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ABSTRACT
The rise of social media and online social networks has been a

disruptive force in society. Opinions are increasingly shaped by

interactions on online social media, and social phenomena including

disagreement and polarization are now tightly woven into everyday

life. In this work we initiate the study of the following question:

Given n agents, each with its own initial opin-

ion that reflects its core value on a topic, and an

opinion dynamics model, what is the structure

of a social network that minimizes disagreement
and controversy simultaneously?

This question is central to recommender systems: should a rec-

ommender system prefer a link suggestion between two online

users with similar mindsets in order to keep disagreement low, or

between two users with different opinions in order to expose each

to the others viewpoint of the world, and decrease overall levels of

polarization and controversy? Such decisions have an important

global effect on society [48]. Our contributions include a mathemat-

ical formalization of this question as an optimization problem and

an exact, time-efficient algorithm. We also prove that there always

exists a graph with O (n/ϵ2) edges that is a (1 + ϵ ) approximation

to the optimum. Our formulation is an instance of optimization

over graph topologies, see also [6, 11, 45]. Furthermore, for a given

graph, we show how to optimize the same objective over the agents’

innate opinions in polynomial time. Finally, we perform an empir-

ical study of our proposed methods on synthetic and real-world

data that verify their value as mining tools to better understand

the trade-off between of disagreement and polarization. We find

that there is a lot of space to reduce both controversy and disagree-

ment in real-world networks; for instance, on a Reddit network

where users exchange comments on politics, our methods achieve

a reduction in controversy and disagreement of the order 6.2 × 10
4
.
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1 INTRODUCTION
The enormous popularity of social media and online social net-

works has led to fundamental changes in how humans share and

form opinions. Several events have stirred fierce debates online,

such as the internal memo of James Damore at Google that leaked

online and showed how society and users of social media become

strongly polarized around controversial issues [12]. Social phenom-

ena such as disagreement and polarization that have existed in

human societies for millenia, are now taking place in an online

virtual world, with a huge impact on society. Furthermore, opinions

are increasingly shaped by social media. For this reason Facebook’s

recommender systems were recently accused of influencing voters

by propagating fake news and Russian ads during the U.S. national

elections [46], thus stirring additional controversy about the role of

tech giants in society. Google has faced similar accusations about

influencing the outcome of elections [41].

From a business perspective, recommender systems aim to max-

imize revenue – some in the short-term, others in the long-term

– by optimizing mathematical objectives related to click-through

rate and user engagement. However, given the increasing power

of tech-giants like Facebook and Google, a better understanding of

the effect of recommended links on society is required [47].

The following facts motivate our work. Valdis Krebs analyzed

purchasing trends on Amazon. He found that during the 2008 pres-

idential elections, people who already supported Barack Obama

tended to be the same people buying books that painted him in a

positive light. Similarly, people who disliked him, bought books that

painted him in a negative light [29, Chapter 1]. This bias is known as

confirmation bias [30], and lies at the root of the spread of conspiracy
theories and fake news. Put simply, most humans avoid challeng-

ing their opinions. Therefore, a recommender system trained on

real-data, whose goal is to maximize revenue and increase user en-

gagement, may naturally end up creating “echo-chambers”. Equiva-

lently, the recommended links minimize the disagreement that the
user experiences. In the context of social networks, connections

between users with similar mindsets are preferred over connections

between users with different mindsets.

On the other hand, minimizing disagreement leads to greater

polarization. To see intuitively why this is the case, consider a topic

with two prevalent opinions such as supporting either Democrat or

Republican politics. As users connect to users with similar mindsets,

two clusters with strong and extreme opinions are formed, leading

to greater polarization between the two groups [5]. This polariza-

tion has harmful effects on society; for example, reaching political
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consensus becomes much harder. This trade-off between disagree-
ment and polarization motivates our work. We are interested in

understanding the structure of a social network that minimizes

both disagreement and polarization. We introduce and study two

key problems, summarized below. For both problems, we use as our

underlying opinion dynamics model the Friedkin-Johnsen model

[21] that includes both disagreement and consensus, as it associates

each node with an innate opinion and an expressed opinion. For

details see Section 2.

• Minimizing Polarization and Disagreement Over Graphs.
We initiate the study of the following important question in under-

standing the global effect of recommended connections in social

networks on society. We formalize this problem mathematically,

and provide a polynomial time algorithm by proving that our op-

timization formulation is convex. Our formulation is an instance

of optimization over graph topologies. For other such optimization

problems, see [6, 11, 45].

Problem 1. Givenn agents, each with its own initial opinion
that reflects its core value on a topic, and an opinion dynamics
model, what is the structure of a connected social network
with a given total edge weight that minimizes polarization
and disagreement simultaneously?

We additionally prove that there always exists a graph with at most

O (n/ϵ2) edges that achieves a (1 + ϵ )-approximation to the above

problem. That is, disagreement and polarization can be minimized

by very sparsely connected networks.

•Minimizing Polarization andDisagreementOverOpinions.
We also study the following optimization problem. Here, the so-

cial network is given and we wish to modify the agents’ innate

opinions to minimize polarization and disagreement at equilibrium.

This problem aims to understand the effect of targeted ads or rec-

ommendations designed to influence innate opinions.

Problem 2. Given a network G on n agents, each with its
own initial opinion, an opinion dynamics model, and a bud-
get α > 0, how should we change the initial opinions using
total opinion mass at most α in order to minimize polariza-
tion and disagreement?

• Experiments. We evaluate our methods on synthetic and real

data. Our findings indicate that our graph optimization methods

result in significantly lower levels of polarization and disagreement

on Twitter and Reddit, and confirm that our proposed methods

can be used as mining tools to better understand the effects of

link recommendation. We also observe experimentally that existing

graph topologies are far away from optimizing polarization and

disagreement. For instance, our proposedmethod shows that we can

obtain a 6.2 × 10
4
-fold reduction in polarization and disagreement

by optimizing the graph topology of our Reddit dataset.

Roadmap. The paper is organized as follows: Section 2 presents

related work. Section 3 presents our algorithmic contributions.

Section 4 presents experimental findings on synthetic and real-

world data. Finally, Section 5 concludes the paper.

Notation.We use the following notation throughout our paper. Let

G (V ,E,w ) be a weighted connected undirected graph, withV = [n]

and |E | = m. Let N (i ) be the neighborhood of node i and d (i ) =∑
j ∈N (i )

wi j be its degree. LetA be the adjacencymatrix, and L
def

= D−A

be the combinatorial Laplacian. Here D = diaд(d (1), . . . ,d (n)) is a
diagonal matrix with the degrees in its diagonal. Each agent i ∈ V
has an innate opinion si ∈ [0, 1]. Let s = (s1, . . . , sn ) ∈ [0, 1]

n
be

the vector of innate opinions. Finally, let 1⃗, 0⃗ be the all-ones and

all-zeros vectors respectively.

2 RELATED WORK
To the best of our knowledge, we are the first to formally define

and study the problems suggested in Section 1. In the following we

review related work.

Modeling opinion dynamics.Opinion dynamics has been a topic

of intense study by political scientists, economists, sociologists,

physicists, control systems scientists, and computer scientists, among

others. Opinion dynamics model social learning processes. Such

models have important applications in understanding political vot-

ing (e.g., [1, 8]), viral marketing (e.g., [14]), and various other phe-

nomena that take place in social media (e.g., [40]). There exist

discrete and continuous models. In the former, agents have only

two possible opinions, 0 or 1. In the latter, opinions span a contin-

uous range; popular choices in the literature are intervals [0, 1],

and [−1, 1]. The voter model is a popular discrete model that was

originally described by Clifford and Sudbury [10] in the context of

a spatial conflict between animals for territory. In general, discrete

models apply various interaction mechanisms that may update an

agent’s opinion. Such mechanisms include randomly adopting the

opinion of a connected neighbor or applying a local majority rule

[18].

DeGroot introduced a continuous opinion dynamics model in his

seminal work on consensus formation [16]. A set of n individuals in

society start with initial opinions on a subject. Individual opinions

are updated using the average of the neighborhood of a fixed social

network. Friedkin and Johnsen [22] extended the DeGroot model to

include both disagreement and consensus by mixing each individ-

ual’s innate belief with some weight into the averaging process. We

discuss this model in greater detail below. Other continuous models

are the Hegselmann-Krause model [28] and the Deffuant-Weisbuch

model [49]. Das, Gollapudi, Munagala use a model which combines

the continuous and discrete approach to fit opinion data better

[14]. Bhawalkar, Gollapudi, Munagala study the scenario where the

network and the agents’ opinions co-evolve [? ].
It is worth mentioning that many aspects of opinion formation

have been incorporated into existingmodels such as opinion leaders,

external influences and many others. We refer the interested reader

to the excellent survey by Mossel and Tamuz and references therein

for more related work on opinion dynamics models [34].

Friedkin-Johnsen opinion dynamics. Each node maintains a

persistent internal (or innate) opinion si , that remains constant. The

node updates its expressed opinion zi through repeated averaging.

More precisely, ifwi j ≥ 0 is the weight on edge (i, j ) ∈ E and N (i )
denotes the neighborhood of node i , then in one time step agent i
updates its opinion to be the average
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zi =

si +
∑

j ∈N (i )
wi jzj

1 +
∑

j ∈N (i )
wi j

.

Let z∗ be the equilibrium of this process. The value z∗i at equilib-
rium is the expressed opinion of node i . It is well-known that the

equilibrium z∗ is the solution to a linear system of equations:

z∗ =(I + L)−1s [Friedkin-Johnsen Equilibrium] (1)

Here L is the combinatorial Laplacian of the connection graph G.
Notice that (I + L) is always invertible since it is positive definite
(in fact, all of its eigenvalues are greater than or equal to 1). The

Friedkin-Johnsen model has been used by Bindel et al. as a model

for understanding the price of anarchy in society when individuals

selfishly update their opinions in order to minimize the stress they

experience [4]. Here, stress consists of two terms, the stress due to

the fact that node i at equilibrium may express a different opinion

than its innate one, and the difference of its expressed opinion and

the expressed opinions of its neighbors. Formally, the stress of a

node i is defined as (z∗i − si )
2 +

∑
j ∈N (i )

wi j (z
∗
i − z

∗
j )

2
. Gionis, Terzi,

and Tsaparas use this model to suggest a variation of influence

maximization [27].

Polarization. Munson et al. have created a browser widget that

measures the bias of users based on the news articles they read,

and suggests articles of the opposing view to reduce polarization

[35]. Liao and Fu provide a tool that makes users aware of the

extremity of their opinion, and how well justified it is given their

expertise on the topic [33]. Dandekar et al. define a polarizing

opinion formation process that increases a disagreement index at

the end of the process, show limitations of existing linear models

to capture extreme polarization, and suggest a non-linear model

[13]. Flaxman et al. study political “echo-chambers” by examining

browsing histories and show several interesting empirical findings

with respect to how social networks affect humans’ opinions [20].

Closest to our work lies that of Matakos et al. [? ]. In their work,

they focus on the ℓ2 norm of the equilibrium vector z∗ under the
Friedkin-Johnsen model, which is close to our measure of polariza-

tion, introduced in Section 3.1, except that they do not mean center

the opinion vector. Given a parameter k , they consider the prob-

lem of choosing a set of k nodes such that if their innate opinions

are set to zero, the proposed polarization index will be minimized.

This problem is NP-hard, and focuses just on polarization, without

considering disagreement. Close to our work at a conceptual level

also lies the work of Garimella, Morales, Gionis, and Mathioudakis

[24], which focuses on Twitter data. Garimella et al. create graphs

from Twitter data, propose a new definition of polarization, and

detect topics that cause intense debates based on this measure. In

follow-up work, they consider the problem of making link recom-

mendations to reduce polarization [25, 26].

Finally, an important aspect of using opinion dynamics with real

data is opinion mining. For example, how do we map tweets to

opinions, i.e., real numbers? A lot of work in this area has been

done by the natural language processing (NLP) community; see the

recent survey by Nakov for more details on sentiment analysis and

Twitter opinion mining [36].

Optimizing over graph topologies. Problem 1 (see Section 1)

aims to optimize an objective over graph topologies. We review

some instances of related graph topology optimization problems,

most of which lie outside the graph mining literature, which has

focused on edge recommendation rather than global structural

results.

In 2009, Daitch, Kelner, and Spielman suggested learning graphs

that fit vector points well in order to leverage graph mining tech-

niques for machine learning [11]. They propose using the objective

| |LX | |2F where L is the graph Laplacian and X is a data matrix rep-

resenting n points in d dimensions [11]. Their objective minimizes

the reconstruction error over all points, where the reconstruction

error of a point is the ℓ2 norm of the difference of the point and the

weighted average of its neighbors. Other groups have considered

related approaches; see for instance [17, 31].

The central problem in phylogenetics is to learn an evolutionary

tree that explains the observed existence of n species. A popu-

lar family of techniques are distance-based; find an evolutionary

tree (whose leaves correspond to the species) which most closely

matches a set of

(n
2

)
pairwise genetic distances [19]. In machine

learning, a wide variety of techniques (e.g., Chow-Liu) have been in-

troduced to learn graphical models from data via optimization prob-

lems over graph topologies [32]. Boyd et al. have studied the prob-

lem of finding the fastest mixing Markov chain on a graph [6, 45],

casting it as an optimization problem over all possible weighted

subgraphs of a given graph.

3 PROPOSED METHOD
3.1 Polarization and Disagreement
Following (1), let z∗ = (I + L)−1s be the equilibrium vector of

opinions according to the Friedkin-Johnsen model, for a social

network G (V ,E,w ), and innate opinions s : V → [0, 1].

Disagreement. We define the disagreement d (u,v ) of edge (u,v )
as the squared difference between the opinions ofu,v at equilibrium:

d (u,v )
def

= wuv (z
∗
u − z

∗
v )

2
. We define total disagreement DG,s as:

DG,s
def

=
∑

(u,v )∈E
d (u,v ). [Disagreement]

(2)

Polarization. Intuitively, polarization should measure how opin-

ions at equilibrium deviate from the average. There are many ways

to quantify this. We choose the standard definition of variance,

i.e., the second moment of the opinions. Specifically, let z̄ be the
mean-centered equilibrium vector:

z̄ = z∗ −
z∗T 1⃗

n
1⃗.

Then the polarization PG,s is defined to be:

PG,s
def

=
∑

u ∈V
z̄2

u = z̄T z̄ [Polarization] (3)
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We now introduce the Polarization-Disagreement index, i.e., the

objective we care about.

IG,s
def

= PG,s + DG,s [Polarization-Disagreement index]

(4)

Two useful propositions and an observation follow.

Proposition 3.1. The disagreement DG,s satisfies the equation:

DG,s =
∑

(u,v )∈E

wuv (z̄u − z̄v )
2.

Proof. Let µ
def

= z∗T 1⃗

n be the mean of z∗, so the i-th coordinate

of z̄ is z̄i = z∗i − µ. Now, observe that wuv (z̄u − z̄v )
2 = wuv (z

∗
u −

µ − z∗v + µ )2 = d (u,v ). The result follows by summing over all

edges. □

Observation 1. The disagreement DG,s is a quadratic form. Specif-
ically, DG,s = z∗T Lz∗, and by Proposition 3.1, DG,s = z̄T Lz̄.

Proposition 3.2. Let s̄ = s − sT 1⃗

n 1⃗ be the mean-centered innate
opinion vector. Then, z̄ = (I + L)−1s̄ .

Proof. For any graph, L1⃗ = 0. Therefore (I +L)1⃗ = 1⃗, or equiva-

lently 1⃗ = (I + L)−1
1⃗. This implies that z∗T 1⃗ = sT (I + L)−1

1⃗ = sT 1⃗.

By these facts, we obtain that

z̄ = z∗ −
z∗T 1⃗

n
1⃗ = (I + L)−1s −

z∗T 1⃗

n
1⃗ = (I + L)−1s −

sT 1⃗

n
1⃗

= (I + L)−1

(
s −

1⃗
T s

n
1⃗

)
= (I + L)−1s̄ .

□

Proposition 3.2 provides an alternative way of computing z̄. We

can either find it in the obvious way, i.e., find z∗ and then center it

around zero. Alternatively, we can first center s around zero, and

then obtain z̄ as the Friedkin-Johnsen equilibrium when the innate

opinion vector is s̄ .

Trade-off between polarization and disagreement. Before pro-
ceeding into any technical details, we show a simple example that

illustrates the trade-off between polarization and disagreement.

Suppose there are three agents, two of which have opinion 0, and

one has opinion 1 on a certain topic, i.e., s = [0, 0, 1]. We wish to

recommend one link with weight 1 between these three agents. The

recommendation that agrees with human confirmation bias, and

therefore does not cause any dissatisfaction to the three agents, is

the edge between nodes 1 and 2. The equilibrium opinion vector

is the same as s , i.e., z∗ = [0, 0, 1]. The total disagreement is 0, and

the polarization is equal to (−1/3)2 + (−1/3)2 + (2/3)2 = 0.667.

An alternative choice is to recommend the edge between nodes

1, 3. The equilibrium now is [1/3, 0, 2/3]. The total polarization is

equal to 0
2 + (−1/3)2 + (1/3)2 = 0.222. The total disagreement

is (2/3 − 1/3)2 = 0.111. Therefore, the second recommendation

resulted in a better outcome with respect to the sum of polarization

and disagreement. By symmetry, edge (2, 3) has the same effect as

edge (1, 3). The results are summarized in Table 1.

Recommended link PG,s DG,s IG,s
(1, 2) 0.667 0 0.667

(1, 3) 0.111 0.222 0.333

(2, 3) 0.111 0.222 0.333

Table 1: Trade-off between polarization and disagreement
for three agents with innate opinions s1 = s2 = 0, s3 = 1.
For details, see Section 3.1.

3.2 Optimizing over Graph Topologies
Using the definitions of Section 3.1, we can now formulate Problem 1

from Section 1 mathematically. The objective is to minimize the

sum of two terms, polarization and disagreement. Here, L is the

set of valid combinatorial Laplacians of connected graphs. Observe

that the trace of the Laplacian is equal to twice the total edge weight

of the corresponding graph.

Problem 1

minL∈Rn×n z̄T z̄ + z̄T Lz̄
subject to L ∈ L

Tr(L) = 2m
(5)

Note that by (3) and Observation 1, z̄T z̄ + z̄T Lz̄ = DG,s + PG,s ,
where G is the weighted graph corresponding to the Laplacian L.
Thus (5) is equivalent to minimizing the polarization-disagreement

index IG,s over all graphs G with total edge weightm.

Theorem 3.3. The objective z̄T z̄ + z̄T Lz̄ is a convex function of
the edge weights in the graph G corresponding to the Laplacian L.

Proof. Using Proposition 3.2 we rewrite the objective as:

z̄T z̄ + z̄T Lz̄ = s̄T (I + L)−1 (I + L)−1s̄ + s̄T (I + L)−1L(I + L)−1s̄

= s̄T (I + L)−1 (I + L) (I + L)−1s̄ = s̄T (I + L)−1s̄ .

It is known that the function f (L) = (I + L)−1
is matrix-convex

when L ∈ L and hence positive semidefinite [? ]. That is, for any
λ ∈ (0, 1),

λZ−1

1
+ (1 − λ)Z−1

2
⪰ (λZ1 + (1 − λ)Z2)

−1.

This gives that xT (I + L)−1x is convex for all vectors x ∈ Rn . □

Additionally, the set of Laplacians L which we optimize over is

convex (standard fact).

Claim 1. The set L def

= {Ln×n : L Laplacian,Tr(L) = 2m} is convex.

By Theorem 3.3 and Claim 1 we obtain that Problem 1 is solvable

in polynomial time. One may use gradient descent or second order

methods, see [7]. In the following, we show how to compute the

gradient in a closed form in order to perform gradient descent more

efficiently (compared to relying on numerical approximations of it).

Gradient. Let N =
(n

2

)
, and ei be the i-th standard basis vector in

RN . We can write L = B diag(w )BT where B ∈ Rn×N is the sign

oriented incidence matrix andw ∈ RN is the vector of edge weights

for the graph G corresponding to L. Let bi be the i-th column of B,
i = 1, . . . ,N . Observe that the graph Laplacian corresponding to
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the weight vector w + ϵei , is L + ϵbib
T
i . Hence, if we perturb the

i-th coordinate of any weight vector by ϵ , i.e., tow + ϵei we obtain
the Laplacian L + ϵbib

T
i . The Sherman-Morrison formula for the

matrix pseudo-inverse yields:

(I + L + ϵbib
T
i )
+ = (I + L)−1 − ϵ

(I + L)−1bib
T
i (I + L)

−1

1 + ϵbTi (I + L)
−1bi

,

and hence, thinking of (I + L)−1
as a matrix-valued function ofw ,

∂(I + L)−1

∂wi
=

lim

ϵ→0

1

ϵ


(I + L)−1 − ϵ

(I + L)−1bib
T
i (I + L)

−1

1 + ϵbTi (I + L)
−1bi

− (I + L)−1


=

−(I + L)−1bib
T
i (I + L)

−1.

Therefore, by linearity, and the fact that the objective z̄T z̄ +
z̄T Lz̄ = s̄T (I + L)−1s̄ as shown in Theorem 3.3,

∂sT (I + L)−1s

∂wi
= −sT (I + L)−1bib

T
i (I + L)

−1s .

Non-convexity. Perhaps surprisingly, a slightly more general form

of our objective, where one of the two terms is multiplied by any

factor ρ ≥ 0 (i.e., polarization and disagreement are weighted

differently), is not convex!

Theorem 3.4. Let ρz̄T z̄ + z̄T Lz̄, ρ ≥ 0 be our objective. For ρ = 0,
the objective is a non-convex function of the edge weights.

Proof. By Propositions 3.1 and 3.2 we obtain that

z∗T Lz∗ = z̄T Lz̄ = s̄T (I + L)−1L(I + L)−1s̄ .

To prove that this is not convex, it suffices to prove that f (L) =
(I + L)−1L(I + L)−1

is non-convex. Let L1,L2 ∈ L. Assume for the

sake of contradiction that f (L) = (I + L)−1L(I + L)−1
is convex.

Then, the following follows by convexity for any λ ∈ (0, 1),

λ f (L1) + (1 − λ) f (L2) ⪰ f (λL1 + (1 − λ)L2) →

λ(I + L1)
−1L1 (I + L1)

−1 + (1 − λ) (I + L2)
−1L2 (I + L2)

−1 ⪰

(I + λL1 + (1 − λ)L2)
−1 (λL1 + (1 − λ)L2) (I + λL1 + (1 − λ)L2)

−1.

Set λ = 0.5, and consider the following two Laplacian matrices

corresponding to two paths on 3 nodes.

L1 =



1 −1 0

−1 2 −1

0 −1 1


, L2 =



2 −1 −1

−1 1 0

−1 0 1


.

It is easy to verify numerically that the minimum eigenvalue of

λ(I +L1)
−1L1 (I +L1)

−1 + (1−λ) (I +L2)
−1L2 (I +L2)

−1 − (I +λL1 +

(1 − λ)L2)
−1 (λL1 + (1 − λ)L2) (I + λL1 + (1 − λ)L2)

−1
is negative.

This contradicts the convexity assumption of f (L). □

We note that it is easy to construct more counterexamples for other

ρ values (details omitted).

Finally, we prove that there always exists a graph with O ( nϵ 2
)

edges that lies within a multiplicative (1 ± ϵ + O (ϵ2)) factor of

the optimal – that is, approximately minimizing the polarization-

disagreement index IG,s does not require a dense graph G. Our
proof relies on the seminal work on spectral sparsification [3, 42–

44]. The next theorem proves a sub-optimal result in terms of the

number of edges in G, but uses the sparsification algorithm due to

Spielman and Srivastava based effective resistances, which has the

advantages of being fast and easy to implement [42].

Theorem 3.5. There always exists a graph G with O (n logn/ϵ2)
edges that achieves polarization-disagreement index IG,s within a
multiplicative (1 + ϵ +O (ϵ2)) factor of optimal for Problem 1.

Proof. Let L be the Laplacian that minimizes the sum of polar-

ization and disagreement subject to total edge weight constraintm,

i.e, the solution to (5). By applying the Spielman-Srivastava algo-

rithm to L with error parameter ϵ ′, we obtain a spectral sparsifier

whose combinatorial Laplacian L̃ satisfies for any x ∈ Rn :

(1 − ϵ ′)xT Lx ≤ xT L̃x ≤ (1 + ϵ ′)xT Lx . (6)

This in turn implies,

(1 − ϵ ′)xT (L + I )x ≤ xT (L̃ + I )x ≤ (1 + ϵ ′)xT (L + I )x →

1

1 + ϵ ′
xT (L + I )−1x ≤ xT (L̃ + I )−1x ≤

1

1 − ϵ ′
xT (L + I )−1x .

By setting x = s , OPT
def

= sT (L + I )−1s , and using the Taylor expan-

sion for the fraction
1

1−ϵ ′ = 1 + ϵ ′ +O (ϵ ′2) when ϵ ′ is small, we

obtain that sT (L̃ + I )−1s ≤
(
1 + ϵ ′ +O (ϵ ′2)

)
·OPT .

Note that we may not have Tr(L̃) = 2m. However, by (6), Tr(L̃) ≤
(1+ϵ ′) Tr(L) = (1+ϵ ′)2m. Thus we can scale L̃ to have traceTr(L̃) =

2m and will still have sT (L̃ + I )−1s ≤ 1

1+ϵ ′ ·
(
1 + ϵ ′ +O (ϵ ′2)

)
·

OPT ≤
(
(1 + ϵ +O (ϵ2)

)
· OPT if we set ϵ ′ = ϵ/2. Finally, notice

that sT (L̃ + I )−1s ≥ sT (L + I )−1s = OPT since L is the optimizer of

(5). □

As mentioned, we use the Spielman-Srivastava sparsification

algorithm [42] in our proof since we use it in our experiments.

However, a follow-up result due to Batson-Spielman-Srivastava

[3] reduces the number of edges to linear in the number of nodes.

Using the same mathematical arguments, but invoking [3] instead

of [42] we obtain the following corollary of Theorem 3.5.

Corollary 3.6. There always exists a graph with O (n/ϵ2) edges
that achieves polarization-disagreement index IG,s within a multi-
plicative (1 + ϵ +O (ϵ2)) factor of the optimal for Problem 1.

3.3 Optimizing over Innate Opinions
We next give a mathematical formulation of Problem 2. We show

how to simplify this formulation to obtain a convex optimization

program (specifically, an SDP) which can be solved in polynomial

time using standard algorithms [7].

Equation (7) provides a straight-forward way to model our prob-

lem.We wish to minimize the sum of polarization and disagreement

subject to the structure implied by the dynamics, and a total budget

α on the total change of innate opinions. The variable we opti-

mize over is ds , the change in opinions. We restrict this change to

decrease the innate opinions, i.e., ds ≤ 0⃗.
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Problem 2

minds ∈Rn z̄T z̄ + z̄T Lz̄
subject to z∗ = (I + L)−1 (s + ds )

z̄ = z∗ − 1⃗
T z∗
n 1⃗

1⃗
Tds ≥ −α

ds ≤ 0⃗

s + ds ≥ 0⃗

(7)

Our main result is the following proposition.

Proposition 3.7. The formulation of Problem 2 in (7) is solvable
in polynomial time.

Proof. We can simplify the objective of (7) using our analysis

from Section 3.2. Specifically, our problem is equivalent to

minimize (s + ds )T (I + L)−1 (s + ds )

subject to ds ≤ 0⃗

1⃗
Tds ≥ −α

s + ds ≥ 0⃗

(8)

By expanding the above objective, we observe that it is a standard

quadratic form xTQx + 2bT x + c whereQ
def

= (I + L)−1
is symmetric

positive semidefinite, b = (I + L)−1s and c = sT (I + L)−1s (note
that b, c are fixed with respect to the variable ds). This objective is
convex, and the set of constraints form a convex set, proving the

Proposition. □

We remark that the above convex formulation (7) can accom-

modate other types constraints, such as restricting ds to be in a

specific range of values, or allowing positive changes in the innate

opinions. In our experimental section, we use the basic formulation

without additional constraints.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
Datasets. We use two datasets collected by De et al. [15]. Specif-

ically, De et al. collect text produced by users, and interactions

between them [15]. The text is mapped into opinions using NLP

tools [39], and the interactions are used to create a network be-

tween users. There are many preprocessing details, which can be

found in [15]. Here, we provide a brief description of both datasets.

Twitter is a network with n = 548 nodes, andm = 3,638 edges.

Edges correspond to user interactions. All nodes’ opinions are avail-

able to us. This dataset was collected with the aim of analyzing the

debate on Twitter about the Delhi legislative assembly elections of

2013. This was an irresolute event with three major parties win-

ning roughly equal shares of the vote. The hashtags used to collect

tweets were #BJP, #APP, #Congress, #Polls2013, tweeted over the

period December 9th to 15th.

Reddit is a network with n = 556 andm = 8,969 edges. There is

an edge between two users if there exist two subreddits (other than

politics) that both users posted in during the given time period. The

topic of interest is politics.

Aside from the above real-world datasets, we use a wide variety

of synthetic data. Since most real-world networks have a skewed

degree distributions, we focus on power law random networks gen-

erated using the Norros-Reittu model [38], an important random

Proposed method

ER(0.5) PL(2) PL(2.5) PL(3) L∗ L̃∗-sparsified
s ∼ PL(1.5) 14.38 16.10 22.06 53.05 11.60 11.60

s ∼ PL(2) 25.98 45.16 72.11 107.23 19.24 19.27

s ∼ PL(2.5) 94.87 103.62 121.21 166.38 85.55 85.56

Table 2: Polarization-disagreement minimization for ran-
dom power law opinions vectors. Average polarization-
disagreement indices IG,s over 5 experiments for Erdös-
Rényi, random power law graphs, and the optimal graphs
L∗ and L̃∗-sparsified output by our solutions to Problem 1.
Rows correspond to generating innate opinions s according
to a power law distribution with slopes 1.5, 2, and 2.5 respec-
tively. For details see Section 4.2.

graph model that produces networks that mimic real-world net-

works in some respects [2, 23]. We also use skewed distributions

for generating opinions. We use the randht.m file by Aaron Clauset

[9] to generate opinions according to a power law with a given

slope. We normalize opinions to the range [0, 1] by dividing by the

maximum observed value (i.e., there is always a node with opinion

1).

Machine specs. All experiments were run on a laptop with 1.7

GHz Intel Core i7 processor and 8GB of main memory.

Code. Our code was written in Matlab. Our code is publicly avail-

able at https://github.com/tsourolampis/polarization-disagreement.

4.2 Experimental Findings

Synthetic experiments. Table 2 shows our results on learning

optimal graph topologies (i.e. solving Problem 1) for various innate

opinion vectors averaged over 5 experiments. Each row corresponds

to sampling a vector of 100 innate opinions according to the power

law distribution with slopes 1.5, 2, and 2.5 respectively. Column L∗

shows the objective value achieved by our optimization algorithm,

and the last column shows the L̃∗-sparsified the objective value

after we sparsify L∗ using the Spielman-Srivastava algorithm (see

Theorem 3.5). We observe a negligible loss, but achieve a dramatic

reduction in the number of edges. The optimal solution L∗ in all

experiments corresponds to a weighted clique, i.e., there are 4950

non-zero edges. The sparsified versions of the optimal solution

have on average 761, 697, and 700 edges for the three different

distributions on s respectively.
For comparison, in Table 2we also show the polarization-disagreement

index for several randomly generated graphs. The first column

shows the results obtained by a random binomial graph, i.e., an

Erdös-Rényi graph. We use p = 0.5 as the underlying edge probabil-

ity. We also generate power law networks according to the Norros-

Reittu model with slopes 2, 2.5, and 3 respectively. In general, we

observe that random binomial graphs achieve a close-to-optimal

performance, in contrast to power law networks. Understanding

this observation using formal random graph theory [23] is an in-

teresting direction for future research. We also observe empirically

that the polarization-disagreement index increases as the slope of

the random network increases from 2 to 3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (ℓ)

(m) (n) (o) (p)

Figure 1: Optimizing over opinion interventions for varying innate opinions distributions on randompower law graph topolo-
gies generated according to the Norros-Reittu model [38]. For details, see Section 4.2.

Figure 1 shows our experimental findings when we optimize

over innate opinions. We generate power-law random graphs using

the Norros-Reittu model with slope 2, a slope that lies close to the

slopes of several real-world networks [37]. Similarly we generate

random initial opinion vectors according to various distributions.

The first row (Figures 1(a),(b),(c),(d)) corresponds to uniform in-

nate opinions. The second row (Figures 1(e),(f),(g),(h)) to power

law opinions with slope 2, and the third row (Figures 1(i),(j),(k),(ℓ))

to slope 5. For the fourth row (Figures 1(m),(n),(o),(p)) we set the

opinion of each node v deterministically to
deд (v )∑
u deд (u )

. This setting

allows us to clearly see if the algorithm chooses to change the innate

opinions of only the highest degree nodes, or if the graph topology

forces the algorithm to choose other nodes (which is actually the

case). The first column (Figures 1(a),(e),(i),(m)) plots the degree of

each node versus its innate opinion. Figures 1(b)(f)(j),(n), and Fig-

ures 1(c),(g),(k),(o) plot the optimal change ds for each node versus

its innate opinion for budgets α = 5, and α = 20 respectively. We

observe that the optimization algorithm tends to prefer to reduce

high innate opinions. However we can also observe that graph

topology plays a key role, as in certain cases it changes opinions

of nodes with lower innate opinions even if it could choose higher

innate opinions. This is obvious in all figures, but most striking in

Figure 1(n); the algorithm does not modify the node with innate

opinion 1 when the budget is 5, but only modifies other nodes. Simi-

lar remarks can be made for the rest of the figures. This fact is more

pronounced when α = 5 than when α = 20. since as the budget α
increases, the algorithm can always reduce the values of the highest

innate opinions, caring less and less about the graph topology. Fi-

nally, Figures 1(d),(h), (ℓ), (p) plot the opinion vector at equilibrium
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after our algorithm’s intervention (i.e, z = (I + L)−1 (s + ds )), when
the budget is 20. We observe that in all cases opinions get closer,

but the actual value that they concentrate around depends on the

distribution. For instance, in Figure 1(d) we observe concentration

around 0.5 but in Figure 1(h) around 0. This should not be very

surprising; the average of the uniform opinion distribution is 0.5,

whereas when s is distributed as a power law distribution, most of

the values initially are close to 0. The results presented in Figure 1

are representative observations across many experiments.

Twitter Reddit

ITwitter,s 199.84 IReddit,s 138.02

# Edges 3,638 # Edges 8,969

IG∗,s 30.113 IG∗,s 0.0022

# Edges 120,000 # Edges 103,050

IG̃∗,s 30.114 IG̃∗,s 0.0022

# Edges 3,455 # Edges 7,521

Table 3: Optimizing over graph topologies. First row, shows
the objective, and the number of edges for the Twitter and
Reddit networks. Second row shows the objective and the
number of edges for the optimal solution. Third row shows
the objective and the number of edges for the sparsified op-
timal solution. For details, see Section 4.2.

Real-world experiments. Table 3 summarizes our experimental

results for the Twitter and Reddit datasets. Given the Twitter net-

work among the users, and their innate opinions, the polarization-

disagreement index IG,s is equal to 199.84. By optimizing over

graph topologies, we find a graph G∗ with the same total weight

8,969 as the original graph that reduces the polarization-disagreement

index to 30.113. However, this optimal graph is dense; the total

weight is spread over 120,000 edges. By sparsifying using effective

resistances according to Spielman-Srivastava, we obtain a sparse

graph using just 3,455 edges. The polarization-disagreement in-

dex is equal to 30.114. Again, we observe that there is a negligible

change in the objective value (on the order of 10
−3
), but there is a

drastic reduction in the number of edges.

The results for Reddit are impressive; the polarization-disagreement

index reduces from 199.84 to 0.0022. Both the original graph and

the optimal graph have the same total weight. The weight of the

optimal graph is spread over 103,050 edges, but by sparsifying we

get a graph with 7,521 edges with polarization-disagreement index

0.0022; the difference from the optimal value is < 10
−5
.

We checked the structure of our optimal graphs, suspecting that

two clusters would emerge. Specifically, we centered the innate

vector s around the mean, and we obtained two sets of nodes:

those with innate opinions below the mean, and those with innate

opinions above the mean. Intuitively, small disagreement graphs

should have a strong community structure on these two sets of

nodes, and small polarization graphs should have a large max cut

(edges across the two groups). The optimal graphs do not exhibit

such a clear two-block structure, but look closer to being random.

Combined with our finding on random binomial graphs from the

synthetic experiments, it is an interesting question whether random

binomial graphs are indeed close to the optimal solution for any

initial opinion vector.

Runtime-wise, the optimization took a couple of hours for each

network; observe that the total number of variables grows asO (n2).
It is an open question to come up with an efficient primal-dual

procedure that takes advantage of specific features of our convex

programs and Theorem 3.5 to improve the overall runtime.

We also considered the problem of optimizing the vector of innate

opinions using different budget values. We show how the equilibria

opinions vectors look before and after intervention. Figures 2(b)(c)

show four opinion vectors permuted according to the sorting per-

mutation of s for Twitter and Reddit respectively: the vector of

innate opinions s that is sorted, the original equilibrium vector,

and two optimized equilibria vectors, when the budget is 5, and 20

respectively. We observe that nodes’ opinions converge closer and

closer to the average, achieving significantly lower objective values

as the budget increases.

5 CONCLUSION
Humans tend to prefer links that minimize disagreement due to the

well-known confirmation bias, among other reasons. However, this

may lead to polarized communities. In this work we introduce the

notion of the polarization-disagreement index to understand better

this trade-off between disagreement and polarization in online so-

cial networks and online social media. To the best of our knowledge,

we provide the first formulation for finding an optimal topology

which minimizes the sum of polarization and disagreement under a

popular opinion formation model. We prove interesting facts about

our objective, including the fact that there is always a graph with

O (n/ϵ2) edges that provides a (1+ ϵ ) approximation to the optimal

objective. We also provide efficient procedures to optimize the ob-

jective. We complement our results on optimizing graph topologies,

by considering a version of the problem where we optimize over

innate opinions for a fixed network. Our proposed tools provide

useful information about the importance of certain edges and nodes

with respect to opinion formation. We provide an extensive empir-

ical study of our results using synthetic data and two real-world

datasets (Twitter, and Reddit).

Our work opens many interesting questions. We used the pop-

ular Friedkin-Johnsen opinion formation model, which takes into

account both consensus and disagreement in the underlying opin-

ion update process. The same questions we asked here can be also

asked using other opinion formation models [34]. Our experimental

results strongly indicate that Erdös-Rényi graphs are not far away

from achieving the optimal polarization-disagreement index IG,s .

Can we prove that Erdös-Rényi graphs are always a good approxi-

mation to the optimal solution? If yes, can we prove a similar result

for expanders? Do links that cross communities always improve the

polarization-disagreement index, or not? Another interesting re-

search direction is understanding how well we can approximate the

non-convex objective of Theorem 3.4, where a weighting is added

to the polarization-disagreement index. Furthermore, we focused

on disagreement and polarization, two key phenomena in human

societies. Can we develop a similar framework for optimizing other

mathematical objectives for social good?
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(a) (b)

(c) (d)

Figure 2: (a) Twitter network. (b) Reddit network. (c),(d) Opinions per node for Twitter and Reddit respectively. Plots shows
the innate opinions (*), the opinions at equilibrium with no innate opinion intervention (o), and the opinions at equilibrium
using an intervention with budget 5 (diamonds), and 20 (squares) respectively.
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