
Appliation of Hybrid I/O Automata in Safety Veri�ation of PithController for Model Heliopter System�Sayan Mitra1 Yong Wang2 Nany Lynh1Eri Feron21MIT Laboratory for Computer Siene,Cambridge, MA 02139, USAfmitras,lynhg�theory.ls.mit.edu2MIT Laboratory for Information and Deision Systems,Cambridge , MA 02139, USAfy wang, ferong�mit.eduAbstrat: This paper presents an appliation of the Hybrid I/O Automaton modelling frame-work [9℄ to a realisti hybrid system veri�ation problem. A supervisory pith ontroller for ensur-ing the safety of a model heliopter system is designed and veri�ed. The supervisor periodiallyobserves the plant state and takes over ontrol from the user when the latter is apable of takingthe plant to an unsafe state. The design of the supervisor is limited by the atuator bandwidth,the sensor inauraies and the sampling rates. Safety is proved by indutively reasoning over theexeutions of the omposed system automaton. The paper also presents a set of language onstrutsfor speifying hybrid I/O automata.1 IntrodutionFormal veri�ation of hybrid systems is a hard problem. It has been shown that heking reahabil-ity for even a simple lass of hybrid automata is undeidable [4℄. Algorithmi tehniques have beendeveloped for several smaller sublasses of hybrid automata making automati veri�ation possi-ble [1℄. However these sublasses are too weak to represent realisti hybrid systems. Consequentlythe languages and tools, like HyTeh [3℄, developed for algorithmi methods are not adequate fordesribing general hybrid systems. An alternative approah to veri�ation is based on the hybridInput/Output automaton (HIOA) model [10, 11, 9℄. In this approah the properties of a systemare derived by indution on the exeutions of the automaton model, see [6, 14, 8℄ for related earlierworks. Being a more expressive model, hybrid I/O automata enables us to model a larger lassof hybrid systems. Although at present there is no tool support for HIOA, we intend to extendthe IOA Toolset [2℄ for heking HIOA ode and also build theorem prover interfaes for HIOA topartially automate the veri�ation proess.This paper presents the veri�ation of a supervisory ontroller of a model heliopter systemusing the HIOA framework. The heliopter system (Figure 1) is manufatured by Quanser [5℄. Itis driven by two rotors mounted at the two ends of its body and it is attahed to an arm whih is�xed at one end. The heliopter an revolve about the �xed end of the arm and has three degrees�Funding for this researh has been provided by AFRL ontrat F33615-01-C-18501



of freedom. The rotor inputs are either ontrolled by the user with a joystik, or by ontrollersdesigned by the user. Students of Aeronautis and Astronautis at MIT experiment with di�erentontrollers for the heliopter. Controllers are often unsafe and damage the equipment by pithingthe heliopter too high or too low. This is also a hazard for the users. Therefore the safety of thesystem is important. A supervisory ontroller is designed to prevent the heliopter from reahingunsafe states. The supervisor periodially observes the position and the veloity of the heliopterand overrides the user's ontroller by onservatively estimating the worst that might happen if theuser is allowed to ontinue. The supervisor is limited by the atuator bandwidth, the samplingrate, and sensor inauraies. These fators also make the veri�ation more omplex.This paper also desribes a spei�ation language for HIOA. In this language disrete transitionsof hybrid I/O automata are spei�ed in the usual preondition-e�et style, and the ontinuousevolution is written in terms of onstrained \state-spae" models alled ativities. The language,to date is for manual use, it onstitutes a �rst step for automating the veri�ation proess usingHIOA.

Figure 1: Heliopter model with three degrees of freedom.The ontributions of this paper are: (1) demonstration of a realisti appliation of the hybrid I/Oautomata based veri�ation methodology, (2) design of the supervisory ontroller whih ensuressafety of the Quanser heliopter system along the pith axis, and (3) a set of language onstrutsfor speifying hybrid I/O automata.In Setion 2 we review the hybrid I/O automata model and desribe the spei�ation language.We present the HIOA models of the system omponents and the supervisor in Setions 3 and 4respetively. We present the proof for safety of the system in Setion 5. Conluding remarks andfuture diretions for researh are disussed in Setion 6.2 Hybrid I/O AutomataIn this setion we briey review the HIOA mathematial model. For a omplete disussion of themodel refer to [9℄. Earlier versions of the model appeared in [10℄ and [11℄.2.1 The HIOA ModelA hybrid I/O automaton aptures the hybrid behavior of a system in terms of disrete transitionsand ontinuous evolution of its state variables. Let V be the set of variables of automaton A.Eah v 2 V is assoiated with a (stati) type de�ning the set of values v an assume. A valuationv for V is a funtion that assoiates eah variable v 2 V to a value in type(v). A trajetory �2



of V is de�ned as a mapping � : J ! val(V ) where J is a left losed interval of time. If J isright losed then � is said to be losed and its limit time is the supremum of the domain of � ,also written as �:ltime. Eah variable v 2 V is also assoiated with a dynami type (or dtype)whih is the set of trajetories that v may follow. Dynami types must satisfy the time-shift,subinterval and pasting losure properties desribed in [9℄. A hybrid I/O automaton A is a tuple(X;U; Y;Q;�;H; I;O;D;T ) where� X: set of internal or state variables, U : set of input variables, Y : set of output variables.The set of variables V �= U [ Y [X. The set of loally ontrolled variables Z �= X [ Y .� H : set of internal ations, I : set of input ations , O : set of output ations. The set ofations A �= H [ I [O.� Q � val(X) : a set of states� � � Q : non-empty set of start states.� D � Q�A�Q : set of disrete transitions. A transition (x; a;x0) 2 D is written in short asx a!A x0.� T : set of trajetories for V , suh that for every trajetory � in T , and for every t 2 �:dom,�(t):X 2 Q. It is required that T is losed under pre�x, suÆx, and onatenation. The�rst state �(0):X of trajetory � is written as �:fstate. Similarly if �:dom is �nite then�:lstate = �(�:ltime):X.In addition, a hybrid I/O automaton also satis�es: (1) the input ation enabling property, whihprevents it from bloking any input ation and (2) the input trajetory enabling property, whihensures that it is able to aept any trajetory of the input variables either by allowing time toprogress for the entire length of the trajetory or by reating with some internal ation before that.An exeution ofA is a �nite or in�nite sequene of ations and trajetories � = �0; a1; �1; a2 : : :,where(1) eah �i 2 T , (2) �0:fstate 2 � and (3) if �i is not the last trajetory in � then �i is �nite and�i:lstate ai+1! �i+1:fstate. An exeution is losed if the sequene is �nite and the domain of the �naltrajetory is a �nite losed interval. The length of an exeution is the number of elements (ationsand trajetories) in the sequene.2.2 New Addition to HIOA Struture: AtivitiesIn the earlier works [6, 14, 8℄ using the HIOA model, trajetories of automata were spei�ed usingan ad ho mixture of integral, algebrai equations and English. While this form of spei�ation issimple to read, it does not lend itself easily to systemati analysis, nor does it enfore a onsistentstyle in writing spei�ations. The spei�ation language [12℄ we use in this paper uses \statespae" representation [7℄ of the trajetories. This representation is onise, natural, and widelyused in the analysis of dynamial systems. To make this representation work, we have introduedextra struture into the basi HIOA model of [9℄.2.2.1 AssumptionsWe assume that the time domain is R. A variable v is disrete if its dynami type is the pastinglosure of the set of onstant funtions from left losed intervals of time to type(v). A variable is3



ontinuous if its dynami type is the pasting losure of the set of ontinuous funtions from leftlosed intervals of time to R. For any set S of variables, Sd and Sa refers to the disrete andontinuous subsets of S respetively. The following are the �rst two restritions we impose on theHIOA model:R1 Every variable is either disrete or ontinuous.R2 Loally ontrolled disrete variables remain onstant over trajetories, that is,�:lvaldZd = �:fvaldZd, for all � 2 T .Hene in this model, the evolution of the loally ontrolled variables of a HIOA is ompletelyspei�ed by the disrete transitions and the evolution of the variables in Za. The state spaerepresentation is used to speify this evolution as explained in the next part.2.2.2 State ModelLet e be a real valued algebrai expression involving the variables in X [U . For a given trajetory� we use �:e to denote the funtion with domain �:dom that gives the value of the expression e atall times during trajetory � . Given that v is a loally ontrolled ontinuous variable, a trajetory� satis�es the algebrai equation v = e;if for every t 2 �:dom, � # v(t) = �:e(t).If an algebrai equation involves a nondeterministi hoie suh asv 2 [e1; e2℄;then trajetory � satis�es the equation if for every t 2 �:dom, � # v(t) 2 [�:e1(t); �:e2(t)℄.If the expression e is integrable when viewed as a funtion, then � satis�es the di�erentialequation _v = e;if for every t 2 �:dom, � # v(t) = � # v(0) + R t0 �:e(t0) dt0.A state model of HIOA A onsists of jZaj number of algebrai and/or di�erential equations withexatly one equation having v or d(v) as its left hand side. The right hand sides of the equationsare algebrai expressions involving the variables in X [ U . It is also required that there are noirular relationships between the state variables.A state model spei�es1 the evolution of every variable v in Za from some initial valuation. Atrajetory � satis�es a state model E if at all times in �:dom, all the variables in Za satisfy thedi�erential and algebrai equations in E with �(0) de�ning the initial valuations.2.2.3 AtivitiesAn ativity � of HIOA A onsists of three omponents:1. An operating ondition P � Q,2. A stopping ondition P+ � Q, and3. A a state model E for A.The set of trajetories de�ned by ativity � is denoted by [�℄. A trajetory � belongs to the set [�℄if the following onditions hold:1By spei�es we mean restrits rather than uniquely determines. Due to possible nondeterminism in the statemodel, unique determination might be impossible. 4



� � satis�es the state model E.� For all t 2 �:dom, (� # X)(t) 2 P .� If (� # X)(t) 2 P+ for t 2 dom(�) then � is losed and t = �:ltime.The set of trajetories of an automaton is de�ned to be the union of all the sets of trajetoriesspei�ed by the ativities of an automaton. Suppose automaton A has n ativities, namely �i fori 2 I, where I is an arbitrary index set with n elements. Then TA = [i2 I [�i℄.With the present model, as de�ned so far, it would be possible for an automaton to swith ativitiesover a single trajetory in an exeution. Our �nal restrition on the HIOA model prevents suhswithes. In other words, the swithing of ativities (or state models) is brought about only bydisrete steps:R3 Operating ondition of all the ativities are disjoint, that is, Pi \ Pj = ; if i 6= j.It an be proved that a set of trajetories spei�ed by a set of ativities respeting R1, R2, andR3, satisfy the pre�x, suÆx, and onatenation losure properties.Lemma 2.1 Suppose T is a set of trajetories spei�ed by the ativities �i, i 2 I, where I is anindex set. Then T is losed under pre�x, suÆx, and onatenation.Proof: T = [ni=1[�i℄ is losed under pre�x and suÆx beause eah of the sets [�i℄ are losed underpre�x and suÆx. Let �0; �1; �2; : : : be a sequene of trajetories in T suh that, for eah non-�nalindex i, �i is losed and �i:lstate = �i+1:fstate. From the onatenation losure requirement of T ,it is neessary that � = �0 _ �1 _ �2 : : : 2 T .Let �i 2 [�j ℄, �i+1 2 [�k℄, where j; k 2 I, therefore �i:lstate 2 Pj and �i+1:fstate 2 Pk. Let usassume for the sake of ontradition that j 6= k. From R3, Pj \ Pk must be empty. But we have�i:lstate 2 Pj \ Pk, whih ontradits our assumption. Therefore it must be the ase that j = k.Therefore every trajetory in the sequene belongs to the same ativity, say [�j ℄. As [�j℄ is losedunder onatenation, �0 _ �1 _ �2 _ : : : 2 T : 22.3 Language ConstrutsOur spei�ation language is based on the above modi�ed HIOA model. Variables are delared byspeifying their names, types, dtypes, and optionally their initial valuations. For input variablesinitial valuations annot be spei�ed. Varibales delared with the analog keyword are ontinuous,else they are disrete. Algebrai expressions are written using the operators +;�; �; and n. Anexpression involving nondeterministi hoie, suh as v 2 [e1; e2℄, is written as:v = hoose[e1; e2℄The derivative of a ontinuous variable x is written as d(x). The disrete transitions are written inthe preondition|e�et style of the IOA language [2℄. An ativity � : (P; P+; E) is written as:ativity � when P evolve E stop at P+.For automata with a single ativity, if the operating ondition P is not spei�ed expliitly, then itis assumed to be the entire state spae of the automaton. If the stopping ondition P+ is omittedthen it is assumed to empty. 5
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Figure 2: Components of Heliopter system. Continuous and disrete ommuniation between omponentsare shown by wide and thin arrows respetively. The internal variables are marked inside the irles. Internalations are shown with dased self loops.3 Spei�ation of System ComponentsIn this setion we present a HIOA model of the heliopter system, exept for the supervisoryontroller, whih is in Setion 4; the interation among the di�erent omponents of the system areshown in Figure 2. A nonlinear dynamial model of the heliopter with three degrees of rotationalfreedom an be found in [13℄. In this paper we onsider the pith dynamis, whih are ritial forsafety. The roll and yaw e�ets are eliminated by making the initial onditions and the disturbanesalong these axes to be zero and giving idential input to the two rotors. The pith dynamis isdesribed by the following di�erential equation :�� +
2 os � = U(t); (1)where 
 is the rotational inertia and U is the net input for the pith axis. The Plant automatonspei�es the evolution of the pith angle (�0p) and veloity (�1p) of the heliopter in terms of theinput U . We de�ne three global types RAD, RADPS and UTYPE for variables representing angle,angular veloity and atuator output respetively. The onstant �( _�) orresponds to the largestabsolute value of any variable representing angle angle (angular veloity). The state variables�0p and �1p are initialized to some value from the set U, whih is de�ned in equation (5). ThePlant automaton has a single ativity pith dynamis, whih desribes the evolution of the loallyontrolled ontinuous variables and it operates over the entire state spae. The state variablesevolve aording to equation (1), and the output variables opy values from the state variables.The Plant is said to be safe at a given state if the pith angle �0p is within the allowed limits �minand �max. We de�ne the set of safe states as:S �= fs j �min � s:�0p � �maxg; (2)The funtion of the Sensor automaton is to periodially onvey the state of Plant to the ontrollersas observed by the physial sensors. It is parameterized by the sensor errors for pith angle �0,and veloity �1, and the sampling period �. The values of the input variables �0e ; �1e , are opiedinto �0a and �1a respetively. Value of the variable now inreases monotonially with a onstant rateof unity along all trajetories. The stopping ondition of the read ativity ensures that a sampleation ours after every � interval of time. The value of �0d (�1d) is nondeterministially hosen to6



type RAD = Real suhthat (i : RAD; jij � �)type RADPS = Real suhthat (i : RADPS; jij � _�)type UTYPE = Real suhthat (i : UTYPE j Umin � i � Umax)hybridautomaton Plant(
 : Real )variablesinput analog U : UTYPE,internal analog �0p : RAD, �1p : RADPS, initially (�0p; �1p) 2 U,output analog �0e : RAD, �1e : RADPStrajetoriesativity pith dynamisevolve d(�0p) = �1p; d(�1p) = �
2 os �0p + U ;�0e = �0p; �1e = �1pFigure 3: HIOA spei�ation of the plantbe within ��0 (��1) of �0a (�1a). This hoie models the noise or the unertainties in the sensingdevies.The UsrCtrl automaton, shown in Figure 5, models an arbitrary user ontroller. This automatonreads the sample ation as input and triggers an output ontrol(ud) ation, whih ommuniates theoutput Uu of the user's ontroller to the supervisor. The output Uu is modeled as a nondeterministihoie over the entire range of possible values. This aptures our assumption that the user isapable of issuing arbitrarily bad outputs. The design of a safe supervisor for this partiularmodel of UsrCtrl ensures that the system is safe for any user designed ontroller beause everyontroller must implement this spei�ation of UsrCtrl. The UsrCtrl automaton does not haveany ontinuous variables, and so the only ativity void does not speify any state model. Thestopping ondition ensures that the trajetories terminate when ready is set to true.Next, we present the Atuator automaton, whih models the atuator and the D/A onverter. Thedelay in the atuator response is modeled by a FIFO bu�er of (u; st) pairs, where u is a ommandissued from Supervisor, and the sheduled time st is the time at whih u is to be delivered to theplant. A ommand(u;m) ation appends (u; timer + �at) to bu�er and a dequeue ation opiesbu�er.head.u to uo and removes bu�er.head. The readyd ag is set when a new pair is added andit is reset when a pair is removed from bu�er. The following properties of Atuator an be derivedfrom its spei�ation.Invariant 3.1 In any reahable state s of Atuator, for all 0 � i < s:bu�er:size� 1,s:now � s:bu�er[i℄.st � s:bu�er[i+1℄.st � s.now + �at.Proof: The base ase is trivially true beause s:bu�er= fg. Consider a disrete steps of the forms �! s0. If �=sample or � =ontrol then the invariant is preserved beause none of the variablesinvolved in it are hanged by �.Case 1: � =ommand(u,t). From the ode it follows that s0:bu�er= s:bu�er+ (u; s:now+�at). Sine s0:now = s:now, it follows from the indutive hypothesis that s0:now �7



hybridautomaton Sensor(�0,�1, � : Real )ationsoutput sample ( �0d : RAD , �1d: RADPS )disrete transitionsoutput sample ( �0d , �1d)pre now = next time ^�0d 2 [�0a � �0; �0a + �0℄^�1d 2 [�1a � �1; �1a + �1℄e� next time := now + �trajetoriesativity readevolve d(now) =1; �0a = �0e ; �1a = �1e ;stop at now = next time

variablesinput analog �0e : RAD; �1e : RADPS,internal analog �0a : RAD := 0, �1a : RADPS := 0,now: Real := 0;internal next time : Real := �
Figure 4: HIOA spei�ation of the sensor and A/D onversion iruits0:bu�er.nexttolast.st � s0:bu�er.last.st� s0:now + �at. Therefore s0:now �s0:bu�er[i℄.st � s0:bu�er[i+1℄.st� s0:now + �at, for all 0 � i < s0:bu�er:size� 1.Case 2: � =dequeue. From the ode it follows that s0:bu�er= s:bu�er.tail. Sines0:now = s:now, it follows from the indutive hypothesis that s0:now � s0:bu�er[i℄.st� s0:bu�er[i+1℄.st� s0:now + �at, for all 0 � i < s:bu�er:size� 1.For the ontinuous part, onsider a losed trajetory � of Atuator with s = �:fsate, s0 = �:lstate,and t0 = �:ltime. From the indutive hypothesis it is known that s:now � s:bu�er[i℄.st �s:bu�er[i+1℄.st� s:now + �at, for all 0 � i < s:bu�er:size� 1. From the ode it follows thats0:now = s:now + t0 and s0:buffer = s:buffer. We laim that s0:now � s0:bu�er.head.st andtherefore the invarint holds at s0. Suppose this was not the ase, that is s0:now > s0:bu�er.head.st.Then there would exist t00 2 �:dom suh that t00 < t0 and �(t00):now = s0:bu�er.head.st. Sine�(t00) satis�es the stopping ondition for ativity d2a therefore �:ltime = t00, whih ontradits ourassumption.24 Supervisory ControllerThe supervisory ontroller has to ensure that the Plant state stays in the safe region S de�ned inequation (2). A seond requirement of the supervisor is to interfere as little as possible with theuser's ontroller. In the next setion we informally disuss the relevane of several di�erent regionsin the state spae, their atual de�nitions appear in the following setion.4.1 Supervisor StrategyThe design priniple of the supervisor is simple: allow the user to be in ontrol in all plant statesfrom whih the supervisor is guaranteed to restore the plant to a safe state; in all other states blokthe user's ontroller, perform reovery, and return ontrol to the user. The issue here is to �nd8



hybridautomaton UsrCtrlationsinput sample ( �0d : RAD , �1d : RADPS ),output ontrol ( ud : UTYPE)disrete transitionsinput sample ( �0d , �1d )e� �0u := �0d; �1u = �1dUu := hoose [Umin; Umax℄;ready := truetrajetoriesativity voidevolve stop at ready

variablesinternal �0u: RAD := 0 , �1u : RADPS := 0,Uu : UTYPE := 0,ready : Bool := falseoutput ontrol ( ud )pre (ud = Uu) ^ readye� ready := false
Figure 5: Spei�ation of User's Controllerthe safe operating region U, that is, the largest set of states in whih the user an be allowed tooperate without threatening the safety of the plant.To intuitively explain our hoie of U, let us �rst examine a few andidate regions whih arenot suitable. Clearly any safe operating region has to be a subset of S. Also, S itself is not suitablebeause the plant has non-zero inertia and the output from the atuator is limited between Uminand Umax. Consider a region C � S, from whih all trajetories are ontained in S, provided thatthe input to the plant is orret. Here orret means that the output from the atuator is Umin,Umax or 0, whihever is most suitable for the safety of the plant. The region C is still not a safeoperating region, sine the supervisor annot hange the output of the atuator sooner than �atdue to the delay in the bu�er. Therefore the supervisor has to look ahead into the future for atleast �at time, in order to ensure that the atuator output is orret in the worst ase. Let usonsider the set of states R � C from whih all reahable states over a period of �eff are within C,with any input to the plant. From states withinR, the supervisor an, if required, override the userontroller and issue orret reovery ommands suh that all future states in the next �eff periodare within C, after whih the orret ommands of the supervisor appear at the atuator output,whih in turn ensures safety. This region R is lose to what we want, exept that the supervisorannot observe the plant state diretly and for that it has to depend on the periodi updates fromthe sensors whih are prone to errors. For a given sensed state (�0s ; �1s), the atual plant state is inthe set: P (s) = fs j �0s � �0 � s:�0p � �0s + �0 ^ �1s � �1 � s:�1p � �1s + �1g;Finally, taking the errors and the delay into aount we de�ne the region U as follows: An observedstate s is in U if starting from any state in P (s) all the reahable states over a � interval of timeare in R. In Setion 5 we shall prove that this hoie of U ensures safety of the plant.Swithing bak to the user's ontroller from the supervisor is delayed until the supervisor bringsthe plant state within a inner region I � U. This asymmetry in the swithing is introdued toprevent high frequeny hattering between the user and the supervisory ontroller.
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type MODES = f usr, sup ghybridautomaton Atuator(�at)ationsinput ommand ( u : UTYPE )internal dequeuedisrete transitionsinput ommand ( u )e� bu�er + := (u; now + �at);readyd := truetrajetoriesativity d2aevolve U = uostop at bu�er:head:st = now

variablesinternal uo : UTYPE := 0, readyd : Bool := false,bu�er : seq of (u:UTYPE, st:Real, m:MODE) := fgoutput analog U : UTYPE := 0,input analog now : Realinternal dequeuepre bu�er.head.st = now ^ readyde� uo := bu�er.head.v;bu�er := bu�er:tail;readyd := false
Figure 6: Atuator and D/A onversion4.2 Regions of ControlIn the previous setion we desribed the intuitive meanings of the regions C, R, U, and I; here wepresent their de�nitions.C �= fs j �min � s:�0p � �max ^ ��(s:�0p; 0) � s:�1p � �+(s:�0p; 0)g; (3)R �= fs j �min � s:�0p � �max ^ ��(s:�0p; �at) � s:�1p � �+(s:�0p; �at)g; (4)U �= fs j �min + �0 � s:�0s � �max � �0 ^ U�(s:�0s) � s:�1s � U+(s:�0s)g; (5)I �= fs j �min + �0 � s:�0s � �max � �0 ^ I�(s:�0s) � s:�1s � I+(s:�0s)g: (6)Where the funtions �+ and ��, are as follows:�+(�; T ) = �UmagT + r2(
2 os �max � Umin)(�max � � + 12UmagT 2); (7)��(�; T ) = UmagT �r2(Umax � 
2)(� � �min + 12UmagT 2); (8)Umag = Umax � Umin (9)U+(�) = ��1 + �+(� + �0; �at +�); (10)U�(�) = +�1 + ��(� � �0; �at +�); (11)I+(�) = �2�1 + �+(� + 2�0; �at +�); (12)I�(�) = +2�1 + ��(� � 2�0; �at +�): (13)From the de�nitions of �+ and �� the following properties an be shown,Property 1 Over the interval ��2 � � � �2 the following properties hold :10



1. �+(�; T ) and ��(�;T ) are monotonially dereasing with respet to �.2. �+(�; T ) is monotonially dereasing with respet to T . (T � 0).3. ��(�; T ) is monotonially inreasing with respet to T . (T � 0).4. �+(�max; T ) < 0 and ��(�min;T ) > 0 for T > 0.Using these properties, the following sequene of ontainments an be proved.Property 2 I � U � R � C � S
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Figure 7: Regions in the statespae.4.3 Supervisor AutomatonThe Supervisor automaton (Fig. 8) opies the observed plant state into internal variables �0s and�1s when the sample ation ours. Based on this state information the tentative output Usup tothe atuator is deided. When the ontrol ation ours, the supervisor opies the user's ommandinto another internal variable Uusr and sets output ommand Us and mode for the next � intervalbased on (�0s ; �1s) and the urrent value of mode. If mode is usr and the observed state is in Uthen mode remains unhanged and Us is set to Uusr. If the present state is not in U then modeis hanged to sup and the Us is set to Usup. If mode = sup then Us is opied from Usup and themode hanges only when (�0s ; �1s) is in I. The ontrol ation enables the ommand output ation bysetting the ready ag.5 Analysis of Heliopter SystemIn this setion we verify the safety of the heliopter system with the supervisory ontroller. Let Adenote the omposition of the Plant, Sensor, UsrCtrl, Atuator, and the Supervisor automata.The heliopter system is safe if all the reahable states of the A are ontained within the region S.We assume the following relationships amongst the di�erent parameters in the model:11



hybridautomaton Supervisorationsinput sample (�0d: RAD �1d: RADPS),input ontrol (ud : UTYPE),output ommand (ud : UTYPE, m : MODES)disrete transitionsinput sample (�0d, �1d)e� �0s := �0d; �1s := �1d;if �1s � I+(�0s) then Usup := Uminelseif �1s � I�(�0s) then Usup := Umax �output ommand (ud, m)pre ready ^ (ud = Us) ^m = modee� ready := falsetrajetoriesativity supervisorwhen mode = supevolve d(rt) = 1 stop at ready

variablesinternal �0s : RAD := 0, �1s : RADPS := 0,Usup; Uusr; Us : UTYPE := 0,internal ready : Bool := false;mode : MODES := usrinternal analog rt : Real := 0;input ontrol (ud)e� Uusr := ud; ready := trueif mode = usr thenif (�0s ; �1s) 2 U then Us := Uusrelse Us := Usup; mode := sup �elseif mode = sup thenif (�0s ; �1s) 2 I then Us := Uusr; mode := usrelse Us := Usup � �ativity userwhen mode = usrevolve rt = 0 stop at readyFigure 8: HIOA spei�ation of supervisor automaton1. �min < 0 < j�minj < �max,2. Umax > 
2, Umin � 0.3. For any sample ation s �! s0,if s:�1s > I+(s:�0s) then, s0:�1s � I�(s0:�0s), andif s:�1s < I�(s:�0s) then, s0:�1s � I+(s0:�0s).The �rst two are fats derived from the dimensions of the atual system. The third onstraintis required to prevent the supervisor from holding ontrol forever by jumping between the regionabove I+ and the region below I� over a single � interval of time. This ondition imposes ertainbounds on the values of �at;�; and Umag .All the invariants in this paper are either derived from other invariants or proved by indutionon the length of a losed exeution of automaton A. The indution for an invariant I onsists of abase ase, and an indution step. The base ase tests that I is satis�ed at all the initial sates ofA. The indution step onsists of : (1) a disrete part|to test that for every disrete step s �! s0,from any reahable state s, preserves I, and (2) a ontinuous part|to test that for any losedtrajetory � , starting from a reahable state s, I is preserved at the �:lsate. We shall use s and s0to denote the pre and the post states of disrete transitions, as well as fstate and lstate of losedtrajetories, as will be lear from the ontext.In the remainder of this setion we �rst present some preliminary properties of the system, thenwe state the key invariants of A, and present the proof of safety in the user and the supervisormodes. 12



5.1 Some Preliminary PropertiesProperty 3 The disrete variables of A are not hanged over any losed trajetory � .Proof: Follows from the ode of the omponents of A.Property 4 For any disrete step s �! s0 of automaton A, s0:�0p = s:�0p and s0:�1p = s:�1p.Proof: From the ode of Plant it follows that �0p and �1p are not altered by any disrete step.Let us de�ne a derived state variable time left at a given state s as : s:time left �= s:next time�s:now.Invariant 5.1 In every reahable state s of A, 0 � s:time left � �.Proof: The base ase holds trivially beause s:time left = �. For the disrete part of the indutionwe onsider transitions s �! s0, where � = sample ation. Other ations do not alter any of thevariables in the invariant. It follows from the ode that s:now = s:next time, s0:next time =s:next time+�, and s0:now = s:now. Therefore s0:next time� s0:now = �.For the ontinuous part, onsider a losed trajetory � with limit time k � 0, let s:time left =t 2 [0;�℄. Let us assume for the sake of ontradition that k > t. Then � # now(t) = � #next time(t), whih satis�es the stopping ondition of read ativity, therefore t = �:ltime. Thisontradits our assumption, and therefore k � t. From ativity read , s0:time left = t � k. As0 � t � �, we have 0 � s0:time left � �. 2Corollary 5.1 The limit time of every trajetory of A is upper bounded by �.Lemma 5.1 In any exeution of A, sample, ontrol, and ommand ations our only whennow = n�, for some integer n > 0.Corollary 5.2 In every reahable state s, for all 0 � i < s:bu�er:size� 1,s:bu�er[i+1℄.st= s:bu�er[i℄.st + �.Lemma 5.2 In any exeution of A, a dequeue ation ours when timer = �at + n�,for every integer n � 0.Invariant 5.2 In any reahable state s, s.bu�er.size � d �at� e.Proof: Consider any reahable state s suh that s:bu�er 6= fg. From Corollary 5.2, s:bu�er[i+1℄.st=s:bu�er[i℄.st + �, for all 0 � i < s:bu�er:size. From Invariant 3.1, s:bu�er.last.st�s:bu�er.head.st � �at. The property follows by showing a simple ontradition.We de�ne the quantityM as the maximum possible size of bu�er in any reahable state, M �= d �at� e.5.2 User ModeIn this setion we prove that A is safe in the user mode. We de�ne a set of regions At for 0 � t � �,At �= fs j �min+ � s:�0p � �max ^ ��(s:�0p; �eff + t) � s:�1p � �+(s:�0p; �eff + t)g; (14)and we prove the following properties.Lemma 5.3 The region At satis�es the following:13



1. A0 = R,2. U � A�,3. If 0 � t � t0 � � then At0 � At.Proof: For part 1, set t = 0 in equation (14).For part 2, �0s � �0 � �0p � �0s + �0 and �1s � �1 � �1p � �1s + �1. Setting t = � we have:A� = fs j �min � �0 � s:�0s � �max + �0 ^ ��(s:�0p; �eff +�)� �1 � s:�1s � �+(s:�0p; �eff +�) + �1g:From Property 1, �0p � �0s � �0 ) ��(�0p; y) � ��(�0s � �0; y) and �0p � �0s + �0 ) �+(�0p; y) � �+(�0s + �0; y).Therefore,fs j �min � s:�0p � �max ^ ��(s:�0s � �0; �eff +�) + �1 � s:�1p � �+(s:�0s + �0; �eff +�)� �1g � A�:The left hand side is equal to U as de�ned in equation (5).For part 3, we observe that in equation (14) �+ and �� are monotonially dereasing and mono-tonially inreasing respetively with respet to t. Therefore if 0 � t � t0 � � then At0 � At. 2Lemma 5.4 For any losed trajetory � of A, if �:fstate 2 At then �:lstate 2 At�ltime(�).Proof: Consider a losed trajetory � . Assume that s 2 At. From the de�nition of At it followsthat, �min � s:�0p � �max and ��(s:�0p; �eff + t) � s:�1p � �+(s:�0p; �eff + t). We onservativelyestimate s0 by onsidering the maximum and the minimum input U to Plant. First onsideringthe maximum positive input, U = Umax, from the state model of Plant we get the upper boundon the aeleration at any state s00 in � :d(s00:�1p) � �
2 os �max + Umax. Integrating from t to t0,s0:�1p � (Umax � 
2 os �max)t0 + s:�1p; (15)s0:�0p � 12(Umax �
2 os �max)t02 + s:�1pt0 + s:�0p: (16)Simplifying and using the de�nition of �+ we get the bounds on s0:�0p and s0:�1p.s0:�0p � �max; and (17)s0:�1p � �+(s0:�0p; �eff + t� t0): (18)Likewise onsidering U = Umin, we get the lower bounds on s0:�0s and s0:�1s .s0:�0p � �min; and (19)s0:�1p � ��(s0:�0p; �eff + t� t0): (20)Combining equations (17) (18) (19) and (20) we have s0 2 At�t0 . 2Invariant 5.3 In any reahable state s, s:mode = usr ^ :s:ready ) s 2 As:time left.
14



Proof: The base ase holds beause for any initial state s, s:time left = � and s 2 U � A�.We have to onsider three possible ases for disrete steps s �! s0: if � = sample(x; y), thens0:ready = true and the invariant holds vauously. if � = ontrol(x), assume s0:mode = usr, we havetwo sub-ases: if s:mode = usr, then from the ode of the ontrol ation, s 2 U ) s0 2 U � A�.Sine s0:time left � �, s0 2 As:time left. Otherwise, if s:mode = sup, then s 2 I ) s0 2 I � A�,whih implies that s0 2 As0:time left. if � = ommand(x), assume s0:mode = usr ^ :s0:ready, thens:mode = usr ^ :s:ready. By indutive hypothesis s 2 As:time left, therefore s0 2 As0:time left.For the ontinuous part, onsider a losed trajetory � with �:ltime = t0. Assume s0:mode =usr ^ :s0:ready. As the valuations of mode and ready do not hange over � , s:mode = usr ^:s:ready. From the indutive hypothesis s 2 As:time left. Using Lemma 5.4, s0 2 As:time left � t0 =As0:time left: 2Invariant 5.4 In any reahable state s, s:mode = usr) s 2 R.Proof: The base ase holds beause all initial states are in U and U � R. Consider any disretetransition s �! s0, with s0:mode = usr. We split the proof into two ases: If :s0:ready, thenusing Invariant 5.3, s0 2 As0:time left � R. On the other hand, if s0:ready, then � 6=ontrol , ands:mode = usr sine only the ontrol ation an hange mode. So from the indutive hypothesiss 2 R. It follows that s0 2 R from the Property 4.For the ontinuous part onsider a losed trajetory � with �:fstate = s, �:lstate = s0, ands0:mode = usr. One again there are two ases, if :s0:ready then s0 2 R by Invariant 5.3. Elseif s0:ready, then s:ready and s:mode = usr beause ready and mode does not hange over thetrajetories. Sine s satis�es the stopping ondition for ativity void in UsrCtrl, therefore � is apoint trajetory, that is, s0 = s. From the indutive hypothesis, s 2 R. Therefore s0 2 R. 25.3 Supervisor ModeThe �rst invariant in this setion states that in all reahable states that have ready set to false, ifthe sensed plant state is within I+ and I�, then the system is in the user mode.Invariant 5.5 In any reahable state s, I�(s:�0s) � s:�1s � I+(s:�0s) ^ :s:ready ) s:mode = usr.Proof: The base ase holds from initialization. Consider disrete steps s �! s0 with I�(s0:�0s) �s0:�1s � I+(s0:�0s). If � =sample, then s0:ready = true and therefore the invariant holds vauously. If� =ontrol, then it follows from the ode that I�(s:�0s) � s:�1s � I+(s:�0s) and therefore s0:mode =usr. For ommand and dequeue ations and also for any trajetory of A, the invariant is preservedbeause none of the variables involved in it are altered. 2Invariant 5.6 In any reahable state s,if s:�1s > I+(s:�0s) then s:Usup = Umin, andif s:�1s < I+(s:�0s) then s:Usup = Umax.Proof: Immediate from the ode of sample ation. None of the other ations or ativities alter anyof the variables involved in the invariant.Invariant 5.7 In any reahable state s, s:rt = n�� s:time left, for some integer n � 1.Proof: For the base ase: s:time left = �, s:rt = 0 and therefore the invariant holds for n = 1.Consider disrete step s �! s0 with � =sample. From the indution hypothesis it follows thats:rt = n� � s:time left, for some n � 1 ; �x n. From the ode it follows that s0:rt = s:rt,15



s:time left = 0 and s0:time left = �. Hene s0:rt = (n + 1)� � s0:time left. The invariant ispreserved by all other disrete ations beause the variables rt and time left are not hanged bythem.Consider a losed trajetory � with �:ltime = t0. From indution hypothesis it follows thats:rt = n�� s:time left, for some n � 1; �x n. Therefore s0:rt = s:rt+ t0 = n�� s:time left+ t0 =n�� s0:time left. 2We de�ne two prediates Q+k and Q�k that apture the progress made by the system while theatuator delays the delivery of ommands issued by the supervisor. A state s satis�es Q+k (or Q�k ),if the last k ommands in s:bu�er are equal to Umin (or Umax respetively). More formally , forany k � 0,Q+k (s) �= 8i; max(0; s.bu�er.size �k) � i < s.bu�er.size, s:bu�er[i℄.u = Umin, andQ�k (s) �= 8i; max(0; s.bu�er.size �k) � i < s.bu�er.size, s:bu�er[i℄.u = Umax.Clearly, for all k > 0, Q+k (s) implies Q+k�1(s), and therefore for any k � s:bu�er.size, Q+k (s)implies that Q+j (s) holds for all j < s:bu�er.size. Similar results hold for Q�k . The next invariantstates that every reahable state s in the supervisor mode, satis�es either Q+d s:rt� e(s) or Q�d s:rt� e(s),depending on whether s is above I+ or below I� respetively. In addition if s:readyd is true, thatis, s is in between a ommand ation and a dequeue ation, then Q+d s:rt� e+1(s) or Q�d s:rt� e+1(s) holds,depending on the loation of s with respet to I+ and I�.Invariant 5.8 In any reahable state s, suh that s:mode = sup:1. If s:�1s > I+(s:�0s) then(a) Q+d s:rt� e(s),(b) If readyd then Q+d s:rt� e+1(s), and2. If s:�1s < I�(s:�0s) then(a) Q�d s:rt� e(s),(b) If readyd then Q�d s:rt� e+1(s), andProof: We shall prove part 1 of the invariant. The proof for part 2 is similar to that of part 1.The base ase holds trivially beause s:mode = usr. We onsider the disrete steps s �! s0 withs0:mode = sup and s0:�1s > I+(s0:�0s).Case 1: � = sample. Sine s:ready = false and s:mode = sup, it follows from theontrapositive of Invariant 5.5 that s:�1s > I+(s:�0s) or s:�1s < I�(s:�0s). Aording toAssumption 3, s:�1s � I�(s:�0s), therefore s:�1s > I+(s:�0s). Part 1(a): From part 1(a) ofthe indutive hypothesis it follows that Q+d s:rt� e(s) holds. Sine bu�er is not hanged by� therefore Q+d s0 :rt� e(s0) holds.Part 1(b): Assume s0:readyd = true. Sine sample does not hange readyd, it fol-lows that s:readyd = true. Therefore from the indutive hypothesis it follows thatQ+d s:rt� e+1(s) holds. Sine bu�er is not hanged by � therefore Q+d s0:rt� e+1(s0) holds.Case 2: � = ontrol. If s:mode = sup. The invariant is preserved sine � does not hangeany of the variables involved other than mode. If s:mode = usr then s:rt = 0 = s0:rt.The invariant is satis�ed beause Q+0 is trivially true.16



Case 3: � =ommand. Part 1(b): From the ode it follows that s:mode = sup ands:�1s > I+(s:�0s). Therefore it follows from Invariant 5.6 that s:Usup = Umin. Sines0:bu�er= s:bu�er + (s:Usup; s:now + �at), and Q+d s:rt� e(s) holds from the indutivehypothesis, therefore it follows that Q+d s0:rt� e+1(s0) holds.Part 1(a) follows from the above beause Q+d s0:rt� e+1(s0) implies that Q+d s0 :rt� e(s0) holds.Case 4: � = dequeue. From the ode it follows that s:mode = sup, s:�1s > I+(s:�0s),s0:bu�er= s:bu�er.tail, and that s:readyd = true. Part 1(b): From the indutivehypothesis it follows that Q+d s:rt� e+1(s) holds, whih implies that Q+d s0:rt� e(s0) holds.Part 1(b): From the ode it follows that s0:ready = false therefore the invariant holdstrivially.For the ontinuous part, onsider a losed trajetory � , with t0 = �:ltime, s0:mode = sup ands0:�1s > I+(s0:�0s). From the ode it follows that s0:bu�er = s:bu�er, s:�1s > I+(s:�0s) and s0:rt =s:rt + t0. Using Invariant 5.7 s:rt an be written as s:rt = n� � s:time left for some n � 1; �xn. Therefore s0:rt = n� � s:time left + t0 = n� � s0:time left. Sine 0 � s:time left � � and0 � s0:time left � �, therefore d s:rt� e = d s0:rt� e = nPart 1(a): From part 1(a) of the indutive hypothesis it follows that Q+n (s) holds. Sinebu�er is not hanged over � it follows that Q+n (s0) holds.Part 1(b): Assume s0:readyd = true. Therefore s:readyd = true. From part 1(b) of theindutive hypothesis it follows that Q+n+1(s) holds and sine bu�er is not hanged over� it follows that Q+n+1(s0) holds. 2The next invariant formalizes the notion that after a ertain �at period of time in the supervisormode the input to the plant is orret.Invariant 5.9 In any reahable state s with s:mode = sup ^ s:rt � �at1. If s:�1s > I+(s:�0s) then s:bu�er.head.u = Umin, and2. If s:�1s < I+(s:�0s) then s:bu�er.head.u = Umax.Proof: We shall prove part 1 of the invariant. Consider a reahable state s and assume thats:mode = sup, s:rt > �at and s:�1s > I+(s:�0s). From part 1 of Invariant 5.8 it follows thatQ+d �at� e(s) holds. From Invariant 5.2 it is known that the maximum size of bu�er is d �at� e. Thereforeit follows from the de�nition of Q+ that s:bu�er.head= Umin.2Invariant 5.10 In any reahable state s, suh that s:mode = sup and s:rt > �at1. If s:�1s > I+(s:�0s) then s:U = Umin, and2. If s:�1s < I�(s:�0s) then s:U = Umax,Proof: We shall prove part 1 of the invariant. The proof of part 2 is similar to that of part 1.The base ase is trivially true beause s:mode = usr. Consider disrete transitions s �! s0 withs0:mode = sup, s0:rt > �at, and s:�1s > I+(s:�0s): Sine none of the disrete steps hange rt, itfollows that s:rt > �at. 17



Case 1: � = sample. Sine s:ready is false and s:mode = sup, it follows from theontrapositive of Invariant 5.5 that s:�1s > I+(s:�0s) or s:�1s < I�(s:�0s). Aordingto Assumption 3, s:�1s � I�(s:�0s), therefore s:�1s > I+(s:�0s). From part 1 of theindutive hypothesis it follows that s:U = Umin. Sine U is not hanged by �, therefores0:U = Umin.Case 2: � =ontrol. We laim that s:mode = sup. The invariant is preserved sine �does not hange any of the variables involved other than mode. If s:mode = usr thens:rt = 0 = s0:rt, whih ontradits our assumption that s0:rt > �at.Case 3: � =ommand. From the ode it follows that s:mode = sup; s0:U = s:U ands:�1s > I+(s:�0s). Therefore From part 1 of the indutive hypothesis it follows thats0:U = s:U = Umin.Case 4: � = dequeue. From the ode it follows that s:mode = sup and s:�1s > I+(s:�0s).From part 1 of Invariant 5.8 it follows that Q+d s:rt� e holds. Sine s:rt > �at, therefores:bu�er.head.u= Umin, by Invariant 5.9. It follows from the ode that s0:U = Umin.For the ontinuous part of the indution onsider a losed trajetory � with �:ltime = t0. Assumes0:mode = sup, s0:rt � �at and s0:�1s > I+(s0:�0s). We laim that s:rt � �at. Sine U , mode, �0sand �1s do not hange over � , therefore it follows from the indutive hypothesis that s0:U = Umin.Contrary to our laim, if s:rt < �at, then there exists a t00 2 �:dom, suh that t00 < t0 and�(t00):rt = �at. From Lemma 5.2 it follows that suh a t00 would have to be equal to �:ltimebeause the stopping ondition of ativity d2a would be enabled at �(t00). This ontradits ourassumption �:ltime = t0. 2We split the exeution in the supervisor mode into (a) a settling phase of length �at in whih theinput U to the plant is arbitrary, and (b) a variable length reovery phase during whih rt > �atand the input to the plant is orret, that is, in aordane with Invariant 5.10.

S

C

R
U
I

I

C

U
+

R+

I
+

C+

−

−

−

−

θ

θ

Figure 9: Trajetories in the settling (dashed lines) and reovery(solid lines) periods.18



5.4 Settling PhaseWe de�ne a set of regions for 0 � t � �at:Bt �= fs j �min � s:�0p � �max ^ ��(s:�0p; �at � t) � s:�1p � �+(s:�0p; �at � t)g: (21)Lemma 5.5 The region Bt satis�es the following:1. B0 = R,2. B�at = C,3. If 0 � t � t0 � �at then Bt � Bt0 .Proof: Parts 1 and 2 are proved by setting t = 0, and t = �at in equation (21) respetively. Sinet � t0, part 3 follows from Property 1.Invariant 5.11 For any reahable state s, if s:mode = sup ^ s:rt � �at then s 2 Bs:rt.Proof: The base ase holds trivially beause s:mode = usr. For the disrete part, onsider disretetransitions s �! s0 with s0:mode = sup. If � =ontrol there are two subases: if s:mode = sup thenfrom the indution hypothesis it follows that s0 2 Bs0:rt. Otherwise s:mode = usr, and s 2 R byInvariant 5.3. From Property 4 it follows that s0 2 R. Sine R = B0 � Bs0:rt for any s0:rt � 0therefore the invariant holds at s0.Consider a losed trajetory � with t0 = �:ltime. Assume s0:mode = sup and s0:rt � �at. FromProperty 3 it follows that s:mode = sup and s:rt � �at. From the indution hypothesis it followsthat s 2 Bs:rt, that is �min � s:�0p � �max and ��(s:�0p; �at � s:rt) � s:�1p � �+(s:�0p; �at � s:rt).For all intermediate states between s and s0 the input U to Plant is arbitrary. Using the maximumvalue Umax and integrating over �:dom the same upper bounds on s0:�1p and s0:�0p are obtained asexpressed by equations (15) and (16). Simplifying:s0:�0p � �max; and (22)s0:�1p � �+(s0:�0p; �at � s:rt� t0); (23)Similarly using the lower bound on U , we gets0:�0p � �min; and (24)s0:�1p � ��(s0:�0p; �at � s:rt� t0): (25)Combining equations (22) (23) (24) and (25) we have s0 2 Bs:rt+t0 = Bs0:rt 2.5.5 Reovery PhaseWe introdue a few notations before moving on to prove the safety of the system in the reoveryphase. In the ontext of a partiular trajetory � , we abbreviate � # x(t) as simply x(t). Thetangent and the normal vetors to a urve at the point (x; y) are denoted by n(x; y) and d(x; y)respetively.Invariant 5.12 In any reahable states s, if s:mode = sup and s:rt � �at then s 2 C.19



Proof: The base ase is trivially satis�ed beause s:mode = usr. For the disrete part, onsiderdisrete transitions s �! s0 with s0:mode = sup. If � =ontrol there are two subases: if s:mode =sup then from the indutive hypothesis s 2 C. Therefore using Property 3 it follows that s0 2 C.Otherwise s:mode = usr and s0:rt = 0 and the invariant holds vauously. For all other disreteations the invariant is preserved beause none of the variables involved are altered.For the ontinuous part of the indution, onsider losed trajetory � with s0:mode = sup ands0:rt � �at. We laim that s 2 C. From Property 3 it is known that s:mode = sup, Considertwo possible ases: (1) If s:rt < �at then from Invariant 5.11 it follows that s 2 C. Otherwise (2)s:rt � �at and from the indutive hypothesis it follows that s 2 C:If s 2 U, then from Lemma 5.4 it follows that s0 is in R and therefore in C. So it remains toshow that if s 2 C nU then s0 2 C. We shall prove this by ontradition. Sine s:�1s > I+(s:�0S) ors:�1s < I+(s:�0S) it follows from Invariant 5.10 that s:U = Umin or Umax respetively. Now, supposes0 =2 C, then there must exist t0 2 �:dom suh that � leaves the C at �(t0). At the boundary of C itmust be the ase that d(�0p(t0); �1p(t0)) � n(�0p(t0); �1p(t0)) � 0, where � denotes the inner produt be-tween the two vetors. We reah a ontradition by showing that at eah point s00 on the boundaryof C, d(s00:�0p; s00:�1p) � n(s00:�0p; s00:�1p) < 0 Now onwards we shall write x instead of s00:x where it isunderstood that x is the state omponent of a point in the state spae whih is on the boundaryof C. We onsider the urves de�ning the boundary of C(Figure 7).Case 1: The upper boundary �+(�0p; 0) an be written as:C+ = �d(�0p; �1p) j �min � �0p � �max ^ �1p � 0 ^ V1(�0p; �1p) = ��Umin +
2 os �max� �max	 ;where V1(�0p; �1p) = 12�1p2 + ��Umin +
2 os �max� �0p. So the outer normal of C+ is given byn(�0p; �1p) = rV1 := ��V1��0p ; �V1��1p� = (�Umin +
2 os �max; �1p);where r is the gradient operator. Sine �1s � I+(�0s) and rt > �at therefore U = Umin by Invariant5.10. The plant equations are given by: d(�0p) = �1p, and d(�1p) = �
2 os �0p + Umin. So we haven(�0p; �1p) � d(�0p; �1p) = (�Umin +
2 os �max; �1p) � (�1p;�
2 os �0p + Umin)= 
2(os �max � os �0p)�1p � 0;for (�0p; �1p) 2 C+. The equal sign is valid i� (�0p; �1p) = (�max; 0). So the point (�0p; �1p) = (�max; 0)needs speial treatment. Integrating for initial ondition (�max; 0), we getsin �0p = sin �max + 1
2 hUmin(�0p � �max)� 12�1p2i : (26)This funtion de�nes an integral urve �0p = F1(�1p). Di�erentiating (26) with respet to �1p,d�0pd�1p = �1pUmin � 
2 os �0p ; and d2�0pd�1p2 = 1Umin �
2 os �0p � �1p sin �0p(Umin �
2 os �0p)3 :By evaluating the above derivatives at (�max; 0), we haved�0pd�1p (�max; 0) = 0; d2�0pd�1p2 (�max; 0) = 1Umin � 
2 os �max < 0:20



The inequality holds beause Umin � 0 and ��2 < �0p < �2 . So the integral urve �0p = F1(�1p) ahieves amaximum at (�max; 0), whih implies the trajetory goes inside C.Case 2: The left boundary of C is given by Cl = �d(�0p; �1p)j� = �min ^ 0 < �1p < �+	,where �+ �= p2 (�Umin +
2 os �max) (�max � �min). The outer normal of Cl is given by n = (�1; 0),and we have n(�0p; �1p) � d(�0p; �1p) = (�1; 0) � (d�0p; d�1p) = �d�0p = ��1p < 0; for (�0p; �1p) 2 Cl, whih implies thetrajetory will not leave C through Cl.The proof for the lower and the right boundary are symmetrial to that of Case 1 and Case 2 re-spetively. By ombining all the ases, we have shown that for any t00 2 �:dom, at any point on theboundary of C d(�0p(t0); �1p(t0)) � n(�0p(t0); �1p(t0)) < 0. Therefore s0 is in C.25.6 SafetyCombining the above invariants the safety of the omposed system is established.Theorem 1 All reahable states of A are ontained in C.Proof: For any reahable state s, if s:mode = usr then s 2 R � C by Invariant 5.4. Otherwises:mode = sup, and there are two possibilities: if s:rt < �at then, by Invariant 5.11, s 2 Bs:rt � C.Else s:rt � �at and it follows from Invariant 5.12 that s 2 C. 26 ConlusionsIn this paper we have presented an advaned appliation of the HIOA framework for verifyinghybrid systems. The safety of the designed supervisory ontroller was established by proving a setof invariants. The proof tehniques demonstrate two properties that are important for reasoningabout omplex hybrid systems: (1) the proofs are deomposed into disrete and ontinuous parts,whih are independent of eah other, and (2) the reasoning style is purely assertional, that is, basedon the urrent state of the system, rather than omplete exeutions.The design of the supervisory ontroller uses a safe operating region of the plant, beyond whihit overrides the user ontroller, performs appropriate reovery, and returns ontrol to the user. Theduration of the reovery period has not been disussed here, but it has been shown to be boundedin [13℄. The size of the safe operating region, depends on the plant dynamis, sensor errors, samplingperiod, atuator bandwidth and saturation. An implementation of the supervisory ontroller in theatual system is in progress. We also intend to design and verify a lass of supervisory ontrollersthat redue unneessary interferenes by utilizing additional information about partiular userontrollers.The spei�ation language used in this paper is based on the hybrid I/O automaton model. Cer-tain extra strutures have been added to the HIOA model of [9℄ in order to speify the trajetoriesusing ativities. We intend to inorporate the language extensions into a toolset for automatiallyheking HIOA programs. At present we are also working on building a theorem prover interfaefor HIOA whih would allow us to partially automate the veri�ation proess.
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