equal during heking. The more variables

that are equal for a longer amount of time, the more the savings.

The above summary gives an overview of how a naive invariant inferene algorithm an be

altered for saving time and spae using equality. It is one-pass beause it simply adds some

steps to the algorithm before initialization and before eah sample is proessed. However,

ensuring soundness and ompleteness requires handling �ve issues:

� Copying and instantiating non-equality invariants between members of the same equal-

ity set.

� Counting the number of data samples seen

� Counting the number of missing data samples seen

� When invariants are not instantiated with respet to data ow

� Other post proessing issues

We disuss eah of these in the setions that follow.

67



Figure 5-6: When b splits o� from fa; g it is not adequate to simply opy the invariants

from the old leader to the new. The two grayed-out invariants, g(a; b) and h(a; b; x) show

what would be missing.

5.4.1 Copying and instantiation of invariants

When an equality set is split during inferene, any invariants from the leader of the old set

are opied onto the leaders of the new sets. This is neessary to represent the fat that

invariants may remain true on the new sets but falsi�ed on the old sets. However, mere

opying is not adequate.

Eah of the new leaders and the old leader might have other invariants between them-

selves. The example in Figure 5-6 demonstrates this. The top part shows the state of

invariant inferene before a ertain sample is seen, while the bottom shows the state after

the sample. Before, a is the leader of the equality set of fa; b; g. After, b splits o� into

its own equality set. x is a variable that was not in the original equality set a; b; . The

invariant templates are f (unary), g (binary) and h (ternary). Assume the invariants are

ommutative for their variables (i.e., g(a; b), g(b; a)). Originally, the invariants are:

f(a); f(x); g(a; x).

If we simply opied over the invariants of the old leader onto those of the new leaders,

we would additionally have:

f(b); g(b; x)

This does not over all possibilities, for we are missing:

g(a; b); h(a; b; x)

as shown grayed in the �gure. A possible g that ould hold at this point, for example, is

g(a; b) : a � b.

One way to have these invariants is to instantiate them at the time of the equality split.

Another is to instantiate them during initialization. We �rst explain why the �rst method

68



is unsound, and then desribe the seond method.

Method 1: Instantiating invariants at the time of split

An algorithm ould instantiate new invariants at the time of splitting as follows: Let N be

the set of new leaders, o be the old leader, and X be the leaders outside of the old equality

set. The invariants to instantiate are all the invariants on fog+N +X minus the invariants

that were opied, minus the invariants that hold on X alone. This preisely overs the set

g(a; b); h(a; b; x) shown grayed in Figure 5-6.

The problem with this implementation is that some of the instantiated invariants may

have been falsi�ed by data at this point. Clearly, for an invariant like g(a; b) : a < b this is

easy to determine. However, there are some invariants for whih equality implies nothing.

For example, onsider the invariant g(a; b) : a+ b = 4. Knowing that, until now, a = b gives

no information on whether a + b = 4 has been true. Short of atually storing all samples

of a and b (whih would make a non-inremental algorithm), there is no way to determine

if g(a; b) held for a general formula. Thus instantiating invariants at the time of split is

unsound, beause we do not know whih invariants to instantiate.

Method 2: Instantiating invariants during initialization

A way to know if g(a; b) held previously is to atually instantiate g(a; b) at the beginning.

This way, the invariant itself is heked against the samples before the time of the equality

split. However, we do not want to instantiate g(a; b) sine this would obviate the bene�ts of

equality optimization. However, we know that a = b before the split, so we an instantiate

g(a; a) instead for both g(a; b) and g(a; ). We all these new types of invariants reexive

invariants. When b splits o� from a, both the reexive and non reexive invariants are opied

onto b, using the same mehanism. This approah an be seen more generally in two new

rules, one for initialization and one for during opying:

Initialization When instantiating (non-equality) invariants during initialization, let there

be r equality sets initially. In the summary desription of equality optimization, for every

invariant on k variables, the algorithm would instantiate

r

C

k

invariants. This is beause we

wanted all ombinations of k variables on r equality leaders. Now the algorithm instantiates

all k-way ombinations with repetition. This allows ases like g(a; a) and h(a; a; d).

In the example above, the invariants that would exist before the equality set split are

shown in Figure5-7:

f(a); f(x); g(a; x); g(a; a); h(a; a; a); h(a; a; x); h(a; x; x); h(x; x; x)

Copying during a split When an equality set is split o�, invariants are only opied

(no instantiation), but this opying is no longer a diret substitution of new leader for old

leader. We again use the ombinations with repetition tehnique. Let r be the number of

new equality sets from one equality set. For eah invariant ontaining k instanes of the old

leader, we opy the invariant for eah k-way ombination with repetition on the r leaders.

Figure 5-8 shows how eah of the invariants in the example would be opied when the set

with a as leader splits o�.

69



Figure 5-7: Solving the opying problem by keeping invariants on the same variable. Lines

onneting invariants to variables have been removed for larity.

Original invariant Instanes of leader Copied invariants

f(a) 1 f(b)

f(x) 0

g(a; x) 1 g(b; x)

g(a; a) 2 g(a; b), g(b; b)

h(a; a; a) 3 h(a; a; b), h(a; b; b), h(b; b; b)

h(a; a; x) 2 h(a; b; x), h(b; b; x)

h(a; x; x) 1 h(b; x; x)

h(x; x; x) 0

Figure 5-8: Copying of invariants using ombinations with repetition, where a is the old

leader and b is the new leader.

70



Figure 5-9: Optimizing the opying and reexive proess. Some invariants with more than

one instane of a variable do not have to be instantiated.

This method enumerates at least the invariants that would be instantiated in method 1,

and has adequate information from keeping around invariants within the same equality set.

We use ombinations with repetition rather than those without beause otherwise g(a; a)

would not appear. We use ombinations rather than permutations beause we assume the

data strutures for invariants are designed so that g will work regardless of the order of the

variables (i.e., g traks both g(a; b) and g(b; a) if needed, as the Daikon system does).

It might appear at �rst that this method instantiates an unneessary number of invariants.

However, we perform the following optimization: if a variable ours k times within an

invariant, the variable's equality set must have at least k members. Otherwise, the invariant

is no longer interesting and is destroyed (during run). This is shown in Figure 5-9. In the

example, if b is the only member of its equality set, then the invariants g(b; b), h(b; b; b),

h(b; b; ), h(b; b; d) are destroyed. Thus the number of invariants is bounded by the number

of invariants without equality optimization.

5.4.2 Sample ounts

For statistial tests, invariant inferene systems like Daikon trak the number of sample

values seen for a variable. For eah variable, at eah sample data point, there is one of three

piees of information: that the data is 1) present and was assigned to sine it was last seen;

71



2) present but unmodi�ed; 3) missing. Data an be missing for reasons disussed in Setion

5.4.3. The ount of the number of modi�ed and unmodi�ed samples is used to later lassify

invariants as justi�ed or not (there is no need to trak missing samples).

Modi�ed/unmodi�ed/missing data is also ounted for eah group of k variables that has

invariants generated. For a k-tuple, if any variable is missing, then the tuple is onsidered

missing. Otherwise, if any variable is modi�ed, then the tuple is onsidered modi�ed. Thus

eah invariant an perform a more aurate statistial test.

For statistial tests to ontinue to yield the same results under equality optimization, we

must provide the right sample data to variables and invariants, even though the variables are

ombined into equality sets so not all invariants are instantiated to keep trak of data. We

use the following onservative mehanism: if any of the values in an equality set is modi�ed,

then the equality set's leader is onsidered modi�ed. Further, when invariants are opied

(due to equality sets splitting), sample ounts are also opied.

Missing values have to be handled speially, as explained in the next setion.

5.4.3 Missing data samples

Sometimes, exeution data for invariant inferene ontains missing samples. This an hap-

pen, for example, for variables that are nonsensial in some ases, suh as s:a when s is

null. In the naive implementation of inferene, invariants ignore missing data samples. This

is sound for the naive implementation beause a missing sample means there is inadequate

information to ontradit an invariant. However, with equality optimization, either ignoring

missing samples or handling missing samples like modi�ed/unmodi�ed values is unsound.

Figures 5-10 and 5-11 explain this. Consider a program point with two variables, a and

b, and a unary invariant f . Initially, a and b are equal, a is the leader, and f(a) holds. Now

a sample arrives that has a missing, but ontains a value for b that ontradits f(b). We

annot falsify f(a) beause f might hold for a (and when a is missing, this is still true). We

annot maintain f(a) and say this implies f(b) beause we have seen a falsifying sample.

The sound solution is to split the equality set fa; bg and instantiate a two-way equality

invariant between a and b, as shown in Figure 5-12 In fat, when two-way equality invari-

ants are used during initialization, the instantiation is unneessary: the opying mehanism

produes the right results. The general rule, then, is to split o� all variables with missing

values from the old equality set into a new equality set and to use the opying mehanism

as usual, while inluding two-way equality invariants in the ones instantiated during initial-

ization. Not inluding two-way equality invariants would be unsound, as the invariant a = b

would still hold in the example sine a was missing.

5.4.4 No more non-instantiation of invariants

One drawbak of equality optimization is that a performane optimization done in data ow

is no longer orret (it is inomplete). Data ow does not instantiate invariants in a program

point if a higher program point subsumes the invariants. However, the example in �gure 5-13

shows how this is now inomplete. The upper program point ontains variable a

upper

and

the lower ontains variables a

lower

and x. The two as are onneted by ow, while initially

72



Figure 5-10: It is wrong, as shown here, to assume even(b) holds even though a is missing.

It ould be the ase that b is not even.

x == a

lower

with a

lower

as leader. If the standard data ow non-instantiation is used, then

we initially only instantiate invariant f(a

upper

). f(a

lower

) is not instantiated due to dataow

optimization, while f(x) is not instantiated beause x is not the leader.

Say a sample �rst arrives that shows x is not equal to a

lower

, followed by a sample that

falsi�es f on the as but not on x. An example of this ould be if f means \even" and the

samples seen are (2; 2), (2; 4) and (3; 4). Sine a

lower

has no invariants, when the inequality

sample is seen, x is split o� but no invariants are opied. Then when a

upper

has f falsi�ed,

f ows to a

lower

, where it is also falsi�ed. However, x never gets f , so now the output from

Daikon is wrong (i.e., inomplete). Note that if f is falsi�ed before the inequality is seen,

then orretness is preserved, sine f(a

lower

) is �rst reated, and then opied as f(x) when

inequality happens.

One way to �x this dataow problem is to make the non-instantiation rule no longer

apply. That is, all leaders at all program points now instantiate invariants, even if another

program point would eventually ow the invariant down. In the above ounterexample, this

approah is sound beause f(a

upper

) and f(a

lower

) both exist, so when the unequal sample is

seen, f(x) an be opied.

This �x inreases the spae used for invariants, but does not add muh to the time, sine

73



Figure 5-11: It is wrong, as shown here, to assume even(b) does not hold when a is missing.

It ould be the ase that f is even.

suppression optimization (Setion 5.5) prevents them from being heked. We also laim that

the number of invariants eliminated by the equality optimization dominates the number that

would be eliminated by data ow, espeially sine any invariant that weakens annot use the

data ow mehanism.

An alternative way to �x this problem is to searh for all invariants that are on the old

leader in all the parent program points, and to opy the invariants onto the new leaders, In

the example in the �gure, x would have f opied to it when x is split from a. This is shown

in Figure 5-15.

5.4.5 Post proessing

The basi step in post proessing was desribed in the overview of equality optimization

in the start of Setion 5.4 | equality sets are onverted into two-way equality invariants.

However, it is often the ase that some variables are not interesting for printing, and these

variables may be the leaders of equality sets, in whih ase none of the invariants on any

of the variables will be printed. For example, a == b, and a is the leader, but a is not

interesting. In that ase, odd(a) will not be printed (this is orret) but neither will odd(b)

(this is wrong). Thus, before the post proessing onversion stage, some equality sets are

pivoted. If the leader of an equality set would not be printed, the leader is swithed to one

74



Figure 5-12: The sound way to handle missing values: keep a two-way equality invariant

between a and b and split o� the equality sets.

that would be (if any exists). The invariants attahed to the former leader are swithed over

to the new leader.

5.5 Suppression optimization

An invariant is suppressed if it is implied by some set of other invariants. Suppression

optimization attempts to save time by not heking suppressed invariants. It performs

dynami, positive elimination only, but is general enough to work for all logial impliations.

Suppression and equality optimization are the only forms of dynami suppression used in

the Daikon tool. Suppression saves times and redues lutter from printing, but it does not

save spae: reall that for positive elimination, it is not possible to entirely eliminate an

implied invariant. With equality optimization, we keep trak of invariants impliitly, sine

the opying mehanism is adequate for re-reating invariants. With suppression optimization,

sine it works for all impliations in general, it is neessary to atually keep the suppressed

invariant.

A suppression link onnets an invariant and its suppressors. Using suppression links

entails two major hanges to the inferening algorithm (we will assume we are hanging

it after equality optimization has been added). First, eah invariant is given suppression

fatories that desribe what kind of logial onditions an suppress it. Seond, the invariant

heking mehanism is modi�ed to save time by using suppression links.

75



Figure 5-13: The problem with not instantiating invariants and relying on the data ow

hierarhy. Problem with non-instantiation of invariants: sine f(b) is never instantiated, if

x splits o� from a in LOWER before f drops from UPPER, then x will never have f as an

invariant.

76



Figure 5-14: One way to orret the problem of non-instantiation: instantiate invariants that

would hold on equality leaders at every program point.

77



Figure 5-15: Another way to orret the problem of non-instantiation: opy relevant invari-

ants from upper program points upon splitting the equality set.

78



When an invariant is opied over to a new equality set, we do not opy over suppression

links. Instead, we re-attempt suppression on the opied invariant, as shown in Setion 5.5.2.

5.5.1 Suppression fatories

The onditions for suppression are dependent on the type of invariant and the struture

of the variables suppression works on. For example, A[i℄ 2 B is implied by A � B |

this suppression depends both on the fat that the suppressed invariant is an \element of"

invariant and that one of the variables is a loation in an array.

Suppression fatories are attahed to the invariant they might suppress, sine eah sup-

pression link an onnet to multiple suppressors but only one suppressee. When asked to

attempt suppression on an invariant, a suppression fatory generates a suppression template.

A suppression template onsists of a list of invariants and variables on these invariants. If

there exists these invariants on the variables, then the suppression template is �lled, and the

suppression fatory is allowed to suppress the suppressee. The suppression template for the

above example would be [h�; [A;B℄i℄, onsisting of one invariant and variable group. The

onditions for suppression are other invariants, inluding equality sets.

The most important ompliation to �lling a suppression template is that suppression an

happen aross program points via their data ow onnetions. Reall that every invariant

that holds on a parent program point holds on the hild. Thus, we also want to san all

the anestor program points of an invariant, in addition to the invariant's program point,

when looking for suppressors, while remapping the variables via their ow onnetions. An

invariant does not have to have all its suppressors in the same program point.

Lastly, we also use suppression to hide invariants implied by data ow that the data ow

mehanism annot ath. With equality, we an no longer leave invariants uninstantiated if

parent program points have them. However, we an use suppression to save time on heking

these invariants, sine when equality sets split, invariants are loned but not their suppression

fatories.

5.5.2 Handling suppression during Daikon's run

Below is a desription of how suppression is integrated into Daikon's inferening loop. Even

though suppression links may onnet aross program points, suppression itself is examined

in the ontext of one program point. For a program point:

1. When invariants are instantiated, attempt to suppress them. An invariant is sup-

pressed when any suppression link an be reated for it, but we only keep trak of one

suppression link.

2. During inferening, hek only the invariants that are not suppressed with values.

3. When an invariant is falsi�ed, ollet all its suppressees, and remove their suppression

links. If the falsi�ed invariant was suppressing an invariant with another invariant, the

suppression link is still removed sine it is the onjuntion that implies the suppression.

Take all the formerly suppressed invariants, and attempt to re-suppress them (using

79



Figure 5-16: Suppression in ation for the logial impliations A � B ) A[i℄ 2 B and

A � B ) A[j℄ 2 B

unfalsi�ed invariants). For any unsuppressed invariants that remain, hek them with

values if the invariant was in the same program point as the former suppressor. We

do not hek invariants in di�erent program points beause they have to be in hild

program points and will be heked when values arrive.

4. Before invariants are printed (i.e., during post proessing) attempt to suppress eah

invariant again.

The above algorithm ensures the following property:

Theorem 5.5.2.1 (Suppression never falls): A suppressed invariant an

never ow to a lower program point.

Figure 5-16 shows suppression in ation. The variables are the arrays a and b, integers i

and j and derived variables a[i℄ and a[j℄. Initially, A � B, so this implies that A[i℄ 2 B and

A[j℄ 2 B have to hold. A suppression is established onnets A � B to the two suppressed

80



invariants. Should any samples arrive that preserve A � B, the two suppressed invariants

will not be heked.

At a later time, a sample is seen that falsi�es A � B (and A[i℄ 2 B). The two invariants

that were suppressed now beome regular invariants. They are heked against the data

sample, and A[i℄ 2 B is falsi�ed, while A[j℄ 2 B is preserved.

5.5.3 Suppressors that do not have their values set

Another issue that arises with suppression is that some suppressors may be invariants that

set their parameters only after a few samples have been read. For example, in invariants

of the form: y = ax + b , a and b are not set until at least 2 samples of (x; y) have been

observed. We know that y = x + 4 an suppress y > x but it is inorret to follow either of

the following approahes:

� Connet y = x + 4 to y > x via suppression links at the beginning. This is inorret,

as we ould enounter just one value for (x; y), (1; 1) that does not set a and b but

ontradits y > x. This would be unsound.

� Not onnet y = x+ 4 to y > x via suppression links. In this ase, the onnetion will

never form, even when a = 1 and b = 4. Sine it is the suppressor that is hanging, the

potential suppressee will not know when to look for the hange, as the two invariants

are not onneted.

The only way to have the suppression link form at the right time is to hek oasionally

whether x > y is suppressed. One suh way to do this is to exatly look for when an invariant

of the form y = ax+ b hanges, but this would require adding speial ase handlers to every

suppressor that hanges. Instead, it is easier to run a general suppression hek (as done

during initialization) periodially. If the suppression hek is done using exponential bak

o� (every 10, 100, 1000, et. samples) then the time ost is minimal, as most hanging

invariants have their parameters set early.

5.5.4 Suppression yles

Lastly, there is a question of whether suppressed invariants an suppress other invariants.

The advantage of allowing this is greater suppression, the danger the presene of yles.

If there is a yle, then a set of invariants may never be falsi�ed. We allow suppressed

invariants to be suppressors, but hek (at design time) that all the suppression fatories we

have ontain no logial yles.

5.6 Conditional invariant detetion

Reall that the grammar of any dynami invariant detetion system must be limited beause

there are an in�nite number of invariants that are true of a program. For example, the

Daikon system limits itself to invariants that ontain at most 3 variables as the atoms of its

81



grammar. This limitation is a tradeo� between the general usefulness of the invariants and

the extra time (both omputer and user) involved in proessing them.

However, setting a hard limit like 3 variables is not suÆient for some appliations. Thus,

the Daikon system supports a limited extension of its grammar by allowing for boolean

ombinations of atomi invariant units. For any two boolean values, there an be 2

4

= 16

di�erent binary funtions, but it is not useful to have all these funtions. Daikon allows the

heking of two spei� forms [DDLE02℄: A ) B and :A ) B. These are useful beause

impliations are ommonly used to desribe program behavior, espeially in exeptional

ases.

In terms of terminology, we shall all the left hand side the ondition and the whole

invariant a onditional invariant.

However, even with potentially useful impliations, adding just one type of boolean ex-

pansion ould expand the grammar by squaring the number of invariants. Not all of these

invariants would be useful. Daikon thus deides on whih invariant atoms to hoose as left

hand sides. One mehanism for deiding this is to let the user speify. Other mehanisms,

suh as examining boolean prediates in the program syntax and data lustering analysis

have been attempted [DDLE02℄. This setion shows how to eÆiently run dynami invari-

ant detetion, despite the seeming explosion in the number of invariants that impliations

introdue.

The main issue in deteting A ) B is the waste of omputation if A or B are always

true. Using a non-inremental, multiple pass approah to this problem is easy: after dynami

invariant detetion is run the �rst time for atomi invariants, we only instantiate onditional

invariant A) B if A and B are not invariants themselves. In Daikon V2, this is implemented

via onditional program points, virtual program points that have been reated to represent

all the possible invariants on the right hand side of the impliation assuming A is true.

Conditional program points are passed in the right subset of the data for their onditions

(i.e., all the samples where A is true) and then eah invariant B in the onditional program

point is used as before.

5.6.1 Inremental detetion of onditional invariants

In an inremental approah to dynami invariant detetion, reating onditional invariants

or onditional program points annot be done after data samples have been read. A naive

inremental approah would be to simply instantiate all onditional invariants, but this

would result in the resoure onsumption presented above. An optimizing approah is to take

advantage of the optimizations that are already used in the Daikon system. The key insight

here is that the hierarhy established between program points also works for onditional

program points.

At the start of invariant detetion, when the program point hierarhy is reated, ondi-

tional program points are reated just like regular program points. Eah onditional pro-

gram point PptCond

i

is onneted to two groups of program points via the v

D

relation-

ship: 1) the regular program point without the ondition Ppt

i

; 2) the onditional program

points PptCond

j

for whih the orresponding regular program points are in the relation

Ppt

i

v

D

Ppt

j

.

82



This onnetion is preisely in aordane with the v

D

relation. PptCond

i

v

D

Ppt

i

beause any any data samples seen under a ondition should be seen by the program point

that subsumes all samples. Ppt

i

v

D

Ppt

j

) PptCond

i

v

D

PptCond

j

is true beause the

upper program point Ppt

j

laims to see all samples at the lower program point Ppt

i

. This

new rule is also neessary beause it is not the ase that Ppt

i

v

D

PptCond

j

: the ondition

may not be true at Ppt

i

. Sine the v

D

ordering takes the transitive losure of the rules, we

are sure that PptCond

i

v

D

Ppt

j

. These two new rules together establish a lattie (rather

than a tree) for data owing up from a partiular sample under a ondition, but this is

already handled by the hierarhy.

One the hierarhy is established, invariants are instantiated and heked under the

same rules as before. During heking, on orresponding variables between related program

points, the upper invariant will shadow the lower one. Thus if B is always true, the invariant

A) B will not be heked. A) B will be heked preisely when it needs to be: when B

is destroyed at the upper program point.

There is one minor hange to the operation of the system during heking: samples are

no longer always inserted at exatly one program point: for eah regular program point,

many onditions ould hold. However, performing multiple insertions is not a problem sine

the system is already apable of handling multiple sample ows to one program point. At

eah insertion, memoization an be used to make sure that a sample is not proessed again

at a program point.

One more optimization an be done to the system to eÆiently handle the ase where A

is always true. While A remains true, it is not neessary to keep the onditional program

points for Ppt. Thus, the reation of the hierarhy ould be done dynamially, one A is

falsi�ed. The rules would be:

� For PptCondA, the onditional program point where A holds, opy no invariants,

sine the invariants in the two program points must be idential at the moment of A's

falsi�ation and PptCondA v

D

Ppt. The ondition must be heked �rst however,

beause we want to opy the invariants that exist before the falsifying data sample is

seen.

� For PptCondA

0

, the ondition program point where A is false, instantiate exatly the

invariants not in Ppt. Sine until now, A has never been false, everything must be

true at PptCondA

0

. However, we do not need to opy the invariants in Ppt sine

PptCondA

0

v

D

Ppt.

These rules soundly and inrementally performs onditional invariant detetion with the

same optimizations as in Daikon V2. If A is always true, then the onditional program points

are never reated. In fat, the rules are advantageous over a multiple pass approah: rather

than instantiating the onditional program point for A and :A early on, when there will be

many other invariants there are true, the inremental optimizations reate the onditional

program point only when needed.

83



5.7 Funtion parameters

During the implementation of dynami invariant detetion for the IOA language, it was

disovered that many invariants were obvious beause the variables involved were parameters

to transitions. To redue lutter for the user, we developed a mehanism to eliminate ertain

invariants on parameter variables, and ported this tehnique to the semantis of Java and C

funtion parameters.

A transition parameter in IOA is immutable. This means that the values of the variable

before and after the transition (alled the pre- and post- values) will be equal and any

invariant on the post variable is uninteresting beause it will be present on the pre variable.

The same is true for any derived variable of the post variable.

In Java and C, funtion parameters are mutable, but some ways of hanging them render

them uninteresting. Consider a data struture s with �eld s:a, passed into funtion f(). If

the value (of the pointer) s is hanged, there are two ases: 1) s is set to a new struture; 2)

s is set to an existing data struture. Case (1) annot be seen by the aller, unless s is also

in the return of f , in whih ase the return value will have the relevant information. Case

(2) may be seen by the aller, but the information is useless unless the new value of post(s)

is in a data struture visible to the aller. If this is the ase, then the data struture will

ontain all the neessary information. So for both ases, post(s) is not interesting.

If the value of s is not hanged, but the value of s:a is hanged, this e�et may be visible

to the aller. In this ase, post(s:a) is interesting, even though post(s) is not.

In implementation, language front ends are responsible for labeling variables as param-

eters. Any parameter and derivation done by Daikon of a parameter is treated like post(s)

above and is not interesting. Any variable issued by front ends that is related to a parameter

variable is labeled as a seondary (or front-end derived) parameter. In the example above,

this is true for s:a | the front end does not label it as a parameter, but Daikon labels it

as a seondary parameter. Post states of seondary parameters are interesting if the pa-

rameter variable they are related to have not hanged. Sine parameters in IOA are deeply

immutable, the IOA front end labels all seondary parameters as primary parameters.

Sine determining whether seondary parameters are interesting depends on the equality

between the pre- and post- variables of the orresponding primary parameters, suppressing

invariants that ontain seondary parameters is a dynami suppression. In ontrast, sup-

pressing invariants with primary parameters an be done statially. However, the equality

set between the pre- and post- variables annot be eliminated, sine it will be used for

determining if seondary parameters are interesting.

5.8 Future work

automatially generate (or hek) suppressors

(do more ambitious experiments using V3's apabilities)

implement online

84



5.9 Conlusion

85



86



Chapter 6

Improving the IOA Simulator

This hapter overs improvements that were made to the IOA Simulator so that it would

be better suited for exeuting IOA programs, espeially in relation to dynami invariant

detetion. We desribe three major improvements:

Simulating paired automata How the semantis of paired simulation was hanged to

make it idential to the semantis in the proof tatis that are generated by the translator

tools.

Handling quanti�ers How the IOA simulator handles quanti�ers in the language.

Conneting to the Daikon tool How the IOA Simulator passes data to the Daikon tool

suh that data strutures in IOA beome data strutures understandable by Daikon.

6.1 Simulating paired automata

The proof blok of the IOA language syntax spei�es how the IOA Simulator exeutes

a spei�ation automaton given an implementation automaton's transition. In a previous

version of the IOA Simulator, simulation of paired automata was implemented so that only

the post-state of the implementation automaton was visible to the proof blok. Further,

with eah fire statement in the exeution, the spei�ation automaton would hange state,

so that any if statements that examined the state of the spei�ation automaton afterwards

would be doing so on the state after the fire. This made the semantis of the IOA Simulator

di�erent from the exeution given by the proof translator tools. The proof translator tools

assume that any examination of the state of either automaton would be the pre-state of both

automata. For example, in the Paxos ase study, one of the proof ations was:

for internal assignVal(b: Ballot , v: Value) do

i f :(b 2 Global1.sueeded) then

ignore

e l s e i f 9 b:Ballot (b 2 Global1.sueeded ^ Global1.val[b℄ 6= nil) then

ignore

e l se

f i r e internal hooseVal(v)

87



f i od

The if statements would test the post-state of Global1 rather than the pre-state, as

desired in the proof. And after the fire statement, Cons itself would be hanged, so any

subsequent if statements would hek a di�erent state. With this semanti mismath, paired

exeutions annot not math simulation relation proofs, so our veri�ation methodology

annot be used. Further, users of the IOA tools should be able to expet a onsistent

handling of proof bloks.

Other than the semanti mismath, another limitation of this design is the lak of in-

formation for the proof blok ode. There is no way the ode an tell what the pre-state

is, sine there ould be multiple pre-states that map to the same post-state. Choosing the

orret � exeution might depend on the pre-state.

Thus, the IOA Simulator was altered suh that its paired exeution semantis math

what the proof translator tools would output. All referenes to automaton state variables

now refer to the pre-state of the automaton. The drawbak is that we annot diretly

observe the post-state. However, it an be dedued from the ation that has been �red and

its parameters. If there is any expliit nondeterminism in the post-state, it is aptured in

the loal variables. Ideally, we would want to be able to refer to both the pre and post-states

in the IOA Simulator, but the IOA language itself does not permit this dual referene.

6.2 Handling quanti�ers in the Simulator

It is generally undeidable for the IOA Simulator to determine ertain prediates, sine the

IOA language allows quanti�ers on in�nite data types to be used (though they are usually

used in preonditions or hoose bloks). For example, the IOA Toolkit allows the use of mul-

tipliation and addition in quanti�ed expressions over the integers. Even without quanti�ers,

if a transition ontains a loal variable, the loal variable is impliitly (existentially) quan-

ti�ed. nevertheless, we still want to be able to simulate most IOA programs. We therefore

wish to develop two ways of handling quanti�ers. One is sound and the other unsound.

6.2.1 Sound exeution

Any expression without a quanti�er (or with a quanti�er over a �nite data type) is de�ned

as exeutable. The sound method relies on the fat that ertain quanti�ed expressions are

deidable through iteration on the possible values that the quanti�ed variable an take. If

S is a �nite set and P is exeutable, the following two expressions are exeutable:

8

e

(e 2 S ! P (e))

9

e

(e 2 S ^ P (e))

The expressions are exeutable beause iterating through the set S is suÆient to de-

termine the truth of the quanti�ed expression. If a program ontains only suh limited

syntatial forms, then the IOA Simulator an exeute them. In pratie, these forms are

used quite often, beause the programmer often means to say that every objet in a set obeys

a given property, or that there exists an objet in a set that obeys a given property.

Note that the two formulae above are atually instanes of a more general set of two-way

boolean expressions of the form:

88



(:)?A op (:)?B where op is either _ or ^, A is e 2 S and B is exeutable. There are 4

forms of eah expression for eah operator, and thus 8 total. Only the two presented above

are exeutable.

There may be more suh soundly exeutable expressions that are worth disovering. It

may be neessary to syntatially transform some exeutable expressions so that they an

be reognized by the IOA Simulator as exeutable.

6.2.2 Unsound exeution

The unsound method iterates through some large values of the in�nite datatype and hopes

that seeing these is enough to determine the truth value of the quanti�er. The method is

sound when a positive result is found for an existential quanti�er or a negative result for a

universal quanti�er, but unsound in general. For instane, it would be diÆult to determine

the values of x, y and z to hek for the following expression:

9

x;y;z:Int

x

3

+ y

3

= z

3

The disadvantage of using the unsound method is that it is possible to have an exeution

in the IOA Simulator that would not be a valid exeution aording to the ode. However,

we still permit unsound exeution in order to allow for program testing.

In pratie with IOA programs, we have found that the quanti�ers used are on a spei�

data set that is �nite within the ontext of a partiular exeution. For example, in the Paxos

ase study, we speak of quanti�ers on all ballots. However, we know exatly how many

ballots are urrently in existene. Thus it is suÆient to simply hek ballot quanti�ers

on these ballots. The sound method used above is not suÆient for the Paxos ase study,

for there is no data struture that keeps trak of all the existing ballots, inluding future,

yet-to-be-reated ones.

6.3 Conneting to the Daikon invariant detetor

This setion disusses what hanges were made to the IOA Simulator in order to have it

output useful data in the input format of the Daikon tool. The key problem here is that

the data strutures in IOA do not math the data strutures in the Daikon tool. Sine we

use the Daikon tool to analyze IOA exeutions, we need to better onnet the two data

representations.

A general problem in linking spei�ations and automated tools is that spei�ations tend

to have greater notational omplexity than implementations or exeutions. Whereas tools

are best at reporting simple properties of simple data strutures, spei�ations may express

sophistiated properties of ompliated domain-spei� data strutures. We therefore extend

Daikon's grammar for heked invariants to inlude properties and data strutures relevant

to IOA spei�ations.

The Daikon invariant detetor operates over basi datatypes: integers (salars and hash-

odes), strings, and sequenes. This keeps its implementation simple, fast, and portable to

many di�erent programming languages. IOA spei�ations use more sophistiated datatypes,

suh as sets, tuples, and maps between arbitrary types.

89



In our translation between the two tools, we alter the IOA Simulator so that ompliated

data strutures are represented using salars and sequenes. For example, sets beome se-

quenes. Sine Daikon ordinarily tests sequenes for dupliates and order-related properties,

whih are irrelevant for sets, we extend Daikon to reognize when a sequene is marked as

representing a set and Daikon avoids these tests.

The next two subsetions present the most important data translations done by the IOA

Simulator. First, we look at how IOA maps, or funtions from a domain data type to a range

data type, are translated into Daikon data strutures. Seond, we look at how onditional

invariant detetion, as desribed in Setion 5.6, an be implemented for IOA programs.

6.3.1 Translation of map data strutures

Map data types, suh as Array and Map are used in many IOA programs. A map is a

funtion that onnets a domain data type to a range data type. Often, the domain data

type is not totally ordered, so the map annot be presented as a simple array to Daikon.

The IOA Simulator map data types in two ways. First, it linearizes the range of the

map, and reports the values that are present. For an array m, the Simulator thus reports

m.values[℄ as an array to Daikon. Seond, the Simulator samples key, value pairs of a map

m using two distint random keys named anIndex and anotherIndex. The output to Daikon

is two derived variables (see Setion 5.1.1) m[anIndex℄ and m[anotherIndex℄. We extend

Daikon to report invariants it detets involving suh syntheti variables as being universally

quanti�ed on the variables. For any map that has a range with a null element (i.e., a pointed

range data type), we introdue another syntheti variable to represent the elements of the

map that are not null.

We used mehanisms suh as these in our ase study involving the Paxos algorithm,

whih uses a map voted from partiipating nodes to sets of ballots. Without enhane-

ment, Daikon reports few interesting properties of this data struture, whih is inherently

two-dimensional and involves sets of nodes and ballots represented as sequenes. With infor-

mation about the type of this data struture, and with syntheti variables voted[anIndex℄

and voted[anotherIndex℄, Daikon is able to detet and report properties useful for proofs,

suh as:

8 anIndex:Node (size(voted[anIndex℄ \ abstained[anIndex℄) = 0)

6.3.2 Conditional splitting in IOA

As mentioned in Setion 5.6, Daikon is apable of deteting onditional invariants, or in-

variants with impliations. However, hoosing whih onditional invariant to searh for is

diÆult to do without overly expanding Daikon's searh spae. Daikon leaves it up to other

tools to hoose the ondition, or left hand side, of impliations. This setion shows how

onditions are hosen in IOA.

A simple syntati analysis suÆes. The Simulator uses eah lause (onjunt) in a

preondition as a ondition prediate. We replae transition parameters, whih appear in

preonditions but are not in sope at the automaton level, by speial the variable anIndex.

The quanti�ation tehnique disussed above ensure that the resulting expressions are sen-

sible. For example, in the Peterson ase study (Figure 4-2), the hekFlag(p) preondition

90



beomes the ondition p[anIndex℄ = trying2. This ondition is used in the Peterson

invariant:

8 p (p[p℄ = trying2 ) p[turn℄ = trying2)

Thus, Daikon is able to report invariants that indiate properties of partiular points in

the ode despite performing invariant detetion on the system as a whole.

91



92



Chapter 7

IO automata in Isabelle: enhaning

the representation of I/O automata in

the prover

Every theorem prover requires a prover model in its language for the system model it is to

verify. For example, Garland and others developed the model for I/O automata in the Larh

Prover [SAGG

+

93b℄. A prover model spei�es the semantis of the system model in the logi

of the prover.

The original prover model for I/O automata in Isabelle was designed by Mueller [M�ul98℄.

Its main purpose was to prove the meta theory about IO automata, suh as the soundness of

forward simulation relation proofs. It also permitted proofs of properties of spei� automata.

Luhrs and Garland [Luh02℄ used this model to design and partially implement a translator

from IOA to Isabelle. However, the model and translation were, in pratie, inonvenient

for designing automatable proofs of spei� automata. We desribe why below.

For our work, we hose to hange the Isabelle system model to be more similar to the

one reated by Bogdanov for his work with the Larh Prover [BGL02℄. This made tati

writing easier. Here, we desribe the modi�ations and formally speify the prover model.

We use the memory ase study from Setion 4.2 to show the di�erenes between the two

prover models.

7.1 The Mueller model

In the Mueller prover model, an IO automaton is a triple onsisting of an ation signature,

a set of start states, and a set of transitions. This is the same as the intuition for the atual

system model of an I/O automaton desribed in Setion 2.4. However, the Mueller model

also inludes anillary data de�nitions for the prover to understand the model. Thus, the

whole prove model is represented by the following:

� Data type delaration desribing the state spae of the automaton.

� Data type delaration desribing the ation type of the automaton.

93



� Classi�ation of the ations as input, output or internal. These prediates are ombined

into the ation signature.

� De�nition of the set of start states.

� De�nition of the valid transitions relating a pre-state, ation and post-state of the

automaton.

The next setions desribe eah omponent in more detail.

State spaes

State spaes are delared as reords of the automaton state variables:

reord Mem_state =

memVar :: " Value"

at :: "( Node, Ation Null) Array"

rsp :: "( Node, Response Null) Array"

The ommand reates an Isabelle data type, not a data value. Having a reord represent

the data type is the orret approah, beause state spaes are artesian produts of the

underlying variables.

Ation data type

Ations are delared as ML type onstrutors:

datatype mem_ation =

invoke node ation j

respond node result j

update node

This reates a mutually exlusive set of onstrutors beause automaton ations are

mutually exlusive. The parameters to the type onstrutor orrespond to the parameters

of the ation. We use a di�erent means of onstruting the ation data type from the state

data type beause the automaton state is a artesian produt of eah state variable, while

the ations are mutually exlusive.

Classi�ation of ations

We lassify the ations into three sets, input, output and internal:

Mem_input :: " Mem_ation set"

Mem_input == {a. ase a of

(invoke n a) ) False j

(respond n r) ) False j

(update n) ) False

}"

Mem_output :: " Mem_ation set"

Mem_output_def:

" Mem_output == {a. ase a of

(invoke n a) ) True j

(respond n r) ) True j

(update n) ) False

94



}"

Mem_internal :: " Mem_ation set"

Mem_internal_def:

" Mem_internal == {a. ase a of

(invoke n a) ) False j

(respond n r) ) False j

(update n) ) True

}"

By onvention, we use the ollet operator (\.") to de�ne the sets. The ollet operator

�lls a set with all values that satisfy its prediate. However, they ould be de�ned by any

other set operators or by expliitly enumerating the values.

The ation signature does not list the type of ations (for this is already done in ation

the data type) but simply groups the above three sets. It is an ML triple:

Mem_asig_def : " Mem_asig == ( Mem_input, Mem_output, Mem_internal)"

The start state

The start state is a subset of the states, also de�ned using the ollet operator:

defs

Mem_start_def:

" Mem_start == { sMem.

(rsp sMem = (onstant nil)) &

(at sMem = (onstant nil)) &

(memVar sMem = v0)

}"

Transitions

A transition of an automaton is an ML triple of a pre-state, an ation, and a post-state. The

set of transitions is also de�ned via the ollet operator:

types

(

0

a,

0

s)transition = "(

0

s *

0

a *

0

s)"

Mem_trans :: "( Mem_ation, Mem_state) transition set"

Mem_transitions = "{tr .

Let s = fst tr

at = snd tr

s

0

= lst tr

in

ase at of

(invoke n a) )

(memVar s

0

) = (memVar s) ^

(at s

0

) = (assign (at s) n (embed a)) ^

(rsp s

0

) = (rsp s)

(respond n r) )

(memVar s

0

) = (memVar s) ^

(at s

0

) = (assign (at s) n nil) ^

95



(rsp s

0

) = (assign (rsp s) n nil)

(update n) )

9 a . (sub at n) = (embed a) ^

Let a = SOME a. (sub at n) = (embed a) in

(memVar s

0

) = (perform a (memVar s)) ^

(at s

0

) = (at s) ^

(rsp s

0

) = (assign (rsp s) n (embed (result a (memVar s))))

}"

The tiked variables (e.g., 's) are data type variables in ML, The star operator (*) makes

a tuple. We use these operators here to abbreviate the meaning of a transition as a triple.

The transition de�nition permits any number of post-states to math a partiular pre-state,

ation pair | this is a form of nondeterminism. The existential quanti�er and Let syntax

handle the loal variable a, for a is not part of the ation's formal parameters but is used

in the transition for update (see the automaton ode in Setion 4.2). The preondition for

update is written using an existential quanti�er, and then a is referred to in the e�et setion

using a Let and a SOME operator. The sub operator orresponds to array subsripting.

De�ning the automaton

Lastly, the automaton itself is de�ned:

Mem :: "( Mem_ation, Mem_state) ioa"

Mem_def:

Mem == (Mem_asig, Mem_start, Mem_transitions)

The datatype of Mem is an ioa, whih is a pre-de�ned data triple. The following de�nitions

are true for all automata, sine they are built into a helper �le in Isabelle:

('a,'s)transition = "('s * 'a * 's)"

('a,'s)ioa = "'a signature * 's set * ('a,'s)transition set"

The automaton has a few other helper proedures:

asig_of_def: "asig_of aut == (first aut)"

starts_of_def: "starts_of == (seond aut)"

trans_of_def: "trans_of aut == (third aut)"

Issues with the Mueller model for veri�ation

There are two problems with this model for use in proofs of spei� automata, either for

humans or mahines:

� The enablement of a partiular transition is hidden in the transition de�nition, and

requires an existential quanti�er to speify. Thus, to say that a is enabled in state s,

it is neessary to say:

(enabled aut s a) == 9 s

0

. (s, a, s

0

) : ( trans_of aut)

This is unfortunate, as existential quanti�ers an only be proved in the prover by

atually providing witness variables. Thus to say that an ation is enabled, the user

must provide a witness, even though the IOA ode itself made the enablement obvious

in the transition's preondition.

96



� An exeution fragment is not determined just by a given sequene of ations but

requires the post-states of eah of the ations. To show that an ation sequene is

valid, the user must provide multiple existential witnesses to desribe the post-states.

The �rst shortoming is less of a problem beause the standard invariant proof tends to

be a theorem in the form:

theorem Mem_Inv_step:

(s, a, s

0

) : ( trans_of Mem) ^ (Inv s) =) (Inv s

0

)

Thus, the post-state is expliitly provided. However, the seond shortoming is a problem

beause when we want to show that there exists a witness exeution �, we have to provide

all the intermediate states also. This is tedious for the user, and lutters omputer-generated

proofs.

7.2 The new Isabelle model

The fundamental problem for pratial use of the Mueller model is that it allows nondeter-

minism in the post-state for eah ation, so that a proof is required to hoose a partiular

post-state. This arises from a diret translation of I/O automata, whih are by nature

nondeterministi for eah state, in both the next ation and the post-state given an ation.

In pratie, when we write I/O automata, the main soure of nondeterminism is in the

ation that is taken, not in the post-state. Further, when there is nondeterminism in the

post-state, in an overwhelming majority of ases, the nondeterminism is made expliit by the

use of loal variables, whih enapsulate the nondeterminism. Handling nondeterminism

in the ation is easier, sine we an perform strutural indution on the ation data type

and over all possibilities. It is not possible to do the same on the post-state sine the

nondeterminism is mixed in with the atual state variables. There is thus an advantage in

pushing all nondeterminism into the ation and making the post-state deterministi one the

pre-state and ation are known. This was Bogdanov's insight [Bog00℄ for the Larh theory

of I/O automata, an approah we losely follow in the new model.

The general rule is that every hoose variable beomes a loal parameter to the ation.

The ation datatype itself is now modi�ed to inlude the loal variable as a parameter

to eah ation. Any onstraints on loal and hoose variables beome preonditions to

transitions

1

. The post-state is a deterministi funtion of the pre-state and the new ation.

Sine we hange the ation datatype, we need to also hange how ations between two

automata orrespond. We explain this later in Setion 7.2.2.

An automaton is now a 4-tuple, onsisting of an ation signature, start states, an enable-

ment funtion and an e�et funtion. We preserve the method of de�ning the automaton

signature and ation and state datatypes. By separating the enablement from the e�et, we

an say when an ation is enabled without having to quantify the post-state. For implemen-

tation onveniene, an automaton is no longer a tuple, but instead onstruted by the ML

type onstrutor ioa:

1

Bogdanov did not resolve what happens when hoose variables appear inside for loops. We do not

attempt to remedy this either.

97



datatype (

0

ation,

0

state) ioa =

IOA

"

0

ation signature" (* Signature *)

"

0

state set" (* Starts *)

"(

0

ation,

0

state) enablement" (* Enablement *)

"(

0

ation,

0

state) effet " (* Effets *)

Isabelle automatially de�nes aessor funtions when we use this means of de�nition.

We now de�ne the memory automaton in this prover model:

Mem == (IOA Mem_asig Mem_start Mem_enablement Mem_effet)"

where the data types enablement and effet are de�ned by:

types

(

0

ation,

0

state) enablement = "

0

state )

0

ation ) bool"

(

0

ation,

0

state) effet = "

0

state )

0

ation )

0

state"

Thus an enablement funtion tells whether a partiular ation is enabled from a state,

while the e�et funtion determines the new state. The e�et funtion is unspei�ed when

the ation is not enabled. Now it is possible to have a quanti�er-free prediate to determine

whether an ation is enabled, as long as the preondition itself does not ontain a quanti�er.

For the shared memory ase study in Isabelle, the new translation results in the spei�ations

shown in Figure 7-1 for the Mem automaton.

With determinism in ations, an exeution fragment is just a list of ations:

type

(

0

ation) exeution = "

0

ation list"

the head of the list ontains the last ation, so that we an reursively (or indutively) de�ne

the exeution as shown below.

Using this exeution format requires some helper funtions. The lastOf funtion returns

the state that is the result of exeuting a partiular exeution fragment upon a state of an

automaton, from a given state:

onsts lastOf :: "(

0

ation,

0

state) ioa )

0

state )

(

0

ation) exeution )

0

state"

primre

lastOf_def:

"lastOf aut s [℄ = s"

lastOf_def2:

"lastOf aut s (Cons at rest) =

effets_of aut (lastOf aut s rest) at

"

Note: the primre allows the de�nition of a partially spei�ed funtion in the Isabelle

language using ML pattern mathing. The isExeution funtion determines whether an

entire exeution fragment is valid:

onsts

isExeution :: "(

0

ation,

0

state) ioa )

0

state )

(

0

ation) exeution )

bool"

primre

isExeution_def:

"isExeution aut s [℄ = (

98



reord Mem_state =

memVar :: " Value"

at :: "( Node, ( Ation) Null) Array"

rsp :: "( Node, ( Response) Null) Array"

datatype Mem_ation =

invoke "Node" " Ation" j respond "Node" "Response" j update "Node" " Ation"

defs

Mem_start_def:

" Mem_start == { sMem.

(rsp sMem = (onstant nil)) ^

(at sMem = (onstant nil)) ^

(memVar sMem = v0)

}"

defs

Mem_enablement_def:

" Mem_enablement sMem aMem == ase aMem of

(invoke n a) )

((sub (at sMem) n) = nil) % sMem.at[n℄ = nil

j

(respond n r) )

((sub (rsp sMem) n) = (embed r)) % sMem.rsp[n℄ = embed(r)

j

(update n a) ) % sMem.rsp[n℄ = nul ^ sMem.at[n℄ = embed(a)

(((sub (rsp sMem) n) = nil) ^ ((sub (at sMem) n) = (embed a)))

"

defs

Mem_effet_def:

" Mem_effet sMem aMem == ase aMem of

(invoke n a) )

Mem_state.make

(memVar sMem)

(assign (at sMem) n (embed a))

(rsp sMem) j

(respond n r) )

Mem_state.make

(memVar sMem)

(assign (at sMem) n nil)

(assign (rsp sMem) n nil) j

(update n a) )

Mem_state.make

(perform a (memVar sMem))

(at sMem)

(assign (rsp sMem) n (embed (result a (memVar sMem))))

"

defs

Mem_def:

" Mem == (IOA Mem_asig Mem_start Mem_enablement Mem_effet)"

Figure 7-1: The spei�ation automaton, Mem translated to Isabelle. Notie how the loal

variable a in the update transition is now a full parameter. This requires a hange in how

we math traes for simulation relations.

99



True

)"

isExeution_def2:

"isExeution aut s (at#rest) = (

(enablement_of aut (lastOf aut s rest) at) ^

(isExeution aut s rest)

)"

Now that we have the basi infrastruture, there are three useful aspets of this model

to disuss. First is the pratial view of using this model for proofs. This has already been

presented in Setion 3.5.2. The main bene�t we get is that, like the LP translation, the

transition semantis is free of existential quanti�ers. Seond is the use of this model for the

theory of I/O automata in general. This is a useful disussion beause we want to ensure

that the model an do meta-theoreti proofs, and that it is sound. Third is how this model

relates to simulation relations.

7.2.1 Meta theory for the new I/O automaton model

In this setion, we desribe how the infrastruture we have developed is still adequate for

meta-theoreti proofs as done by Mueller. First we de�ne two funtions on automata: reah-

ability and invariane. We then prove that the standard method of proving IOA invariane

(start ondition; step ondition) is a sound way to show invariane as de�ned here.

In order to de�ne reahability, we �rst de�ne a helper, reahableWith whih says that a

partiular state s is reahable from a partiular state s0 using a partiular exeution alpha:

onstdefs

reahableWith :: "(

0

ation,

0

state)ioa )

0

state )

0

state )

0

ation exeution )

bool"

"reahableWith aut s s0 alpha == (

(s0 : starts_of aut) ^

(isExeution aut s0 alpha) ^

(lastOf aut s0 alpha = s)

)"

Now this helper prediate is used by the de�nition of reahable in saying that there

exists a start state s0 and an exeution alpha that satis�es reahableWith, for a given

state s:

onstdefs

reahable :: "(

0

ation,

0

state)ioa )

0

state ) bool"

"reahable aut s ==

(9 s0 . (9 alpha . reahableWith aut s s0 alpha))

"

Given this de�nition of reahability, we an now de�ne what it means for an invariant to

hold on an automaton. An invariant is a prediate on the states of an automaton. Thus:

onstdefs

invariant :: "[(

0

ation,

0

state)ioa,

0

state)bool℄ ) bool"

" invariant aut P == (8 s. reahable aut s ! P(s))"

An invariant P is an invariant on automaton aut if for all reahable states s the invariant

holds. We now show that the IOA method for proving invariants is sound. We de�ne the

100



start and step onditions holding as follows:

onstdefs

invariant_start :: "[(

0

ation,

0

state)ioa,

0

state ) bool℄ ) bool"

"invariant_start aut I ==

8 state . ( state : ( starts_of aut) ! I state)"

onstdefs

invariant_trans :: "[(

0

ation,

0

state)ioa,

0

state ) bool℄ ) bool"

"invariant_trans aut I ==

8 state at .

((reahable aut state) ^

(I state) ^

(enablement_of aut state at)

)!

I(effets_of aut state at)"

These simply are the standard way we prove invariants in IOA. We then prove the

following main theorem:

theorem invariantI:

assumes p0: " invariant_start aut I"

and p1: " invariant_trans aut I"

shows " invariant aut I"

This is a 200 line proof shown in Appendix A. The reason why the two onditions are

suÆient to prove invariane is the expeted one: a state is reahable if it is a start state

or an be reahed from a valid exeution. If the state is a start state, invariant start

handles this ase. If a state is reahable due to a valid exeution, invariant trans handles

this ase. The seond ase is a bit intriate, as we have to show that the invariant step

ondition holding is suÆient to show that the invariant holds for the entire valid exeution.

We do this by strutural indution on the valid exeution sequene (ase nil, ase Cons).

Thus, we have proven, using only our Isabelle theory of I/O automata, that our method-

ology for proving invariants is sound. This gives a onrete mathematial foundation for the

theorem prover tatis we use on our model.

7.2.2 Simulation relations

The model is also adequate for handling simulation relations. We have not yet performed the

meta-theoreti proofs showing that the IOA method for showing simulation relations implies

trae inlusion (as is proven by hand in Lynh's book [Lyn96℄ and by Mueller in his model).

We simply present here the funtions for de�ning that a prediate is indeed a simulation

relation.

The atual mapping of the states between the implementation and spei�ation automata

for a simulation relation is trivial: we simply use any F that takes in the right automaton

states. For the mapping from the Cahe automaton to the Mem automaton, this is simply:

onsts

FCahe2Mem :: " Cahe_state ) Mem_state ) bool"

defs

FCahe2Mem_def:

"FCahe2Mem sCahe sMem ==

((((Mem.memVar sMem) = (Cahe.memVar sCahe )) ^

((Mem.at sMem) = (Cahe.at sCahe ))) ^

((Mem.rsp sMem) = (Cahe.rsp sCahe )))"

101



The diÆulty is showing that the orresponding exeutions exhibit the same traes. This

is beause of two reasons. First, the ation data types of the two automata are di�erent,

aording to the model. Thus, we annot simply equate the two ations in a strongly typed

language like Isabelle or LP. Seond, we hose to resolve the nondeterminism of post-states

by inluding extra parameters in the ation. Now these parameters may not math between

the automata (e.g. one automaton has nondeterminism, the other does not).

We resolve both of these problems using a tehnique almost idential to the one used by

Bogdanov in the LP translator. We de�ne a new ation type that represents the ations om-

mon to both automata, and two ation mapping funtions that map from eah automaton's

ation type to the ommon type. With the memory example, this is:

datatype Cahe2Mem_ation =

invoke Node Ation j

respond Node Response j

dummy

onsts

mapCahe :: " Cahe_ation ) Cahe2Mem_ation"

mapMem :: " Mem_ation ) Cahe2Mem_ation"

defs

mapCahe_def:

"mapCahe aCahe == ase aCahe of

(invoke n a) ) (invoke n a) j

(respond n r) ) (respond n r) j

(read n a) ) dummy j

(write n a) ) dummy j

(opy n) ) dummy j

(drop n) ) dummy"

defs

mapMem_def:

"mapMem aMem == ase aMem of

(invoke n a) ) (invoke n a) j

(respond n r) ) (respond n r) j

(update n a) ) dummy"

Notie that the internal transitions are mapped to dummy to indiate that there is no need

to ompare traes between them. Unfortunately, the memory example does not have any

external ations with loal parameters. Had update been an external ation, the mapping

would have been:

datatype Cahe2Mem_ation =

invoke Node Ation j

respond Node Response j

update Node

...

defs

mapMem_def:

"mapMem aMem == ase aMem of

(invoke n a) ) (invoke n a) j

(respond n r) ) (respond n r) j

(update n a) ) (update n)"

102



Given this mapping funtion, we an now fully speify what it means in Isabelle for two

automata to have a forward simulation relation.

A forward simulation between two automata is de�ned as follows:

onstdefs isFwdSim :: "(

0

ationL,

0

stateL) ioa ) (

0

ationU,

0

stateU) ioa )

(

0

stateL )

0

stateU ) bool) )

(

0

ationL )

0

ation ) )

(

0

ationU )

0

ation ) )

bool"

"isFwdSim autL autU relation mapL mapU ==

(isFwdSim_start autL autU relation)

^ (isFwdSim_trans autL autU relation mapL mapU)

"

The isFwdSim prediate takes in two automata, the atual simulation relation, and the

two mapping funtions and says that two onditions have to hold: the start and step ondi-

tions. The start ondition is de�ned as expeted:

onstdefs isFwdSim_start ::

"(

0

ationL,

0

stateL) ioa ) (

0

ationU,

0

stateU) ioa )

(

0

stateL )

0

stateU ) bool) )

bool"

"isFwdSim_start autL autU relation ==

(8 s0. s0: starts_of autL ! (9 u0 . (u0 : starts_of autU) ^

(relation s0 u0)

))

"

This is preisely the de�nition we use in LP or on paper: for all start states of the

implementation automaton, there exists a start state of the spei�ation automaton that

satis�es the relation.

The step ondition is also as expeted:

onstdefs isFwdSim_trans ::

"(

0

ationL,

0

stateL) ioa ) (

0

ationU,

0

stateU) ioa )

(

0

stateL )

0

stateU ) bool) )

(

0

ationL,

0

ation) ationMap )

(

0

ationU,

0

ation) ationMap )

bool"

"isFwdSim_trans autL autU relation mapL mapU ==

(8 s at u. ( enablement_of autL s at) ^

(relation s u) ^

(reahable autL s) !

(9 beta . orrespExe autL autU relation mapL mapU s u [at℄ beta

)

)

"

For all implementation ations at, there exists an exeution beta of the spei�ation au-

tomaton suh that at and beta are orresponding exeutions. The orrespondene relation

is given by:

onstdefs orrespExe ::

"(

0

ationL,

0

stateL) ioa ) (

0

ationU,

0

stateU) ioa )

(

0

stateL )

0

stateU ) bool) )

(

0

ationL,

0

ation) ationMap )

103



(

0

ationU,

0

ation) ationMap )

0

stateL )

0

stateU )

(

0

ationL exeution) ) (

0

ationU exeution) )

bool"

"orrespExe autL autU relation mapL mapU s u alpha beta ==

(map mapU (traeOf autU beta)) = (map mapL (traeOf autL alpha))

^ (isExeution autU u beta)

^ (relation (lastOf autL s alpha) (lastOf autU u beta))

"

This gives the three requirements of the step ondition: trae equality, valid exeution,

and that the last states relate. The map funtion is the standard mapping funtion that

applies its �rst argument onto every element of its seond argument. In this ase, we map

the ation mapping funtion onto the automaton trae, whih is a list of ations.

7.3 Assessment

From out ase studies, we have seen that the new prover model for I/O automata, based

on Bogdanov's work, is adequate infrastruture for enating pratial proofs of simulation

relations in Isabelle. We have also seen in Chapter 3 that the de�nitions have been useful

for generating proof tatis. The usefulness of this model for proofs stems from restriting

nondeterminism to the ations of a transition, rather than allowing it also in the post-state.

In the future, it would be helpful to prove the soundness of proving simulation relations in

Isabelle: showing that the simulation relation start and step onditions imply trae inlusion.

This is a meta-theoreti proof. It is likely that the mapping funtion will need to be used in

the de�nition of trae inlusion.

104



Chapter 8

Disussion

8.1 Further researh

There are at least four ways to extend this researh: improving dynami invariant detetion,

generating better proof tatis, programming in the prover, and seleting invariants for use

in proofs.

8.1.1 Improved dynami invariant detetion

The Daikon dynami invariant detetor ould be improved, in order to �nd more lemmas for

proofs and inrease human insight regarding program behavior. A major problem in dynami

invariant detetion is hoosing a grammar of invariants that is useful for programmers but

does not generate an exessive amount of output. One way to hoose a grammar would be

to take boolean expressions appearing in IOA program ode as templates in the grammar.

Sine these templates ome from the semantis of the program, they may be likelier to be

useful invariants. For example, in the Paxos ase study (Setion 4.3), Inv4 losely resembles

the preondition for the assignVal transition.

8.1.2 Improved proof sripts from automaton ode

Stati analysis of I/O automata ould generate more detailed proof sripts so that prover

an do more work without human intervention. For example, in performing ase splits, we

urrently examine if statements in the annotations for paired exeution, but we ould also

look at if statements within the e�ets ode of the automaton itself.

8.1.3 Programming in the prover language

We an further extend our tools to use the Isabelle/HOL logi system and theorem prover

[Pau93, Gor89℄. Isabelle is a programmable prover, so we ould use its programming lan-

guage, ML, to derive better tatis. Presently, we have the IOA translator to Isabelle generate

the proof sript | using ML to drive the proof may be more produtive. Sine Isabelle has a

105



larger user ommunity and a more extensive set of libraries, this may make our methodology

aessible to more people.

8.1.4 Filtering invariants with automated heuristis for proofs

One of the stages in our method that involves human intervention is having to manually

selet invariants to use in a proof. We are in searh of true and useful invariants when we

perform this manual seletion. Here we suggest a way to automate this proess. Invariants

output by dynami invariant detetion an be lassi�ed as follows:

� True and useful. These are later used in veri�ation in theorem provers. There may

be more than one useful set of invariants that are used in veri�ation. We want just

one suh set.

� True and not useful. These may be useful for others, but are not used as lemmas in

our veri�ation proof.

� False.

However, this lassi�ation is generally undeidable. We expet to rely on a ombination

of human lassi�ation and automati invariant �ltering algorithms to ompensate. Human

lassi�ation is still human intervention, but the intervention is greatly redued ompared to

using the prover alone, beause the programmer no longer has to ome up with the invariants.

In proving invariants true with the prover, the main diÆulty is the dependenies between

di�erent invariants. It ould be that invariant I

A

is true, but annot be proved without

another invariant I

B

in the indutive assumption. It ould also be that I

A

is false, but holds

true I

B

is true. We suggest an algorithm based on one by Rintanen [Rin00℄ that relies on

arriving at �x points:

Start with some set Inv of invariants to �lter and hek for truth. Chek if

invariants in Inv hold on the start state of the automaton. Remove any invariants

in Inv that fail. Assume the invariants in Inv hold for some state a in the

automaton. For all enabled ations from a to a', prove that they hold for a'.

Remove any invariants in Inv that fail. Repeat this proess with the new Inv

until the members of Inv no longer hange. At this �x point, all the invariants

in Inv are true.

One we have a set of true invariants, they an be easily heked to see whih are needed

to prove a simulation relation (or any other property):

Assume the simulation relation F(a, b) holds. Also assume I holds for a. At-

tempt to prove the simulation relation holds for a reahable state a' from a by

showing the standard witness � from b to b'. Temporarily remove one invariant

i in Inv and test if the simulation relation an still be proved somehow. If so,

permanently remove i from Inv. Attempt this removal proess on eah invariant.

106



The set Inv that remains is true, sine we started with a true set. It is \minimal" in the

sense that no subset of it will result in a proof, using a prover with the same apabilities.

There may be an alternative set of invariants that is of a smaller size, but we are interested

in only �nding some minimal set. Further, some provers may be able to identify whih

invariants were used in a proof, so the seond algorithm may not be neessary.

We ould implement both algorithms presented here using more automated proving meth-

ods built into Isabelle.

8.2 Conlusion

The purpose of software veri�ation is to ensure programmers and users that the systems

they develop and employ behave orretly. In this thesis, we takled the problem of verify-

ing distributed or onurrent systems, whih are often in�nite state and nondeterministi.

Theorem provers an be used to reason soundly about the orretness of suh systems. Suh

mahine-heked proofs provide more assurane of orretness than hand proofs, but inur

a ost in terms of human interation. The methodology presented in this thesis redues the

human e�ort required in the theorem prover for verifying safety properties of distributed

algorithms modeled formally as I/O automata.

Our methodology integrates test exeution|running a distributed algorithm with a

test suite on a uniproessor|with theorem proving. Exploratory analysis based on suh

exeutions is a well-known tehnique for building intuition and performing inexpensive sanity

heks. Our methodology extends the use of run-time tehniques in two ways.

First, we use a dynami invariant detetor to generalize over observed exeutions and

report logial properties that are likely to be true of the program. This tehnique proposes

properties that would otherwise have to be synthesized by a person. Suh properties an

reveal unexpeted properties of a program, and they an buttress understanding more ef-

fetively than an be done merely examining exeution traes. Most importantly for our

methodology, suh properties an provide invariants and lemmas that simplify proofs and

redue theorem proving e�ort.

Seond, we leverage the e�ort used to build good test suites to produe sripts for theorem

provers, whih mirror the form of the sripts for driving paired exeutions. These tatis

ombine with our knowledge of proofs of all I/O automata to provide the proof outline in a

prover.

We have illustrated the use of the methodology, and of the toolset that supports the

methodology, by means of three ase studies: Lamport's Paxos protool, distributed strong

ahing memory, and Peterson's 2-proess mutual exlusion algorithm.

In order to eÆiently implement our methodology, it was neessary to extend the three

tools employed. We modi�ed the IOA Simulator to allow for simulation of some quanti�ed

expressions, and so that its semantis mathed that of the tools that translate IOA into

prover languages. We formalized the orretness properties of dynami invariant detetion,

and modi�ed the Daikon tool to make it more salable via two optimizations. Lastly, we

developed a new prover model for I/O automata in the Isabelle/HOL system based on

Bogdanov's work with LP and proved the soundness of our invariant proving methodology.

The prover model failitates generation of proof tatis in our methodology.

107



108



Appendix A

Soundness proof of invariant method

in Isabelle

The following is Isabelle ode showing that in the Isabelle prover model, our method for

proving invariants is sound. We show that proving the start ondition and the step ondition

for invariants, invariant start and invariant trans for an automaton is suÆient to

prove invariane (as de�ned in Isabelle). Invariane is de�ned for a prediate by saying that

the prediate holds on all reahable states. Along the way, we de�ne a few helper lemmas.

onstdefs

invariant_start :: "[(

0

ation,

0

state)ioa,

0

state)bool℄ ) bool"

"invariant_start aut I ==

8 state . ( state : ( starts_of aut) -! I state)"

onstdefs

invariant_trans :: "[(

0

ation,

0

state)ioa,

0

state)bool℄ ) bool"

"invariant_trans aut I ==

8 state at .

((reahable aut state) ^

(I state) ^

(enablement_of aut state at)

)-!

I(effets_of aut state at)"

theorem exeutionStep:

assumes a0: " isExeution automaton s alpha"

and a1: " enablement_of automaton (lastOf automaton s alpha) at"

shows "isExeution automaton s (at#alpha)"

apply (simp add: isExeution_def2 prems)

done

theorem lastOfStep:

"lastOf automaton s (at#alpha) =

effets_of automaton (lastOf automaton s alpha) at"

apply (simp add: lastOf_def)

done

theorem reahableStep:

"[ j

109



reahable automaton s;

enablement_of automaton s at

j ℄ =)

reahable automaton (effets_of automaton s at)"

apply (simp add: reahable_def)

proof -

assume

a0: "9 s0. Ex (reahableWith automaton s s0)"

and a1: " enablement_of automaton s at"

def s0 == "SOME s0 . Ex (reahableWith automaton s s0)"

have t0: "Ex ( reahableWith automaton s s0)"

apply (simp add: s0_def a0 existeneSome)

apply (rule existeneSome)

apply (simp add: a0)

done

have t1: "9 u. reahableWith automaton s s0 u"

apply (simp add: t0)

done

def alpha == "SOME u . reahableWith automaton s s0 u"

have t2: " reahableWith automaton s s0 alpha"

apply (simp add: alpha_def t1)

done

have a2: "s0 : starts_of automaton"

and a3: " isExeution automaton s0 alpha"

and a4: "lastOf automaton s0 alpha = s"

apply (insert t2)

apply (simp_all add: reahableWith_def)

done

show "9 s0. Ex ( reahableWith automaton (effets_of automaton s at) s0)"

proof (rule exI)+

show " reahableWith automaton (effets_of automaton s at) s0 (at#alpha)"

apply (insert t2 a1)

apply (simp add: reahableWith_def)

done

qed

qed

theorem exeutionStep_bak:

"isExeution aut s0 (at#alpha) -! isExeution aut s0 alpha"

apply (auto)

done

theorem invariantI2:

assumes p0: " invariant_start aut I"

and p1: " invariant_trans aut I"

and p2: "s0 : ( starts_of aut)"

shows

"isExeution aut s0 alpha -! I (lastOf aut s0 alpha)"

proof (indut alpha)

have f1: "I s0"

proof -

have f1_1: "8 state. ( state : starts_of aut -! I state)"

by (insert p0, simp add: invariant_start_def)

110



show "?thesis"

by (insert f1_1, simp add: p2)

qed

{ase Nil

show "? ase"

by (simp add: lastOf_def f1)

}

{ase Cons

show "? ase"

proof (safe)

assume a0: " isExeution aut s0 (a_ # list_)"

show "I (lastOf aut s0 (a_ # list_))"

proof -

have

a1: " enablement_of aut (lastOf aut s0 list_) a_"

and a2: " isExeution aut s0 list_"

apply (insert a0)

apply (auto)

done

have f2: "I (lastOf aut s0 list_)"

apply (simp add: Cons a2)

done

have f3: "reahable aut (lastOf aut s0 list_)"

apply (simp add: reahable_def)

apply (rule exI, rule exI)

proof -

show "reahableWith aut (lastOf aut s0 list_) s0 list_"

apply (simp add: reahableWith_def)

apply (simp add: p2 a1 a2)

done

qed

have f4: "reahable aut (lastOf aut s0 (a_ # list_))"

apply (simp add: reahable_def)

apply (rule exI, rule exI)

proof -

show "reahableWith aut

(effets_of aut (lastOf aut s0 list_) a_)

s0 (a_ # list_)"

apply (simp add: reahableWith_def)

apply (simp add: p2 a1 a2)

done

qed

have f5: "!! state at.

[ j reahable aut state ^

I state ^ enablement_of aut state at j ℄

=) I (effets_of aut state at)"

apply (insert p1)

apply (simp add: invariant_trans_def)

done

show "?thesis"

apply (auto)

apply (insert f5 f3 f2 a1)

apply (auto) (* Booyeah, let

0

s see some unifiation! *)

111



done

qed

qed

}

qed

theorem invariantI1:

assumes p0: " invariant_start aut I"

and p1: " invariant_trans aut I"

and p2: "s0 : ( starts_of aut)"

and p3: " isExeution aut s0 alpha"

shows

"I (lastOf aut s0 alpha)"

apply (simp add: invariantI2 p0 p1 p2 p3)

done

theorem invariantI:

assumes p0: " invariant_start aut I"

and p1: " invariant_trans aut I"

shows " invariant aut I"

apply (simp add: invariant_def)

apply (auto)

proof -

fix s

show "reahable aut s =) I s "

apply (simp add: reahable_def)

proof -

assume a0: "9 s0. Ex (reahableWith aut s s0)"

show "?thesis"

proof -

def s0 == "SOME s0 . Ex (reahableWith aut s s0)"

have t0: "Ex ( reahableWith aut s s0)"

apply (simp add: s0_def a0 existeneSome)

apply (rule existeneSome)

apply (simp add: a0)

done

have t1: "9 u. reahableWith aut s s0 u"

apply (simp add: t0)

done

def alpha == "SOME u . reahableWith aut s s0 u"

have f1: " reahableWith aut s s0 alpha"

apply (simp add: alpha_def t1)

done

have f2: "s0 : starts_of aut"

and f3: " isExeution aut s0 alpha"

and f4: "lastOf aut s0 alpha = s"

apply (insert f1)

apply (simp_all add: reahableWith_def)

done

show "I s"

apply (insert f4)

apply (auto)

112



apply (rule invariantI1)

apply (simp_all add: f2 f3 f4 p0 p1)

done

qed

qed

qed

113



114



Appendix B

The Paxos simulation relation proof

in Isabelle

The following is the automatially generated proof outline and tatis for the simulation

relation proof from the Global1 to Cons automaton in the Paxos ase study.

(* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *)

(* %% Simulation from Global1 to Cons *)

(* %% *)

theory Global12Cons = Global1 + Cons:

datatype Global12Cons_ation =

init Node Value j

fail Node j

deide Node Value j

dummy

onsts

mapGlobal1 :: " Global1_ation ) Global12Cons_ation"

mapCons :: " Cons_ation ) Global12Cons_ation"

FGlobal12Cons :: " Global1_state ) Cons_state ) bool"

defs

mapGlobal1_def:

"mapGlobal1 aGlobal1 == ase aGlobal1 of

(init i v) ) (init i v) j

(fail i) ) (fail i) j

(deide i v) ) (deide i v) j

(makeBallot b) ) dummy j

(abstain i B) ) dummy j

(assignVal b v) ) dummy j

(vote i b) ) dummy j

(internalDeide b) ) dummy"

defs

mapCons_def:

"mapCons aCons == ase aCons of

(init i v) ) (init i v) j

(fail i) ) (fail i) j

115



(deide i v) ) (deide i v) j

(hooseVal v) ) dummy"

defs

FGlobal12Cons_def:

"FGlobal12Cons sGlobal1 sCons == (((((((Cons.initiated sCons) =

(Global1.initiated sGlobal1)) & ((Cons.proposed sCons) =

(Global1.proposed sGlobal1))) & (( Cons.deided sCons) =

(Global1.deided sGlobal1))) & (( Cons.failed sCons) =

(Global1.failed sGlobal1))) & (8 v:: Value . ((9 b:: Ballot . ((b

2 (Global1.sueeded sGlobal1)) & ((sub (Global1.val sGlobal1) b) =

(embed v)))) -! (v 2 (Cons.hosen sCons ))))) & (8 v:: Value . ((v

2 (Cons.hosen sCons )) -! (9 b:: Ballot . ((b 2 (Global1.sueeded

sGlobal1)) & ((sub (Global1.val sGlobal1) b) = (embed v)))))))"

onstdefs

startRelGlobal12Cons :: " Global1_state ) Cons_state"

"startRelGlobal12Cons sGlobal1 == Cons_state.make (Global1.initiated sGlobal1)

(Global1.proposed sGlobal1) {} ( Global1.deided sGlobal1) (Global1.failed sGlobal1)"

theorem FGlobal12Cons_start:

"isFwdSim_start Global1 Cons FGlobal12Cons"

apply (rule isFwdSim_startRule)

proof (- )

fix sGlobal1

assume a0: " sGlobal1: starts_of Global1"

show "9 sCons . sCons: starts_of Cons & FGlobal12Cons sGlobal1 sCons"

proof (rule exI)

show "( startRelGlobal12Cons sGlobal1) 2 starts_of Cons &

FGlobal12Cons sGlobal1 ( startRelGlobal12Cons sGlobal1)"

apply (simp add: startRelGlobal12Cons_def Cons_def

Cons_start_def FGlobal12Cons_def Cons_state.make_def)

apply (insert a0)

apply (auto )

apply (simp_all add: Global1_def Global1_start_def)

done

qed

qed

(* For enabled ( Global1.init i v) *)

theorem FGlobal12Cons_trans_init:

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.init i v)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " reahable Global1 sGlobal1"

shows "9 betaCons . orrespExe Global1 Cons FGlobal12Cons

mapGlobal1 mapCons sGlobal1 sCons [ ( Global1.init i v)℄ betaCons"

proof (- )

(* Proof entry available *)

def betaCons == "[( Cons.init i v)℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

116



show "orrespExe Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.init i v)℄ betaCons"

apply (simp add: orrespExe_def)

apply (insert p0 p1)

apply (auto )

(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def

Global1_def Cons_def FGlobal12Cons_def prems Let_def

asig_internals_def Global1_asig_def Cons_asig_def

Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *) apply (simp add: traeOf_def p0 p1

betaCons_def Global1_def Cons_def FGlobal12Cons_def prems

Global1_enablement_def Cons_enablement_def Global1_effet_def

Cons_effet_def Global1_state.make_def Cons_state.make_def)

(* For posteffet relation: *) apply (simp add: traeOf_def p0 p1

betaCons_def Global1_def Cons_def FGlobal12Cons_def prems

Global1_effet_def Cons_effet_def Global1_state.make_def

Cons_state.make_def) done qed qed

(* For enabled ( Global1.fail i) *)

theorem FGlobal12Cons_trans_fail:

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.fail i)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " reahable Global1 sGlobal1"

shows "9 betaCons . orrespExe Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.fail i)℄ betaCons"

proof (- )

(* Proof entry available *)

def betaCons == "[( Cons.fail i)℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

show "orrespExe Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.fail i)℄ betaCons"

apply (simp add: orrespExe_def)

apply (insert p0 p1)

apply (auto )

(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def

Global1_def Cons_def FGlobal12Cons_def prems Let_def

asig_internals_def Global1_asig_def Cons_asig_def

Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

117



(* For posteffet relation: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def Cons_def

FGlobal12Cons_def prems Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

done

qed

qed

(* For enabled ( Global1.deide i v b) *)

theorem FGlobal12Cons_trans_deide:

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.deide i v b)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " reahable Global1 sGlobal1"

shows "9 betaCons . orrespExe Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.deide i v b)℄ betaCons"

proof (- )

(* Proof entry available *)

def betaCons == "[( Cons.deide i v)℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

show "orrespExe Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.deide i v b)℄ betaCons"

apply (simp add: orrespExe_def)

apply (insert p0 p1)

apply (auto )

(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def

Global1_def Cons_def FGlobal12Cons_def prems Let_def

asig_internals_def Global1_asig_def Cons_asig_def

Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

(* For posteffet relation: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def Cons_def

FGlobal12Cons_def prems Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

done

qed

qed

(* For enabled ( Global1.makeBallot b) *)

theorem FGlobal12Cons_trans_makeBallot:

assumes

118



p0: " enablement_of Global1 sGlobal1 ( Global1.makeBallot b)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " reahable Global1 sGlobal1"

shows "9 betaCons . orrespExe Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.makeBallot b)℄ betaCons"

proof (- )

(* Proof entry available *)

def betaCons == "[℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

show "orrespExe Global1 Cons FGlobal12Cons mapGlobal1 mapCons sGlobal1

sCons [ ( Global1.makeBallot b)℄ betaCons"

apply (simp add: orrespExe_def)

apply (insert p0 p1)

apply (auto )

(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def

Global1_def Cons_def FGlobal12Cons_def prems Let_def

asig_internals_def Global1_asig_def Cons_asig_def

Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

(* For posteffet relation: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def Cons_def

FGlobal12Cons_def prems Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

done

qed

qed

(* For enabled ( Global1.abstain i B) *)

theorem FGlobal12Cons_trans_abstain:

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.abstain i B)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " reahable Global1 sGlobal1"

shows "9 betaCons . orrespExe Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.abstain i B)℄ betaCons"

proof (- )

(* Proof entry available *)

def betaCons == "[℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

show "orrespExe Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.abstain i B)℄ betaCons"

apply (simp add: orrespExe_def)

119



apply (insert p0 p1)

apply (auto )

(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def

Global1_def Cons_def FGlobal12Cons_def prems Let_def

asig_internals_def Global1_asig_def Cons_asig_def

Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

(* For posteffet relation: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def Cons_def

FGlobal12Cons_def prems Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

done

qed

qed

(* For enabled ( Global1.assignVal b v) *)

theorem FGlobal12Cons_trans_assignVal:

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.assignVal b v)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " reahable Global1 sGlobal1"

shows "9 betaCons . orrespExe Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.assignVal b v)℄ betaCons"

proof (- )

(* Proof entry available *)

show "?thesis"

proof (ases "(:(b 2 (Global1.sueeded sGlobal1)))")

{

(* True ase *)

ase True

def betaCons == "[℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

show "orrespExe Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.assignVal b v)℄ betaCons"

apply (simp add: orrespExe_def)

apply (insert p0 p1)

apply (auto )

(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def Cons_def

FGlobal12Cons_def prems Let_def asig_internals_def Global1_asig_def

Cons_asig_def Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

120



(* For enablement: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

(* For posteffet relation: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def Cons_def

FGlobal12Cons_def prems Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

done

qed

}

{

(* Elseif ase *)

ase False

show "?thesis"

proof (ases "(9 b:: Ballot . ((b 2 (Global1.sueeded sGlobal1)) &

(:((sub (Global1.val sGlobal1) b) = nil))))")

{

(* True ase *)

ase True

def betaCons == "[℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

show " orrespExe Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.assignVal b v)℄ betaCons"

apply (simp add: orrespExe_def)

apply (insert p0 p1)

apply (auto )

(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Let_def asig_internals_def

Global1_asig_def Cons_asig_def Global1_internal_def

Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

(* For posteffet relation: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

done

qed

}

{

(* False ase *)

ase False

121



def betaCons == "[( Cons.hooseVal v)℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

show " orrespExe Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.assignVal b v)℄ betaCons"

apply (simp add: orrespExe_def)

apply (insert p0 p1)

apply (auto )

(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Let_def asig_internals_def

Global1_asig_def Cons_asig_def Global1_internal_def

Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

(* For posteffet relation: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effet_def

Cons_effet_def Global1_state.make_def Cons_state.make_def)

done

qed

}

qed

}

qed

qed

(* For enabled ( Global1.vote i b) *)

theorem FGlobal12Cons_trans_vote:

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.vote i b)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " reahable Global1 sGlobal1"

shows "9 betaCons . orrespExe Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.vote i b)℄ betaCons"

proof (- )

(* Proof entry available *)

def betaCons == "[℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

show "orrespExe Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.vote i b)℄ betaCons"

apply (simp add: orrespExe_def)

apply (insert p0 p1)

apply (auto )

122



(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def

Global1_def

Cons_def FGlobal12Cons_def prems Let_def

asig_internals_def Global1_asig_def Cons_asig_def

Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

(* For posteffet relation: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effet_def

Cons_effet_def Global1_state.make_def Cons_state.make_def)

done

qed

qed

(* For enabled ( Global1.internalDeide b) *)

theorem FGlobal12Cons_trans_internalDeide :

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.internalDeide b)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " reahable Global1 sGlobal1"

shows "9 betaCons . orrespExe Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.internalDeide b)℄ betaCons"

proof (- )

(* Proof entry available *)

show "?thesis"

proof (ases "(b 2 (Global1.sueeded sGlobal1))")

{

(* True ase *)

ase True

def betaCons == "[℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

show "orrespExe Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.internalDeide b)℄ betaCons"

apply (simp add: orrespExe_def)

apply (insert p0 p1)

apply (auto )

(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Let_def asig_internals_def

Global1_asig_def Cons_asig_def Global1_internal_def

Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

123



apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

(* For posteffet relation: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effet_def

Cons_effet_def Global1_state.make_def Cons_state.make_def)

done

qed

}

{

(* Elseif ase *)

ase False

show "?thesis"

proof (ases "((sub (Global1.val sGlobal1) b) = nil)")

{

(* True ase *)

ase True

def betaCons == "[℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

show " orrespExe Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.internalDeide b)℄ betaCons"

apply (simp add: orrespExe_def)

apply (insert p0 p1)

apply (auto )

(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Let_def asig_internals_def

Global1_asig_def Cons_asig_def Global1_internal_def

Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

(* For posteffet relation: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effet_def

Cons_effet_def Global1_state.make_def Cons_state.make_def)

done

qed

}

{

(* Elseif ase *)

ase False

show "?thesis"

proof (ases "(9 b:: Ballot . ((b 2 (Global1.sueeded sGlobal1)) &

124



((sub (Global1.val sGlobal1) b) 6= nil)))")

{

(* True ase *)

ase True

def betaCons == "[℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

show "orrespExe Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.internalDeide b)℄ betaCons"

apply (simp add: orrespExe_def)

apply (insert p0 p1)

apply (auto )

(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Let_def asig_internals_def

Global1_asig_def Cons_asig_def Global1_internal_def

Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

(* For posteffet relation: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

done

qed

}

{

(* False ase *)

ase False

def betaCons == "[( Cons.hooseVal (val (sub (Global1.val sGlobal1) b)))℄ :: Cons_ation list"

show "?thesis"

proof (rule exI)

show "orrespExe Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.internalDeide b)℄ betaCons"

apply (simp add: orrespExe_def)

apply (insert p0 p1)

apply (auto )

(* For trae equality: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Let_def asig_internals_def

Global1_asig_def Cons_asig_def Global1_internal_def

Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

125



Cons_enablement_def Global1_effet_def Cons_effet_def

Global1_state.make_def Cons_state.make_def)

(* For posteffet relation: *)

apply (simp add: traeOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effet_def

Cons_effet_def Global1_state.make_def Cons_state.make_def)

done

qed

}

qed

}

qed

}

qed

qed

theorem FGlobal12Cons_trans:

"isFwdSim_trans Global1 Cons FGlobal12Cons mapGlobal1 mapCons"

proof (rule isFwdSim_transRule)

fix sGlobal1 aGlobal1 sCons

assume

p0: " enablement_of Global1 sGlobal1 aGlobal1"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " reahable Global1 sGlobal1"

show "9 betaCons . orrespExe Global1 Cons FGlobal12Cons

mapGlobal1 mapCons sGlobal1 sCons [ aGlobal1℄ betaCons"

apply (ases aGlobal1)

apply (insert prems)

apply (simp_all add: FGlobal12Cons_trans_init)

apply (simp_all add: FGlobal12Cons_trans_fail)

apply (simp_all add: FGlobal12Cons_trans_deide)

apply (simp_all add: FGlobal12Cons_trans_makeBallot)

apply (simp_all add: FGlobal12Cons_trans_abstain)

apply (simp_all add: FGlobal12Cons_trans_assignVal)

apply (simp_all add: FGlobal12Cons_trans_vote)

apply (simp_all add: FGlobal12Cons_trans_internalDeide )

done

qed

126



Bibliography

[AS87℄ Bowen Alpern and Frederik Shneider. Reognizing safety and liveness. Dis-

tributed Computing, pages 117{126, 1987.

[Att99℄ Paul C. Attie. Liveness preserving simulation relations. In Proeedings of the

ACM Symposium on Distributed Computing (PODC), Atlanta, GA, 1999.

[BGL02℄ Andrej Bogdanov, Stephen J. Garland, and Nany A. Lynh. Mehanial

translation of I/O automaton spei�ations into �rst-order logi. In 22nd IFIP

WG 6.1 International Conferene on Formal Tehniques for Networked and

Distributed Systems, Houston, TX, November 2002.

[Bog00℄ Andrej Bogdanov. Formal veri�ation of simulations between I/O automata.

Master of engineering thesis, Massahusetts Institute of Tehnology, Mas-

sahusetts Institute of Tehnology, Cambridge Massahusetts, September 2000.

[CC77a℄ Patrik Cousot and Radhia Cousot. Abstrat interpretation: a uni�ed lattie

model for stati analysis of programs by onstrution or approximation of

�xpoints. In Proeedings of the Fourth Annual ACM Symposium on Priniples

of Programming Languages, pages 238{252, Los Angeles, CA, 1977.

[CC77b℄ Patrik M. Cousot and Radhia Cousot. Automati synthesis of optimal in-

variant assertions: Mathematial foundations. In Proeedings of the ACM

Symposium on Arti�ial Intelligene and Programming Languages, pages 1{

12, Rohester, NY, August 1977.

[CC92℄ P. Cousot and R. Cousot. Comparing the Galois onnetion and widen-

ing/narrowing approahes to abstrat interpretation. In M. Bruynooghe and

M. Wirsing, editors, Proeedings of the Fourth International Symposium on

Programming Language Implementation and Logi Programming, pages 269

{295, Leuven, Belgium, 1992. LNCS 631, Springer-Verlag.

[CGP99℄ E. M. Clarke, Orna Grumberg, and Doron Peled. Model Cheking. MIT Press,

1999.

[Che98℄ Anna E. Chefter. A simulator for the IOA language, May 1998. Master of

Engineering and Bahelor of Siene in Computer Siene and Engineering

Thesis.

127



[DDLE02℄ Nii Dodoo, Alan Donovan, Lee Lin, and Mihael D. Ernst. Seleting prediates

for impliations in program analysis, Marh 16, 2002.

[Dea00℄ Laura G. Dean. Improved simulation of I/O automata. Master of engineer-

ing thesis, Massahusetts Institute of Tehnology, Massahusetts Institute of

Tehnology, Cambridge Massahusetts, September 2000.

[Dod02℄ Nii Dodoo. Seleting prediates for onditional invariant detetion using lus-

ter analysis. Master's thesis, MIT Department of Eletrial Engineering and

Computer Siene, Cambridge, MA, 2002.

[DPLS

+

02℄ Roberto De Priso, Nany Lynh, Alex Shvartsman, Niole Immorlia, and

Toh Ne Win. A Formal Treatment of Lamport's Paxos Algorithm, 2002. In

progress.

[ECGN00℄ Mihael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin.

Quikly deteting relevant program invariants. In ICSE 2000, Proeedings of

the 22nd International Conferene on Software Engineering, pages 449{458,

Limerik, Ireland, June 7{9, 2000.

[ECGN01a℄ Mihael Ernst, Jake Cokrell, William G. Grisworld, and David Notkin. Dy-

namially disovering likely program invariants to support program evolution.

IEEE Transations on Software Engineering, 27(2):1{25, 2001.

[ECGN01b℄ Mihael D. Ernst, Jake Cokrell, William G. Griswold, and David Notkin. Dy-

namially disovering likely program invariants to support program evolution.

IEEE Transations on Software Engineering, 27(2):1{25, February 2001. A

previous version appeared in ICSE '99, Proeedings of the 21st International

Conferene on Software Engineering, pages 213{224, Los Angeles, CA, USA,

May 19{21, 1999.

[GC96℄ Gerald C. Gannod and Betty H.C. Cheng. Strongest postondition semantis

as the formal basis for reverse engineering. Journal of Automated Software

Engineering, 3(1/2):139{164, June 1996.

[GG91℄ Stephen Garland and John Guttag. A guide to LP, the Larh Prover. Tehnial

report, DEC Systems Researh Center, 1991. Updated version avaliable at

URL http://nms.ls.mit.edu/Larh/LP.

[GHG

+

93℄ John V. Guttag, James J. Horning, S. J. Garland, K. D. Jones, A. Modet, and

J. M. Wing. Larh: Languages and Tools for Formal Spei�ation. Texts and

Monographs in Computer Siene. Springer-Verlag, New York, 1993.

[GL00a℄ Stephen J. Garland and Nany A. Lynh. Using I/O automata for developing

distributed systems. In Gary T. Leavens and Murali Sitaraman, editors, Foun-

dations of Component-Based Systems, pages 285{312. Cambridge University

Press, 2000.

128



[GL00b℄ Stephen J. Garland and Nany A. Lynh. Using I/O automata for developing

distributed systems. In Gary T. Leavens and Murali Sitaraman, editors, Foun-

dations of Component-Based Systems, hapter 13, pages 285{312. Cambridge

University Press, USA, 2000.

[Gol90a℄ Kenneth J. Goldman. Distributed Algorithm Simulation using Input/Output

Automata. PhD thesis, Department of Eletrial Engineering and Computer

Siene, Massahusetts Institute of Tehnology, Cambridge, MA, July 1990.

Also,[Gol90b℄.

[Gol90b℄ Kenneth J. Goldman. Distributed algorithm simulation using input/output au-

tomata. Tehnial Report MIT/LCS/TR-490, MIT Laboratory for Computer

Siene, Cambridge, MA, September 1990. Also, PhD Thesis [Gol90a℄.

[Gor89℄ M. J. C. Gordon. HOL: A proof generating system for higher order logi. In

G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware

Veri�ation and Automated Theorem Proving, pages 73{128. Springer-Verlag,

1989.

[Gro02℄ Alex Groe. Personal orrespondane. Personal orrespondane, 2002.

[Har02℄ Mihael Harder. Improving test suites via generated spei�ations. Tehnial

Report 848, MIT Laboratory for Computer Siene, Cambridge, MA, June 4,

2002. Revision of author's Master's thesis.

[HL02℄ Sudheendra Hangal and Monia S. Lam. Traking down software bugs us-

ing automati anomaly detetion. In ICSE'02, Proeedings of the 24th Inter-

national Conferene on Software Engineering, Orlando, Florida, May 22{24,

2002.

[JR00℄ Daniel Jakson and Martin Rinard. The future of software analysis. In The

Future of Software Engineering, Limerik, Ireland, 2000.

[KCD

+

02℄ Dilsun Kirli, Anna Chefter, Laura Dean, Stephen J. Garland, Nany A. Lynh,

Toh Ne Win, and Antonio Ramirez-Robredo. Simulating nondeterministi

systems at multiple levels of abstration. In Proeedings of Tools Day 2002,

pages 44{59, Brno, Czeh Republi, August 2002. Also available as Masaryk

University Tehnial Report FI MU-RS-2002-05.

[KEGN01℄ Yoshio Kataoka, Mihael D. Ernst, William G. Griswold, and David Notkin.

Automated support for program refatoring using invariants. In ICSM 2001,

Proeedings of the International Conferene on Software Maintenane, pages

736{743, Florene, Italy, November 6{10, 2001.

[Lam74℄ Leslie Lamport. A new solution of dijkstra's onurrent programming problem.

In Communiations of the ACM, 1974.

129



[Lam98℄ Leslie Lamport. The part-time parliament. ACM Transations on Computer

Systems, 16(2):133{169, May 1998.

[LT89℄ Nany A. Lynh and Mark R. Tuttle. An introdution to Input/Output au-

tomata. CWI-Quarterly, 2(3):219{246, September 1989.

[Luh02℄ Christopher Luhrs. Translating from IOA to Isabelle. http://www.mit.edu/

people/luhrs/index.html, August 2002.

[LV95a℄ Nany Lynh and Frits Vaandrager. Forward and bakward simulations| Part

I: Untimed systems. Information and Computation, 121(2):214{233, Septem-

ber 1995.

[LV95b℄ Nany A. Lynh and Frits W. Vaandrager. Forward and bakward simulations

{ part I: Untimed systems. Information and Computation, 121(2):214{233,

September 1995.

[Lyn96℄ Nany Lynh. Distributed Algorithms. Morgan Kaufmann, San Franiso, CA,

1996.

[Min01℄ Antoine Mine. The otagon abstrat domain. In Proeedings of the Eighth

Working Conferene on Reverse Engineering (WCRE'01), Suttgart, Germany,

Otober 2001.

[M�ul98℄ Olaf M�uller. A Veri�ation Environment for I/O Automata Based on For-

malized Meta-Theory. PhD thesis, Tehnishe Universit�at M�unhen, Munih,

Germany, 1998.

[NE01℄ Jeremy W. Nimmer and Mihael D. Ernst. Stati veri�ation of dynamially

deteted program invariants: Integrating Daikon and ESC/Java. In Proeed-

ings of RV'01, First Workshop on Runtime Veri�ation, Paris, Frane, July 23,

2001.

[NE02a℄ Toh Ne Win and Mihael Ernst. Verifying distributed algorithms via dynami

analysis and theorem proving. Tehnial Report 841, MIT, Massahusetts

Institute of Tehnology, Cambridge, Massahusetts, May 25, 2002.

[NE02b℄ Jeremy W. Nimmer and Mihael D. Ernst. Automati generation of program

spei�ations. In Proeedings of the International Symposium on Software

Testing and Analysis, pages 232{242, Rome, Italy, 22, 2002.

[NE02℄ Jeremy W. Nimmer and Mihael D. Ernst. Invariant inferene for stati hek-

ing: An empirial evaluation. In Proeedings of the ACM SIGSOFT 10th

International Symposium on the Foundations of Software Engineering (FSE

2002), Charleston, SC, November 20{22, 2002.

130



[NEG

+

03℄ Toh Ne Win, Mihael D. Ernst, Stephen J. Garland, Dilsun K�rl�, and Nany

Lynh. Using simulated exeution in verifying distributed algorithms. In VM-

CAI'03, Fourth International Conferene on Veri�ation, Model Cheking and

Abstrat Interpretation, New York, New York, January 9{11, 2003.

[Nim02a℄ Jeremy W. Nimmer. Automati generation and heking of program spe-

i�ations. Master's thesis, MIT Department of Eletrial Engineering and

Computer Siene, Cambridge, MA, May 2002.

[Nim02b℄ Jeremy W. Nimmer. Automati generation and heking of program spei�-

ations. Tehnial Report 852, MIT Laboratory for Computer Siene, Cam-

bridge, MA, June 10, 2002. Revision of author's Master's thesis.

[NS94℄ Tobias Nipkow and Konrad Slind. I/O automata in Isabelle/HOL. In Proeed-

ings of the International Workshop on Types for Proofs and Programs, pages

101{119, B�astad, Sweden, 1994.

[NS01℄ Toh Ne Win and Gustavo Santos. The IOA-Daikon onnetion: Enabling

dynami invariant disovery in IOA programs. theory.ls.mit.edu/tds/

papers/Tohn, September 2001.

[Pau93℄ Lawrene C. Paulson. The Isabelle referene manual. Tehnial Report 283,

University of Cambridge, Computer Laboratory, 1993.

[Pet81℄ Gary L. Peterson. Myths about the mutual exlusion problem. Information

Proessing Letters, 12(3):115{116, June 1981.

[Pod03℄ Andreas Podelski. Software model heking with abstration re�nement. In

VMCAI'03, Fourth International Conferene on Veri�ation, Model Cheking

and Abstrat Interpretation, New York, New York, January 9{11, 2003.

[PPG

+

96℄ Tsvetomir P. Petrov, Anna Pogosyants, Stephen J. Garland, Vitor Luhango,

and Nany A. Lynh. Computer-assisted veri�ation of an algorithm for

onurrent timestamps. In Reinhard Gotzhein and Jan Bredereke, edi-

tors, Formal Desription Tehniques IX: Theory, Appliations, and Tools

(FORTE/PSTV'96: Joint International Conferene on Formal Desription

Tehniques for Distributed Systems and Communiation Protools, and Proto-

ol Spei�ation, Testing, and Veri�ation, Kaiserslautern, Germany, Otober

1996), pages 29{44. Chapman & Hall, 1996.

[PRZ01℄ Amir Pnueli, Sitvanit Ruah, and Lenore Zuk. Automati dedutive veri�a-

tion with invisible invariants. In Tools and Algorithms for the Analysis and

Constrution of Systems (TACAS), volume 2031 of Leture Notes in Computer

Siene, pages 82{97, Genova, Italy, April 2{6, 2001.

[Rin00℄ Jussi Rintanen. An iterative algorithm for synthesizing invariants. In Pro-

eedings of the Seventeenth National Conferene on Arti�ial Intelligene and

131



Twelfth Conferene on Innovative Appliations of Arti�ial Intelligene, pages

806{811, Austin, TX, July 30{August 3, 2000.

[RKS02℄ Orna Raz, Philip Koopman, and Mary Shaw. Semanti anomaly detetion in

online data soures. In ICSE'02, Proeedings of the 24th International Con-

ferene on Software Engineering, Orlando, Florida, May 22{24, 2002.

[RR00℄ J. Antonio Ram�rez-Robredo. Paired simulation of I/O automata, September

2000. Master of Engineering and Bahelor of Siene in Computer Siene and

Engineering Thesis, Massahusetts Institute of Tehnology, Cambridge, MA.

[SAGG

+

93a℄ J�rgen F. S�gaard-Andersen, Stephen J. Garland, John V. Guttag, Nany A.

Lynh, and Anna Pogosyants. Computer-assisted simulation proofs. In Costas

Couroubetis, editor, Computer-Aided Veri�ation (5th International Confer-

ene, CAV'93, Elounda, Greee, June/July 1993), volume 697 of Leture Notes

in Computer Siene, pages 305{319. Springer-Verlag, 1993.

[SAGG

+

93b℄ J�rgen F. S�gaard-Anderson, Stephen J. Garland, John V. Guttag, Nany A.

Lynh, and Anna Pogosyants. Computer-assisted simulation proofs. In Costas

Couroubetis, editor, Fifth Conferene on Computer-Aided Veri�ation, pages

305{319, Heraklion, Crete, June 1993. Springer-Verlag Leture Notes in Com-

puter Siene 697.

[SGSAL98℄ Roberto Segala, Rainer Gawlik, J�rgen S�gaard-Andersen, and Nany Lynh.

Liveness in timed and untimed systems. Information and Computation,

141(2):119{171, Marh 1998.

132


