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Abstract

We initiate the study neural networks from the perspective of distributed algorithms. Our
ultimate aim is to abstract real neural networks in a way that, while not capturing all interesting
features, preserves high-level behavior and allows us to make biologically relevant conclusions.

Towards this goal, we consider the implementation of various algorithmic primitives in a
simple yet biologically plausible model of stochastic spiking neural networks. Our model captures
the spiking behavior observed in real neural networks along with the widely accepted notion
that spike responses and neural computation in general are inherently stochastic.

We first show how this stochastic behavior can be leveraged to solve a basic symmetry-
breaking task in which we are given neurons with identical firing rates and want to select a
distinguished one. In computational neuroscience, this is known as the winner-take-all (WTA)
problem, and it is believed to serve as a basic building block in many tasks, e.g., learning,
pattern recognition and clustering. Our main contribution is an explicit construction of an
efficient WTA circuit, a proof of correctness and runtime bounds, and a concrete application to
the problem of selecting a neuron of maximum firing rate from a group.

We next consider the use of stochastic behavior in the somewhat orthogonal task of similarity
testing. We present a neural network which, given two n-length patterns of firing neurons, is able
to distinguish whether the patterns are equal or ε-far from being equal. Randomization allows
us to solve this task with a very compact network, using just Õ(

√
n/ε) auxiliary neurons. At the

heart of our solution is the design of a t-round neural random access memory (or neuro-RAM)
mechanism that can be implemented with O(n/t) auxiliary neurons. We show that this tradeoff
between runtime and network size, which can also be achieved using deterministic threshold
gates, is nearly optimal. This demonstrates a neural primitive in which stochastic behavior does
not seem to give any computational advantages, contrasting with the key role of randomness in
solving the WTA and similarity testing problems.

∗This extended abstract partially overviews work contained in [LMP17a], which can be accessed at
https://arxiv.org/abs/1610.02084 and [LMP17b], which can be accessed at https://arxiv.org/abs/1706.01382.
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1 Introduction

Neural networks are studied in a number of academic communities from a wide range of perspec-
tives. Significant work in computational neuroscience focuses on developing somewhat realistic
mathematical models for these networks and generally studying their capacity to process informa-
tion [Izh04, Tra09]. On the more theoretical side, a variety of artificial network models such as
perceptron and sigmoidal networks, Hopfield networks, and Boltzmann machines have been de-
veloped. These models are tractable to theoretical analysis and studied in the context of their
computational power, and applications to general function approximation, classification, and mem-
ory storage [HSW89, MSS91, SS95, Maa97]. In practical machine learning, biological fidelity and
often theoretical tractability are put aside, and researchers study how neural-like networks and
learning rules can be used to efficiently represent and learn complex concepts [Hay09, LBH15].

1.1 Our Agenda

In contrast to the common approach in computational neuroscience and machine learning, we focus
not on general computation ability or broad learning tasks, but on specific algorithmic implemen-
tation and analysis. We define a model of neural computation and a number of simple algorithmic
problems that seem to be important building blocks for higher level processing and learning tasks.
We then design neural networks in our model that solve these problems, rigorously analyzing the
complexity of our solutions in terms of asymptotic runtime and network size bounds. We hope
that this new paradigm will provide new insights about computational tradeoffs, the power of
randomness, and the role of noise in biological systems.

While focusing on somewhat different questions, our line of work is inspired by (1) work on the
computational power of spiking neural networks, most notably by Maass et al. [Maa97, Maa99,
Maa00] and (2) the work of Les Valiant [Val00a, Val00b, Val05], who defined the neuroidal model
of computation and investigated implementations of basic learning modules within this model.

2 Computational Model

We work with biologically inspired spiking neural networks (SNNs) [Maa96, Maa97, GK02, Izh04,
HJM13], in which neurons fire in discrete pulses, in response to a sufficiently high membrane
potential. This potential is induced by spikes from neighboring neurons, which can have either an
excitatory or inhibitory effect (increasing or decreasing the potential). As observed in biological
networks, and departing from many artificial network models, neurons are either strictly inhibitory
(all outgoing edge weights are negative) or excitatory.

In this work we consider static networks and ignore synaptic plasticity and possibly dynamic
synapse weights. This is natural as the problems considered are not primarily focused on learning
or recall, where synaptic plasticity seems to play a major role. An interesting direction for future
work is extending our model to include synaptic plasticity and tackling important learning problems
within this model, possibly employing the algorithmic primitives developed here as subroutines.

Our model is stochastic – each neuron functions as a probabilistic threshold unit, spiking with
probability given by applying a sigmoid function to the membrane potential. While a rich literature
focuses on deterministic circuits [MP69, HT+86] we employ a stochastic model as it is widely
accepted that neural computation is inherently noisy [AS94, SN94, FSW08], and that while this
can lead to a number of challenges, it also affords significant computational advantages [Maa14]. Of
course, our noise model is a significant simplification of noise in biological systems. For example, we
model noisy behavior at each neuron, rather than at each synapse, which seems to be the dominant
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source of noise in real systems [AS94]. As always, extending the theoretical results for our simplified
model to more biologically accurate models is an interesting direction for future research.

2.1 Network Structure

We now give a formal mathematical definition of our computational model. A Spiking Neural Net-
work (SNN) N = 〈X,Y,Z, w, b〉 consists of n input neurons X = {x1, . . . , xn}, m output neurons
Y = {y1, . . . , ym}, and ` auxiliary neurons Z = {z1, ..., z`}. The directed, weighted synaptic connec-
tions between X, Y, and Z are described by the weight function w : [X∪Y∪Z]× [X∪Y∪Z]→ R
(a weight of 0 indictions no connection). For any neuron v, b(v) ∈ R≥0 is the activation bias –
roughly, v’s membrane potential must reach b(v) for a spike to occur with good probability.

The synapse weight function is restricted in a few notable ways. The in-degree of every input xi
is zero. That is, w(u, x) = 0 for all u ∈ X ∪ Y ∪ Z and x ∈ X. This restriction bares in mind that
the input layer might in fact be the output layer of another circuit and so incoming connections
are avoided to allow for the composition of sub-circuits in modular designs. Note however that
feedback to the inputs is an important feature of neural computation, and can still be implemented
by connecting them to a set of intermediate neurons which replicate the input behavior and receive
feedback from other neurons. For example, this strategy is used in our WTA circuit construction.

We additionally restrict each neuron to be either inhibitory or excitatory: if v is inhibitory,
then w(v, u) ≤ 0 for every u, and if v is excitatory, w(v, u) ≥ 0 for every u. All inputs and outputs
are excitatory.

2.2 Network Dynamics

An SNN1 evolves in discrete, synchronous rounds as a Markov chain. The firing probability of
every neuron in round t depends on the firing status of its neighbors in the preceding round t− 1.
This probabilistic firing is modeled using a standard sigmoid function, with details given below.

For each neuron u, and each time t ≥ 0, let ut = 1 if u fires (i.e., generates a spike) in time t. Let
u0 denote the initial firing state of the neuron. For simplicity we typically consider static inputs,
so x0j = 1 for firing inputs and x0j = 0 for non-firing inputs. The values y0j and z0i are arbitrary. For
each non-input neuron u and every t ≥ 1, let pot(u, t) denote the membrane potential at round t
and p(u, t) denote the corresponding firing probability (Pr[ut = 1]). These values are calculated as:

pot(u, t) =
∑

v∈X∪Y∪Z
wv,u · vt−1 − b(u) and p(u, t) =

1

1 + e−pot(u,t)/λ
(1)

where λ > 0 is a temperature parameter, which determines the steepness of the sigmoid. It is easy
to see that λ does not affect the computational power of the network. A network can be made to
work with any λ simply by scaling the synapse weights and biases appropriately.

We will use Xt, Y t and generally At for some set of neurons A to denote the collective firing
status of these neurons at time t. As the input is typically fixed, we often just write X to refer to
the n-bit string corresponding to the input firing pattern.

In prior work [LMP17a], we considered a very similar network model with the distinction that
we enforced a synchronous ‘round-robin’ firing pattern where the inputs X, the auxiliary neurons
Z, and the outputs Y fire in succession. This was needed for some of the highly tuned algorithms
and lower bounds in that work, however is not required for the results discussed here.

1 Throughout this work, we use ‘SNN’ not as a general term, but to refer to a network defined under our model.
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2.3 Computational Problems in our Model

We primarily focus on network design tasks. In the simplest form, we are given a (possibly multi-
valued) target function f : {0, 1}n → {0, 1}m and seek to design a small SNN (using few auxiliary
neurons) that given fixed input X converges quickly to the output Y = f(X) (or any Y ∈ f(X) if
f is multi-valued).

In particular, we say a network converges in t rounds if for t′ ≥ t, for any input X, Y t = f(X)
with high probability. Here ‘with high probability’ or w.h.p. denotes with probability at least
1− 1/nc for some constant c. Our main interest in network design is in characterizing the tradeoff
between our two complexity measures: the number of auxiliary neurons and the convergence time.

In addition to the simple fixed input setting, we will present some preliminary results in which
X is a collection of probabilistic firing input neurons, where the ith neuron xi fires in each round t
with probability pi. In this case, we design networks whose output converges to some function of
the vector of probabilities P = [p1, ..., pn].

3 Winner-Take-All Networks

We first discuss the winner-take-all problem, which is important for many neural learning and
pattern recognition tasks [KU87, Now89, LIKB99, IK01, KK94, GL09]. The simplest setting is
the binary input case: given X ∈ {0, 1}n with at least one firing neuron, we want our network to
converge to output Y ∈ {0, 1}n which has a single firing neuron, corresponding to a firing input.
In this way, we break symmetry and select of a ‘winning’ input. We present a very simple SNN
which solves WTA using just two auxiliary inhibitor neurons, which we show are required.

Theorem 1. There exists an SNN with two inhibitory neurons, that given fixed input X ∈ {0, 1}n,
converges with probability 1 − 1/nc to a single firing output corresponding to a firing input in
O(log2 n) rounds. In contrast, any SNN with just one inhibitor needs Ω(nc) rounds for convergence.

A full proof of Theorem 1 is given in [LMP17a]. As discussed, this work uses a slightly different
model of SNN dynamics, however the proof goes through for the simpler model presented here.

…

…

yny2y1

zs zc

x1 x2 xn

winput = 3

wself = 2

wout = 1 wout = 1
winh=-1 winh=-1

bout = 3

b(zs) = .5 b(zc) = 1.5

Figure 1: Two Inhibitor WTA

Here we sketch the two inhibitor construction. We use the
well-studied idea of lateral inhibition: firing inputs excite
the inhibitors, which indirectly lets them suppress each oth-
ers firing and ‘compete’ to become the winning input.

For simplicity, we assume that λ = 1/(c1 log n) for large
c1, which ensures via (1) that if pot(u, t) ≥ .5, ut = 1 w.h.p.

We label our inhibitors zs – the stability inhibitor which
ensures that the WTA state stabilizes once it is reached, and
zc – the convergence inhibitor, which drives competition
and convergence to a single winning input.

We place an excitatory connection from every output
to both inhibitors with weight wout = 1 and set the biases
b(zs) = .5, b(zc) = 1.5. By (1), zs fires w.h.p. in round t
whenever at least one output fires in round t − 1; zc fires
w.h.p. whenever at least two outputs fire.

We place an inhibitory connection from zs and zc to every output with weight winh = −1, an
excitatory connection from xi to yi with weight winput = 3, and an excitatory self-loop on each
output with weight wself = 2. Finally, we set the output biases to bout = 3.
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The above parameters ensure that only outputs corresponding to firing inputs ever fire w.h.p.
If we have not yet reached WTA and both zs and zc fire in round t, any output that fired in round
t (and so has an active self-loop) will have pot(yi, t+ 1) = 0 and fire with probability 1/2 in round
t + 1 by (1). Thus, in O(log n) rounds w.h.p. at most a single firing output remains. If exactly
one output fires in two consecutive rounds, t and t + 1, then just zs fires in round t + 1 w.h.p.
Its inhibition is large enough to prevent any other output from beginning to fire w.h.p. but small
enough that the winner will continue to fire in round t+ 2 and beyond, ensuring convergence.

Two consecutive rounds in which exactly one output fires will occur with constant probability
in each execution of the tournament described above, giving our bound of O(log2 n) rounds to solve
WTA w.h.p. Note that our solution critically leverages the stochastic nature of our neurons – by
introducing inhibition that causes the output neurons to fire with probability 1/2, these neurons
randomly compete with each other, breaking the symmetry of the original input.

Non-Binary WTA As an example application of our binary WTA circuit, we outline how it can
be used to solve WTA in the non-binary setting: each input has firing rate pi ∈ [0, 1] and we want a
single output firing that corresponds to an input with a relatively high firing rate. We consider, as
a preliminary step, the case where inputs fire at discrete rates: pi = 2−j for some integer j ∈ [0, k]
and k = O(1). Our goal is to design a circuit that given randomly firing inputs converges to a
output Y in which w.h.p. the only firing neuron corresponds to an input neuron of maximum rate.

Theorem 2. There exists an SNN with O(n log n) auxiliary neurons that, for any vector P ∈
{1, 2−1, ..., 2−k}n, given inputs firing independently according to P , converges w.h.p. within O(log2 n)
rounds to a single firing output corresponding to an input with maximal firing rate.

We omit details due to space constraints. At a high level, for every input xi, we use a chain of
k′ = Θ(log n) excitatory neurons Hi = [xi → hi,1 → . . . → hi,k′ ], which we call a history module.
The number of firing neurons in the module equals the number of times that xi fired in the last
Θ(log n) rounds, and thus serves as an estimate of pi.

Next, for each firing rate 2−j , we have a designated binary WTA module Nj that is responsible
for selecting a winner among all inputs with firing rate of at least 2−j . A neuron will only compete
in Nj if the number of activated neurons in Hi is large enough – i.e., it has a high enough rate.
We finally connect the outputs of these k+ 1 WTA modules to a simple circuit using O(k) neurons
which ensures that the nonzero output corresponding to the highest firing rate is selected.

4 Similarity Testing and a Neuro-RAM

We conclude by briefly discussing similarity testing, a basic building block for pattern recognition.

4.1 A Randomized Algorithm for Similarity Testing

Given X1, X2 ∈ {0, 1}n we seek to test if X1 = X2 or if the hamming distance between the vectors is
≥ εn for some parameter ε. It is not hard to see that this can be accomplished by selecting Θ( lognε )
indices at random and checking if X1 and X2 match at these indices. Of course if X1 = X2, they
will always match. If the hamming distance is ≥ εn, w.h.p. they will not match at least once.

To implement this idea in an SNN we need to 1) generate random indices, 2) given an index,
‘read’ the corresponding position of the inputs. The first task can be accomplished using the
stochastic behavior of our neurons – any neuron with potential 0 spikes with probability 1/2 in
each around, and so a set of log n of these neurons can be used to generate a random index.
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The second task is more difficult – it amounts to implementing a neural random access memory
module – a neuro-RAM, which given X ∈ {0, 1}n and index Y ∈ {0, 1}logn, outputs the bit X(Y )
(i.e., the bit at the position of X given by interpreting Y as the binary encoding of an integer.)

4.2 An Efficient Neuro-RAM Construction

It is easy to build a Nueron-RAM using O(n) neurons (that simulate AND/OR gates), however
with this many neurons we can also directly compare the inputs in the similarity testing problem.
We show that this can be significantly improved (proof in [LMP17b]):

Theorem 3. For any t ≤
√
n, there is an SNN implementing a neuro-RAM with O(n/t) auxiliary

neurons that converges in t rounds w.h.p. For t =
√
n, the circuit uses O(

√
n) auxiliary neurons.

The above, used in our randomized approach, implies the existence of an O
(√

n logn
ε

)
neuron

SNN for similarity testing. More generally, it shows that a compressed representation (e.g. and
index) can be used to access a much larger datastore (e.g. X), using a very compact circuit. While
binary coding is not very ‘neural’ we can imagine similar ideas extending to more natural coding
schemes [AZGMS14] used for example for memory retrieval, scent recognition, or other tasks.

Notably, the construction for Theorem 3 does not use the random nature of SNNs. It can be
implemented with simple linear threshold circuits. Surprisingly, employing VC-dimension-based
arguments [Koi96], we still show that it is nearly optimal in the SNN model:

Theorem 4. Any SNN neuro-RAM converging in t rounds w.h.p. must use Ω
(

n
t log2 n

)
neurons.

Thus, for the neuro-RAM problem, SNNs are no more powerful than deterministic threshold
circuits, up to an Ω(log2 n) factor. This contrasts with the key role of randomness in solving
WTA and similarity testing. It also separates our spiking networks with a sigmoid probability
function from less biologically-plausible but well-studied deterministic sigmoidal networks whose
gates output real values, which can solve the RAM problem in one round using O(

√
n) gates [Koi96].
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