
A Verification Framework for 
Hybrid Systems

Sayan Mitra

September 2007

32 VASSAR STREET, CAMBRIDGE, MASSACHUSETTS 02139

COMPUTER SCIENCE 
AND ARTIFICIAL 
INTELLIGENCE 
LABORATORY

MASSACHUSETTS 
INSTITUTE OF 
TECHNOLOGY



A Verification Framework for Hybrid Systems

by

Sayan Mitra

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

© Massachusetts Institute of Technology 2007. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 31, 2007

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nancy A. Lynch

NEC Professor of Software Science and Engineering
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Arthur C. Smith

Chairman, Department Committee on Graduate Students



A Verification Framework for Hybrid Systems
by

Sayan Mitra

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Combining discrete state transitions with differential equations, Hybrid system models pro-
vide an expressive formalism for describing software systems that interact with a physical
environment. Automatically checking properties, such as invariance and stability, is ex-
tremely hard for general hybrid models, and therefore current research focuses on models
with restricted expressive power. In this thesis we take a complementary approach by de-
veloping proof techniques that are not necessarily automatic, but are applicable to a general
class of hybrid systems. Three components of this thesis, namely, (i) semantics for ordi-
nary and probabilistic hybrid models, (ii) methods for proving invariance, stability, and
abstraction, and (iii) software tools supporting (i) and (ii), are integrated within a common
mathematical framework.

(i) For specifying nonprobabilistic hybrid models, we present Structured Hybrid I/O Au-
tomata (SHIOAs) which adds control theory-inspired structures, namely state models,
to the existing Hybrid I/O Automata, thereby facilitating description of continuous be-
havior. We introduce a generalization of SHIOAs which allows both nondeterministic
and stochastic transitions and develop the trace-based semantics for this framework.

(ii) We present two techniques for establishing lower-bounds on average dwell time (ADT)
for SHIOA models. This provides a sufficient condition of establishing stability for
SHIOAs with stable state models. A new simulation-based technique which is sound
for proving ADT-equivalence of SHIOAs is proposed.

We develop notions of approximate implementation and corresponding proof tech-
niques for Probabilistic I/O Automata. Specifically, a PIOA A is an ε-approximate
implementation of B, if every trace distribution of A is ε-close to some trace distribu-
tion of B—closeness being measured by a metric on the space of trace distributions.
We present a new class of real-valued simulation functions for proving ε-approximate
implementations, and demonstrate their utility in quantitatively reasoning about prob-
abilistic safety and termination.

(iii) We introduce a specification language for SHIOAs and a theorem prover interface for
this language. The latter consists of a translator to typed high order logic and a set
of PVS-strategies that partially automate the above verification techniques within the
PVS theorem prover.

Thesis Supervisor: Nancy A. Lynch
Title: NEC Professor of Software Science and Engineering

2



Acknowledgments

I am grateful to have had Nancy Lynch as my advisor. She shared her wisdom with me
and gave me freedom to explore my interests. Her enthusiasm about my ideas, blended
with her perfectionism made for a stimulating research environment. Nancy has profoundly
influenced the problems I choose to work on, how I go about doing research, and the
aesthetics of how I present my solutions.

It has been a pleasure to discuss my work with Sanjoy Mitter. Sanjoy shaped my
thinking on probabilistic hybrid systems and encouraged me to take courses that proved
to be extremely useful. I have gained from sketching my ideas to him on the blackboard
and also from discussing general research directions. A significant portion of this work has
benefited from bringing ideas from control theory into formal verification. This has been
possible because of Daniel Liberzon’s help and guidance. I am also grateful to Daniel for
being a delightfully supportive colleague and for providing precise, timely and reasoned
feedback.

A special thanks to Daniel Jackson for reading the thesis; your probing questions helped
me improve the presentation. I would like to acknowledge Piotr Indyk, Madhu Sudan, and
Ronitt Rubinfeld for being available for both academic and personal counsel, always; Piotr,
even at unearthly hours. The theorem prover connection is based on my collaboration with
Myla Archer. I thank her for sharing her knowledge, experience, and insights. I thank the
members of Tempo research group: Alex Shvartsman, Radu Grosu, Scott Smolka, Laurent
Michel. I would like to thank Joanne Hanley and Be Blackburn for everything that you
have done to make things smooth for us—the proposals, the letters, the corn, the cookies,
and yes, the moral support.

A defining feature of my MIT experience is the interaction with truly exceptional
post-docs and fellow students. The company of Vineet Sinha, Tina Nolte, Seth Gilbert,
Calvin Newport, Xavier Koegler, Ben Leong, Han-Pang Chiu, Dah-Yoh Lim, Vinod Vaikun-
tanathan, Victor Chen, Roger Khazan, Carl Livadas, and Yong Wang, has been stimulating
and enjoyable. I am grateful for the support of Dilsun Kaynar in my early days, when she
patiently listened to and commented on many of my half-baked ideas. My work with ju-
nior colleagues, Shinya Umeno and Hongping Lim, has been uniquely rewarding and has
contributed to the thesis. Ling Cheung deserves special mention as a formidable colleague
and for quietly suffering numerous practice talks. A special thanks to Rui Fan for many
stimulating technical discussions which have influenced my thinking as a researcher, and
also for introducing me to the music of Jascha Heifetz. Thanks to my dear friend David
Huynh for the endless hours of fun we had together.

I have the deepest gratitude to my family for their love and kindness. The support,
encouragement, and the occasional nudge (to finish) from my parents, Tapan and Mamata,
has been crucial for this thesis. Your wisdom and compassion continue to astonish and
inspire me. I am grateful to my sister, Shreya, for being such an unwavering champion; tak-
ing on this journey with you has been singularly rewarding. Finally, to my wife Shinjinee,
for support, for keeping it colorful, for giving me time and space to think, and for being a
constant source of happiness—thank you.

Sayan Mitra
31st August 2007, Cambridge, MA.

3



Contents

1 Introduction 10
1.1 Modeling and Verification of Embedded Software . . . . . . . . . . . . . . . 10
1.2 Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.4 Reading the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

I Non-probabilistic Hybrid Systems 21

2 Interactive State Machines 22
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Hybrid Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Definition of Hybrid Automata . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Executions and Traces . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Composition of HA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Hybrid Input/Output Automata . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Composition of HIOA . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Structured Hybrid I/O Automata . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 State models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Definition of Structured HIOA . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Some Special Classes of SHIOAs . . . . . . . . . . . . . . . . . . . . 35
2.4.4 Composition of SHIOA . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 The HIOA Language 38
3.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Built-in Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Vocabularies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Dynamic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.4 Initial Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4



3.5 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.1 Preconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.1 Invariant Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.2 Stopping condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.3 DAIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Operations and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7.2 Property Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Verifying Safety Properties 53
4.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Proving Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Proving Implementation Relations . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Case Study: Safety Verification of Helicopter Testbed . . . . . . . . . . . . 56

4.4.1 System Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 Safety Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.3 Preliminary Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.4 User Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.5 Supervisor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Verifying Stability Properties 75
5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Stability and Average Dwell Time . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Stability Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 ADT Theorem of Heshpanha and Morse . . . . . . . . . . . . . . . . 77

5.3 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 ADT Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Verifying ADT: Invariant approach . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.1 Transformations for ADT verification . . . . . . . . . . . . . . . . . 82
5.5.2 Case Study: Leaking Gas-burner . . . . . . . . . . . . . . . . . . . . 85
5.5.3 Case Study: Scale-independent Hysteresis Switch . . . . . . . . . . . 86

5.6 Verifying ADT: Optimization-based Approach . . . . . . . . . . . . . . . . . 89
5.6.1 One-clock Initialized SHIOA . . . . . . . . . . . . . . . . . . . . . . 90
5.6.2 Case Study: Linear Hysteresis Switch . . . . . . . . . . . . . . . . . 91
5.6.3 Initialized SHIOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6.4 MILP formulation of OPT(τa) . . . . . . . . . . . . . . . . . . . . . 98
5.6.5 Case Study: Thermostat . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Mechanizing Proofs 104
6.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.2 Types and Vocabularies . . . . . . . . . . . . . . . . . . . . . . . . . 108

5



6.2.3 Variables and Initial States . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.4 Trajectory Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.5 Actions, State Models, and Moves . . . . . . . . . . . . . . . . . . . 110
6.2.6 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.7 Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.8 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.9 Simulation Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.1 Strategies for Proving Invariants . . . . . . . . . . . . . . . . . . . . 123
6.3.2 Strategies for Proving Forward Simulation . . . . . . . . . . . . . . . 125

6.4 Discussion of Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.4.1 Failure Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.4.2 Two-Task Race . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

II Probabilistic Hybrid Systems 133

7 Probabilistic State Machines 134
7.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.3 Task-Deterministic Probabilistic Timed I/O Automata . . . . . . . . . . . . 137

7.3.1 Definition of Task DPTIOAs . . . . . . . . . . . . . . . . . . . . . . 137
7.3.2 Executions and Traces . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3.3 Composition of Task-DPTIOAs . . . . . . . . . . . . . . . . . . . . . 141

7.4 Probabilistic Semantics for Task-DPTIOAs . . . . . . . . . . . . . . . . . . 142
7.4.1 Semi-ring on Executions and Traces . . . . . . . . . . . . . . . . . . 143
7.4.2 Probability Measure Over Executions . . . . . . . . . . . . . . . . . 145
7.4.3 Probability Measure Over Traces . . . . . . . . . . . . . . . . . . . . 147

7.5 Implementation and Compositionality . . . . . . . . . . . . . . . . . . . . . 151
7.6 PTIOAs and Local Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.7 A Language for Specifying PTIOAs . . . . . . . . . . . . . . . . . . . . . . . 153
7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8 Verifying Approximate Implementation Relations 158
8.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.2 Task-structured PIOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2.1 Definition of Task Structured PIOA . . . . . . . . . . . . . . . . . . 160
8.2.2 Executions and Traces . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.2.3 Composition of Task-PIOAs . . . . . . . . . . . . . . . . . . . . . . . 161
8.2.4 Probabilistic Executions and Trace Distributions . . . . . . . . . . . 162
8.2.5 Exact implementations and Simulations . . . . . . . . . . . . . . . . 163

8.3 Uniform Approximate Implementation . . . . . . . . . . . . . . . . . . . . . 165
8.3.1 Uniform Metric on Traces . . . . . . . . . . . . . . . . . . . . . . . . 165
8.3.2 Expanded Approximate Simulations . . . . . . . . . . . . . . . . . . 166
8.3.3 Soundness of Expanded Approximate Simulations . . . . . . . . . . 169
8.3.4 Need for Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.3.5 Probabilistic Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6



8.4 Discounted Uniform Approximate Implementation . . . . . . . . . . . . . . 176
8.4.1 Discounted Uniform Metric on Traces . . . . . . . . . . . . . . . . . 177
8.4.2 Discounted Approximate Simulation . . . . . . . . . . . . . . . . . . 179
8.4.3 Soundness of Discounted Approximate Simulation . . . . . . . . . . 179

8.5 Approximations for Task-PIOAs . . . . . . . . . . . . . . . . . . . . . . . . 181
8.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.8 Appendix: Limits of Chains of Distributions . . . . . . . . . . . . . . . . . . 183

9 Conclusions 184
9.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.2.1 Modeling Probabilistic Hybrid Systems . . . . . . . . . . . . . . . . 185
9.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.2.3 Approximate Implementations . . . . . . . . . . . . . . . . . . . . . 187
9.2.4 Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

List of Symbols and Functions 188

Index 190

Bibliography 193

7



List of Figures

2-1 Example of trajectories of a real-valued continuous variable. . . . . . . . . . 24
2-2 Hybrid automaton model of a vehicle and a typical execution. . . . . . . . . 26
2-3 Composition of Vehicle and Controller. . . . . . . . . . . . . . . . . . . . . . 28

3-1 Bouncing ball: HIOA specification and an execution. . . . . . . . . . . . . . . 39
3-2 Vocabulary for graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3-3 Periodically sending process. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3-4 Thermostat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3-5 Time-bounded channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3-6 Process participating in a clock synchronization algorithm. . . . . . . . . . 49
3-7 Failure detector specification. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3-8 Periodic sender and simple failure detector. . . . . . . . . . . . . . . . . . . 51
3-9 Composed automaton and property assertions. . . . . . . . . . . . . . . . . 51

4-1 Helicopter testbed manufactured by Quanser Inc. . . . . . . . . . . . . . . . 57
4-2 Interconnection of SHIOA components in Quanser helicopter system. . . . . 58
4-3 Quanser helicopter pitch dynamics. . . . . . . . . . . . . . . . . . . . . . . . 58
4-4 Periodic noisy sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4-5 An arbitrary user-defined controller. . . . . . . . . . . . . . . . . . . . . . . 60
4-6 Switching regions of supervisory controller. . . . . . . . . . . . . . . . . . . 61
4-7 Switched supervisory controller for helicopter testbed. . . . . . . . . . . . . 62
4-8 Actuator with delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4-9 Left:At regions between U and R, Right:Bt regions between R and C. . . . 67

5-1 Leaking gas burner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5-2 Scale-independent hysteresis switch. . . . . . . . . . . . . . . . . . . . . . . 87
5-3 Transformed hysteresis switch. . . . . . . . . . . . . . . . . . . . . . . . . . 87
5-4 One-clock initialized SHIOA Aut(G) defined by directed graph G. . . . . . . 90
5-5 Linear hysteresis switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5-6 ADT-equivalent graph (m = 3) for LinHSwitch. . . . . . . . . . . . . . . . . 93
5-7 Generic rectangular initialized SHIOA. . . . . . . . . . . . . . . . . . . . . . 98
5-8 Objective function and constraints for MOPT(K, τa) . . . . . . . . . . . . . 99
5-9 Thermostat2 SHIOA and its rectangular initialized abstraction ThermAbs. . 101

6-1 directedGraphs vocabulary in HIOA translated to directedGraphs theory in PVS.109
6-2 Variable declarations in HIOA translated to type declarations in PVS . . . . . 110
6-3 Actions and State models in HIOA translated to Moves in PVS . . . . . . . . 111
6-4 Discrete transitions in HIOA and their PVS translation. . . . . . . . . . . . . 113
6-5 Bounce automaton translated to Bounce theory in PVS. . . . . . . . . . . . 114

8



6-6 Spec of Figure 3-7 translated to Spec decls theory. . . . . . . . . . . . . . . 116
6-7 Timeout automaton in HIOA . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6-8 Timeout of Figure 6-7 translated to Timeout decls theory. . . . . . . . . . . 118
6-9 Translation of invariant assertions for Timeout. . . . . . . . . . . . . . . . . 119
6-10 SHIOA PVS theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6-11 Forward simulation theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6-12 Translation of forward simulation relation of failure detector. . . . . . . . . 123
6-13 Base case sequent of simulation proof. . . . . . . . . . . . . . . . . . . . . . 125
6-14 Inductive step sequent for internal actions. . . . . . . . . . . . . . . . . . . . 126
6-15 Inductive step sequent for external actions. . . . . . . . . . . . . . . . . . . 127
6-16 Structure of Prove Fwd Sim strategy. . . . . . . . . . . . . . . . . . . . . . . 128
6-17 Inductive step sequent for trajectories. . . . . . . . . . . . . . . . . . . . . . 128
6-18 TwoTaskRace automaton and its abstract specification. . . . . . . . . . . . . 131
6-19 Forward simulation relation for TwoTaskRace. . . . . . . . . . . . . . . . . . 132

7-1 Noisy sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7-2 Randomized consensus with exponential message delays. . . . . . . . . . . . 156

8-1 Marginal distributions of the optimal joint distribution ψ for φ̂(x1, y1) = ε. . 168
8-2 Discrepancy and lstate distributions for A1 and A2. . . . . . . . . . . . . . 173
8-3 Rand and Trapdoor automata. . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8-4 Automata representing Ben-Or consensus protocol. . . . . . . . . . . . . . . 177

9



Chapter 1

Introduction

1.1 Modeling and Verification of Embedded Software

Software in modern engineering systems is designed to perform sophisticated and safety-
critical tasks by interacting with physical environments. Examples of such “embedded
software” abound in automotive, avionics, robotics, medical, and process control systems.
Testing and simulation based methods alone cannot guarantee the absence of defects nor
can they guarantee that the software system has the required properties. In the context
of safety-critical embedded software, the mantra of formal modeling and verification—to
build a mathematical model of the software system and to prove that the model satisfies
the required properties—is appealing. If the actual implementation of the software respects
its mathematically proved model, then it is also guaranteed to satisfy the properties.

There are two components to model-based software verification, namely, specification
and verification. First, one has to describe the behavior of the software system as a mathe-
matical object which can be reasoned about. Such a mathematical representation is called
a specification. There are various levels of detail at which one could specify the behavior of
a piece of software. At one end, the model could closely mimic the behavior of code (and
hardware), and at the other end of the spectrum, the model could only describe what the
software should do, but not how it should do it. At all these different levels of abstrac-
tion, behavior of software is typically described by discrete state transitions. For complete
mathematical description of an embedded software system one has to also capture the evo-
lution of the physical environment of the software—motion, flow of matter, action of forces.
Mathematical models that combine differential equations and state transitions are called
hybrid models or hybrid systems.

The second component is to prove or verify that the specification of the software satisfies
the properties that are required for correctness. From the early days of software development
it has been recognized that proving correctness of even purely sequential state transition
systems is a difficult, and often computationally intractable [Dav83]. Although significant
progress has been made in verifying relatively shallow properties for programs, software
verification in general remains one of the grand challenges in computer science [MMS05].
Software implemented using concurrent threads improve efficiency by exploiting the sup-
port of multiprocessing in modern microprocessors, but concurrency gives rise to subtle
defects such as race conditions, starving, and deadlocks that are notoriously difficult to
find. Embedded software typically employ multiple threads for managing several tasks si-
multaneously (e.g., sensing and actuation) and hence, verification of hybrid systems inherit

10



all the difficulties that plague ordinary concurrent systems. In addition, now we also have
to reason about continuously evolving states described by differential equations. Analysis
of general continuous systems is a daunting task and the tools employed for this purpose,
typically from the realm of systems and control theory, are quite different and hence difficult
to combine with those employed in analyzing concurrent systems.

1.2 Hybrid Systems

It has been known for some time now that purely algorithmic analysis is impossible for even
fairly restricted classes of hybrid systems. Consider, for example, the class of rectangular,
initialized hybrid systems [HKPV95]. These are hybrid systems with a finite number of
clocks, all evolving at constant (possibly different) rates as time elapses. When the vari-
ables satisfy certain predicates, then they are initialized to zero, and a new set of constant
rates guide their evolution from then onwards. Further, the predicates which trigger the
initializations have to be such that they do not compare two clocks. For rectangular, ini-
tialized hybrid systems it is possible to to compute the set of reachable states (that is,
the attainable clock values) in PSPACE. Computing the reachable set is the key toward
algorithmic verification of several types of properties; it can be used to answer questions
such as: “Does the system every hit any undesirable states?” However, even if one of the
above restrictions—constant rates, initialization, and independent constraints—is relaxed,
reachable set computation becomes undecidable.

In practice, therefore, a compromise has to be struck between the expressive power of
the class of hybrid models that we use for specifying, and the degree of automation we get in
verification. Traditionally, concurrency theorists have focused on subclasses with relatively
simple continuous dynamics (described, by linear or rectangular differential equations) but
interesting discrete behavior, and researchers in systems and control theory, on the other
hand, have placed a greater emphasis on models with more general continuous behavior
with isolated switching events.

Instead of focusing on models that are amenable to fully automatic verification, in this
thesis, we explore a general class of hybrid models for the purpose of developing specifi-
cation and verification techniques for embedded software systems. Of course, verification
is not going to be fully automatic for these general hybrid models, but we do expect that
by bringing in tools from control and optimization theory, we will be able to develop effec-
tive techniques. Our strategy for addressing the challenge of general hybrid systems with
complex discrete and continuous behavior is to (i) decompose large systems into simpler
components, (ii) abstract complex components with simpler ones, and (iii) develop new
verification techniques based on deduction and optimization. For certain restricted classes
of hybrid systems (iii) also yields brand new, fully automatic, verification procedures. Our
results on composition and abstraction can be used in conjunction with the existing algo-
rithmic approaches to reason about composite hybrid systems. Thus, our approach can be
viewed to complement the algorithmic approaches.

Before we go any further into discussing the contributions of the thesis, we describe
some key aspects of hybrid system specification and verification. Since our developments
are based on the Hybrid Input/Output Automata (HIOA) model of Lynch, Segala, and
Vaandrager [LSV03], we also take this opportunity to introduce the basic terminologies in
this framework.

Hybrid behavior. HIOA is a automaton framework for describing discrete and continuous

11



behavior. The simplest hybrid I/O automaton consists of sets of internal variables,
internal actions, transitions and trajectories. Valuations of the internal variables
define the state of the automaton. The valuations can change discretely through
transitions (which are labeled by the internal actions) and continuously over a period
of time following a trajectory. No structural or computational restrictions are imposed
on the dynamics of the variables over the trajectories and the transitions—this makes
HIOAs very expressive. A particular run or a behavior of a HIOA is modeled as an
alternating sequence of actions and trajectories, which is called an execution. Typical
properties of a HIOA A that one is interested in verifying include invariant properties
(all executions of A remain within a certain set of states), stability properties (e.g.,
all executions of A converge to some target state), and timing-related properties (e.g.,
in every execution, every occurrence of action a is followed by an an occurrence of b
within a certain time bound).

Uncertainties and underspecification. Any modeling framework has to provide mech-
anisms for capturing uncertainties in the system. In HIOA, nondeterministic transi-
tions and trajectories provide such a mechanism. Nondeterminism is necessary for con-
structing (a) models for arbitrarily interleaving concurrent processes, and (b) models
that are implementation-free and underspecified. Nondeterminism cannot, however,
capture the probabilistic information about uncertainties, such as the probability that
a random bit turns out to be 1 or the probability that a processor fails. Probabilistic
models make it possible to verify quantitative properties of hybrid systems such as
expected time of convergence to an equilibrium state and probability of hitting a set
of bad states.

Implementation or abstraction. In reasoning about complex systems it is essential that
we are able abstract a complicated model with a simpler one, so that the visible behav-
ior of the former is subsumed by that of the latter. The notion of abstraction finds an
application in the process of hierarchical refinement . Here, one starts with an abstract
specification that easily checked to be correct, ands adds more and more implemen-
tation details to the point where a detailed enough specification is obtained that can
actually be built. If the subsumption relation is preserved in all the intermediate
steps, then the final implementation is provably correct.

Interfaces. The external interface of a HIOA is defined by adding sets of input and output
variables and input and output actions to the simple HIOA model described earlier.
Valuations of input/output variables also change over transitions (which are now
labeled by internal as well as input/output actions) and trajectories. The externally
visible behavior corresponding to an execution, called a trace, is obtained by removing
all the internal variables and actions from the execution and keeping the input/output
variables and actions. A HIOA A implements another HIOA B, written as A ≤ B,
if the set of traces of A is contained in the set of traces of B. This is equivalent to
saying that B is an abstraction for A. The key mechanism for constructing abstract
HIOA models is through the use of nondeterminism.

Composition. For analyzing complex systems it is essential that we are able to reason
compositionally . Informally, this means that we should be decompose the system into
a set of interacting components, verify correctness of the individual components, and
deduce the correctness of the whole system from the correctness of the components

12



without much extra work. HIOA models can communicate through shared inter-
faces, that is, through shared input/output actions and input/output variables. Such
communicating HIOAs can be composed to get more complex HIOAs. The compo-
sition operation respects the notion of implementation. That is, if component A is
an implementation of B, then for every automaton C, the composition of A and C,
A||C, implements B||C. Formally, this property of any class of automaton is called
substitutivity .

1.3 Thesis Overview

The thesis has two parts. Part I is about specifying and verifying nonprobabilistic hybrid
system models. It includes improvements on existing mathematical models, new theoretical
results that yield verification techniques, and also design of software tools that embody these
techniques. Part II presents a set of foundational results on specifying and analyzing hybrid
models with probabilities. It includes the development of semantics for a general class of
hybrid systems that supports both nondeterministic and probabilistic choices, and a set
of proof techniques for verifying quantitative properties of discretely evolving probabilistic
systems. Composition, implementation, substitutivity, and inductive proof techniques for
invariance and implementation are the recurrent themes in both parts. In this section,
we present an overview of the thesis staring with the different models for hybrid systems
that are used and developed, then the verification techniques, and concluding with the
supporting software tools.

1.3.1 Modeling

The starting point of the thesis is the Hybrid Input/Output Automaton (HIOA) of [LSV03].
A HIOA is a nondeterministic automata which can evolve discretely and continuously, and
which can communicate both discretely (through shared actions) and continuously (through
shared variables) with other HIOAs. The HIOA model is described in Section 2.3.

Continuous evolution or the trajectories of a HIOA are specified as a set of functions
that satisfy certain closure properties. For developing verification techniques that rely on
analysis of the trajectories, we would like to have a structured way of specifying them.
In Section 2.4, we introduce the Structured Hybrid I/O Automaton (SHIOA) model where
the trajectories are specified by a collection of state models. The state model description of
trajectories is similar in spirit to the standard state space representation used for describing
continuous time systems in control theory (see, e.g., [Oga97, Lue79]). Each state model
consists of Differential and Algebraic Inequalities (DAIs), an invariant condition, and a
stopping condition, which define a set of valid trajectories for the SHIOA. We define the
composition operation of SHIOA and show that SHIOAs are semantically equivalent to
HIOAs. All our developments in Part I are based on SHIOAs.

In HIOAs and SHIOAs, uncertainties are captured as nondeterministic choices. Nonde-
terminism can describe uncertainty as a set of possible choices, but cannot capture the prob-
ability of individual choices. Incorporating probabilities in hybrid system framework gives
us a richer language to construct models with. In Chapter 7 of Part II, we introduce a new
model for probabilistic hybrid systems called Probabilistic Timed I/O Automata (PTIOA).
The continuous evolution of a PTIOA is non-probabilistic, but the discrete transitions can
be both probabilistic and non-deterministic. Thus, PTIOAs can be be used to model hybrid
systems where failures and message delays are defined by a discrete time stochastic process,

13



for example, randomized, real-time algorithms, timing based security protocols, control sys-
tems with noisy sampling, and randomly switched hybrid systems. It is worth remarking
that the Probabilistic I/O Automaton (PIOA) of Segala et al. [Seg95b, CCK+06a] that we
use in Chapter 8 for developing notions of approximate implementation, is essentially a
“discrete” PTIOAs; PIOAs do not have continuous state spaces, trajectories or continuous
probability distributions.

The key challenges in developing the semantics for PTIOAs are (i) reconciling the inter-
action between probabilistic and nondeterministic choices, and (ii) ensuring measurability
of the various quantities. If we restrict our attention to discrete probability distributions
over countable sets alone, then it suffices to assign probabilities to individual elements in
the countable set; we can determine the probability of a set S by simply adding up the
probability of the individual elements in S. This approach does not work when we have
to deal with continuous distributions over uncountable sets. For example, consider an in-
finite sequence of coin tosses. We cannot determine the probability of getting infinitely
many 0′s—which in this case should be 1—by simply adding the probabilities of a set of
outcomes. We have to carefully assign probabilities to certain sets of outcomes, and these
sets are precisely going to be the measurable sets of outcomes, or in the case of PTIOAs,
these are going to be the measurable sets of executions. Thus, we are led to use measure
theoretic constructions, and in the process we have to solve several technical problems for
preserving measurability properties.

Nondeterminism has to be resolved in order to assign probabilities to measurable sets of
executions. Nondeterminism in PTIOAs (and in SHIOAs) comes from two sources: (a) ex-
ternal nondeterminism : choice of one automaton which makes the next move from a set of
interacting automata, and (b) internal nondeterminism: choice of one move (transition or
trajectory) of an automaton from a set of possible moves. We proceed by first working with
task-structured Deterministic PTIOAs (task-DPTIOAs)—a subclass of PTIOAs that have
limited internal nondeterminism. In order to ensure that all reasonable sets of executions
are measurable we impose the following measurability condition on task-DPTIOAs: (1) for
any action, the set of states in which the action is enabled a measurable, and (2) for a
measurable subset R of R≥0 and a measurable set Y of states, the set of states from which
there exists a trajectory of length in R and final state in Y , is measurable. For resolving
external nondeterminism we rely on the task schedules which uniquely determine an au-
tomaton which gets to make the next move. Combining a task schedule with a PTIOA
A gives rise to a probabilistic execution—a probability measure over the set of executions
of A. In Section 7.4, we provide an explicit inductive construction for this measure. We
show that the trace function is measurable for PTIOAs, and therefore, each probabilistic
execution in turn gives rise to a trace distribution—a probability measure over the set of
traces of A.

We use a simple, but intuitive notion of external behavior for task-DPTIOAs and show
that they are substitutive with respect to it. We define the composition operation for
PTIOAs and show that the class of PTIOAs (and task-DPTIOAs) are closed under compo-
sition, provided the composite automaton satisfies an additional measurability requirement.
Finally, based on the trace semantics of task-DPTIOAs, we define the semantics for PTIOAs
simply by interpreting a PTIOA as a collection of task-DPTIOA, each of which resolves
internal nondeterminism in a different way.

14



1.3.2 Verification

Verifying Invariant Properties and Implementation Relations

In Chapter 4 we present techniques for establishing invariant properties and implementation
relations for SHIOAs. An invariant property I of an SHIOA A is deduced by first finding
a stronger inductive property I ′ ⊆ I, and then checking, through case analysis, that all the
actions and state models of A preserve I ′. An implementation relation A ≤ B, is deduced
by first finding a suitable simulation relation R on the states of A and B, and then checking
that, starting from related states, each transition and trajectory of A can be “simulated”
by a sequence of transitions and trajectories of B, with the same trace, while preserving R.

These proof techniques enable us to construct stylized hand-proofs by systematic analy-
sis of SHIOA specifications. This is a first step toward automation in deductive verification.
Indeed, the theorem prover strategies of Chapter 6 which partially automate construction of
such stylized proofs, are based on these techniques. Furthermore, because these techniques
decouple the reasoning about the transitions and the trajectories, it is possible to apply
methods from computer science and control theory within the same proof. For example, to
prove that a certain closed set S is an invariant for a given SHIOA, we check that (a) the
transitions do not leave S by symbolically computing the post state of the transitions, and
(b) the trajectories do not leave S by invoking a well known theorem from control theory
on subtangential relationships between the boundary of S and the vector field of the state
models.

The proof techniques are applied to several case studies throughout the thesis. In
particular, Section 4.4-4.4.2 present an application in verifying the safety of a supervisory
controller for a model helicopter system.

Verifying Stability Properties

The inductive proof techniques that are available for proving invariance cannot be directly
applied to prove stability. We consider the case of SHIOAs that have stable state models. A
theorem by Hespanha and Morse [HM99] tell us that for such SHIOAs, it suffices to verify
that A switches among the different state models “slowly enough”, in order to establish
stability. This notion of slow switching is formalized by the Average Dwell Time (ADT)
property of A. In Chapter 5, we present a set of techniques for verifying ADT properties
of SHIOAs.

Specifically, we define what it means for a given SHIOA to be equivalent to another
SHIOA with respect to ADT, and introduce switching simulation relations for proving such
relationships between a pair of SHIOAs. Next, we present two complementary techniques
for proving ADT properties. The first technique relies on transforming the given automaton
A to a new automaton A′, such that A satisfies the ADT property in question if and only
if A′ has a certain invariant property. Then the techniques developed above for proving
invariant properties can be used on A′ to verify the ADT of A. The second technique
relies on solving an optimization problem over the set of executions of an automaton, to
search for a counterexample execution that violates the candidate ADT property. We show
that for initialized SHIOAs it is necessary and sufficient to optimize over a small set of
execution fragments. In addition, if the SHIOA is rectangular then it is possible to solve
the optimization problem efficiently using mixed-integer linear programming.

These two methods for verifying ADT properties complement each other as they can
be used in combination to find the average dwell time of a hybrid system. We apply both

15



the abstraction and verification techniques to verify the ADT, and hence the stability, of
several hybrid systems, including a scale-independent hysteresis switch. It is worth noting
that ADT properties have proved to be helpful in analyzing different forms of stability in
various contexts other than those we study in Chapter 5. For example, in analyzing stability
of SHIOAs with stable and unstable state models [ZHYM00], input-to-state stability in the
presence of inputs [VCL06], and stochastic stability of randomly switched systems [CL06].
Our ADT verification techniques are likely to be valuable in these other contexts as well.

Verifying Approximate Implementations

Task-structured PIOAs of [CCK+06a] can be viewed as discrete version of the task-DPTIOAs
of Chapter 7, in the sense that they do not have continuous evolution and are restricted
to probabilistic transitions with discrete probability distributions. Like taks-DPTIOAs,
a task schedule resolves the nondeterministic choices in a task-PIOA and gives rise to a
probability distribution over its space of executions, which in turn gives a unique trace
distribution. A PIOA A is said to implement PIOA B, if each trace distribution of A is
also a trace distribution of B. But small perturbations to the parameters of A produces
traces distributions with slightly different probabilities and this breaks this implementation
relation. In Chapter 8 we define approximate implementation relations that not only cap-
ture the binary fact of whether or not A implements B, but also the degree to which A
implements B. Specifically, a PTIOA A is an ε-approximate implementation of B, if every
trace distribution of A is ε-close to some trace distribution of B, where closeness is mea-
sured by the uniform metric on the space of trace distributions. We present a new class of
real-valued simulation functions, the existence of which is sound for proving ε-approximate
implementation relationships between PIOAs. A second notion of discounted approximate
implementation is introduced based on the discounted uniform metric on trace distributions
which allows finer-grained comparison of task-PIOAs. And we develop a simulation based
inductive proof technique for discounted approximate implementations. We show how ap-
proximate implementations can be used to quantitatively reason about probabilistic safety
and robustness of termination probability.

1.3.3 Software Tools

The software tools that we have designed as a part of this thesis facilitate and partially
automate the specification and verification techniques for SHIOAs. The software compo-
nents that have been implemented based on the designs proposed in this thesis include: 1. a
specification language, called HIOA, for describing SHIOAs. 2. a tool for translating HIOA
specifications to the language of the PVS theorem prover [ORR+96], 3. a set of strategies
(PVS programs) which partially automate invariant and simulation proofs for SHIOAs. In
addition, in Chapter 5 we discuss how our results in stability verification can be used in
conjunction with model checking tools (such as, PHAVer [Fre05] and HyTech [HHWT97])
and linear program-solvers, for automatic verification of ADT properties.

HIOA language

Chapter 3 presents the syntax and the semantics of HIOA and illustrates its usage with exam-
ples. HIOA provides a rich set of language constructs for specifying user-defined types, tran-
sitions, state models, compositions and forms the basis for developing SHIOA-verification
framework. HIOA is an extension of the IOA language [GLTV03]. This language has been

16



used throughout this thesis and elsewhere for describing vehicle and air-traffic control
systems [UL07, MWLF03], cardiac cell models used in systems biology [GMY+07], algo-
rithms for mobile robotics [LMN], real-time and distributed algorithms [FDGL07, ALL+06,
CLMT05]. The subset of the HIOA language without input/output variables is called the
TIOA [KLMG05]. A front end for TIOA including a GUI-based editor has been imple-
mented and it serves as the backbone of the Tempo Toolset [TEM07].

HIOA to PVS translator

Theorem provers are used to mechanically construct proofs from a given set of definitions
and axioms, and hence they provide the highest level of assurance in system verification.
With a theorem prover, one can quickly re-check the validity of an existing proof by re-
running the saved proof scripts, after changes have been made to the specification. But,
in order to use a theorem prover one has to specify the system, in our case SHIOAs, in
the language of the theorem prover. In Section 6.2, we present the design of a scheme
for translating HIOA specifications to the language of the PVS—the theorem prover of our
choice—hence eliminating the intermediate manual step of specifying SHIOAs in PVS. The
key challenge here has been to translate the trajectories of an SHIOA to corresponding
moves in the PVS representation, so that they can be reasoned about effectively. Based on
the design presented in this thesis, a prototype tool for translating TIOA specifications to
PVS has been implemented by Lim [Lim01].

Proof Strategies

In order to verify a property of an HIOA specification that has been translated to PVS, the
user invokes the prover and supplies a sequence of proof commands to interactively manipu-
late and resolve all proof obligations. Typically this process is lengthy, tedious to construct,
and it always requires careful attention to specification details. In Section 6.3, we present
several PVS strategies for partially automating this process for proving implementation re-
lations for SHIOAs. A strategy is a Lisp program that accesses the state of an ongoing proof,
constructs a sequence of proof steps on-the-fly, and applies it to the proof. Our strategies
exploit the known structure of SHIOAs and that of inductive simulation proofs to construct
sequences of proof steps. Prior to this work, the Timed Automaton Modeling Environment
(TAME) of Archer [Arc01] provided several PVS strategies for proving invariant properties
of timed I/O automata. These strategies are also compatible with our translation of HIOA
to PVS. In Section 6.4 we discuss our experiences in using the HIOA to PVS translator and
our proof strategies.

1.3.4 Reading the Thesis

The nonprobabilistic and probabilistic parts of the thesis are independent, but both rely
on the basic definitions of Section 2.1. All of Part I relies on the mathematical models of
Chapter 2. In order to read that examples throughout Part I, the reader should also look at
the semantics of the HIOA language presented in Chapter 3. The verification techniques of
Chapter 5 depend only tangentially on those of Chapter 4, and therefore these two chapters
can be read independently. The design of the software tools in Chapter 6 rely on the HIOA
language and the proof techniques described in Sections 4.2-4.3. Chapter 8 of Part II can
be read after Sections 2.1 and 7.2.

17



1.4 Related Work

In this section we provide an overview of existing work on modeling hybrid systems. Discus-
sion of existing research that is related to our work on verification and supporting software
design are presented in the subsequent chapters. We follow the conceptual development of
hybrid system models rather than the chronological order in which the models appeared.

Untimed Automata. Models for qualitative reasoning about concurrent systems have
been studied in great detail. Examples include ω-automata [CES86], modal logics [MP81,
Pnu77], and I/O automata [Lyn96b, GLTV03]. These formalisms either abstract away time
completely, retaining only the sequence of actions, or assume the time sequence to be a
monotonically increasing sequence of integers. The I/O automaton model, for example, has
no continuous variables and only a trivial set of trajectories; it is used to model discrete time
systems that communicate synchronously. These frameworks are not entirely satisfactory for
reasoning about systems that must interact with physical processes and therefore critically
depend upon real-time constraints.

Timed and Hybrid Automata. Merritt, Modugno, and Tuttle [MMT91] addressed the
above problem by proposing a timed version of the I/O automata model, which associated
lower and upper real-time bounds with the actions (or sets of actions) of the automaton.
The semantics of the resulting MMT-automaton model is as follows: from any point in an
execution where an action gets enabled, it must actually occurs within the corresponding
time bounds. Alur and Dill introduced the Timed Automaton model [AD94], in which it
is possible to express continuously evolving clock and stop-watch variables, and not just
bounds on the time between the successive transitions. The Alur, Henzinger, et al. Hybrid
Automaton (AH) model [ACH+95, Hen96] generalizes the timed automaton model so that
the continuous variables do not necessarily evolve at constant rates. The Alur-Dill timed
automata, the Alur-Henzinger hybrid automata and their variants have been the basis for
a large body of research on formal-language theoretic study of hybrid systems and for the
development of algorithms for automatic analysis (selected references: [Alu91, HKPV95,
HNSY94, ACH+95]).

The timed and hybrid I/O automaton models [LV96, DLL97, MMT91, KLSV04, KLSV03,
LSV03, KLSV05] have been developed as a framework for describing general hybrid systems
with well-defined notions of external behavior, parallel composition, abstraction, and with
the aim of creating deductive proof techniques. The only difference between the hybrid
and the timed I/O automaton (TIOA) model is that the latter does not allow external
(input/output) continuously changing variables. That is, TIOAs can communicate only
through shared actions, but not shared variables. TIOAs, HIOAs, and SHIOAs have been
used to specify and verify hybrid systems from a variety of domains including vehicle and
air-traffic control systems [UL07, MWLF03, LLL99, WLD95, WL96, HL94], systems bi-
ology [GMY+07], mobile robotics [LMN], real-time and distributed algorithms [FDGL07,
ALL+06, CLMT05].

Unlike the timed automaton model of Alur-Dill, the continuous state variables of a
TIOA can have unrestricted dynamics. In this sense, the expressive power of TIOAs is
closely related to that of Alur-Henzinger’s hybrid automata. However, for the purpose
of algorithmic verification, several simplifying assumptions are built-in within the Alur-
Henzinger model. For example, it is assumed that the discrete state of any automaton
is a finite set of locations; the locations determine the continuous dynamics but are not
suitable for describing data-structures such as stacks, counters, and trees, which are useful

18



for modeling computation. In contrast, the discrete transitions of a TIOA (or a HIOA) may
modify its discrete state to perform computations. These computations may or may not
alter the continuous dynamics.

Switched and Dynamical Systems. The General Hybrid Dynamical System (GHDS)
model introduced by Branicky, Borkar, and Mitter [BBM98, Bra95] subsumes most other
hybrid models including those proposed in [ASL93, BGM93, Bro94, NK93]. A GHDS is
an interacting collection of dynamical systems, each evolving on continuous-variable state
spaces. The set of continuous variables of each constituent dynamical system may be
different. In each of the constituent dynamical system, the dynamics may be continuous
time, discrete time, or mixed, and are given by difference or differential equations. The
switched system model [Lib03, HM99, vdSS00] is a special case of the GHDS model where all
the constituent dynamical systems have the same state space and the right hand side of the
differential equations defining the dynamical systems are globally Lipschitz continuous. The
switched system model has been widely used to obtain stability and controllability related
results for hybrid systems. A switched system can be viewed as higher-level abstraction
of a HIOA where details of the discrete behavior are abstracted in terms of an exogenous
switching signal that brings about the switching between the different dynamical systems.

Continuous Probabilistic Models without Nondeterminism. Probabilistic or stochas-
tic models are used to capture uncertainties about the system model. Uncertainties may
affect the behavior of a hybrid system model, in many different ways. For example, there
might be uncertainties about the outcome of the discrete transitions, the parameters of the
differential equations might be uncertain, or there may be some white-noise-like disturbance
affecting the continuous evolution. Consequently, various models for probabilistic hybrid
systems are possible.

In the Stochastic Hybrid System (SHS) model of [HLS00], the transitions between the
modes of the system are guided by a discrete time Markov chain, and within each mode
the evolution of the continuous variables is described by stochastic differential equations.
In the SHS model of [Hes04], on the other hand, transitions between discrete modes are
triggered by transitions between states of a continuous-time Markov chain and the rate at
which transitions occur is allowed to depend both on the continuous and the discrete states.
Both these models develop the theory for finding invariant distributions over the state space.
These models do not define external behavior or composition of model components and they
do not permit nondeterminism in the models.

Discrete State-space Probabilistic Models. Probabilistic extensions of I/O automata
were presented by Segala in [Seg95b, Seg96, Seg95a]. The notion of traces is generalized
to trace distributions that define the external behavior of a probabilistic automaton. Each
trace distribution is induced by a probabilistic scheduler which resolves all nondetermin-
istic choices. These extensions are natural, but the resulting abstraction relations are not
compositional. Difficulties arise from the interaction between probabilistic choice and the
resolution of nondeterminism of the model. This is because nondeterministic choices are
resolved by a powerful global scheduler, which can use arbitrary information about the
execution so far in resolving nondeterministic choices. For example, such a scheduler may
resolve nondeterministic choices in one automaton component in a composed system based
on internal state information of the other component. A special case of PIOAs, switched
PIOAs, has been proposed by Cheung et al. [CLSV04] in which these difficulties have been
overcome by carefully defining a local scheduler for each automaton, which resolves local

19



nondeterministic choices using local information only.

Continuous Probabilistic Models with Nondeterminism. In order to verify hybrid
systems, such as sensor networks and mobile robots, that have traits of both hybrid and
distributed systems we need a framework supporting continuous dynamics, probabilistic
transitions and nondeterminism. The interplay between probability and nondeterminism
makes the development of semantics such frameworks challenging [Seg95b, MOW04, Che06,
CCK+06b]. Introduction of continuous state spaces and distributions adds another layer of
complexity to the problem [CSKN05, vBMOW05, DDLP05].

Recently, several continuous state probabilistic automaton models have been proposed.
In Labelled Markov Processes (see e.g., [DDLP05, vBMOW05]) state transitions can give
rise to continuous probability distributions. In Piecewise Deterministic Markov Processes
(PDP) [Dav93] discrete transitions are probabilistic and the continuous evolution of state
in between those transitions is deterministic. In the Communicating Piecewise Deter-
ministic Markov Processes (CPDP) model of [SvdS05], component PDPs communicate
discretely through shared events. Existing models do not permit internal nondetermin-
ism. That is, choice of an action uniquely determines a transition, which in turn gives
a probability distribution over the states. Modeling frameworks that support composi-
tion of automata have to resolve external nondeterminism, that is, the choice of which
automaton gets to make the next move. This nondeterminism can be replaced by a
race between the automata [ES03, Sta03], else it can be explicitly resolved by a sched-
uler [CSKN05, Che06, CCK+06b]. Nondeterminism can also be allowed by treating the
probabilistic and nondeterministic transitions as separate kinds of objects [Her02]. In
CPDPs [SvdS05], on the other hand, nondeterminism is resolved using the maximal progress
strategy and a randomized scheduler.

Our Probabilistic Timed Input/Output Automata (PTIOA) framework shares certain
features with the Stochastic Transition Systems (STS) of [CSKN05]. Both frameworks
allow continuous state spaces, general probability distributions, and nondeterminism. An
STS, however, does not have notions of time or trajectories. This leads to very different
semantics for the two frameworks and also important technical differences in the underlying
construction of probability spaces. We discuss these issues in Section 7.4.

20



Part I

Non-probabilistic Hybrid Systems

21



Chapter 2

Interactive State Machines

Throughout Part I we shall specify (nonprobabilistic) hybrid systems as Structured Hybrid
I/O Automata (SHIOA). The state of an SHIOA may change instantaneously as a result
of the occurrence of some discrete transition, or it may evolve continuously over a period
of time according to some trajectory . From a particular state, if multiple transitions and
trajectories are possible, then the system evolves by nondeterministically choosing one.
SHIOA specializes the Hybrid I/O Automaton (HIOA) model of Lynch, Segala, and Vaan-
drager [LSV03] with additional structures which facilitate description and manipulation of
trajectories. In Part II, we will consider a generalization of the SHIOA model which allows
probabilistic discrete transitions.

SHIOAs are suitable for modeling physical and computing processes at different levels of
abstraction. For example, at one level, the delayed change in the output of a logic gate can
be modeled as a nondeterministically chosen time delay followed by a discrete transition.
In a more detailed model, the transition may be triggered when the gate current trajectory
stabilizes within a certain range. In the SHIOA framework, we can then formally state
(and prove) that the latter model is an implementation of the former. A complex system is
described as a composition of a set of SHIOAs that interact through shared variables and
transition labels. This chapter presents the basic definitions and semantics, taken mostly
from [LSV03], for HIOAs, SHIOAs, their compositions, and implementation relations.

2.1 Preliminaries

Sets and Functions. The complement of a set A is denoted by Ac. The union of a
collection {Ai}i∈I of pairwise disjoint sets indexed by a set I is written as

⊎
i∈I Ai. For any

function f we denote the domain and the range of f by dom(f) and range(f). For a set S, we
write f d S for the restriction of f to S, that is, the function g with dom(g) = dom(f)∩ S,
such that g(c) = f(c) for each c ∈ dom(g). If f is a function whose range is a set
of functions, then we write f ↓ S for the function g with dom(g) = dom(f) such that
g(c) = f(c) d S for each c ∈ dom(g). For an indexed tuple or an array b with n elements,
we use the special notation b[i] for referring to its ith element.

Time. We measure time by numbers in the set T ∆= R≥0 ∪ {∞}. A time interval is a
nonempty, convex subset of T. For an interval K ⊆ T and any t ∈ T, we define the t-
shifted interval as K + t

∆= {t′ + t | t′ ∈ K}. For a function f : K → R and t ∈ T, the
t-shifted function, (f + t) : (K + t) → R, is defined as (f + t)(t′) = f(t′ − t), for each

22



t′ ∈ K + t. The pasting of two functions f1 and f2, where the domain of f1 is right closed
and max(dom(f1)) = min(dom(f2)) = t′, is defined to be the function f1 � f2(t)

∆= f1(t) for
each t ≤ t′, and f2(t) for t > t′. Similarly, a finite sequence of functions can be pasted if all
the non-final functions have right closed domains.

Variables. A variable is a name for either a component of the system’s state or a channel
through which information flows from one part of the system to another. Each variable v
is associated with a static type (or simply type) and a dynamic type. The static type of
v, type(v), is the set of values that v can take. A valuation v for a set of variables V is a
function that associates each variable v ∈ V to a value in type(v). The set of all valuations
of V is denoted by val(V ).

The dynamic type of v imposes certain wellformedness criterion on how the value of v
can change over time intervals. This allows us to deduce basic properties of variables (e.g.,
input variables) that are otherwise unconstrained.

Definition 2.1. For any variable v its dynamic type, dtype(v), is a set of functions from
left-closed time intervals to type(v) that satisfies the following properties:

DT1 (Shift) For any f ∈ dtype(v), and t ∈ T, f + t ∈ dtype(v).

DT2 (Subinterval) For any f ∈ dtype(v), left-closed interval J ⊆ dom(f), f d J ∈ dtype(v).

DT3 (Pasting) If f0, f1, . . . fn ∈ dtype(v), such that for all i < n, dom(fi) is right-closed
and max(dom(fi)) = min(dom(fi+1)). Then f1 � f2 � . . . fn ∈ dtype(v).

The third requirement DT3 is necessary for modeling jumps in the values of the variable
resulting from discrete transitions. Dynamic types are constructed by taking the pasting
closure of sets of functions, such as continuous functions, continuously differentiable func-
tions, k-times differentiable functions, Lipschitz functions, and smooth functions. We define
two special kinds of variables based on two dynamic types that frequently appear in hybrid
system specifications.

Definition 2.2. A variable v is said to be continuous if (1) type(v) = Rn, for some natural
number n, and (2) dtype(v) is the pasting closure of the class of functions where each
function f maps a left-closed time-interval J to type(v) and f is continuous with respect to
the Euclidean topologies on J and type(v). A variable v is said to be discrete if dtype(v)
is the pasting closure of the class of constant functions from left-closed time-intervals to
type(v).

Any function in the dynamic type of a continuous variable is piece-wise continuous and
is continuous from the left at each point. By the above definition, a variable v whose type
is Rn and dynamic type is the pasting closure of constant functions from left-closed time-
intervals to type(v), is a discrete variable. Thus, real-valued variables can be either discrete
or continuous or neither.

Example 2.1. Real-valued continuous variables are useful for describing the evolution of
physical quantities such as temperature, velocity, etc., and also resettable timers, and piece-
wise continuous signals. Real-valued discrete variables are useful for modeling sampled
data, for example, positional coordinates from a periodically broadcasting GPS device.
Implementation of algorithms typically involve data structures such as counters, stacks,
trees, graphs, etc. These are captured by discrete variables with the appropriate types.

23



Figure 2-1: Example of trajectories of a real-valued continuous variable.

Trajectories. A trajectory for a set of variables V describes the evolution of the values of
the variables over a certain time interval. A trajectory τ of V is a function τ : J → val(V ),
where J is a left-closed interval of time with left endpoint equal to 0, such that for each
v ∈ V , τ ↓ v ∈ dtype(v). That is, the restriction of τ to v is a function that conforms to
the dynamic type of v. The set of all trajectories for the set of variables V is denoted by
trajs(V ).

A trajectory τ with domain [0, 0] is called a point trajectory . We say that a trajectory
τ is finite if dom(τ) is of finite length, closed if dom(τ) is (finite) right closed, and open if
dom(τ) is a right open interval. If τ is closed its limit time is the supremum of dom(τ),
also written as τ.ltime. Also, we define τ.fval, the first valuation of τ , to be τ(0), and if
τ is closed, we define τ.lval, the last valuation of τ , to be τ(τ.ltime).

Trajectory τ is a prefix of trajectory τ ′, denoted by τ ≤ τ ′, if τ can be obtained by
restricting τ ′ to a subinterval [0, t] of its domain, for some t ∈ dom(τ ′). Trajectory τ is a
suffix of τ ′, if there exists t ∈ dom(τ ′) such that (τ ′ d [t,∞)) − t = τ . The concatenation
of a closed trajectory τ and another trajectory τ ′ is the function τ _ τ ′ : (τ.dom∪ τ ′.dom+
τ.ltime) → val(V ) defined as (τ _ τ ′)(t) ∆= τ(t) for all t ≤ τ.ltime and τ ′(t) for t > τ.ltime.
Alternatively, the concatenated function can be defined as τ_τ ′ ∆= τ∪(τ ′ d (0,∞)+τ.ltime).
Notice that the domain of τ ′ is restricted by a left-open interval, and therefore τ_τ ′(τ.ltime)
is τ.lval and not τ ′.fval. As the dynamic types of the variables in V are closed under shift
and pasting, the concatenated trajectory τ _ τ ′ is a valid trajectory for V .

Example 2.2. Let x be a real-valued continuous variable. Several trajectories of x are shown
in Figure 2-1. The domains of the closed trajectories τ1 and τ2 are the intervals [0, a] and
[0, b]. The function τ3 is obtained by b-shifting τ1, and therefore is contained in the dynamic
type of x. The trajectory τ2 _ τ1 is defined as the point-wise union of τ2 and τ3. Note that
(τ2 _ τ1)(b) is defined to be (τ2 _ τ3)(b) = τ2(b) and not τ3(b).

24



2.2 Hybrid Automata

In this section, we introduce the hybrid automaton model of [LSV03].

2.2.1 Definition of Hybrid Automata

Definition 2.3. A hybrid automaton (HA) H = (X,W,Q,Θ,H,E,D, T ) consists of:

(a) Disjoint sets W and X of external and internal variables. The internal variables are
also called state variables. The set of variables V is defined as W ∪X.

(b) A set Q ⊆ val(X) of states and a non-empty subset Θ ⊆ Q of start states.

(c) Disjoint sets E and H of external and internal actions. The set of actions A ∆= E∪H.

(d) A set D ⊆ Q×A×Q of discrete transitions.

(e) A set T of trajectories for V , such that for every trajectory τ in T , and for every
t ∈ dom(τ), (τ ↓ X)(t) ∈ Q. The set of trajectories T satisfies the following closure
properties:

T1 (Prefix closure) For every τ ∈ T and every prefix τ ′ of τ , τ ′ ∈ T .

T2 (Suffix closure) For every τ ∈ T and every suffix τ ′ of τ , τ ′ ∈ T .

T3 (Concatenation closure) If τ0, τ1, . . . ∈ T is a sequence of trajectories such that
τi.lval d X = τi+1.fval d X for each non-final index i, then τ0 _ τ1 . . . ∈ T .

Notations. A transition (x, a,x′) ∈ D is written in short as x a→H x′ or as x a→ x′ when
H is clear from the context. If x a→ x′, we say that action a is enabled at x. The set of
states at which a is enabled is denoted by enabled(a). The first state of a trajectory τ ,
τ.fstate, is τ.fval d X, and last state of a closed τ , τ.lstate, is τ.lval d X. We often denote
the components of a HA H by XH,WH, QH,ΘH, etc., and the components of a HA Hi by
Xi,Wi, Qi,Θi, etc.

Example 2.3. Consider a HA model of a vehicle whose brakes are controlled externally.
Figure 2-2 shows the variables and actions of this automaton. As a convention, throughout
this thesis we indicate external actions by dashed arrows and external variables by solid
arrows. The Vehicle automaton has real-valued continuous state variables x1, x2, and x3,
corresponding to the position, the velocity, and the acceleration, and a discrete boolean
variable b, which indicates whether or not the brakes are engaged. Here we describe the
components of Vehicle in English. In Section 2.4.1 we shall describe how the trajectories can
be succinctly described mathematically, and in Chapter 3 we will present a formal language
for specifying HAs.

The set of states or the state space Q of Vehicle is R3 × {0, 1}. The external actions
brakeOn and brakeOff are enabled at each state in Q. If the action brakeOn (or brakeOff)
occurs at a state x, the value of the variable b is set to true (f alse respectively) and the
other variables remain unchanged. This defines the discrete transitions of Vehicle. Over any
trajectory τ of Vehicle, the variable b remains constant, and y equals x1. If τ starts with
b = true, the deceleration x3 remains in a range [−amax,−amin], and otherwise x3 is zero.
The velocity x2 and the position x1 variables follow the usual kinematic equations ẋ2 = x3

and ẋ1 = x2. These conditions specify the set of trajectories T of the Vehicle automaton.
It can be checked easily that the set T is closed under prefix, suffix, and concatenation.

25



Vehicle

State x1, x2, x3, b

External y

brakeOn

brakeOff

y

x3
x2
x1, y brakeOff

Figure 2-2: Hybrid automaton model of a vehicle and a typical execution.

2.2.2 Executions and Traces

An execution fragment of a hybrid automaton H describes a particular behavior or run of
H. Formally, an execution fragment is an alternating sequence of actions and trajectories
α = τ0a1τ1a2 . . ., where (1) each τi ∈ T , and (2) if τi is not the last trajectory then
τi.lstate

ai+1→ τi+1.fstate. The first state of an execution fragment α, α.fstate, is τ0.fstate.
The graph of an execution fragment of the Vehicle HA starting from the state x1 = 20, x2 =
12, x3 = −4, and b = true is shown in Figure 2-2.

An execution fragment is closed if it is a finite sequence and the last trajectory is closed.
The last state of a closed execution α, α.lstate, is τn.lstate, where τn is the last trajectory
of α. The limit time of such an execution fragment, α.ltime, is defined as

∑n
i=0 τi.ltime.

An execution fragment α is an execution if α.fstate ∈ Θ. The (A1, V1)-restriction of an
execution keeps information about occurrence of actions in A1 and evolution of the variables
in V1 and filters out everything else.

Definition 2.4. Suppose A is a HA with set of variables V and set of actions A and let α
be an execution of A. The (A1, V1)-restriction of an execution α is defined as:

α d (A1, V1) = τ ↓ V1 if α is a single trajectory,

αaτ d (A1, V1) =

 (α d (A1, V1)) a (τ ↓ V1) if a ∈ A1,

(α d (A1, V1))
_ (τ ↓ V1) otherwise.

A state x ∈ Q is said to be reachable if it is the last state of some execution of A.
An execution fragment is reachable if its first state is reachable. That is, any suffix of an
execution is a reachable execution fragment . The set of all reachable states of A is denoted
by ReachA.

The length of a finite execution is the number of trajectories in the sequence. We
define the following shorthand notation for the valuation of the state variables of H in an
execution α at time t ∈ [0, α.ltime), α(t) ∆= α′.lstate, where α′ is the longest prefix of α
with α′.ltime = t. For a closed execution α, the notation extends to all t ∈ [0, α.ltime]. The
Euclidean norm of α(t) restricted to the set of real-valued continuous variables is denoted
by |α(t)|. We extend this notation to |α.lstate| and |α.fstate|. The set of all executions
and execution fragments of A are denoted by ExecsA and FragsA, respectively.

Many interesting properties of hybrid automata can be stated in terms of its executions
and reachable states. For example, an invariant property or simply an invariant is a pred-
icate on the state variables that is true in all reachable states. Given an invariant I, we

26



often identify the name of the invariant I with the set of states that satisfy it. Hence, for
any invariant I of A, ReachA is contained in I and I can serve as an over approximation
of ReachA. Invariants are also useful for specifying safety properties such as the property
that the velocity of a vehicle always remains within some range.

Stability properties of hybrid automata, introduced in [MLL06], can also be stated in
terms of executions. For example, a hybrid automaton is said to be globally uniformly
asymptotically stable, if for any ε > 0 and any state q0, there exists a Tε,q0 ∈ T, such
that for any execution fragment α with α.fstate = q0, for all t ≥ Tε,q0 , |α(t)| ≤ ε. Such
properties capture requirements such as the velocity of the vehicle should eventually (or
within a certain time) converge to a target range, even though in the interim the velocity
may exceed the range. In Chapters 4 and 5 we will present techniques for proving safety
and stability properties and their applications.

Often, we are interested in the externally visible part of an execution, which is called
a trace. The trace of α, denoted by trace(α), is the (E,W )-restriction of α. For example,
the traces of the HA Vehicle are alternating sequences of trajectories of y and (brakeOn or
brakeOff) actions. The set of all traces of H is denoted by TracesH.

Sometimes we specify the desired observable properties of an automaton H1 as another,
perhaps more abstract, automaton H2. Then, to show that H1 indeed satisfies the de-
sired properties we show that TracesH1 ⊆ TracesH2 . This motivates our next definition of
implementation relation.

Definition 2.5. Hybrid automataH1 andH2 are comparable if they have the same external
interface, that is, if W1 = W2 and E1 = E2. If H1 and H2 are comparable then we say that
H1 implements H2, denoted by H1 ≤ H2, if TracesH1 ⊆ TracesH2 .

In Chapters 4 and 5 we shall present techniques for verifying implementation relations
and their applications. In Chapter 6 we will discuss how such proofs can be mechanized
using theorem proving tools.

2.2.3 Composition of HA

The composition operation enables us to construct a new hybrid automaton from a pair of
interacting automata by identifying external actions and variables with the same name.

Definition 2.6. Hybrid automata A1 and A2 are compatible if H1 ∩ A2 = H2 ∩ A1 = ∅
and X1 ∩ V2 = X2 ∩ V1 = ∅. If H1 and H2 are compatible then their composition H1||H2 is
defined to be H ∆= (X,W,Q,Θ,H,E,D, T ), where

(a) X = X1 ∪X2 and W = W1 ∪W2.

(b) Q = {x ∈ val(X) | x d X1 ∈ Q1 ∧ x d X2 ∈ Q2} and
Θ = {x ∈ Q | x d X1 ∈ Θ1 ∧ x d X2 ∈ Θ2}.

(c) H = H1 ∪H2 and E = E1 ∪ E2.

(d) For each x,x′ ∈ Q and each a ∈ A, x a→A x′ iff for i = 1, 2, either
(1) a ∈ Ai and x d Xi

a→i x′ d Xi or (2) a /∈ Ai and x d Xi = x′ d Xi.

(e) T ⊆ trajs(V ) is given by τ ∈ T iff τ ↓ Vi ∈ Ti, i ∈ {1, 2}.

The next theorem from [LSV03] states that the class of HAs is closed under composition.

27



Theorem 2.1. If H1 and H2 are hybrid automata then H1||H2 is a hybrid automaton.

The following Lemma from [KLSV05] states that execution fragments of a composition
of HAs project to give execution fragments of the component automata. Moreover, the
fragments of the composition have certain properties if and only if the component fragments
also have similar properties.

Lemma 2.2. Let A = A1||A2 and let α be an execution fragment of A. Then α d (A1, V1)
and α d (A2, V2) are execution fragments of A1 and A2, respectively. Furthermore,

1. α is time bounded iff both α d (A1, V1) and α d (A2, V2) are time bounded.

2. α is closed iff both α d (A1, V1) and α d (A2, V2) are closed.

3. α is an execution iff both α d (A1, V1) and α d (A2, V2) are executions.

Example 2.4. Consider a controller that reads the external variable y of the Vehicle automa-
ton of Example 2.3 and triggers the brakeOn and brakeOff actions. Figure 2-3 shows the com-
position of the Vehicle with such a Controller. The composed automaton Vehicle||Controller
has external variable y and external actions brakeOn and brakeOff actions. Theorem 2.1
ensures that this composed automaton is also a HA. Lemma 2.2 tells us that for any
execution α of Vehicle||Controller the “projection” of α on brakeOn, brakeOff, and {y},
that is, α d ({brakeOn, brakeOff}, {y, . . .}) is an execution of Controller. Similarly, α d
({brakeOn, brakeOff}, {x1, x2, x3, y}) is an execution of Vehicle.

Vehicle

x1, x2, x3

Controller

. . .

brakeOn

brakeOff

y

Figure 2-3: Composition of Vehicle and Controller.

We conclude the section on HAs with another theorem from [LSV03], which provides a
method for proving implementation relations for composed systems by first proving imple-
mentation of its components.

Theorem 2.3. Suppose H1 and H2 are comparable hybrid automata and H1 ≤ H2. If B
is a HA that is compatible with each of H1 and H2, then H1||B and H2||B are comparable
and H1||B ≤ H2||B.

This theorem states what is called the substitutivity property of HAs: If H1 implements
H2 then in the context of of any automaton B, H2 can be substituted by H1.

2.3 Hybrid Input/Output Automata

The Hybrid Input/Output Automaton (HIOA) model is a refinement of the HA model in
which certain external actions and variables are distinguished as inputs while the rest are
outputs.

28



Definition 2.7. A hybrid Input/Output automaton (HIOA) A is a tuple
(X,Y, U,Q,Θ,H,O, I,D, T ) where:

(a) H = (X,Y ∪ U,Q,Θ,H,O ∪ I,D, T ) is a hybrid automaton,

(b) U and Y are disjoint sets of input and output variables. The set Z ∆= X ∪ Y is called
the set of local variables.

(c) I and O are disjoint sets of input and output actions. The set L ∆= H ∪ O is called
the set of locally controlled actions. The set A ∆= E ∪H is called the set of actions.

In addition, A satisfies the following axioms:

E1 (Input action enabled) For every x ∈ Q and a ∈ I, there exists x′ ∈ Q such that x a→ x′.

E2 (Input trajectory enabled) For every x ∈ Q and every υ ∈ trajs(U), there exists τ ∈ T ,
such that τ.fstate = x, τ ↓ U ≤ υ, and either (a) τ ↓ U = υ, or (b) τ is closed and
some l ∈ L is enabled in τ.lstate.

The E1 and E2 axioms capture the non-blocking assumptions of the model: an automa-
ton cannot choose to ignore actions and variables over which it has no control, namely the
input actions and variables. It will sometimes be convenient to consider automata in which
the external variables and actions are partitioned into input and output, but the axioms E1
and E2 are not necessarily satisfied. We call such an automaton a pre-HIOA. Executions
and traces of a pre-HIOA A are defined to to be the executions and traces of the underlying
HA. We extend the notations for HAs introduced in 2.2.2 to pre-HIOAs.

Example 2.5. For the Vehicle automaton of Example 2.3, if we classify brakeOn and brakeOff
as input actions and the variable y as an output variable, then the resulting automaton is
a HIOA. Axiom E1 is satisfied because the input actions are enabled in all states. E2 is
satisfied vacuously as there are no input variables.

A pair of HIOAs are comparable if they have the same external interface. Implementation
of comparable HIOAs is defined in a manner that is analogous to the corresponding definition
for HAs.

Definition 2.8. Two pre-HIOAs A1 and A2 are comparable if I1 = I2, O1 = O2, U1 = U2,
and Y1 = Y2. If A1 and A2 are comparable then A1 implements A2, denoted by A1 ≤ A2,
if TracesA1 ⊆ TracesA2 .

2.3.1 Composition of HIOA

Definition 2.9. Pre-HIOAs A1 and A2 are compatible if H1 and H2 are compatible, and
Y1 ∩ Y2 = O2 ∩ O1 = ∅. If A1 and A2 are compatible pre-HIOAs then their composition
A1||A2 is defined to be A ∆= (X,Y, U,Q,Θ,H,O, I,D, T ), where

(a) X,Q,Θ,H,D and T are defined in the same way as in Definition 2.6.

(b) Y = Y1 ∪ Y2 and U = (U1 ∪ U2)− Y .

(c) O = O1 ∪O2 and I = (I1 ∪ I2)−O.

29



Like hybrid automata, we would like to have a theorem that states that HIOAs are
closed under composition. However, in general the composition of two HIOAs A1 and A2

is not a HIOA. The problem arises when the the input variables of A1 are output variables
of A2 and vice-versa, such that the trajectories of these variables defined by the automata
are inconsistent (see Example 6.11 in [LSV03]). As a result, the composed entity A1||A2

does not have trajectories that allow time to elapse, and therefore it does not satisfy E2.
Thus, we have the following weaker theorem (from [LSV03]) which states that pre-HIOAs
are closed under composition.

Theorem 2.4. If A1 and A2 are compatible hybrid I/O automata then A1||A2 is a pre-
HIOA.

The next theorem is the HIOA analogue of the substitutivity Theorem 2.5.

Theorem 2.5. Suppose A1 and A2 are comparable pre-HIOAs and A1 ≤ A2. If B is a
pre-HIOA that is compatible with each of A1 and A2, then A1||B and A2||B are comparable
and A1||B ≤ A2||B.

2.4 Structured Hybrid I/O Automata

The set of trajectories of a HA or a HIOA is described by a set of functions that satisfy
the closure properties T1-3. For developing verification techniques that rely on analysis of
the trajectories, we would like to have a structured way of specifying them. State models
consisting of differential and algebraic equations have served as a standard language for de-
scribing the trajectories of continuous time systems (see any standard textbook in control
theory, e.g., [Oga97, Lue79]). A hybrid system may have several state models, each describ-
ing the dynamics of the continuous variables under a different set of conditions. In this
section, we describe Structured Hybrid I/O Automata (SHIOA) which was first introduced
in [MLL06]. An SHIOA is similar to a HIOA except that it uses a collection of state models
for partitioning the state space into several pieces and for describing the trajectories within
each piece by Differential and Algebraic Inequalities (DAIs).

2.4.1 State models

First, we define state models independent of any automaton, then, in Section 2.4.2, we
use state models for defining trajectories of SHIOAs. We assume that all variables are
either discrete or continuous. Suppose V is a set of variables. For a real-valued continuous
variable x ∈ V , a V-algebraic inequality is an expression of the form x ≶ f(v), where f is a
function that maps val(V ) to R and ≶ is an element of the set {=,≤,≥, <,>}. A trajectory
τ ∈ trajs(V ) satisfies the inequality x ≶ f(v), if

∀ t ∈ dom(τ), (τ ↓ x)(t) ≶ f(τ(t)).

A V-differential inequality for x is an expression of the form d(x) ≶ f(v), where f is
a function that maps val(V ) to R. A trajectory τ ∈ trajs(V ) satisfies the differential
inequality d(x) ≶ f(v), if f ◦ τ : dom(τ) → R is an integrable function and

∀ t1, t2 ∈ dom(τ), t1 ≤ t2, (τ ↓ x)(t2)− (τ ↓ x)(t1) ≶
∫ t2

t1

f(τ(s))ds.

30



A V-DAI for a set of variables Z ⊆ V is a collection of inequalities each of which is either
a V -algebraic inequality or a V -differential inequality for some variable in Z. A trajectory
τ ∈ trajs(V ) satisfies a collection F of V -DAIs for Z, if it satisfies each of the inequalities
in F . The set of trajectories satisfying a given set of DAIs for Z may be empty.

The right hand sides of differential and algebraic inequalities are functions of the vari-
ables and do not contain time explicitly. Thus, the DAIs impose time invariant constraints
on how the values of the variables can change.

Lemma 2.6. Let V be a set of variables, F be a collection of V -DAIs, and τ be a trajectory
for V that satisfies F . For any c > 0, τ + c also satisfies F .

Proof. Let x be a variable in V and x ≶ f(x) be any V -algebraic equation in F . Since τ
satisfies F , for all t ∈ dom(τ), (τ ↓ x)(t) ≶ f(τ(t)). As for all t ∈ dom(τ), τ(t) = (τ+c)(t+c),
it follows that ((τ + c) ↓ x)(t+ c) ≶ f((τ + c)(t+ c)). That is, τ + c satisfies all V -algebraic
equations in F .

Next, suppose d(x) ≶ f(x) is any V -differential equation in F . Let us fix t1, t2 ∈
dom(τ+c). We know that ((τ+c) ↓ x)(t2)−((τ+c) ↓ x)(t1) = (τ ↓ x)(t2−c)−(τ ↓ x)(t1−c).
Since τ satisfies F , we obtain ((τ + c) ↓ x)(t2)− ((τ + c) ↓ x)(t1) ≶

∫ t2−c
t1−c f(τ(s))ds,

≶
∫ t2−c

t1−c
f((τ + c)(s+ c))ds [since τ(s) = (τ + c)(s+ c) for all s].

≶
∫ t2

t1

f((τ + c)(u))du [by change of variable, u = s+ c].

A state model combines a collection of DAIs with an invariant condition and a stopping
condition. The invariant condition is used to define a subset of the state space over which
the DAIs are active in governing continuous evolution. Each state model can be thought
of as a mode of the hybrid system. The stopping condition, on the other hand, defines
the states at which the trajectories defined by the DAIs must stop, and this in turn forces
transitions to occur.

Definition 2.10. A state model S is a 6-tuple (X,Y, U, F, Inv, Stop), where X,Y, U are
disjoint sets of variables called internal, output, and input variables, respectively; V ∆=
X ∪ Y ∪ U and Z

∆= X ∪ Y ; F is a collection of V -DAIs for the continuous variables in Z;
Inv and Stop are subsets of val(X). If Inv and Stop are specified as predicates on X then
they are called the invariant condition and the stopping condition of S.

Notations. We denote the components of a state model S by XS , YS , US , FS , InvS , and
StopS , and the components of a state model Si by Xi, Yi, Ui, Fi, Invi, and Stopi.

Definition 2.11. Given a state model S = (X,Y, U, F, Inv, Stop) trajs(S) is the set of
trajectories for X ∪ Y ∪ U defined as follows: a trajectory τ is in trajs(S) if and only if:

1. The discrete variables in X remain constant over τ .

2. τ satisfies all the DAIs in F .

3. At every point in time t ∈ dom(τ), (τ ↓ X)(t) ∈ Inv.

31



4. If (τ ↓ X)(t) ∈ Stop for some t ∈ dom(τ), then τ is closed and t = τ.ltime.

Example 2.6. The trajectories for the Vehicle HA of Example 2.3 can be described by the
two state models shown in Table 2.6. For example, a trajectory τ ∈ trajs(braking) if:

braking not braking

X x1, x2, x3, b x1, x2, x3, b

Y y y

U − −

F −amax ≤ x3 ≤ −amin x3 = 0

d(x2) = x3, d(x1) = x2 d(x2) = x3, d(x2) = x1

y = x1 y = x1

Inv b ¬b

Stop f alse f alse

Table 2.1: State models specifying trajectories of Vehicle.

(i) For all t ∈ dom(τ)

1. (τ ↓ b)(t) = true,

2. (τ ↓ x1)(t) = (τ ↓ y)(t), and

3. −amax ≤ (τ ↓ x3)(t) ≤ −amin.

(ii) τ ↓ x3 : dom(τ) → R is an integrable function.

(iii) For all t1, t2 ∈ dom(τ) and i ∈ {1, 2}, (τ ↓ xi)(t2)− (τ ↓ xi)(t1) =
∫ t2
t1

(τ ↓ xi+1)(s)ds.

Associating an invariant set with each set F of DAIs allow us to avoid parts of the
state space, for example singularities, where the equations in F may not be well formed.
The stopping conditions provide a mechanism to define trajectories which satisfy certain
conditions at all points in time, except possibly at the right end-point. Suppose we wish
to model the positions of two vehicles represented by variables x and y. The vehicles move
along a single track according to the DAIs F1 until they collide. After a collision occurs,
their dynamics is specified by DAIs F2. Now, if we associate x 6= y as an invariant for the
first state model S1 then trajs(S1) will not contain the trajectories which lead to collisions.
However, if we associate x = y as a stopping condition for S1 then trajs(S1) may contain
trajectories which satisfy x = y at their right endpoint.

In order to capture that F2 (and not F1) describes the dynamics after a collision, fol-
lowing the modeling style of [DL97], we add an action that is enabled when x = y and that
it sets a boolean variable collided to true. Then we add collided and ¬collided as invariant
conditions for S2 and S1, respectively.

Next, we show that the sets of trajectories specified by state models satisfy T1, T2,
and T3.

Proposition 2.7. Consider a state model S.

32



(i) If τ ∈ trajs(S) then any prefix and any suffix of τ is also in trajs(S).

(ii) If τ0, τ1 ∈ trajs(S), τ0 is closed and τ0.lval d X = τ1.fval d X, then τ0_τ1 ∈ trajs(S).

Proof. Let S = (X,Y, U, F, Inv, Stop) and τ1 be a trajectory in trajs(S). For Part (i),
it is routine to check that any prefix (and suffix) of τ1 satisfies all the four conditions in
Definition 2.11, and therefore is also in the set trajs(S).

For Part(ii), we show that τ2
∆= τ0

_ τ1 is in traj(S) by checking that it satisfies the four
conditions in Definition 2.11.

1. Let x be a discrete variable in X. From Part 1 of Definition 2.11 we know that x
remains constant over τ0 and τ1. Since τ0.lval d X = τ1.fval d X, it follows that x
remains constant over τ2.

2. Let x be a continuous variable in X ∪ Y and f be a function over the values of the
variables in X ∪ Y ∪ U . Since τ0 and τ1 satisfy every algebraic inequality in F , of
the form x ≶ f(v), so does τ2. To show that τ2 satisfies any differential inequality
of the form d(x) ≶ f(v) in F , consider t0, t1 ∈ dom(τ2), t1 ≥ t0. The interesting
case arises when t0 < τ0.ltime and t1 > τ0.ltime. Let t2 = τ0.ltime. We can write
(τ2 ↓ x)(t1)− (τ2 ↓ x)(t0) as

(τ2 ↓ x)(t1)− (τ2 ↓ x)(t2) + (τ2 ↓ x)(t2)− (τ2 ↓ x)(t0)
= ((τ1 + t2) ↓ x)(t1)− ((τ1 + t2) ↓ x)(t2) + (τ0 ↓ x)(t2)− (τ0 ↓ x)(t0)

≶
∫ t1

t2

f((τ1 + t2)(s))ds+
∫ t2

t0

f(τ0(s))ds

≶
∫ t1

t2

f(τ2(s))ds+
∫ t2

t0

f(τ2(s))ds =
∫ t1

t0

f(τ2(s))ds.

In rewriting the second expression we have used the fact that τ0 and τ1 + t2 satisfy
the differential inequality d(x) ≶ f(v)—the latter follows from Lemma 2.6. The last
step follows from the fact that, for all s ∈ [t2, t1], (τ1 + t2)(s) = τ2(s).

3. Immediate from definition of τ2.

4. We consider two cases here. If τ0.lval d X ∈ Stop, then τ1.fval d X ∈ Stop and τ1
is a point trajectory, that is, τ2 = τ0. Otherwise, from Part 4 of Definition 2.11 it
follows that for every t ∈ dom(τ2) except possibly τ1.ltime, τ2(t) d X /∈ Stop.

2.4.2 Definition of Structured HIOA

A Structured Hybrid I/O Automaton (SHIOA) is a state machine model that uses a collec-
tion of state models for specifying its trajectories.

Definition 2.12. A Structured Hybrid I/O Automaton (SHIOA) A is a tuple
(X,Y, U,Q,Θ,H,O, I,D,S ) where

(a) X,Y and U are disjoint sets of internal, output and input variables. The set V ∆=
X ∪ Y ∪ U is the set of variables, and Z ∆= X ∪ Y is the set of local variables.

33



(b) A set Q ⊆ val(X) of states and a non-empty subset Θ ⊆ Q of start states.

(c) H,O and I are disjoint sets of internal, output and input actions. The set A ∆=
H ∪ I ∪O is the set of actions, and L ∆= H ∪O is the set of local actions.

(d) A set D ⊆ Q×A×Q of discrete transitions.

(e) A collection S of state models such that for each state model S ∈ S , XS = X,
YS = Y , and US = U , and for every pair S,S ′ ∈ S , InvS ∩ InvS′ = ∅.

In addition, A satisfies the following axioms:

E1 (Input action enabled) For every input action a ∈ I and for every state x ∈ Q, there
exists a state x′ ∈ Q such that x a→ x′.

S1 (Complete) Q ⊆
⋃
S∈S InvS .

S2 (Input trajectory enabled) For every trajectory υ ∈ trajs(U) of the input variables,
for every state model S ∈ S and every state x ∈ InvS , there exists a trajectory
τ ∈ trajs(S) with τ.fstate = x, τ ↓ U ≤ υ, and either (a) τ ↓ U = υ, or (b) τ is
closed and some local action in L is enabled at τ.lstate.

E1 is the same action nonblocking axiom as in the the case of HIOAs. The S1 axiom
ensures that the disjoint invariant sets of the state models together cover the state space
Q. Axiom S2 is a non-blocking axiom for individual state models: given any trajectory υ
of the input variables and any state model, either time can elapse for the entire duration of
υ, or time elapses to a point at which some local action of A is enabled. An SHIOA which
does not necessarily satisfy S2 is called a pre-SHIOA.
Notations. We denote the components of a pre-SHIOA A by XA, YA, UA, QA,SA etc.,
and the components of an pre-SHIOA Ai by Xi, Yi, Ui, Qi,Si, etc. Given a pre-SHIOA
A we define HIOA(A) to be the structure (XA, YA, UA, QA,ΘA,HA, OA, IA,DA, T ), where
T =

⋃
S∈SA

trajs(S). Note that HIOA(A) may not necessarily be a HIOA. The next two
results state that by augmenting the variables, actions, and discrete transitions with a set
of state models, what we obtain is either a HIOA or a pre-HIOA depending on whether on
not the state models satisfy axioms S1 and S2.

Lemma 2.8. If A is a pre-SHIOA then HIOA(A) is a pre-HIOA.

Proof. From Proposition 2.7 we know that for each state model S of A, trajs(S) satisfies
axioms T1, T2, and T3 of Definition 2.3. Therefore, the set T of trajectories of HIOA(A),
defined as

⋃
S∈SA

trajs(S) satisfies T1 and T2. Consider τ1, τ2 ∈ T , such that τ1 is closed
and τ1.lval d X = τ2.fval d X. Suppose τ1 ∈ trajs(S) for some state model S of A.
Then τ1.lstate ∈ InvS and as τ1.lstate = τ2.fstate, τ2.fstate ∈ InvS . Since the invariant
conditions for the state models of A are disjoint, it follows that τ2 ∈ trajs(S), and therefore
τ1

_ τ2 ∈ trajs(S) ⊆ T . Thus, T also satisfies T3. Since A satisfies axiom E1 and the sets
of discrete transitions of A and HIOA(A) are identical, HIOA(A) also satisfies E1.

Theorem 2.9. If A is an SHIOA then HIOA(A) is a HIOA.

34



Proof. From Lemma 2.8 we know that HIOA(A) is a pre-HIOA. It remains to check that the
set of trajectories T of HIOA(A) satisfies E2. Consider any x ∈ Q and any υ ∈ trajs(U).
By S1, x ∈ InvS for some state model S of A. Therefore, according to S2, there exists a
trajectory τ ∈ trajs(S) with τ.fstate = x, τ ↓ U ≤ υ, and either τ ↓ U = υ or τ is closed
and a local action is enabled at τ.lstate as needed for E2.

We conclude this section by defining implementation of pre-SHIOAs. A pair of pre-
SHIOAs are comparable if they have the same external interface; that is, if the corresponding
pre-HIOAs are comparable. Implementation of pre-SHIOAs is also defined in terms of the
implementation of the corresponding pre-HIOAs.

Definition 2.13. Two pre-SHIOAs A1 and A2 are comparable if HIOA(A1) and HIOA(A2)
are comparable. If pre-SHIOAs A1 and A2 are comparable then A1 implements A2, denoted
by A1 ≤ A2, if HIOA(A1) implements HIOA(A2).

2.4.3 Some Special Classes of SHIOAs

Definition 2.14. Let A be an SHIOA with collection of state models S . A discrete
transition x a→ x′ of A is said to be a mode switch if for some i, j ∈ S , i 6= j, x ∈ Invi and
x′ ∈ Invj . The set of mode switching transitions of A is denoted by M.

An initialized SHIOA is one in which every mode switching transition resets the values
of the variables, nondeterministically, by choosing the values from a set that is independent
of the pre-state.

Definition 2.15. An SHIOA A is said to be initialized if every action a ∈ A is associated
with two sets Ra, P rea ⊆ Q, such that x a→ x′ is a mode switch if and only if x ∈ Prea and
x′ ∈ Ra. The set Ra is called the initialization predicate of action a.

Definition 2.16. An SHIOA is linear if the V -DAIs of all its state models are linear and
the precondition and the initialization predicates (restricted to the set of continuous vari-
ables) are described by linear inequalities. A linear SHIOA is rectangular1 if the differential
equations in all the state models have constant right hand sides.

Initialized SHIOAs are suitable for modeling periodic systems and systems with reset
timers. Rectangular dynamics is suitable for modeling drifting clocks, motion under con-
stant velocity, fluid-level under constant flow. Initialized-rectangular SHIOAs have received
a attention in the verification literature [HKPV95, HKPV98], because computing ReachA
is decidable for this class when the automaton is represented in some appropriate language.

2.4.4 Composition of SHIOA

Two pre-SHIOAs Ai = (Xi, Yi, Ui, Qi, Θi,Hi, Oi, Ii,Di,Si), i ∈ {1, 2}, are compatible if
H1 ∩ A2 = H2 ∩ A1 = ∅, X1 ∩ V2 = X2 ∩ V1 = ∅, and Y1 ∩ Y2 = O1 ∩ O2 = ∅. The
variables, actions, and transitions of the composed pre-SHIOA A = A1||A2 are defined in
the same way as the corresponding components of a composed pre-HIOA. The following
definition states how the state models of the component automata are combined to obtain
state models of A.

1This definition of rectangular SHIOA is more general than the commonly used one, as for example
in [HK96]. In the latter, for each action a, the precondition Prea and the reset map Ra are required to be
rectangles.

35



Definition 2.17. If A1 and A2 are compatible pre-SHIOAs then their composition A1||A2

is (X,Y, U,Q,Θ,H,O, I,D,S ) where

1. The sets X,Y, U,Q,Θ,H,O, I, and D are defined as in Definition 2.9.

2. Suppose the state models in S1 and S2 are indexed by sets I1 and I2. For each i ∈ I1
and j ∈ I2, the combination of (X1, Y1, U1, Fi, Invi, Stopi) ∈ S1 and (X2, Y2, U2, Fj ,
Invj , Stopj) ∈ S2 is the state model Sij = (X,Y, U, F, Inv, Stop), where

� F is the collection of all DAIs in Fi and Fj ,

� Inv = {x ∈ val(X) | x d X1 ∈ Invi ∧ x d X2 ∈ Invj}, and

� Stop = {x ∈ val(X) | x d X1 ∈ Stopi ∨ x d X2 ∈ Stopj}.

The set of state models S for A1||A2 is the collection {Sij}.

For the reasons described in Section 2.3.1, the class of SHIOAs is not closed under
composition, but the class of pre-SHIOAs is:

Theorem 2.10. If A1 and A2 are compatible pre-SHIOAs then A = A1||A2 is a pre-
SHIOA.

Proof. Let Ai = (Xi, Yi, Ui, Qi,Θi,Hi, Oi, Ii,Di,Si), for i ∈ {1, 2}. Since the variables,
actions, and transitions of A are defined according to Definition 2.9, A satisfies E1. Thus,
it suffices to check that SA is a collection of state models for A, with disjoint invariant sets
and that SA satisfies the completeness condition S1.

Let us fix a state model Si = (X1, Y1, U1, Fi, Invi, Stopi) from S1 and another state
model Sj = (X2, Y2, U2, Fj , Invj , Stopj) from S2, and investigate their combination Sij =
(X,Y, U, F ′, Inv′, Stop′). Fi and Fj are collections of DAIs for the continuous variables
in X1 ∪ Y1 and X2 ∪ Y2, respectively. Therefore, F is a collection of DAIs for the set of
continuous variables in X1 ∪ Y1 ∪X2 ∪ Y2, which by Definition 2.17 is the same as the set
of continuous variables in ZA.

Consider a different state model Skl of A obtained by combining Sk ∈ S1 with Sl ∈ S2.
Since Sij is different from Skl, we assume without loss of generality that j 6= l. For any
x ∈ InvSij , by Definition 2.17, x d X2 ∈ Invj . Since Invj ∩ Invl = ∅, x d X2 /∈ Invl, and
therefore x /∈ InvSkl

. Thus, any two state models of A have disjoint invariant sets.
For the completeness condition, consider a state x ∈ QA. Since x d X1 ∈ Q1, from

the completeness of S1 we know that there exists Si ∈ S1, such that x d X1 ∈ Inv(Si).
Likewise, from completeness of S2, there exists Sj ∈ S2, such that x d X2 ∈ Inv(Sj). It
follows that for any x ∈ QA, x ∈ Inv(Sij) ⊆

⋃
S∈SA

Inv(S).

Although we shall use pre-SHIOAs for systematically describing the trajectories of hy-
brid systems, the underlying objects are really HIOAs and pre-HIOAs. We show that the
operator HIOA and the composition operation interact in the expected way. Formally, HIOA
is a homomorphism from the set of pre-SHIOAs to the set of pre-HIOAs, which preserves
the composition operation within each of these sets.

Theorem 2.11. If A1 and A2 are compatible pre-SHIOAs then HIOA(A1)||HIOA(A2) =
HIOA(A1||A2).

36



Proof. Let T be the set of trajectories of HIOA(A1)||HIOA(A2) and T ′ be the set of trajec-
tories for HIOA(A1||A2). It suffices to show that T = T ′. Let S be the collection of state
models for the composed pre-SHIOA A1||A2; that is, T ′ ∆=

⋃
S∈S trajs(S).

First, we show that T ⊆ T ′. Consider a trajectory τ ∈ T . From Definition 2.9 we
know that τ ↓ V1 is in T1, where T1 =

⋃
S∈S1

trajs(S) is the set of trajectories of HIOA(A1).
That is, there exists S1 ∈ S1, such that T1 ↓ V1 ∈ trajs(S1). Likewise, τ ↓ V2 ∈ T2 =⋃
S∈S2

trajs(S) and there exists S2 ∈ S2, such that T2 ↓ V2 ∈ trajs(S2). Then, τ ∈
trajs(S12), where S12 is the state model for the composed pre-SHIOA A1||A2 obtained by
combining S1 and S2. Thus, τ ∈ trajs(S12) ⊆ T ′.

Next, we show that T ′ ⊆ T . Consider a trajectory τ ∈ T ′ =
⋃
S∈S trajs(S). There

exists Sij ∈ S , such that τ ∈ trajs(Sij), where Sij ∈ S obtained by combining some
Si ∈ S1 and Sj ∈ S2. Thus, τ ↓ V1 ∈ trajs(Si) ⊆ T1 and τ ↓ V2 ∈ trajs(Sj) ⊆ T2, and it
follows that τ is in T .

Corollary 2.12. If A1 and A2 are compatible SHIOAs and their composition A1||A2 is an
SHIOA, then HIOA(A1)||HIOA(A2) is a HIOA.

Proof. From Theorem 2.11 we know HIOA(A1||A2) = HIOA(A1)||HIOA(A2). Since A1||A2 is
an SHIOA, from Theorem 2.9 it follows that HIOA(A1||A2) and therefore HIOA(A1)||HIOA(A2),
is also a HIOA.

2.4.5 Summary

We presented the basic definitions and results that underlie the Structured Hybrid I/O
Automaton (SHIOA) framework. Much the the foundational concepts came from the Hybrid
I/O Automaton (HIOA) framework of [LSV03]. The SHIOA incorporate state models in
the HIOA framework for the purpose of systematically describing trajectories. The idea of
state models, as in SHIOAs, is related to the similar notion of state-space description of
continuous time systems. However, in addition to the differential and algebraic equations
that describe the evolution of the variables in such state-space models, the state models
may also contain invariants and stopping conditions. These additional features capture the
essence of hybrid systems where discrete transitions bring changes in the state variables
that in turn change the state model that govern further evolution. In the next chapter we
develop the HIOA language for specifying SHIOAs; the design of this language relies heavily
on the state model structure. In Chapters 4, 5, and 6 we develop tools and techniques for
verifying SHIOAs; these are also aided by the state model structure.

37



Chapter 3

The HIOA Language

HIOA is a language for succinctly and precisely specifying hybrid systems. The semantics of
the language is based on the Structured Hybrid I/O Automata (SHIOA) model introduced
in Chapter 2. This language is used throughout Part I for describing hybrid systems. The
HIOA language evolved in part from the IOA language [GLTV03] which has been widely
used for specifying untimed distributed systems. The new features of the HIOA language,
namely the constructs for continuous variables and trajectories, are based on the work
presented in [MWLF03, Mit01, KLMG05]. A somewhat restricted version of HIOA, which
does not allow external variables, is implemented as part of the Tempo Toolkit [TEM07].
In Chapter 6 we will show how HIOA specifications can be translated to the language of
the PVS Theorem prover [ORR+96]. In Section 7.7 of Part II, HIOA is extended to allow
specification of probabilistic transitions. In this Chapter, we describe the key features of
the language through a sequence of small examples.

3.1 An Overview

Consider a SHIOA Bounce describing the position and the velocity of a ball bouncing on a
surface. The HIOA language specification for Bounce is shown in Figure 3-1. The first line
consists of the keyword automaton followed by the automaton’s name Bounce, and a list
of formal parameters. Formal parameters are used for succinctly specifying sets of objects
such as automata, actions, trajectories, etc. In this example, the coefficient of restitution ρ
of the surface is a real-valued formal parameter of Bounce. The value of ρ is restricted to be
strictly between 0 and 1 using a where-clause. Where-clauses are predicates that constrain
values of formal parameters and therefore are useful for avoiding ill-formed specifications,
such as those resulting from division-by-zero. Usage of formal parameters and where-clauses
are further described in Section 3.2.4.

The body of the specification of Bounce has four sections: (a) signature, (b) variables,
(c) transitions, and (d) trajectories. The signature section declares the names and kinds
of actions of the automaton. Bounce has a single output action called bounce. The other
kinds of actions that an automaton can have are input and internal. Signature definitions
are discussed in further detail in Section 3.4.

The variables of an automaton are declared by the keyword variables followed by list
of variables, their kinds, types, dynamic types, and possibly their initial values. Bounce
has a real-valued internal variable v with initial value 0, and a real-valued output variable
x with initial value 100. In HIOA all real valued variables are implicitly continuous. In

38



1 automaton Bounce(ρ : Real)
where 0 < ρ < 1

3 signature
output bounce

5

variables
7 internal v : Real := 0;

x : Real := 100;
9 let g = 9.8;

11 transitions
output bounce

13 pre x = 0 ∧ v < 0;
eff v := −ρ× v;

15

trajectories
17 trajdef motion

stop when x = 0 ∧ v < 0
19 evolve d(v) = −g; d(x) = v;

0 5 10 15 20 25
−50

0

50

100

 

 

x
v
bounce

Figure 3-1: Bouncing ball: HIOA specification and an execution.

Section 3.2, specification of variables, types, and dynamic types are discussed in detail.
Constant functions such as g can be defined using the let keyword. Other types of function
declarations and their scopes are discussed in Section 3.3.

The transitions section defines the discrete transitions corresponding to each action
of the automaton. Transitions are defined in the guarded-program style. The predicate
following the pre keyword defines the set of states where the action is enabled, and the
program following eff defines how the state changes when the action occurs. For example,
the bounce action can occur in a state where x = 0 and v < 0, and when it does occur
v is assigned a new value which is −ρ times its previous value. Constructs for specifying
preconditions and programs are discussed in Section 3.5.

Finally, the trajectories section of the specification defines a set of state models. Each
state model definition begins with the keyword trajdef followed by the name of the state
model, an invariant condition, a stopping condition, and a set of Differential and Algebraic
Inequalities (DAIs). Bounce has a single state model called motion. The list of expressions
following the keyword evolve define the relationship between x, v, and their derivatives
with respect to real-time. In Section 2.4.1 we defined how a state model defines a set of
trajectories for a SHIOA. We discuss the trajdef construct in Section 3.6.

A few observations about the specification of Bounce: The combination of the stopping
condition x = 0∧v < 0 of the state model motion and the matching precondition for bounce,
forces the action to occur following a trajectory whose last state satisfies this condition.
This usage pattern for stopping conditions and action preconditions is common in HIOA
specifications where actions have to be triggered as soon as certain deadlines are met.

3.2 Variables

In HIOA, variables are used in two different ways. First, they are used as variables of
automata (always declared following the variables keyword). Secondly, variables are used
as formal parameters in defining automata, actions, functions, trajectories, etc. In order to
avoid ambiguity, we will refer to variables from the first category as automaton variables
and those from the second as formal parameters.

39



Each automaton variable is of one of three kinds, namely, input, output, or internal.
The kind of a variable is specified by the corresponding keyword preceding its name.

3.2.1 Built-in Types

All variables are associated with types. There are several built-in types, such as, Bool, Char,
Int, Nat, Real, AugmentedReal, and String that do not require explicit definitions. The
AugmentedReal type is Real∪{∞,−∞}. In modeling embedded systems as SHIOAs, often
we have to define a real-time upper-bound within which an action has to occur. As the
automaton executes, this upper-bound may change. A common idiom in HIOA is to model
such bounds by the value of a deadline variable (see, Example 3.4). AugmentedReal is a
useful type for such a deadline variable because setting the variable to ∞ implies that it
does not impose any deadline.

Additional types can be defined using the following type constructors:
� Enumeration [e1, e2, e3]: finite set with elements e1, e2, and e3.
� Null [E]: E extended by a single element nil.
� Tuple [I1 : E1, . . . In : En]: n-tuple with fields I1, . . . , In of types, E1, . . . En.
� Union [I1 : E1, . . . In : En]: union of types E1, . . . En with accessors I1, . . . , In.
� Seq [E]: finite sequence of elements of type E.
� Set [E]: finite set of elements of type E.
� Mset [E]: finite multiset of elements of type E.
� Map [D1, . . . , Dn, E]: finite (possibly partial) mapping of D1 × . . .×Dn to E.
� Array [I1, . . . , In, E]: n-dimensional array of type E indexed by element of types

I1, . . . , In where the indices are of finite types.
Type constructors can be nested and can be used in-place to declare types of formal and
automaton variables. For example, the code fragment

variables
internal buffer: Seq [Bool],
output position: Tuple [x : Real, y : Real, z : Real]

defines an internal variable buffer which takes values in {0, 1}∗, and an output variable
position which takes values in R3. A restricted version of the HIOA language, which does not
allow input/output variables, is called the TIOA language. Current implementation of the
TIOA language is available as a part of the Tempo toolset [TEM07] In this implementation,
type equivalences are decided based on types names, and hence, two types with identical
definitions but with different names are judged to be distinct.

3.2.2 Vocabularies

Named types are defined using the vocabularies construct. Vocabularies can define con-
crete as well as uninterpreted types, and also operators on these types. The HIOA language
allows polymorphic types and operators, using which one can specify automata that ma-
nipulate objects of polymorphic types.

In Figure 3-2 a vocabulary for directed graphs is defined and used in the updateGraph
automaton. Vocabulary definitions consist of the keyword vocabulary, followed by the
name of the vocabulary, followed by an optional list of formal parameters. The vocabulary
directedGraphs has a single formal type parameter T . Type parameters are special kinds
of formal parameters which denote a type. They are declared using the keyword type
and they provide a mechanism for polymorphic HIOA specifications. In this example, the

40



type parameter T specifies the type of the vertices of the directed graphs defined by the
directedGraphs vocabulary. The main body of any vocabulary definition has two sections:
(a) types and (b) operators. The types section introduces names and definitions for types.
The directedGraphs vocabulary introduces the types Edge,Digraph, and Path. The type
Edge is defined as an ordered pair of elements of type T . Digraph is defined as an ordered
pair of sets—the first component vset is a set of type T and the second component eset is
a set of Edges. The type Path is defined as a finite sequence of elements of type T . The
operators section introduces a set of operator names and their signatures. For example,
directedGraphs has two operators connected and addEdge. The connected operator takes
a pair of elements of type T and returns a boolean. The addEdge operator takes a Digraph
and an Edge and returns a Digraph.

If directedGraphs(Nat) is imported into an automaton, then all the type and operator
definitions in directedGraphs are interpreted with T replaced by Nat. For example, the
initial graph G would be an arbitrary graph with a set of natural numbers as vertices. The
automaton updateGraph of Figure 3-2 imports directedGraphs(V ), where V is a formal
type parameter of the automaton. This illustrates how we can specify an automaton that
performs operations on generic graphs without ever instantiating the type of the graph
vertices.

Of course, for proving or model-checking properties of the automaton, for simulating
it, or for generating executable code from the HIOA specification, it may become necessary
to assert additional properties or to provide implementations of the types and operations.
For example, these may take the form of axioms stating key properties of the connected
function for a theorem prover, or a Java implementation of the Digraph data-type for
a code generator. These are provided as appropriate auxiliary files to the back-end tools
independent of the HIOA language. In Chapter 6 we discuss this in more detail in the context
of the PVS theorem prover.

1 vocabulary directedGraphs(T :type)
types

3 Edge = Tuple [src : T, dst : T ];
Digraph =

5 Tuple [vset :Set[T ], eset :Set[Edge]];
Path = Seq [T ];

7

operators
9 connected : T, T → Bool;

addEdge : Digraph,Edge→ Digraph;
11 end

12

automaton updateGraph(V : type)
14imports directedGraphs(V )

16signature
input add(e : Edge)

18

variables
20internal G : Digraph;

22transitions
input add(e)

24eff G := addEdge(G, e);

Figure 3-2: Vocabulary for graphs.

3.2.3 Dynamic Types

All automaton variables are associated with dynamic types. In HIOA, dynamic types can
be either discrete or continuous (see, Definition 2.2). The dynamic type of a variable is
declared implicitly; it is inferred automatically from the variable’s static type. For variables
of all built-in simple types except Real the dynamic type is discrete. The dynamic type of
Real variables is continuous. For defining a Real variable with discrete dynamic type, its
type name is qualified with the keyword Discrete.

41



If the type of a variable v is defined by one of the type constructors Tuple or Array,
then dtype(v) is defined as follows. The variable v is viewed as a ordered tuple of variables
{v1, . . . , vk}, for some finite k. The type of v, type(v) = type(v1) × . . . × type(vk). The
dynamic type of v is the set of functions f from left-closed intervals of time to type(v) such
that f.vi ∈ dtype(vi) for each i ∈ {1, . . . , k}.

If the type of v is defined by nesting the type constructors Tuple and Array, then the
dtype(v) is defined recursively using the above rule. The dynamic type of all other compound
types and user-defined types is discrete. Consider the following vocabulary definition:

vocabulary matrix
types
T : Tuple [a : Real, b : Nat, c : Discrete Real],
Row: Enumeration [p1, p2, p3],
Col: Enumeration [q1, q2, q3],
matrix: Array [Row,Col, Real],
intMatrix: Array [Row,Col, Int]

end

Suppose that variable v is declared to be of type T . Then dtype(v) is the set of functions
f from left-closed intervals of time to T such that f.a is piecewise continuous with real
values, f.b is piecewise constant with natural values, and f.c is piecewise constant with real
values. The type matrix represents a 3 × 3 array of real numbers. A variable x declared
to be of type matrix can be viewed as an ordered 9-tuple of reals. The dynamic type of x
is the set of functions f from left-closed intervals of time to R9 such that the restriction of
f on each of the coordinates is a piecewise continuous function from left-closed intervals of
time to R. A variable y of type intMatrix can be viewed as an ordered 9-tuple of integers.
And dtype(y) is the set of functions f from left-closed intervals of time to Z9 such that the
restriction of f on each coordinate is piece-wise constant.

3.2.4 Initial Values

Initial valuations of the internal variables of an automaton may be specified in the HIOA
language in two ways. First, each variable can be individually initialized using the as-
signment operator := followed by an expression or a nondeterministic choice over a set.
The expression should not refer to any other automaton variable. This method is used
in lines 7–8 of the Bounce automaton of Figure 3-1. A nondeterministic choice is specified
by the keyword choose followed by a set, written as a where-clause. The second method is
to use the initially keyword followed by a predicate on the internal variables defining the
set of allowed initial values. This selects an arbitrary value for the variables from the set of
values that satisfy the predicate. It is possible to mix these methods.

variables
output u : Discrete Real

internal x : Real := 5,
y : Real := choose k where −5 ≤ k ≤ 5,
z : Real
initially z × z + y × y ≤ 10

. . .

In the above code fragment, the initial value of x is set to 5, y gets some value in [−5, 5],
and z is chosen such that z2 + y2 ≤ 10.

42



3.3 Functions

Function definitions can occur as stand-alone specification units, following the definition of
automaton variables, and within a transition (or a trajectory) definition. When a function
definition appears within a transition (or trajectory) definition, it follows the name and the
formal parameters of the transition (trajectory, respectively). A function declaration begins
with the keyword let and consists of the following parts: (a) a name, (b) an optional list of
formal parameters, and (c) an expression defining the body of the function. The domain of
the function consists of the sequence of types associated with the formal parameters, and
the range of the function is the type of the expression defining the body. A function with an
empty domain, such as g in line 9 of Figure 3-1, is a constant function or simply a constant.
Each constant, operator, or variable appearing in the expression defining the body of the
function must be defined in the current context, that is, in terms of the vocabulary of the
automaton, the set of variables, the list of formal parameters of the function, etc.

let dist(x1, x2, y1, y2 : Real) = sqrt((x2− x1)× (x2− x1) + (y2− y1)× (y2− y1))
automaton Track
signature

input TargetUpdate(xt, yt : Real)

variables
internal pos : Tuple[x : Real, y : Real],

togo : AugmentedReal := ∞,
let dist to target(x, y : Real) = dist(x, pos.x, y, pos.y)

transitions
input TargetUpdate(xt, yt)

eff togo := dist to target(xt, yt)

In the above code fragment, the pos represents the position of a vehicle on a plane. The
evolution of pos is not shown. The vehicle receives information about the location of targets
through the input action TargetUpdate(xt, yt) and updates the variable togo with the value
of its current distance to the most recently detected target (xt, yt). The function dist
returns the Euclidean distance between any two points (x1, y1) and (x2, y2). It is a global
function and does not use any of the automaton variables. The function dist to target uses
dist and the state variable pos and returns the distance of any point (x, y) to pos. This is
legal because its definition appears after the variables section of the code and so the state
variable pos is in its scope. The action TargetUpdate(xt, yt) updates the variable togo with
the distance of pos to (xt, yt) as computed by dist to target. Each formal parameter of a
function must be distinct from all other formal parameters and all other variables in the
scope. That is, they must differ either in their names or their types.

3.4 Signature

The signature section of an automaton specification declares the names and kinds of actions
of the automaton. Each action is of one of the three kinds, namely, input, output, or internal.
The kind of an action is specified by the corresponding keyword preceding its name. Each
action name is followed by an optional list of formal parameters. Each formal parameter of
an action must be distinct from all the others. If a formal parameter of an action is the same
as an automaton parameter then the former shadows the latter. Automaton parameters
can be used as formal action parameters by using the const keyword; this is discussed
shortly. Each action name denotes a set of actions, one for each value of its parameters. It

43



is possible to constrain the values of the parameters of an action in the signature using a
where-clause. For example, consider the signature of automaton Proc.

automaton Proc(I : type, i : I)
signature

input add(k, j : Int) where k > 0 ∧ j > 0
output result(k : Int) where k > 1
output send(const i)

. . .

The automaton is parameterized by a type parameter I and a parameter i of type I. This
type of parameterization is often used for specifying a collection of processes indexed by the
set I. The signature restricts the values of the input action add’s parameters to positive
integers and the value of the output action result’s parameter to integers greater than 1.
Often, we find it necessary to name actions based on automaton parameters. In the above
code fragment, for example, we would like to say that for each i ∈ I, Proc(I, i), has a single
action send(i). The const keyword provides a mechanism for achieving this. The const
preceding the parameter i in the signature of send indicates that the value of this parameter
is a constant fixed by the value of the automaton parameter i.

3.5 Transitions

In the transitions section of an automaton specification the discrete transitions correspond-
ing to the actions are specified using the guarded-program style. A transition definition
consists of (a) an action kind, (b) an action name, (c) optional formal parameters and
an optional where-clause constraining the values of the parameters, (d) optional function
definitions, (e) an optional precondition, (f) an optional effect. More than one transition
definition can be given for a parameterized action. In such cases, where-clauses can be used
to split-up the set of transition definitions according to predicates on formal parameters.
The predicates associated with the where clauses are not required to be disjoint although
in most common usages they are.

signature
input read(i : Nat)

variables
internal high : Bool

transitions
input read(i) where i > 50

eff high := true

input read(i) where i ≤ 50
eff high := f alse

3.5.1 Preconditions

A precondition can be defined for a transition of an output or an internal action using the
keyword pre followed by a predicate on the automaton parameters, action parameters, and
the internal variables. Preconditions cannot be defined for transitions of input actions. This
corresponds to the input action enabling condition E1 of Definition 2.12. If no precondition
is given, it is assumed to be true. Each variable appearing in the precondition must be
one of the following: automaton parameter, internal variable, a parameter in the transition
definition, or a variable that is quantified explicitly in the precondition.

44



3.5.2 Effects

The effect of a transition is defined in terms of a (possibly nondeterministic) program
following the keyword eff. The program assigns values to the internal variables of the
automaton, thus defining the post-state (i.e., the state after the transition occurs) in terms
of the values of the variables in the pre-state (i.e., the state before the transition occurs).
If the effect of a transition is omitted, then the state remains unchanged. The program
used to specify the relation between the pre-state and the post-state of a transition is a list
of statements, separated by semicolons. The statements are executed sequentially and the
computation of the whole program is completed in a single atomic step. There are three
types of statements: (i) assignments, (ii) conditionals, and (iii) loops, which we describe
next.

Assignments

An assignment statement consists of an internal variable of the automaton followed by
the assignment operator := and either an expression (see, e.g., line 24 of Figure 3-2) or a
nondeterministic choice (as in the case of nondeterministic choice of initial values). The
expression or nondeterministic choice in an assignment statement must have the same type
as the internal variable. The execution of an assignment does not have side-effects, that is,
it does not change the value of any variable other than the internal variable appearing on
the left side of the assignment operator.

Conditionals

A conditional statement is used to control the flow of program execution within the effects
part of a transition. It starts with the if keyword followed by a predicate, the keyword
then, and a program segment; it ends with a keyword fi. In between there can be any
number of elseif clauses. For example, the conditional statement

if clock ≥ Delta then timeout := true fi

assigns a value to the timeout variable based on the value of clock.

Loops

A loop is used to repeatedly execute a program segment a finite number of times—once for
each value of a variable that satisfies a given condition. A loop starts with the keyword
for followed by a variable, a predicate defining a finite set of values for this variable, and a
program segment enclosed within the keywords do and od. For example, the for-loop

for i : Nat in S do time stamp[i] := clock od

sets the value of time stamp[i] to clock for each natural number i in the set S.

3.6 Trajectories

The trajectories section of a HIOA specification defines a set of state models for the automa-
ton. These state models in turn define a set of trajectories according to Definition 2.11. Each
trajectory definition starts with the keyword trajdef and has the following components:
(a) a name for the state model, (b) optional list of formal parameters and a where-clause
constraining the values of the parameters, (c) optional function definitions, (d) an optional

45



invariant condition, (e) an optional stopping condition, and (f) a collection of Differential
and Algebraic Inequalities (DAIs). As in the case of transition definitions, names of trajec-
tory definitions can be parameterized by formal variables and the values of these parameters
can be constrained by where-clauses. In the following example, the parameter m is used to
specify the motion of a body of mass m.

variables
input P : Real,
internal f : Real, v : Real, s : Real

. . .
trajectories

trajdef motion(m : Real) where m > 0
evolve f = P/m; d(v) = f ; d(s) = v

3.6.1 Invariant Condition

An invariant condition for a trajectory definition can be defined using the keyword invari-
ant followed by a predicate on the formal parameters and the internal automaton variables.
The invariant condition for a trajectory definition, say mode1, defines the set of states over
which the DAIs for mode1 govern the evolution of the continuous variables. If no invariant
condition is given, it is assumed to be true. Each variable appearing in the invariant condi-
tion must be one of the following: automaton parameter, internal variable, a parameter in
the trajectory definition, or quantified explicitly in the predicate. If an automaton specifi-
cation contains multiple trajectory definitions, then the corresponding invariant conditions
must be disjoint. In order for the automaton specification to satisfy the completeness con-
dition S1 of Definition 2.12, the union of the sets corresponding to the invariant conditions
for all the trajectory definitions should contain the state space of the automaton.

3.6.2 Stopping condition

A stopping condition for a trajectory definition can be defined using the keywords stop
when followed by a predicate on the automaton parameters, trajdef parameters, and the
internal variables. The semantics and motivation for stopping conditions were discussed in
Section 2.4.1. If no stopping condition is given, it is assumed to be f alse. Each variable
appearing in the stopping condition must be one of the following: automaton parameter,
internal variable, a parameter in the trajectory definition, or quantified explicitly in the
precondition.

If the stopping condition for a trajectory definition is satisfied at a given point in time t
of a trajectory τ , then t is the right end-point of the trajectory. This provides a mechanism
for forcing enabled actions to occur.

1 automaton PSend(d : Real) where d > 0
signature

3 output send

5 variables
internal clock : Real := 0;

7 next send : DiscreteReal := d;

9transitions
output send

11pre clock = next send;
eff next send := next send+ d;

13

trajectories
15trajdef normal

stop when clock = next send
17evolve d(clock) = 1;

Figure 3-3: Periodically sending process.

46



In the example automaton PSend of Figure 3-3, the next send variable is used as a
deadline variable to trigger a send action every d time. The variable clock increases at
the same rate as that of real-time. A send action occurs whenever clock equals next send.
When the action occurs, the next send variable is incremented by d and the clock continues
to increase.

3.6.3 DAIs

The behavior of real-valued, continuous, local (internal and output) variables in a particular
trajectory definition is specified in terms of a collection of DAIs following the keyword
evolve. Discrete local variables remain constant over all trajectories. The DAIs constrain
the set of trajectories, and thereby specify how the continuous variables are allowed to evolve
over time. The semantics of how DAIs together with invariant and stopping conditions
constrain the set of trajectories has been defined in Section 2.10. If no DAI is specified,
then the local continuous variables are constrained only by their dynamic types.

HIOA does not impose any specific conditions for well-formedness of DAIs. The set of
differential and algebraic equations may have unique, multiple, or no solutions. The DAIs
are specified as a list of expressions separated by semicolons. Each expression is of the form
lval ≶ term, where ≶ is an element of the set {=,≤,≥, <,>}, and term is a real-valued
algebraic expression involving the continuous automaton variables and parameters. The
lval must either be a locally controlled (internal or output) continuous variable or of the
form d(v), where v is such a variable. In the latter case the term must be integrable.

Note that the rules described above do not guarantee that a semantically correct entity
satisfies the input trajectory enabled condition S2 of 2.12. Therefore, the specified entity
is guaranteed to be a pre-SHIOA but not necessarily a SHIOA. Checking existence and
uniqueness of solutions of DAIs is difficult and we do not know of any automatic methods
for checking these properties in the general setting. Therefore, given a semantically correct
specification written in the HIOA language we will have to reason about it separately to show
that it satisfies S2.

Example 3.1. The automaton Thermostat(u, l,K, h : Real) of Figure 3-4 specifies the SHIOA
model of a thermostat. A hybrid automaton model of a similar thermostat appeared earlier
in [A+95]. Both the variables x and loc are internal variables, and both actions switchOn and
switchOff are internal actions. The temperature x is governed by standard linear differential
equations d(x) = K(h−x) and d(x) = −Kx, depending on whether or not the heater is on.
These two conditions correspond to the disjoint invariant conditions of the two state models
defined by the heaterOn and heaterOff state models. The switchOn action is enabled and
triggered exactly when the temperature x drops to l. Note that once the switchOn action
occurs, repeated occurrences of the action at the same point in time are prevented by the
loc = off conjunct in the precondition.

Example 3.2. The automaton TimedChannel(M : type, b : Real, I : type, i, j : I) of Fig-
ure 3-5 specifies a reliable FIFO channel [KLSV05], that delivers messages of type M be-
tween processes that are indexed by the type I. The channel delivers its messages from the
process i to process j within a time bound of b. The automaton has two internal variables.
The variable now corresponds to real-time, and queue is a finite sequence of Packets. Each
Packet is a pair—the first element is the message of type M and the second element is a real
number corresponding to the delivery deadline for the message. The input action send(m)
adds a packet to the queue with message m and the upper time bound for the delivery

47



1 automaton Thermostat(u, l,K, h : Real) where u > l
type Status enumeration [on, off ]

3 signature
internal switchOn; switchOff

5

variables
7 internal x : Real := u; loc : Status := on;

9 transitions
internal switchOn

11 pre x = l ∧ loc = off ;
eff loc := on;

13

internal switchOff
15 pre x = u ∧ loc = on;

eff loc := off ;

18trajectories
trajdef heaterOn

20invariant x ≤ u ∧ loc = on;
stop when x = u;

22evolve d(x) = K × (h− x);

24trajdef heaterOff
invariant x ≥ l ∧ loc = off ;

26stop when x = l;
evolve d(x) = −Kx;

Figure 3-4: Thermostat.

of the message. The output action receive(m) can occur whenever there is a packet with
message m at the head of the queue and it must occur before now exceeds the deadline for
the message.

1 vocabulary Packet(T :type)
types

3 Packet = Tuple [message : T ,
deadline : AugmentedReal]

5 end

7 automaton TimedChannel(M :type, b : Real
I :type, i, j : I) where b ≥ 0

9 imports Packet(M)
signature

11 input send(m : M, const i, j)
output receive(m : M, const i, j)

13

variables
15 internal queue : Seq[Packet] := {};

16now : Real := 0

18transitions
input send(m, i, j)

20eff queue := queue ` [m,now + b];

22output receive(m, i, j)
pre head(queue).message = m;

24eff queue := tail(queue);

26trajectories
trajdef timePassage

28stop when head(queue).deadline = now
evolve d(now) = 1;

Figure 3-5: Time-bounded channel.

Example 3.3. The automaton ClockSync(u, ρ : Real, I : type, i : I) of Figure 3-6 specifies
processes participating in a distributed clock synchronization algorithm. The physical clock
(the variable clock) of each process drifts at a bounded rate of ρ, and the processes com-
municate to ensure that their logical clocks (the variable logclock) are close to one another
and also close to their physical clocks. This example is taken from [KLSV05], where the
authors prove through invariant assertions that the participating processes indeed satisfy
the above requirements.

The processes are indexed by elements of type I. The synchronization algorithm is
based on the exchange of physical clock values between different processes in the system
through TimedChannels. A process uses its real-valued, discrete variable maxother to keep
track of the largest physical clock value of other processes in the system. For ClockSync(i),
the parameter i of the send action is a constant while the parameter j is a variable. Thus
ClockSync(i) can send messages to, and receive messages from ClockSync(j), for all j in I,
j 6= i. The trajectory specification consists of a single trajectory definition timeElapse. This
specifies the evolution of the continuous variable clock using two differential inclusions that

48



bound the drift. The stopping condition ensures that the deadline imposed by nextsend is
not crossed.

1 automaton ClockSync(u, ρ : Real, I :type, i : I)
where 0 ≤ ρ ≤ 1 ∧u > 0

3 signature
output send(m : Real, const i, j : I) where i 6= j

5 input receive(m : Real, j : I, const i) where i 6= j

7 variables
internal clock : Real := 0;

9 nextsend : Discrete Real := 0;
maxother : Discrete Real := 0;

11 let logclock = max(maxother, clock);

13transitions
output send(m, i, j)

15pre m = clock ∧ clock = nextsend;
eff nextsend = nextsend+ u;

17

input receive(m, j, i)
19eff maxother = max(maxother,m);

21trajectories
trajdef timeElapse

23stop when clock = nextsend
evolve d(clock) ≤ (1 + ρ);

25d(clock) ≥ (1− ρ);

Figure 3-6: Process participating in a clock synchronization algorithm.

3.7 Operations and Properties

In specifying a complex system with many logical pieces, it is convenient to model each
piece as a separate SHIOA. Then the whole system is specified as a composition of the
component SHIOAs. In section 2.4.4 we defined the composition operation for SHIOAs.
Here we describe the the HIOA language constructs for specifying compositions and for
asserting properties of automata.

3.7.1 Composition

A composed automaton is specified by the automaton name followed by the keyword com-
ponents and a semicolon-separated list of component names and automaton types. For
example, using the TimedChannel and ClockSync automata from the previous section we
can define the composed automaton:

automaton Sync(u, ρ, b : Real, I :type)
components
P [i : I] : ClockSync(u, ρ, I, i);
C[i, j : I] : TimedChannel(b, I, i, j) where i 6= j

The keyword components introduces a list of named components: one ClockSync(u, ρ, I, i)
automaton, P [i], for each i of type I, and one TimedChannel(b, I, i, j) automaton C[i, j], for
each i, j of type I, such that i 6= j. If the input action of one component has the same name
as the output action of another component, then they are identified and the composition
has the resulting output action. Likewise, the names of input and output variables are
identified and the composed automaton has the corresponding output variables.

A parameterized automaton specification defines a set of automata rather than a single
automaton. The composition operation can be used to instantiate a particular automaton.
For example, the Sync automaton above defines a set of composed automata for different
parameter types I. We can fix the type parameter to a particular index set {a, b, c, d} as
follows:

vocabulary types abcd = Enumeration [a, b, c, d] end
automaton Sync4(u, ρ, b : Real)

components theOnly : Sync(u, ρ, b, abcd)

49



3.7.2 Property Assertions

Along with specifications, properties of automata can also be asserted in HIOA. Such asser-
tions must appear after the automaton specification. An invariant property of an automaton
is stated by the keywords invariant of, followed by the name of the automaton and a pred-
icate on the variables of the automaton.

invariant of Sync : ∀ i, j : I, |P [i].logclock − P [j].logclock| ≤ u+ b× (1 + ρ)

A simulation relation is a relation over the states of a pair of HIOAs and it provides a sound
way of proving implementation relations (defined in Section 2.2.2). We shall encounter
different kinds of simulation relations and study their properties in Chapters 4 and 5. For
now, we note that simulation relations can also be specified in the HIOA language using
the simulation from keywords. We conclude the presentation of the HIOA language with
another example which uses many of its features.

Example 3.4. This failure detector example is taken from [KLSV05]; mechanized proofs
of correctness appeared in [ALL+06]. The automaton Spec(d) of Figure 3-7 abstractly
specifies the timing related requirements of a simple failure detector. It specifies that a
timeout occurs within d time of a fail. Furthermore, a timeout occurs only if it is preceded
by a fail. Specifically, the value of failed is initially f alse. Thus, the value of the clock
variable increases indefinitely at the same rate as that of real-time. The fail action can
occur at any point in time. When it does occur, the variable failed is set to true and the
deadline variable last timeout is set to clock + d. This enables the timeout action. The
trajectory definition failed becomes active and the clock continues to increase at the same
rate, but now it can increase only to the point where it equals last timeout. When the
clock reaches this value the timeout action must occur. This action sets suspected to true,
which in turn once again enables time to elapse indefinitely.

automaton Spec(d : Real) where d > 0
signature

input fail
output timeout

variables
internal last timeout : AugmentedReal := ∞,
clock : Real := 0;
suspected : Bool := f alse;
failed : Bool := f alse;

transitions
input fail

eff if ¬failed
then last timeout := clock + d;
failed := true; fi

output timeout
pre failed ∧¬suspected;
eff suspected := true;
last timeout := ∞;

trajectories
trajdef normal

invariant ¬failed ∨ (failed ∧ suspected)
evolve d(clock) = 1;

trajdef failed
invariant failed ∧¬suspected
stop when clock = lasttimeout
evolve d(clock) = 1;

Figure 3-7: Failure detector specification.

The automata in Figure 3-8 implement a failure detector using the TimedChannel of
Figure 3-5. PeriodicSend(M,u1) sends a message once every u1 time units, until a fail action
occurs. This periodic timing is maintained by the next send deadline variable. Notice how
the AugmentedReal type of this variable becomes useful when the fail action occurs.

The messages from PeriodicSend(M,u1) are transmitted over a channel that connects
this process with the Detector process and delivers every sent message within b time units.
In the composite specification Timeout of Figure 3-9, a single TimedChannel is instantiated

50



with the index set {1, 2}. The Detector(u2) automaton receives messages from the channel.
If it does not receive anything over an u2 time-interval, then it performs a timeout and
declares PeriodicSend to be suspected to have failed. The next recv variable is used to
postpone and then if necessary trigger, the timeout action.

automaton PeriodicSend(M : type, u1 : Real)
where u1 ≥ 0

signature
output send(m : M)
input fail

variables
internal next send : AugmentedReal := 0;
failed : Bool := f alse;
clock : Real := 0;

transitions
output send(m, 1, 2)

pre clock = next send ∧¬failed;
eff next send := clock + u1;

input fail
eff if ¬failed then
failed := true; next send := ∞; fi

trajectories
trajdef normal

stop when clock ≥ next send
evolve d(clock) = 1

automaton Detector(M : type, u2 : Real)
where u2 > 0

signature
input receive(m : M, 1, 2)
output timedout

variables
internal next recv : AugmentedReal := u2;
suspected : Bool := f alse;
clock : Real := 0

transitions
input receive(m, 1, 2)

eff next recv := clock + u2

output timedout
pre ¬suspected ∧ clock = next recv
eff suspected := true;
next recv := ∞

trajectories
trajdef normal

stop when 6= suspected ∧ clock ≥ next recv
evolve d(clock) = 1

Figure 3-8: Periodic sender and simple failure detector.

Figure 3-9 also presents two key invariants and a partial statement of the simulation
relation from Timeout to Spec, which are used for proving that Timeout implements Spec.
In Chapter 6 we show how HIOA specifications can be translated to the language of the

automaton Timeout(M : type, u1, u2, b : Real) where u1 ≥ 0 ∧u2 ≥ 0 ∧ b ≥ 0 ∧u2 ≥ (u1 + b)
components

Sender:PeriodicSend(M,u1);
Detector:Detector(M,u2);
Channel:TimedChannel(M, b, {1, 2}, 1, 2);

invariant of Timeout: ¬Detector.suspected⇒ Detector.next recv ≤ Detector.clock + u2
invariant of Timeout: Detector.suspected⇒ Sender.failed
. . .
forward simulation from Timeout(u1, u2, b) to Spec(d):

(Timeout. Sender.failed = Spec.failed ∧
Timeout.Detector.suspected = Spec.suspected ∧
. . .)

end

Figure 3-9: Composed automaton and property assertions.

PVS Theorem prover [ORR+96] and how invariant properties and simulation relations can
be proved partially automatically using specially designed proof strategies.

51



3.8 Summary

We described the HIOA language for specifying a general class hybrid systems modeled as
SHIOAs. In Section 7.7 a slightly extended version of HIOA is described which allows speci-
fication of probabilistic transitions. In addition to all examples in this thesis HIOA has been
used to specify mobile robot coordination algorithms [LMN], cardiac cell models [GMY+07],
an air-traffic control system [UL07], and several real-time distributed algorithms [FDGL07].

52



Chapter 4

Verifying Safety Properties

In this chapter we present techniques for verifying safety properties of SHIOAs. A safety
property S is a predicate on state variables and an SHIOA A is said to be safe with respect
to S, if ReachA ⊆ S, that is, if S is an invariant for A. In other words, A is unsafe if
there are executions of A that reach some “bad state” in Sc. We present an overview of
existing work in automatic invariance verification in Section 4.1. In Sections 4.2 and 4.3,
we present our deductive approach for verifying invariance and implementation relations.
Sections 4.4 and 4.4.2 are dedicated to a case study—a supervisory controller for a helicopter
testbed—which illustrates modeling and safety verification in the SHIOA framework.

4.1 An Overview

Definition 4.1. Let A be a pre-SHIOA with set of internal variables X and set of states
Q ⊆ val(X), and let I be a predicate on X. The set of states satisfying I is also denoted
by I. The predicate I is said to be an invariant of A if ReachA ⊆ I.

An SHIOA A is safe with respect to a particular safety property I, if I is an invariant
for A. Given A and a predicate I on X, how do we verify that I is an invariant of A? If the
set of reachable states of A, ReachA, is computable then we could check if ReachA ⊆ I. It
has been known since [HKPV95] that computing ReachA, is decidable only if A belongs to a
fairly restricted class, such as the class of rectangular, initialized SHIOAs. Other decidable
classes of hybrid automata with linear, polynomial, and exponential state models have been
identified (see, reachability related papers in [TG02, MP03, AP04, MT05, HT06]). These
decidable classes are generally called order minimal or o-minimal hybrid automata [LPY99].
The notion of o-minimality comes from mathematical logic. Informally, A theory of real
numbers is said to be o-minimal if every definable subset of R is a finite union of points
and intervals. Then, a hybrid system is o-minimal, if its initial states, preconditions, reset
maps, invariant sets, stopping conditions, and DAIs are all definable in the same o-minimal
theory.

Another alternative is to compute an overapproximation of ReachA, say ReachA, and
then check if ReachA ⊆ I. If true then I is verified, otherwise one has to check if the states
in ReachA∩I are really reachable or if they are false-positives generated by the overapprox-
imation. In the latter case ReachA is iteratively refined. Algorithms for overapproximating
ReachA for general hybrid systems have been developed (see, for example, [BCT02]), but
making these techniques scale remains a challenge.

53



In practice, therefore, a compromise has to be made between the expressive power of the
class of SHIOA that we use for specifying the system and the degree of automation we can
hope to achieve in verifying safety. Compared to above mentioned approaches, we opt for
a different trade-off between automation and expressive power. We develop invariant proof
techniques that are not always automatic but are applicable to general SHIOAs. Moreover,
because a set pattern of steps are always executed in constructing these invariant proofs,
the process can be at least partially automated.

4.2 Proving Invariants

We deduce the desired invariant property I from the specification of A by (a) finding an
inductive property I ′ ⊆ I, and (b) checking that the transitions and trajectories of A
preserve I ′. This technique has been applied earlier in the context of HIOA for verifying
safety of air-traffic control systems [LLL99] and vehicle control systems [Lyn96a, WL96,
WLD95]. We adapt these techniques to SHIOA and in Chapter 6 we develop theorem prover-
based support for partially automating step (b). In order to prove invariant properties, we
introduce another class of properties of A.

Definition 4.2. Let A be a pre-SHIOA with set of internal variables X and set of states
Q ⊆ val(X). A predicate I on X is an inductive property of A if any execution that starts
from a state satisfying I reaches only states that also satisfy I.

An inductive property that is satisfied by all starting states of A is an invariant. Induc-
tive properties can be verified by checking that each transition and trajectory of A preserves
the property. The following lemma which is an adaptation of the classical inductive proof
schema à la Floyd [Flo67] to the HIOA setting, formalizes this verification task.

Lemma 4.1. Given an HIOA A, the set of states I ⊆ Q is an invariant of A if it satisfies:

1. (Start condition) For any starting state x ∈ Θ, x ∈ I.

2. (Transition condition) For any action a ∈ A, if x a→ x′ and x ∈ I then x′ ∈ I.

3. (Trajectory condition) For any trajectory τ ∈ T , if τ.fstate ∈ I then τ.lstate ∈ I.

Proof. It suffices to show that ReachA ⊆ I. Consider any reachable state x ∈ ReachA. By
the definition of a reachable state, there exists an execution α of A such that α.lstate = x.
We proceed by induction on the length of the execution α. For the base case, α consists of
a single starting state x ∈ Θ and by the start condition, x ∈ I. For the inductive step, we
consider two subcases:

Case 1: α = α′ax where a is an action of A. By the induction hypothesis we know that
α′.lstate ∈ I. Invoking the transition condition, we obtain x ∈ I.

Case 2: α = α′τ where τ is a trajectory of A and τ.lstate = x. By the induction hypothe-
sis, α′.lstate ∈ I and invoking the trajectory condition we deduce that τ.lstate = x ∈
I.

54



This technique has been applied to verify safety properties of several hybrid systems
(see, for example, [LLL99, LL96, WL96, DL97, WLD95, Lyn96a], and [HL94]). A similar
lemma exists for verifying invariant properties of pre-SHIOAs. In practice, the state model
structure of SHIOAs is useful for verifying the trajectory condition through case analysis
of the state models.

Lemma 4.2. Given a pre-SHIOA A, the set of states I ⊆ Q is an invariant of A if it
satisfies:

1. (Start condition) For any starting state x ∈ Θ, x ∈ I.

2. (Transition condition) For any action a ∈ A, if x a→ x′ and x ∈ I then x′ ∈ I.

3. (Trajectory condition) For any state model S ∈ S , any trajectory τ ∈ trajs(S), if
τ.fstate ∈ I then τ.lstate ∈ I.

Proof. It suffices to show that ReachA ⊆ I. For any state x ∈ ReachA there exists an
execution α of A such that α.lstate = x. The proof is by induction on the length of the
execution α. For the base case, α is consisting of a single starting state x ∈ Θ and by the
start condition, x ∈ I. For the inductive step, we consider two subcases:

Case 1: α = α′ax where a is an action of A. By the induction hypothesis we know that
α′.lstate ∈ I. Invoking the transition condition we obtain x ∈ I.

Case 2: α = α′τ where τ is a trajectory of A and τ.lstate = x. By the induction hy-
pothesis, α′.lstate ∈ I. Since τ is a trajectory of A, it follows that there exists a
state model S such that τ ∈ trajs(S). Invoking the trajectory condition we get that
τ.lstate = x ∈ I.

Often, it is convenient to prove invariants for SHIOAs which are components of a larger,
composed system. The following result ensures that any invariant for a component SHIOA
carries over to the composed system.

Lemma 4.3. Suppose A1 and A2 are compatible pre-SHIOAs. If I is an invariant for
pre-SHIOA A1 then I ×Q2 is an invariant for A1||A2.

Proof. First we show that ReachA1||A2
d X1 ⊆ ReachA1 . Fix a state x ∈ ReachA1||A2

d X1.
We know that there exists a closed execution α of A1||A2 such that α.lstate = x. From
Lemma 2.2, α d (A1, V1) is an execution ofA1. Further, α.lstate d X1 = (α d (A1, V1)).lstate
which is a reachable state of A1. Thus, ReachA1||A2

d X1 ⊆ ReachA1 . Since I is an invariant
for A1, ReachA1 ⊆ I and therefore, ReachA1||A2

d X1 ⊆ I. As I is independent of the
variables of A2, it follows that ReachA1||A2

⊆ I ×Q2. That is, I ×Q2 is an invariant of the
composed automaton A1||A2.

4.3 Proving Implementation Relations

Many different kinds of implementation or abstraction relations and their corresponding
proof methods have been developed for timed [AD94] and hybrid automata [KLSV05,
TK02, TPL02]. For restricted classes hybrid systems, such as o-minimal hybrid automata,

55



automatic techniques exist for proving implementation relations, particularly bisimulation
relations. As in the case of invariant verification, our approach here is to develop proof
techniques that are applicable to the general class of SHIOAs.

Implementation relations (see Definition 2.13) are proved by demonstrating the existence
of a simulation relation between the concerned pair of automata. The following definition
of forward simulation relation and the corresponding soundness theorem were presented
in [LSV03], in the context of HIOAs. Since implementation of pre-SHIOAs is defined in
terms of the implementation of the corresponding pre-HIOAs, the soundness result extends
to the case of pre-SHIOAs in a straightforward manner.

Definition 4.3. Consider comparable pre-SHIOAs A and B. A simulation relation from
A to B is a relation R ⊆ QA ×QB satisfying the following conditions, for all states x and
y of A and B, respectively:

1. (Start condition) If x ∈ ΘA then there exists a state y ∈ ΘB such that x R y.

2. (Transition condition) If x R y and α is an execution fragment of A consisting of
one single action surrounded by two point trajectories and α.fstate = x, then B
has a closed execution fragment β with β.fstate = y, trace(β) = trace(α), and
α.lstate R β.lstate.

3. (Trajectory condition) If x R y and α is an execution fragment of A with consisting
of a single closed trajectory and α.fstate = x, then B has a closed execution fragment
β with β.fstate = y, trace(β) = trace(α), and α.lstate R β.lstate.

Theorem 4.4. Let A and B be comparable pre-SHIOAs and let R be a simulation relation
from A to B. Then A ≤ B.

4.4 Case Study: Safety Verification of Helicopter Testbed

In this section and the next, we present the safety verification of a supervisory controller
for a helicopter testbed using the techniques presented in Section 4.2. First, we present the
HIOA specification of the components of the system and the safety property of interest. This
example showcases several features of the HIOA language. Then, in Section 4.4.2, we present
the safety verification of the system. Verification involves proving a sequence of intermediate
invariants and lemmas. Almost all the intermediate invariants are proved using Lemma 4.2;
the remaining are deduced using other, already proved, invariants and the lemmas that
assert timing related behavior of the SHIOAs. Invariant properties of the whole system are
derived from those of the components of the system by applying Lemma 4.3. The proofs
using Lemma 4.2 illustrate how stylized hand-proofs of invariant properties are constructed
by systematic analysis of SHIOA specifications—a first step toward automation in deductive
verification. In chapter 6 we will discuss how stylized proofs of this kind can be constructed
partially automated using mechanical theorem provers.

This case study appeared earlier in [MWLF03]. The helicopter testbed manufactured by
Quanser [Qua] (see Figure 4.4) is driven by two rotors mounted at the two ends of its frame.
The frame is suspended from an instrumented joint which in turn is mounted at the end of
a long arm. The arm is gimbaled on another instrumented joint and is free to pitch and
yaw, giving the helicopter three degrees of freedom. The rotor inputs are either controlled
by the user with a joystick, or through software controllers. A complete dynamical model

56



frame

rotor

long arm

instrumented joint #2

instrumented joint #1

q
pitch angle

counterweight

Figure 4-1: Helicopter testbed manufactured by Quanser Inc.

of the helicopter with three degrees of rotational freedom appears in [WIM+02]. Here we
consider the pitch dynamics of the helicopter, which are critical for safety. In practice, the
roll and yaw effects are eliminated by making the initial conditions along these axes to be
zero and giving identical input to the two rotors. The magnitude of the total input to the
pitch axis is always restricted to be within [umin, umax] units. If the pitch angle θ is too
large the arm stresses the instrumented joint, and if it is too small then the frame hits the
ground causing physical damage. The system is safe if the pitch angle remains within a
range [θmin, θmax] that avoids these extremes.

A supervisory controller is designed to prevent the helicopter from reaching unsafe states.
It periodically observes the pitch angle and the pitch velocity of the helicopter, conserva-
tively estimates the worst that may happen if the user is allowed to remain in control,
and when necessary for ensuring safety, overrides the user’s output with a suitable alter-
native output. The design of the supervisor is constrained by the actuator bandwidth, the
sampling rate, and the sensor inaccuracies. In section 4.4.1, we present the SHIOA specifi-
cations of the components that make up the helicopter testbed and state basic properties of
these components. In section 4.4.2, we present the verification of the safety of the complete
system through a sequence of invariant assertions.

4.4.1 System Specification

Figure 4-2 shows the component SHIOAs of the helicopter testbed, their key state variables,
and their interactions through input/output variables and actions. The formal parameters
of the actions are not shown in this figure. The helicopter system is the composition of
Helicopter, Sensor, UsrCtrl, Actuator, and Supervisor. The resulting composed automaton A
is also a SHIOA. Some of these component automata have state variables with the same
name (for example, θ0 and θ1). As the set of local variables are required to be disjoint for
the automata to be compatible, we rename the overlapping variable names by adding the
first letter of the component automaton as a suffix. For the Supervisor automaton we use
the suffix c, instead of s.

57



Helicopter

θ0h, θ
1
h

Sensor

θ0s , θ
1
s ,

next sample

Actuator

buffer , ua

UsrCtrl

uu

Supervisor

mode, θ0c , θ
1
c , uc

θ0, θ1

sampleusrOutput

sample

supOutput

u

dequeue

Figure 4-2: Interconnection of SHIOA components in Quanser helicopter system.

Helicopter

The Helicopter SHIOA (Figure 4-3) specifies pitch dynamics of the helicopter with respect to
the rotor input voltage u. This automaton does not contain actions or discrete transitions.
Its state evolves according to the differential equation: d(θ1

h) + Ω2 cos θ0
h = u, which relates

the pitch angle θ0
h, the pitch velocity θ1

h, the characteristic frequency of the system Ω, and
the net rotor input u for the pitch axis. The output variables θ0 and θ1, which are simply
copies of θ0

h and θ1
h, are used for communicating the state of the helicopter to a sensor. The

Helicopter is safe if the pitch angle θ0
h is within θmin and θmax. The set of safe states S for

the composed SHIOA A, is defined as:

S
∆= {x ∈ QA | θmin ≤ x d θ0

h ≤ θmax}. (4.1)

automaton Helicopter(Ω : Real) where Ω > 0
variables

input u : Real;
output θ0 : Real; θ1 : Real;

internal θ0h : Real := 0; θ1h : Real := 0;

trajectories
trajdef pitchDynamics

evolve d(θ0h) = θ1h; d(θ1h) = −Ω2 cos(θ0h) + u;

θ0 = θ0h; θ1 = θ1h;

Figure 4-3: Quanser helicopter pitch dynamics.

Sensor

The Sensor automaton (Figure 4-4) models a sensor that reads the pitch angle θ0 and
the pitch velocity θ1 and produces noisy estimates of these quantities, once every ds > 0
time units. Although the estimates are inaccurate, they are guaranteed to be within ±e0
and ±e1 units of the actual values of θ0 and θ1, respectively. The estimates for θ0, θ1
are encapsulated as the parameters x0, x1 of the sample action. The clock variable nows
and the deadline variable next sample are used to periodically trigger the sample action

58



automaton Sensor(e0, e1, ds : Real)
where e0, e1, ds > 0

signature
output sample(x0, x1 : Real)

variables
input θ0 : Real; θ1 : Real;

internal θ0s : Real; θ1s : Real;
nows : Real := 0;
next sample : AugmentedReal := ds;
let time left := next sample− nows

transitions
output sample(x0, x1)

pre nows = next sample

∧x0 ∈ [θ0s − e0, θ0s + e0]

∧x1 ∈ [θ1s − e1, θ1s + e1];
eff next sample := next sample+ ds;

trajectories
trajdef periodicSample

stop when nows = next sample

evolve d(nows) = 1; θ0s = θ0; θ1s = θ1;

Figure 4-4: Periodic noisy sensor.

in a manner that is similar to the PSend automaton of Figure 3-3. When next sample
equals nows a set of sample(x0, x1) actions are enabled—one for each x0 ∈ [θ0

s − e0, θ0
s + e0]

and x1 ∈ [θ1
s − e1, θ

1
s + e1]. Out of all these enabled actions, one particular is chosen

nondeterministically. This choice captures the uncertainty in the sensor readings.
Invariant 4.5 captures a key property of Sensor, namely, that the value of the time left

variable (measuring time left to the next sample action) is bounded within 0 and ds.

Invariant 4.5. In every reachable state of Sensor, 0 ≤ time left ≤ ds.

Proof. By a straightforward application of Lemma 4.2 it follows that 0 ≤ next sample −
nows ≤ ds is an invariant. This suffices because the derived variable time left is defined to
be equal to next sample− nows.

User-defined Controller

The UsrCtrl automaton (Figure 4-5) models an arbitrary user controller. UsrCtrl receives pe-
riodic estimates of the helicopter’s state from Sensor through the sample action and responds
immediately with a usrOutput(u′) action. The parameter u′ of the action corresponds to
user’s choice of input to the helicopter. This choice is modeled by the nondeterministic
assignment to the variable uu over the range [umin, umax] in the effect of Sample. The flag
variable readyu indicates that the sample action has occurred. Similar flags are used in
some of the subsequent specifications as well; these variables do not influence the behav-
ior of automata, however by augmenting information content of state, they aid inductive
invariant proofs (see, for example, the proof of 4.8).

It is worth remarking that UsrCtrl is a rather abstractly specified user controller which is
capable of issuing arbitrarily inputs to the helicopter. A supervisor that ensures safety of the
helicopter system with UsrCtrl guarantees safety with respect to any other user controller,
because every possible controller implements UsrCtrl. Given a concrete user controller, a
formal proof of such a statement can be constructed by applying Theorem 4.4.

Supervisor

The Supervisor automaton (Figure 4-7) models the switched supervisory controller that
we have developed for ensuring safety of the helicopter. A second requirement for the
Supervisor is to interfere as little as possible with the user controller. There are well known
algorithms [FK98, ABD+00, LTS99] for synthesizing controllers for linear hybrid systems.

59



automaton UsrCtrl(umin, umax : Real)
signature

input sample(x0, x1 : Real)
output usrOutput(u′ : Real)

variables
internal nowu : Real := 0;
uu : Real := 0;
readyu : Bool := f alse;

transitions
input sample(x0, x1)

eff uu := choose k where umin ≤ k ≤ umax;
readyu := true;

output usrOutput(u′)
pre uu = u′ ∧ readyu;
eff readyu := f alse;

trajectories
trajdef timeElapse

stop when readyu

evolve d(nowu) = 1;

Figure 4-5: An arbitrary user-defined controller.

Our design of the switched supervisory controller is based on finding a safe operating re-
gion U . The Supervisor receives helicopter state estimates sample(x0, x1), user’s output
usrOutput(u′) and decides the input u to the actuator. This input is communicated to the
actuator through a supOutput(u) action. Informally, the input u is decided by Supervisor
as follows: if (x0, x1) ∈ U , the Helicopter is judged to be very safe, the user is allowed to
remain in control, that is, the supervisor decides u to be be u′. Otherwise, (x0, x1) /∈ U
and the Supervisor decides some other value for u that ensures safety. In order to satisfy
the minimal interference requirement, U should be as large as possible. In what follows, we
conceptually discuss the derivation of the different switching regions.

Consider a region C ⊆ S, from which all the reachable states are contained in S,
provided that the input u to the Helicopter is correct . By correct we mean that the input
is u = umin (or umax) if the pitch angle θ0 is in the danger of reaching θmin (θmax, resp.).
As there is a da delay in the actuator (see Figure 4-8), the supervisor cannot bring about
instantaneous changes in u, and therefore the region C is not a safe operating region. We
define another region R ⊆ C as the set of states from which all reachable states over a
period of da are within C. Even R is not a safe operating region because the supervisor
cannot observe the pitch angle and velocity accurately, and relies on the periodic updates
from the inaccurate sensors. Finally, we define the safe operating region U as follows: a
sensor-observed state x′ is in U if starting from any actual state x corresponding to x′,
all the reachable states over a ds interval of time are in R. Switching back to the user
controller from the supervisor is performed at the boundary of another region I ⊆ U . This
hysteresis-like asymmetry in switching prevents high frequency chattering between the user
and the supervisory controllers. The regions C,R,U , and I are formally defined as follows:

Γ+(θ, t) ∆= −umagt+
[
2(Ω2 cos θmax − umin)(θmax − θ +

1
2
umagt

2)
] 1

2

Γ−(θ, t) ∆= umagt−
[
2(umax − Ω2)(θ − θmin +

1
2
umagt

2)
] 1

2

U+(θ) ∆= −e1 + Γ+(θ + e0, da + ds)

U−(θ) ∆= +e1 + Γ−(θ − e0, da + ds)

I+(θ) ∆= −2e1 + Γ+(θ + 2e0, da + ds)

I−(θ) ∆= +2e1 + Γ−(θ − 2e0, da + ds)

60



θ0

θ1

C+

R+

U+

I+

C−

R−
U−
I−

S

C

R
U

I

Figure 4-6: Switching regions of supervisory controller.

C
∆= {x ∈ QA | x d θ0

h ∈ [θmin, θmax],x d θ1
h ∈ [Γ−(x d θ0

h, 0),Γ+(x d θ0
h, 0)]} (4.2)

R
∆= {x ∈ QA | x d θ0

h ∈ [θmin, θmax],x d θ1
h ∈ [Γ−(x d θ0

h, da),Γ
+(x d θ0

h, da)]} (4.3)

U
∆= {x ∈ QA | x d θ0

c ∈ [θmin + e0, θmax − e0],x d θ1
c ∈ [U−(x d θ0

c ), U
+(x d θ0

c )]} (4.4)

I
∆= {x ∈ QA | x d θ0

c ∈ [θmin + e0, θmax − e0],x d θ1
c ∈ [I−(x d θ0

c ), I
+(x d θ0

c )]} (4.5)

Here umag = umax−umin. The shapes of these regions are as shown in Figure 4-6 for typical
values of the parameters umag, da, ds, e0, and e1. The Supervisor reads the sensor-estimated
helicopter state through sample(x0, x1) and copies x0, x1 into internal variables θ0

c and θ1
c .

Based on this state information, the value of the tentative output usup is decided. If the
pitch velocity θ1

c is greater than or equal to I+(θ0
c ), then usup is set to be umax and if θ0

c is
less than I−(θ0

c ) then usup is set to be umin. Otherwise, the value of usup is left unchanged.
When usrOutput(u′) occurs, u′ is copied into uusr. This action also sets the values of the
variables uc and mode based on the current values of θ0

c , θ
1
c , and mode. If mode = usr and

the observed state is in U then mode remains unchanged and us = uusr. If mode = usr but
the observed state is not in U then mode is changed to sup and us = usup. If mode = sup
then us is copied from usup and mode is set to usr only if (θ0

c , θ
1
c ) is in I. The following

lemma states the containment relationships among the different switching regions defined
by Equations (4.1)-(4.5).

Lemma 4.6. I ⊆ U ⊆ R ⊆ C ⊆ S.

Proof. Follows from the definitions of C,R,U and I.

61



1 automaton Supervisor(umin, umax : Real)
type

3 Mode = Enumeration [sup, usr ]

5 signature
input sample(x0, x1 : Real)

7 input usrOutput(u′ : Real)
output supOutput(u′ : Real)

9

variables

11 internal θ0c : Real := 0; θ1c : Real := 0;
usup : Real; uusr : Real;

13 uc : Real := 0; readyc : Bool := false;
mode : Mode := usr; rt : Real := 0;

15

transitions
17 input sample(x0, x1)

eff θ0c := x0; θ1c := x1;

19 if θ1c ≥ I+(θ0c ) then usup := umin;

elseif θ1c ≤ I−(θ0c ) then usup := umax;
21 else usup := 0; fi;

22

input usrOutput(u′)
24eff uusr := u′; readyc := true;

if mode = usr then

26if (θ0c , θ
1
c ) ∈ U

then uc := uusr;
28else uc := usup; mode := sup; fi;

elseif mode = sup then

30if (θ0c , θ
1
c ) ∈ I

then uc := uusr; mode := usr;
32else uc := usup; fi; fi;

34output supOutput(u′)
pre readyc ∧u′ = uc;

36eff readyc := f alse;

38trajectories
trajdef supMode

40invariant mode = sup; stop when readyc

evolve d(rt) = 1;
42

trajdef usrMode
44invariant mode = usr; stop when readyc

evolve rt = 0;

Figure 4-7: Switched supervisory controller for helicopter testbed.

Actuator

The Actuator automaton (Figure 4-8) models an actuator which delays the output obtained
from the supervisory controller by da time units. The Actuator also captures a digital-to-
analog converter that generates a continuous signal u from the sequence of supOutput(u′)
actions. Specifically, this conversion works like a zero-order hold circuit: a piece-wise con-
stant signal u is constructed by copying the value of the parameter u′ of supOutput actions.
The delay in the actuator is modeled by a FIFO queue, buffer , of val and deadline pairs.
The val is the output u′ issued by the Supervisor, deadline is the scheduled time at which this
output is applied to the helicopter rotors. A supOutput(u′) action appends (u′, nowa+da) to
buffer and a dequeue action copies head(buffer).val to ua and removes head(buffer). Start-
ing from 0 which is the head, the ith pair in the buffer , if present, is denoted by buffer [i].
The derived variable length is defined to be equal to the length of the buffer .

automaton Actuator(da : Real) where da > 0
signature

input supOutput(u′ : Real)
output dequeue(u′ : Real)

variables
output u : Real;
internal ua : Discrete Real := 0;
readya : Bool := f alse;
buffer: Seq[Tuple[deadline : AugmentedReal,

val : Real]] := {};
nowa : Real := 0;
let length := length(buffer)

transitions
input supOutput(u′)

eff buffer := buffer | − [nowa + da, u′];
readya := true;

internal dequeue(u′)
pre head(buffer).deadline = nowa ∧ readya;
eff ua := head(buffer).val;

buffer := tail(buffer); readya := f alse;

trajectories
trajdef holding

stop when head(buffer).deadline = nowa

evolve d(nowa) = 1; u = ua;

Figure 4-8: Actuator with delay.

62



Invariant 4.7 states that the deadlines corresponding to successive elements in the buffer
are non-decreasing, and that all the deadlines are between nowa and nowa + da. This is a
typical invariant proof using the induction scheme of Lemma 4.2. Note how the transition
and the trajectory conditions are checked by case analysis of the actions and state models
of Actuator.

Invariant 4.7. In any reachable state of Actuator, for all 0 ≤ i ≤ length − 1, nowa ≤
buffer [i].deadline ≤ buffer [i+ 1].deadline ≤ nowa + da.

Proof. The proof is by an application of Lemma 4.2. The start condition holds vacuously
because buffer is empty. For the transition condition, consider a transition x a→ x′ such
that x d buffer satisfies the above invariant. Consider two subcases:

Case 1: a = dequeue. From the induction hypothesis we know that x d buffer satisfies the
invariant. Since x′ d buffer = tail(x d buffer), it follows that x′ d buffer also satisfies
the invariant.

Case 2: a = supOutput(u′). From the transition definition, x′ d buffer equals x d buffer
with one additional pair appended to its end. From the induction hypothesis it is clear
that the deadlines for all the elements in buffer , possibly with the exception of the
last one, satisfy the invariant. The deadline for the last element is (x d nowa) + da,
which greater than the deadline for the next-to-last element in buffer , and therefore
x′ satisfies the invariant.

For the trajectory condition, there is just one case to check because the automaton has
a single state model holding. Consider a closed trajectory τ ∈ trajs(holding), such that
τ.fstate satisfies the invariant. The buffer does not change over the trajectory, τ.fstate d
buffer = τ.lstate d buffer , and nowa increases monotonically at the rate of real-time. Thus,
it suffices to check that nowa ≤ head(buffer).deadline at the last state of τ . Suppose
for the sake of contradiction τ.lstate d nowa > head(buffer).deadline. Then, there exists
t ∈ τ.dom, t < τ.ltime, such that (τ ↓ nowa)(t) = head(buffer).deadline. This means
that τ(t) satisfies the stopping condition for the state model holding and therefore (by
Definition 2.11) t = τ.ltime which contradicts our assumption.

4.4.2 Safety Verification

The composed SHIOA A is safe if the reachable states of A are contained in the safe set S,
that is, if S is an invariant property for A. As is often the case, however, invariance of S
cannot be directly deduced from the specification of A. For this reason, we find a stronger
invariant property C (defined by Eqution (4.2)).

We verify invariance of C (Theorem 4.22) by proving a sequence of 12 intermediate
invariants and 5 lemmas. We have already seen Invariants 4.7, 4.5, and Lemma 4.6. Lem-
mas 4.6, 4.10,and 4.19, and state relationships between various subsets of C that appear
in the invariant properties. These relationships are deduced directly by expanding the
definition of the subsets.

The fourth lemma (Lemma 4.11), characterizes the reachable states over any single
trajectory in the user mode. The proof of this lemma involves integrating the continuous
dynamics of the Helicopter with the worst possible user input. The fifth lemma (Lemma 4.8),
asserts a property about the time of occurrence of the sample, usrOutput, and the supOutput

63



actions. Such timing properties cannot be formalized as invariants, however, in many in-
stances, the design of the system itself suggests a way of proving them. For example, the
proof of this Lemma 4.8 is constructed by reasoning about the design of the system, starting
from key fact that the sample action occurs periodically (Invariant 4.5).

Almost all of the 12 intermediate invariants are proved using the induction scheme of
Lemma 4.2; the rest are deduced from other invariants and lemmas. Applying Lemma 4.2
involves checking the transition condition and the trajectory condition. Checking the tran-
sition conditions involves applying the precondition of the action and the invariant on the
pre-state, expanding the definition of the post-state as specified by the HIOA program for
effects, and deducing that the post-state satisfies the invariant. Most often, this follows
from straightforward simplification of the definition of the invariant, the precondition, and
the post-state. This also suggests that these proof steps can be automated to a fair degree
using theorem provers (This is the topic of Chapter 6).

In general, checking the trajectory conditions involve solving the DAIs describing the
state models of A. However in our case study, apart from Invariants 4.13, 4.20, and 4.21,
the trajectory conditions are verified easily because the variables involved in the invariant
either remain constant over trajectories or they evolve at the constant rate of 1. The
proofs of Invariants 4.13 and 4.20 are based on estimating the largest possible envelope of
reachable states. The trajectory conditions in these proofs are checked by deriving bounds
on the extreme values of the state variables by integrating the differential equations of the
Helicopter pitch dynamics, with worst possible user input. The proof of Invariant 4.21 relies
on the fact that the input to the Helicopter is correct (Invariant 4.15). With this extra
information, the trajectory condition of this invariant is checked by showing that the vector
field associated with the DAEs of the Helicopter are pointing inwards at the boundary of the
invariant set C. This last technique is based on the subtangential condition for checking
invariance of continuous time systems as described by Theorem 3.4.11 in [BS67]. This
presents a systematic way of checking the trajectory condition for hybrid systems with
general state models, without requiring the explicit solution of differential equations.

Our verification methodology does not rely on the exact values of the system parameters
θmin, θmax, umin, umax, da, and ds, however, these parameters must satisfy the following
relationships.

θmin < 0 < |θmin| < θmax, umax > Ω2, and umin ≤ 0. (4.6)
For any trajectory τ ∈ trajs(A),

τ.fstate d θ1
c > I+(τ.fstate d θ0

c ) ⇒ τ.lstate d θ1
c ≥ I−(τ.lstate d θ0

c ) (4.7)

τ.fstate d θ1
c < I−(τ.fstate d θ0

c ) ⇒ τ.lstate d θ1
c ≤ I+(τ.lsate d θ0

c ). (4.8)

Equations (4.6) are consequences of the physical dimensions of the helicopter. Equa-
tions (4.7) and (4.8) bound the length of any closed trajectory in terms of the pitch velocity
in its first and last states. Indirectly, this bounds the speed of the helicopter with respect
to sampling rate (1/ds) of the sensor: the state of the helicopter cannot jump across the
region I in less than ds time. We begin by proving some preliminary properties of A; then
we proceed to prove safety of A, first in the user mode and finally in the supervisor mode.

64



4.4.3 Preliminary Properties

Automaton A has three state variables called nows, nowa, and nowu, respectively. Each of
these variables models real-time and their values are always identical. For simplicity, in the
remainder of this section we use a single variable called now without any subscript.

The periodic sample action of the Sensor automaton is used to instantly trigger a
usrOutput and then a supOutput action. This tight synchronization is formalized by the
following lemma.

Lemma 4.8. In any execution of A, sample, usrOutput, and supOutput actions occur when
now = nds, and dequeue actions occur when timer = da + nds for some integer n > 0.

Proof. Initially next sample = ds and every time sample occurs, next sample is incre-
mented by ds; next sample always equals nds, where n ∈ N. The predicate now =
next sample is the enabling condition for sample and it is also the stopping condition for
the (only) state model periodicSample. Thus, whenever next sample = now = nds, sample
is enabled and since time cannot elapse, sample actually occurs.

As an effect of sample, readyu is set to true. Since readyu is the enabling condition
for usrOutput and the stopping condition for the state model timeElapse, usrOutput occurs
immediately following sample. Similarly, when usrOutput occurs it sets readyc to true and
this forces supOutput to occur immediately.

We have shown that sample, usrOutput, and supOutput always occur in that order, with-
out any time delay between them and whenever they occur now = nds. Every supOutput
inserts an element in the Actuator buffer , and the deadline associated with the element is
now+da. Thus, for every element in buffer the deadline is of the form nds+da, where n ∈ N.
Finally, head(buffer).deadline = now is an enabling condition for dequeue and a stopping
condition for the state model holding. Therefore dequeue occurs when now = nds + da, for
some n ∈ N.

An element is inserted in the buffer every ds time and it is taken out after da time.
Therefore the length of the buffer is bounded. The next invariant uses Lemma 4.8 to limit
the length of the Actuator buffer .

Invariant 4.9. In every reachable state of A, for all 0 ≤ i ≤ length − 2, buffer [i +
1].deadline = buffer [i].deadline+ ds, and length ≤ dda

ds
e.

Proof. From the proof of Lemma 4.8 we know that the deadline for each element in buffer
has value nds + da for some n ∈ N. Furthermore, the difference in the deadlines of two
consecutive elements is exactly ds. From Invariant 4.7, the difference between the first and
the last deadline is at most da. Therefore, the maximum number of elements in buffer is
dda
ds
e.

We say that a given state x of A is in the user mode if x d mode = usr and it is in
the supervisor mode if x d mode = sup. In the next section we prove that A is safe in the
user mode, that is, all reachable states that are in the user mode are contained in S. In
Section 4.4.5 we shall prove safety in the supervisor mode.

65



4.4.4 User Mode

First, we informally describe the main idea underlying the proof. Consider the following
worst case scenario: a sample action occurs when the Helicopter is at the boundary of U ,
say on U+. The supervisor decides to keep mode = usr, and the output from the UsrCtrl
continues to drive the Helicopter. That is, the output from UsrCtrl enters the Actuator
buffer , and then the Helicopter after a delay of da time units. This continues for the next
ds time units, after which another sample action occurs, and at this point the supervisor
once again gets to decide the mode. Now, what is the worst possible output from UsrCtrl
which drives the Helicopter for this ds interval ? It is umax. This is because the Helicopter
is at U+ at the beginning of the interval, and an input of umax forces the state Helicopter
to move most upwards rapidly in the phase-plane. At the next sample point the supervisor
detects that the Helicopter is outside U , and starts to feed the appropriate input, namely,
umin. But the buffer still contains the umax inputs from UsrCtrl, and it takes some more
time for umin to actually enter. In this time the state goes outside U , but remains (as we
shall shortly prove) within a larger safe set R.

In what follows we shall show that the state of the Helicopter remains within R while
the system is in the user mode. In order to accomplish this through invariant assertions,
we define a set of regions At, for each t, 0 ≤ t ≤ ds.

At
∆= {x | x d θ0

h ∈ [θmin, θmax] ∧ x d θ1
h ∈ [Γ−(x d θ0

h, da + t),Γ+(x d θ0
h, da + t)} (4.9)

The boundaries of the At regions alongside those of R and U are shown in Figure 4-9 (Left).
Lemma 4.10 relates the At regions with R and U . Throughout the remainder of this chapter,
in all invariant assertions x denotes a reachable state of A.

Lemma 4.10. (i) A0 = R, (ii) U ⊆ Ads, and (iii) for 0 ≤ t ≤ t′ ≤ ds, At′ ⊆ At.

Proof. For part (i), set t = 0 in the definition of At and compare with the definition of R.
For part (ii), note that θ0

h ∈ [θ0
c − e0, θ

0
c + e0] and θ1

h ∈ [θ1
c − e1, θ

1
c + e1]. Setting t = ds we

have:

Ads = {x | x d θ0c ∈ [θmin − ε0, θmax + ε0] ∧ x d θ1c ∈ [Γ−(x d θ0h, da + ds)− ε1,Γ+(x d θ0h, da + ds) + ε1]}.

Observe that Γ+ and Γ− are monotonically increasing and monotonically decreasing, re-
spectively, with respect to θ. Since θ0

h ≥ θ0
c − ε0, Γ−(θ0

h, y) ≤ Γ−(θ0
c − ε0, y). Similarly,

θ0
h ≤ θ0

h + ε0 implies that Γ+(θ0
h, y) ≥ Γ+(θ0

c + ε0, y). Therefore,

U = {x | x d θ0h ∈ [θmin, θmax] ∧
x d θ1h ∈ [Γ−(x d θ0c − ε0, da + ds) + ε1,Γ+(x d θ0c + ε0, da + ds)− ε1]} ⊆ Ads .

For part (iii), we observe that in the definition for At, Γ+ and Γ− are monotonically decreas-
ing and monotonically increasing, respectively, with respect to t. Therefore if 0 ≤ t ≤ t′ ≤ ds
then At′ ⊆ At.

The proof of safety in the user mode relies on estimating the envelope which contains
all states of the Helicopter which can be reached over a ds interval of time, starting from
U , with worst possible user input. The next lemma gives a bound on the reachable states
over a single trajectory in terms of the At sets. This lemma is used to check the trajectory
condition of Invariant 4.12.

66



θ0

θ1

C+

R+

A+
tU+

I+

C−

R−
A−tU−

I−

S

C

R

U

I
θ0

θ1

C+

B+
t

R+

U+

I+

C−
B−t

R−
U−
I−

S

C

R

U

I

Figure 4-9: Left:At regions between U and R, Right:Bt regions between R and C.

Lemma 4.11. For any closed trajectory τ of A, if τ.fstate ∈ At then τ.lstate ∈ At−τ.ltime.

Proof. Consider a closed trajectory τ . Let x = τ.fstate, x′ = τ.lstate, and t′ = τ.ltime.
Suppose x ∈ At, for some t, 0 ≤ t ≤ ds. From the definition of At it follows that, θmin ≤ x d
θ0
h ≤ θmax and Γ−(x d θ0

h, da+t) ≤ x d θ1
h ≤ Γ+(x d θ0

h, da+t). We conservatively estimate x′

by considering the worst case input u to Helicopter. First considering the maximum positive
input, u = umax, from the state model pitchDynamics of Helicopter we get the upper bound
on the acceleration at any intermediate state x′′ in τ : d(x′′ d θ1

h) ≤ −Ω2 cos θmax + umax.
Integrating from t to t′, it follows that x′ d θ1

h ≤ (umax − Ω2 cos θmax)t′ + x d θ1
h, and

x′ d θ0
h ≤

1
2(umax−Ω2 cos θmax)t′

2 + (x d θ1
h)t

′+x d θ0
h. Simplifying and using the definition

of Γ+ we get the following bounds on θ0
h and θ1

h: x′ d θ0
h ≤ θmax and x′ d θ1

h ≤ Γ+(x′ d
θ0
h, da + t − t′). Similarly, considering maximum negative output, u = umin, we get the

bounds: x′ d θ0
h ≥ θmin, and x′ d θ1

h ≥ Γ−(x′ d θ0
h, da + t− t′). Combining the above bounds

on x′ it follows that x′ ∈ At−t′ .

This gives us the key step in proving Invariant 4.12 which bounds the reachable states in
the user mode in terms the At sets. From Invariant 4.12, the desired result, namely, the con-
tainment of the reachable states of A in the user mode within R, follows by straightforward
application of Lemma 4.2.

Invariant 4.12. If x d mode = usr and ¬(x d readyu) then x ∈ Axdtime left.

Proof. The proof is by an application of Lemma 4.2. The start condition holds because for
any starting state x, x d time left = ds and x ∈ U ⊆ Ads . For the transition condition we
consider three possible actions such that x a→ x′:

Case 1: a = sample(x0, x1). x′.readyu = true and the invariant holds vacuously.

Case 2: a = usrOutput(u′). Assume x′.mode = usr and consider two sub-cases: if x d
mode = usr, then from the code of the usrOutput action in Supervisor, x ∈ U ⇒ x′ ∈

67



U ⊆ Ads . Since x′ d time left ≤ ds, x′ ∈ Axdtime left. Otherwise, x d mode = sup
and x ∈ I ⇒ x′ ∈ I ⊆ Ads . Which implies that x′ ∈ Ax′dtime left.

Case 3: a = supOutput(u). Assume x′ d mode = usr and x′ d readyu = f alse. Then,
x d mode = usr and x d readyu = f alse. By inductive hypothesis x ∈ Axdtime left,
therefore x′ ∈ Ax′dtime left.

For the trajectory condition, consider a closed trajectory τ . Let x = τ.fstate, x′ = τ.lstate,
and t′ = τ.ltime. Assume x′ d mode = usr and x′ d readyu = f alse. As the valuations of
mode and readyu do not change over τ , x d mode = usr and x d readyu = f alse. From the
inductive hypothesis x ∈ Axdtime left. Using Lemma 4.11, x′ ∈ Axdtime left−t′ = Ax′dtime left.

Invariant 4.13. If x d mode = usr then x ∈ R.

Proof. The proof is by an application of Lemma 4.2. The start condition holds because all
starting states are in U and U ⊆ R.

For the transition condition, consider any transition x a→ x′, with x′ d mode = usr. We
consider two cases based on the value of readyu in x. If x d readyu = f alse, then using
Invariant 4.12, x′ ∈ Ax′dtime left ⊆ R. On the other hand, if x′ d readyu = true, then
a 6= usrOutput and x d mode = usr. This is because the usrOutput action alone can bring
about a change of mode. So from the inductive hypothesis x ∈ R and it follows that x′ ∈ R.

For the trajectory condition, consider a closed trajectory τ . Let τ.fstate = x, τ.lstate =
x′, and x′ d mode = usr. We consider two cases, if x′ d readyu = f alse then x′ ∈ R by
Invariant 4.12. Otherwise, x′ d readyu = true. Then x d readyu and x d mode = usr
because readyu and mode does not change over τ . Since x satisfies the stopping condition
for state model timeElapse in UsrCtrl, τ is a point trajectory. That is, x′ = x. From the
inductive hypothesis, x ∈ R, and so x′ ∈ R.

4.4.5 Supervisor Mode

The Supervisor receives helicopter state estimates sample(x0, x1), user’s output usrOutput(u′)
and decides the input u to the actuator. This input is communicated to Actuator through
supOutput(u), and it finally enters the Helicopter after da time through the occurrence of
dequeue(u). Thus, there are two phases in the supervisor mode. (1) The settling phase
starts when mode changes from usr to sup and lasts for da time units. During this phase
the input to the rotors is based on the usrOutput’s issued before the mode switch and
therefore the state of the Helicopter may appear to actually become worse, in the sense that
it may continue to move toward the boundary of the safe set S. (2) The recovery phase
starts da time after settling phase. During this phase the input to the rotors is correct and
is based on the supOutput’s issued after the mode switch and the state of the Helicopter
returns to U . We prove safety of the system in the supervisor mode, by showing that A
remains within C during both these phases.

We begin by proving some basic properties regarding the correctness of the inputs to
the Helicopter. Invariant 4.14 states that, in all reachable states with the possible exception
of those that are post states of sample actions (readyu set to f alse), if the sensed helicopter
state (θ0

c , θ
1
c ) is within the region bounded by I+ and I−, then the system is in the user

mode. Invariant 4.15 follows from the code of the sample action. These results are finally

68



used to prove Invariant 4.17 which relates the state of Helicopter with the position of the
correct inputs in the Actuator buffer .

Invariant 4.14. If I−(x d θ0
c ) ≤ x d θ1

c ≤ I+(x d θ0
c ) ∧ ¬(x d readyu) then x d mode = usr.

Proof. The proof is an easy application of Lemma 4.2. The only interesting case to check is
the transition condition x a→ x′ with a = usrOutput and I−(x′ d θ0

c ) ≤ x′ d θ1
c ≤ I+(x′ d θ0

c ).
It follows from the code that I−(x d θ0

c ) ≤ x d θ1
c ≤ I+(x d θ0

c ) and therefore x′ d mode =
usr.

Invariant 4.15. (i) If x d θ1
c > U+(x d θ0

c ) then x d usup = umin, and
(ii) if x d θ1

c < U−(x d θ0
c ) then x d usup = umax.

Proof. We prove Part (i) using Lemma 4.2. The start condition holds vacuously. For
the transition condition, it suffices to check that the invariant is preserved by transitions
corresponding to the action sample. From the code for Supervisor, we know that if x d
θ1
c > I+(x d θ0

c ) when sample is enabled then x′ d usup = umin, where x′ is the post
state of the transition corresponding to sample. For the trajectory condition, consider a
closed trajectory τ . From the assumption stated in Equation (4.7), for any trajectory τ , if
τ.fstate d θ1

c > I+(τ.fstate d θ0
c ), then τ.lstate d θ1

c ≥ I−(τ.lstate d θ0
c ), which in turn is

greater than U−(τ.lstate d θ0
c ). Thus the invariant holds vacuously.

The proof for Part (ii) is symmetric to that of Part (i).

The variable rt in Supervisor is a timer measuring duration the system has been in
the supervisor mode, since the most recent mode switch. As mode switches occur when
now = nds (Lemma 4.8), the value of rt can be expressed as nds− time left. Invariant 4.16
states this relationship; the proof is a simple application of Lemma 4.2.

Invariant 4.16. x d rt = nds − x d time left, for some integer n ≥ 1.

Next, we define two predicates QPOSk and QNEGk; a state x satisfies QPOSk (or
QNEGk), if the last k commands in buffer are equal to umin (or umax respectively). For-
mally, for any k ≥ 0,

QPOSk(x) ∆= ∀i, max(0,x d length− k) ≤ i < x d length,x d buffer [i].val = umin,

QNEGk(x) ∆= ∀i, max(0,x d length− k) ≤ i < x d length,x d buffer [i].val = umax

Clearly, for all k > 0, QPOSk(x) implies QPOSk−1(x), and therefore for any k ≥ x d
length, QPOSk(x) implies that QPOSj(x) holds for all j < x d length. Similar results hold
for QNEGk. The next invariant states that every reachable state x in the supervisor mode
satisfies either QPOSdxdrt

ds
e(x) or QNEGdxdrt

ds
e(s), depending on whether x is above I+ or

below I− respectively. In addition, if x is in between a supOutput action and a dequeue
action (x d readya, that is), then QPOSdxdrt

ds
e+1

(x) or QNEGdxdrt
ds

e+1
(x) holds, depending

on the position of x with respect to I+ and I−.

Invariant 4.17. If x d mode = sup:

(i) If x d θ1c > I+(x d θ0c ) then (a) QPOSd xdrt
ds

e(x), (b) If x d readya then QPOSdxdrt
ds

e+1
(x),

69



(ii) If x d θ1c < I−(x d θ0c ) then (a) QNEGdxdrt
ds

e(x), (b) If x d readya then QNEGdxdrt
ds

e+1
(x)

Proof. We shall prove Part (i) of the invariant; the proof for Part (ii) is symmetric. The
starting condition holds trivially because mode = usr in all starting states. For the
transition condition, we consider the discrete steps x a→ x′ with x′ d mode = sup and
x′ d θ1

c > I+(x′ d θ0
c ).

Case 1: a = sample. Since x d ready = f alse and x d mode = sup, it follows from the
contrapositive of Invariant 4.14 that x d θ1

c > I+(s.θ0
c ) or x d θ1

c < I−(s.θ0
c ). According

to Equation (4.7), x d θ1
c ≥ I−(s.θ0

c ), therefore x d θ1
c > I+(x d θ0

c ). Part (a): from
Part (i)(a) of the inductive hypothesis it follows that QPOSdxdrt

ds
e(x) holds. Since

buffer is not changed by sample therefore QPOSdx′drt
ds

e(x
′) holds.

Part (b): assume x′ d readya = true. Since sample does not change readya, it
follows that x d readyd = true. Therefore from the inductive hypothesis it fol-
lows that QPOSdxdrt

ds
e+1

(x) holds. Since buffer is not changed by sample therefore

QPOSdx′drt
ds

e+1
(x′) holds.

Case 2: a = usrOutput. If x d mode = sup. The invariant is preserved since usrOutput
does not change any of the variables involved other than mode. If x d mode = usr
then x d rt = 0 = x′ d rt. The invariant is satisfied because QPOS0 is trivially true.

Case 3: a = supOutput. Part (b): From the code it follows that x d mode = sup and
x d θ1

c > I+(x d θ0
c ). Therefore it follows from Invariant 4.15 that x d usup = umin.

Since x′ d buffer = x d buffer | − (x d usup,x d now + ds), and QPOSdxdrt
ds

e(x) holds

from the inductive hypothesis, therefore it follows that QPOSdx′drt
ds

e+1
(vx′) holds.

Part (a) follows from the above becauseQPOSdx′drt
ds

e+1
(x′) implies thatQPOSdx′drt

ds
e(x

′)

holds.

Case 4: a = dequeue. From the code it follows that x d mode = sup, x d θ1
c > I+(x d

θ0
c ), x′ d buffer = tail(x d buffer), and that x d readyd = true. Part (a): From

the inductive hypothesis it follows that QPOSdxdrt
ds

e+1
(x) holds, which implies that

QPOSdx′drt
ds

e(x
′) holds.

Part (b): From the code it follows that x′.ready = f alse therefore the invariant holds
trivially.

For the trajectory condition, consider a closed trajectory τ . Let x = τ.fstate, x′ = τ.lstate,
and t′ = τ.ltime. Suppose x′ d mode = sup and x′ d θ1

c > I+(x′ d θ0
c ). From the code

it follows that x′.buffer = x d buffer , x d θ1
c > I+(x d θ0

c ) and x′ d rt = x d rt + t′.
Using Invariant 4.16 x d rt can be written as x d rt = nds − x d time left for some
n ≥ 1; fix n. Therefore, x′ d rt = nds − x d time left + t′ = nds − x′ d time left. Since
0 ≤ x d time left ≤ ds and 0 ≤ x′ d time left ≤ ds, therefore dxdrt

ds
e = dx′drt

ds
e = n.

Part (a): from Part (i)(a) of the inductive hypothesis it follows that QPOSn(x) holds.
Since buffer is not changed over τ it follows that QPOSn(x′) holds.

Part (b): Assume x′ d readyd = true. Therefore x d readyd = true. From Part (i)(b) of
the inductive hypothesis it follows that QPOSn+1(x) holds and since buffer is not changed
over τ it follows that QPOSn+1(x′) holds.

70



The next invariant formalizes the desired property that after da period of time in the
supervisor mode the input u to the Helicopter is correct in the following sense: if it is possible
for the Helicopter to pitch too high up then u = umin; otherwise, if it is possible for it to
pitch too low then u = umax.

Invariant 4.18. Suppose x d mode = sup and x d rt > da.

(i) If x d θ1
c > I+(x d θ0

c ) then x d u = umin, and

(ii) if x d θ1
c < I−(x d θ0

c ) then x d u = umax.

Proof. We shall prove Part (i); the proof for Part (ii) is symmetric. Consider a reachable
state x and assume that x d mode = sup, x d rt > da and x d θ1

c > I+(x d θ0
c ). From part

(i) of Invariant 4.17 it follows that QPOSd da
ds
e(x) holds. From Invariant 4.9 it is known

that the maximum value of length is dda
ds
e. It follows from the definition of QPOS that

head(x d buffer) = umin.

Settling Phase of Supervisor Mode

In what follows, we shall show that the state of A remains within C in the settling phase of
the supervisor mode. Our strategy here is similar to the one we adopted in showing safety
in the user mode. We define a set of regions Bt, for 0 ≤ t ≤ da, as follows:

Bt
∆= {x | x d θ0

h ∈ [θmin, θmax] ∧ x d θ1
h ∈ [Γ−(x d θ0

h, da − t),Γ+(x d θ0
h, da − t)]} (4.10)

The boundaries of the Bt regions alongside those of R and C are shown in Figure 4-9 (Right).
Lemma 4.19 relates the Bt regions with R and C. Invariant 4.20 bounds the location of a
state x in terms of the Bt regions, when x d rt ≤ da. This implies the safety of the system
in the settling phase.

Lemma 4.19. The regions Bt satisfy: (i) B0 = R, (ii) Bda = C, (iii) for 0 ≤ t ≤ t′ ≤ da,
Bt ⊆ B′

t.

Proof. Parts (i) and (ii) are proved by setting t = 0 and t = da in Equation (4.10), respec-
tively. Since t ≤ t′, Part (iii) follows from monotonicity of Γ+ and Γ− with respect to θ.

Invariant 4.20. For any reachable state x, if x d mode = sup ∧ x d rt ≤ da then x ∈ Bxdrt.

Proof. The proof is by an application of Lemma 4.2. The starting condition holds trivially
because x d mode = usr. For transition condition, the only interesting case is to check for
transitions x a→ x′ with x′ d mode = sup and a = usrOutput. There are two subcases to
consider: if x d mode = sup then from the induction hypothesis it follows that x′ ∈ Bx′drt.
Otherwise x d mode = usr, and x ∈ R by Invariant 4.12. Thus, x′ ∈ R. Since R = B0 ⊆
Bx′drt for any x′ d rt ≥ 0, and therefore the invariant holds at x′.

For the trajectory condition, consider a closed trajectory τ . Let x = τ.fstate,x′ =
τ.lstate, and t′ = τ.ltime. Assume x′ d mode = sup and x′ d rt ≤ da. Since discrete
variables remain constant over trajectories, x d mode = sup and x d rt ≤ da. From
the induction hypothesis it follows that x ∈ Bxdrt, that is θmin ≤ x d θ0

h ≤ θmax and

71



Γ−(x d θ0
p, da − x d rt) ≤ x d θ1

h ≤ Γ+(x d θ0
h, da − x d rt). For all intermediate states be-

tween x and x′ the input u to Helicopter is arbitrary. Using the maximum value umax,
integrating over τ.dom, and then simplifying we get the upper bounds on θ1

h and θ0
h:

x′ d θ0
h ≤ θmax, and (4.11)

x′ d θ1
h ≤ Γ+(x′ d θ0

h, da − x d rt− t′), (4.12)

Similarly, using the lower bound on u, we get

x′ d θ0
h ≥ θmin, and (4.13)

x′ d θ1
h ≥ Γ−(x′ d θ0

h, da − (x d rt)− t′). (4.14)

Combining equations (4.11)–(4.14) we have x′ ∈ Bxdrt+t′ = Bx′drt.

Recovery Phase of Supervisor Mode

In this section we prove Invariant 4.21 which asserts invariance of C in the recovery phase
of the supervisor mode. The proof, once again, uses the induction scheme of Lemma 4.2
and in addition uses the fact that the input to the Helicopter is correct (invariant 4.15).
Checking the trajectory condition in this proof does not rely on solving the DAEs of the
state models. Instead, we show that the vector field corresponding to these differential
equations is pointing inwards (subtangential) at the boundary of the set C. The boundary
of C is split into four parts, namely, the upper curve C+, the lower curve C−, and the
segments in the left C l and right Cr segments, and the above condition is checked for each
part.

Invariant 4.21. If x d mode = sup and x d rt ≥ da then x ∈ C.

Proof. The proof by application of Lemma 4.2. The starting condition is trivially satisfied.
For the transition condition, consider discrete transitions x a→ x′ with x′ d mode = sup.
If a = usrOutput there are two subcases: if x d mode = sup then from the inductive
hypothesis x ∈ C and therefore x′ ∈ C. Otherwise, x d mode = usr and x′ d rt = 0 and
the invariant holds vacuously. For all other actions the invariant is preserved because none
of the variables involved are altered.

For the trajectory condition, consider closed trajectory τ . Let x = τ.fstate,x′ =
τ.lstate, and t′ = τ.ltime. Suppose x′ d mode = sup and x′ d rt ≥ da. First, we show
that x ∈ C. Since discrete variables remain constant over τ , x d mode = sup. Consider two
possible cases: (1) If x d rt < da then from Invariant 4.20 it follows that x ∈ C. Otherwise,
(2) x d rt ≥ da and from the inductive hypothesis it follows that x ∈ C.

If x ∈ U , then from Lemma 4.11 it follows that x′ is in R and therefore in C. So it
remains to show that if x ∈ C \ U then x′ ∈ C. We shall prove this by contradiction.
Since x d θ1

c > I+(x d θ0
c ) or x d θ1

c < I+(x d θ0
c ) it follows from Invariant 4.18 that

x d u = umin or umax, respectively. Now, suppose x′ /∈ C, then there must exist t′ ∈
τ.dom such that τ leaves the C at τ(t′). At the boundary of C it must be the case that
d(θ0

h(t
′), θ1

h(t
′)) ·n(θ0

h(t
′), θ1

h(t
′)) ≥ 0, where n() denotes the outer normal to C and · denotes

the inner product between the two vectors.
We reach a contradiction by showing that at each point x′′ on the boundary of C,

d(x′′ d θ0
h,x

′′ d θ1
h) · n(x′′ d θ0

h,x
′′ d θ1

h) < 0. Here onwards we shall write v instead of
x′′.v where it is understood that v is the state component of a point in the state space

72



which is on the boundary of C. We consider the curves defining the boundary of C (refer
to Figure 4-6).

Case 1: The upper boundary C+. This can be expressed as

C+ =
{
d(θ0

h, θ
1
h) | θmin ≤ θ0

h ≤ θmax ∧ θ1
h ≥ 0 ∧ V1(θ0

h, θ
1
h) =

(
−umin + Ω2 cos θmax

)
θmax

}
,

where V1(θ0
h, θ

1
h) = 1

2θ
1
h
2 +

(
−umin + Ω2 cos θmax

)
θ0
h. So the outer normal of C+ is

given by

n(θ0
h, θ

1
h) = ∇V1 :=

(
∂V1

∂θ0
p

,
∂V1

∂θ1
h

)
= (−umin + Ω2 cos θmax, θ1

h),

where ∇ is the gradient operator. Since θ1
c ≥ I+(θ0

c ) and rt > da, u = umin by
Invariant 4.18. The pitch dynamics equations are given by: d(θ0

h) = θ1
h, and d(θ1

h) =
−Ω2 cos θ0

h + umin. So we have

n(θ0
h, θ

1
h) · d(θ0

h, θ
1
h) = (−umin + Ω2 cos θmax, θ1

h) · (θ1
h,−Ω2 cos θ0

h + umin)
= Ω2(cos θmax − cos θ0

h)θ
1
h ≤ 0,

for (θ0
h, θ

1
h) ∈ C+. The equal sign is valid iff (θ0

h, θ
1
h) = (θmax, 0). So the point

(θ0
h, θ

1
h) = (θmax, 0) needs special treatment. Integrating for initial condition (θmax, 0),

we get

sin θ0
h = sin θmax +

1
Ω2

[
umin(θ0

h − θmax)−
1
2
θ1
h
2
]
. (4.15)

This function defines an integral curve θ0
h = F1(θ1

h). Differentiating (4.15) with respect
to θ1

h,

dθ0
h

dθ1
h

=
θ1
h

umin − Ω2 cos θ0
h

, and
d2θ0

h

dθ1
h
2 =

1
umin − Ω2 cos θ0

h

−
θ1
h sin θ0

h(
umin − Ω2 cos θ0

h

)3 .
By evaluating the above derivatives at (θmax, 0), we have

dθ0
h

dθ1
h

(θmax, 0) = 0,
d2θ0

h

dθ1
h
2 (θmax, 0) =

1
umin − Ω2 cos θmax

< 0.

The inequality holds because umin ≤ 0 and −π
2 < θ0

h < π
2 . So the integral curve

θ0
h = F1(θ1

h) achieves a maximum at (θmax, 0), which implies the trajectory goes
inside C.

Case 2: The left boundary. This boundary can be expressed as:

C l
∆=
{
d(θ0

h, θ
1
h)|θ = θmin ∧ 0 < θ1

h < Θ+
}
,

where Θ+ ∆=
√

2 (−umin + Ω2 cos θmax) (θmax − θmin). The outer normal of C l is given
by n = (−1, 0), and we have n(θ0

h, θ
1
h) ·d(θ0

p, θ
1
p) = (−1, 0) · (dθ0

h, dθ
1
h) = −dθ0

h = −θ1
h <

0, for (θ0
p, θ

1
p) ∈ C l, which implies the trajectory will not leave C through C l.

Case 3: The lower boundary. The proof is symmetric to that of Case 1.

73



Case 4: The right boundary. The proof is symmetric to that of Case 2.

By combining all the above cases, we have shown that for any t′′ ∈ τ.dom, at any point on
the boundary of C d(θ0

h(t
′), θ1

h(t
′)) · n(θ0

h(t
′), θ1

h(t
′)) < 0. Therefore x′ is in C.

Theorem 4.22. All reachable states of A are contained in C.

Proof. For any reachable state x, if x d mode = usr then x ∈ R ⊆ C by Invariant 4.13.
Otherwise x d mode = sup, and there are two possibilities: if x d rt < da then, by Invariant
4.20, x ∈ Bxdrt ⊆ C. Else x d rt ≥ da and it follows from Invariant 4.21 that x ∈ C.

4.5 Summary

We presented techniques for verifying invariants (Lemma 4.2) and implementations (Theo-
rem 4.4) for a very general class of hybrid systems, namely, the class of SHIOAs. Invariant
properties can express safety and hence these techniques are useful for safety verification.
These techniques have the following features:

(a) Proofs decompose into independent discrete (transition condition) and the continuous
(trajectory condition) parts, thus enabling us to employ control-theoretic and deductive
techniques within the same proof.

(b) The proof style is purely assertional, that is, based on the current state of the sys-
tem, rather than complete executions. Experience from verifying complex distributed
systems indicate that assertional proofs less error prone and are easier to check.

(c) Where non-assertional proofs are necessary for proving timing dependent properties
(for example, Lemma 4.8), the proof follows naturally from the design of the system.

These proof techniques do require the user to supply the inductive properties and simula-
tion relations which typically require some understanding of the system behavior. Indeed,
techniques for automatically generating inductive invariants [Meg01, SSM04] could be used
in conjunction with our method for this purpose.

The case study presented in this chapter illustrates the generality of the proof techniques
in handling complexity that arises discrete transitions and the continuous dynamics. It also
illustrates the pattern of proof steps—application of Lemma 4.2, case analysis of actions
and state models—that is repeated in most invariant proofs. These patterns form the basis
for partially automating proofs in Chapter 6 through theorem provers strategies.

74



Chapter 5

Verifying Stability Properties

In this chapter we present a set of techniques for verifying stability properties of SHIOAs.
Informally, an SHIOA is said to be stable if it converges to an equilibrium state starting from
any state. The invariance proof techniques of Chapter 4 crucially rely on the assumption
that the starting states of the system satisfy the invariant, and therefore those techniques
are not directly applicable for verifying stability. Verifying stability of hybrid systems is
challenging because the stability of each individual state model does not necessarily imply
the stability of the whole automaton.

The techniques presented here rely on results from the literature on switched sys-
tems [Lib03, vdSS00]. In the switched system model, details of the discrete mechanisms,
namely, the preconditions and the effects of transitions, are neglected. Instead, an exogenous
switching signal brings about the switches between the different state models. Assuming
that the individual state models of a hybrid system are stable one can then characterize the
class of switching signals, based only on the rate of switches and not the particular sequence
of switches, that guarantee stability of the whole system. The notion of dwell time [Mor96]
and the more general average dwell time (ADT) [HM99] precisely define such restricted
classes of switching signals that guarantee stability of the whole system. Analogously, one
can develop sufficient conditions for verifying stability of SHIOAs: given an SHIOA A such
that the individual state models of A are stable, if the ADT of A is greater than a certain
constant (a function of the state model dynamics), then A is stable. However, application
of this criterion relies on checking that the ADT of A is greater than some constant—a
property that depends on the rate of mode switches over all executions of A. How does one
verify such ADT properties? In this chapter, we develop techniques for accomplishing this
verification task.

5.1 Assumptions

The techniques developed in this chapter rely on the following assumptions:

(1) Since we are concerned with internal stability of hybrid systems, we assume input/out-
put variables and input actions are absent, that is, U = Y = I = ∅.

(2) The collection of state models S of A is finite; the state models are indexed by a finite
index set I = {1, . . . ,m}, for some m ∈ N. The individual state models of A are Si,
i ∈ I, as in Definition 2.10. Further, suppose x a→ x′ is a discrete transition with
x ∈ Invi and x′ ∈ Invj , i, j ∈ I. If the transition changes the value of the continuous

75



variables then i 6= j. The last part is without loss of generality because the set of
invariants Invi, i ∈ I, can be redefined, possibly by adding new elements to I, such
that the required condition is met.

(3) For each state model Si, i ∈ I the collection of V-DAIs Fi is described by differential
equations in the vector notation of the form d(xc) = fi(xc), where fi is a well behaved
(locally Lipschitz) function, and xc is a real-valued vector of continuous variables of A.

(4) The individual state models are stable. That is, the trajectories defined by individual
state models converge to some equilibrium point in the state-space, say the origin,
without loss of generality. Formally, fi(0) = 0 for each i ∈ I. Here fi is the right-hand
side of the V -DAI Fi for the state model Si, and its argument is the zero vector.

Assumptions (3) and (4) together imply that the differential equations in the state models
have solutions defined globally in time. Formally, for each i ∈ I and x ∈ Invi, there exists a
trajectory τ starting from x that satisfies the V -DAI Fi and if τ.dom is finite then some local
action in LA is enabled at τ.lstate. Assumptions (2)–(4) are essential for the validity of the
average dwell time theorem of Hespanha and Morse (Theorem 5.2) on which our verification
techniques rely. Relaxing these assumptions and verifying more general sufficient conditions
for stability of SHIOAs is an avenue for future research.

5.2 Stability and Average Dwell Time

We adopt the standard stability definitions [Kha02] and state them in the language of
SHIOAs. We remind the reader that the shorthand notation α(t) denotes the valuation of
the state variables of an SHIOA A in the execution α at time t ∈ [0, α.ltime]. Formally, for
a closed execution α, α(t) ∆= α′.lstate, where α′ is the longest prefix of α with α′.ltime = t.

5.2.1 Stability Definitions

Stability is a property of the continuous variables of SHIOA A, with respect to the standard
Euclidean norm in Rn. The Euclidean norm of α(t), denoted by |α(t)|, is restricted to the
set of real-valued continuous variables. We say that a state x of A is within a ball of radius
δ about the origin, if the norm of the continuous variables at x is at most δ.

Definition 5.1. The origin is a stable equilibrium point of a SHIOA A, in the sense of
Lyapunov, if for every ε > 0, there exists a δ1 = δ1(ε) > 0, such that for every closed
execution α of A, |α(0)| ≤ δ1 implies that |α(t)| ≤ ε for all t, 0 ≤ t ≤ α.ltime. In this case,
we say that A is stable.

For stable A, the state can be bounded in an arbitrarily small ball of radius ε, by starting
the automaton from a state within a suitably chosen smaller ball of radius δ1.

Definition 5.2. An SHIOA A is asymptotically stable if it is stable and there exists δ2 > 0
so that for any execution fragment |α(0)| ≤ δ2 implies that α(t) → 0 as t → ∞. If the
above condition holds for all δ2 then A is globally asymptotically stable.

Assumption (3) ensures that all state models have well-defined global solutions and
therefore, any execution can be extended to ∞ A stable SHIOA is also asymptotically
stable if we can choose a ball of radius δ2, such that starting from any initial state within

76



the ball of radius δ2, as time goes to infinity, the state converges to the equilibrium state. For
general nonlinear hybrid systems, this convergence property alone does not imply stability
in the sense of Lyapunov. Global asymptotic stability implies that the above condition
holds for executions starting from any state.

Definition 5.3. An SHIOA A is said to be exponentially stable if there exist positive
constants δ, c, and λ such that all closed executions fragments with |α(0)| ≤ δ satisfy the
inequality |α(t)| ≤ c|α(0)|e−λt, for all t, 0 ≤ t ≤ α.ltime. If the above holds for all δ then
A is said to be globally exponentially stable.

In the above definitions, the constants are quantified prior to the executions, and hence,
these notions of stability are uniform over executions. All stability related discussions in this
thesis will be concerned with notions that are uniform in the above sense. We will employ
the term “uniform” in the more conventional sense to describe uniformity with respect to
the initial time of observation. Thus, uniform stability guarantees that the stability property
in question holds not just for all executions, but for any suffix of the executions, that is, for
all reachable execution fragments.

Definition 5.4. An SHIOA A is uniformly stable in the sense of Lyapunov, if for every
ε > 0 there exists a constant δ1 = δ1(ε) > 0, such that for any reachable closed execution
fragment α, |α(0)| ≤ δ1 implies that |α(t)| ≤ ε, for all t, 0 ≤ t ≤ α.ltime.

Definition 5.5. An SHIOA A is said to be uniformly asymptotically stable if it is uniformly
stable and there exists δ2 > 0, such that for every ε > 0 there exists a T > 0, such that for
any reachable execution fragment α,

|α(0)| ≤ δ2 ⇒ |α(t)| ≤ ε, ∀t ≥ T (5.1)

It is said to be globally uniformly asymptotically stable if the above holds for all δ2, with
T = T (δ2, ε).

Definition 5.6. An SHIOA A is uniformly exponentially stable if it is uniformly stable and
there exist δ, c, and λ, such that for any reachable closed execution fragment α, if |α(0)| ≤ δ
then |α(t)| ≤ c|α(0)|e−λt, for all 0 ≤ t ≤ α.ltime. A is globally uniformly exponentially
stable if the above holds for all δ with constant c and λ.

5.2.2 ADT Theorem of Heshpanha and Morse

It is well known that a switched system is stable if all the individual subsystems are stable
and the switching between state models is sufficiently slow, so as to allow the dissipation of
the transient effects after each switch. The dwell time [Mor96] and the more general average
dwell time [HM99] criteria define restricted classes of switching signals, based on switching
speeds, and one can conclude the stability of a system with respect to these restricted
classes.

Definition 5.7. Let A be an SHIOA with state models indexed by a finite set I. A discrete
transition x a→ x′ of A is said to be a mode switch if for some i, j ∈ I, i 6= j, x ∈ Invi and
x′ ∈ Invj . The set of mode switching transitions of A is denoted by M. Given an execution
fragment α of A, the number of mode switches over α is denoted by N(α).

A discrete transition is a mode switch if its pre- and post-states satisfy invariants of
different different state models. This implies that different sets of differential equations
guide the evolution of the continuous variables, before and after a mode switch.

77



Definition 5.8. Given a duration of time τa > 0, SHIOA A has Average Dwell Time
(ADT) τa if there exists a positive constant N0, such that for every reachable execution
fragment α,

N(α) ≤ N0 + α.ltime/τa, (5.2)

The number of extra switches of α with respect to τa is defined as Sτa(α) := N(α) −
α.ltime/τa.

Lemma 5.1. Suppose A is an SHIOA and τa > 0 is an average dwell time for A. Then,
any τ ′a that is 0 ≤ τ ′a < τa is also an average dwell time of A

Proof. Inequality (5.2) is satisfied if we replace τa with a smaller τ ′a.

Theorem 1 from [HM99], adapted to SHIOA, gives a sufficient condition for stability
based on average dwell time. Informally, it states that a hybrid system is stable if the discrete
switches are between modes which are individually stable, provided that the switches do
not occur too frequently on the average.

Theorem 5.2. Suppose there exist positive definite, continuously differentiable functions
Vi : Rn → Rn, for each i ∈ I, such that we have two positive numbers λ0 and µ, and two
strictly increasing continuous functions β1, β2 such that:

β1(|xc|) ≤ Vi(xc) ≤ β2(|xc|), ∀xc, ∀i ∈ I, (5.3)
∂Vi
∂xc

fi(xc) ≤ −2λ0Vi(xc), ∀xc, ∀i ∈ I, and (5.4)

Vi(x′c) ≤ µVj(xc), ∀x a→A x′, where i = x′ d mode and j = x d mode. (5.5)

Then, A is globally uniformly asymptotically stable if it has an ADT τa >
log µ
λ0

.

Its worth making a few remarks about this theorem. First of all, it is well-known that
if the state model Si, i ∈ I is globally asymptotically stable, then there exists a Lyapunov
function Vi that satisfies (5.3) and ∂Vi

∂xc
fi(xc) ≤ −2λiVi(xc), for appropriately chosen λi > 0.

As the index set I is finite a λ0 independent of i can be chosen such that for all i ∈ I,
Equation (5.4) holds. The third assumption, Equation 5.5, restricts the maximum increase
in the value of the current Lyapunov functions over any mode switch, by a factor of µ.

In [HM99] and [Lib03] this theorem is presented for the switched system model which
differs from the more general SHIOA model in two ways: (a) In the switched system model,
all variables are continuous except for the mode variable which determines the active state
model. In SHIOA, there are both discrete and continuous variables. (b) The (discrete) tran-
sitions of a switched system correspond to the switching signal changing the value of mode;
values of continuous variables remain unchanged over transitions. In SHIOAs, transitions
can change the value of continuous variables. For example, a stopwatch is typically mod-
eled as a continuous variable that is reset by discrete transitions. The proof of Theorem 5.2
still works for the SHIOA model because for this analysis, it suffices to consider only those
discrete transitions of SHIOAs that are also mode switches. Assumption (2) guarantees
that non-mode switching transitions do not change the value of the continuous variables.
Secondly, resetting continuous variables change the value of the Lyapunov functions but
hypothesis 5.5 guarantees that the change is bounded by a factor of µ.

78



Proof sketch for Theorem 5.2. This proof is adapted from the proof of Theorem 3.2
of [Lib03] which constructs an exponentially decaying bound on the Lyapunov functions
of each mode along any execution. Suppose α is any execution of A. Let T = α.ltime and
t1, . . . , tN be instants of mode switches in α. We will find an upper-bound on the value
of Vα(T )dmode(α(T )), where α(t) d mode ∆= i, i ∈ I if and only if α(t) ∈ Invi. We define
a function W (t) ∆= e2λ0tVα(t)dmode(α(t)). Using the fact that W is non-increasing between
mode switches and Equation 5.5 it can be shown that W (ti+1) ≤ µW (ti). Iterating this
inequality N(α) times we get W (T ) ≤ µN(α)W (0), that is

e2λ0TVα(T )dmode(α(T )) ≤ µN (α)Vα(0)dmode(α(0)),

Vα(T )dmode(α(T )) ≤ e−2λ0T+N(α) log µVα(0)dmode(α(0))

If α has average dwell time τa, then

Vα(T )dmode(α(T )) ≤ e−2λ0T+(N0+ T
τa

) log µVα(0)dmode(α(0))

≤ eN0 log µe(
log µ
τa

−2λ0)TVα(0)dmode(α(0)).

Now, if τa > log µ
2λ then Vα(T )dmode(α(T )) converges to 0 as T → 0. Then from (5.3) it follows

that A is globally asymptotically stable.

5.3 An Overview

A large average dwell time means that the system spends enough time in each mode, so as
to dissipate the transient energy gained through mode switches. This itself is not sufficient
for stability; in addition, the individual modes of the automaton must also be stable. In
fact, the problem of proving the stability of a hybrid system can be broken down into (a)
finding Lyapunov functions for the individual modes, and (b) checking the appropriate ADT
property. In this chapter, we assume that a solution to part (a)—a set of Lyapunov functions
for the individual modes—is known from existing techniques from systems theory [Kha02],
and we present methods for accomplishing (b).

ADT properties have proved to be helpful in analyzing different forms of stability in
various contexts other than those we study in this chapter. For example, stability of systems
with mixed stable and unstable state models [ZHYM00], input-to-state stability in the
presence of inputs [VCL06], and stochastic stability of randomly switched systems [CL06].
In many settings, the question of whether a system have a certain ADT is natural and
interesting independent of its connection to stability. For example, in queuing systems the
ADT properties are used to characterize burstiness of traffic [Cru91]. Our ADT verification
techniques are likely to be valuable in these other contexts as well.

In general, it is hard to prove properties like the ADT property which are quantified
over all the executions of an automaton. In Section 2.1, we define what it means for a given
SHIOA to be equivalent to another SHIOA with respect to ADT. In order to prove such a
relationship between a pair of SHIOAs, we introduce switching simulation relations, much
like ordinary simulation relations of Section 4.3. This provides us a method for abstracting
A with respect to ADT-properties. In Sections 5.6.2 and 5.6.5 we apply this abstraction

79



technique for verifying ADT properties
In Section 5.5, we present our first method for ADT verification which relies on checking

invariant properties. In order to check if automaton A has ADT τa, we transform it to a
new automaton Scount(A, τa), such that A has ADT τa if and only if Scount(A, τa) has a
particular invariant property I(τa). This enables us to prove ADT properties using the tools
and techniques available for proving invariants. As discussed in Section 4.2, it is known that
for certain classes SHIOAs, such as rectangular, initialized SHIOA and o-minimal hybrid
automata, the reachability problem is decidable and therefore invariants can be checked
automatically. For these classes, this invariant-based technique yields an automatic method
for verifying ADT properties. For SHIOAs that lie outside these decidable classes, the
invariant proof technique of Chapter 4 can be applied to verify ADT.

The second method, presented in Section 5.6, is based on a complementary approach:
we attempt to find an execution of the automaton that violates the ADT property. Failure
to find such a counterexample execution indicates that the ADT property is satisfied by
the SHIOA. The search for a counterexample execution is formulated as an optimization
problem. For checking if automaton A has ADT τa, we formulate and solve an optimization
problem OPT(τa). From the solution of OPT(τa) we either get a counterexample execution
fragment of A that violates the ADT property τa, or else we get a proof that no such
counterexample exists, and that A has ADT τa. We show that for certain classes of SHIOAs
OPT(τa) can indeed be formulated and solved using standard mathematical programming
techniques.

5.4 ADT Equivalence

In order to check whether τa is an ADT for a given SHIOA A, it is often easier to check the
same ADT property for another, more abstract, SHIOA B that is “equivalent” to A with
respect to switching behavior. This notion of equivalence is formalized as follows.

Definition 5.9. Given SHIOAs A and B, if for all τa > 0, τa is an ADT for B implies
that τa is an ADT for A, then we say that A switches slower than B and write this as
A ≤switch B. If B ≤switch A and A ≤switch B then we say A and B are ADT-equivalent.

We propose an inductive method for proving ADT-equivalence. The key idea is to use
a new variety of forward simulation relation that we encountered in Section 4.3, in the
context of verification of trace inclusions. Here, instead of the trace of an execution, we
are concerned with the number of mode switches that occur and the amount of time that
elapses over an execution.

Definition 5.10. Consider SHIOAs A and B. A switching simulation relation from A to
B is a relation R ⊆ QA×QB satisfying the following conditions, for all states x and y of A
and B, respectively:

1. (Start condition) If x ∈ ΘA then there exists a state y ∈ ΘB such that x R y.

2. (Transition condition) If xR y and α is an execution fragment of A with α.fstate = x
and consisting of one single action surrounded by two point trajectories, then B has
a closed execution fragment β, such that β.fstate = y, N(β) ≥ 1, β.ltime = 0, and
α.lstate R β.lstate.

80



3. (Trajectory condition) If xR y and α is an execution fragment of A with α.fstate = x
and consisting of a single closed trajectory τ of a particular state model S, then B
has a closed execution fragment β, such that β.fstate = y, β.ltime ≤ α.ltime, and
α.lstate R β.lstate.

Note that SHIOAs A and B are not necessarily comparable.

Lemma 5.3. Let A and B be SHIOAs, and let R be a switching simulation relation from
A to B, then for all τa > 0 and for every execution α of A, there exists an execution β of
B such that Sτa(α) ≤ Sτa(β).

Proof. We fix τa and α and construct an execution of B that has more extra switches than
α. Let α = τ0a1τ1a2τ2 . . . and let α.fstate = x. We consider cases:

Case 1: α is an infinite sequence. We can write α as an infinite concatenation α0
_ α1

_

α2 . . ., in which the execution fragments αi with i even consist of a trajectory only, and
the execution fragments αi with i odd consist of a single discrete transition surrounded
by two point trajectories.

We define inductively a sequence β0β1β2 . . . of closed execution fragments of B such
that x R β0.fstate, β0.fstate ∈ ΘB, and for all i, βi.lstate = βi+1.fstate, αi.lstate
R βi.lstate, and Sτa(β) ≥ Sτa(α). Property 1 of Definition 5.10 ensures that there
exists such a β0.fstate because α0.fstate ∈ ΘA. We use Property 3 of Definition 5.10
for the construction of the βi’s with i even. This gives us βi.ltime ≤ αi.ltime for
every even i. We use Property 2 of Definition 5.10 for the construction of the βi’s
with i odd. This gives us βi.ltime = αi.ltime and N(βi) ≥ N(αi) for every odd
i. Let β = β0

_ β1
_ β2 . . .. Since β0.fstate ∈ ΘB, β is an execution for B. Since

β.ltime ≤ α.ltime and N(β) ≥ N(α), the required property follows.

Case 2: α is a finite sequence ending with a closed trajectory. Similar to first case.

Case 3: α is a finite sequence ending with an open trajectory. Similar to first case except
that the final open trajectory τ of α is constructed using a concatenation of infinitely
many closed trajectories of A such that τ = τ0

_ τ1
_ . . .. Then, working recursively,

we construct a sequence β0β1 . . . of closed execution fragments of B such that for
each i, τi.lstateRβi.lstate, βi.lstate = βi+1.fstate, and βi.ltime ≤ τi.ltime. This
construction uses induction on i, using Property 3 of Definition 5.10 in the induction
step. Now, let β = β0

_ β1
_ . . .. Clearly, β is an execution fragment of B and

τ.fstateRβ.fstate and β.ltime ≤ τ.ltime.

Theorem 5.4. If A and B are SHIOAs and R is a switching simulation relation from A
to B, then A ≤switch B.

Proof. We fix a τa. Given N0 such that for every execution β of B, Sτa(β) ≤ N0, it suffices
to show that for every execution α of A, Sτa(α) ≤ N0. We fix α. From Lemma 5.3 we know
that there exists a β such that Sτa(β) ≥ Sτa(α), from which the result follows.

Corollary 5.5. Let A and B be SHIOAs. Suppose R1 and R2 be a switching forward
simulation relation from A to B and from B to A, respectively. Then, A and B are ADT-
equivalent.

81



Switching simulation relations and Corollary 5.5 give us an inductive method for proving
that any given pair of SHIOA are equivalent with respect to switching speed, that is, average
dwell time. The theorem prover strategies for proving forward simulations (see, Chapter 6)
can be used to partially automate switching simulation proofs. Even in such automated
proofs the relation R has to be instantiated by the user which typically requires creativity
and understanding of the SHIOAs in question ( see case studies in Sections 5.6.2 and 5.6.5).
An interesting related question (not addressed in this thesis) is computation of the switching
simulation relation R from the specifications of A and B.

5.5 Verifying ADT: Invariant approach

In this section we present a method for verifying ADT of SHIOAs which relies on checking
invariants. Specifically, in sections 5.5.2 and 5.5.3 we use this method to verify ADT of a
simple leaking gas-burner and a scale-independent hysteresis switch.

5.5.1 Transformations for ADT verification

First, we define a transformation Scount(A, τa), τa > 0, which converts a given SHIOA A to
another SHIOA such that the latter keeps track of the number of extra switches, with respect
to τa, in any execution. Informally, in Scount(A, τa) the counter variable q increments every
time there is a mode switch of A, and the timer y reduces the count by 1 in every τa time
by triggering the decrement action. Given SHIOA A = (X,Y, U,Q,Θ,H,O, I,D,S ) and
τa > 0, Scount(A, τa) = (X1, Y1, U1, Q1,Θ1,H1, O1, I1,D1,S1) is defined as follows:

(a) X1 = X ∪ {q, y}, where q is a discrete variable of type Z and y is a continuous variable
of type R≥0. Y1 = Y and Z1 = Z.

(b) Θ1 = {(x, q, y) | x ∈ Θ, q = 0, y = 0}

(c) H1 = H ∪ {decrement}, I1 = I, and O1 = O.

(d) For each x,x′ ∈ Q, q, q′ ∈ Z, y, y′ ∈ R≥0, a ∈ A∪{decrement}, ((x, q, y), a, (x′, q′, y′)) ∈
D1, iff one of the following conditions hold:

(1) (x, a,x′) ∈ D \M, q′ = q, and y′ = y,

(2) (x, a,x′) ∈M, q′ = q + 1, and y′ = y,

(3) a = decrement, x′ = x, q′ = q − 1, y = τa, and y′ = 0.

Recall that M⊆ D is the set of mode switches of A.

(e) S1 is obtained by changing each state model S to S1 as follows: For state model S =
(X,Y, U, F, Inv, Stop) ∈ S , the corresponding state model S1

∆= (X,Y, U, F1, Inv, Stop1),
where F1 is obtained by adding the differential equation d(y) = 1 to the collection of
V -DAIs F , and Stop1 = Stop ∨ (y = τa).

The above definition assumes that q, y /∈ V and decrement /∈ A. If this is not the case,
then the new variables and action are renamed appropriately. For any state model S1 of
Scount(A, τa), for every trajectory τ ∈ trajs(S1), the restriction τ ↓ X is a trajectory of
the corresponding state model of A. Further, from Stop1 and Definition 2.11, we know that
along τ , d(y) = 1 and (τ ↓ y)(t) = τa implies τ.ltime = t.

82



Lemma 5.6. If τa is not an ADT for automaton A, then for every N0 ∈ N there exists a
closed execution α of A, such that N(α) > N0 + α.ltime/τa.

Proof. Let us fix N0. Automaton A does not have ADT τa, so we know that there exists an
execution α of A such that N(α) > N0 + α.ltime/τa. If α is infinite, then there is a closed
prefix of α that violates (5.2). If α is finite and open, then the closed prefix of α excluding
the last trajectory of α violates (5.2).

Theorem 5.7. Given SHIOA A and τa > 0, the following statements are equivalent:

(a) τa is an ADT of A,

(b) all closed executions of A satisfy Equation (5.2),

(c) there exists N0 ∈ N such that q ≤ N0 is an invariant for Scount(A, τa).

Proof. Equivalence of (a) and (b) follow from Definition 5.8 and Lemma 5.6.

(b) ⇒ (c) : Consider a reachable state x′ of Scount(A, τa). There exists a closed execution
α′ such that x′ = α′.lstate. Let α be an execution of A “corresponding” to α′. Since
N(α) ≤ N0 + bα.timeτa

c implies N(α′) ≤ N0 + bα′.ltimeτa
c, it follows that x′ d q ≤ N0.

(c) ⇒ (b) : Consider a closed execution α of A. Let α′ be the “corresponding” execution of
Scount(A, τa). Let x′ = α.lstate, from the invariant we know that x′ d q ≤ N0. From
construction of Scount(A, τa) we know that N(α) = N(α′) and α′.ltime = α.ltime
and therefore x′ d q = N(α′)− bα′.ltimeτa

c. It follows that N(α)− α.ltime
τa

≤ N0.

In Equation (5.2), the number N0 can be arbitrary. Thus to show that a given τa is an
average dwell time of an automaton, we need to show that q is bounded uniformly over all
executions. For any closed execution α, α.lstate d q equals bStaua(α)c. Thus, the invariant
q ≤ N0, really corresponds to (5.2).

The transformation Scount(, ) is acceptable for asymptotic stability, but it does not
guarantee uniform stability. For uniform stability we want all reachable execution fragments
of A to satisfy Equation (5.2). Consider an execution α of A such that α = α0

_ α1, where
α0.ltime = t1, and α.ltime = t2. Let N(α1) and Sτa(α1) denote the number of mode
switches and the number of extra mode switches (w.r.t. τa) over the execution fragment
α1. For α1 to satisfy (5.2), we require that

N(α1) ≤ N0 +
t2 − t1
τa

, or Sτa(α1) ≤ N0,

which is not guaranteed by the invariant q ≤ N0. This is because it is possible for q to
become negative and then rapidly return to zero, all the time being less than N0. For
uniform stability we need to show that the total change in q between any two reachable
states is bounded by N0. So, we introduce an additional variable qmin which stores the
magnitude of the smallest value ever attained by q. We call the resulting transformation
Smin(, ). Instead of introducing the new variable qmin we could restrict the variable q to
have only non-negative values, to obtain uniform stability1.

1We thank Andy Teel for suggesting this alternative formulation.

83



Theorem 5.8. Given SHIOA A and τa > 0 the following two statements are equivalent:

(a) all reachable execution fragments of A have ADT τa

(b) q − qmin ≤ N0 is an invariant for Smin(A, τa).

Proof. According to Lemma 5.6 it suffices to consider closed execution fragments only.

(b) ⇒ (a) : Consider a reachable closed execution fragment α of A. Since α is a reachable
execution fragment, there exists an execution α0 such that α.fstate = α0.lstate. Let
β = α0

_α, t1 = α0.ltime and t2 = β.ltime. Let α′ and β′ be the execution (fragment)
of Smin(A, τa) “corresponding” to α and β of A. Suffices to show that the number
of extra switches over α is bounded by N0. Since the counter q keeps track of the
number of extra switches, in turn, it suffices to show that β(t2) d q− β(t1) d q1 ≤ N0.
Based on whether or not qmin changes over the interval over the execution fragment
α we consider two cases:

Case 1: qmin does not change over α. Then, β′(t1) d qmin = β′(t2) d qmin = β′(tmin) d
q, for some tmin < t1.

β′(t2) d q − β′(t1) d q = [β′(t2) d q − β′(tmin) d q]− [β′(t1) d q − β′(tmin) d q]
≤ [β′(t2) d q − β′(tmin) d q] [as the second term is positive.]
≤ [β′(t2) d q − β′(t2) d qmin] ≤ N0,

because β′(t2) satisfies the invariant.

Case 2: qmin changes in α. Then, there exists some tmin ∈ [t1, t2], such that β′(t2) d
qmin = β′(tmin) d q < β′(t1) d qmin, and

β′(t2) d q − β′(t1) d q = [β′(t2) d q − β′(tmin) d q] + [β′(tmin) d q − β′(t1) d q]
≤ [β′(t2) d q − β′(tmin) d q] [as the second term is negative.]
≤ [β′(t2) d q − β′(t2) d qmin] ≤ N0,

because β′(t2) satisfies the invariant.

(a) ⇒ (b) : Let x′ be a reachable state, and ζ ′ be a closed execution of Smin(A, τa), such
that x′ = ζ ′.lstate. Let ζ be the “corresponding” execution of A, and tmin be the
intermediate point where q attains its minimal value over ξ. That is, ζ ′(t) d qmin =
ζ ′(tmin) d q. Since ζ is a reachable execution fragment of A, it satisfies Equation (5.2),
and we have: N(t, tmin) ≤ N0 + t−tmin

τa
. Rewriting,

N(t, 0) − N(tmin, 0) ≤ N0 +
t− tmin
τa[

ζ ′(t) d q − ζ ′(0) d q +
t

τa

]
−

[
ζ ′(tmin) d q − ζ ′(0) d q +

tmin
τa

]
≤ N0 +

t− tmin
τa

,[
ζ ′(t) d q − ζ ′(0) d q

]
−

[
ζ ′(tmin) d q − ζ ′(0) d q

]
≤ N0.

Thus, we obtain ζ ′(t) d q − ζ ′(tmin) d q ≤ N0. By assumption, ζ ′(tmin) d q = ζ ′(t) d
qmin, and we get ζ ′(t) d q − ζ ′(t) d qmin ≤ N0, that is, x′ d q − x′ d qmin ≤ N0.

84



The above transformations yield a method for verifying ADT properties of SHIOAs,
which are properties of executions, by checking invariant properties of transformed SH-
IOAs. Several tools and techniques exist for checking invariant properties of hybrid sys-
tems. Several classes of linear and rectangular hybrid systems have been identified that are
amenable to automatic reachable set computation. We refer the reader back to Section 4.1
for an overview. For these classes, invariant properties and therefore ADT properties can
also be verified automatically using the software tools, such as HyTech [HHWT97] and
PHAVer [Fre05], that have been developed for computing reachable sets. In order to verify
ADT properties of hybrid systems that fall outside these classes, the corresponding invari-
ant properties can be verified using the deductive techniques2 of Chapter 4. In the next
two Sections, we illustrate invariant-based ADT verification for representative systems from
both these classes.

5.5.2 Case Study: Leaking Gas-burner

Our first case illustrate this with the toy leaking gas-burner system from [AHH93]. The
Burner SHIOA (Figure 5-1) specifies a leaking gas-burner. The system operates in two
modes, namely, normal and leaking. In each mode the reset timer x increases at the same
rate as real-time. The Burner switches between these two modes according to the following
rules: Every leak continues for D2 seconds after which it is repaired and the system returns
to the normal mode; no leak occurs within the nextD1 seconds of the previous leak; D2 < D1.
Mode switches are brought about by the leak and repair actions. Indeed, it is easy to see
that the ADT of this SHIOA is D1+D2

2 .

automaton Burner(D1, D2 : Real) where D2 < D1

type
Mode = Enumeration [normal, leaking]

signature
internal leak, repair

variables
internal mode : Mode := normal;
x : Real := 0; z : Real;

transitions
internal leak

pre mode = normal ∧x ≥ D1;
eff mode := leaking; x := 0;

internal repair
pre mode = leaking ∧x = D2;
eff mode := leaking; x := 0;

trajectories
trajdef normal

evolve d(x) = 1;

trajdef leaking
invariant x ≤ D2;
stop when x = D2;
evolve d(x) = 1;

Figure 5-1: Leaking gas burner.

In order to check whether a given τa > 0 is an average dwell time for Burner we derive
the transformed automaton B = Scount(Burner, τa). The resulting SHIOA B is rectangular
and initialized and therefore amenable to automatic reachability analysis though existing
model checking tools. We used the HyTech tool [HHWT97] to check if the q ≤ N0 is an
invariant property of the transformed automaton, for particular choice of N0. For D1 =
20, D2 = 4, N0 = 1000 and for different values of τa, we check if q ≤ N0 is an invariant for
the transformed Burner. HyTech tells us that q ≤ N0 is indeed an invariant for τa ≤ 12. It
follows that the ADT of Burner with the above parameters is 12.

2In Chapter 6 we shall see how invariant proofs in general can be partially automated using mechanical
theorem provers.

85



5.5.3 Case Study: Scale-independent Hysteresis Switch

We verify the ADT property of a scale-independent hysteresis switch unit which is a sub-
system of an adaptive supervisory control system taken from [HLM03] (also Chapter 6
of [Lib03]). We will use the invariant-based approach for verifying stability. The proof
of the final invariant, as we shall see shortly, uses a sequence of related, albeit simpler,
invariants. The invariant proof technique of Chapter 4 is used to prove these intermediate
invariants. The ADT property of this switching logic unit guarantees stability of the overall
supervisory control system. The above references also present a proof of this property by a
different approach.

Let I = {1, . . . ,m}, m ∈ N, be the index set for for a family of controllers. An adaptive
supervisory controller consists of a family of candidate controllers ui, i ∈ I, which correspond
to the parametric uncertainty range of the plant in a suitable way. Such a controller
structure is particularly useful when the parametric uncertainty is so large that robust
control design tools are not applicable. The supervisory controller operates in conjunction
with a set of on-line estimators that provide monitoring signals µi, i ∈ I. Intuitively,
smallness of µi indicates high likelihood that i is the actual parameter value. Based on
these signals, the switching logic unit changes the variable mode, which in turn determines
the controller to be applied to the plant. Now, if the supervisory controller switches to ui
whenever µi is the smallest monitoring signal, then there will be chattering or very rapid
switching between the controllers, leading to instability. This is avoided by implementing
a scale-independent hysteresis based switching logic.

System Specification

The HystSwitch SHIOA (Figure 5-2) specifies a scale-independent hysteresis switch where
the monitoring signals are generated by differential equations of the form, d(µ) = fi(µ),
where i ∈ I, and µ is the vector of monitoring signals. The formal parameters of HystSwitch
include the initial mode i0, the hysteresis constant h, and a constant C0 which bounds
the initial value of the monitoring signals. The only actions of HystSwitch are the switch
actions which bring about the switches between the modes. Conceptually, the mode i, i ∈ I,
corresponds to the ith controller being applied to the plant—although this is not captured
in HystSwitch. The variable µ models an array of m real-valued monitoring signals, indexed
by I. We shall denote the ith monitoring signal µ[i] as µi. All the monitoring signals are
initialized to be greater then C0. The transitions of HystSwitch implement the following
switching logic: at an instant of time whenmode = i for some i ∈ {1, . . . ,m}, if there exists a
j ∈ {1, . . . ,m} such that µj(1+h) ≤ µi, then the switching logic sets mode = j. HystSwitch
has a collection of state models parameterized by I. The state model mode(i), i ∈ I,
describes the evolution of the monitoring signals in mode i. The evolve clause states a
collection of differential equations in the vector notation (µ is a m-vector, fi is a vector of
m functions).

Since the evolution of the monitoring signals are specified in terms of nonlinear differ-
ential equations, they are not initialized with every mode switch and there are arbitrary
number of modes, we cannot apply automatic reachability analysis to HystSwitch. Instead,
we transform automaton HystSwitch to Scount(HystSwitch, τa) and employ the techniques
of Chapter 4 to prove a sequence of invariants. These invariants together with Theorem 5.7
establish that the ADT of HystSwitch is at least τa = log(1+h)

mλ .
For the ease of analysis we introduce several history variables to Scount(HystSwitch, τa).

86



1 automaton HystSwitch(I : type, i0 : I, h : Real, C0 : Real) where h,C0 > 0
signature

3 internal switch(i, j : I) where i 6= j

5 variables
internal mode : I := i0; µ : Array[I, Real];

7 initially ∀i : I, µ[i] ≥ C0

9

11transitions
internal switch(i, j) where i 6= j

13pre mode = i ∧ (1 + h)µ[j] ≤ µ[i]
eff mode := j

15

trajectories
17trajdef mode(i : I)

invariant mode = i;
19stop when ∃j : I, (1 + h)µ[j] ≤ µ[i];

evolve d(µ) = fi(µ);

Figure 5-2: Scale-independent hysteresis switch.

The result is the automaton TRHSwitch of Figure 5-3. Lines 8, lines 24–26, and lines 32–33
correspond to the transformation of Section 5.5.1. Note that the timer y is not reset to
0 after every decrement and it records the total time elapsed. The following additional
variables are introduced: (1) c is a Nat valued variable that counts the total number of
mode switches, (2) c[] is an array of m numbers indexed by I; c[i] counts the number of
switches to mode i, (3) µ[, ] is a 2-dimensional array of R∪{⊥} indexed by I and Nat; µ[i, r]
stores the value of µ[i] at the instant when mode becomes equal to i for the rth time. (4) k
is a Nat valued variable that measures the time of occurrence of the next decrement action
in multiples of τa. Initially, µ[i, 0] = µ[i], for all i ∈ I, µ[i0, 1] = µ[i0], where i0 ∈ I is the
initial mode; the rest of the µ[i, r]s are set to ⊥. In the remainder of this section, we shall
denote µ[i, r] and c[i] by µri and ci, respectively.

1 automaton TRHSwitch(I : type, i0 : I, h, τa, C0 : Real) where h,C0, τa > 0
signature

3 internal switch(i, j : I) where i 6= j
internal decrement

5

variables
7 internal mode : I := i0; µ : Array[I, Real];

q : Int := 0; y : Real := 0;
9 c : Nat := 0; k : Nat := 0;

µ : Array[I, Nat, Null[Real]]; c : Array[I, Nat]
11 initially ∀i : I, µ[i] ≥ C0,

∀i : I, (i = i0 ∧ c[i] = 1) ∨ (i 6= i0 ∧ c[i] = 0)
13 ∀i : I, k : Nat, (k = 0 ∧ µ[i, 0] = µ[i])

∨(k 6= 0 ∧ µ[i, k] = ⊥),
15 let µmin = mini:I{µ[i]}

16

18transitions
internal switch(i, j : I) where i 6= j

20pre mode = i ∧ (1 + h)µ[j] ≤ µ[i];
eff mode := j; q := q + 1;

22c := c+ 1; c[j] := c[j] + 1;µ[j, cj ] = µ[j];

24internal decrement
pre y = (k + 1)τa

26effect q := q − 1; k := k + 1;

28trajectories
trajdef mode(i : I)

30invariant mode = i;
stop when ∃j : I, (1 + h)µ[j] ≤ µ[i]

32∨ y = (k + 1)τa;
evolve d(µ) = fi(µ); d(y) = 1;

Figure 5-3: Transformed hysteresis switch.

Analysis of Scale-independent Hysteresis Switch

Our analysis does not depend on the exact nature of the differential equations specified by
the fi functions. However, we require the monitoring signals for each µi to be continuous,
monotonically nondecreasing, satisfying the following lower and upper bounds:

µi∗(t) ≤ C1 + C2e
λt, for some i∗ ∈ I (5.6)

87



where λ,C1 and C2 are positive constants. For simplicity of presentation, we prove the in-
variants required for asymptotic stability, and not uniform asymptotic stability. Accordingly
the average dwell time property we get is over executions and not over execution fragments
of the automaton. The first two invariants state some basic properties of TRHSwitch and
they follow from straightforward applications of Lemma 4.2.

Invariant 5.9. q ≤ c− y
τa

+ 1.

Invariant 5.10. For all i, j ∈ I, if mode = j then µj ≤ (1 + h)µi, in addition if cj > 0 and
yj = 0 then µj ≤ µi.

Invariant 5.11. For all i ∈ I, ci ≥ 2 ⇒ µcii ≥ (1 + h)µci−1
i .

Proof. Fix i ∈ I. The proof is using the induction schema laid out in Lemma 4.2. The
starting condition holds vacuously because in all start states ci ≤ 1. Since the invariant
involves only discrete variables, we have to check the transition conditions alone. Suppose
x a→ x′, where a = switch(j, i), x d mode = j, and x′ d ci = r + 1. That is, action
a is the (r + 1)st switch to mode i. From the code of the switch action we know that
(1 + h)(x d µi) = x d µj . It follows that

x′ d µr+1
i = x′ d µi = (1 + h)(x′ d µj) (5.7)

Let x′′ be the post-state of the transition which led to the rth switch to mode i. Then, From
the first part of Invariant 5.10, (1 + h)(x′′ d µj) ≥ x′′ d µi = x′′ d µri . From monotonicity
of µi, x′ d µi ≥ x′′ d µi. Since x′′ d µri = x′ d µri (no other switches to mode i in between),
we get x′ d µj ≥ x′ d µri . Combining this last inequality with Equation (5.7) we get,
x′ d µr+1

i ≥ (1 + h)(x′ d µri ).

Now we prove the main invariant, which states that for a particular choice of τa, the
value of the variable q is bounded by some constant.

Invariant 5.12. Let τa = log(1+h)
λm and N0 = 2+m+ m

log(1+h) log
(
C1+C2
C0

)
. In any reachable

state of TRHSwitch, q ≤ N0.

Proof. Consider any reachable state x. From the code of HystSwitch we observe that, for
every mode switch brought about by switch(j, i), i, j ∈ I, both c and ci are incremented
by 1. If the total number of mode switches upto x, x d c, is less than m then the result
follows immediately from Invariant 5.9. Otherwise, x d c ≥ m and there must be some
j ∈ I, such that mode j is visited more than dxdc−1

m e times. That is, there exists j ∈ I,
such that x d cj ≥ dxdc−1

m e. Applying Invariant 5.11, we deduce that there exists j ∈ I such

that x d µcjj ≥ (1 + h)d
xdc−1

m
e−1(x d µ1

j ). Taking logarithm and rearranging we have,

x d c ≤ 1 +m+
m

log(1 + h)
log

(
x d µcjj
x d µ1

j

)
.

Let x′ be the post state of the transition corresponding to the cthj switch to mode j. Then,
x d µcjj = x′ d µj . From the second part of Invariant 5.10 and monotonicity of the monitoring
signals, it follows that, for all k ∈ I, x d µcjj = x′ d µcjj ≤ x′ d µk ≤ x d µk. It follows that,

88



for all k ∈ I,

x d c ≤ 1 +m+
m

log(1 + h)
log

(
x d µk
x d µ1

j

)
.

Form monotonicity and initialization of the monitoring signals, µ1
j ≥ µ0

j ≥ C0. Therefore,
for all k ∈ I,

x d c ≤ 1 +m+
m

log(1 + h)
log
(

x d µk
C0

)
.

≤ 1 +m+
m

log(1 + h)
log

(
C1 + C2e

λ (xdy)

C0

)
, replacing k with i∗ of (5.6)

≤ 1 +m+
m

log(1 + h)
log
(
C1 + C2

C0

)
+
λm (x d y)
log(1 + h)

Using Invariant 5.9, and putting τa = log(1+h)
λm , we get the result.

From the above invariant and Theorem 5.7 it is established that HystSwitch has an
average dwell time of at least log(1+h)

λm . The following property of the switch is a consequence
of the ADT property and the assumptions on the monitoring signals, and it states the
desirable property in terms of switches between controllers.

Theorem 5.13. If there exists an index i ∈ I such that the monitoring signal µi is bounded
then the the switching between controllers stop in finite time at some index j ∈ I and µj is
bounded.

To ensure stability of the overall supervisory control system, the parameters h and λ
must be such that this average dwell time satisfies the inequality of Theorem 5.2.

5.6 Verifying ADT: Optimization-based Approach

In this section we develop a second method for verifying ADT properties. From Defini-
tion 5.8 it follows that τa > 0 is not an ADT of a given SHIOA A if and only if, for every
N0 > 0 there exists a reachable execution fragment α of A such that Sτa(α) > N0. If we
solve the following optimization problem:

OPT(τa) : α∗ ∈ arg max
α∈ExecsA

Sτa(α),

and the optimal value Sτa(α∗) turns out to be bounded, then we can conclude that A has
ADT τa. Otherwise, if Sτa(α∗) is unbounded then we can conclude that τa is not an ADT
for A. In fact, any execution α that gives an unbounded value of OPT(τa) would serve as
a counterexample execution violating the average dwell time property. The optimization
problem OPT(τa), however, may not be directly solvable because, among other things, the
executions of A may not have finite descriptions. In the remainder of this chapter we study
particular classes of SHIOA for which OPT(τa) can be formulated and solved efficiently.

89



5.6.1 One-clock Initialized SHIOA

Recall the definition of initialized SHIOAs from Section 2.15. Here we consider a special
class of initialized SHIOA, called one-clock initialized SHIOA. As the name suggests, such
automata have a single clock variable which is reset at every mode switch. Clearly, reacha-
bility is decidable for one-clock initialized SHIOAs and therefore, we can apply the invariant
based technique of Section 5.5 and model-checking to automatically verify ADT properties.
Yet we apply our optimization-based ADT verification technique to one-clock initialized
SHIOAs because, as we shall see shortly, OPT(τa) can be solved efficiently using classical
graph algorithms for this class. In Section 5.6.3, we consider the case of general initialized
SHIOAs.

A weighted directed graph uniquely defines a one-clock initialized SHIOA. Consider a
directed graph G = (V, E , w, e0), where (1) V is a finite set of vertices, (2) E ⊆ V × V is
a set of directed edges, (3) w : E → R≥0 is a cost function for the edges, and (4) e0 ∈ E
is a special start edge. The cost of a path in G is the sum of the costs of the edges in the
path. Given the graph G, the corresponding one-clock initialized SHIOA Aut(G) is specified
by the HIOA -like code in Figure 5-4. The source and the target vertices of an edge e are
denoted by e[1] and e[2], respectively.

automaton Aut(G) where G = (V, E ⊆ V × V, w : E → R≥0, e0 ∈ E)
signature

internal switch(e, e′ : E) where e 6= e′

variables
internal mode : E := e0; x : Real := 0;

transitions
internal switch(e, e′)

pre mode = e ∧ e[2] = e′[1] ∧x = w(e);
eff mode := e′; x := 0

trajectories
trajdef edge(e : E)

invariant mode = e ∧x ≤ w(mode);
stop when x = w(mode);
evolve d(x) = 1;

Figure 5-4: One-clock initialized SHIOA Aut(G) defined by directed graph G.

Intuitively, the state of Aut(G) captures the motion of a particle moving with unit speed
along the edges of the graph G. When the particle in on edge e, its mode is said to be e.
The value of the state variable x is the distance of the particle from the source vertex of
its current mode. A switch from mode e to mode e′ corresponds to the particle arriving at
vertex e[2] via edge e, and departing on edge e′. Within edge e the particle moves at unit
speed from e[1], where x = 0 to e[2], where x = w(e).

The next theorem implies that in order to search for an execution of Aut(G) that max-
imizes OPT(τa), it is necessary and sufficient to search over the space of the cycles of G.

Theorem 5.14. Consider τa > 0 and a one-clock initialized SHIOA Aut(G). OPT(τa) for
Aut(G) is bounded if and only if for all m > 1, the cost of any reachable cycle of G with m
segments is at least mτa.

Proof. It is easy to see that if there is a cycle of G, β = v0e1v1 . . . emvm, such that the cost∑m
i=1w(ei) < mτa, then OPT(τa) is unbounded. Since β is a cycle with v0 = vm, we can

construct an execution γ of Aut(G) by concatenating β_ β_ β . . ., k times. Therefore, the
total number of extra mode switches in γ is Sτa(γ) = N(γ)− γ.ltime

τa
= km− k

τa

∑m
i=1w(ei)

= k
τa

(mτa −
∑m

i=1w(ei)). If mτa >
∑m

i=1w(ei), then the right hand side can be made
arbitrarily large by increasing k.

90



Next, suppose OPT(τa) is unbounded for Aut(G). We choose N0 to be larger than the
number of vertices |V| of G. Let β be the shortest execution of Aut(G) with more than N0

extra switches. Suppose the length of β is l. Since Sτa(β) > N0, l− 1
τa

∑l
i=1wi > N0. Since

N0 is larger than the number of vertices Aut(G), some of the vertices must be repeated in
β. That is, β must contain a cycle. Suppose β = βp.γ.βs, where γ is cycle, and let l1, l2, l3
be the lengths of βp, γ, and βs, respectively. Then,

l1 + l2 + l3 > N0 +
1
τa

l1∑
i=1

wi +
1
τa

l2∑
i=1

wi +
1
τa

l3∑
i=1

wi

For the sake of contradiction we assume that the cost of the cycle γ,
∑l2

i=1wi ≥ l2τa.
Therefore,

l1 + l3 > N0 +
1
τa

[
l1∑

i=1

wi +
l3∑

i=1

wi

]
(5.8)

From Equation (5.8), Sτa(βp _ βs) > N0, and we already know that βp _ βs is shorter that
β, which contradicts our assumption that β is the shortest execution with more than N0

extra switches.

Corollary 5.15. Suppose A is a one-clock initialized SHIOA such that A = Aut(G), where
G is a weighted directed graph. Any τa > 0 is an average dwell time of A if and only if the
mean-cost of any reachable cycle of G is at least τa.

Proof. Follows from Definition 5.8 and Theorem 5.14.

The problem of solving OPT(τa) for Aut(G) reduces to checking whether G contains a
cycle of length m, for any m > 1, with cost less than mτa. This is the well known mean-cost
cycle problem for directed graphs and can be solved in O(|V||E|) time using Bellman-Ford
algorithm or Karp’s minimum mean-weight cycle algorithm [CLR90].

5.6.2 Case Study: Linear Hysteresis Switch

Consider a linear version of the HystSwitch automaton of Figure 5-2. Here the monitoring
signals are generated by linear differential equations: for each i ∈ I, d(µi) = ciµi ifmode = i,
otherwise d(µi) = 0; ci, i ∈ I, is a positive constant. The switching logic unit implements
the same scale independent hysteresis switching as in HystSwitch. The resulting SHIOA,
LinHSwitch, is shown in Figure 5-7, and we are interested to verify its ADT properties
independent of Invariant 5.12. The LinHSwitch automaton is not a one-clock initialized
SHIOA because the continuous variables µ[i], i ∈ I, are not reset by the switch actions.
So we cannot apply Theorem 5.14 to verify its ADT directly. The switching behavior of
LinHSwitch, however, does not depend on the value of the µi’s but only on the ratio of
µi

µmin
, which is always within [1, (1 + h)]. Specifically, when LinHSwitch is in mode i, all

the ratios remain constant, except µi

µmin
. The ratio µi

µmin
increases monotonically from 1 to

either (1 + h) or to (1 + h)2, in time 1
ci

ln(1 + h) or 2
ci

ln(1 + h), respectively.
Based on this observation, we will first show that there exists a one-clock initialized

automaton B, such that LinHSwitch ≤switch B, using a switching simulation relation of
Section 5.4. Next we apply Corollary 5.15 to B and verify that ADT of B is at least τa,

91



automaton LinHSwitch(I : type, i0 : I, h : Real, c : Array[I, Real]) where h ≥ 0
signature

internal switch(i, j : I) where i 6= j

variables
internal mode : I := i0;µ : Array[I, Real];

initially ∀i : I, (i = i0 ∧ µ[i] = (1 + h)C0)
∨(i 6= i0 ∧ µ[i] = C0)

let µmin := mini:I{µ[i]}

transitions
internal switch(i, j)

pre mode = i ∧ (1 + h)µ[j] ≤ µ[i];
eff mode := j;

trajectories
trajdef mode(i : I)

invariant mode = i;
stop when ∃j : I, (1 + h)µ[j] ≤ µ[i];
evolve ∀ j : I, (j = i ∧ d(µ[j]) = c[j]µ[j])

∨(j 6= i ∧ d(µ[j]) = 0);

Figure 5-5: Linear hysteresis switch.

where τa is a constant derived from the coefficients ci, i ∈ I. Then it follows that, the ADT
of LinHSwitch is also at least τa, by Definition 5.9.

We begin by constructing the abstract automaton B. Consider a graph G = (V, E , w, e0),
where:

1. V ⊂ {1, (1 + h)}m, such that for any v ∈ V , all the m-components are not equal. We
denote the ith component of v ∈ V by v[i].

2. An edge (u, v) ∈ E if and only if, one of the following conditions hold:
(a) There exists j ∈ {1, . . . ,m}, such that, u[j] 6= v[j] and for all i ∈ {1, . . . ,m}, i 6= j,
u[i] = v[i]. The cost of the edge w(u, v) := 1

cj
ln(1 + h) and we define ζ(u, v) := j.

(b) There exists j ∈ {1, . . . ,m} such that u[j] = 1, v[j] = (1 + h) and for all i ∈
{1, . . . ,m}, i 6= j implies u[i] = (1 + h) and v[i] = 1. The cost of the edge w(u, v) :=
2
cj

ln(1 + h) and we define ζ(u, v) := j. The ith component of the source (destination)
vertex of edge e is denoted by e[1][i] (e[2][i], respectively).

3. e0 ∈ E , such that e0[1][i0] = (1 + h) and for all i 6= i0, e0[1][i] = 1.

The graph G3 for I = {1, 2, 3} is shown in Figure 5.6.2. Aut(G) is the one-clock initialized
automaton that is ADT-equivalent to LinHSwitch. We prove this in Lemma 5.16. But
before we give the simulation proof we discuss the main idea of execution correspondence.
A typical execution α = τ0, a1, τ1, a2, τ2 of LinHSwitch is as follows: τ0 is a point trajectory
that maps to the state (mode = 1, [µ1 = (1 + h)C0, µ2 = C0, µ3 = C0]), a1 = switch(1, 3),
τ1.dom = [0, 1

c3
ln(1 +h)], (τ1 ↓ µ3)(t) = C0e

c3t, a2 = switch(3, 2), τ2.dom = [0, 2
c2

ln(1 +h)],
(τ2 ↓ µ2)(t) = C0e

c2t. Note that each edge e of G corresponds to a mode of LinHSwitch; this
correspondence is captured by the ζ function in the definition of G.

We define a relation R on the state spaces on A = LinHSwitch and B = Aut(G). This
relation essentially scales the monitoring signals in LinHSwitch by an appropriate factor
and equates them with the variable x of Aut(G). The switching pattern of LinHSwitch is
governed by the multiplicative hysteresis constant h and is independent of this scaling.

Definition 5.11. For any x ∈ QA and y ∈ QB, x R y if and only if:

1. ζ(y d mode) = x d mode

2. For all j ∈ {1, . . . , n},
(a) xdµj

xdµmin
= ecj(ydx), if j = ζ(y d mode),

(b) xdµj

xdµmin
= (y d mode)[k][j], k ∈ {1, 2}.

92



[1 + h, 1, 1]

[1 + h, 1 + h, 1] [1 + h, 1, 1 + h]

[1, 1, 1 + h] [1, 1 + h, 1]

[1, 1 + h, 1 + h]

1
c 2

ln
(1

+
h)

1
c
3 ln(1

+
h)

2
c 3

ln
(1

+
h)

2
c
2 ln(1

+
h)

1
c2

ln(1 + h)

1
c1

ln(1 + h)

1
c2

ln(1 + h)

1
c1

ln(1 + h)

2 c
1

ln
(1

+
h
)

Figure 5-6: ADT-equivalent graph (m = 3) for LinHSwitch.

Part 1 of Definition 5.11 states that if A is in mode j and B is in mode e, then ζ(e) = j.
Part 2 states that for all j 6= ζ(e), the jth component of e[1] and e[2] are the same, and are
equal to µj/µmin, and for j = ζ(e), µj = µmine

cjx.
Lemma 5.16 states that R is a switching simulation relation from A and B. The proof

follows the typical pattern of simulation proofs. We show by a case analysis that every
action and state model of automaton A can be simulated by an execution fragment of B
with at least as many extra switches.

Lemma 5.16. R is a switching simulation relation from A to B.

Proof. We check the conditions in Definition 5.10. At a given state x of A, we say that
i ∈ I is the unique minimum at x, if minj∈I{x d µj} is unique and µi = arg minj∈I{x d µj}.
A has a unique start state and it is easy to see that it is related to all the start states of
B. Next we show by cases that given any state x ∈ QA,y ∈ QB, x R y, and an execution
fragment α of A starting from x and consisting of either a single action or a single trajectory,
there exists a corresponding execution fragment β of B, starting from y that satisfies the
conditions required for R to be a switching simulation relation.

Case 1: α is a (x, switch(i, j),x′) transition of A and i is not the unique minimum at x
and j is not unique minimum at x′.
We choose β to be (y, switch(e, e′),y′) action of B, where e and e′ are determined by
the following rules:

e[1][i] = 1, e[2][i] = 1 + h,∀k, k 6= i, e[1][k] = e[2][k] = xdµk

xdµmin
(5.9)

e′[1][j] = 1, e′[2][j] = 1 + h,∀k, k 6= j, e′[1][k] = e′[2][k] = x′dµk

x′dµmin
(5.10)

We have to show that switch(e, e′) is enabled at y; this involves showing that the three
conjuncts in the precondition of the switch action of B are satisfied at y. First of all,
since x R y we know that ζ(y d mode) = x d mode = i. Further, i is not a unique

93



minimum at x, so from the definition of the edges of G it follows that:

(y d mode)[1][i] = 1, (y d mode)[2][i] = i+ h,

∀k, k 6= i, (y d mode)[1][k] = (y d mode)[2][k] = xdµk

xdµmin
(5.11)

Comparing Equations (5.11) and (5.17) we conclude that y d mode = e.

Secondly, using the definitions of e, e′ and R it follows that:

e[2][i] = 1 + h =
x d µi

x d µmin
=

x′ d µi
x′ d µmin

= e′[1][i] (5.12)

The second equality holds because switch(i, j) is enabled at x. The third equality
follows from the fact that the switch(i, j) transition of A does not alter the value of
the µk’s. Likewise, we have:

e[2][j] =
x d µj

x d µmin
=

x′ d µj
x′ d µmin

= 1 = e′[1][j] (5.13)

∀k, k 6= j, k 6= i, e[2][k] =
x d µk

x d µmin
=

x′ d µk
x′ d µmin

= e′[1][k] (5.14)

Combining Equations (5.12),(5.12) and (5.14) it follows that e[2] = e′[1].

Finally, from the switching simulation relation R, we know that y d x = 1
ci

ln xdµi

xdµmin
=

1
ci

ln(1 + h). And since ζ(e) = i and i is not the unique minimum at x, from the
definition of the edge costs of G it follows that y d x = w(e). Thus, we have shown
that switch(e, e′) is indeed enabled at y.

Next, we have to show that x′ R y′. First of all, x′ d mode = j and y′ d mode = e′

from the effect parts of the switch(i, j) and switch(e, e′) actions, respectively. Also,
ζ(e′) = j from Equation (5.17). It follows that x′ d mode = ζ(y′ d mode). Secondly,
x′dµj

x′dµmin
= xdµj

xdµmin
= 1, from the precondition of switch(i, j). Since y′ d x = 0 it follows

that xdµj

xdµmin
= ecjy

′dx. Finally, for all k 6= j, again from Equation (5.17) it follows that
x′dµk

x′dµmin
= e′[1][k] = e′[2][k].

Case 2: α is a (x, switch(i, j),x′) transition of A and i is the unique minimum at x and j
is not unique minimum at x′.
We choose β to be (y, switch(e, e′),y′) action of B, where e and e′ are determined by
the following rules:

e[1][i] = 1, e[2][i] = 1 + h,∀k, k 6= i, e[1][k] = (1 + h), e[2][k] = 1 (5.15)

e′[1][j] = 1, e′[2][j] = 1 + h,∀k, k 6= j, e′[1][k] = e′[2][k] = x′dµk

x′dµmin
(5.16)

The rest of the proof is similar to that of case 1.

Case 3: α is a (x, switch(i, j),x′) transition of A and i is not the unique minimum at x
and j is the unique minimum at x′.
We choose β to be (y, switch(e, e′),y′) action of B, where e and e′ are determined by

94



the following rules:

e[1][i] = 1, e[2][i] = 1 + h,∀k, k 6= i, e[1][k] = e[2][k] = xdµk

xdµmin

e′[1][j] = 1, e′[2][j] = 1 + h,∀k, k 6= j, e′[1][k] = (1 + h), e′[2][k] = 1

The rest of the proof is similar to that of case 1.

Case 4: α is a closed trajectory τ of A with (τ ↓ mode)(0) = i for some i ∈ S , such that
i is not unique minimum at τ.fstate.
We choose β to be the trajectory τ ′ of B with τ ′.dom = τ.dom determined by the
following rules. Let x = τ.fstate,x′ = τ.lstate,y = τ ′.fstate and y′ = τ ′.lstate.

(y d mode)[1][i] = 1, (y d mode)[2][i] = 1 + h,

∀k, k 6= i, (y d mode)[1][k] = (y d mode)[1][k] = xdµi

xdµmin
,

∀ t ∈ τ ′.dom, (τ ′ ↓ x)(t) = 1
ci

ln xdµi

xdµmin
+ t (5.17)

We first show that τ ′ is a valid trajectory of B. First of all, it is easy to check that τ ′

satisfies the constant differential equation d(x) = 1 and that the mode of B remains
constant. Next, we show that τ ′ satisfies the stopping condition “x = w(mode)”.
Suppose there exists t ∈ τ ′.dom such that (τ d x)(t) = w(x d mode), then t = w(x d
mode)− (y d x). Then,

x′ d µi = x d µiecit

1
ci

ln
x′ d µi
x d µi

= w(x d mode)− (y d x)

=
1
ci

ln(1 + h)− (y d x) [by replacing w(x d mode)]

=
1
ci

[
ln(1 + h)− ln

x d µi
x d µmin

]
[from (5.18)]

x′ d µi = (1 + h)(x d µmin)
= (1 + h)(x′ d µmin) [i not unique min ⇒ µmin constant over τ ′.]

Last equation implies that x′ satisfies the stopping condition for trajdef mode(i) for
automaton A. Therefore, t = τ.ltime = τ ′.ltime. Thus we have shown that τ ′ is a
valid trajectory of automaton B.

We show that x′ R y′. First, x′ d mode = ζ(y′ d mode) because x′ d mode = x d
mode = ζ(y d mode) = ζ(y′ d mode). Secondly, for all k, k 6= i, x d µi = x′ d µi
and (y d mode)[1][k] = (y′ d mode)[1][k]. Finally, we show that x′ d µi = (x′ d
µmin)eci(y

′dx) by reasoning as follows:

x′ d µi = (x d µi)eciτ.ltime

= (x d µmin)eci(ydx+τ.ltime)

= (x′ d µmin)eci(ydx+τ
′.ltime)

Case 5: α is a closed trajectory τ of A with (τ ↓ mode)(0) = i for some i ∈ S , such that

95



i is the unique minimum at τ.fstate.
We choose β to be the trajectory τ ′ of B with τ ′.dom = τ.dom determined by the
following rules. Let x = τ.fstate and y = τ ′.fstate.

(y d mode)[1][i] = 1, (y d mode)[2][i] = 1 + h,

∀k, k 6= i, (y d mode)[1][k] = (1 + h), (y d mode)[2][k] = 1

∀ t ∈ τ ′.dom, (τ ′ ↓ x)(t) = 1
ci

ln xdµi

xdµmin
+ t

The rest of the proof for this case is similar to that for case 4.

From Theorem 5.4 it follows that SHIOA LinHSwitch ≤switch Aut(G), and therefore if
τa is an ADT for Aut(G) then it is also an ADT for LinHSwitch. As Aut(G) is one-clock
initialized SHIOA, from the results in Section 5.6.1, we know that we can verify whether
τa is an ADT of Aut(G) efficiently by finding the minimum mean cost cycle of G. If it is,
we can conclude that ADT of LinHSwitch is also at least τa. In particular, for LinHSwitch
with m = 3, c1 = 2, c2 = 4, and c3 = 5, we compute the minimum mean-cost cycle. The
cost of this cycle, which is also the ADT of this automaton, is 19

40 log(1 + h). We can also
use Theorem 5.12 to get an estimate of the ADT of LinHSwitch. If we plug in λ = c1 = 2,
we get that ADT of this automaton is at least 1

6 log(1 + h). The discrepancy in the two
quantities is because of the fact that the mean-cost cycle analysis uses exact information
about the behavior of the monitoring signals whereas the Theorem 5.12 is based on upper
bound given by Equation (5.6).

5.6.3 Initialized SHIOA

In this section, we develop techniques for verifying ADT properties for the general class
of initialized SHIOA. Of course, the class of initialized SHIOAs subsumes the class of one-
clock initialized SHIOAs. Consequently, the techniques developed here rely on solving more
general and relatively complex optimization problems.

An closed execution fragment α of an SHIOA is said to be a cyclic fragment if α.fstate =
α.lstate. The next theorem implies that for an initialized SHIOA A, it is necessary and
sufficient to solve OPT(τa) over the space of the cyclic fragments of A instead of the larger
space of all execution fragments.

Theorem 5.17. Given τa > 0 and initialized SHIOA A, OPT(τa) is bounded if and only if
A does not have any cycles with extra switches with respect to τa.

Proof. For simplicity we assume that all discrete transitions of the automaton A are mode
switches and that for any pair of modes i, j, there exists at most one action which can bring
about a mode switch from i to j. Existence of a reachable cycle α with extra switches
with respect to τa is sufficient to show that τa is not an ADT for A. This is because by
concatenating a sequence of α’s, we can construct an execution fragment α_ α_ α . . . with
an arbitrarily large number of extra switches.

We prove by contradiction that existence of a cycle with extra switches is necessary for
making OPT(τa) unbounded. We assume that OPT(τa) is unbounded for A and that A
does not have any cycles with extra switches. By the definition of OPT, for any constant
N0 there exists an execution that has more than N0 extra switches with respect to τa. Let

96



us choose N0 > |I|3. Of all the executions that have more than N0 extra switches, let
α = τ0a1τ1 . . . τn be a closed execution that has the smallest number of mode switches.
From α, we construct β = τ∗0 a1τ

∗
1 . . . τ

∗
n, using the following two rules:

1. Each τi of α is replaced by: τ∗i = arg min{τ.ltime | τ.fstate ∈ Rai , τ.lstate ∈ Preai+1}.

2. If there exists i, j ∈ I, such that ai = aj and ai+1 = aj+1, then we make τ∗i = τ∗j .

Claim 5.18. The sequence β is an execution fragment of A and Sτa(β) > |I|3.

Proof of claim: We prove the first part of the claim by showing that each application of the
above rules to an execution fragment of A results in another execution fragment. Consider
Rule (1) and fix i. Since τ∗i .fstate ∈ Rai and τi−1.lstate ∈ Preai , τi−1.lstate

ai→ τ∗i .fstate.
And, since τ∗i .lstate ∈ Preai+1 and τi+1.fstate ∈ Rai+1 , we know that τ∗i .lstate

ai+1→
τi+1.fstate. Now for Rule (2), we assume there exist i and j such that the hypothesis
of the rule holds and suppose τ∗j = τ∗i = τi. We know that even if τ∗j 6= τj , the first states
of both are in Raj and the last states are in Preaj+1 . Therefore, aj matches up the states
of τj−1 and τ∗j and likewise aj+1 matches the states of τ∗j and τj+1.

The second part of the claim follows from the fact that each trajectory τi is replaced by
the shortest trajectory τ∗i from the initialization set of the previous transition Rai to the
guard set of the next transition Preai+1 . That is, for each i, 0 < i < n, τ∗i .ltime ≤ τi.ltime

and therefore β.ltime ≤ α.ltime and Sτa(β) > N0 > |I|3.

Since N(β) > |I|3, there must be a sequence of 3 consecutive modes that appear multiple
times in β. That is, there exist i, j ∈ {1, . . . ,m}, and p, q, r ∈ I, such that τ∗i .fstate d
mode = τ∗j .fstate d mode = p, τ∗i+1.fstate d mode = τ∗j+1.fstate d mode = q, and
τ∗i+2.fstate d mode = τ∗j+2.fstate d mode = r. Then, from Rule (2) we know that
τ∗i+1 = τ∗j+1. In particular, τ∗i+1.fstate = τ∗j+1.fstate, that is, we can write β = βp

_ γ_ βs,
where γ is a cycle. Then we have the following:

N(βp) +N(γ) +N(βs) > N0 + βp.ltime/τa + γ.ltime/τa + βs.ltime/τa

N(βp) +N(βs) + Sτa
(γ) > N0 + βp.ltime/τa + βs.ltime/τa

N(βp
_ βs) > N0 + βp

_ βs.ltime/τa [βp.lstate = βs.fstate]

The last step follows from the assumption that Sτa(γ) ≤ 0. Therefore, we have Sτa(βp _

βs) > N0 which contradicts our assumption that β has the smallest number of mode switches
among all the executions that have more than N0 extra switches with respect to τa.

The following corollary allows us to limit the search for cycles with extra switches to
cycles with at most |I|3 mode switches. It is proved by showing that any cycle with extra
switches that has more than |I|3 mode switches can be decomposed into two smaller cycles,
one of which must also have extra switches.

Corollary 5.19. Suppose A is an initialized SHIOA with state models indexed by I. If A
has a cycle with extra switches, then it has a cycle with extra switches that has fewer than
|I|3 mode switches.

Theorem 5.20. Suppose A is an initialized SHIOA with state models indexed by I. For
any τa > 0, τa is an ADT for A if an only if all cycles of length at most |I| are free of extra
switches.

97



Proof. Follows from Corollary 5.19 and the definition of the optimization problem OPT(τa).

This theorem gives us a method for verifying ADT of initialized SHIOAs by maximizing
OPT(τa) over all cycles of length at most |I|. In other words, for verify ADT of initialized
hybrid systems it suffices to solve the optimization problem over a much smaller set of
executions than we set out with at the beginning of Section 5.6. For non-initialized SHIOA
A, the first part of Theorem 5.17 holds. That is, solving OPT(τa) over all cycles of length
at most |I|, if a cycle with extra switches is found, then we can conclude that τa is not
an ADT for A. Solving OPT(τa) relies on formulating it as a mathematical program such
that standard mathematical programming tools can be used. This is the topic of the next
section.

5.6.4 MILP formulation of OPT(τa)

In this section, we show that the problem of solving OPT(τa) over the cyclic executions of
a rectangular SHIOA can be formulated as a Mixed Integer Linear Programming (MILP).
Recall Definition 2.16, where we defined rectangular SHIOAs to have rectangular dynamics
and linier guards, invariants, and reset maps.

The Rectangular automaton (Figure 5-7) shows the specification of a generic initialized
rectangular SHIOA with n continuous variables, n ∈ N, and m = |I| state models. For
the sake of avoiding clutter, the code in this figure omits the following type information
for the automaton parameters. (1) I is a type parameter which serves as the index set
for the state models. (2) i0 ∈ I is the index of the initial state model. (3) x0 is a real-
valued n vector which serves as the initial valuation for the continuous variables. (4) For
each i, j ∈ I, G[i, j], R[i, j], and A[i] are real-valued n × n matrices, (5) For each i, j ∈ I,
g[i, j], r[i, j], a[i], and c[i] are real-valued n vectors. The automaton Rectangular has a single
discrete variable called mode which takes values in the index set I = {1, . . . ,m}, and a
continuous variable vector x ∈ Rn. For any i, j ∈ I, the switch(i, j) action changes mode
from i to j. The precondition and the initialization predicates of this action are given by
sets of linear inequalities on the continuous variables, represented by: G[i, j]x ≤ g[i, j] and
R[i, j]x ≤ r[i, j], respectively. For each state model i ∈ I, the invariant is stated in terms
of linear inequalities of the continuous variables A[i]x ≤ a[i]. The evolve clause is given by
a single differential equation d(x) = c[i].

automaton Rectangular(I, i0,x0, G, g,R, r, A, a, c)
signature

internal switch(i, j : I), where i 6= j

variables
internal mode : I := i;
x : Rn := x0;

transitions
internal switch(i, j)

pre mode = i ∧G[i, j]x ≤ g[i, j];
eff mode := j; x := x′ where R[i, j]x′ ≤ r[i, j];

trajectories
trajdef mode(i : I)
invariant A[i]x ≤ a[i];
evolve d(x) = c[i];

Figure 5-7: Generic rectangular initialized SHIOA.

We describe a MILP formulation MOPT(K, τa) for finding a cyclic execution with K
mode switches that maximizes the number of extra switches with respect to τa. If the
optimal value is positive, then the optimal solution represents a cycle with extra switches

98



with respect to τa and we conclude from Corollary 5.19 that τa is not an ADT for A.
On the other hand, if the optimal value is not positive, then we conclude that there are
no cycles with extra switches of length K. To verify ADT of A, we solve a sequence of
MOPT(K, τa)’s with K = 2, . . . ,m3. If the optimal values are not positive for any of these,
then we conclude that τa is an ADT for A. By adding extra variables and constraints we
are able to formulate a single MILP that maximizes the extra switches over all cycles with
K or less mode switches, but for simplicity of presentation we discuss MOPT(K, τa) instead
of this latter formulation. The following are the decision variables for MOPT(K, τa).

� xu ∈ Rn, u ∈ {0 . . . ,K}, value of continuous variables

� tu ∈ R, u ∈ {0, 2, 4, . . . ,K}, length of uth trajectory

� buj =

 1, if mode over uth trajectory is j

0, otherwise. for each u ∈ {0, 2, . . . ,K}, j ∈ {1, . . . ,m}

� pujk =

 1, if mode over (u− 1)st trajectory is j and over (u+ 1)st trajectory is k

0, otherwise. for each u ∈ {0, 2, 4, . . . ,K}, j, k ∈ {1, . . . ,m}

The objective function and the constraints are shown in Figure 5-8. In MOPT(K, τa), an
execution fragment with K mode switches is represented as a sequence x0,x1, . . . ,xK of K
valuations for the continuous variables. For each even u, xu goes to xu+1 by a trajectory of
length tu. If this trajectory is in mode j, for some j ∈ {1, . . . ,m}, then buj = 1, else buj = 0.
For each odd u, xu goes to xu+1 by a discrete transition. If this transition is from mode j
to mode k, for some j, k ∈ {1, . . . ,m}, then pujk = 1, else pujk = 0. These constraints are
specified by Equation (5.18) in Figure 5-8. For each odd u, Constraints (5.20) and (5.21)

Objective function: Sτa
:
K

2
− 1
τa

K∑
u=0,2,...

tu

Mode: ∀ u ∈ {0, 2, . . . ,K},
m∑

j=1

buj = 1 and ∀ u ∈ {1, 3, . . . ,K − 1},
m∑

j=1

m∑
k=1

pujk = 1 (5.18)

Cycle: x0 = xK and ∀ j ∈ {1, . . . ,m}, b0j = bKj (5.19)

Preconds: ∀ u ∈ {1, 3, . . . ,K − 1},
m∑

j=1

m∑
k=1

G[j, k].pujk.xu ≤
m∑

j=1

m∑
k=1

pujk.g[j, k] (5.20)

Initialize: ∀ u ∈ {1, 3, . . . ,K − 1},
m∑

j=1

m∑
k=1

R[j, k].pujk.xu+1 ≤
m∑

j=1

m∑
k=1

pujk.r[j, k] (5.21)

Invariants: ∀ u ∈ {0, 2, . . . ,K},
m∑

j=1

A[j].buj .xu ≤
m∑

j=1

buj .a[j] (5.22)

Evolve: ∀ u ∈ {0, 2 . . . ,K}, xu+1 = xu +
m∑

j=1

c[j].buj .tu (5.23)

Figure 5-8: Objective function and constraints for MOPT(K, τa)

ensure that (xu, switch(j, k),xu+1) is a valid mode switching transition. These constraints

99



simplify to the inequalities G[j, k]xu ≤ g[j, k] and R[j, k]xu+1 ≤ r[j, k] which correspond
to the precondition and the initialization conditions on the pre and the post-state of the
transition. For each even u, xu evolves to xu+1 through a trajectory in some mode, say
j. Constraint (5.22) ensures that xu satisfies the invariant of mode j described by the
inequality A[j]xu ≤ a[j]. An identical constraint for xu+1 is written by replacing xu with
xu+1 in (5.22). Since the differential equations have constant right hand sides and the
invariants describe polyhedra in Rn, the above conditions ensure that all the intermediate
states in the trajectory satisfy the mode invariant. Equation (5.23) ensures that, for each
even u, xu evolves to xu+1 in tu time according to the differential equation d(x) = c[j].

Some of these constrains involve nonlinear terms. Using the “big M” method [Wil90] we
can linearize these equation and inequalities. For example, bujxu in (5.22) is the product of
real variable xu and boolean variable buj . We linearize it by replacing bujxu with yu, and
adding the following linear inequalities: yu ≥ bujδ, yu ≤ buj∆, yu ≤ xu − (1 − buj)δ, and
yu ≥ xu − (1− buj)∆, where δ and ∆ are the lower and upper bounds on the values of xu.

5.6.5 Case Study: Thermostat

We use the MILP technique together with switching simulation relations to verify the ADT
of a thermostat with nondeterministic switches. The Thermostat2 automaton (Figure 5-9
Left) has two modes on and off , two continuous variables x and z, and real parameters
h,K, θ1, θ2, θ3, θ4, where 0 < θ1 < θ2 < θ3 < θ4 < h. In off mode the heater is off and
the temperature x decreases according to the differential equation d(x) = −Kx. This is
described by the state model heaterOff. While the temperature x is between θ2 and θ1,
the switchOn action may occur, and it must occur when x drops to θ1. As an effect of
switchOn, the mode changes to on, where the heater is on and the behavior is described by
state model heaterOn. Here, x rises according to the differential equation d(x) = K(h− x).
While x is between θ3 and θ4, the switchOff action may occur, and it must occur when x
increases to θ4. The continuous variable z measures the total time spent in mode on.

SHIOA Thermostat2 is not initialized because the continuous variable x is not reset
with every mode switching transition; nor is it a rectangular SHIOA because the differen-
tial equations do not have constant right-hand sides. There exists, however, a rectangular
initialized SHIOA, we call it ThermAbs, such that Thermostat2 ≤switch ThermAbs. Automa-
ton ThermAbs (Figure 5-9 Right) has real-valued parameters L0 and L1, a clock variable
t, and two modes on and off . In each mode, t increases at a unit rate. When t reaches
Li in mode li, a switch to the other mode may occur and if it does then t is set to zero.
We define a relation R on the state spaces of Thermostat2 and ThermAbs such that with
appropriately chosen values of L0 and L1, ThermAbs captures the fastest switching behavior
of Thermostat2.

Definition 5.12. For any x ∈ QThermostat and y ∈ QThermAbs, x R y if and only if:

(1) x d mode = y d mode, and

(2) if x d mode = l0 then y d t ≥ 1
k ln θ3

xdx else y d t ≥ 1
k ln

(
h−θ2
h−xdx

)
.

Lemma 5.21. If we set L0 = 1
k ln θ3

θ2
and L1 = 1

k ln h−θ2
h−θ3 , then the relation R of Defini-

tion 5.12 is a switching simulation relation from Thermostat2 to ThermAbs.

100



automaton Thermostat2(θ1, θ2, θ3, θ4,K, h : Real)
where 0 < θ1 < θ2 < θ3 < θ4 < h

type Status enumeration [on, off ]

signature
internal switchOn, switchOff

variables
internal loc : Status := off ;
x : Real := θ4; z : Real := 0;

transitions
internal heaterOn

pre loc = off ∧x ≤ θ2;
eff loc := on;

internal switchOff
pre loc = on ∧x ≥ θ3;
eff loc := off ;

trajectories
trajdef heaterOn

invariant x ≤ θ4 ∧ loc = on;
stop when x = θ4;
evolve d(x) = K(h− x); d(z) = 1;

trajdef heaterOff
invariant x ≥ θ1 ∧ loc = off ;
stop when x = θ1;
evolve d(x) = −Kx; d(z) = 0;

automaton ThermAbs(L0, L1 : Real)
type Status enumeration [on, off ]

signature
internal switchOn, switchOff

variables
internal mode : Status := off ; r : Real := L1;

transitions
internal switchtOn

pre mode = off ∧ r ≥ L0;
eff mode := on; r := 0;

internal switchOff
pre mode = on ∧ r ≥ L1;
eff mode := off ; r := 0;

trajectories
trajdef always
evolve d(r) = 1;

Figure 5-9: Thermostat2 SHIOA and its rectangular initialized abstraction ThermAbs.

Proof. The proof is by induction on the length of an execution of Thermostat2 and is
structurally similar to the proof of Lemma 5.16. The base case follows immediately as
the start state of Thermostat2 is related to the start state of ThermAbs. Next, for the
inductive step we show by cases that given any state x ∈ QThermostat,y ∈ QThermAbs, x R y,
and an execution fragment α of Thermostat2 starting from x and consisting of either a
single action or a single trajectory, there exists a corresponding execution fragment β of
ThermAbs, starting from y that satisfies the conditions required for R to be a switching
simulation relation.

Case 1: α is a (x, on,x′) transition of Thermostat2.
We choose β to be the (y, on,y′) transition of ThermAbs. First we show that the action
on is enabled at y′. Since x R y, we know that y d mode = x d mode = l0 and further,
y d r ≥ 1

k ln θ3
xdx . But we know that, x d x ≤ θ2 because the on action of Thermostat2

is enabled at x. It follows that y d r ≥ 1
k ln θ3

θ2
= L0, that is, the on action is enabled

at y. Next we show that vx′ R y′. Its immediate that x′ d mode = l1 = y′ d mode.
From the transition definition of both the on actions, it follows that y′ d r = 0 and
x′ d x = x d x ≤ θ2 and ln h−θ2

h−x′dx ≤ 0. Therefore, y′ d r ≤ 1
K ln h−θ2

h−x′dx .

Case 2: α is a (x, off,x′) transition of Thermostat2.
We choose β to be the (y, on,y′) transition of ThermAbs and the rest of the proof is
similar to that of case 1.

Case 3: α is a single trajectory τ of Thermostat2 such that (τ ↓ mode)(0) = l0. We choose

101



β to be a trajectory τ ′ of ThermAbs defined as follows:

∀ t ∈ τ ′.dom, (τ ′ ↓ mode)(t) = l0 and (τ ′ ↓ r)(t) = (τ ′ ↓ r)(0) + t

It follows immediately that τ ′ is a valid trajectory for ThermAbs because it satisfies
the the differential equation d(r)) = 1 and the mode remains constant.

Case 4: α is a single trajectory τ of Thermostat2 such that (τ ↓ mode)(0) = l1. The proof
for this case is the same as that of the previous case.

Lemma 5.21 implies that Thermostat2 ≤switch ThermAbs, that is, for any τa > 0 if
τa is an ADT for ThermAbs then τa is also an ADT for Thermostat2. Since ThermAbs is
rectangular and initialized, we can use the MILP technique to check any ADT property of
ThermAbs.

We formulated the MOPT(K, τa) for automaton ThermAbs and used the GNU Linear
Programming Kit [GNU] to solve it. Solving for K = 4, L0 = 40, L1 = 15, and τa =
25, 27, 28, we get optimal costs −0.4,−4.358E−13(≈ 0) and 0.071, respectively. We conclude
that the ADT of ThermAbs is ≥ 25,≥ 27, and < 28. Since ThermAbs ≥switch Thermostat2,
we conclude that the ADT of the thermostat is no less than 27.

For finding counterexample execution fragments for the proposed ADT properties, the
MILP approach can be applied to non-initialized rectangular SHIOA as well. In such
applications, the necessity part of Theorem 5.17 does not hold and therefore from the
failure to find a counterexample we cannot conclude that the automaton satisfies the ADT
property in question.

5.7 Summary

Using results from the literature on switched systems, we find that stability verification of
SHIOAs can be decomposed into two independent tasks, namely, (a) finding the Lyapunov
functions for the individual state models, and (b) verifying the appropriate average dwell
time property. Task (a) can be accomplished using existing techniques in systems theory.
In this chapter we have presented two techniques for accomplishing task (b).

The first method transforms the given SHIOA by adding history variables, such that the
transformed automaton satisfies an invariant property if and only if the original automaton
has the ADT property. In order to prove the resulting invariant properties, we appeal to
the large body of tools available for proving invariants for hybrid systems. This method
for verifying ADT properties is automatic only for classes of hybrid systems for which
reachability is decidable. For hybrid systems that are outside this class, the method is
applicable, but the resulting invariants will have to be proved using the methods described
in Chapter 4 of this thesis.

The second method relies on solving an optimization problem over the set of cyclic
executions of the given SHIOA. For the class of one-clock initialized SHIOAs this involves
finding the maximum mean-cost cycle of a graph (of size comparable to the given SHIOA),
and can be solved very efficiently by classical graph algorithms. For rectangular initialized
SHIOAs, the optimization problem can be formulated as a MILP. For initialized SHIOAs
with more general dynamics, the same technique applies but harder optimization problems
will have to be solved.

102



For non-initialized hybrid automata, the solution of the optimization problem can give
executions that serve as counterexamples to the ADT property in question, but the failure
in finding such executions does not indicate that the ADT property in question is satisfied.
That is, for non-initialized SHIOAs, the method is incomplete. We have defined equiva-
lence of SHIOAs with respect to switching speed and proposed switching simulations for
establishing ADT-equivalence of two SHIOAs. This can serve as a method for abstracting
non-initialized SHIOAs with initialized ones.

The two methods for verifying ADT can be combined as follows: we can start with some
candidate value of τa > 0 and search for a counterexample execution fragment for it using
the optimization-based approach. If such an execution fragment is found, then we decrease
τa (say, by a factor of 2) and try again. If eventually the optimization approach fails to find
a counterexample execution fragment for a particular value of τa, then we use the invariant
approach to try to prove that this value of τa is an ADT for the given system.

There are several research directions to be pursued related to the general area of stabil-
ity verification of SHIOAs. One interesting problem is to develop stability verification
techniques for the general class of SHIOAs that have both stable and unstable state mod-
els. Sufficient conditions for stability of such systems already exist in the control theory
literature (see, for example [ZHYM00]). These conditions, however, take the form of switch-
ing time related properties and are hard to verify, just like the ADT property, and hence
they call for the development of new verification techniques. Another direction, is to relax
assumption (1) and explore verification of input-output and input-to-state stability proper-
ties of SHIOAs with input/output variables, using the results from [VCL06]. Yet another
direction of future research is to extend these techniques to stochastic hybrid systems, by
combining the probabilistic timed I/O automata of Chapter 7 with ADT-like stability re-
sults for stochastic switched systems from [CL06].

103



Chapter 6

Mechanizing Proofs

In this chapter we describe techniques for mechanizing invariance and implementation proofs
for SHIOAs. The examples of Chapters 4 and 5 illustrate that the SHIOA framework
provides a systematic way of constructing such proofs, by way of induction over the length
of the executions followed by case analysis of the actions and the state models. Often,
however, such proofs are lengthy, tedious to construct, and they always require careful
attention to specification details. This suggests that software tools for construction and
management of proofs are needed.

Mechanical theorem provers, such as, PVS [ORR+96], Isabelle/HOL [Pau93, GCMF93],
COQ [The04], provide their own specification languages, typically some variant of high-
order logic, and very general semi-decision procedures for interactively checking veracity
of formulae written in that language. In order to use a theorem prover for construction
and management of SHIOA proofs, we have to answer two questions: (a) translate HIOA
specifications to the language of the theorem prover, and (b) minimize interaction of the
user with the theorem prover. In Section 6.2, we address (a) by describing a scheme for
translating a large class of HIOA specifications to the language of the PVS theorem prover.
This work builds on and generalizes previous work on translating of Timed I/O Automaton
specifications to PVS [LKLM05]. In Section 6.3, we address (b) by describing a set of spe-
cialized proof strategies—programs for constructing proofs—that exploit the knowledge of
our translation scheme and partially automate proofs. This section is based on a sequence of
papers on strategy development [MA03, MA04, MA05, ALL+06]. We conclude the chapter
by discussing our experiences in developing and using these software tools.

6.1 An Overview

PVS [ORR+96] is an environment for formal specification and verification developed at SRI.
It consists of a specification language (henceforth PVS), a number of predefined theories,
a type checker, an interactive theorem prover that supports the use of several decision
procedures and a symbolic model checker. By exploiting the synergy between a highly
expressive specification language and powerful automated deduction routines, PVS serves
as an environment for constructing and maintaining large formalizations and proofs. Our
preference of PVS over other existing theorem provers is based on several of its features:

(a) The PVS language [OSRSC99] is expressive, natural, and syntactically close to classi-
cal, typed high-order logic. It has many attractive features including parameterized
specifications and predicate subtyping.

104



(b) Theory interpretations [OS01], a new feature in PVS, is used to instantiate the declared
types in a specifications with definitions. Theory interpretations can be used for ex-
hibiting models for an axiomatic theory and to refine a abstract specifications in terms
of a concrete one. This feature is useful for defining simulation relations between a pair
of SHIOAs (see Section 6.2.9).

(c) The PVS theorem prover [SORSC99] provides a set of powerful decision procedures.
New state-of-the-art techniques are continually added to make the decision procedures
efficient. And with the excellent tutorials available [COR+95], this prover sports a
relatively flatter learning curve.

(d) PVS provides a way of developing strategies [AVM03] for partially automating proofs.
A proof strategy or a strategy is a Lisp program that accesses the state of an ongo-
ing proof, constructs a sequence of proof steps on-the-fly, and applies it to the proof.
Our techniques for partially automating proof construction are embodied by a set of
strategies.

(e) PVS has been widely used in many verification projects throughout the world and has
a lively user community [ORSSC98, Int06]. The current version of PVS is open source
(under the GPL license).

An alternative to translating HIOA specifications to PVS is to write this SHIOA specification
directly in PVS . The resulting PVS specification will be a set of definitions for the variables,
actions, transitions, and trajectories, and a set of axioms defining the semantics of these
objects. We have decided not to opt for this direct route for the following reasons: (a) HIOA
has the variables, transitions, and state model structure, which is a natural representation of
SHIOAs, (b) HIOA allows us to describe the transitions using operational semantics, whereas
in PVS , transition definitions have to be functions or relations, (c) HIOA provides a natural
way for describing trajectories using differential equations, and (d) having the theorem-
prover-independent HIOA language allows one to combine use of different tools designed for
the SHIOA framework. Hence, SHIOA specifications are written in the HIOA language, these
are translated to PVS , and then the PVS theorem prover is invoked on the translated PVS
specification.

There has been several prior proposals for translating certain subsets of the IOA language []
to theorem provers, such as, Larch [BGL02, GG91], PVS [Dev99], and Isabelle [NW03,
Pau93].

Our design of the HIOA to PVS translator builds upon [BGL02] and [Mit01], but the first
to translate the continuous aspects of the behavior of hybrid systems to the language of a
theorem prover. The key insight gained from the previous works is to convert nondetermin-
istic transition (and consequently trajectory) definitions into deterministic functions (of the
pre-state) by adding extra parameters. This enables the theorem prover to compute the
post-state of a transition (or a trajectory) and simplifies theorem proving. This procedure
of “determinizing” is further discussed in Section 6.2.6.

In the PVS parlance, definition of types, operators, lemmas, etc., constitute a theory .
The Timed Automata Modeling Environment (TAME) of [Arc01] provides a PVS theory
template for describing a special kind of automata called MMT Automata (see Section 1.4
or [MMT91] for details). One manually instantiates this theory template with the states,
actions, and transitions of an MMT automaton, say A, to obtain the PVS theory that spec-
ifies A. Instantiating a theory template is also the mechanism underlying our translation

105



scheme, although our theory template is closer to the one in [LKLM05]. The key differ-
ence between the TAME-template and the template [LKLM05] has to do with how time
is modeled in the underlying mathematical models. In a timed I/O automaton, the model
of [LKLM05], progress of time and continuous evolution of variables are modeled by trajec-
tories (as in SHIOAs). MMT-automata, on the other hand, do not have general continuous
variables; there are upper and lower time bounds associated with actions, and actions must
occur within those time-bounds. Hence, in the template of [Arc01], advancement of t units
of time is modeled by the occurrence of an action ν(t). The time-bounds for the actions
are enforced by deadline variables that enable the ν(t) action only when t amount of time
can elapse without violating those bounds. This approach does not allow us to specify in-
teresting trajectories by asserting of properties that must hold throughout the duration of a
trajectory . In [LKLM05] we proposed a template that allows translation of such trajectories
by embedding the trajectory τ as a functional parameter of ν(t, τ). The enabling condition
of ν(t, τ) asserts the conditions that must hold at each point in the domain of τ . For exam-
ple, we can say that a particular ν(τ, t) action is enabled only when τ.ltime < ubound and
τ(t) d x = τ(0) d x+ 4t. Here, ubound is a discrete deadline variable and x is a continuous
variable increasing at four times the rate of real time.

The above translation scheme has been used to design the software tool for translat-
ing TIOA specifications to PVS . This tool has been implemented by Lim [Lim01]. Recall,
that the TIOA language is a restriction of HIOA which does not allow input/output vari-
ables. In Section 6.2, we present the design of a scheme that generalizes the theory template
of [LKLM05] and allows translation of a general class of HIOA specification to PVS . Although
the basic mechanism for translation remains the same, namely, instantiation of template
theories, several changes have been made in the templates to accommodate external vari-
ables.

The possibility of partially automating proofs by using an interactive theorem prover was
demonstrated earlier by the TAME system [Arc01] in the context of the MMT automaton
model. TAME strategies primarily support proofs of invariant properties. These strategies
are compatible with the translation scheme described here and we describe them briefly in
Section 6.3.1. Apart from partial automation, the TAME strategies illustrate that theorem
prover support is useful for (a) managing large proofs, (b) re-checking proofs after minor
changes in the specification, and (c) generating human readable proofs from proof scripts.
These strategies demonstrate how careful design of theory templates aid the development
of proof strategies. Much of our later work [MA03, MA04, MA05, ALL+06] on developing
proof strategies for implementation relations are informed by the lessons learned from the
TAME experience. The technical challenges we faced during the development of these new
strategies are discussed in Section 6.2.9.

We have applied the translator and the strategies in several case studies: a tree-based
leader election protocol [MA04, MA05], Fischer’s mutual exclusion algorithm [ALL+06],
a two-task race system, and a failure detector [LKLM05]. In Chapters 4 and 5 we have
shown how simulation relations are used for proving implementation and ADT-equivalence
of SHIOAs. A specific type of implementation that occurs quite often in real-time systems
involves showing that the actions of a given SHIOA A occur within certain time bounds.
The bounds themselves may be complex functions of the parameters of A or dependent
on external inputs. Such timing properties can be cast as implementation relations: first
an abstract SHIOA B is specified that has exactly the required timing behavior—this is
easy because we know the timing requirements that we wish to prove. Then, we show that
that A implements B. In two of our case studies (Sections 6.4.1 and 6.4.2), we follow this

106



recipe and prove timing properties using simulation relations. In constructing the simulation
proofs the strategies we have developed prove to be effective. In addition, the strategies
for manipulation of real-inequalities provided by the Field [MM01] and the Manip [Vit02]
packages are useful because these simulation relations involve inequalities between variables
of the system and its abstraction. Overall, our experience with the tool suggests that
it is possible (but not routine) to express realistic systems in HIOA , translate the HIOA
specification to PVS , and then prove properties of the system using PVS on the translator
output.

6.2 Translation

In this section we describe the design of a scheme for translating HIOA specifications to
PVS . A HIOA specification file called say, xyz.hioa, when translated, produces a set of
PVS files containing several PVS theories. A summary of these files and their contents
are shown in Table 6.1. Essentially these generated theories contain definitions specifying
the variables, actions, transitions, trajectories, and putative invariant predicates of the
input HIOA specification. Some theories such as xyz invariant and xyz 2 XYZ also contain
lemmas and theorems asserting properties such as invariance of predicates and simulation
relations. For generating these theories, the translator instantiates a PVS theory-template
with the specifics obtained from xyz.hioa. These generated theories by themselves are not
complete; they import a set of generic SHIOA library theories, that we have developed, for
defining the semantics of SHIOAs. One library theory, for example, defines what it means for
a state of any SHIOA to be reachable in terms of abstract transitions and trajectories. The
combination of the translated theories and the generic library theories completely describe
the behavior of the particular SHIOA in question, and the PVS prover can be invoked to
prove theorems about its behavior. In what follows, we take a closer look at the translation

Filename Theory name Description

xyz decls.pvs xyz Definition of the components of automaton xyz

common decls.pvs common decls Automaton parameters and where clause

xyz invariants.pvs xyz invariants Lemmas asserting invariants of xyz

xyz 2 XYZ.pvs xyz 2 XYZ Lemma asserting simulation from xyz to XYZ

Table 6.1: PVS files generated by translator.

of HIOA specifications to PVS theories and the definitions provided by the generic SHIOA
library theories.

6.2.1 Assumptions

The correct translation to PVS assumes the following two restrictions on the SHIOA A that
is specified in HIOA :

(1) A does not have input variables. In specifying A in PVS , we have to define its trajec-
tories. Trajectories of input variables are restricted only by their dynamic types. For
specifying dynamic types of continuous input variables we have to define the class of

107



functions that is piece-wise continuous. This poses certain difficulties because the the-
ory of real analysis including continuity is not completely developed in PVS. Of course,
when such a theory becomes available we can relax this assumption.

(2) HIOA allows us to define transitions of A by writing arbitrary relations relating the pre-
and post-states. This is not allowed. The restriction allows us to convert transition
relations to transition functions; thus we can compute the post state of a transition (or
a trajectory) from its pre-state. Note that transitions (and trajectories) of A can still
have nondeterminism through choose statements (and inequalities).

It is worth noting that HIOA specifications allow us to write arbitrarily complicated differ-
ential equations in the state models. But, we cannot assert conditions involving derivatives
and integrals of functions directly in PVS (see Section 6.2.7 for details). Hence, our trans-
lation of state models relies on actually solving these differential equations, and therefore,
we cannot automatically translate arbitrarily complex differential equations. In fact, the
current implementation of the TIOA to PVS translator can only translate specifications with
state models that have differential equations constant right hand sides. This is not a re-
striction imposed by the translation scheme, but it reflects the limited ability of our current
translator software in solving differential equations. For classes of differential equations
outside the above, solutions may be provided manually by the user. In the future, this step
could also be automated by invoking external DAE solving tools such as Maple [GGC81]
and Macsyma [Mat74].

6.2.2 Types and Vocabularies

Simple static types of HIOA , such as, Bool, Char, Int, Nat, Real, and String have their
equivalents in PVS. The HIOA types defined using the type constructors Enumeration,
Tuple, Union, Set, Map, and Array are directly translated to type declarations in PVS . The
type AugmentedReal is translated to a type called time which is defined as a Datatype
that is the union of two subtypes: non-negative reals (nnreal in PVS ) and a singleton type
with an element called infinity .

HIOA vocabularies are directly translated to PVS theories. The semantics of these type
and operator declarations are written in PVS library theories, which are imported by the
translator output.

Example 6.1. The directedGraph vocabulary of Figure 3-2 is reproduced in Figure 6-1 along-
side its PVS translation. The directedGraph theory is parameterized by the type parameter
T . The sequences theory is a PVS library theory for finite sequences. The result of import-
ing the sequences with parameter T into directedGraph is that the type sequence becomes
defined as a finite sequence of elements of type T , and the usual operators on objects of
type sequence become available in directedGraph. Tuples with accessors for the individual
components are called records in PVS and they are declared with [# . . .#] syntax. By im-
porting directedGraph[I] into another PVS theory, directed graphs with vertices of type I
can be used. Notice that PVS allows us to declare connected as an abstract (uninterpreted)
function. This is is sufficient to use it in other specifications, however, if we are inter-
ested in proving theorems about a specification that relies on the behavior of connected,
then we have two options: (1) We write axioms describing the of connected, for example,
connected(a, b) ∧ connected(b, c) ⇒ connected(a, c). (2) We provide a concrete definition
for computing connected; in this case, this would be an inductive definition.

108



vocabulary directedGraphs(T :type)
types
Edge = Tuple [src : T, dst : T ];
Digraph =

Tuple [vset :Set[T ], eset :Set[Edge]];
Path = Seq [T ];

operators
connected : T, T → Bool;
addEdge : Digraph,Edge→ Digraph;

end

directedGraphs[T: Type ]:Theory
Begin

Importing sequences[T ]

Edge: Type = [# src: T, dst:T # ]
Digraph: Type =

[# vset: setof[T ], eset:setof[Edge ] # ]
Path: Type = sequence

connected:[T,T → bool ]
addEdge: [Digraph, Edge → Digraph ]

End directedGraphs

Figure 6-1: directedGraphs vocabulary in HIOA translated to directedGraphs theory in PVS.

Automaton parameters in HIOA are declared as constants in a separate PVS theory called
common decls. The where clause relating the automaton parameters is stated as an axiom
relating the constants.

6.2.3 Variables and Initial States

The set of valuations of output and internal variables of an SHIOA A are translated to two
separate records types in PVS . A collection of output variables y1, y2, . . . , yn, of respective
types Y1, Y2, . . . , Yn, is translated to a record type declaration called OutputVals:

OutputVals: Type = [# y1:Y1, y2:Y2, · · ·, yn:Yn # ]

The type OutputVals corresponds to the set of all valuations of the output variables of A.
The internal variable declarations are translated to similar record types called States. The
ExternalVals, LocalVals, and Vals types, corresponding to the valuations of all the external
variables, all the local variables, and all the variables of A, are defined as:

ExternalVals: Type = [# output: OutputVals # ]
LocalVals: Type = [# states: States, output: OutputVals # ]
Vals: Type = [# states: States, output: OutputVals # ].

There are two overlapping mechanisms for specifying the starting states of a SHIOA
in the HIOA language: (a) individual variables are assigned particular values and (b) an
predicate on the variables defines the set of possible starting valuations. Both these features
of HIOA are translated to a single predicate called Start in PVS.

Example 6.2. The HIOA code fragment from Section 3.2.4 and its PVS translation is shown
in Figure 6-2. In translating variable types to PVS , the DiscreteReal variables are treated
in the same way as Real variables; additional constrains on the former variables appear
when their trajectories are defined (see Section 6.2.7). Since initial values can be defined
only for internal variables in HIOA , Start is predicate on States and not Vals.

6.2.4 Trajectory Types

The PVS translation defines the following trajectory types derived from the variables types.
These types are used in the subsequent definition of actions, transitions, and trajectories.

interval(t:nnreal):Type = {t1:nnreal |t1 ≤ t}
Trajs(t:nnreal):Type = [interval(t) → Vals ]
ExtTrajs(t:nnreal):Type = [interval(t) → ExternalVars ]

109



variables
output u : Discrete Real

internal x : Real := 5,
y : Real := choose k where −5 ≤ k ≤ 5,
z : Real
initially z × z + y × y ≤ 10

OutputVals: Type = [# u:real # ]
States: Type = [# x:real, y:real, z:real # ]
ExternalVals: Type = [# output:OutputVals # ]
LocalVals: Type =

[# states:States, output:OutputVals # ]
Vals: Type =

[# states:States, output:OutputVals # ]

Start(s:States): bool =
x(s) = 5 And
y(s) ≥ -5 And y(s) ≤ 5 And
exp(z(s),2) + exp(y(s),2) ≤ 10

Figure 6-2: Variable declarations in HIOA translated to type declarations in PVS .

StateTrajs(t:nnreal):Type = [interval(t) → States ]

The type interval(t), for a non-negative real t, equals the real interval [0, t]. The type
Trajs(t) equals the set of functions that map the interval [0, t] to Vals, that is, valuations
of all the variables of A. Here we remark that the PVS type Trajs does not necessarily
correspond to the mathematical object trajs(V ), where V is the set of variables of the
automaton being specified. The set trajs(V ) is the set of trajectories that respect the
dynamics types of the individual variables in V . These functions in Trajs do not necessarily
belong to the dynamic types; dynamic type constraints cannot be stated in PVS at present.

The type ExtTrajs(t) equals the set of functions that map the interval [0, t] to ExternalVals,
that is, valuations of the external variables of A. The parameterized types StateTrajs(t) is
defined analogously.

6.2.5 Actions, State Models, and Moves

The set of action names and state model names of an SHIOA are translated to a single PVS
datatype called Moves. Although actions and state models describe very different kinds
of objects, they both define how the variables of an SHIOA changes, and at a syntactic
level they play similar roles in defining the reachable states and traces of an SHIOA. Thus,
putting them together in a common type simplifies the PVS theory. Informally, the Moves
datatype defines the names of all the possible ways in which the variables of the SHIOA
A can change. For each action of A, Moves datatype has a separate constructor; and
all the state models of A, are encapsulated by a single constructor called smodels. The
parameters of smodels constructor are explained in the following example. If an actions
and state models have formal parameters, the corresponding constructors have additional
parameters.

Four predicates are defined on Moves to distinguish the actions from the state models,
and to distinguish the different kinds of actions from one another. For example, (Actions)
is a subtype of Moves also (Trajectories) is a subtype of Moves. The following example
illustrates these definitions.

Example 6.3. The PVS code fragment in Figure 6-3 shows the definition of the Moves
datatype for the Supervisor automaton from Chapter 4 (Figure 4-7). The enumeration
type SModelNames is derived from the names of the state models in the HIOA code, that is,
the identifiers following the trajdef keyword. In PVS , a datatype is declared by giving a
list of constructors-recognizers pairs. A datatype constructor is a function that returns an
object of the type that is being defined. And a recognizer returns true when it is applied to

110



an object that has been constructed using its constructor. For example, the second entry
in the list for the Moves datatype is the constructor sample with parameters x0, x1, and
its recognizer sample?. Hence, sample(π4 , 5) has type Moves. And for any object a of type
Moves, sample?(a) returns true if and only if a has been constructed using the sample
constructor.

automaton Supervisor(umin, umax : Real)
type

Mode = Enumeration [sup, usr ]

signature
input sample(x0, x1 : Real)
input usrOutput(u′ : Real)
output supOutput(u′ : Real)

trajectories
trajdef supMode
. . .

trajdef usrMode
. . .

SModelNames:Type = {supMode, usrMode}

Moves: Datatype Begin
smodel(name:Modes,

ltime:nnreal, tau:Trajs(ltime)):smodel?
sample(x0, x1:real):sample?
usrOutput(u:real):usrOutput?
supOutput(u:real):supOutput?

End

Trajectories(a:Moves):bool = smodel?(a)
Actions(a:Moves):bool = Not smodel?(a)
InternalActions(a:(Actions)):bool = true
ExternalActions(a:(Actions)):bool = false

Figure 6-3: Actions and State models in HIOA translated to Moves in PVS .

Each object defined by the smodel constructor corresponds to a trajectory of the vari-
ables of A. The smodel constructor has three parameters: (1) name is the name of the
state model that defines the trajectory, (2) ltime is the limit time of the trajectory, and (3)
tau is the trajectory itself.

The Trajectories predicate distinguish the Moves that correspond to smodel and from
the others, namely those corresponding to actions. In PVS , a predicate p on a type T readily
defines a predicate subtype (p) ∆= {x : T | p(a)}. In the above example, the (Actions)
subtype is used to define the predicates the InternalActions and ExternalActions.

6.2.6 Transitions

Discrete transitions in HIOA are specified using preconditions and effects, and the state mod-
els are specified using invariants, stopping conditions, and evolve-clauses. The PVS trans-
lation of a HIOA specification converts these definitions into two independent definitions,
namely, Enabled(m : Moves, v0 : Vals) : bool, and Trans(m : Moves, v0 : States) : Vals.
The predicate Enabled(m, v0) returns true if and only if the move m is allowed at from
valuation v0. The function Trans(m, v0) returns the valuations of the variables that result
from the occurrence of m at v0.

A couple of points are to be noted before we proceed to describe further details of the
translation. First, in an execution of A, Trans(m, v0) is applicable for a given valuation v0
and a given move m, only if Enabled(m, v0) is in fact true. This information, however, is
not available in the definition of Trans(m, v0) and hence in some cases the PVS type checker
produces additional proof obligations called Type Correctness Conditions (TCCs). For
example, consider a receive action that is Enabled when a queue is non-empty, and when the
action occurs it removes the first element of the queue. In type-checking the Trans function
for receive, PVS will generate a TCC asserting the non-emptiness of queue (because the
first element can be removed only for non-empty queues). This TCC can only be proved if
we add the precondition of receive as a conditional in the eff program. Secondly, in HIOA

111



the valuations of the variables that result from the occurrence of a move (transition or
trajectory) may be chosen non-deterministically, however, Trans(m, v0) is a function which
uniquely determines the valuations. The missing step here is to introduce additional formal
parameter(s) for such nondeterministic moves, whereby the choice of the values for the
parameter(s) uniquely determine the valuation of the variables. This technique of pushing
internal nondeterminism (choices within a transition definition) to external nondeterminism
(choice over several transitions) has been employed previously in [BGL02] and [Mit01] for
the purpose of transforming transition relations to transition functions. In this section we
describe the translation of the discrete transitions and in Section 6.2.7 we describe the
translation of the state models.

The Enabled predicate for actions is defined using a Case statement which contains the
preconditions from the HIOA specification. The HIOA program specifying the effects of tran-
sitions consists of three types of sequential statements, namely, assignments, conditionals,
and loops. Each of these statements is translated to its corresponding functional relation
between states, as shown in Table 6.2.6. The term P is a HIOA program, while transP (v0)
is a PVS function that returns the valuation obtained by performing program P on v0.
Sequential statements like P1;P2 are translated to a composition of the corresponding func-

Statement type HIOA program P PVS translation transP (v)

Assignment x := exp v With [x := exp]

Conditional if pred then P1 fi If pred Then transP1 (v) Else v Endif

Conditional if pred then P1 else P2 fi If pred Then transP1 (v) Else transP2 (v) Endif

Loop for x in A do P1 od f orloop(A, v) : Recursive Vals =

If empty?(A) Then v Else v = choose(A),

s′ = f orloop(remove(x,A), v) In transP1 (v′) Endif

Measure card(A)

Table 6.2: Translation of program statements. v is a valuation of variables; exp is an
expression of type type(v); pred is a predicate; A is a finite set; choose picks an element
from A. WITH makes a copy of the record s, assigning the field v with a new value t.

tions transP2(transP1(v)). The translator can performs composition using the Let keyword
of PVS for writing complex expressions through recursive substitutions. The program P1;

P2 can be written as LET v = transP1(v) IN transP2(v).

Example 6.4. Figure 6-4 shows an example that illustrates translation of assignments and
conditionals. The effect of the foo transition is a set of arithmetic operations on the state
variables x and y. And the effect of bar swaps x and y if they are not equal. The PVS
translation is shown in the right column of Figure 6-4. In the transition of bar , x and y are
assigned new values only when their values are not equal in the pre-state. Otherwise, they
are assigned their previous values.

In [LKLM05, Lim01], an alternative translation method using explicit substitutions is
proposed. This approach explicitly specifies the resulting value of each variable in the post-
state in terms of the variables in the pre-state [BGL02]. In the substitution method, the
translator does the work of expressing the final value of a variable in terms of the values of
the variables in the pre-state. In the LET method, the prover has to perform these sub-
stitutions to obtain an expression for the post-state in an interactive proof. Therefore, the
substitution method is more efficient for theorem proving, whereas the LET method pre-

112



transitions
internal foo(i : Nat)

pre . . .
eff x := x+ i; y := x× x;
x := x− 1; y := y + 1;

internal bar
pre . . .
eff t := x;

if x 6= y
then x := y;
else y := t;

fi;

trans(m: Moves, v:Vals):Vals =
Cases m Of

foo(i): v With [states :=
(Let s: States = states(v) With [x := x(v) + i ] In
(Let s: States = states(v) With [y := x(v) × x(v) ] In
(Let s: States = states(v) With [x := x(v) -1 ] In
(Let s: States = states(v) With [y := y(v) + 1 ] In s)))) ]

bar: v With [states :=
(Let s: States = states(v) With [t := x(v) ] In
(Let s: States =

If x(v) 6= q y(v) Then
(Let s: States = states(v) With [x := y(v) ] In
(Let s: States = states(v) With [y := t(v) ] In s))

Else s)) ]
. . .

Endcases

Figure 6-4: Discrete transitions in HIOA and their PVS translation.

serves the sequential structure of the program, which is lost with the substitution method.
Since the style of translation in some cases may be a matter of preference, we currently
support both approaches as an option for the user.

6.2.7 Trajectories

Recall from Section 6.2.5, that the names of the state models of SHIOAA are declared by the
smodel constructor in the Moves datatype. Each object of type Moves that is constructed
by smodel corresponds to a trajectory of the variables of A and has three parameters: (1)
name: the name of the state model, (2) ltime: the length of the trajectory, and (3) tau:
the trajectory itself. The set of all possible trajectories of the variables of A is defined as
the type Trajs. Of all these trajectories, those that are actually permitted by A—as defined
by its state model invariants, stopping conditions, and the evolve clauses—are specified by
the enabling condition of the corresponding move. Given a valuation v0 of type Vals and
an object m of type Moves constructed using smodel, Enabled(m, v0) returns true only if
tau(m) is a trajectory of A defined by the state model name(m) such that the starting
valuation of τ(m) is v0. Hence, Enabled(m, v0) encodes the conditions imposed by the
invariant, the stopping condition, and the evolve clause of the state model name(m). And
the Trans(m, v0) function for smodel is simply tau(ltime) which returns the valuation of
the variables at the last point in the trajectory.

The conditions imposed by the invariants and stopping conditions can be written di-
rectly using logical expressions involving the variables, however, the conditions imposed by
the evolve clause typically involve derivatives and integrals of the variables evaluated over
tau(m). Currently it is not possible to express such differential and integral constraints
on tau, because theory of differential and integral calculus is not completely formalized in
PVS. Instead, we state the relationship among the variables that result from solving the of
the differential and algebraic equations in the evolve clause. The translator solves algebraic
equations and a relatively small class of differential equations, namely, those with constant
right hand sides. Although limited, this class of DAIs can express systems with drifting
clocks; as in the case of distributed, real-time systems. For classes of differential equations
outside the above, solutions may be provided manually by the user. In the future, this man-
ual step could be eliminated by directly invoking tools for solving DAEs [GGC81, Mat74].

113



automaton Bounce(ρ : Real)
where 0 < ρ < 1

signature
output bounce

variables
internal v : Real := 0;

x : Real := 100;
let g = 9.8;

transitions
output bounce

pre x = 0 ∧ v < 0;
eff v := −ρ× v;

trajectories
trajdef motion
stop when x = 0 ∧ v < 0
evolve d(v) = −g; d(x) = v;

1Bounce decls: Theory Begin

3SModelNames: Type = {motion}
States: Type = [# v:real, x:real # ]

5LocalVals: Type = [# states:States # ]
Vals: Type = [# states:States # ]

7. . .
Start(s:States):bool = (v(s) = 0 And x(s) = 0)

9g: posreal = 9.8

. . .
11Moves: Datatype Begin

bounce:bounce?
13smodel(name:SModelNames,ltime:nnreal,tau:Trajs):smodel?

End Moves
15

Enabled(m:Moves, v0:Vals):bool =
17Cases m Of

bounce: x(v0) = 0 And v(v0) < 0,

19smodel(name,ltime,tau):
Cases name Of

21motion: Forall (t:interval(ltime)):
x(tau(t)) = 0 And v(tau(t)) < 0 ⇒ t = ltime

23And Forall (t:interval(ltime)):
v(tau(t)) = v(v0) −g × t And

25x(tau(t)) = x(v0) + v(tau(t)) × t
Endcases

27Endcases

29Trans(m:Moves, v0:Vals):Vals =
Cases m Of

31bounce: v0 With [states:= states(v0) With [v := −rho× v(v0)]]
smodel(name,ltime,tau): tau(ltime)

33Endcases
. . .

35End Bounce

Figure 6-5: Bounce automaton translated to Bounce theory in PVS.

Example 6.5. In Figure 6-5 we present the key definitions in the PVS translation of the
bounce automaton of Chapter 3. The common decls.pvs file (not shown here) defines a
real variable, rho, which takes values in the range (0, 1). Corresponding to the single
state model motion of the Bounce automaton, SModelNames is a singleton type. Since
this automaton has no external variables, the record for Vals consists of a tuple with only
states but no output types. The Moves datatype declares the names of the actions, in this
case bounce, and the state models. The States and SModelNames types differ for different
automata, but the dependent type definitions for interval , Trajs (see, Section 6.2.4), and
the constructor smodel are always the same.

The Enabled predicate defines whether at a valuation v0, a move corresponding to a
bounce-transition or a motion-trajectory, is possible. The first case, line 18, is a direct
translation of the precondition of the bounce action, namely, x(v0) = 0 ∧ v(v0) < 0. Here
x(v0) actually means x(states(v0)); this shorthand is possible because accessor functions
(not shown in the figure) are defined in the translation for accessing the component variables
inside the States and OutputVals records.

The second case (lines 19–26) encodes the invariant, the stopping condition, and the
evolve clause of the motion state model. For SHIOAs with multiple state models, the
individual models are defined through a nested case statement on the names of the state
models. Bounce has just one state model, namely, motion, and its stopping condition and

114



evolve clause are encoded as a conjunction of two clauses (lines 21–25). The first clause
(lines 21–22), encodes the stopping condition. The second clause (lines 33–25), asserts that
the values of the state variables v and x over the trajectory tau are according to the solution
of the differential equations d(v) = −g; d(x) = v with initial value v0.

The Trans function defines the valuation of variables when a move m corresponding to
a bounce transition or a motion trajectory, occurs at v0. The first case (line 31) states that
the valuation of the variables after a bounce transition is the same as their valuations at v0,
except that the states component is modified by replacing the value of v by −rho× v(v0).
The second case (line 32 states that the valuation of the variables after any trajectory tau
equals their valuation at tau(ltime). The complete Bounce theory contains several other
standard definitions that are not shown in Figure 6-5.

Example 6.6. In this example we show the PVS translations of the failure detector and its
abstract specification from Chapter 3. Figure 6-6 shows PVS theory Spec decl—the trans-
lation of the abstract Spec automaton (Figure 3-7). For this example, the common decls
theory defines a nonempty type M , a dependent type Packet = [#message : M,deadline :
nnreal#], and three nonnegative real parameters u1, u2, and b. It also imports the theory
sequences[Packets]. Spec does not have external variables, and so the definitions for Vals
and LocalVals are identical to those in Example 6.5. The ExternalActions predicate declares
the Moves constructed with the fail and the timeout constructors to be external actions.
The Spec automaton has two state models, namely, normal and failed, and their Enabled
predicates are defined in the usual way. The expression clock := clock(v0) + t models the
solution of the differential equation d(clock) = 1 with initial value clock(v0).

The failure detector is implemented by the composition of SHIOAs PeriodicSend and
Detector of Figure 3-8, and SHIOA TimedChannel of Figure 3-5. The translation scheme
is able to translate composed SHIOAs to PVS , however, the current implementation of the
translator requires the input HIOA specification to be a primitive automaton. So, we hand-
compose these three automata specification to obtain the Timeout automaton of Figure 6-7.
Each of the automata PeriodicSend and Detector has a variable called clock. In mechanical
composition, these variables are renamed as PeriodicSend.clock and Detector.clock, and
therefore, are distinguished. Here, for the sake of brevity, we call these variables clocpp
and clockd, respectively. Note that this automaton has a single state model, namely normal,
which is in fact the combination of three state models: timepassage of TimedChannel, normal
of PeriodicSend, and normal of Detector. The stopping condition for the combined state
model is the disjunction of the stopping conditions of the component state models.

Figure 6-8 shows PVS theory Timeout decl—the PVS translation of Timeout. We discuss
translation of the invariant properties of Timeout in the next section. Two points worth
noting in this translation: (1) The common decls theory imports sequences[Packet]. This
defines the type sequences as finite sequences of Packets, and the operations first, rest,
and add as the usual operations on sequences. (2) The actions send and receive are pa-
rameterized and the corresponding constructors, send(m : M) and receive(m : M), have
the same formal parameter. The definitions for Enabled and Trans for Moves constructed
using send(m) and receive(m) depend on value of the parameter m.

If the evolve of an SHIOA state model clause contains a constant differential inclusion
of the form d(x) ≤ k, an additional parameter x r is introduced in the corresponding move
constructor. Then, a fourth conjunction is added with the Enabled predicate to assert the
restriction x r ≤ k. For example, the state model
trajdef progress invariant x ≥ 0 stop when x = 10 evolve d(x) ≥ 0; d(x) ≤ 2

115



1 Spec decls: Theory Begin
Importing common decls

3

SModelNames = {normal, failed}
5 States: Type = [# last timeout:time, clock:nnreal, suspected:bool, failed:bool # ]

7 Start(s:States):bool = last timeout(s)= infinity And clock(s) = 0 And Not (suspected(s) Or failed(s))

9 Moves: Datatype Begin
fail: fail?

11 timeout: timeout?
smodel(name:SModelNames,ltime:nnreal,tau:Trajs):smodel?

13 End Moves

15 Trajectory(m:Moves): bool = smodel?(m)
Actions(m:Moves): bool = Not Trajectory(m)

17 ExternalActions(a:(Actions)): bool = fail?(a) OR timeout?(a)

19 Enabled(m:Moves, v0:Vals):bool =
Cases m Of

21 fail: Not failed(s),
timeout: failed(s) And Not suspected(s),

23 smodel(name,ltime,tau):
Cases Of name

25 normal: Forall (t:interval(ltime)):
Not failed(tau(t)) Or (failed(tau(t)) And suspected(tau(t)))

27 And tau(t) = v0 With [states := states(v0) With [clock := clock(v0) + t]],
failed: Forall (t:interval(ltime)): failed(tau(t))

29 And clock(tau(t)) = last timeout(tau(t)) ⇒ t = ltime
And tau(t) = v0 With [states := states(v0) With [clock := clock(v0) + t]]

31 Endcases
Endcases

33

Trans(m:Moves, v0:Vals):Vals =
35 Cases m Of

fail: v0 WITH [states := states(v0) With [failed := true, last timeout := clock(v0) + u2 + b ] ],
37 timeout: v0 WITH [states := states(v0) With 〈last timeout := infinity, suspected := true ] ],

smodel: tau(ltime)
39 Endcases

41 Importing hybrid machine[States, (Actions), (ExternalActions), (Trajectories),Enabled ,Trans,Start ]

43 END Spec decls

Figure 6-6: Spec of Figure 3-7 translated to Spec decls theory.

is translated to a move constructor smodel(name : SModelNames, ltime : nnreal, tau :
Trajs, x r : real) with the enabling condition:

Enabled(m,v0):bool = Cases m Of
smodel(name,ltime,tau,x r):

Cases name Of
progress: Forall (t:interval(ltime)):

x(tau(t)) ≥ 0
And (x(tau(t)) = 10 ⇒ t = ltime)
And x(tau(t)) = x(v0) + x r × t
And 0 ≤ x r ≤ 2

116



1 automaton Timeout(M :type,u1, u2, b : Real)
where u1 ≥ 0 ∧u2 ≥ 0 ∧ b ≥ 0 ∧u2 > (u1 + b)

3 signature
internal send(m : M), receive(m : M)

5 output fail, timeout

7 variables
internal next send : AugmentedReal := 0;

9 next recv : AugmentedReal := u2;
suspected : Bool := false;

11 failed : Bool := false;
now, clockp, clockd : Real := 0;

13 queue : Seq[Packet] := {};

15 transitions
internal send(m)

17 pre 6= failed ∧next send = clockp;
eff next send := clockp + u1;

19 queue := queue ` [m,now + b];

21 internal receive(m)
pre m = head(queue);

23 eff next recv := clockd + u2;
queue := tail(queue);

25

output fail
27 pre ¬failed;

eff failed := true;
29 clockp := ∞;

31 output timeout
pre ¬suspected ∧ clockd = next recv;

33 eff suspected := true;
next recv := ∞;

36trajectories
trajdef normal

38stop when (next send = clockp) ∨
(next recv = clockd) ∨

40(now = head(queue).deadline);
evolve d(now) = 1;

42d(clockp) = 1; d(clockd) = 1;

44invariant of Timeout:
clockp = clockd = now >= 0;

46

invariant of Timeout: clockd ≤ next recv ∧
48clockp ≤ next send ∧

now <= head(queue).deadline;
50

invariant of Timeout: (now + u2) >= 0 ∧
52¬suspected⇒ next recv 6= ∞ ∧

next recv ≤ (now + u2);
54

invariant of Timeout: (now + u1) >= 0 ∧
56¬failed⇒ next send 6= ∞ ∧

next send ≤ (now + u1);
58

invariant of Timeout: ∀n : Nat
60(n ≤ (length(queue)− 1) ⇒

deadline(queue[n]) ≤ (now + b));
62

invariant of Timeout: ¬failed⇒ if queue 6= {}
64then head(queue).deadline < next recv

else (next send+ b) < next recv;
66

invariant of Timeout: suspected ≥ failed;

Figure 6-7: Timeout automaton in HIOA .

6.2.8 Invariants

The hybrid machine theory is a generic SHIOA library theory which provides several essen-
tial definitions and lemmas for SHIOAs. This theory is quite similar to the existing TAME
theory [AHS98] for timed I/O automaton. In Section 6.3 we will describe in detail how
these definitions and lemmas are used by our specialized strategies that automate proofs.
In this subsection and the next one, we describe how these definitions are used for stating
invariant properties and implementation relations.

Each translated theory imports hybrid machine with the parameters States, (Actions),
(ExternalActions), (Trajectory), Enabled ,Trans, and Start , based on which the following
functions are defined.

Reachable hidden(v,n:nat): Recursive bool = If n = 0 Then Start(local(v))
Else (Exists m, v1:Vals): Reachable hidden(v1,n -1) And

Enabled(m,v1) And v = Trans(m,v1)) Endif
Measure Lambda v,n: n
Reachable(s):bool = Exists (n:nat,v): Reachable hidden(v,n) And states(v) = s

In the above fragment, s,m, and v are global variables of type States, Moves, and Vals,
respectively, and Inv is any predicate on States. The predicate Reachable hidden(n, v) is
defined recursively and it returns true if the valuation v of the variables can be reached
through a sequence of n Moves. The predicate Reachable(s) returns true if there exists a

117



Timeout decls: Theory Begin
2 Importing common decls

4 SModelNames: Type = {normal}
States: Type = [# next send:time, next recv:time, suspected: bool,

6 failed: bool, clockp, clock d, now: nnreal, queue: sequence # ]

8 Start(s: States): bool = next send(s) = 0 And next recv(s) = u2 And Not (suspected(s) Or failed(s))
And now(s) = 0 And clockp(s) = 0 And clock d(s) And queue(s) := {} ]

10

Moves: Datatype Begin
12 send(m:M): send?

receive(m:M): receive?
14 fail: fail?

timeout: timeout?
16 smodel(name:SModelNames, ltime:nnreal, tau:Trajs):smodel?

End Moves
18

Trajectory(m:Moves): bool = smodel?(m)
20 ExternalActions(a:(Actions)): bool = fail?(a) Or timeout?(a)

22 Enabled(m:Moves, v0:Vals):bool =
Cases m OF

24 send(m): Not failed(v0) And next send(v0) = clockp(v0),
receive(m): m = message(first(queue(v0))),

26 fail: Not failed(v0),
timeout: Not suspected(v0) And next recv(v0) = clock d(v0)

28 smodel(name, ltime, tau):
Cases name Of

30 normal: Forall (t:interval(ltime)):
((next send(tau(t)) = clockp(tau(t))) Or (next recv(tau(t)) = clock d(tau(t)))

32 Or (now(tau(t)) = head(queue(tau(t))).deadline)) ⇒ t = ltime
And tau(t) = v0 With [states := states(v0)

34 With [clockp := clockp(v0) + t, clock d := clock d(v0) + t, now := now(v0) + t ] ]
Endcases

36 Endcases

38 Trans(m:Moves, v0:Vals):Vals =
Cases m OF

40 send(m): v0 With [states := states(v0) With [next send := clockp(v0) + u1,
queue := add(queue(v0), (# message := m, deadline := clockp(v0) + b #)) ] ],

42 receive(m): v0 With [states := states(v0) With
[queue := rest(queue(v0)), next recv := clock d(v0) + u2 ] ],

44 fail: v0 With [states := states(v0) With [failed := true, next send := infinity ],
timeout: v0 With [states := states(v0) With [suspected := true, next recv := infinity ],

46 smodel(name, ltime, tau): tau(ltime)
Endcases

48

Importing hybrid machine[States, (Actions), (ExternalActions), (Trajectory),Enabled ,Trans,Start ]
50 END Timeout decls

Figure 6-8: Timeout of Figure 6-7 translated to Timeout decls theory.

valuation v that can be reached in some finite number of Moves and its restriction to the
set of state variables equals s. Using the above definition of reachability, the 7 invariant
assertions of Timeout are translated to PVS as follows: Each invariants of HIOA is translated
to a named predicate on States. This involves straightforward syntactic transformations.
The lemma following each predicate asserts that the predicate is indeed an invariant of
Timeout, that is, every reachable state satisfies it (see, Definition 4.2). These lemmas
appear in a separate theory called Timeout invariants (Figure 6-9) which is also produced
by the translator.

118



Timeoutinvariants: Theory Begin
Inv 1(s:States):bool = clockp(s) = clock d(s) = now(s) ≥ 0

Lemma 1: Lemma Forall (s:States): Reachable(s) ⇒ Inv 1(s);

Inv 2(s:States):bool = clock d(s) ≤ next recv(s) And clockp(s) ≤ next send(s)
And now(s) ≤ deadline(first(queue(s)))

Lemma 2: Lemma Forall (s:States): Reachable(s) ⇒ Inv 2(s);

Inv 3(s:States):bool = now(s) + u2 ≥ 0 And Not suspected(s)
⇒ next recv(s) 6= infinity And next recv(s) ≤ now(s) + u2

Lemma 3: Lemma Forall (s:States): Reachable(s) ⇒ Inv 3(s);

Inv 4(s:States):bool = now(s) + u1 > = 0 And Not failed(s)
⇒ next send(s) /= infinity And next send(s) ≤ now(s) + u1

Lemma 4: Lemma Forall (s:States): Reachable(s) ⇒ Inv 4(s);

Inv 5(s:States):bool = Forall (n: nat):
n ≤ length(queue(s)) -1 ⇒ deadline(nth(queue(s), n)) ≤ now(s) + b

Lemma 5: Lemma Forall (s:States): Reachable(s) ⇒ Inv 5(s);

Inv 6(s:States):bool = b > = 0 And Not failed(s) ⇒
If queue(s) 6= {} Then deadline(first((queue(s)))) < next recv(s)

Else next send(s) + b < next recv(s) Endif
Lemma 6: Lemma Forall (s:States): Reachable(s) ⇒ Inv 6(s);

Inv 7(s:States):bool = suspected(s) ⇒ failed(s)
Lemma 7: Lemma Forall (s:States): Reachable(s) ⇒ Inv 7(s);

End Timeout invariants

Figure 6-9: Translation of invariant assertions for Timeout.

6.2.9 Simulation Relations

In this section, we describe how simulation relations between pairs of SHIOAs are translated
to PVS . Simulation relations involve a pair of automata, and hence to express them, one
needs a way to represent abstract automata objects. In order to motivate our approach, we
first discuss the difficulties one encounters in accomplishing this in PVS.

An SHIOA in PVS is determined by instantiations of the types States,OutputVals,
Moves, ExternalActions, Enabled ,Trans, etc. These elements can be thought of as fields
of an abstract tuple, and an automaton object can be thought of as an instance this tuple
type. However, such a tuple type is not possible in PVS, because the fields of a tuple in PVS
are not permitted to have type “type”. Further, unlike Isabelle/HOL [Pau93], PVS does
not support parametric polymorphism. Another possible way to support the definition of
simulation relations between two automata is to create simulation relation templates that
import two automata theories (together with their associated invariants), and then require
the user to tailor certain details of a definition of the simulation property to match the
details of the automata. This approach is awkward for the user, who must carefully tailor
complex definitions to specific cases following PVS naming conventions. It is also awkward
for developing proof strategies, which would need to figure-out the details of the tailored
definitions.

We circumvent these issues by making use of a relatively new feature of PVS called theory
instantiations [OS01]. Our approach is both straightforward for users and clean from the
point of view of strategy developers. This support relies on (a) a generic theory SHIOA,
(b) a library of property theories defining relations, such as, forward simulation, refinement,
and (c) a template for translating simulation relation statements to PVS theorems.

119



SHIOA:Theory Begin
States: Types+
ExternalVals: Types
LocalVals: Types
Moves: Types+
Actions(m:Moves):bool
Trajectories(m:Moves):bool
InternalActions(a:(Actions)):bool
ExternalActions(a:(Actions)):bool
Start(s:States):bool
Enabled(m:Moves, v:Vals):bool
Trans(m:Moves, v:Vals):Vals

Trajs(t:nnreal): Types
ExtTrajs(t:nnreal): Types
states(v:(Vals)):States
exttraj (m:(Trajectories)):ExtTrajs

Reachable(s:States):bool
InvisibleSeqReach(s,s1:States):bool
VisibleContReach(s,s1:States,t:nnreal,

trace:ExtTrajs):bool
End SHIOAutomaton

Figure 6-10: SHIOA PVS theory.

The SHIOA Theory

Figure 6-10 shows the SHIOA theory, which declares the elements that specify an SHIOA.
Other than the pattern of type restrictions, the SHIOA theory makes no other restrictions
on the elements. Note that the translation scheme we have described in Sections 3.2-3.6,
precisely defines these elements for particular SHIOAs. That is, the names and types of
elements in SHIOA theory match exactly the names and types of the definitions that appear
in PVS translation of HIOA specifications. Henceforth, we shall say that a PVS theory ob-
tained by translating a HIOA automaton specification, such as Timeout decls, is an instance
of the SHIOA theory. Instantiation of SHIOA provides concrete definitions of the SHIOA’s
elements. The concrete definitions for the first set of these elements are written by the
user when writing a HIOA specification and then this information is translated to the corre-
sponding PVS theory. The remaining elements are the same for all SHIOAs automata and
are defined in the hybrid machine library library. The user does not have to redefine them
for specific automata, because an appropriate instance of hybrid machine is imported in the
translated specification. We have defined all but the last two elements in this theory. The
predicate InvisibleSeqReach(s1, s2) is true if and only if there exists an execution fragment
α = τ0a1τ1a2 . . . τn such that α.fstate = s1, α.lstate = s2, all the τi’s are point trajectories
and all the ai’s are internal actions. Finally, VisibleContReach(s1, s2, t, trace) is true if
and only if there exists an execution fragment α = τ0a1τ1a2 . . . τn such that α.fstate = s1,
α.lstate = s2, α.ltime = t, all the ai’s are internal actions, and the restriction of α to
external variables and actions equals trace. Both these predicates is defined inductively in
terms of the number of internal actions (and trajectories) constituting α.

Property Theories

The Forward simulation theory shown in Figure 6-11 is a typical property theory ; it defines
what it means for a relation R to be a forward simulation relation between a pair of generic
SHIOAs. In the same spirit we are developing property theories for homorphism, weak
refinement, switching simulation, and backward simulation—all of which involve pairs of
SHIOAs. The first two parameters Forward simulation are of type Theory SHIOA. This
means that

Importing Forward simulation[Theory1 decls,Theory2 decls, . . . , . . .]

automatically instantiates the elements of SHIOA theory with two sets of definitions, cor-
responding to those appearing in Theory1 decls and Theory2 decls. For example, the type

120



A.States, is matched with the type States of Theory1 decls. The third parameter R is a
relation on the states of A and B, which is the putative forward simulation relation. In
the mathematical definition of a forward simulation (Definition 4.3), every move of A is
matched by a sequence of moves of B with the same trace such that the final states are
related. Since the type ExternalActions (and ExternalVals) of A is defined completely in-
dependently of the type ExternalActions (ExternalVals, resp.) of B, we cannot equate an
external action (trajectory of an external variables) of A with that of B. For this reason,
we have to map each external action (variable) of A to an external action (variable) of
B. The last two parameters of Forward simulation, namely, ExtActMap and ExtValMap,
provide these maps. While often these functions map an action (variable) of A to an action
(variable) of B with the same name, they do provide a mechanism for relating automata
with completely different action (and variable) names.

Recall the definition of a forward simulation relation from Chapter 4. The first con-
dition of Definition 4.3, that is, the base case is captured by the FwdSimBase predicate
(line 10). The second and the third conditions of are combined into the FwdSimInd predi-
cate (lines 12–24). FwdSimInd returns true if for all states s A, s1 A of A, state s B of B
and for all moves m of A the following three conditions hold: (1) s A and s B are related by
R and are reachable states of A and B, respectively (line 12). (2) There exist appropriate
valuations of the variables of A such that the move m takes the state s A to s1 A (line 14).
(3) And Finally, based on the type of the move m one of the following conditions must hold
(lines 15–24):

Case 1: m is an external action of A (lines 15–18). There exist intermediate valuations
v1 B, v2 B, and a state s1 B of B such that s1 A and s1 B are related by R, and
(i) sB can go to states(v1 B) through a sequence of internal actions (no time passage),
(ii) states(v2 B) can go to s1 B through a sequence of internal actions, (iii) v1 B goes
to v2 B by performing the external action ExtActMap(m).

Case 2: m is an internal action of A (line 20). There exists a state s1 B of B such that
s1 A and s1 B are related by R and s B can go to s1 B through a sequence of internal
actions.

Case 3: m is a trajectory of A (line 23). There exists a state s1 B of B and a nonnegative
real number t, such that s1 A and s1 B are related by R and s B can go to s1 B
through a sequence of alternating trajectories and internal actions such that the trace
of the whole sequence is ExtVarMap(tau(m)) and has length t.

The FwdSim predicate combines FwdSimBase FwdSimInd for the given pair of SHIOAs,
the relation R, and the external action and external variable maps.

Translation of Simulation Relations to PVS

With the SHIOA and the Forward simulation theories in place, we are in a position to
translate HIOA statements that define simulation relations between a pair of automata. The
translation takes the form of a separate theory such as the one shown in Figure 6-12. The
PVS theories generated by translating each of the HIOA automata specifications are imported,
and then these theories are interpreted as instances of the SHIOA theory using the syntax

MA: Theory = SHIOA :→ Timeout decls

121



1 Forward simulation[A,B: Theory SHIOA, R: [A.States, B.States → bool ]
ExtActMap: [(A.ExternalActions) → (B.ExternalActions) ],

3 ExtVarMap: [(A.ExternalVals) → (B.ExtrnalVals) ] ]: Theory Begin

5 m : Var A.Moves
s A, s1 A: Var A.States

7 s B, s1 B: Var B.States
v1 B,v2 B: Var B.Vals

9

FwdSimBase: bool = Forall s A: A.Start(s A) ⇒ Exists(s B): B.Start(s B) And R(s A,s B)
11

FwdSimInd: bool = Forall s A,s1 A,s B,m: A.Reachable(s A) And B.Reachable(s B) And R(s A,s B)
13 And Exists v A,v1 A: states(v A) = s A And states(v1 A) = s1 A

And A.Enabled(m,s A) And v1 A = A.Trans(m,v A) ⇒
15 (A.ExternalActions(m) ⇒ Exists (v1 B,v2 B,s1 B):

B.InvisibleSeqReach(s B,states(v1 B)) And B.InvisibleSeqReach(states(v2 B),s1 B) And
17 B.Enabled(ExtActMap(m),v1 B) And

B.Trans(ExtActMap(m),v1 B) = v2 B And R(s1 A, s1 B))
19 And

(A.InternalActions(m) And A.Actions(m)) ⇒ Exists (s1 B):
21 B.InvisibleSeqReach(s B,s1 B) And R(s1 A, s1 B)

And
23 (A.Trajectories(m) ⇒ Exists (t:nnreal, s1 B):

B.VisibleContReach(s B,s1 B,t,ExtVarMap(t,exttraj (m))) And R(s1 A, s1 B))
25

FwdSim:bool = FwdSimBase And FwdSimInd
27 End Forward simulation

Figure 6-11: Forward simulation theory.

This matches the elements of SHIOA with their corresponding definitions in Timeout decls
and makes them available as components of MA. The function ExtActMap maps the two
external actions of Timeout decls, namely, fail and timeout, to the identically named
external actions of Spec decls. Since neither automata have external variables, the function
ExtVarMap is declared but is left uninterpreted. It does not impose any constrains apart
from the fact that a trajectory move m of MA should be matched with a sequence of
trajectories and actions of MB with a total length ltime(m). The relation R on the states
ofMA andMB is the putative forward simulation relation from Timeout to Spec. Importing
Forward simulation defines the FwdSim predicate of Figure 6-11 for the automaton theories
Timeout decls and Spec decls. Finally, the FwdSimThm theorem simply asserts that the
FwdSim predicate holds, that is, R satisfies all the conditions to be a forward simulation
relation.

6.3 Strategies

In the previous section we have described how HIOA specifications of automata and their
properties such as invariant assertions and simulation relations can be translated to PVS .
Once translated, the proofs of theorems and lemmas, such as those in Figures 6-9 and 6-12,
can be constructed interactively by invoking the PVS theorem prover. The PVS theo-
rem prover provides a set of general proof commands for manipulating logical formulas.
Basic proof commands include commands for simplification of expressions, expansion of
definitions, and instantiation of existentially quantified variables. The PVS prover also
provides more powerful commands for automated theorem proving such as general semi-
decision procedures for first and higher order logics and an infinite bounded model-checker.
Notwithstanding the power of the PVS prover, we have found that construction of invariant

122



Timeout Spec: Theory Begin
Importing Timeout decls, Spec decls
MA: Theory = SHIOA :→ Timeout
MB: Theory = SHIOA :→ Spec decls

ExtActMap(a:(MA.ExternalActions)):(MB.ExternalActions) =
Cases a of

fail: fail,
timeout: timeout

Endcases

ExtVarMap(t:nnreal,w:(MA.ExtTrajs(t))):(MB.ExtTrajs(t))

R(s A: MA.States, s B: MB.States): bool =
failed(s A) = failed(s B) And
suspected(s A) = suspected(s B) And
now(s A) = now(s B) And
now(s A) = clockp(s B) And
now(s A) = clock d(s B) And
If Not failed(s B) Then last timeout(s B) = infinity

Elsif queue(s A) = {} Then last timeout(s B) ≥ deadline(latst(queue(s A))) + u2
Else last timeout(s B) ≥ last recv(s A)

Endif

Importing Forward simulation[MA, MB, ref, ExtActMap, ExtVarMap ]
FwdSimThm: Theorem FwdSim

End Timeout Spec

Figure 6-12: Translation of forward simulation relation of failure detector.

and simulation proofs for SHIOAs is a labor intensive, and often tedious process, with many
repetitive steps. Our translated theories, on the one hand, are complex because the HIOA
specifications often have complicated user-defined types, and higher-order expressions in
preconditions, stopping conditions, and effects; but, on the other hand, the proofs of the
lemmas are often very well structured and they follow from applications of Lemmas 4.2
and 4.4 (as examples of such structured proofs, see the case studies of Chapters 4 and 5).
The work involved in constructing proofs in PVS can be significantly reduced by building
custom-made proof command or strategies that exploit the structure in SHIOA proofs and
automate many of the repetitive steps.

In this section, we present the principles underlying the development of such proof
strategies. First, in Section 6.3.1 we discuss the strategies for proving invariants. These
strategies were developed by Archer [Arc01] for constructing proofs of Timed Automata.
We discuss them here because they are compatible with the SHIOA model and also because
the experience gained from their design informed the later development of the strategies
for proving refinement and simulation relations. The latter strategies are discussed in Sec-
tion 6.3.2. It is worth mentioning that although others have used PVS to construct invariant
and simulation proofs for I/O Automata [DGRV00], however, to our knowledge, no one has
developed generic PVS strategies to automate construction of such proofs.

6.3.1 Strategies for Proving Invariants

SHIOA strategies for proving invariant properties are derived from earlier TAME strategies.
The strategy essentially relies on the following PVS-version of Lemma 4.2, called theorem
Machine induct , which appears in the hybrid machine library theory.

123



Base(Inv):bool = Forall (v): Start(local(v)) ⇒ Inv(states(v))
Inductstep(Inv) : bool = Forall v, m: Reachable(states(v)) And Inv(states(v))

And Enabled(m,v) ⇒ Inv(states(Trans(m,v)));
Inductthm(Inv): bool = Base(Inv) & Inductstep(Inv) ⇒

Forall s: reachable(s) ⇒ Inv(s);
Machine induct: Theorem (Forall Inv: Inductthm(Inv));

Notice that the transition and the trajectory conditions of Lemma 4.2 are merged into a
single Inductstep. Thus, to prove that a predicate on states Inv is an invariant, it suffices
to check that Base(Ind) and InductStep(Ind). The Auto Induct strategy, the primary
strategy for proving invariant properties, works as follows: it breaks down the proof of
invariance of a given predicate Inv into several subgoals: (a) the base case Base(Inv), and
(b) one subgoal for each constructor of Moves type. Some of subgoals of the second type are
discharged automatically using PVS’s simplification commands; for example, Moves that
are not enabled or those that do not alter the variables involved in Inv. For the remaining
subgoals, auto induct invokes the Apply Precond sub-strategy, which asserts the Enabled
predicate of the move, and attempts to simplify the resulting expressions using the Try Simp
simplification strategy or by using PVS’s decision procedures. Harder subgoals require more
careful user interaction in the form of using previously proved invariants and instantiating
formulas.

In branches involving moves that are Trajectories, the post-state is the last state of
the trajectory tau(m). In order to prove that the invariant holds at tau(m)(ltime(m)),
the inductive hypothesis is used along with the enabling condition of m. Recall that the
enabling condition states that (i) at every point t in interval(ltime) the invariant condition
for the state model name(m) must hold, (ii) if the stopping condition holds at some t in
interval(ltime), then t equals ltime, and that (iii) tau(t) is a solution of the differential
equations described in the state model of name(m). Recall that the invariant condition is
the predicate associated the state model name(m), and is different from the invariant Inv
of the automaton that the user is attempting to prove. For SHIOAs with general dynamics,
at this point, the user has to use the PVS prover and deduce that the invariant holds at
tau(m)(ltime(m)) from the above facts. Many of the subgoals reduce to reasoning about
inequalities over real numbers and for completing such proofs the strategies for manipulating
real inequalities provided by the Field [MM01] and the Manip [Vit02] packages are useful.

For proving convex invariants of rectangular SHIOAs we have a special strategy called
Deadline Check which exploits the monotonicity of the solutions of the state models to
further automate this proof step. This strategy describes the post-state, that is, the valua-
tion of each continuous variable x at tau(ltime), as x(tau(ltime)) = x(v0)+k× ltime(tau),
and then performs the simplifications to check if tau(ltime) satisfies the invariant. For
example, a commonly occurring type of invariant asserts that a variable x, evolving ac-
cording to differential equation d(x) = k, does not cross a deadline, say d (see e.g., Invari-
ants 2 and 3 of Figure 6-9). The proof branch corresponding to a trajectory move m of
such an invariant, is split into two cases by the Deadline Check, namely, (a) ltime(m) ≤
d−x(v0)

k and (b) ltime(m) > d−x(v0)
k . For case (a) it is deduced automatically that at

the post state, x(tau(m)(ltime(m))) = x(v0) + ltime(m) × k ≤ x(v0) + d − x(v0) ≤ d,
that is, it satisfies the invariant. For case (b), by deducing f alse from Enabled(m, v0),
a contradiction is reached. Internally, Deadline Check performs the following checks:
Enabled(m, v0) requires that, forall t ∈ interval(ltime(m)), if x(tau(m)(t)) = k, then
t = ltime(m). From (i) inductive hypothesis, x(v0) ≤ k, (ii) instantiation of stopping

124



x(tau(m)(ltime(m))) > x(v0) + k × d−x(v0)
k = k, and (iii) monotonicity of x(tau(m)),

that is, ∀t ∈ interval(ltime(m)), x(tau(t)) = x(v0) + k × t, it is deduced that there exists
t ∈ interval(ltime(m)), such that x(tau(t)) = d but t 6= ltime(m)—a contradiction with
Enabled(m, v0). Thus, in case (b) m is not a valid move of the automaton in question and
therefore this branch of the induction proof is complete.

6.3.2 Strategies for Proving Forward Simulation

In this section, we discuss strategies we have developed for proving forward simulation
relations for SHIOAs. These strategies were originally developed for Timed I/O Automata
along with several other strategies for proving weak-refinement [MA03, MA05].

The main strategy for proving forward simulations, as defined by the Forward simulation
theory, is called Prove Fwd Sim. The generic nature of the definition of the FwdSim prop-
erty allows us to define Prove Fwd sim in such a way that it can be applied to an arbitrary
simulation proof between any given pair of SHIOAs. This strategy is designed to per-
form much of the work, for an arbitrary simulation theorem such as the one stated at
the end of the Timeout Spec theory. The structure of Prove Fwd Sim in terms of sub-
strategies is shown in Figure 6-16. The branches terminating in blue circles signify that
the if the preceding sub-strategy fails to complete the proof, the resulting subgoals are
handed over to the user for constructing their proofs interactively. First, Prove Fwd Sim
splits the predicate FwdSim into FwdSimBase and FwdSimInd and applies Setup Sim Base
and Setup Sim Induct Cases sub-strategies to the branches, respectively. Setup Sim Base
performs the standard steps needed in the base case, including skolemization, expansion of
the definitions Start and R, and simplifications. The base case sequent, which is han-
dled by Setup Sim Base, is shown in Figure 6-13, in which Timout decls.Start and
SPEC decls.start are the start predicates of Timeout and Spec, respectively. Prove Fwd Sim

;;;Base case

{-1} Timeout_decls.Start(s_A)

|-------

{1} Exists (s_B:Spec_decls.States): Spec_decls.Start(s_B) And R(s_A,s_B)

Figure 6-13: Base case sequent of simulation proof.

then probes the proof state to check if the base case can be discharged trivially, and then, it
moves over to the next branch of the proof, namely, the application of Setup Sim Induct Cases
to FwdSimInd . If a proof subgoal is not completely resolved by the application of a strat-
egy, then the final set of sequents produced by the strategy are presented to the user for
interactive proving.

The sub-strategy Setup Sim Induct Cases performs skolemization and expands the def-
initions of InternalActions, ExternalActions, and Trajectories and splits up the induction
step into a set of subgoals—one for each constructor of the Moves datatype. Based on
whether the constructor classifies as ExternalActions, InternalActions, or Trajectories, the
Sim Induct ExtAction, the Sim Induct IntAction, or the Sim Induct Traj sub-strategies
are applied. In what follows, we will discuss each of these sub-strategies, but first we dis-
cuss a strategy called State Trans which is a building-block for all these strategies. The
State Trans strategy is used for constructing states by applying a sequence of moves to
a given state. Thus, this strategy is useful for proving the InvisibleSeqReach predicate
which appear in the definition of FwdSimInd . This strategy takes a sequence of action, say

125



σ = a0, a1, . . . , an, a starting valuation v1, and a target state s2 as parameters and produces
the following set of subgoals:

� s2 = state(Trans(an,Trans(an−1,Trans(an−2, . . . ,Ttrans(a1, v1) . . .)))),

� For each i ∈ {1, . . . , n}, InternalActiona(ai), and

� For each i ∈ {1, . . . , n}, Enabled(ai,Trans(ai−1,Trans(ai−2, . . . , v1) . . .).

For an appropriate sequence of internal actions, the strategy then discharges the first
and the second set of subgoals by expanding the definitions of InternalActions,Enabled ,
and Trans. The remaining subgoals are then presented to the user with properly la-
beled sequents. Instances of this strategy are used by the Sim Induct ExtAction and
the Sim Induct IntAction sub-strategies as discussed below.

The Sim Induct IntAction strategy is designed for proving the second case (line 21) in
the definition of FwdSimInd of Figure 6-11. This strategy prompts the user for a sequence

;;;Induction step: internal action Case "send"

[-1, (reachable A.prestate)] A.Reachable(s_A)

[-2, (reachable B.prestate)] B.Reachable(s_B)

[-3, (related A.prestate B.prestate)] R(s_A,s_B)

[-4, (send A.move)] send?(m)

[-5, (enabled A.action)] A.Enabled(m,s_A)

[-6] s1_A = states(v1_A)

[-7] v1_A = A.Trans(m,v_A)

|-------

{1} Exists (s1_B:Spec_decls.States): B.InvisibleSeqReach(s_B,s1_B) And R(s1_A, s1_B))

Figure 6-14: Inductive step sequent for internal actions.

of internal actions σ of automaton B. This is the sequence of actions that will be used to
match the move m of automaton A and this sequence will take state s B to s1 B. Formally,
s1 B is instantiated as Trans(σ, s B) and the branch generates the subgoals: (i) s B reaches
s1 B through a sequence of internal actions, (ii) s1 B and s1 A are related by R.

For example, consider the sequent it Figure 6-14, which is an intermediate subgoal in
the inductive branch corresponding to moves constructed using the send constructor of
Timeout . This corresponds to the proof branch in a hand-proof for an the internal send
action of Timeout. The first line of the sequent is a comment added by the strategy which
indicates the current branch of the proof. All the variables appearing in the antecedent
are constants resulting from skolemizing universally quantified expressions. Suppose in
proving this branch, the user invokes the Sim Induct IntAction strategy with parameter
“ ”, indicating that the send action of Timeout is emulated by Spec by an empty sequence
of actions. Then, s1 B is instantiated as State Trans(“ ”,s B) which of course is identical
to s B. In the resulting sequent, s1 B is replaced by s B; B.InvisibleSeqReach(s B, s B)
holds trivially and is proved automatically by the State Trans strategy. Therefore, sequent
reduces to proving R(s1 A, s B) which is deduced from the hypothesis R(s A, s B) and
from the definition of Trans. This last bit of simplification is performed by the Do Trans
sub-strategy which computes the post-state from a pre-state by applying a transition and
repeatedly simplifies. In this case, s1 A is computed by applying a send transition to s A.
In general, when State Trans strategy is called with a sequence of actions of length n, then
for each action an enablement-subgoeal is produced which is delegated to an Enablement

126



sub-strategy. The Enablement sub-strategy expands the definition of the Enabled predicate
and simplifies to prove that the move in question is enabled at a given state.

The Sim Induct ExtAction sub-strategy is used to prove branches corresponding to
moves that are ExternalActions. This strategy prompts the user for two sequences of inter-
nal actions, say σa and σ2. These sequences are used to construct a sequence σ1ExtActMap(m)σ2,
which matches the move m of automaton A.

Consider a typical sequent of this type as shown in Figure 6-15 which is an induc-
tive branch corresponding to moves constructed using the fail constructor. As in the
case of internal actions, the first line of the sequent is a comment added by the strat-
egy and all the variables appearing skolem constants. The requirement for this branch
is to show the existence of a valuations v1 B, v2 B, and state s1 B, such that (i) s B
reaches v1 B through a sequence of internal actions, (ii) v2 B reaches s1 B through a
sequence of internal actions, (iii) v1 B reaches v2 B through an action ExtActMap(m),
and (iv) s1 B and s1 A are related by R. Sim Induct ExtAction instantiates v1 B, v2 B,
and s1 B by applying State Trans strategy as follows: v1 B = State Trans(σ1, s B),
v2 B = Trans(ExtActMap(m), v1 B), and s1 B = states(State Trans(σ2, v2 B)). Once

;;;Induction step: external action Case "fail"

[-1, (reachable A.prestate)] A.Reachable(s_A)

[-2, (reachable B.prestate)] B.Reachable(s_B)

[-3, (related A.prestate B.prestate)] R(s_A,s_B)

[-4, (fail A.move)] fail?(m)

[-5, (enabled A.action)] A.Enabled(m,s_A)

[-6] s1_A = states(v1_A)

[-7] v1_A = A.Trans(m,v_A)

|-------

{1} Exists (v1_B,v2_B:Spec_decls.Vals,s1_B:Spec_decls.States):

B.InvisibleSeqReach(s_B,states(v1_B)) And B.InvisibleSeqReach(states(v2_B),s1_B) And

B.Enabled(ExtActMap(m),v1_B) And B.Trans(ExtActMap(m),v1_B) = v2_B And R(s1_A, s1_B))

Figure 6-15: Inductive step sequent for external actions.

instantiated, the resulting sequent is split into the above four branches. Branches (i), (ii)
and (iv) are handled the same way as in the case of internal actions. Branch (iii) requires
an additional application of the Enablement and the Do Trans strategies. All these appli-
cations are automated by the Sim Induct ExtAction strategy and any subgoals that are
not completely proved are handed back to the user.

The Sim Induct Traj strategy is designed for proving the last case (line 23) in the def-
inition of FwdSimInd of Figure 6-11. At the onset, the trajectory spits up the proof into
several cases, one for each element in the type SModelNames, and applies the Induct Smodel
sub-strategy to each case. For example, the intermediate sequent in Figure 6-17, appears in
the inductive branch corresponding to trajectory moves of Timeout at the point in which
Induct Smodel is invoked. In Timeout there is a single state model, that is, SModelNames
is a singleton type and therefore this is the only branch corresponding to trajectory moves.
Note that the fifth expression in the antecedent asserts the name of the state model branch.
The Induct Smodel allows the user to construct an execution fragment of B that emu-
lates the trajectory tau(m) of A. The strategy prompts the user for a four parameters:
(a) a natural number n, (b) a sequence s0, . . . , sn of elements of type SModelNames, (c) a
sequence a1, . . . , an−1 of internal actions, and (d) a sequence t0, . . . , tn of positive reals sum-
ming to ltime(m). From these parameters it implicitly constructs an execution fragment
τ0a1τ1a2 . . . τn of n + 1 trajectories and n transitions. The first trajectory τ0 is defined as

127



Prove Fwd Sim

Setup Sim Base Setup Sim Induct Cases

Sim Induct ExtAction

State Trans

Enablement

Apply Precond

Do Trans

Sim Induct IntAction

State Trans

Enablement

Apply Precond

Do Trans

Sim Induct Traj

Induct Smodel

Inst Lstate

Induct Smodel

Inst Lstate

Figure 6-16: Structure of Prove Fwd Sim strategy.

follows: τ0.fval = v A, τ0.ltime = t1, and the intermediate states of τ0 are defined by the
evolve clause of the state model s0. Then, Induct Smodel instantiates the variables in the
last expression of Figure 6-17, t with t0 + t2 . . .+ tn and s1 B with τn.lstate and generates
a set of subgoals for checking the above conditions and the following additional conditions:
(i) the trace of α equals ExtVarMap(t, exttraj(m)), and (ii) s1 B and s1 A are related by
R. Much of the simplifications and computations in each of these branches are preformed by

;;;Induction step: trajectory Case "normal"

[-1, (reachable A.prestate)] A.Reachable(s_A)

[-2, (reachable B.prestate)] B.Reachable(s_B)

[-3, (related A.prestate B.prestate)] R(s_A,s_B)

[-4, (smodel A.move)] smodel?(m)

[-5, (normal A.smodelname)] name(m) = normal

[-6, (enabled A.action)] A.Enabled(m,s_A)

[-7] s1_A = states(v1_A)

[-8] v1_A = A.Trans(m,v_A)

|-------

{1} Exists (t:nnreal, s1_B): B.VisibleContReach(s_B,s1_B,t,ExtVarMap(t,exttraj(m))) And R(s1_A, s1_B)

Figure 6-17: Inductive step sequent for trajectories.

the Inst Lstate sub-strategy which checks Enabled predicate and computes the transition
functions for each ai and τi in the sequence.

For example, in proving this branch, the user invokes Induct Smodel strategy with
parameters “0”,“normal”,“ ”, and “ltime(m)”, indicating that the trajectory tau(m) con-
structed using state model normal of Timeout is emulated by a single trajectory, of state
model normal and duration ltime(m). In this case, to complete the proof, the user will have
to consider two cases: Not failed(v A) and failed(v A), and then in the first case the
strategy parameters should be as indicated, and in the latter case the “normal” should be
replaced by “failed”.

In the interaction of Prove Fwd Sim and its substrategies, significant use is made of
formula labels, both for deciding which action to take based on the presence or absence of a
formula with a given label, and to focus computation on formulae with specific labels. The

128



labels are designed to be informative: for example, the label A.enabled on line 4 of the proof
in Figure 6-15 indicates that the enabling condition of the fail action of the automaton
A (in this case, Timeout). This is so that when an unresolved subgoal is returned to the
user, its content is as informative as possible. For the same reason, Prove Fwd Sim and its
substrategies attach comments to any subgoals they create that denote their significance.
The comment ;;;Induction step: trajectory Case "normal" that appears on line 2
in Figure 6-17 indicates that this subgoal is the subgoal for trajectories of the state model
normal.

6.4 Discussion of Case Studies

Our approach to mechanizing proofs for the SHIOA framework is to study examples of
SHIOA specifications and their properties and then identify a standard set of proof steps
sufficient to mechanize proofs of those properties. To this end, we have targeted invari-
ant properties and simulation relations and the outcome has been the strategies such as
Prove Fwd Sim, Auto Induct, and State Trans. These strategies do not completely elim-
inate human intervention but they do eliminate many of the repetitive and tedious steps
that are necessary for constructing proofs.

Although the translation scheme outlined in Section 6.2 is suitable for any HIOA speci-
fication conforming to the assumptions in Section 6.2.1, the current implementation of our
translator tool is able to translate the restricted class of HIOA specifications with rectangular
dynamics, that is, differential equations with constant right hand sides. As a result, the
examples we have studied thus far all have state models with relatively simple continuous
dynamics. Nevertheless, the case studies have interesting data structures and demonstrate
non-trivial hybrid behavior. We discuss our experience in applying these strategies to two
case studies.

6.4.1 Failure Detector

The HIOA specification of a simple failure detector system from [KLSV05] was presented in
Figure 6-7. The details of the verification of this system appears in [MA05]. The composite
specification consists of (1) a process that sends a message every u1 time units until it
fails, (2) a communication channel that delays messages by at most d time units, and (3) a
detector process which times out and suspects the sending process to have failed when it
does not receive a message for u2 = u1 + d time units. We are interested in proving two
properties for this system, namely, (i) a no false positive property, i.e., whenever the detector
suspects, the sender is indeed failed, and (ii) a timely detection property, i.e., whenever the
sender fails, the detector suspects it within u2 + b time units. Property (i) is a predicate on
the states of the composed system and is stated as an invariant. For describing property (ii),
an abstract specification Spec of Timeout is written (shown in Figure 3-7), and then it is
proved, using forward simulation, that Timeout implements Spec. The translator generates
PVS theory files for the automaton specifications, the invariants, and the simulation relations
(see Figures 6-8, 6-9, 6-12, and 6-6).

We invoke the PVS-prover on these theories to interactively prove the translated lem-
mas and theorems. Invariants Inv 1 to Inv 4 of Figure 6-9, are relatively simple and are
proved automatically by the Auto Induct strategy. Proofs of invariants Inv 5, Inv 6, and
Inv 7 require the application of the first four invariants, and consequently, in these cases
Auto Induct presents us with a set of subgoals that require manual intervention. At which

129



point, we use a separate strategy called Apply Inv Lemma which introduces invariant lemma
of our choice and instantiates its state appropriately for the current proof context. In most
cases, this completes the proof branch; for some of the branches corresponding to trajectory
moves, further simplifications are necessary.

In the simulation proof of FwdSimThm, each move branch leads to six subgoals corre-
sponding to the six high level conjuncts in the simulation relation, but the trivial subgoals
(e.g., first two subgoals) are discharged automatically by the Prove Fwd Sim strategy. The
remaining subgoals required the application of previously proved invariants and reasoning
about inequalities involving real expressions for which we also use the strategies in the
Manip [MM01] and the Field [Vit02] packages.

6.4.2 Two-Task Race

In this case study we applied our strategies to prove time bounds through a forward simu-
lation in the two process race system described in [Lyn96b]. The automaton TwoTaskRace
(see Figure 6-18) models two processes running in parallel. The main process triggers an
action once every t time, where t is between a1 and a2. The second process produces a set
action within the time interval [b1, b2]. The main process triggers increment actions, incre-
menting a count, until the set action occurs. After set, the main process triggers decrement
actions, which decrements a count. When the count reaches 0 then the main process triggers
a report action, which indicates the end of execution. The property that we investigate
is the upper and lower time bounds on the occurrence of report action. The details of the
translation and verification of the system appears in [LKLM05].

Here we focus to the upper time bound which is b2 + a2 + b2a2
a1

. The intuition behind
this bound as follows: in order to maximize the value of the counter until set occurs, the
main process should increment count every a1 time. Thus, the value of count when the set
action occurs is b2/a1. Thereafter, the maximum time taken to decrement count down to
zero is a2b2/a1. The latest time when the set action occurs is b2, and therefore the upper
time bound for report is a2 + b2 + a2b2/a1.

This time bounds on report are specified as a simple abstract automaton TwoTaskRaceSpec
which triggers a report action within the above time bound. A forward simulation relation
of Figure 6-19 is used to prove that TwoTaskRace implements TwoTaskRaceSpec. This sim-
ulation relation is more complex than that for the Timeout example because the relation
between the states differs depending on whether or not the set action has occurred. The
occurrence of the set action set the flag variable to true. For example, lines 16–17 relate
the deadline variable first report of TwoTaskRaceSpec to the deadline variable first set
and the counter of TwoTaskRace, for the case where the flag has been set. While a different
relation is stated in lines 21–23 for the case where the flag has not been set.

The structure of the proof is similar to that for Timeout and Spec and so Prove Fwd Sim
strategy successfully breaks up the simulation proof into subgoals for the individual ac-
tions and trajectories. Applying Sim Induct ExtAction, Sim Induct IntAction , and
Sim Induct Traj with proper arguments instantiates and simplifies the move branches.

In our case studies, the proofs translated theories constructed using our strategies require
70% or fewer proof steps than those constructed using raw PVS proof commands. This
comparison, however, may not be completely fair because our translation is specifically
geared toward making the strategies work efficiently, and it adds extra structures in the
generated PVS theories that eliminate the generation of some type-correctness-related sub-

130



automaton TwoTaskRace(a1, a2, b1, b2 : Real)
where a1 > 0 ∧ b1 ≥ 0 ∧ a2 ≥ a1 ∧ b2 ≥ b1

signature
internal increment, decrement, set
output report

variables
internal count : Int := 0; flag : Bool := false;
reported : Bool := false;now : Real := 0;
first main : Real := a1;
last main : AugmentedReal := a2;
first set : Real := b1;
last set : AugmentedReal := b2;

transitions
internal increment
pre ¬ flag ∧now ≥ first main;
eff count := count+ 1;
first main := now + a1; last main := now + a2;

internal set
pre ¬ flag ∧now ≥ first set;
eff flag := true;
first set := 0; last set := ∞;

internal decrement
pre flag ∧ count > 0 ∧now ≥ firstmain;
eff count := count− 1;
first main := now + a1; last main := now + a2;

output report
pre flag ∧ count = 0 ∧
¬ reported ∧now ≥ firstmain;

eff reported := true;
firstmain := 0;
last main := ∞;

trajectories
trajdef traj

stop when now = last main ∨now = last set;
evolve d(now) = 1;

automaton TwoTaskRaceSpec(a1, a2, b1, b2 : Real)
where a1 > 0 ∧ b1 ≥ 0 ∧ a2 ≥ a1 ∧ b2 ≥ b1
signature

output report

variables
internal reported : Bool := f alse;now : Real := 0;
first report : Real := if a2 < b1

then min(b1, a1) + (b1− a2) ∗ a1/a2
else a1;

last report : AugmentedReal := b2 + a2 + (b2 ∗ a2/a1);

transitions
output report

pre ¬ reported ∧now ≥ firstreport;
eff reported := true;
first report := 0;
last report := ∞;

trajectories
trajdef pre report

invariant ¬ reported;
stop when now = last report;
evolve d(now) = 1;

trajdef post report
invariant reported;
evolve d(now) = 1;

Figure 6-18: TwoTaskRace automaton and its abstract specification.

goals during the proof process. Further, if small changes to the specification are made
after the completion of proofs, then the proofs can be re-run, completely automatically, to
check if the proofs still hold or not. Another lesson we have learned is that the details of
the specification template that a translator to PVS targets, if chosen carefully, can greatly
facilitate the implementation of PVS strategies.

6.5 Summary

We presented “an SHIOA interface” for the PVS theorem prover system. In particular, we
have discussed (a) how a large class of HIOA specifications can be translated to the language
of the PVS theorem prover and (b) how SHIOA-specific proof strategies can be developed,
exploiting the structure of typical SHIOA proofs, that automate proof construction in PVS.

The translation scheme relies on two components, namely, (i) a library of theories defin-
ing the semantics of SHIOAs in general, and (ii) a theory template with specific definitions
of states, actions, transitions, and trajectories, which is populated by the definitions ap-

131



TwoTaskRace TwoTaskRaceSpec: Theory Begin
2 Importing TwoTaskRace decls,TwoTaskRaceSpec decls

MA: Theory = SHIOA timed auto libtimed automaton :→ TwoTaskRace decls
4 MB: Theory = timed auto libtimed automaton :→ TwoTaskRaceSpec decls

6 ExtActMap(a:(MA.ExternalActions)):(MB.ExternalActions) =
Cases a A of

8 report: report
Endcases

10 . . .
R(s A: MA.States, s B: MB.States): bool =

12 reported(s A) = reported(s B) And
now(s A) = now(s B) And

14 Not flag(s A) And last main(s A) < first set(s A)
⇒ first report(s B) ≤ min(first set(s A), first main(s A))

16 + fintime(count(s A) + (first set(s A) − last main(s A))× (a1 / a2)) And
(flag(s A) Or last main(s A) ≥ first set(s A))

18 ⇒ first report(s B) ≤ first main(s A) + fintime(count(s A) × a1) And
Not flag(s A) And first main(s A) ≤ last set(s A)

20 ⇒ last report(s B) ≥ last set(s A)
+ fintime(count(s A) + 2 + (last set − first main) × (a2 / a1)) And

22 Not reported(s A) And (flag(s A) Or first main(s A) > last set(s A))
⇒ last report(s B) ≥ last main(s A) + fintime(count(s A) × a2)

24 . . .
End TwoTaskRace TwoTaskRaceSpec

Figure 6-19: Forward simulation relation for TwoTaskRace.

pearing the HIOA input. The current translation scheme does not allow input variables.
Overcoming this restriction would require the development of a real-analysis theory in PVS
with definitions and the usual results related to the notions of limits, continuity, differ-
entiability. On the other hand, in practice, most SHIOA specifications can be converted
to closed SHIOAs with appropriate assumptions about the input variables. The current
implementation of the translator can only handle differential equations with constant right
hand sides. The translator does allow us to translate more complex differential equations
by manually providing the solutions. In the future, we plan on eliminating this manual step
by invoking software tools for solving DAEs.

Our approach to developing strategies for abstraction proofs is geared toward theorem
provers that support tactic-style interactive proving. In theorem proving systems that allow
a definition of an automaton type, such as Isabelle [Pau93], an approach to developing such
strategies that is not based on templates may be possible. Because we cannot expect to
develop strategies that will do arbitrary abstraction proofs fully automatically, a major goal
for us is to design our strategies to support user-friendly interactive proving. A PVS feature
that facilitates making both interaction with the prover and understanding the significance
of saved proofs easier is support for comments and formula labels. Thus, a challenge for
other theorem proving systems is to find ways to support ease of understanding during and
after the proof process equivalent to what we provide using PVS. To become practical for
real-world applications, our strategies will require more testing, tuning, optimization, and
better support for manipulating real-valued expressions.

A longer term goal is to integrate theorem provers, computer algebra systems (e.g.,
Maple), mathematical program solvers, under a single interface for SHIOAs. For instance,
the safety and stability verification techniques of Chapters 4 and 5, can be checked by
computer algebra systems and optimization tools, whereupon these conditions can be used
by theorem prover strategies in automatically deducing the properties.

132



Part II

Probabilistic Hybrid Systems

133



Chapter 7

Probabilistic State Machines

Structured Hybrid I/O Automata (SHIOAs) of Part I model system uncertainties as non-
deterministic choices. Nondeterminism describes uncertainty as a set of possible choices,
but does not capture the probability of individual choices. Incorporating probabilities in the
hybrid system framework gives us a richer language to construct models with. In addition
to the types of properties we studied in Part I, with probabilistic models we can begin to
state and prove quantitative properties, such as probability of hitting unsafe states and
expected time of stabilization. Developing semantics and verification techniques for models
that combine nondeterminism, probabilities, and continuous evolution poses two key chal-
lenges, namely, (i) reconciling the interaction between probabilistic and nondeterministic
choices, and (ii) ensuring measurability of all reasonable sets of executions. We refer the
reader back to Section 1.3.1 for an informal discussion of these two issues. In this chapter
we make certain design decisions to solve these problems and present them in the form
of the Probabilistic Timed I/O Automata (PTIOA) framework. A transition of a PTIOA
can be nondeterministic and probabilistic; continuous evolution is non-probabilistic; and
concurrently executing automata communicate through shared actions. We develop the
trace-based semantics for PTIOAs which involves measure-theoretic constructions on the
space of executions of the automata. We introduce a new notion of external behavior and
implementation for PTIOAs and show that PTIOAs have simple substitutivity properties.
In Chapter 8, we present techniques for verifying approximate implementation relations for
a restricted class of PTIOAs.

7.1 An Overview

Automata with probabilistic transitions are useful for modeling systems that interact with
environments with stochastic description of uncertainties. Examples include Gaussian chan-
nel delays, stochastic noise in sensors, processor failure probabilities, and also randomiza-
tion in algorithms. Pure nondeterminism, on the other hand, is necessary for construct-
ing (a) implementation-free, abstract models that are underspecified, and (b) models with
arbitrary interleaving of concurrently executing processes. For a detailed discussion on
the need for nondeterminism in probabilistic automata we refer the reader to Chapter 4
of [Her02] and the introduction of [dA97]. The interplay between probability and non-
determinism makes it challenging to develop semantics for automaton models that have
both [Seg95b, MOW04, Che06, CCK+06b]. Introduction of continuous state spaces and dis-
tributions adds another layer of complexity to the problem [CSKN05, vBMOW05, DDLP05].

134



The PTIOA framework presented here addresses some these challenges. A PTIOA can
make nondeterministic and probabilistic choices, its continuous evolution is not stochas-
tic, and sets of PTIOAs communicate through shared actions. PTIOAs generalize sev-
eral existing models, including Timed I/O Automata [KLSV05], Probabilistic I/O Au-
tomata [Seg95b, CCK+06b] and its timed extension presented in [Seg95b], and discrete
state Markov Decision Processes [dA97, BCG06, KNSW04, HKNP06].

In Section 7.2, we recall some standard notions from measure theory. In Section 7.3 we
present the non-probabilistic semantics for PTIOAs which closely parallels the semantics
of SHIOAs with one major difference: PTIOAs do not have input/output variables. This
implies that a trace of a PTIOA contains information about the occurrence of input/output
actions and the duration of time that elapses between them, but not about evolution of
variables over that time.

In Section 7.4 we develop the probabilistic semantics for PTIOAs. In order to ensure
that all reasonable sets of executions are measurable we impose the following measurability
conditions on a PTIOA A which has measurable space (Q,FQ) as its state space: M1 for
any action, the set of states in which the action is enabled a FQ-measurable, and M2 for
measurable subsets R ⊆ R≥0, Y ⊆ Q, the set of states from which there exists a trajectory
with length in R and final state in Y , is FQ-measurable. In order to define a probability
distribution over the set of executions of a PTIOA A, the nondeterministic choices in A have
to be resolved first. Nondeterminism comes from two sources: (a) external nondeterminism:
choice of one automaton which makes the next move from a set of interacting automata,
and (b) internal nondeterminism: choice of one move (transition or trajectory) from a set
of possible moves of an automaton, We proceed by working with a restricted model, namely,
Task-Structured Deterministic PTIOA (task-DPTIOA), that has limited internal nondeter-
minism, and then develop the semantics for general PTIOAs in Section 7.6. For resolving
external nondeterminism we rely on the task structure and task schedules, similar to those
introduced in [CCK+06b]. The task-structure ensures that a task uniquely determines an
task-DPTIOA which gets to make the next move. The sequence of tasks is specified by a
task schedule. Combining a task schedule with a task-DPTIOA A gives rise to a probabilistic
execution—a probability measure over the set of executions of A.

The construction of probability measure over executions of task-DPTIOAs is similar in
spirit to that in the case of Stochastic Transition Systems (STS) of Cattani et al. [CSKN05].
However, a STS does not have notions of time or trajectories and this leads to very differ-
ent notions of observable behavior or traces (see Section 7.4.3 for details). In particular,
this issue surfaces as we define a distribution over traces corresponding to a probabilistic
execution.

In Section 7.5, we use a simple, but intuitive notion of external behavior for task-
DPTIOAs: for a given automaton A, its external behavior is a function that maps each
closing environment E of A to the set of all possible trace distributions of the composition of
A and E . We show that task-DPTIOAs are substitutive with respect to the implementation
relation defined in terms of the above notion of external behavior. Indeed, considering closed
automata and using this functional definition of external behavior lets us circumvent some of
the difficulties that underlie compositionality in the probabilistic setting. However, viewing
external behavior as a mapping from environments as opposed to a set of trace distribu-
tions is natural in many applications, including analysis of security protocols [CCK+06c].
Section 7.7 presents an extension of the HIOA language for specifying PTIOAs and examples
illustrating the key notions introduced in the chapter.

135



7.2 Preliminaries

Deterministic Sets of Trajectories. The notations for sets, functions, variables, and
trajectories from Section 2.1 of Part I have the same meanings unless stated otherwise. We
associate with the time axis T = R≥0 ∪ {∞} the Euclidean topology with a point at ∞.
Let X be a set of variables. The set of all valuations for the variables in X is denoted
by val(X). Given a set of trajectories T for X, we denote the subset of T starting from
x ∈ val(X), by T (x). A set of trajectories T for X is deterministic if for all x ∈ val(X),
for any two trajectories τ1, τ2 ∈ T (x) either τ1 is a prefix of τ2 or τ2 is a prefix of τ1. If T
is deterministic then for any x ∈ val(X), (T (x),≤) is a total order.

As max(x) is required to be a closed trajectory,max(x).ltime and max(x).lval are well
defined.

Measurability and Measures. We follow the standard notations as found in any text
book on measure theory, as for instance [Dud89]. A measurable space is denoted by (S,FS),
where S is a set and FS is a σ-algebra over S. FS is closed under countable union and
complementation and its members are called measurable sets. Given a topological space
(S,T ), there exists a smallest σ-algebra containing T and it is called the Borel σ-algebra.
Whenever the sets R,R≥0 and T are viewed as measurable spaces, it is assumed that they
are equipped with their usual Borel σ-algebras.

The product of two measurable spaces (S1,FS1) and (S2,FS2) is defined as the measur-
able space (S1 × S2,FS1 ⊗ FS2), where FS1 ⊗ FS2 is the smallest σ-algebra generated by
sets of the form A×B = {(s1, s2) | s1 ∈ A, y ∈ B}, for all A ∈ FS1 , B ∈ FS2 .

A measure over (S,FS) is a function µ : FS → R≥0, such that µ(∅) = 0 and for every
countable collection of disjoint sets {Si}i∈I in FS , µ(

⊎
i∈I Si) =

∑
i∈I µ(Si). Recall that⊎

i∈I Si denotes the union of a collection {Si}i∈I of pairwise disjoint sets. A probability
measure (resp. sub-probability measure) over (S,FS) is a measure µ such that µ(S) = 1
(µ(S) ≤ 1). The set of probability measures and the set of sub-probability measures over
(S,FS) is denoted by P(S,FS) and SP(S,FS). A particular family of probability measures
is the Dirac measures: given a measurable space (S,FS) where singleton sets are measurable
and s ∈ S, the Dirac measure at s, denoted by δs, is defined as δs(A) = 1 if s ∈ A, δs(A) = 0
otherwise.

A function f : (S1,FS1) → (S2,FS2) is said to be measurable if f−1(E) ∈ FS1 for every
E ∈ FS2 . The indicator function of a set A ⊆ S1, is defined as IA(s) = 1 if s ∈ A, and 0
otherwise. If A is a measurable set, it is easy to check that IA is a measurable function.
If f : (S1,FS1) → (S2,FS2) is a measurable function, and µ is a measure on S1, then the
image measure of µ under f is a measure ϕ on Y defined as ϕ(E) = µ(f−1(E)), for each
E ∈ FS2 .

Integration. A simple function f̂ on a measurable space (S,FS) is a function whose range
consists of only finitely many points in [0,∞). If c1, . . . , cn are distinct values of a simple
function f̂ , and if we set Ci = {s | f̂(s) = ci}, then f̂(s) =

∑n
i=1 ciICi(s), where ICi

is the indicator function of Ci. It is clear that f̂ is measurable if and only if Ci ∈ FS ,
for each i ∈ {1, . . . , n}. If f̂ : S → R≥0 is a simple measurable function of the form
f̂ =

∑n
i=1 ciICi(s), where c1, . . . , cn are distinct values of f̂ , and if E ∈ FS , we define∫

E
f̂dµ =

n∑
i=1

ciµ(Ci ∩ E).

136



If f : S → R≥0 is measurable and E ∈ FS , the Lebesgue integral of f over E is defined as∫
E
fdµ

∆= sup
0≤f̂≤f

∫
E
f̂dµ,

the supremum being taken over all simple measurable functions f̂ that are less than f .

Semi-Rings. A collection C of subsets of S, is a semi-ring if (1) the sets S and ∅ are
in C , (2) for any A,B ∈ C , A ∩ B ∈ C , and (3) for any A,B ∈ C , there exists a finite
collection of disjoint sets {Ci}ni=1 in C such that A \ B =

⋃n
i=1Ci. It is well known (see,

e.g. [Dud89]) that a measure µ defined over a semi-ring C can be uniquely extended to a
measure over the σ-algebra generated by C by defining µ(∪ni=1Ci) =

∑n
i=1 µ(Ci). We will

use the following theorem to constructing measures of the space of executions of automata:

Theorem 7.1. A probability measure defined over a semi-ring C can be uniquely extended
to a probability measure over the σ-algebra generated by C .

In constructing measures over the space of executions of a PTIOA, we have to integrate over
the space of probability distributions over sets, namely the state space Q, and therefore,
we need to define a σ-algebra over P(Q,FQ). For this, we use the following construction
due to Giry [Gir81]: for each A ∈ FQ, let the function pA : P(Q,FQ) → [0, 1] be defined
as pA(µ) = µ(A). The σ-algebra on P(Q,FQ), then is the smallest σ-algebra such that all
pA’s are measurable.

7.3 Task-Deterministic Probabilistic Timed I/O Automata

In this section we introduce Task-Deterministic Probabilistic Timed Input/Output Automata
(Task DPTIOAs) and present definitions and results regarding the non-probabilistic aspects
of their behavior.

7.3.1 Definition of Task DPTIOAs

We present the definition of Task DPTIOAs in two parts. First we define Probabilistic
Timed I/O Automata (PTIOAs) and then we impose several assumptions that restrict the
nondeterminism in a PTIOA to obtain the task DPTIOA model.

Definition 7.1. A Probabilistic Timed I/O Automaton A = (X, (Q,FQ), x̄, A,D, T ), where:

(a) X is a set of internal or state variables.

(b) Q ⊆ val(X) is a set of states, (Q,FQ) is a measurable space called the state space,
and x̄ ∈ Q is the start state.

(c) A is a countable set of actions, partitioned into internal H, input I and output O
actions. L = O ∪ H is the set of local actions and E = O ∪ I is the set of external
actions.

(d) D ⊆ Q×A×P(Q,FQ) is the set of probabilistic transitions. If (x, a, µ) is an element
of D, we write x a→ µ and action a is said to be enabled at x. The set of states in
which action a is enabled is denoted by Ea. For B ⊆ A, we define EB to be ∪a∈BEa.
The set of actions enabled at x is denoted by enabled(x). If a single action a ∈ B ⊆

137



is enabled at x and x a→ µ, then this µ is denoted by µx,B. If B is a singleton set {a}
then we drop the set notation and write µx,a.

(e) T is a set of trajectories for Q that is (i) deterministic, (ii) closed under prefix, suffix,
concatenation, and (iii) contains ℘(x) for every x ∈ Q. For R ⊆ R≥0 and P ⊆ Q, we
define ER,P to be the set of states {x ∈ Q | ∃ closed τ ∈ T (x), τ.ltime ∈ R ∧ τ.lstate ∈
P}.

In addition A must satisfy the following conditions:

E1 (Input action enabled) For every input action a ∈ I and for every state
x ∈ Q, a is enabled at x.

E2 (Time passage enabled) For every state x ∈ Q, there exists τ ∈ T (x) such
that either τ.ltime = ∞ or τ is closed and some a ∈ L is enabled in τ.lstate.

M1 (Transitions measurability) For every a ∈ L, Ea is measurable.

M2 (Trajectory measurability) For measurable sets R ⊆ R≥0, Y ∈ FQ, ER,Y is
measurable.

P1 (Progressive) A never generates infinitely many locally controlled actions
within a finite time interval.

Notations. A PTIOA which does not necessarily satisfy axioms M1 and M2 is called
a pre-PTIOA. A pre-PTIOA is closed if its set of input actions is empty. We denote the
components of a pre-PTIOA A by XA, QA, x̄A,DA, TA etc., and the components of a pre-
PTIOA Ai by Xi, Qi,xi,Di, etc. The special sets of states of pre-PTIOA A that we defined
above, are denoted by Ea,A, ER,Y,A, etc., and those of pre-PTIOA Ai by Ea,i, ER,Y,i, etc.

The axioms E1 and E2 are identical to the standard non-blocking axiom of SHIOAs. Since
PTIOAs do not have input variables, here the input trajectory enabled axiom takes the form
of the time-passage-enabled axiom E2. Axioms M1 and M2 are used later to construct
a measurable space over the set of executions of A and to assign probabilities measures
to certain measurable sets of executions. M1 states that for any local action a, the set of
states of A in which a is enabled is a measurable set, and M2 states that for measurable
subsets R ⊆ R≥0, Y ⊆ Q, the set of states from which there exits a closed trajectory with
length in R and final state in Y , is a measurable set. E1 and M1 together imply that EB
is a measurable set for any set of actions B ⊆ A. The progressive axiom P1 is a natural
assumption for timed automata (see, Page 75 of [KLSV05]). The formal meaning of P1 is
given shortly after we define executions of A.

A few remarks comparing this definition with that of a Structured Hybrid I/O Automa-
ton of Part I:

(1) The measurability requirement on Q is quite weak; most state spaces that we typically
encounter in applications are measurable.

(2) Unlike SHIOAs, PTIOAs do not have input or output variables, because we assume that
PTIOAs communicate through shared actions only and not through shared variables.
Extending the results presented here to a model with external variables is a direction
of future research.

(3) For clarity of exposition, it is assumed that PTIOAs start from a single start state x̄
and that the set of actions A is countable; correctness of our results does not depend

138



crucially on these assumptions. Wherever necessary, we assume that every subset of A
is measurable.

Definition 7.2. A Task-Deterministic PTIOA (Task-DPTIOA) A = (X, (Q,FQ), x̄, A,D, T ,R),
where

(a) (X, (Q,FQ), x̄, A,D, T ) is a PTIOA, and

(b) R is an equivalence relation on the set of local actions L; the equivalence classes of R
are called tasks. A task T is called an output task if T ⊆ O.

In addition, A must satisfy the following axioms:

D1 (Transition determinism) For every x ∈ Q and a ∈ A, there is at most one
µ ∈ P(Q,FQ) such that (x, a, µ) ∈ D.

D2 (Action determinism) For every x ∈ Q and T ∈ R, at most one a ∈ T is
enabled in x.

D3 (Time-action determinism) For any state x at most one of the following
may exist: (1) a local action a such that x ∈ Ea, (2) a non-point trajectory
τ ∈ T (x).

Axioms D1-3 allow resolution of nondeterminism in a structured manner. Axioms D1
and D2 together imply that from any state x, given a task T , there can be at most one
action a ∈ T that is enabled at x. Further, if there exists such an action a, then there exists
a unique distribution µ ∈ P(Q,FQ), which specifies the probabilistic transition x a→ µ, from
x. According to D3, from any state x, a local action may be enabled, or some non-zero
amount of time can elapse, but not both. It prevents an action from remaining enabled
while time elapses and is similar to the maximal progress assumption found in real-time
process algebras (see, for example [HR95]). If local actions are enabled at x then time
cannot elapse and the automaton nondeterministically chooses one action a from the set of
enabled actions. This nondeterministic choice is resolved by a task schedule, which we shall
define shortly. If a task T is specified then D2 implies that at x there can be at most one
enabled action in T , and hence, by D1, at most one probabilistic transition corresponding
to that action. This transition tells us the probability of particular state x′ to be the post-
state of x. If, on the other hand, time can elapse from x, then according to E2 there are
two further possibilities, namely, either time advances to infinity (with no local action ever
being enabled) or there exists a closed trajectory τ ∈ T (x) such that some local action is
enabled at τ.lstate. In the second case, axiom D3 and determinism of T imply that, the
state evolves according to the maximal deterministic trajectory τ ∈ T (x).

We conclude this section by proving the following theorem relating the PTIOAs with the
HIOA model of Chapter 2: Suppose A is a pre-PTIOA for which all probabilistic transitions
are of the form x a→ δx′ and Â is obtained by replacing these probabilistic transitions with
corresponding deterministic transition x a→ x′. Then, Â is HIOA.

Theorem 7.2. Suppose A = (X, (Q,FQ), x̄, A,D, T ) is a pre-PTIOA such that for every
transition x

a→ µ, µ is a Dirac measure δx′, for some x′ ∈ Q. Then, Â = (X, ∅, ∅, Q, {x̄},
I, O,H, D̂, T ) is a hybrid I/O automaton, where D̂ ∆= {(x, a,x′) | x a→A δx′}.

139



Proof. All the components of Â satisfy the type requirements in the definition of a HIOA.
In particular, D̂ is flattened to be a subset of Q×A×Q. The set of trajectories of Â satisfies
T1-3 from the definition of T . This establishes that Â is a pre-HIOA. Since Â does not have
any input variables, checking that it is input-trajectory-enabled is tantamount to checking
that it is time-passage-enabled, which is implied by bf E2 of A.

7.3.2 Executions and Traces

Execution fragments and executions of a PTIOA A are defined in the same way as in the
case of HA (see, Section 2.2.2). We remind the reader that an execution fragment of is an
alternating sequence of actions and trajectories α = τ0a1τ1a2 . . ., where each τi ∈ T , ai ∈ A
and ai is enabled at τi−1.lstate. The first state of an execution fragment α, α.fstate, is
τ0.fstate. An execution fragment α is an execution of A if α.fstate = x̄. The length of a
finite execution fragment α is the number of trajectories in α. An execution fragment is
closed if it is a finite sequence and the last trajectory is closed. Proposition 7.3 follows from
axiom D3.

Proposition 7.3. In any execution fragment of a closed PTIOA all trajectories, except
possibly the last trajectory (of a finite fragment) are maximal.

Proof. Suppose, for the sake of contradiction, the proposition is false. That is, there exists
a non-final, non-maximal trajectory τ in the execution fragment α. Since τ is not maximal,
there exists a non point trajectory τ ′, such that τ ′ is enabled at τ.lstate. Since τ is non-final,
there exists an action ai+1 ∈ A, that is enabled at τ.lstate. This contradicts D3 at τ.lstate.

The trace of an execution α represents its externally visible part. Unlike SHIOAs, a
PTIOA does not have external variables. Hence, the externally visible part of any trajectory
τ of a PTIOA is simply a mapping from dom(τ) to the empty set of variables. Formally,
the trace of an execution α, denoted by trace(α), is the (E, ∅)-restriction of α. The only
information that is conveyed by the externally visible part of a trajectory τ is dom(τ), and
hence, the information in the trace of an execution fragment is the external actions and
duration of the intervening time intervals. For the development of probabilistic semantics
for task-DPTIOAs it will be necessary for the trace function to be measurable; we shall
prove this result in Section 7.4.3.

It is worth comparing this definition of a trace of a PTIOA with that in other probabilis-
tic transition systems that do not have special semantics for modeling time and trajectories.
For example, in Stochastic Transition System (STS) of [CSKN05], a trace is obtained by
simply removing the internal (invisible) actions and states from an execution. In such mod-
els, one obvious approach for modeling time passage is to treat a transition labeled by a
real number r as a time passage action of duration r. So, an execution is a sequence for
the form q0 r0 q1 a1 q2 r1 q3 a2 q4, where the q′is are states, a1 is an internal action, a2

is an external actions, and r0, r1 ∈ R≥0 are internal actions which model the passage of
time. The trace of an STS contains information about the point of occurrence of internal
actions over an interval of time. For example, the trace of the above execution is r0r1a2,
which tells us that some internal action occurred between r0 and r1. And this makes it
relatively straightforward to show that the trace function is measurable. In PTIOAs, the
trace of an execution τ0a1τ1a2τ2, where a1 is an internal action and a2 is an external action,

140



equals ((τ0 _ τ1) ↓ ∅)a2(τ2 ↓ ∅). Concatenating τ0 and τ1 hides information about the
time of occurrence of internal actions a1. Consequently, this “information loss” makes the
proof of measurability of the trace function more complicated in PTIOAs, compared to the
corresponding proof in the STS setting.

We denote the set of execution fragments, the set of executions, and the set of traces
of PTIOA A by FragsA, ExecsA and TracesA. The set of finite fragments, finite executions
and finite traces are denoted by Frags∗A, Execs∗A and Traces∗A. Having defined traces and
executions, we can now state the meaning of axiom P1 formally. This axiom asserts that
over any execution fragment α, if α.ltime is finite then α can have only a finite number of
locally controlled actions.

7.3.3 Composition of Task-DPTIOAs

The composition operation enables us to construct a PTIOAs representing a complex system
from two interacting PTIOAs by identifying their external actions that have the same
names. PTIOAs do not have external (input/output) variables and component automata
communicate through external actions only.

Definition 7.3. Pre-PTIOAs A1 and A2 are compatible if X1∩X2 = H1∩A2 = H2∩A1 =
O1 ∩ O2 = ∅. If A1 and A2 are compatible pre-PTIOAs then their composition A1||A2, is
defined to be A ∆= (X, (Q,FQ), x̄, A,D, T ), where:

(a) X = X1 ∪X2,

(b) (Q,FQ) = (Q1 ×Q2,FQ1 ⊗FQ2), and x̄ = (x̄1, x̄2),

(c) A = A1 ∪A2, I = (I1 ∪ I2) \ (O1 ∪O2), O = O1 ∪O2, and H = H1 ∪H2,

(d) D ⊆ Q×A×P(Q,FQ) is the set of triples ((x1,x2), a, µ1⊗µ2) such that for i ∈ {1, 2}
if a ∈ Ai then (xi, a, µi) ∈ Di, otherwise µi = δxi ,

(e) T = {τ ∈ trajs(X) | τ ↓ Xi ∈ Ti, i ∈ {1, 2}}, and

We show that the class of pre-PTIOAs are closed under the composition operator.

Theorem 7.4. If A1,A2 are compatible pre-PTIOAs then A = A1||A2 is a pre-PTIOA.

Proof. Parts (a), (b), (c), (d), and (f) of Definition 7.3 match with the corresponding
parts of Definition 7.1. We check that the set T of trajectories of A satisfy the necessary
properties stated in Part (e) of Definition 7.1. The fact that T is closed under prefix, suffix,
concatenation follow from Definition 7.3. It is also easy to check that ℘(x) ∈ T , for every
x ∈ Q. Next, we show that T is deterministic. Consider two distinct trajectories τ, τ ′ ∈
T (x), for some x ∈ Q with τ ⊆ τ ′. Since (τ ↓ Xi), (τ ′ ↓ Xi) ∈ Ti(x d Xi), for i ∈ {1, 2}
and Ti is a deterministic set of trajectories for Xi, it follows that (τ ↓ Xi) ≤ (τ ′ ↓ Xi).
Combining this result for 1 and 2, we get τ ≤ τ ′.

The fact that A satisfies axioms E1 and E2 follow from Theorem 7.2 of [KLSV05], and
that it satisfies P1 follows from Theorem 7.12 of [KLSV05].

Lemma 7.5. If A1,A2 are compatible pre-PTIOAs and they individually satisfy M1 then
A = A1||A2 is a pre-PTIOA satisfying M1.

141



Proof. From theorem 7.4, we know that A is a pre-PTIOA. We have to show that for any
local action a ∈ L, the set of states Ea is FX1 ⊗ FX2-measurable. Suppose a is a local
action of A1, and let E1

a ⊆ X1 be the set of states of A1 where a is enabled. The set of
states of A where a is enabled is Ea = E1

a × X2. A1 satisfies M1, therefore E1
a ∈ FX1

and Ea = E1
a × X2 ∈ FX1 ⊗ FX2 . The case for a ∈ L, where a is a local action of A2 is

symmetric.

Theorem 7.6. If A1,A2 are compatible PTIOAs and A = A1||A2 satisfies M2 then A is
a PTIOA.

Proof. Follows from Lemma 7.5 and the assumption that A satisfies M2.

Definition 7.4. Task-DPTIOAs A1 = (H1,R1) and A2 = (H2,R2) are compatible if the
underlying PTIOAsH1 andH2 are compatible. If A1 and A2 are compatible task-DPTIOAs
then their composition A1||A2, is defined to be A ∆= (H,R), where: (a) H = H1||H2 and
(b) R = R1 ∪R2.

Theorem 7.7. If A1,A2 are compatible task-DPTIOAs and A = A1||A2 satisfies M2 then
A is a task-DPTIOA.

Proof. Follows from Theorem 7.6 that A is a PTIOA. Note that R1 ∪R2 is an equivalence
relation because compatibility ofA1 andA2 ensures disjoint sets of locally controlled actions.

We check that A satisfies axioms D1-3. Transition determinism D1 follows immediately
because the sets of states are disjoint, and A1,A2 satisfy D1 individually. It is also easy to
check that action determinism D2 is preserved under composition. Finally, we check that
A satisfies time-action determinism D3. Suppose some local action a ∈ L is enabled at a
given state x. Let us assume without loss of generality that a ∈ L1 and a /∈ L2. Then a is
enabled at x d X1 and since A satisfies D3, there does not exist any non-point trajectory
in T1 (and therefore in T ) that starts from x d X1. Likewise, if there exists a non-point
trajectory starting from x, then no local action is enabled at x d X1 or at x d X2.

We conclude this section with a projection lemma for composed PTIOAs analogous to
Lemma 2.2 for non-probabilistic hybrid automata.

Theorem 7.8. Suppose A1 and A2 are pre-PTIOAs and A = A1||A2. If α is an execution
of A1||A2, then for i ∈ {1, 2}, α d (Xi, Ai) is an execution for Ai.

Proof. Let α be any execution of A. The proof is by induction on the length of α. The
interesting case arises when α = α′a1τ , where τ is a trajectory T , and a1 ∈ A1 \A2, and we
have to show that α d (A2, X2) is an execution of A2. Since a1 ∈ A1 \ A2, α d (A2, X2) =
α′ d (A2, X2) _ (τ ↓ X2). From Definition 7.3 we have α′.lstate d X2 = (τ ↓ X2).fstate,
therefore, indeed (α′ _ τ) d (A2, X2) is an execution of A2.

7.4 Probabilistic Semantics for Task-DPTIOAs

In the previous section, we presented the basic definitions and results concerning non-
probabilistic behavior of PTIOAs. The set of executions and traces of a PTIOA A corre-
spond to all possible behaviors and visible behaviors of A. As we saw, these non-probabilistic
notions are closely related to the corresponding notions for SHIOAs presented in Chapter 2.

142



The PTIOA framework, of course, is distinct because here in addition to specifying the set
of possible transitions, the models also specify the probability of those transitions. Thus,
in the PTIOA framework, we can describe and reason about not just the set of possible
behaviors, but also the set of probability distributions over all (visible) behaviors. In this
sections, we develop the mathematical machinery for such probabilistic reasoning.

In order to construct a probability measure over the set of executions of a given PTIOA
A, we have to first define the measurable sets in ExecsA. In the standard approach for
probabilistic automata with discrete state spaces [Seg95b, CCK+06b, KNSW04] one defines
the σ-algebra as the collection of sets of the form Cα := {α′ | α is a prefix of α′}. One
then defines the probability of each Cα as the product of the probabilities of the transition
sequence in α. It is well known (see, e.g., generalization of Markov processes in [Doo53]) that
this approach does not work when the transitions give continuous probability distributions,
as in the case of PTIOAs. This is because the probability of occurrence of any particular
finite sequence of transitions is typically 0. Instead of considering a set of executions that
extend a single prefix, we consider a set containing executions that extend any prefix from
a “cylinder” or base of prefixes. A similar technique of constructing the measurable space of
executions using cylinders has been previously employed in the setting of STS with general
state spaces and actions [CSKN05].

7.4.1 Semi-ring on Executions and Traces

Definition 7.5. A base is a finite sequence of the form

Λ = Q0 R0 Q
′
0 A1 Q1 R1 Q

′
1 A2 Q2 R2 . . . Q

′
m−1 Am Qm Rm Q′m,

where for every i ∈ {0, . . . ,m}, Qi, Q′i ∈ FQ, Ri is a measurable set in R≥0 , and for every
i ∈ {1, . . . ,m}, Ai ⊆ A. The length of the above base is defined to be m.

Informally, an execution fragment α = τ0a1τ1 . . . amτm “matches” the base Λ defined
above, if τ0 starts from a state in Q0, its length is a number in R0, it finishes at a state in
Q′0, a1 is an action in A1 which takes τ0.lstate to some state in Q1 τ1 starts at the post-state
of the transition in Q1, its length is a number in R1, and so on. Given a base Λ, the set of
execution fragments that “match” the pattern laid out by Λ is called the basic set or cone
of Λ and is denoted by CΛ.

Definition 7.6. The basic set corresponding to a base

Λ = Q0 R0 Q
′
0 A1 Q1 R1 Q

′
1 . . . Q

′
m−1 Am Qm Rm Q′m

is a set of execution fragments of A,

CΛ
∆= { τ0 a1 τ1 . . . τm α ∈ FragsA | ∀i ∈ {0, . . . ,m}, τ.fstate ∈ Qi, τi.ltime ∈ Ri,

τ.lstate ∈ Q′i, ∀i ∈ {1, . . . ,m}, ai ∈ Ai}.

If Λ = Q0 R0 Q
′
0 . . . Q

′
m−1 Am Qm Rm Q′m, Λ1 = Q0 R0 Q

′
0 . . . Q

′
m−1AmQm, and Λ2 =

Q0 R0 Q1 . . . Q
′
m−1, we will abbreviate Λ as Λ1 RmQ

′
m or as Λ2 Am Qm Rm Q′m. The next

lemma is our starting point toward defining a probability measure over ExecsA. It asserts
that the collection of all basic sets of A forms a semi-ring in FragsA.

Lemma 7.9. The collection C of all basic sets of A is a semi-ring.

143



Proof. We check that C satisfies the three properties of a semi-ring:

1. C contains the empty set ∅ and FragsA. If Λ = Q0 R0 Q
′
0 A1 Q1 . . . Qm Rm Q′m with

at least one Qi = ∅, then CΛ = ∅. If Λ = Q, then CΛ = FragsA.

2. If CΛ, CΓ ∈ C then there exists a base ∆, such that C∆ = CΛ ∩ CΓ. Assume without
loss of generality that Λ and Γ are of equal length. (If unequal then append an
appropriately long sequence of (A Q R≥0 Q) to the shorter base. The intersection
of the two bases after appending is the same as the original intersection.) Let Λ =
Q0R0Q

′
0A1Q1R1Q

′
1 . . . QmRmQ

′
m and Γ = P0S0P

′
0B1P1S1P

′
1 . . . PmSmP

′
m. Define ∆

to be the sequence (Q0∩P0)(R0∩S0)(Q′0∩P ′0) (A1∩B1)(Q1∩P1)(R1∩S1)(Q′1∩P ′1) . . .
(Qm ∩Pm)(Rm ∩Sm)(Q′m ∩P ′m). Now, any execution fragment α is in C∆ if and only
if it is in CΛ and CΓ.

3. If CΛ, CΓ ∈ C and CΛ ⊆ CΓ, then we show that there exists a finite family of basic
sets {Ci}i∈I such that CΓ \CΛ = ∪i∈ICi and for all i, j ∈ I, Ci∩Cj = ∅ if i 6= j. As in
the previous case, assume without loss of generality that Λ and Γ are of equal length.
Let Λ = Q0R0Q

′
0A1Q1R1Q

′
1 . . . QmRmQ

′
m and Γ = P0S0P

′
0B1P1S1P

′
1 . . . PmSmP

′
m.

The index sets for the sets of states and actions in the above bases are {0, . . . ,m} and
{1, . . . ,m}, respectively. We use subsets of these index sets to construct the disjoint
collection of basic sets whose union equals CΓ \ CΛ. Since there are countably many
possible such subsets, we get the required countable collection of disjoint basic sets.

Let I, J,K ⊆ {0, . . . ,m} and L ⊆ {1, . . . ,m} be nonempty sets of indices. Define a
collection of bases parameterized by three indices

ΛI,J,K,L = Z0 T0 Z
′
0 D1 Z1 T1 Z

′
1 D1 Z2 . . . Zm Tm Zm

as follows:

Zi =

 Pi \Qi if i ∈ I

Qi otherwise,
Z ′j =

 P ′j \Q′j if j ∈ J

Q′j otherwise,

Dk =

 Bk \Ak if k ∈ K

Ak otherwise,
Tl =

 Sl \Rl if l ∈ L

Rl otherwise.

First we show that different values of I, J,K and L give disjoint basic sets and then
we check that the union of all such basic sets equal CΓ \ CΛ. Consider two bases
ΛI,J,K,L and ΛI′,J ′,K′,L′ . Of the three pairs of index sets, at least one must be a pair
of different sets. Say, J ⊂ J ′, that is, there exists an index j /∈ J such that j ∈ J ′.
Then, the jth set Z ′j in ΛI,J,K,L equals P ′j \Q′j and the set Z ′j in ΛI′,J ′,K′ equals Q′j ,
and hence are disjoint. It follows that the CΛI,J,K,L

∩ CΛI′,J′,K′,L′ = ∅. Thus bases
defined above are pairwise disjoint.

It remains to check that any α ∈ CΛ \ CΓ is in one of the basic sets constructed
above. Let α = τ0 a1 τ1 . . . τm β. Then, τ0.fstate ∈ P0 \ Q0, τ0.ltime ∈ S0 \ R0,
τ0.lstate ∈ P ′0 \ Q′0, a1 ∈ B1 \ A1, . . . , τm.lstate ∈ P ′m \ Q′m. Then there must exist
index sets Iα, Jα,Kα ⊆ {0, . . . ,m}, and Lα ⊆ {1, . . . ,m} such that τi.fstate ∈ Pi\Qi if
i ∈ Iα, τj .lstate ∈ P ′j\Q′i for all j ∈ Jα, al ∈ Bl\Al for all l ∈ Lα, and τk.ltime ∈ Sk\Rk
for all k ∈ Kα. It follows that α ∈ CΛIα,Jα,Kα,Lα

.

144



The σ-algebra generated by C is denoted by FFragsA . The collection of sets obtained
by taking the intersection of each element in C with ExecsA is a semi-ring in ExecsA. We
denote the σ-algebra generated by this semi-ring by FExecsA . We define the measurable
space of executions of A to be (ExecsA,FExecsA).

By restricting basic sets to finite execution fragments, we define finite basic sets. The
collection of all finite basic sets forms a semi-ring over set Frags∗A of finite execution frag-
ments of A. The σ-algebra on Frags∗A, and the measurable space (Execs∗A,FExecs∗A

) of finite
executions are defined in a manner identical to the above constructions.

Definition 7.7. A trace base is a finite sequence of the form Λ = R0 E1 R1 E2 . . . rn−1 En
where ∀i ∈ {0, . . . , n− 1}, Ri is a measurable set in R≥0 and and ∀j ∈ {1, . . . , n}, Ej ⊆ E.
The length of such a trace base is defined to be n The trace basic set corresponding to the
base Λ is a set of traces of A defined as:

CΛ = {τ0 a1 τ1 . . . an β ∈ TracesA | ∀i ∈ {0, . . . , n}, τi.ltime ∈ Ri,∀i ∈ {1, . . . , n}, ai ∈ Ei}.

The collection D of all trace basic sets of A is a semi-ring. The σ-algebra FTraces on the
set of traces of A is defined as the σ-algebra generated by the collection of trace basic sets;
the measurable space of traces is denoted by (TracesA,FTracesA).

7.4.2 Probability Measure Over Executions

In this section, we proceed to define the value of µ at each basic set of A. Then, using Theo-
rem 7.1 we obtain a probability measure over ExecsA. The evolution of a PTIOA A involves
both nondeterministic and probabilistic choices. From a given state x multiple actions may
be enabled, and one of these enabled actions has to be chosen nondeterministically. The
nondeterministic choice of a task, say T , uniquely determines an enabled action a ∈ T
(axiom D2), which in turn uniquely determines (axiom D1) the probabilistic transition
x a→ µ, corresponding to action a that occurs at x. This transition then probabilistically
chooses the next state x′ according to the distribution µ.

In order to obtain a probability distribution over the set of executions of A, one has
to resolve the nondeterministic choices. This is done through an entity called ascheduler .
Depending on memory usage and the choice mechanism employed by the scheduler, the
following different kinds of schedulers are possible. Suppose α is an execution fragment of
A, and the scheduler has to choose one task T from the set of enabled tasks, at α.lstate.

Memory usage. The scheduler may be (i) oblivious, that is, completely independent of
the history of the execution α, (ii) Markovian—dependent only on the current state
α.lstate, or (iii) history dependent , in which case the scheduler may use all the infor-
mation available in α.

Choice mechanism. The task T may be chosen as a deterministic function of the history
or as a deterministic function of the current state. Alternatively, the function may
give rise to a probability distribution over enabled tasks at α.lstate, according to
which the actual task T is chosen.

In this thesis, we use oblivious task scheduler [CCK+06c, CCK+06b]. An oblivious
scheduler chooses the next action deterministically and independently of the information
produced during an execution.

145



Definition 7.8. A task schedule for a closed task-DPTIOA A = (X, (Q,FQ), x̄, A,D, T ,R)
is a finite sequence ρ = T1T2 . . . Tn of tasks in R.

In this thesis, we restrict our attention to finite task schedules because we study prob-
ability distributions supported on the set of finite executions of the given PTIOA, and
therefore we consider only finite task schedules.

A task schedule resolves nondeterministic choices by repeatedly scheduling tasks. Each
task determines at most one transition for the PTIOA. A task schedule for A determines
a probability measure over (ExecsA,FExecsA). We define an operation that “applies” a task
schedule to a PTIOA . Given any task schedule ρ the corresponding probability distribution
apply(δx̄, ρ) over ExecA, is called a probabilistic execution of A.

For each base Λ and each B ⊆ A, we define an identity function gΛ,B : Execs∗A → {0, 1}.
Informally, for a closed execution α, gΛ,B(α) returns 1 if and only if α matches the pattern
of actions and trajectories defined by the base Λ and some action in B is enabled at its last
state.

gΛ,B =

 1 if α.lstate ∈ EB and α ∈ CΛ

0 otherwise.
(7.1)

Notice that gΛ,B is a FExecsA-measurable function. There are three cases to consider: if
Λ = P , for some P ∈ FQ, then g−1

Λ,B(1) = CP∩EB
. Secondly, if Λ = Λ′ R P , for some

P ∈ FQ, R ∈ FR≥0
, then g−1

Λ,B(1) = CΛ′ R (P∩EB). Finally, if Λ = Λ′ B′ P , for some B′ ⊆ A,
P ∈ FQ, then g−1

Λ,B(1) = CΛ′ B′ (P∩EB). Measurability of gΛ,B is ensures the integrability of
a function which appears in the following recursive definition of apply(, ).

Definition 7.9. Let A = (X, (Q,FQ), x̄, A,D, T ,R) be a PTIOA. Given a task schedule ρ
for A and a probability measure µ ∈ P(Execs∗A,FExecs∗A

), µ′ = apply(µ, ρ) is a probability
measure in P(ExecsA,FExecsA), defined recursively as follows:

1. apply(µ, λ) ∆= µ, where λ denotes the empty sequence of tasks.

2. apply(µ, T ) ∆= µ′, where T is a task in R and µ′ is defined as follows:

µ′(CP ) =

 1 if x̄ ∈ P

0 otherwise,
(7.2)

µ′(CΛBP ) = µ(CΛB(P∩Ec
T )) +

∫
α∈Λ

gΛ,B∩T (α)µα.lstate,B∩T (P )µ(dα), (7.3)

µ′(CΛRP ) =
∫
α∈Λ

IER,P
(α.lstate)µ(dα), (7.4)

where P ∈ FQ, B ⊆ A, and R is a Borel set of R≥0. Recall that µx,B′ denotes a
probability distribution η ∈ P(Q,FQ) where x a→ η, and a ∈ B′ is the only action
enabled at x.

3. apply(µ, ρ) ∆= apply(apply(µ, ρ′), T ), where ρ = ρ′T .

The first part of the recursive definition states that the application of an empty task
schedule λ does not alter the original distribution of ExecsA. The third part of the definition

146



states that the measure resulting from applying a task schedule ρ = ρ′T , is recursively
obtained by applying T to apply(µ, ρ′).

The second part of the definition describes the measure µ′ that results from applying
a single task T to µ. Equations (7.2) states the base case of this inductive definition; it
defines the value of µ′ for basic sets of the form CP , P ∈ FQ. For any task schedule, any
basic set of the form CP has measure 1 if the initial state x̄ is in P , otherwise it has measure
0.

Equations (7.3) and (7.4) inductively defines the value of µ′ for basic sets of the form
CΛBP and CΛBP , by integrating over all executions in CΛ. Let us consider Equation (7.4)
first. The probability measure of an arbitrary basic set CΛRP is simply the probability of the
the set of executions in Λ from which there exist a closed trajectory τ such that τ.ltime ∈ R
and τ.lstate ∈ P . In other words, it is the probability measure of the executions in Λ whose
last states are in ER,P . Thus, µ′(CΛRP ) defined by integrating over Λ, the indicator function
for ER,P , with respect to the measure µ.

Next, we consider Equation (7.3). The probability measure of an arbitrary basic set
CΛBP can be written as the sum of µ(CΛB(P∩Ec

T )) and the “sum of probabilities” of all
executions α ∈ Λ from the last state of which an action a ∈ B ∩ T and which leads
to a state in P . This sum becomes an integral over Λ with respect to the measure µ.
The probability distribution µα.lstate,B∩T ∈ P(Q,FQ) denotes the distribution η of some
probabilistic transition α.lstate

a→ η, for some action a ∈ B ∩ T . But, from axioms D2
we know that there can be at most one action a ∈ T that is enabled at α.lstate. In fact,
if gΛ,B∪T (α) 6= 0 then there exists a unique action a. Moreover, from D1 we know that
there exists a unique transition α.lstate

a→ η. Hence, µα.lstate,B∩T () is well defined in the
integrand. Measurability of µα.lstate,B∩T follows from the Giry construction described in 7.2,
and FQ-measurability of ER,P (axiom M2). We have already proved the measurability of
gΛ,B∩T . The integrand is measurable as it is the product of two measurable functions, and
therefore the integral is well defined.

Theorem 7.10. Let µ be a probability measure on (Execs∗A,FExecs∗A
) and ρ be a task schedule

for A. Then µ′ = apply(µ, ρ) is a probability measure on (ExecsA,FExecsA).

Proof. For any base Λ, µ′(CΛ) ≥ 0, µ′(CExecsA) = µ′(Cx̄) = 1, and if CΛ = ∅ then µ′(CΛ) =
0. Next, consider a countable disjoint collection of bases {Λi}i∈I . For any i, j ∈ I, at least
one of the sets in the sequence Λi must be disjoint with the corresponding set in Λj . (If Λi
and Λj are of different lengths, say Λi is shorter than Λj , then there must exist a disjoint set
in the prefix of the Λi that equals in length to Λj .) Therefore, µ′(

⊎
i∈I CΛi) =

∑
i∈I µ

′(CΛi).
Thus µ′ is a probability measure over the semi-ring C defined by the collection of all basic
sets. From Theorem 7.1 it follows that µ′ is a probability measure on (Execs∗A,FExecs∗A

).

In summary, each task schedule for A gives rise to a probabilistic execution, which is
a probability measure on the space (ExecsA,FExecsA). A set of task schedules give a set of
probabilistic executions. Drawing the analogy between a non-probabilistic SHIOA and a
task-DPTIOA, the set of all behaviors of the former is its set of executions while for the
latter it is the set of all probabilistic executions.

7.4.3 Probability Measure Over Traces

For non-probabilistic automaton models like SHIOAs we are often interested in analyzing
their observable behavior or traces as opposed to their actual behavior (executions). In

147



the PTIOA framework, the role of observable behavior is played by trace distributions or
probability measures over the set of traces. In this section, we show that the trace function
is a measurable function from (ExecsA,FExecsA) to (TracesA,FTracesA), which enables us to
derive trace distributions from probabilistic executions.

For any probabilistic execution µ of a PTIOA, we want there to be a unique corre-
sponding measure on the space of traces. Formally, the image measure of µ with re-
spect to the trace function should be well defined. Therefore we require the function
trace : (Execs,FExecs) → (Traces,FTraces) to be measurable. The following example illus-
trates the difficulty in proving the measurability of trace.

Example 7.1. Consider a trace base [0, r]{a} of a task-DPTIOA A, where r is a positive real
and a is an external action. In order to prove measurability of the trace function, we will
have to express the set of executions trace−1(C[0,r]{a}) as a countable union of basic sets
of A. What is the set of executions for which the traces are in C[0,r]{a} ? For any n ∈ N,
any execution α of the form τ0 h1 τ1 h2 . . . τna, has trace(α) ∈ C[0,r]{a}, as long as hi’s are
internal actions and the sum of the length of the trajectories is at most r. For the trace
function to be measurable, the above set of executions must be in FExecs, that is, E should
be expressible as a countable union of basic sets. Showing this requires some work because
the condition on the sum of the τi’s makes them interdependent.

In what follows, we prove a sequence of lemmas that go into proving measurability of
the trace function for PTIOAs.

Definition 7.10. A trace base Γ of the form [0, b0)E1[0, b1)E2 . . . En, where each bi ∈ R≥0

and each Ei ⊆ E, is said to be a canonical trace base.

Lemma 7.11 states that for proving measurability of trace, it suffices to show that for
any canonical trace base Γ, trace−1(CΓ) is in the σ-algebra of executions.

Lemma 7.11. Consider a function f : (Execs,FExecs) → (Traces,FTraces). If f−1(CΓ) ∈
FExecs for every canonical trace base Γ then f is measurable.

Proof. We define a collection of sets in Traces

C = {C ⊆ Traces | f−1(C) ∈ FExecs},

and check that C is in fact a σ-algebra on Traces.

1. f−1(Traces) = Execs ∈ FExecs, therefore Traces ∈ C .

2. For any C ∈ C , f−1(Traces \ C) = Execs \ f−1(C) ∈ FExecs.

3. For any C1, C2 . . . ∈ C , f−1(C1 ∪ C2 . . .) = f−1(C1) ∪ f−1(C2) . . . ∈ FExecs.

Next we show that if f−1(CΓ̄) ∈ FExecs for every canonical trace base Γ̄, then for every
trace base Γ, f−1(CΓ) ∈ FExecs. We prove this by induction on the length of trace basic sets.
First we assume that for each b1 ∈ R≥0, E1 ⊆ E, the canonical trace base Γ̄1 = [0, b1)E1

of length one, CΓ̄1
∈ C . And we show that for every trace base Γ1 of unit length (not

necessarily canonical), CΓ1 ∈ C . If Γ1 is of the form [b,∞)E2, then C[b,∞)E2
= C[0,∞)E2

∩
Cc[0,b)E , and since C is a σ-algebra, C[b,∞)E2

∈ C . To see that a trace base of the form
C[0,b]E2

, E2 ⊆ E, is also in C . Choose a sequence of real numbers {bn}∞n=1 such that

148



bn+1 > bn and bn → b as n → ∞. Since for each n, C[0,bn)E1
∈ C and C is a σ-algebra we

have:

C[0,b]E1
=

∞⋂
n=1

C[0,bn)E1
∈ C .

The same holds true for basic sets of the form C(a,b)E2
= C[0,b)E2

∩ C(a,∞]E2
. Since every

measurable set in R≥0 is a countable union of segments of the types [0, b), (b,∞), and (a, b),
we have proved that for any trace base Γ1 of unit length, CΓ1 ∈ C which implies that
f−1(CΓ1) ∈ FExecs.

In the induction step we assume that for any n ∈ N, if all canonical trace basic sets of
length n are in C , then all trace basic sets of length n are in C . Based on this inductive
hypothesis and the additional assumption that every canonical trace base of length n + 1,
Γ̄ = Γ̄n[0, bn+1)En+1 ∈ C , where Γn is a canonical base of length n, bn+1 ∈ R≥0, and
En+1 ⊆ E, we show that any trace basic set of length n + 1 is in C . The details of this
argument are similar to those in the base case.

Every set in FTraces can be expressed as a countable union of the trace basic sets, and
by the hypothesis of the lemma, f−1(CΓ̄) is measurable for every canonical trace base Γ̄,
and therefore f is measurable.

Our next step is to show that trace−1(CΓ̄) is a measurable set for every canonical trace
base Γ̄. In the light of lemma 7.11, this will be sufficient to conclude the measurability of the
trace function. The proof of the above statement follows from repeated application of the
construction described by Definition 7.11. For clear exposition, we describe the construction
for canonical trace bases of length one; the same construction is repeated for canonical bases
of any finite length. The key idea is to express trace−1(C[0,r)E1

) as the countable union of a
disjoint basic sets that partition [0, r) into several intervals with rational endpoints. A base
is then constructed by inserting internal actions in between the successive sub-intervals.

Definition 7.11. Let Γ̄1 = [0, r)E1 be a canonical trace base of unit length. For n ∈ N, an
n-partition base of Γ̄1 is a trace base of length n of the form:

Λn,r
q1,q′1,...,q

′
n

∆= Q[q1, q′1]QH Q[q2, q′2]QH Q . . . [qn, q′n]QE1Q

where q1, q′1, q2, q
′
2, . . . , qn, q

′
n ∈ Q≥0, q1 < q′1, q2 < q′2, . . . , qn < q′n, and q′1+q′2+ . . .+q′n < r.

We denote the union over all possible n-partition basic sets of Γ̄1 by Qn,r, that is,

Qn,r
∆=

⋃
q1,q′1,...,q

′
n∈Q≥0

CΛn,r

q1,q′1,...,q′n
,

where the union is over nonnegative rationals q1, q′1, . . . , q
′
n satisfying the above constraints.

In order to understand the above definitions and the proof of the following Lemma,
let us consider an execution α of task-PDTIOA A, such that trace(α) ∈ CΓ̄1

. We know
that α is of the form α1 a α2, where a ∈ E1 ⊆ E, α2 is any execution fragment of A,
and within α1 some number (possibly 0) of internal actions occur and α1.ltime ∈ [0, r).
From axiom P1 we know that the number of internal actions that occur in α1 is finite.
Let us assume that this number is one. Then, α1 is of the form τ0h1τ1, where h1 ∈ H
and τ0.ltime + τ1.ltime < r. If we choose q1, q′1, q2, q

′
2 ∈ Q≥0, such that τ0.ltime ∈ [q1, q′1],

149



τ1.ltime ∈ [q2, q′2], and q′1 + q′2 < r, then, α is in the basic set of Λ2,r
q1,q′1,q2,q

′
2
. Such choices

are possible, as long as q′1 + q′2 < r, because Q≥0 is dense in R≥0,
Informally, each point in the set S2 = {(x0, x1) ∈ R≥0×R≥0 | x0 + x1 < r} corresponds

to a possible execution fragment of the form τ0 h1 τ1, with x0 = τ0.ltime and x1 = τ1.ltime.
And all such executions are included in Q2,r. To see this, notice that (a) each basic set in
Q2,r, such as the C

Λ2,r

q1,q′1,q2,q′2

we chose above, covers a rectangle [q1, q′1]× [q2, q′2] ⊆ S2, and

(b) the union of all such rectangles, defined by all possible choices of q1, q′1, q2, q
′
2 ∈ Q≥0

satisfying q′1 + q2 < r, covers all of S2.
For the general case, say, α1 = τ0 h1 τ1 . . . hn τn, with n ∈ N. Then the set Sn =

{(x0, . . . , xn−1) ∈ R≥0
n |
∑n−1

i=0 xi < r} corresponds to all possible execution fragments with
n internal actions with with xi = τi.ltime, i ∈ {0, . . . , n}. The union over all n-partitions
for Γ̄, namely Qn,r covers all such possible executions.

Lemma 7.12. Suppose Γ̄1 = [0, r)E1 is a canonical trace base of a PTIOA A. Then,

trace−1(CΓ̄1
) =

⋃
n∈N

Qn,r.

Proof. First we show that
⋃
n∈NQn,r ⊆ trace−1(CΓ̄1

). Let α be an execution in Qn,r, for
some n ∈ N. Since the first n actions of α are internal actions, trace(α) is of the form τ0aα

′,
where α′ is a trace of A, a ∈ E1 and τ.ltime ≤ r. By definition of trace basic set it follows
that trace(α) ∈ C[0,1)E1

.
Next, we show that trace−1(CΓ̄1

) ⊆
⋃
n∈NQn,r. Consider any execution α ofA, such that

trace(α) ∈ C[0,r)E1
. Then, α must be of the form α1 a α2, where a ∈ E1 and α1.ltime < r.

It suffices to show that α1 ∈ Qn,r, for some n ∈ N.
By axiom P1, the number of internal actions in α′ is finite. Let us assume that the

number of internal actions in α′ is k, for some k ∈ N. We write α1 as τ0 h1 τ1 h2 . . . τk,
where each hi ∈ H, and

∑k
i=0 τi.ltime < r. Since the Q≥0 is dense in R≥0, there ex-

ist q0, q′0, q1, q
′
1, . . . , qk, q

′
k ∈ Q≥0, such that, for all i ∈ {0, . . . , k}, τi.ltime ∈ [qi, q′i] and∑k

i=0 q
′
i < r. By definition 7.11, it follows that α1 is contained in the basic set of the

k-partition base Λ = Λk,r
q1,q′1,...,qk,q

′
k
, that is, α ∈ Qk,r.

Next we prove the generalization of Lemma 7.12 for finite length canonical trace bases.

Lemma 7.13. If Γ̄ is a canonical trace base of A, then trace−1(CΓ̄) ∈ FExecs.

Proof. The proof follows from a straightforward induction on the length of the canonical
trace base Γ̄. Suppose Γ̄ = [0, r1)E1 [0, r2)E2 . . . [0, rn)En, where ri’s are nonnegative reals
and Ei’s are sets of external actions, for some n ∈ N. For a canonical trace base of length
one, by Lemma 7.12 trace−1(CΓ̄1

) is expressed as a countable union of bases, and therefore
is a measurable set.

Suppose the lemma holds for all canonical trace basic sets of length n, for some n ∈ N.
Consider a canonical trace base Γ̄ = Γ̄n[0, r) E1 of length n+ 1, where Γ̄n+1 is a canonical
trace base of length n, r ∈ R≥0, and E1 ⊆ E. From the induction hypothesis we know that
trace−1(CΓ̄n

) = ∪i∈IC∆i , for some countable collection of basic sets indexed by I. Here
the ∆i’s are concatenation of partition bases for the sets in Γ̄n. We extend the ∆i’s with a
k-partition base Λk,r for the trace base [0, r)E1. Then, using essentially the same arguments

150



as in Lemma 7.12 it can be shown that:

trace−1(CΓ̄) =
⋃
i∈I

⋃
k∈N

C∆iΛk,r (2k rational parameters of Λk,r are suppressed.)

=
⋃
i∈I

⋃
k∈N

⋃
q1,q′1,...,qk,q

′
k∈Q≥0

C
∆iΛ

k,r

q1,q′1,...,qk,q′
k

.

Here the union over q1, q′1, . . . , qk, q
′
k ∈ Q≥0 is taken for those rationals that satisfy the usual

restrictions, that is, q1 < q′1, . . . , qk < q′k, and
∑
q′i < r. Since trace−1(CΓ̄) is a countable

union of basic sets it is contained in the σ-algebra FExecs.

Theorem 7.14. trace : (Execs,FExecs) → (Traces,FTraces) is a measurable function.

Proof. It follows from Lemmas 7.13 and 7.11 that for any trace base Γ, trace−1(Γ) is a
countable union of disjoint basic sets. This suffices to establish measurability of the trace
function.

Theorem 7.14 implies that corresponding to each probabilistic execution µ of a given task-
DPTIOA A there exists a unique probability measure on the set of traces of A, namely, the
image measure of µ under the trace function. This probability measure on TracesA is called
the trace distribution corresponding to µ. From Section 7.4.2 we saw that each task schedule
ρ of a task-DPTIOA gives rise to a probabilistic execution µρ. Thus, each task schedule also
gives a corresponding trace distribution which we denote by tdist(µρ), or in short as tdist(ρ).
More formally, tdist(ρ) : TracesA → [0, 1], is defined as tdist(ρ)(E) = µρ(trace−1(E)), for
any measurable set E ∈ FTracesA . The set of trace distributions of A, TdistsA, is the set of
tdist(ρ)’s for any task schedule ρ of A.

7.5 Implementation and Compositionality

In the previous section we defined the set of trace distributions of a task-DPTIOA A. A
natural definition for implementation of task-DPTIOAs would be to say A1 implements
A2, if and only if TdistsA1 ⊆ TdistsA2 . This definition, however, does not give the desirable
substitutivity property of the type stated by Theorem 2.5, for example. Instead, based on
the idea presented in [CCK+06a], we define a notion of external behavior and show that the
implementation relation based on this external behavior is compositional. We formulate
the external behavior of a A as a mapping from possible “environments” for A to sets of
trace distributions that can arise when A is composed with the given environment.

Definition 7.12. An environment for task-DPTIOA A is a PTIOA E such that A and E are
compatible and their composition A||E is closed. The external behavior of a task-DPTIOA
A, written as ExtBehA, is defined as a function that maps each environment PTIOA E for
A to the set of trace distributions TdistsA||E .

Definition 7.13. Two task-DPTIOAs A1 and A2 are comparable if E1 = E2. If A1 and
A2 are comparable then A1 is said to implement A2, written as A1 ≤ A2 if, for every
environment PTIOA E for both A1 and A2, ExtBehA1(E) ⊆ ExtBehA2(E).

151



This definition of implementation as a functional map from environment automata gives
us the desired compositionality result for task-DPTIOAs.

Theorem 7.15. Suppose A1, A2 and B are task-DPTIOAs, where A1 and A2 are compa-
rable and A1 ≤ A2. If B is compatible with A1 and A2 then A1||B ≤ A2||B.

Proof. Let E be an environment task-DPTIOA for both A1||B and A2||B. Consider a
task schedule ρ1 for the composed task-DPTIOA (A1||B)||E . Let η = tdist(ρ1) be the
trace distribution of (A1||B)||E generated by ρ1. It suffices to show that η is also a trace
distribution of (A2||B)||E , generated by some task schedule.

As ρ1 is a task schedule for A1||(B||E) it generates the same trace distribution η for
PTIOA A composed with the environment B||E . Further B||E is also a closing environment
for A2 because A1 and A2 are compatible. As A1 ≤ A2, there exists a task schedule ρ2 for
A2||(B||E) that generates the trace distribution η. It follows that ρ2 is a task schedule for
(A2||B)||E that produces the trace distribution η.

7.6 PTIOAs and Local Schedulers

In this section, we develop the probabilistic semantics for PTIOAs that do not necessarily
satisfy the determinism axioms D1, D2, and D3. This development relies on local schedulers
which are task-DPTIOAs.

Definition 7.14. A Generalized PTIOA A = (X, (Q,FQ), x̄, A,D, T ,R), where all the
components except T and R are defined as in Definition 7.1.

(a) T is a set of trajectories for Q that is closed under prefix, suffix, and concatenation.
Further, for any x ∈ Q,℘(x) ∈ T .

(b) R is an equivalence relation on the local actions. The equivalence classes of R are called
tasks.

Indeed, a generalized PTIOA A is similar to a task-PTIOA except that its trajectories
are not necessarily deterministic and it may not necessarily satisfy D1, D2, and D3. State
of a A may change through nondeterministic choice of actions and also through choice of
distinct, non-point trajectories starting.

Definition 7.15. A local scheduler for generalized PTIOA A = (X, (Q,FQ), x̄, A,D, T ,R),
is a task-DPTIOA S = (XA, (QA,FQA), x̄A, AA,D′, T ′,RA) that is identical to A except
that D′ ⊆ DA and T ′ ⊆ TA, such that T ′ is deterministic and S satisfies D1-3.

A probabilistic system captures the notion of possible ways of resolving internal nonde-
terminism in a generalized PTIOA. Formally, a probabilistic-system is a pair M = (A,L ),
where A is a generalized PTIOA and L is a set of local schedulers for A. The notions of
probabilistic execution and trace distribution defined earlier for task-DPTIOAs, carry over
naturally to generalized PTIOAs. A probabilistic execution for M is defined to be any
probabilistic execution of S, for any S ∈ L .

Compatibility and composition of generalized PTIOAs is defined in the same way as in
the case of task-DPTIOAs (see, Definition 7.4). We remind the reader that the composition
A = A1||A2 of compatible generalized PTIOAs A1 and A2, is also a generalized PTIOA
only if A satisfies M2. In order to avoid restating this condition in all our definitions and

152



results, we assume that whenever two compatible generalized PTIOAs are composed, their
composition satisfies M2, and hence is a generalized PTIOA.

An environment for M is any generalized PTIOA E such that A||E is closed. For
probabilistic system M = (A,L ), we define the external behavior of M to be the total
function ExtBehM that maps each environment PTIOA E for M to the set ∪S′∈L TdistsS′||E .
Thus, for each environment, we consider the set of trace distributions that arise from the
choices of the local scheduler of M and the task scheduler ρ. This leads to a notion of
implementation of probabilistic systems, similar to that of PTIOAs.

Definition 7.16. Let M1 = (A1,L1) and M2 = (A2,L2) be probabilistic systems such
that A1 and A2 are comparable generalized PTIOAs. Then, M1 is said to implement M2

if for every environment E of M1 and M2, ExtBehM1(E) ⊆ ExtBehM2(E).

Two probabilistic systems M1 = (A1,L1) and M2 = (A2,L2) are compatible if A1

and A2 are compatible, and their composition M1||M2 is defined as (A1||A2,L ), where
L is the set of local schedulers {S1||S2 | S1 ∈ L1 and S2 ∈ L2 }. Theorem 7.16 gives
the following sufficient condition for implementation of probabilistic systems: each local
scheduler for the concrete probabilistic system must always correspond to the same local
scheduler for the abstract.

Theorem 7.16. If M1 = (A1,L1), M2 = (A2,L2) are comparable and there exists f :
L1 → L2, such that for all S1 ∈ L1, S1 implements f(S1), then M1 implements M2.

Proof. Fix an environment PTIOA E of probabilistic system M1 and M2. The external be-
havior of M1 with environment E , is defined as ExtBehM1(E) = ∪S1∈L1TdistsS1||E . Consider
any S1 ∈ L1. For every S1 ∈ L1, S1 implements f(S1), that is, TdistsS1||E ⊆ Tdistsf(S1)||E .
Taking the union over all S1 ∈ L1,⋃

S1∈L1

TdistsS1||E ⊆
⋃

S1∈L1

Tdistsf(S1)||E ⊆
⋃

S2∈L2

TdistsS2||E = ExtBehM2(E).

It follows that ExtBehM1(E) ⊆ ExtBehM2(E), that is, M1 implements M2.

7.7 A Language for Specifying PTIOAs

In this section, we present a for specifying task-DPTIOAs. This language is a modification
of the HIOA language we introduced in Chapter 3 for specifying SHIOAs. The syntax and
semantics for this modified language is identical to those of HIOA with the following key
distinctions.

Variables. Automaton specifications have only internal or state variables and no in-
put/output variables. A variable v of type S gives rise to a topological space (S,T );
T is the Euclidean topology on S if S is a compact subset of Rn and v is continuous
variables, otherwise T is the discrete topology on S. The Borel σ-algebra generated
by T defines the measurable space (S,FS) associated with the variable v. The state
space of the automaton is defined as the measurable space obtained by taking the
product of the individual variable spaces.

For example, the variables now and flag in Figure 7-1 are associated with the mea-
surable spaces (R,B) and ({0, 1},D}, where B is the Borel σ-algebra on R and D is
the collection of sets {∅, {0}, {1}, {0, 1}}.

153



Initial state. Each state variable is initialized to a single value. These initial valuations
together define the unique starting state of the automaton.

Transitions. The precondition-effect style of HIOA is used to define the transitions. How-
ever, the effects of transitions are either purely deterministic or probabilistic. That
is, nondeterministic choose statements are not allowed. Probabilistic transitions are
defined by a new type of choose statement that specifies the distribution according
to which this choice is made.

For example, the statement xs := choose Normal(x, σ) of in Figure 7-1 means that
xs is chosen according to a normal probability distribution with mean x and standard
deviation σ. The statement toss := choose {1, 0} Disc[12 ,

1
2 ] means that toss is

assigned a value 0 or 1 with probability 1
2 each.

Trajectories. State models are used to specify the set of trajectories of a PTIOA. An
additional requirement is that the set of trajectories should be deterministic, i.e., the
state models should have differential equations with unique solutions.

The state model normal of Example 7.2 specifies that along any trajectory the contin-
uous variable now increases at the same rate as that of real time, until the stopping
condition is satisfied. Hence, normal specifies a deterministic set of trajectories.

Tasks. A new language construct is introduced to HIOA for specifying the set of tasks of
the PTIOA. The tasks section of the code specifies the tasks as a sequence of sets of
actions. In the PTIOA of Example 7.2, sample and send actions constitute the one
and only task.

In the remaining part of this section we use this language for specifying two typical
task-PTIOAs and then, we illustrate some of the concepts we defined earlier in the context
of these examples.

Example 7.2. The automaton NoisySensor(d, σ) of Figure 7-1 specifies a sensor that pe-
riodically reports the sampled value xs of a variable x that is evolving according to the
differential equation d(x) = f(x). The value is reported through the occurrence of the
send(xs) action which immediately follows the sample action. The sample action occurs
periodically, every d time units, and assigns a value to xs. The state variables, actions,
transitions, and trajectories are specified in the same way as in HIOA specifications with the
following differences. It is routine to check that NoisySensor satisfies the axioms of Defini-
tion 7.2. This automaton has several similarities with the Sensor automaton of Figure 4-4.
Here, the sampled value xs is chosen according to a normal probability distribution with
mean x and standard deviation σ whereas in Sensor, the choice of the sampled value x0

was made nondeterministically over the interval [θ0
s − e0, θ

0
s + e0]. In many applications,

such as sensors, probabilistic information about uncertainties is available, and in those cases
PTIOA models can capture this extra information.

Example 7.3. The Ben-Or consensus protocol [BO83] is a randomized algorithm for n fault-
prone processors to agree on a valid value by communicating over an asynchronous network.
The algorithm proceeds in a sequence of stages. In each stage, nonfaulty processes send
and receive messages based on coin-flips and comparison of values. With perfectly unbi-
ased coins, a stage ends successfully with probability 1

2n , and all nonfaulty processes agree
on a value. After one communication round of a successful stage the consensus value is
disseminated. An unsuccessful stage is followed by the beginning of the next stage.

154



automaton NoisySensor(d, σ : Real)
signature

internal sample
output send(xs : Real)

variables
internal now : Real := 0;
next sample : AugmentedReal := 0;
x : Real := 0;xs : Real := 0;
flag : Bool := f alse;

transitions
internal sample

pre now = next send;
eff xs := choose Normal(x, σ);
flag := true; next send := now + d;

output send(m)
pre flag ∧ (xs = m);
eff flag := f alse;

trajectories
trajdef normal

stop when now = next send ∨ flag;
evolve d(x) = f(x);

tasks
{send, sample}

Figure 7-1: Noisy sensor.

The Consensus PTIOA of Figure 7-2 abstracts the actual computation performed by
the processes as well as the messages exchanged, and specifies the termination behavior of
the Ben-Or protocol in a terms of number of stages and time elapsed. The stage variable
represents the current stage of the protocol. The phase variable is 0 at the beginning of
a stage, 1 when a stage completes successfully, and 2 when the protocol terminates at all
nonfaulty processes.

The try action models the computation and communication within a stage. With prob-
ability 1 − 1

2n it leads to the next stage and with probability 1
2n it leads to phase 1 of the

current stage. This is specified by the probabilistic choose statement which assigns to
phase the value 1 with probability 1

2n and 0 with probability 1 − 1
2n . The decide action

marks the termination of the protocol.
The trajectories section specifies that along any trajectory, timer increases at the

same rate as real time, and that all other variables remain constant. The amount of time
that elapses in phase 0 owing to message delays is modeled by an exponential distribution
with parameter λ0. Specifically, the delay variable is assigned a value chosen from this
distribution and stop when condition together with the pre condition of try forces the
action to occur when timer equals delay. Likewise, the amount of time that elapses in
phase 1 is modeled by an exponential distribution with parameter λ1. The tasks section
of the code specifies the two tasks of the automaton.

A typical execution of the Consensus automaton is a sequence

α = τ0 try τ1 try τ2 decide τ3,

were each τi, i ∈ {0, . . . , 3}, is a trajectory over which timer increases monotonically at the
same rate as real time and all other variables remain constant. The length of the trajectory
τi, i ∈ {0, 1, 2} in each stage is determined by the value of the variable delay, which is
chosen according to the exponential distribution with parameter λ0. The corresponding
trace is:

trace(α) = (τ0 _ τ1
_ τ2 ↓ ∅) decide (τ3 ↓ ∅).

Notice that the trace contains information about the total time elapsed before decide occurs
but not the amount of time that is spent in individual stages.

Let us examine how Definition 8.3 assigns probability measures to the basic sets of the

155



Consensus(n : Nat, λ0, λ1, p : Real)
where λ0, λ1 > 0, 0 < p < 1

signature
internal try
output decide

variables
internal stage : Nat := 1; phase : {0, 1, 2} := 0;
timer : Real := 0;
delay : AugmentedReal := t0;

transitions
output decide

pre timer = delay ∧ phase = 1;
eff timer := 0; phase:= 2; delay:= ∞;

output try
pre timer = delay ∧ phase = 0;
eff timer := 0;

phase:= choose {1,0} Disc{ 1
2n , 1− 1

2n };
if phase = 0

then stage:= stage+ 1; delay:= choose Exp(λ0);
else delay:= choose Exp(λ1) fi

trajectories
trajdef normal

stop when timer = delay;
evolve d(timer) = 1;

tasks
{try}{decide}

Figure 7-2: Randomized consensus with exponential message delays.

Consensus automaton. Recall that a state x of Consensus is an ordered 4-tuple specifying
the valuations of the 4 variables stage, phase, timer, and delay, respectively. From the
specification in Figure 7-2, x̄ = (1, 0, 0, t0) and we define x̄′ = (1, 0, t0, t0). Suppose µ1 =
apply(δx̄, λ), where λ is the empty task schedule, Let Λ1 = Q0R0Q1, such that x̄ ∈ Q0 ∈ FQ,
x′ ∈ Q1 ∈ FQ, and t0 ∈ R0. Then, by Definition 8.3, µ1(CQ0) = 1 and µ1(CΛ1) = 1. In
fact, for any base Λ′1 = Q0 R

′
0 Q

′
1, µ1(CΛ′1

) = 1, if there exists t < t0, such that t ∈ R′0 and
(1, 0, t, t0) ∈ Q′1. For any base Λ1 A1 Q2 of Λ1 R2 Q

′
2 that extends Λ1, the measure assigned

is 0.
Next, suppose µ2 = apply(µ1, {try}). Let Λ2 = Λ1 {try}Q2, Q2 = {x | x d stage = 2,x d

phase = 0,x d delay ≤ r1}, for some r1 ∈ R≥0. Then,

µ2(CΛ2) =
∫
s∈G

µs(Q2)µ1(dα), where G = {x | gΛ1,{try}(x)},

=
(

1− 1
2n

)
(1− eλ0r1).

Since µ1(α) = 1 for a single execution which is a trajectory starting from x̄ and ending at x′,
in the above case the integral of Equation (7.3) reduces to µx′(Q2). Suppose Λ3 = Λ2R1Q3

where R1 = [0, r′1], where r′1 ≤ r1, and Q3 = {x | x d stage = 2,x d phase = 0,x d
timer ≤ x d delay ≤ r1}. Then Equation (7.4) gives: µ2(CΛ3) = r′1

r1
1
2n (1 − eλ0r1). Suppose

Q′2 = {x | x d stage = 0,x d phase = 1,x d delay ≤ r2}, Λ′2 = Λ1 {try}Q′2, then

µ2(CΛ′2
) =

∫
s∈G

µs(Q2)µ1(dα), where G = {x | gΛ1,{try}(x)},

=
1
2n

(1− eλ0r2).

Taking another step, suppose µ3 = apply(µ2, {decide}). Let Q4 = {x | x d stage = 0,x d
phase = 2,x d delay ≤ r2}, where r2 ∈ R≥0. From Equation (7.3) we obtain:

µ3(CΛ′2{decide}Q4
) =

1
2n

(1− eλ0r1)(1− eλ1r2),

µ3(CΛ2) = µ2(CΛ2) =
(

1− 1
2n

)
(1− eλ0r1).

156



The distributions µ1, µ2, and µ3 are the probabilistic executions of Consensus corresponding
to the task schedules λ, {try}, and {try}{decide}.

7.8 Summary

We have introduced PTIOAs for modelling and discretely communicating probabilistic hy-
brid systems. The non-probabilistic aspects of the behavior of a PTIOA, namely, its exe-
cutions and its traces are defined in the same way as in the case of SHIOAs. In order to
associate probability measures with sets of executions of a PTIOA, first, we had to ensure
measurability of all reasonable sets of executions. For this purpose, we found it natural to
work with a measurable state space Q, that is, Q associated with the additional structure
of a σ-algebra FQ. Introducing two new measurability axioms, namely, M1 and M2 we
constructed the σ-algebra FExecsA over the space of executions of task-DPTIOA A. We
showed that a PTIOA A combined with a local scheduler (for resolving internal nonde-
terminism), and an oblivious task scheduler (for resolving external nondeterminism) gives
rise to a probabilistic execution—a probability distribution over the measurable space of
executions (ExecsA,FExecsA). The probabilistic behavior of PTIOAs is defined in terms
of sets of probabilistic executions—one for each possible local and task schedule. Based
on probabilistic execution we define trace distributions and implementation relations for
PTIOAs.

We show that the composition of two PTIOAs is also a PTIOA only if the composite au-
tomaton satisfies an additional measurability requirement, namely, axiom M2. This could
be improved by imposing restrictions on the trajectories or with additional measurability
requirements, so that a subclass of PTIOAs is closed under composition. In the future
we will extend PTIOAs to support external variables. For including input variables one
has to remove the the time-action determinism axiom D3 because the stopping points of a
trajectory would also depend on inputs. We also intend to develop a suite of verification
techniques for quantitative properties such as, probabilistic safety and stochastic stabil-
ity [CL06]. In Chapter 8 we present techniques for verifying approximate implementation
relations for a class of “discrete” PTIOAs. Such techniques are particularly relevant in
context of PTIOAs because inaccuracies related to timing information can be captured by
approximate abstractions. A longer term research direction is to incorporate continuous
stochastic behavior over trajectories.

157



Chapter 8

Verifying Approximate
Implementation Relations

In this chapter we introduce the notion of approximate implementation for Probabilistic
I/O Automata (PIOA) and develop methods for proving such relationships. A PIOA is
essentially a “discrete” pre-PTIOA (of Chapter 7); it does not have trajectories and only
discrete probability distributions appear in transition definitions. The nondeterminism in
a PIOA is resolved by task schedulers which gives rise to probabilistic executions and trace
distributions. A PIOA A is said to implement PIOA B, in the traditional sense, if each
trace distribution of A is also a trace distribution of B. But small perturbations to the
parameters of A produces traces distributions with slightly different probabilities and this
breaks the implementation relation. We would like to define and verify implementation
relations that not only capture the binary fact of whether or not A implements B, but also
the degree to which A implements B. To this end, we develop new notions of approximate
implementation for PIOAs and generalizing existing simulation relations propose real-valued
simulation functions for proving approximate implementations.

In Section 8.2.2 we briefly describe the semantics of PIOAs. We relax the notion of
implementation by taking into consideration the “similarity” of trace distributions that are
not exactly equal. In Sections 8.3 and 8.4 we introduce two different metrics for measuring
similarity of trace distributions; each of these give rise to corresponding notions of approx-
imate implementation and we develop simulation-based techniques for verifying them. In
Sections 8.3.5 and 8.4.3, we discuss applications of approximate implementations to verifi-
cation of probabilistic safety and termination.

8.1 An Overview

Implementation relations play a fundamental role in the study of complex interacting sys-
tems because they allow us to prove that a given concrete system implements an abstract
specification. An automaton A is said to implement another automaton B if the observable
behavior of the first is subsumed by that of the latter. In the non-probabilistic setting,
we saw applications of implementation relations in verifying safety (Chapter 4) and sta-
bility (Chapter 5). These notions of implementation rely on equality of observable behav-
ior. That is, every observable behavior of the concrete system must be exactly equal to
some observable behavior of the abstract specification. It has been well-known for some
time now that such strict equality based implementation relations are not robust (see,

158



e.g., [JS90, DJGP02, GJP04]). Small perturbations to the parameters of the system pro-
duces traces with slightly different numbers (representing say, timing or probability infor-
mation), and thus breaks the equality between traces. One way to overcome this problem is
to relax the notion of implementation by taking into consideration the “similarity” of traces
using a metric. Apart from providing robust implementation relations, notions of approx-
imate implementation also enable us to create abstract models without introducing extra
nondeterminism. For instance, a complex trajectory τ of a hybrid system can be abstracted
by a simpler set of trajectories which envelop τ . Such an abstraction achieves simplicity,
and perhaps tractability, but sacrifices determinism. On the other hand, τ could be ap-
proximately abstracted by a single simpler trajectory τ ′, but now, the abstract model is not
implemented by the concrete model, at least not in the traditional sense. We can, however,
quantify the closeness of the abstract and the concrete systems using some appropriate
notion of approximate implementation based some metric over trajectories.

Probabilistic I/O Automata (PIOA) were introduced by Segala in [Seg95b, Seg95a]
for the purpose of modeling and verifying untimed, randomized, distributed algorithms.
Task-structured PIOAs (task-PIOAs) [CCK+06c, CCK+06a] introduce an additional task
structure to PIOAs which makes it possible to resolve nondeterminism by a simple sequence
of tasks. In this chapter we introduce the notion of approximate implementations for task-
PIOAs. Parts of this work previously appeared in [ML06] and [ML07]. A task-PIOA is
a nondeterministic automaton with a countable state space. A task-PIOA interacts with
a task scheduler to give rise to a trace distribution—a probability distributions over its
traces. A task-PIOA is said to (exactly) implement another task-PIOA if the set of trace
distributions of the first is a subset of the trace distributions of the latter. Implemen-
tations, simulation relations for proving implementations, and compositionality results for
task-PIOAs are presented in [CCK+06b]. A special kind of approximate implementation re-
lation that tolerates small differences in the probability of occurrence of a particular action
is used in [CCK+06d] to verify a security protocol. In contrast, the notions of approxi-
mation introduced here can be used to quantify discrepancies in the distributions of any
(measurable) function, that is, any random variable on the space of trace distributions.

In Section 8.3 we define uniform approximate implementations for task-PIOAs based on
the uniform metric on trace distributions. A PIOA A is a δ-approximate implementation of
another PIOA B, for a positive δ, if the for any trace distribution of A, there exists a trace
distribution of B such that their discrepancy, with respect to the uniform metric, over any
measurable set of traces is at most δ. We present Expanded Approximate Simulations (EAS)
for proving uniform approximate implementations. EAS is a natural generalization of the
simulation relation presented in [CCK+06d]. Let µ1 and µ2 be probability distributions
over executions of task-PIOAs A and B. An EAS from A to B is a function φ mapping
each µ1, µ2 pair to a nonnegative real. The number φ(µ1, µ2), is a measure of how similar
µ1 and µ2 are in terms of producing similar trace distributions. Informally, if φ(µ1, µ2) ≤ ε,
for some ε ≥ 0, then it is possible to closely (with respect to the uniform metric on trace
distributions) simulate from µ2 anything that can happen from µ1, and further, the resulting
distributions, say µ′1 and µ′2, are also close in the following sense. There exists a joint
distribution ψ supported on the set {(η1, η2) | φ(η1, η2) ≤ ε} such that the first and the
second marginal distributions of ψ have means µ′1 and µ′2. Informally, this means that µ′1
and µ′2 can be decomposed into a set of measures that are close in the sense of φ.

In Section 8.4, we define discounted uniform approximate implementations of task-
PIOAs based on the discounted uniform metric on trace distributions, respectively. Uniform
approximate implementations are useful for deducing probabilistic safety properties. How-

159



ever, since they gives absolute bounds on the discrepancy over any set of traces, they do not
give us useful information when the probability of the set itself is smaller than the approxi-
mation factor δ. In order to obtain useful bounds on the discrepancies over a sequence of sets
of traces that have monotonically decreasing probabilities, the notion of discounted uniform
approximate implementation is useful. PIOA A to be a δk-discounted approximate imple-
mentation of B, if the for any trace distribution of A, there exists a trace distribution of B
such that their discrepancy over any trace of length k is at most δk; here {δk}k∈N is a collec-
tion of discount factors. We define Discounted Approximate Simulations (DAS) in a similar
way as we defined EAS and prove that they are sound for proving discounted approximate
implementations. We demonstrate the utility of discounted approximate implementations
and DASs by proving that the probability of termination of an ideal randomized consensus
protocol (after a certain number of rounds) is close to the same probability for a protocol
that uses biased coins.

Throughout the chapter we assume that the task-PIOAs in question are closed and in
Section 8.5 we outline how our results extend to general (not necessarily closed) task-PIOAs.
We start the chapter by giving the basic definitions and results for task-PIOAs; we refer
the reader to [CCK+05] for a detailed treatment.

8.2 Task-structured PIOA

In this section we present the basic definitions and results for task-PIOAs. The notations for
sets, functions, and variables from Section 2.1 of Part I and those for σ-algebras, measurable
spaces, and measures from Section 7.2, have the same meanings in this chapter. Given a set
Q, we denote a σ-algebra over Q by FQ, the set of discrete (sub-) probability measures on
X by Disc(Q) (resp. SubDisc(Q)). If µ is a discrete probability or sub-probability measure
on X, the support of µ, written as supp(µ), is the set of elements of X that have non-zero
measure.

8.2.1 Definition of Task Structured PIOA

The task-PIOA model used in this chapter is slightly more general than the one in [CCK+06b]
because we allow the starting configuration of an automaton to be any distribution over
states and not just a Dirac mass.

Definition 8.1. A task-structured Probabilistic I/O Automaton (task PIOA) A = (X, Q, ν̄,
A, D, R), where:

(a) X is a set of internal or state variables,

(b) Q ⊆ val(X) is a countable set of states, ν̄ ∈ Disc(Q) is the starting distribution on
states;

(c) A is a countable set of actions, partitioned into internal H, input I, and output O
actions. L = O ∪ H is the set of local actions and E = O ∪ I is the set of external
actions. The set of external actions of A is E := I ∪O and the set of locally controlled
actions is L := O ∪H.

(d) D ⊆ Q× A× Disc(Q) is set of discrete transitions. An action a is enabled in a state
x if (x, a, µ) ∈ D for some µ. In this case, we write x a→ µ.

160



(e) R is an equivalence relation on the locally controlled actions. The equivalence classes
of R are called tasks. A task T is enabled in a state x if some action a ∈ T is enabled
in x.

In addition, A satisfies:

E1 (Input enabling) For every x ∈ Q and a ∈ I, x ∈ Ea.
D1 (Transition determinism) For every x ∈ Q and a ∈ A, there is at most one

µ ∈ Disc(Q) such that (x, a, µ) ∈ D.

D2 (Action determinism) For every x ∈ Q and T ∈ R, at most one a ∈ T is
enabled in x.

Notations. A task PIOA is closed if its set of input actions is empty. We denote the
components of a task PIOA A by XA, QA, x̄A,DA etc., and the components of a task PIOA
Ai by Xi, Qi,xi,Di, etc.

The input enabling axiom E1 is identical to the standard non-blocking axiom for non-
probabilistic and probabilistic hybrid system models (see, Definitions 2.7 and 7.1. Of course,
the other non-blocking axiom, namely, E2 input trajectory enabling, is not relevant for
PIOAs. Also, the measurability axioms, such as M1 and M2 of PTIOAs, are unnecessary
because: (a) the state space Q is countable and it is equipped with the σ-algebra generated
by the discrete topology on Q. That is, every subset of Q is measurable. And (b) the
transitions give rise to discrete probability distributions. Axioms D1 and D2 are the same
as in the case of task-DPTIOAs (see, Definition 7.2). These axioms together with the task
structure on local actions enable us to systematically resolve the nondeterminism in a PIOA.

8.2.2 Executions and Traces

An execution fragment of A is a finite or infinite sequence α = q0 a1 q1 a2 . . . of alternating
states and actions, such that (i) if α is finite, then it ends with a state; and (ii) for every
non-final i, there is a transition (qi, ai+1, µ) ∈ D with qi+1 ∈ supp(µ). We write α.fstate
for q0, and, if α is finite, we write α.lstate for its last state. We use FragsA (resp., Frags∗A)
to denote the set of all (resp., all finite) execution fragments of A. An execution of A is an
execution fragment beginning from some state in supp(ν̄). ExecsA (resp., Execs∗A) denotes
the set of all (resp., finite) executions of A. The trace of an execution fragment α, written
trace(α), is the restriction of α to the set of external actions of A. We say that β is a trace
of A if there is an execution α of A with trace(α) = β. TracesA (resp., Traces∗A) denotes
the set of all (resp., finite) traces of A.

8.2.3 Composition of Task-PIOAs

The composition operation on task-PIOAs enable us to construct a PIOAs representing a
complex system from two interacting PIOAs by identifying their external actions. PIOAs do
not have external (input/output) variables and component automata communicate through
external actions only.

Composition of a pair of PIOAs is defined as follows:

Definition 8.2. Task-PIOA A1 and A2 are compatible if X1 ∩X2 = H1 ∩A2 = H2 ∩A1 =
O1 ∩ O2 = ∅. If A1 and A2 are compatible task-PIOAs then their composition A1||A2 is
defined to be A = (X,Q, ν̄, A,D,R), where:

161



(a) X = X1 ∪X2,

(b) Q = Q1 ×Q2, and the initial distribution ν̄ is defined as ν̄(x1,x2)
∆= ν̄1(x1) × ν̄2(x),

for xi ∈ Qi, i ∈ {1, 2}.

(c) A = A1 ∪A2, I = (I1 ∪ I2) \ (O1 ∪O2), O = O1 ∪O2, H1 ∪H2,

(d) D ⊆ Q×A×Disc(Q) is the set of triples ((x1,x2), a, µ1×µ2) such that for i ∈ {1, 2},
if a ∈ Ai then (qi, a, µi) ∈ Di, otherwise µi = δxi ,

(e) R = R1 ∪R2.

It can be checked easily that the composite structure A is also a task-PIOA.

8.2.4 Probabilistic Executions and Trace Distributions

So far we have presented the concepts concerning non-probabilistic behavior of PIOAs. In
this section, we present definitions and results from [CCK+06a] which describe the proba-
bilistic semantics of PIOAs.

For any finite execution fragment α of A, the cone of α, denoted by Cα, is the set of exe-
cution fragments that have α as prefix. The σ-algebra generated by cones of finite execution
fragments of A is denoted by FExecsA . This defines a measurable space (ExecsA,FExecsA)
in which any set of finite execution fragments is measurable. A probability measure on
(ExecsA,FExecsA) is called a probabilistic execution.

Nondeterministic choices in A are resolved using a task scheduler—an entity which
chooses a task—which in turn probabilistically determines the next state of the automaton.
One could define various kinds task schedulers by specifying what dynamic information
may be used in choosing the next task. We refer the reader to Section 7.4.2 for a discussion
on the different kinds of schedulers. The probabilistic semantics of task-PIOAs with a
general class of history dependent schedulers has been developed in [CCK+06b]. In this
chapter, we restrict our attention to oblivious schedulers that do not depend on dynamic
information generated during execution. A task schedule for A is any finite or infinite
sequence ρ = T1T2 . . . of tasks in R. Although restrictive this class of schedulers arise
naturally in many applications, including in analysis of security protocols [CCK+06c]. A
scheduler ρ and a finite execution fragment α generate a measure µρ,α on (ExecsA,FExecsA).

A task schedule generates a probabilistic execution of the task-PIOA A by repeatedly
scheduling tasks, each of which determines at most one transition of A. Formally, we define
an operation that “applies” a task schedule to a task-PIOA:

Definition 8.3. Let A be an action-deterministic task-PIOA. Given µ ∈ Disc(Frags∗A) and
a task schedule ρ, apply(µ, ρ) is the probability measure on FragsA defined recursively by:

1. apply(µ, λ) ∆= µ, where λ denotes the empty sequence of tasks.

2. apply(µ, T ) ∆= p1 + p2, where T is a task and p1, p2 are defined as follows: For every

162



α ∈ Frags∗A:

p1(α) ∆=

 µ(α′)η(q) if α = α′ a q, such that a ∈ T and α′.lstate a→ η,

0 otherwise.

p2(α) ∆=

 µ(α) if T is not enabled in α.lstate,

0 otherwise.

3. apply(µ, ρ) ∆= apply(apply(µ, ρ′), T ), where ρ = ρ′ T , T ∈ R.

4. apply(µ, ρ) ∆= limi→∞(µi), where ρ is infinite ρi is the length-i prefix of ρ, and µi =
apply(µ, ρi).

In Case (2) above, p1 represents the probability that α is executed when applying task T
at the end of α′. Because of transition-determinism and action-determinism, the transition
α′.lstate

a→ η is unique, and so p1 is well-defined. The term p2 represents the original
probability µ(α), which is relevant if T is not enabled after α. It is routine to check that
the limit in Case (4) is well-defined. The other two cases are straightforward. Given any
task schedule ρ, apply(ν̄, ρ) is a probability distribution over ExecA. Several useful properties
of the apply(, ) function relating sequences of probability distributions on executions and
traces are given in Appendix 8.8.

The lstate function is a measurable function from the discrete σ-algebra on finite exe-
cution fragments of A to the discrete σ-algebra of states of A. If µ is a probability measure
on execution fragments of A, then we define the lstate distribution of µ, lstate(µ), to be
the image measure of µ under the lstate function.

We note that the trace function is a measurable function from FExecsA to the σ-algebra
generated by cones of traces. Thus, given a probability measure µ on FExecsA we define
the trace distribution of µ, denoted tdist(µ), to be the image measure of µ under the trace
function. We extend the tdist() notation to arbitrary measures on execution fragments of
A. We write tdist(µ, ρ) as shorthand for tdist(apply(µ, ρ)), the trace distribution obtained
by applying task schedule ρ starting from the measure µ on execution fragments. We write
tdist(ρ) for tdist(apply(ν̄, ρ)). A trace distribution of A is any tdist(ρ). We use TdistsA to
denote the set {tdist(ρ) : ρ is a task schedule forA} of all trace distributions of A.

8.2.5 Exact implementations and Simulations

Two task-PIOAs A1 and A2 are comparable if they have the same set of external actions.
The implementation relation for comparable task-PIOAs is defined in terms of inclusion of
sets of trace distributions.

Definition 8.4. Given comparable closed task-PIOAs A1 and A2, A1 is said to implement
A2 if TdistsA1 ⊆ TdistsA2 . If A1 and A2 implement each other then they are said to be
equivalent .

In [CCK+06b] a simulation relation for closed, task-PIOAs is defined and it is shown
to be sound for proving the above implementation relation. This definition is based on
three operations involving probability measures: flattening, lifting, and expansion. First we
define these operations.

163



The flattening operation takes a discrete probability measure over probability mea-
sures and “flattens” it into a single probability measure. Let Q and P be a sets. If
η ∈ Disc(Disc(Q)), then the flattening of η, denoted by flatten(η) ∈ Disc(Q), is defined
by flatten(η) =

∑
µ∈Disc(Q) η(µ)µ.

The lifting operation takes a relation R⊆ Q × P and “lifts” it to a relation L(R)⊆
Disc(Q) × Disc(P ) Informally, a measure µ1 on Q is related to a measure µ2 on P if µ2

can be obtained by redistributing the probabilities assigned by µ1, in such a way that the
relation R is respected. The lifting of R, denoted by L(R), is a relation from Disc(Q) to
Disc(P ) defined by: µ1 L(R) µ2 iff there exists a weighting function w : Q × P → R≥0

such that: (i) for each q ∈ Q and p ∈ P , w(q, p) > 0 implies q R p, (ii) for each q ∈ X,∑
y w(q, p) = µ1(q), and (iii) for each p ∈ Y ,

∑
pw(q, p) = µ2(p).

Finally, the expansion operation takes a R⊆ Disc(P ) × Disc(Q), and returns a relation
E(R)⊆ Disc(Q) × Disc(P ) such that µ1 E(R) µ2 whenever they can be decomposed into
two L(R)-related measures. Formally, E(R), is defined by: µ1 E(R) µ2 iff there exist two
discrete measures η1 and η2 on Disc(X) and Disc(Y ), respectively, such that µ1 = flatten(η1),
µ2 = flatten(η2), and η1 L(R) η2.

The next definition expresses consistency between a probability measure over finite
executions and a task schedule. Informally, a measure µ over finite executions is said to be
consistent with a task schedule ρ if it assigns non-zero probability only to those executions
that are possible under the task schedule ρ. This condition is used to avoid useless proof
obligations in the definition of both exact and approximate simulations.

Definition 8.5. Suppose A is a closed, task-PIOA and ρ is a finite task schedule for T .
µ ∈ Disc(Frags∗A) is consistent with ρ if supp(µ) ⊆ supp(apply(ν̄, ρ)).

Suppose we have a mapping c that, given a finite task schedule ρ and a task T of a
task-PIOA A1, yields a task schedule of another task-PIOA A2. The idea is that c(ρ, T )
describes how A2 matches task T , given that it has already matched the task schedule ρ.
Using c, we define a new function full(c) that, given a task schedule ρ, iterates c on all the
elements of ρ, thus producing a “full” task schedule of A2 that matches all of ρ.

Definition 8.6. Let A1,A2 be task-PIOAs, and let c : (R1
∗ × R1) → R2

∗ be a function
that assigns a finite task schedule of A2 to each finite task schedule of A1 and task of A1.
The function full(c) : R1

∗ → R2
∗ is recursively defined as:

� full(c)(λ) ∆= λ, and

� full(c)(ρT ) ∆= full(c)(ρ) c(ρ, T ) (i.e., concatenation of full(c)(ρ) and c(ρ, T )).

Now we give the definition of exact simulation relation for task-PIOAs. Note that the
simulation relations do not just relate states to states, but rather, probability measures on
executions to probability measures on executions. The use of measures on executions here
rather than just executions is motivated by certain cases that arise in proofs where related
random choices are made at different points in the low-level and high-level models (see, e.g.,
proof of OT protocol in [CCK+06d]).

Definition 8.7. Let A1 and A2 be two comparable closed task-PIOAs. A relation R from
Disc(Frags∗A1

) to Disc(Frags∗A2
) is a simulation from A1 to A2 if there exists c : (R1

∗×R1) →
R2

∗ such that following properties hold:

1. (Start condition) ν̄1 R ν̄2.

164



2. (Step condition) If µ1 R µ2, ρ ∈ R1
∗, µ1 is consistent with ρ, µ2 is consistent

with full(c)(ρ), and T ∈ R1, then µ′1 E(R) µ′2 where µ′1 = apply(µ1, T ) and µ′2 =
apply(µ2, c(ρ, T )).

3. (Trace condition) If µ1 R µ2, then tdist(µ1) = tdist(µ2).

We close this section with the statement of the soundness theorem for the above simu-
lation relation which has been proved in [CCK+06b].

Theorem 8.1. Let A1 and A2 be comparable closed action-deterministic task-PIOAs. If
there exists a simulation relation from A1 to A2, then TdistsA1 ⊆ TdistsA2.

Theorem 8.1 shows soundness of simulation relations for deducing trace distribution
inclusion. This theorem is a discrete-probabilistic analogue of Theorem 4.4 which gave a
sound way of proving trace inclusion in the hybrid-nonprobabilistic setting.

8.3 Uniform Approximate Implementation

In this section we define approximate implementations for task-PIOAs based on the uniform
metric on trace distributions and propose Expanded Approximate Simulations (EAS) as a
sound method for proving uniform approximate implementations. Informally, a task-PIOA
A1 should be regarded to be close to a comparable task-PIOA A2 if they give rise to
“similar” trace distributions, where similarity is measured by some metric on the space of
trace distributions. Henceforth, we denote by Traces the set of all possible traces of A1 and
A2. Disc(Traces) denotes the set of all possible discrete probability measures over Traces.

8.3.1 Uniform Metric on Traces

We say that a task-PIOA A1 uniformly approximately implements a task-PIOA A2, if
every trace distribution of A1 is close to some trace distribution of A2, closeness being
defined by the uniform metric on trace distributions. A metric d on a set X is a function
dX × X → R≥0, which satisfies 1. (identity) d(x1, x2) = 0 ⇐⇒ x1 = x2, 2. (symmetry)
d(x1, x2) = d(x2, x1), and 3. (triangle inequality) d(x1, x3) ≤ d(x1, x2) + d(x2, x3) If d does
not satisfy the identity property then it is called a psuedometric.

Definition 8.8. Let A be a closed task-PIOA. The uniform metric over trace distributions
of A is the function du : Disc(TracesA)× Disc(TracesA) → R≥0 defined by:

du(µ1, µ2)
∆= sup
C∈FTracesA

|µ1(C)− µ2(C)| .

The next lemma shows that du has the standard convergence property for limits of sequences
of trace distributions.

Lemma 8.2. Suppose A1 and A2 are closed task-PIOAs. For i ∈ {1, 2}, let {µij}j∈N be a
chain of discrete probability distributions on the traces of Ai and let limj→∞ µij = µi. Then
limj→∞ du(µ1j , µ2j) = du(µ1, µ2).

Proof. We have to show that for every ε > 0, there exists N ∈ N, such that for all k > N ,
du(µ1k, µ2k)−du(µ1, µ2) < ε. From triangle inequality, we get that for any k, du(µ1k, µ2k) ≤
du(µ1k, µ1) + du(µ1, µ2) + du(µ2, µ2k). Therefore, it suffices to show that exists N ∈ N,

165



such that for all k > N , du(µ1k, µ1) + du(µ2, µ2k) ≤ ε. Now since limj→∞ µ1j = µ1,
limj→∞ µ2j = µ2, we know that there exists N ′ ∈ N, such that for all k > N ′, for every
C ∈ FTracesAi

, |µij(C) − µi(C)| ≤ ε
2 . If we choose N = N ′, we have for all k > N ,

du(µ1k, µ1) + du(µ2, µ2k) ≤ ε, as required.

For comparable task-PIOAs A1 and A2, A1 is said to be a δ-implementation of A2 if
the one-sided Hausdorff distance from TdistsA1 to TdistsA2 is at most δ.

Definition 8.9. Suppose A1 and A2 are comparable, closed task-PIOAs. For δ > 0, A1

is said to δ-implement A2, written as A1 ≤δ A2, if for every µ1 ∈ TdistsA1 there exists
µ2 ∈ TdistsA2 such that du(µ1, µ2) ≤ δ. Closed task-PIOAs A1 and A2 are said to be
δ-equivalent , written as A1

∼=δ A2, if A1 ≤δ A2 and A2 ≤δ A1.

Metrics over probability distributions have been a subject of intense research in probabil-
ity theory (see, for example, the books [Rac91] and [Dud76]). Because of their applicability
to probabilistic safety and termination proofs, in this thesis we use the uniform metric
and the discounted version of the uniform metric (see Section 8.4), to define approximate
implementations for task-PIOAs. In the following sections we develop simulation-based
techniques for inductively proving these different kinds of approximate implementation re-
lations. As we shall see in the next section, the soundness of our approximate simulations
relies only weakly on the choice of the metric. In fact, with the appropriate changes in the
definition of approximate simulations, it is sound for proving approximate implementations
with respect to any metric satisfying Lemma 8.2.

8.3.2 Expanded Approximate Simulations

In this section, we develop a sound technique for proving uniform approximate implementa-
tion relations for task-PIOAs. This technique is analogous to the simulation relation-based
technique for proving exact implementation relations, but we use a new kind of simulation
called Expanded Approximate Simulation (EAS). The definition of Expanded Approximate
Simulations (EAS) relies on an expansion operation on real valued functions. This operation
generalizes the notion of expansion of a relation used in Definition 8.7.

Definition 8.10. Let x be an element of the set X and {λi}i∈I be a countable sequence of
numbers such that

∑
i∈I λi = 1. If there exists a sequence {xi} in X such that x =

∑
i∈I λixi,

then x is a convex combination of the {xi}′s. A function φ : X → R≥0 ∪ {∞} is convex if
for every x =

∑
i∈I λixi, φ(x) ≤

∑
i∈I λiφ(xi). If equality holds then the function is said to

be distributive.

Definition 8.11. Given a function φ : X × Y → R≥0 ∪ {∞}, the expansion of φ, written
as φ̂, is a function φ̂ : X × Y → R≥0 ∪ {∞} defined as:

φ̂(x1, y1)
∆= min
ψ∈Disc(X×Y)
x1=

∑
x ψ(x,y)x

y1=
∑

x ψ(x,y)y

[
max

(x,y)∈supp(ψ)
φ(x, y)

]
(8.1)

The value of φ̂ is defined in terms of a minimization problem over all joint distributions
over Disc(X × Y) that have first and second marginals with means equal to x1 and y1,
respectively. The function that is minimized is the maximum value of φ over all points in

166



the support of ψ. The following lemma gives an alternative, but equivalent definition for
expansion of a function.

Lemma 8.3. Given a function φ : X × Y → R≥0 ∪ {∞}, suppose we define φ̄ : X × Y →
R≥0 ∪ {∞} as follows: For any ε ≥ 0, φ̄(x1, y1) ≤ ε if and only if there exists a joint
distribution ψ ∈ Disc(X × Y) such that:

max
x,y∈supp(ψ)

φ(x, y) ≤ ε such that (8.2)

x1 =
∑

x,y∈supp(ψ)

ψ(x, y)x, (8.3)

y1 =
∑

x,y∈supp(ψ)

ψ(x, y)y. (8.4)

Then, φ̂ = φ̄.

Proof. Let us fix x1 ∈ X and y1 ∈ Y. First we show that φ̄(x1, y1) ≤ φ̂(x1, y1). Suppose
φ̂(x1, y1) = ε, for some ε > 0. From Definition 8.11, we know that there exists a joint
distribution ψ ∈ Disc(X × Y), satisfying Equations (8.3) and (8.4). Further the maximal
value of φ over any x, y ∈ suppψ, must be at most ε. Therefore, φ̄(x1, y1) ≤ ε = φ̂(x1, y1)

Next we show that φ̄(x1, y1) ≥ φ̂(x1, y1). Suppose φ̄(x1, y1) = ε. From definition of φ̄, we
know that there exists a joint distribution ψ ∈ Disc(X ×Y), satisfying Equations (8.3) and
(8.4), and from Equation (8.2) we know that the maximal value of φ over any x, y ∈ suppψ is
at most ε. Since φ̂ minimizes over all possible joint distributions, φ̂(x1, y1) ≤ ε = φ̄(x1, y1).

The consistency requirements imposed by Equations (8.3) and (8.4) constrain the choice
of ψ to those joint distributions for which the expected values of x and y coincide with x1

and y1. Given φ, we say that joint distribution ψ is feasible for x1 and y1 if it satisfies
these consistency requirements. If ε is the smallest nonnegative real for which there exists a
feasible ψ that also satisfies Equation (8.2), that is, maxx,y∈supp(ψ) φ(x, y) ≤ ε, then we say
that ψ is an optimal distribution for φ̂(x1, y1) = ε. The next proposition is a straightforward
consequence of Definition 8.11.

Proposition 8.4. For any φ : X × Y → R≥0 ∪ {∞}, φ̂ ≤ φ.

Proof. Let us fix x1 ∈ X and y1 ∈ Y. Suppose φ(x1, y1) = ε for some ε ≥ 0, x1 ∈ X , y1 ∈ Y.
The joint distribution ψ = δx1,y1 is a feasible distribution for x1 and y1. Since, for the only
point (x1, y1) ∈ supp(ψ), φ(x1, y1) = ε, and φ̂ minimizes over all possible choices of feasible
joint distributions, φ̂(x1, y1) ≤ ε.

This next lemma states a key property of the expansion operation for functions; it relates
the sublevel sets of a given function φ and its expanded version φ̂.

Lemma 8.5. x1 ∈ X , y1 ∈ Y. For any ε ≥ 0, at any point (x, y) in the convex hull of the
ε-sublevel set of φ, φ̂ ≤ ε.

Proof. Let Lφ≤ε be the ε-sublevel set of φ, for some ε ≥ 0. That is, Lφ≤ε = {(x, y) | x ∈
X , y ∈ Y, φ(x, y) ≤ ε}. If Lφ≤ε is convex then the result follows immediately from Propo-
sition 8.4. Suppose the sublevel set Lφ≤ε is not convex (the shaded region in Figure 8-1).

167



),( yxψ

εφ ≤),( yx

x

y

1y

1x

Figure 8-1: Marginal distributions of the optimal joint distribution ψ for φ̂(x1, y1) = ε.

For any point (x1, y1) in the convex hull Lφ≤ε, we can find a joint distribution ψ supported
on Lφ≤ε, such that the marginals of ψ (shown by vertical lines on the x and y axes) have
mean x1 and y1, respectively. Such a ψ is an optimal distribution for ψ̂(x1, y1) ≤ ε. Thus,
for every point in the convex hull of Lφ≤ε, φ̂ ≤ ε.

Our new notion of approximate simulation for task-PIOAs is a function φ : Disc(Frags∗A1
)×

Disc(Frags∗A2
) → R≥0 ∪ {∞} and the expansion of this function plays a key role in the def-

inition of simulation. Informally, the simulation function φ gives a measure of similarity
between two distributions over the execution fragments of two automata. If φ(µ1, µ2) ≤ ε,
then, first of all, it is possible to closely simulate from µ2 anything that can happen from
µ1. Here closeness of simulation is measured with the du metric on the trace distributions.
Secondly, if µ′1 and µ′2 are the distributions obtained by taking a step from µ1 and µ2, then
µ′1 and µ′2 are also close in the sense that φ̂(µ′1, µ

′
2) ≤ ε.

Definition 8.12. Suppose A1 and A2 are two comparable closed task-PIOAs, ε is a non-
negative constant, and φ is a function Disc(Frags∗A1

) × Disc(Frags∗A2
) → R≥0 ∪ {∞}. The

function φ is an (ε, δ)-expanded approximate simulation from A1 to A2 if there exists a
function c : R∗1 ×R1 → R∗2 such that the following properties hold:

1. (Start condition) φ(ν̄1, ν̄2) ≤ ε.

2. (Step condition) If φ(µ1, µ2) ≤ ε, T ∈ R1, ρ ∈ R∗1 and µ1 is consistent with ρ, and
µ2 is consistent with full(c)(ρ), then φ̂(µ′1, µ

′
2) ≤ ε, where µ′1 = apply(µ1, T ) and

µ′2 = apply(µ2, c(ρ, T )).

3. (Trace condition) If φ(µ1, µ2) ≤ ε then du(tdist(µ1), tdist(µ2)) ≤ δ.

A function φ is an (ε, δ)-EAS if (i) the initial distributions ν̄1 and ν̄2 are ε-close in the
sense of φ, (ii) if two distributions µ1, µ2 are ε-close in the sense of φ, then the distributions
µ′1—obtained by applying a new task to µ1, and µ′2—obtained by applying a corresponding
sequence of tasks to µ2, are also ε-close in the sense of φ̂, (iii) if µ1, µ2 are ε-close in the sense
of φ, then the corresponding trace distributions are δ-close in the sense of du. Example 8.1

168



shows a simple approximate simulation function. Approximate simulations are similar to
simulation relations of Definition 8.7 with the relations R and E(R) replaced by the real
valued simulation functions φ and φ̂. The following lemma relates expanded approximate
simulation with the simulation relations of Definition 8.7.

Lemma 8.6. Suppose φ is a (ε, δ)-expanded approximate simulation from A1 to A2. We
define R⊆ Disc(Frags∗A1

)× Disc(Frags∗A2
) as follows:

µ1 R µ2 ⇐⇒ φ(µ1, µ2) = 0.

Then, R is a simulation relation from A1 to A2.

Proof. Since φ is a (ε, δ)-expanded approximate simulation, there exists c : (R1
∗×R1) → R2

∗

which satisfies all the conditions in Definition 8.12. We check that R satisfies the three
required conditions.

Start condition. From the start condition of φ, φ(µ1, µ2) = 0 which implies the µ1 R µ2.

Step condition. From the step condition of φ, we know that if φ(µ1, µ2) = 0, ρ ∈ R1
∗, µ1

is consistent with ρ, µ2 is consistent with full(c)(ρ), and T ∈ R1, then φ̂(µ′1, µ
′
2) = 0,

where µ′1 = apply(µ1, T ) and µ′2 = apply(µ2, c(ρ, T )).

From the definition of φ̂, there exists joint distribution ψ such that for every η1, η2 is
the support of ψ, φ(η1, η2) = 0, that is η1 R η2. Using this ψ as the weighting function
it can be checked easily that µ′1 R µ′2.

Trace condition. From the trace condition of φ, for every measurable set of traces C,
tdist(µ1)(C) = tdist(µ2)(C) which implies that tdist(µ1) = tdist(µ2).

One final remark on Definition 8.12 before we move on to prove its soundness. We can
du with some other metric d on trace distributions, the definition can be naturally adapted
to prove approximate implementations with respect to

8.3.3 Soundness of Expanded Approximate Simulations

This section culminates in Theorem 8.11 which states that (ε, δ)-expanded approximate
simulations are sound with respect to δ-approximate implementations. First we prove key
lemmas used in the proof of the theorem.

Lemma 8.7. Suppose φ is a (ε, δ)-expanded approximate simulation from A1 to A2. For any
µ1 ∈ Disc(Frags∗A1

) and µ2 ∈ Disc(Frags∗A2
), if φ̂(µ1, µ2) ≤ ε then du(tdist(µ1), tdist(µ2)) ≤ δ.

Proof. Since φ̂(µ1, µ2) ≤ ε we know that there exists a joint distribution ψ which is
feasible for µ1, µ2, and for every η1, η2 ∈ supp(ψ), φ(η1, η2) ≤ ε. So, for i ∈ {1, 2},
µi =

∑
η1,η2∈supp(ψ) ψ(η1, η2)ηi and from the trace condition of Definition 8.12 it follows

that

tdist(µi) =
∑

η1,η2∈supp(ψ)

ψ(η1, η2)tdist(ηi).

169



We can then express du(tdist(µ1), tdist(µ2)) as follows:

sup
C∈FTraces∗A

| tdist(µ1)(C)− tdist(µ2)(C)|

= sup
C∈FTraces∗A

|
∑
η1,η2

ψ(η1, η2)tdist(η1)(C)−
∑
η1,η2

ψ(η1, η2)tdist(η2)(C)|

≤ sup
C∈FTraces∗A

∑
η1,η2

ψ(η1, η2)|(tdist(η1)(C)− tdist(η2)(C))|.

For any η1, η2 ∈ supp(ψ), φ(η1, η2) ≤ ε and since φ is an (ε, δ)-expanded approximate
simulation, du(tdist(η1), tdist(η2)) ≤ δ. From Definition 8.8, it follows that | tdist(η1)(C)−
tdist(η2)(C)| ≤ δ. Therefore, we have du(tdist(µ1), tdist(µ2)) ≤

∑
η1,η2

ψ(η1, η2)δ ≤ δ.

Lemma 8.8. Suppose φ : Disc(X1) × Disc(X2) → R≥0 ∪ {∞} is a function, µi ∈ Disc(Xi)
for i ∈ {1, 2}, φ̂(µ1, µ2) ≤ ε with optimal distribution ψ. Let fi : Disc(Xi) → Disc(Xi) be
distributive functions, for i ∈ {1, 2}. If for each κ1, κ2 ∈ supp(ψ), φ̂(f1(κ1), f2(κ2)) ≤ ε,
then φ̂(f1(µ1), f2(µ2)) ≤ ε.

Proof: For each κ1, κ2 ∈ supp(ψ), let ψκ1κ2 be the optimal distribution for
φ̂(f1(κ1), f2(κ2)) = ε. We define a joint distribution ψ′ on Disc(X1)× Disc(X2) as follows:

ψ′
∆=

∑
(κ1,κ2)∈supp(ψ)

ψ(κ1, κ2)ψκ1,κ2 (8.5)

and show that ψ′ is a feasible distribution for f1(µ1) and f2(µ2) and for any η1, η2 ∈ supp(ψ′),
φ(η1, η2) ≤ ε.

1. For feasibility of ψ′ we have to show that for i ∈ {1, 2}, fi(µi) equals:∑
η1∈Disc(X1),η2∈Disc(X2)

ψ′(η1, η2)ηi

=
∑

η1∈Disc(X1),η2∈Disc(X2)

 ∑
(κ1,κ2)∈supp(ψ)

ψ(κ1, κ2)ψκ1,κ2(η1, η2)

 ηi
=

∑
(κ1,κ2)∈supp(ψ)

ψ(κ1, κ2)

 ∑
η1∈Disc(X1),η2∈Disc(X2)

ψκ1,κ2(η1, η2)ηi


=

∑
(κ1,κ2)∈supp(ψ)

ψ(κ1, κ2)fi(κi) [from feasibility of ψκ1,κ2 ]

= fi

 ∑
(κ1,κ2)∈supp(ψ)

ψ(κ1, κ2)κi

 [from distributivity of fi]

= fi(µi) [from feasibility of ψ].

2. For optimality of ψ′ it suffices to show that for all η1, η2 ∈ supp(ψ′), φ(η1, η2) ≤
ε. If ψ′(η1, η2) > 0 then from Equation (8.5) it follows that there exists κ1, κ2 ∈

170



supp(ψ) such that ψκ1,κ2(η1, η2) > 0. Since ψκ1,κ2 is a optimal distribution for
φ̂(f1(κ1), f2(κ2)) = ε, from its optimality we know that for any ν1, ν2 ∈ supp(ψκ1,κ2),
φ(ν1, ν2) ≤ ε. In particular, η1, η2 ∈ supp(ψκ1,κ2) and so we have φ(η1, η2) ≤ ε.

Lemma 8.9. Let {µi}i∈I be a countable family of discrete probability measures µi ∈ Disc(Frags∗A)
and let µ =

∑
i∈I λiµi be a convex combination of {µi}, where

∑
i∈I λi = 1. Let T be task

of A. Then apply(µ, T ) =
∑

i∈I λi apply(µi, T ).

Proof. Suppose p1 and p2 are the functions used in the definition of apply(µ, T ), and suppose
for each i ∈ I, pi1 and pi2 be the functions used in the definition of apply(µi, T ). Fix a finite ex-
ecution fragment α. We show that p1(α) =

∑
i λip

i
1(α) and p2(α) =

∑
i λip

i
2(α), from which

it follows that apply(µ, T )(α) = p1(α) + p2(α) =
∑

i λi(p
i
1(α) + pi3(α)) =

∑
i λi apply(µi, T ).

To prove that p1(α) =
∑

i λip
i
1(α), we consider two cases. If α = α′aq where α′ ∈

supp(µ), a ∈ T , and α′.lstate, a, η) ∈ D, then, by Definition 8.3 p1(α) = µ(α′)η(q) and
for each i ∈ I, pi1(α) = µi(α′)η(q). Thus, p1(α) =

∑
i λip

i
1(α). Otherwise, again by

Definition 8.3 p1(α) = 0 and for each i ∈ I, pi1(α) = 0, and the result holds trivially.
To prove that p2(α) =

∑
i λip

i
2(α), we consider two cases. If T is not enabled in α.lstate

then, by Definition 8.3, p2(α) = µ(α), and for each i ∈ I, pi2(α) = µi(α). Thus, p2(α) =∑
i λip

i
2(α). Otherwise, again by Definition 8.3 p2(α) = 0 and for each i ∈ I, pi2(α) = 0,

and the result holds trivially.

Proposition 8.10. Let {µi}i∈I be a countable family of discrete probability measures µi ∈
Disc(Frags∗A) and let µ =

∑
i∈I λiµi be a convex combination of {µi}, where

∑
i∈I λi = 1.

Let ρ be a finite sequence of tasks. Then apply(µ, ρ) =
∑

i∈I λi apply(µi, ρ).

Proof. The proof is by induction on the length of ρ. If ρ is the empty sequence, then for any
η ∈ Disc(Frags∗A), apply(η, ρ) = η and it follows that µ =

∑
i∈I λiµi =

∑
i∈I λi apply(µi, ρ).

For the induction step, let ρ = ρ′T . By Definition 8.3, apply(µ, ρ′T ) = apply(apply(µ, ρ′), T ).
By the induction hypothesis, apply(µ, ρ′) =

∑
i λi apply(µi, ρ′) and thus, apply(µ, ρ′T ) =

apply(
∑

i λi apply(µi, ρ′), T ). For each i ∈ I, apply(µi, ρ′) is a discrete probability measure
in Disc(Frags∗A). By Lemma 8.9, apply(

∑
i λi apply(µi, ρ′), T ) =

∑
i λi apply(apply(µi, ρ′), T ).

Using Definition 8.3 it follows that apply(µ, ρ′T ) =
∑

i λi apply(µi, ρ′T ) as required.

Theorem 8.11. Let A1 and A2 be two closed comparable task-PIOAs. If there exists a
(ε, δ)-expanded approximate simulation function from A1 to A2 then A1 ≤δ A2.

Proof. Let φ be the assumed (ε, δ)-expanded approximate simulation function from A1 to
A2. Let µ1 be the probabilistic execution of A1 generated by the starting distribution
ν̄1 and a (finite or infinite) task schedule T1, T2, . . .. For each i > 0, we define ρi to be
c(T1 . . . Ti−1, Ti). Let µ2 be the probabilistic execution of A2 generated by ν̄2 and the
concatenation ρ1, ρ2, . . .. It suffices to show that: du(tdist(µ1), tdist(µ2)) ≤ δ.

For each j ≥ 0, let us define µ1,j
∆= apply(ν̄1, T1, . . . , Tj) and µ2,j

∆= apply(ν̄2, ρ1, . . . , ρj).
For i ∈ {1, 2} and for each j ≥ 0, µi,j ≤ µi,j+1 and limj→∞ µi,j = µi. (the above uses
Lemma 8.20 of Appendix 8.8). Observe that for every j ≥ 0, µ1,j+1 = apply(µ1,j , Tj+1) and
also that µ2,j+1 = apply(µ2,j , ρj+1).

Step 1. We prove by induction that for all j ≥ 0, φ̂(µ1,j , µ2,j) ≤ ε.

Step 1a. For j = 0, µ1,0 = ν̄1 and µ2,0 = ν̄2. By the start condition of the simulation
function, φ(µ1,0, µ2,0) ≤ ε and therefore by Proposition 8.4 φ̂(µ1,0, µ2,0) ≤ ε.

171



Step 1b. For the inductive step, we assume that φ̂(µ1,j , µ1,j) ≤ ε and show that
φ̂(µ1,j+1, µ1,j+1) ≤ ε. First of all, note that µ1,j+1 = apply(µ1,j , Tj+1) and
µ2,j+1 = apply(µ2,j , c(ρjTj+1)). For i ∈ {1, 2}, let us define fi : Disc(Frags∗Ai

) →
Disc(Frags∗Ai

) as f1(η)
∆= apply(η, Tj+1) and f2(η)

∆= apply(η, c(ρjTj+1)). If we can
apply Lemma 8.8, to the functions f1 and f2 then it follows that φ̂(f1(µ1,j), f2(µ2,j))
≤ ε as required.

Step 1c. It remains to check that these two functions satisfy all the conditions in the
hypothesis of Lemma 8.8. Distributivity of f1 and f2 follow from Proposition 8.10
(see Appendix B). Suppose φ̂(µ1,j , µ1,j) ≤ ε with optimal distribution ψ, and
suppose η1, η2 ∈ supp(ψ), we have to show that φ̂(f1(η1), f2(η2)) ≤ ε. Since
η1, η2 ∈ supp(ψ), from optimality of ψ, we know that φ(η1, η2) ≤ ε. Observe
that for i ∈ {1, 2}, supp(ηi) ⊆ supp(µi,j), and thus η1 is consistent with Tj+1

and η2 is consistent with c(ρjTj+1). Therefore, by the step condition on φ,
φ̂(apply(η1, Tj+1), apply(η2, c(ρjTj+1))) ≤ ε. Since f1(η1) = apply(η1, Tj+1) and
f2(η2) = apply(η2, c(ρjTj+1)), we have φ̂(f1(µ1,j), f2(µ2,j)) ≤ ε, as required in
the hypothesis of Lemma 8.8.

Step 2. From Lemma 8.7, for each j ≥ 0, du(tdistµ1,j , tdistµ2,j) ≤ δ. From Lemma 8.18
of Appendix 8.8 we know that for i ∈ {1, 2}, limj→∞ tdist(µi,j) = tdist(µi). From
Lemma 8.2 we conclude that du(tdist(µ1), tdist(µ2)) =
limj→∞ du(tdist(µ1,j), tdist(µ2,j)) ≤ δ.

The following simple example illustrates an application of (ε, δ)-expanded approximate
simulations.

Example 8.1. Consider two task-PIOAs A1 and A2: For i = {1, 2}, Xi = {x}, with Qi =
type(x) = {s0, s1, s2}; Ai = Hi = {a}; Ri = {a}. The initial distributions and the discrete
probabilistic transitions for the two automata are defined as follows.

ν̄1 =
[

1
10

9
10 0

]
, ν̄2 =

[
9
10

1
10 0

]
, P1 =


0 9

10
1
10

2
10

8
10 0

1
10

9
10 0

 , and P2 =


0 1

2
1
2

3
10

7
10 0

3
10

2
5

3
10

 .
The row vector ν̄i gives the initial distribution over the three states of automaton Ai. The
kth row of the transition matrix Pi, defines the probability distribution over states of Ai
that arises when action a occurs at state sk. For instance, the first row of P1 indicates
that in automaton A1, s0

a→ µ, where µ is the discrete distribution
[
0 9

10
1
10

]
. Note the

A1 and A2 are purely probabilistic automata, without any nondeterminism. In fact they
are Markov chains (with all transitions labeled by the action a). The only interesting task
schedules for these automata are finite or infinite sequences of a’s. Let us define a function
φ : Disc(Frags∗A1

)× Disc(Frags∗A2
) → R≥0 ∪ {∞}, as

φ(µ1, µ2)
∆=
∑
i

|lstate(µ1)(si)− lstate(µ2)(si)|

172



Recall that lstate(µ1) denotes the lstate distribution corresponding to the distribution µ1.
Informally, φ measures the L1 distance between the distribution over the states of A1 and
A2. It is routine to check analytically that φ satisfies the start condition and the step
condition of Definition 8.12 for any ε ≥ φ(ν̄1, ν̄2) = 1.6 (the trace condition holds trivially).
Figure 8-2 confirms this; it shows the lstate distributions of µ1k and µ2k and the values of
φ(µ1k, µ2k), where µik = apply(ν̄i, ak).

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Steps

 

 

φ(μ1,μ2)

lstate(μ1)(s0)

lstate(μ1)(s1)

lstate(μ1)(s2)

lstate(μ2)(s0)

lstate(μ2)(s1)

lstate(μ2)(s2)

Figure 8-2: Discrepancy and lstate distributions for A1 and A2.

8.3.4 Need for Expansion

In the step condition in the definition of EAS (Definition 8.12) it is required that if
φ(µ1, µ2) ≤ ε then φ̂(µ′1, µ

′
2) ≤ ε. Indeed, if we replace this condition with the stronger

condition—if φ(µ1, µ2) ≤ ε then φ(µ′1, µ
′
2) ≤ ε—the resulting approximate simulation func-

tions that we would obtain would be sound for proving approximate implementations. In
fact this would have been sufficient for proving approximate implementation in Example 8.1.
However, such non-expanded approximate simulation functions are considerably less pow-
erful than EASs.

The key motivation for generalizing simulation relations to their current expanded form,
first came from the verification of the Oblivious Transfer protocol in [CCK+06d]. In what
follows, we describe an example from [CCK+06a], adapted to our setting, to illustrate that
allowing φ̂ in the definition of EAS gives it more power.

Example 8.2. Consider the Rand automaton of Figure 8-3 (left). When the choose action
occurs at state r0, it assigns a number between 1 and n to the variable z, where n is a
even. The initial value of z is ⊥ and the choice is made uniformly at random. The Trapdoor
automaton assigns a random number between 1 and n to the variable y, but in this case the
probabilities are slightly different. The first n

2 numbers are chosen with probability 1
n − ε

and the remaining are chosen with probability 1
n + ε, where ε � 2

n . The comp action of
Trapdoor then applies a known permutation (e.g., if y = n− 1 then z = n, else z = (y + 1)

173



r0

z = 1 z = 2 . . . z = n

. . .

ch
oo

se
,

1
n

1 n

choose,
1
n

o
u
t(

1
)

o
u
t(

2
)

o
u
t(

n
)

t0

y = 1 y = 2 y = n. . .

. . .

z = (y + 1)|n z = (y + 1)|n z = (y + 1)|n

ch
oo

se
,
1
n
− ε

1 n
−

ε

choose, 1
n +

ε

co
m

p

co
m

p

co
m

p

o
u
t(

2
)

o
u
t(

3
)

o
u
t(

1
)

Figure 8-3: Rand and Trapdoor automata.

mod n) to y and assigns the permuted number to z. In both automata, the value of z is
produced by an external out action.

We would like to use an approximate simulation to show that TdistsTrapdoor approxi-
mately implements TdistsRand. In doing so, it is natural to allow the steps that define z to
correspond in the two automata. This means that the choose steps of Trapdoor which define
y correspond to no step of Rand. We present an approximate simulation function that “ought
to work” for this example. The function φ : Disc(Frags∗Trapdoor) × Disc(Frags∗Rand) → R≥0 is
defined as

φ(µ1, µ2)
∆= max
s∈QTrapdoor

u∈QRand
u.z 6=s.z

[η1(s) + η2(u)] if ∃ s ∈ supp(η1), u ∈ supp(η2), s.z 6= u.z,

φ(µ1, µ2)
∆= max
x∈{1,...,n}∪{⊥}

∣∣∣∣∣∣∣
∑

s∈QTrapdoor
s.z=x

η1(s)−
∑

u∈QRand
u.z=x

η2(u)

∣∣∣∣∣∣∣ otherwise,

where η1 = lstate(µ1) and η2 = lstate(µ2). Informally, states corresponding to different
values of z produce completely different outputs, and thus they should be relatively unre-
lated. The first condition assigns a large value to φ when there are states in the support
of the two lstate distributions that have different values of z. This is captured by the first
condition in the definition of φ, which returns a large value, namely, the sum of probabilities
of two mismatched states, as the discrepancy between the corresponding distributions. The
second condition is satisfied for η1 and η2 supported on states that have the same value
of z; it measures the discrepancy between µ1 and µ2 as the maximum difference between
the probability of states that correspond to any particular value of z including ⊥. The
summation is relevant for the distribution over states where z = ⊥ and y ∈ {1, . . . , n} in
the case of Trapdoor. The second summation could be simplified to η2(u), where u is the

174



unique state of Rand at which u.z = x.
Now we attempt to show that φ is a (2ε, 2ε)-simulation from Trapdoor to Rand without

using the expanded version φ̂ of φ. The task correspondence mapping c : R∗
Trapdoor ×

RTrapdoor → R∗
Rand as follows:

� c(ρ, choose) = λ,

� If ρ contains choose then c(ρ, comp) = choose, otherwise c(ρ, comp) = λ,

� c(ρ, out) = out

We check the start condition and the step condition for the interesting distributions that
Rand and Trapdoor give rise to; the trace conditions can be checked easily from the discrep-
ancy between the probabilistic executions.

Let µ11 = apply(δt0 , choose) and µ21 = apply(δr0 , λ) = δr0 . For all s ∈ supp(lstate(µ11)),
s.z = t0.z = ⊥, and all u ∈ supp(lstate(µ21)), u.z = r0.z = ⊥. Hence by the second
condition in the definition of φ, φ(µ11, µ21) = 0 ≤ ε.

Let µ12 = apply(µ11, choose) and µ22 = apply(µ21, λ) = µ21 = δr0 . For all s ∈
supp(lstate(µ12)), s.y ∈ {1, . . . , n} and s.z is still ⊥. And for all u ∈ supp(lstate(µ22)),
u.z = ⊥. Hence, again, the second condition in the definition of φ applies, and

φ(µ12, µ22) =
∣∣∣∣( 1
n

+ ε+
1
n

+ ε+ . . .+
1
n
− ε+

1
n
− ε

)
− 1
∣∣∣∣ = 0 ≤ ε.

Next, let µ13 = apply(µ12, comp) and µ23 = apply(µ22, choose). Then, there exists s ∈
supp(µ13) and u ∈ supp(µ23), such that s.z 6= u.z, and by the first condition, φ(µ12, µ22) =
2
n + ε > 2ε. Therefore, φ is not a (2ε, 2ε)-approximate (unexpanded) simulation, and we
cannot use φ to prove that Trapdoor is a good approximate implementation for Rand, at
least not without using the expanded version of φ.

δy=1,z=2 δy=2,z=3 δy=3,z=4 δy=4,z=1

δz=1
1
4

δz=2
1
4 − ε ε

δz=3
1
4 − ε ε

δz=4
1
4

Table 8.1: Optimal joint distribution ψ.

We show that φ can be used as an expanded approximate simulation function. In
particular, we show that φ̂(µ13, µ23) ≤ 2ε, and we will use the witnessing joint distribution
shown in the table of Table 8.2. Notice that the marginal distributions of ψ match with
µ13 and µ23. Further, for any ν1, ν2 in the support of ψ, ν1 and ν2 have the following
properties: either (i) they are Dirac masses at states that have the same value of z, in
which case φ(ν1, ν2) = ε from the second condition in the definition of φ, otherwise (ii) for
any s ∈ QTrapdoor and u ∈ QRand, ν1(s) ≤ ε and ν2(u) ≤ ε, and therefore by the first
condition φ(ν1, ν2) ≤ 2ε. It follows that φ̂(µ13, µ23) ≤ 2ε.

175



By a similar argument it can be checked that φ̂(µ14, µ24) ≤ 2ε, where µ14 = apply(µ13, out)
and µ24 = apply(µ23, out). This covers all the interesting cases and establishes that φ is a
(2ε, 2ε)-expanded approximate simulation from Trapdoor to Rand.

8.3.5 Probabilistic Safety

In this subsection, we show how approximate implementations can be used for probabilis-
tically reasoning about properties of trace distributions. Let (Traces,FTraces) be the mea-
surable space of traces containing the traces of comparable task-PIOAs A1 and A2, and
f : (Traces,FTraces) → (Y,FY ) be a measurable function. For example, if Y = {0, 1}, then
f could be a predicate on traces that we are interested in proving. For instance, we can
define f(β) to be 0 if a certain undesirable external action a occurs in β, and 1 otherwise.
In general, f defines a property of traces that we are interested in verifying. Since f is
a measurable function, it is actually a Y -valued random variable on Traces. We use the
customary notation [f = y] ∆= {β ∈ Traces | f(β) = y}, for any y ∈ Y .

Lemma 8.12. Let f be a measurable function (random variable) from (Traces,FTraces) to
(Y,FY ). Suppose A1 ≤δ A2 and there exists 0 ≤ p ≤ 1 such that for every µ2 ∈ tdists(A2),
µ2([f = y]) ≤ p, for some y ∈ Y . Then, for all µ1 ∈ tdist(A1), µ1([f = y]) ≤ δ + p.

Proof. Fix µ1 ∈ TdistsA1 . Since A1 ≤δ A2, from Definition 8.9, we know that there exists
µ2 ∈ tdists(A2), such that du(µ1, µ2) ≤ δ. We know that supC∈FTraces

|µ2(C)− µ1(C)| ≤ δ.
In particular, |µ1([f = y])−µ2([f = y])| ≤ δ. As µ2([f = y]) ≤ p, we have µ1([f = y]) ≤ p+δ
as required.

Suppose that A2 triggers the “bad” action a with probability at most p. Formally, this
means that the probability of any trace containing a, according to any trace distribution
of A2, is at most p. If A1 and A2 are comparable closed task-PIOAs such that A1 ≤δ A2,
then from the Lemma 8.12 we can conclude that A1 triggers action a with probability at
most p+ δ.

Violation of safety properties can also modeled as trace functions. Assume that violation
of some safety property S is indicated by the occurrence of one of the external actions from
the set U ⊆ E1 = E2. We define the function f : Traces → {0, 1} as f(β) ∆= 0 if some action
from U occurs in the trace β, otherwise f(β) ∆= 1. It can be easily checked that f is a
measurable function and therefore is a boolean valued random variable. The event [f = 0]
corresponds to the set of traces in which S is violated. Now, if we know that in any trace
distribution of A2 the probability of any U occurring is at most p and that A1 ≤δ A2, then
from Lemma 8.12 we can conclude that in any trace distribution of A1 the probability of
occurrence of U , and hence the violation of S, is at most δ + p.

8.4 Discounted Uniform Approximate Implementation

In the preceding section we defined uniform approximate implementation for PIOAs and
proved that expanded approximate simulations are sound for proving this implementation
relationship. We also demonstrated that uniform approximate implementations are suitable
for probabilistically reasoning about certain classes of properties, like safety properties,
where it is sufficient to quantify the absolute discrepancy in the trace distributions over
all sets of traces. For certain other classes of properties the uniform metric is not suitable,

176



because the worst case discrepancy over all sets of traces does not convey useful information.
We illustrate this with the following example.

Example 8.3. This example is the untimed version of Example 7.3 and models Ben-Or’s
randomized consensus protocol [BO83] for n fault-prone processors to agree on a valid value.
The algorithm proceeds in a sequence of stages in each of which nonfaulty processes send
and receive messages based on coin-flips and comparison of values. If the processes have
access to perfectly random coins, then with some probability p, a stage ends successfully
and all nonfaulty processes agree on a value, and after one communication round of a
successful stage the consensus value is disseminated. An unsuccessful stage is followed by
the beginning of the next stage.

The automaton in Figure 8-4 captures the termination behavior of the algorithm. The
protocol starts in state s10 (corresponds to the states with phase = 0, stage = 1 of au-
tomaton Consensus of Example 7.3). The starting state for the successive stages are the
states s20, s30, . . .. If the the ith stage completes successfully then state si1 is reached. The
action try models the computation and communication within a stage. From stage si0,
with probability p it leads to s(i+1)0, the next stage, and with probability 1− p it leads to
si1. The action decide marks the termination of the protocol and it takes si1 to si2 with
probability 1.

s10

s11

s12

s20

s21

s22

s30

s31

s32

s40

s41

s42

. . .

tr
y,

1
−

p
d
ec

id
e

try, p

tr
y,

1
−

p
d
ec

id
e

try, p

tr
y,

1
−

p
d
ec

id
e

try, p

tr
y,

1
−

p
d
ec

id
e

try, p

Figure 8-4: Automata representing Ben-Or consensus protocol.

Suppose PIOA A1 is an instance of the automaton in Figure 8-4 with perfect random
coins, that is, p = 1 − 1

2n and 1 − p = 1
2n . Let A2 be a task-PIOA instance of the same

automaton with slightly biased coins. We model the transition probabilities for A2 by p+ ε
and 1−p−ε, for a small positive ε. We would like to compare the probabilities of termination
of A1 and A2 after a certain number of rounds, say k. With the uniform approximate
implementation, we can show that the difference in these probabilities is less than δ, for a
fixed δ > 0. However, if individual probabilities of termination are themselves less than δ
then this δ-approximation is too coarse and does not give us any useful information.

8.4.1 Discounted Uniform Metric on Traces

In the remainder of this section, we show how a discounted version of the uniform metric
can be used to make more finer-grained comparison of probabilities of traces.

Definition 8.13. A probability distribution µ on execution fragments of A is said to be

177



finite if Frags∗A is a support for µ. A trace distribution µ of A is finite if Traces∗A is a support
for µ.

Since any set of finite execution fragments is measurable, any finite probability distri-
bution on execution fragments of A can also be viewed as a discrete probability measure on
Frags∗A. Likewise, a finite trace distribution can be viewed as a discrete distribution over
Traces∗A. In this section, we consider task-PIOAs with finite (trace) distributions and will
treat these distributions as discrete distributions on execution fragments or traces.

Definition 8.14. For any k ∈ N, the kth uniform metric is a function dk : Disc(TracesA)×
Disc(TracesA) → R≥0 defined as:

dk(µ1, µ2)
∆= max

β∈E∗,|β|=k
|µ1(β)− µ2(β)|.

The kth uniform metric measures the discrepancy between two trace distributions by
looking at traces of length k only. We show that dk is a pseudometric and that it satisfies
the convergence property stated in Lemma 8.2.

Proposition 8.13. For all k ∈ N, dk is a pseudometric.

Proof. The symmetry property is easy to check. We prove that dk satisfies the triangle
inequality. Let µ1, µ2, µ3 be distributions on E∗. dk(µ1, µ3) = maxβ∈E∗,|β|=k |µ1(β)−µ3(β)|.
Suppose β3 is a trace that realizes the supremum.

|µ1(β3)− µ3(β3)| ≤ |µ1(β3)− µ2(β3)|+ |µ2(β3)− µ3(β3)|
dk(µ1, µ3) ≤ max

β,|β|=k
|µ1(β)− µ2(β)|+ max

β,|β|=k
|µ2(β)− µ3(β)|,

≤ dk(µ1, µ2) + dk(µ2, µ3).

Lemma 8.14. Suppose A1 and A2 are closed task-PIOAs. For i ∈ {1, 2}, let {µij}j∈N be a
chain of discrete probability distributions on the traces of Ai and let limj→∞ µij = µi. Then
for any k ∈ N, limj→∞ dk(µ1j , µ2j) = dk(µ1, µ2).

Proof. The proof is the same as the proof of Lemma 8.2 for the du metric.

Given a family of positive discount factors {δk}k∈N, we say that task-PIOA A1 δk-
implements A2, if one-sided Hausdorff distance from TdistsA1 to TdistsA2 is at most δk, for
every k ∈ N.

Definition 8.15. Suppose A1 and A2 are comparable, closed task-PIOAs and {δk}k∈N is
a collection of positive real numbers, called discount factors. If for every trace distribution
µ1 inTdistsA1 there exists a trace distribution µ2 ∈ TdistsA2 such that for every k ∈ N,
dk(µ1, µ2) ≤ δk, then we say that A1 δk-implements A2 and write this as A1 ≤δk A2. A1

and A2 are said to be δk-equivalent , written as A1
∼=δk A2, if A1 ≤δk A2 and A2 ≤δk A1.

178



8.4.2 Discounted Approximate Simulation

We define a new kind of approximate simulation called Discounted Approximate Simula-
tion (DAS) for proving discounted approximate implementations for task-PIOAs. Given
a distribution µ over executions (or traces) we denote the longest execution (respectively
trace) in the support of µ by L(µ). We extend this notation to a pair of distributions,
L(µ1, µ2)

∆= max(L(µ1), L(µ2)), that is, it is the length of longest execution in the support
of either µ1 or µ2.

Definition 8.16. Suppose A1 and A2 are two comparable closed task-PIOAs, and {φk}k∈N
is a collection of functions, where each φk : Disc(Frags∗A1

) × Disc(Frags∗A2
) → R≥0 ∪ {∞}.

Given a collection of real number pairs {εk, δk}k∈N, the collection {φk} is an (εk, δk)-
discounted approximate simulation from A1 to A2 if there exists a function c : R∗1×R1 → R∗2
such that the following properties hold:

1. (Start condition) φ0(ν̄1, ν̄2) ≤ ε0.

2. (Step condition) If for all k ≤ L(µ1, µ2), φk(µ1, µ2) ≤ εk, T ∈ R1, ρ ∈ R∗1, µ1 is
consistent with ρ, and µ2 is consistent with full(c)(ρ), then for all k ≤ L(µ′1, µ

′
2),

φk(µ′1, µ
′
2) ≤ εk, where µ′1 = apply(µ1, T ) and µ′2 = apply(µ2, c(ρ, T )).

3. (Trace condition) If for all k ≤ L(µ1, µ2), φk(µ1, µ2) ≤ εk then for all
k ≤ L(tdist(µ1), tdist(µ2)) dk(tdist(µ1), tdist(µ2)) ≤ δk.

A family of functions {φ}k is an (εk, δk) discounted approximate simulation if (i) The
initial distributions ν̄1 and ν̄2 are ε0-close in the sense of φ0. (ii) Suppose two distribu-
tions µ1, µ2 are εk-close in the sense of φk, for every k ≤ L(µ1, µ2). then the distributions
µ′1—obtained by applying a new task to µ1, and µ′2—obtained by applying a corresponding
sequence of tasks to µ2, are also εk-close in the sense of φk, for every k ≤ L(µ′1, µ

′
2). (iii) Fi-

nally, if µ1, µ2 are εk-close in the sense of φk, for every k ≤ L(µ1, µ2). then the corresponding
trace distributions are δk-close in the sense of dk for every k ≤ L(tdist(µ1), tdist(µ2)). Ex-
ample 8.1 shows a simple approximate simulation function. Approximate simulations are
similar to simulation relations of Definition 8.7 with the relations R and E(R) replaced by
the real valued simulation functions φ and φ̂.

Note that although we have not the expanded version of the φk’s in defining the step
condition, it might be possible to obtain more powerful expanded discounted approximate
simulations by changing the requirement φk(µ′1, µ

′
2) ≤ εk to φ̂k(µ′1, µ

′
2) ≤ εk .

8.4.3 Soundness of Discounted Approximate Simulation

We prove Theorem 8.15 which states that (εk, δk)- approximate simulations are sound with
respect to δk-approximate implementations.

Theorem 8.15. Let A1 and A2 be two closed isomorphic comparable task-PIOAs. If there
exists a (εk, δk)-discounted approximate simulation function from A1 to A2 then A1 ≤δk A2.

Proof. Let φ be the assumed (εk, δk)-discounted approximate simulation function fromA1 to
A2. Let µ1 be the probabilistic execution of A1 generated by the starting distribution ν̄1 and
a finite task schedule T1, T2, . . . , Tn. For each i > 0, we define ρi to be c(T1 . . . Ti−1, Ti). Let
µ2 be the probabilistic execution of A2 generated by ν̄2 and the concatenation ρ1, ρ2, . . . , ρn.
It suffices to show that dw(tdist(µ1), tdist(µ2)) ≤ δ.

179



For each j ≥ 0, let us define µ1,j
∆= apply(ν̄1, T1, . . . , Tj) and µ2,j

∆= apply(ν̄2, ρ1, . . . , ρj).
For i ∈ {1, 2} and for each j ≥ 0, µi,j ≤ µi,j+1 and µi,n = µi. Observe that for every j ≥ 0,
µ1,j+1 = apply(µ1,j , Tj+1) and µ2,j+1 = apply(µ2,j , ρj+1).

We prove by induction that for all j ≥ 0, for all k ≤ L(µ1,j , µ2,j), φk(µ1,j , µ2,j) ≤ εk.
For j = 0, µ1,0 = ν̄1 and µ2,0 = ν̄2. By the start condition of the simulation func-
tion, φ0(µ1,0, µ2,0) ≤ ε. For the inductive step, we assume that for all k ≤ L(µ1,j , µ2,j),
φk(µ1,j , µ2,j) ≤ εk. Then, from Part (ii) of Definition 8.12 it follows that for all k ≤
L(µ1,j+1, µ2,j+1), φk(µ1,j+1, µ2,j+1) ≤ εk. In particular, for all k ≤ L(µ1, µ2), φk(µ1, µ2) ≤
εk, from which, using condition (iii) it follows that for all k ≤ L(tdist(µ1), tdist(µ2)),
dk(tdist(µ1), tdist(µ2)) ≤ δk.

Example 8.4. (Continuation of Example 8.3.) Let εk = δk = (p+ ε)k − pk, for each k ∈ N.
We will show that A1 and A2 are δk-equivalent using the following discounted approximate
simulation:

for each k, φk(µ1, µ2) = maxα,anum(α)=k|µ1(α)− µ2(α)|, (8.6)

where µ1 ∈ Disc(Execs∗A1
), µ2 ∈ Disc(Execs∗A2

), and anum(α) is the number of occurrence of
the action try in the execution α.

Proposition 8.16. The collection of functions {φk} defined above is indeed an (εk, δk)-
discounted approximate simulation from A1 to A2.

Proof sketch. We check that the collection {φk} satisfies the three conditions in Defini-
tion 8.16.

Start condition. ν1 = ν2 = δs10 , and therefore φ0(ν1, ν2) = 0.

Step condition. We define the task correspondence function in the obvious way, c(ρ, T ) ∆=
T , where ρ is a task schedule and T is a task for A1. Thus for any µ1 ∈ Disc(Execs∗A1

)
and µ2Disc(Execs∗A2

) that are obtained from ν1 and ν2 by applying a sequence of tasks,
L(µ1, µ2) = L(µ1) = L(µ2). Consider any µ1 ∈ Disc(Execs∗A1

),µ2 ∈ Disc(Execs∗A2
),

and suppose µ1 = apply(ν1, ρ) and µ2 = apply(ν2, full(c)(ρ)). Let us denote µ′1 =
apply(µ1, T ), and µ′2 = apply(µ2, c(ρ, T )) = apply(µ2, T ). Then, it suffices to show
that for all k ≤ L(µ1, µ2), φk(µ′1, µ

′
2) ≤ (p + ε)k − εk. This part of the proof is by a

case analysis on the types of tasks, T = {try}, {decide} and the types of executions.

The interesting cases are for T = {try} and executions of the form α = α′ try sk0
or α = α′try s(k−1)1, for some k ≤ L(µ1). For the first case, µ′1(α) = µ1(α′)p and
µ′2(α) = µ2(α′)(p + ε), and therefore φk+1(µ′1, µ

′
2) = p|µ2(α′) − µ1(α′)| + εµ2(α′).

From the inductive hypothesis, |µ2(α′)− µ1(α′)| ≤ εk. It follows that, φk+1(µ′1, µ
′
2) ≤

p|(p+ ε)k − pk|+ ε(p+ ε)k ≤ εk+1. Likewise in the second case, µ′1(α) = µ1(α′)(1− p)
and µ′2(α) = µ2(α′)(1− p− ε), and performing a similar calculation as above, we can
show that φk+1(µ′1, µ

′
2) ≤ εk.

Trace condition. First of all, for any µ1 ∈ Disc(Execs∗A1
) that are obtained from ν1 by

applying a sequence of tasks, L(µ1) = L(tdist(µ1)). If β is a trace of the form
akd, for some k ≥ 0. Then, for i ∈ {1, 2}, tdist(µi)(β) = µi(α), where α =
s10as20 . . . sk0trysk1decidesk2. From which it follows that |tdist(µ1)(β)−tdist(µ2)(β)| =
|µ1(α) − µ2(α)| ≤ φk+1(µ1, µ2) ≤ εk+1. On the other hand, if β is a trace of the

180



form ak+1, for some k ≥ 0. Then, for i ∈ {1, 2}, tdist(µi)(β) = µi(α1) + µi(α2),
where α1 = s10 try s20 . . . s(k+1)0 try s(k+1)1 and where α2 = s10 try s20 . . . s(k+2)0.
Thus, |tdist(µ1)(β)− tdist(µ2)(β)| = |µ1(α1) + µ1(α2)− µ1(α1)− µ2(α1)| = |µ1(α)−
µ1(α)|, where α = s10 try s20 . . . s(k+1)0. Therefore, |tdist(µ1)(β) − tdist(µ2)(β)| ≤
φk+1(µ1, µ2) ≤ εk+1 as required.

8.5 Approximations for Task-PIOAs

In this section, we discuss how the notion of uniform approximate implementations and
the soundness of EASs extendeds to general (not necessarily closed) task-PIOAs. In an
analogous manner, discounted approximate implementation and DAS can also be extended.

The basic idea is to define a new notion of implementation following the approach
of [CCK+06a]. As we defined external behavior in the case of PTIOAs, we formulate the
external behavior of a task-PTIOA A as a mapping from possible “environments” for A to
sets of trace distributions that can arise when A is composed with the given environment.

Definition 8.17. An environment for task-PIOA A is a task-PIOA E such that the com-
position of A and E is closed.

Definition 8.18. The external behavior of a task-PIOAA, written as ExtBehA, is a function
that maps each environment task-PIOA E for A to the set of trace distributions of the
composition of A and E .

Approximate implementation for general task-PIOAs can then be defined to be closeness
of external behavior for all environments.

Definition 8.19. If A1 and A2 are comparable then A1 is said to δ-implement A2, for some
δ ≥ 0, if for every environment task-PIOA E for bothA1 andA2, for every µ1 ∈ ExtBehA1(E)
there exists µ2 ∈ ExtBehA2(E) such that du(µ1, µ) ≤ δ.

Based on this modified definition of approximate implementation the soundness of ex-
panded approximate simulations for general task-PIOAs follow as a Corollary to Theo-
rem 8.11.

Corollary 8.17. Let A1 and A2 be two comparable task-PIOAs. Suppose that for every
environment E for both A1 and A2, there exists a (εE , δ)-approximate simulation function
from the composition of A1 and E to the composition of A2 and E. Then A1 ≤δ A2.

8.6 Related Work

A variety of implementation relations have beep proposed in the literature for probabilistic
automata [LS91, LMMS98, CCK+06b, C. 96, SvdS05, BLB05]. These notions of implemen-
tation rely on equality of observable behavior. That is, every observable behavior of the
concrete system must be exactly equal to some observable behavior of the abstract spec-
ification. The fragility of these equality-based implementation relations have been known
for quite some time [JS90, DJGP02, GJP04] In [JS90] Jou and Smolka formalized “sim-
ilarity” of traces using a metric and developed the corresponding notion of approximate
equivalence for probabilistic automata. Approximation metrics for probabilistic systems
in the context of Labelled Markov Processes (LMP) have been extensively investigated

181



and many fundamental results have been obtained by Desharnais, Gupta, Jagadeesan and
Panangaden [DJGP02, DGJP03, DGJP04] and by van Breugel, Mislove, Ouaknine, and
Worrell [vBW01b, vBMOW03, vBMOW05, MWMW04, MOW04]. The first set of authors
introduced a Kantorovich-like metric for LMPs and presented the logical characterization of
this metric. Van Breugel et al. have presented intrinsic characterizations of the topological
space induced by the above metric. This characterization is based on a final coalgebra for
a functor on the category of metric spaces and nonexpansive maps. Another interesting
facet of this body of work is the polynomial time algorithm for computing the metric pre-
sented by van Breugel and Worrell in [vBW01a]. For Generalized Semi-Markov Processes
(GSMP) [GJP04], Gupta, Jagadeesan and Panangaden have developed pseudo-metric ana-
logues of bisimulation and have shown that certain observable quantitative properties are
continuous with respect to the introduced metric. Kwiatkowska and Norman have devel-
oped the denotational semantics for a divergence-free probabilistic process algebra based on
a metric on probability distribution over executions [KN96]. In the non-probabilistic setting,
Girard and Pappas [GP05, GJP06] have developed the theory of approximate implemen-
tations for Metric Transition Systems (MTS). The state space and the space of external
actions of an MTS are metric spaces. Based on these metrics, the authors develop a hierar-
chy of approximation pseudo-metrics between MTSs measuring distance between reachable
sets, sets of traces and bisimulations. The authors have also developed algorithms for
exactly and approximately computing these metrics.

Our work differs from all of the above in at least one of the following ways: (a) the
task-PIOA model allows both nondeterministic and probabilistic choices, and (b) the im-
plementation relation in our framework is based on trace distributions and not bisimilarity
of states. Approximate implementation is derived from a metric over trace distributions,
and thus, we do not require the state spaces of the underlying automata nor the common
space of external actions to be metric spaces. Metrics on trace distributions of PIOAs are
used by Cheung in [Che06]to show that sets of trace distributions form closed sets in a
certain metric space. This result is then used to show that finite tests are sufficient to
distinguish between a members of a certain class of PIOAs. The metric used in the above
work is related to our uniform metric but it is defined on the set [0, 1]Traces whereas our
uniform metric is exclusively defined on the set of trace distributions.

8.7 Summary

In this chapter we have introduced the notion of approximate implementations for task-
structured probabilistic I/O automata. In particular, we have defined two different kinds
of approximate implementations, based on the uniform metric and the discounted uniform
metric on trace distributions of task-PIOAs. We proposed expanded approximate simula-
tions and discounted approximate simulations for proving, the two proposed implementation
relations, respectively. EAS and DAS can be used to approximately reason about probabilis-
tic safety and termination properties. PIOAs can be nondeterministic and our construction
does not require the underlying state spaces of the automata or the space of external actions
to be metric spaces.

In our formulation of expanded approximate simulations, a simulation proof reduces to
finding an optimal joint distribution satisfying certain constrains on the marginals. This
is closely related to the well known Kantorovich optimal transportation problem [Kan].
For well-behaved classes of simulation functions, therefore, we would like to explore the

182



possibility of proving approximate simulations by solving optimization problems.
In the future, we want develop a new kind of Discounted Expanded Approximate Simula-

tions that combines the features of EAS and DAS. We would also like to develop simulation
based proof techniques where the simulation functions are functions of distributions over
states and not functions of distributions over execution fragments. Finally, we would like to
extend the notion approximate implementations to the Probabilistic Timed I/O Automaton
framework 7.

8.8 Appendix: Limits of Chains of Distributions

All the definitions and lemmas in this Appendix are from [CCK+06b]. In this Appendix
A will be a task-PIOA. Given a finite execution fragment α of A, the cone of executions
generated by this fragment Cα is the set of all execution fragments that extend α. Given a
finite trace β of A, Cα is the set of all traces that extend β.

Definition 8.20. If µ1, µ2 ∈ Disc(FragsA), such that for every α ∈ Frags∗A, µ1(Cα) ≤
µ2(Cα), then we write µ1 ≤ µ2.

Definition 8.21. A chain of probability measures on execution fragments of A is an infinite
sequence µ1, µ2, . . . of probability measures on execution fragments of A such that µ1 ≤
µ2 . . .. Given a chain, the limit of the chain is defined as a function µ on the σ-algebra
generated by the cones of execution fragments of A, as follows: for each α ∈ Frags∗A,
µ(Cα) ∆= limi→∞ µi(Cα).

Standard measure theoretic arguments guarantee that µ can be extended uniquely to a
probability measure on the σ-field generated by the cones of finite execution fragments.

Definition 8.22. If µ1, µ2 are probability measures on traces of A, such that for every
finite trace β of A µ1(Cβ) ≤ µ2(Cβ), then we write µ1 ≤ µ2.

Definition 8.23. A chain of probability measures on traces of A is an infinite sequence
µ1, µ2, . . . of probability measures on traces of A such that µ1 ≤ µ2 . . .. Given a chain
of probability measure on traces, the limit of the chain is defined as a function µ on the
σ-algebra generated by the cones of traces of A, as follows: for each finite trace β of A,
µ(Cβ)

∆= limi→∞ µi(Cβ).

Again, µ can be extended uniquely to a probability measure on the σ-field generated by
the cones of finite traces.

Lemma 8.18 (4 of [CCK+06b]). Let µ1, µ2, . . . be a chain of measures on FragsA and let
µ = limi→∞ µi, then limi→∞ tdist(µi) = tdist(µ).

Lemma 8.19 (11 of [CCK+06b]). Let µ ∈ Disc(Frags∗A) and σ be a finite task schedule for
A. Then apply(µ, ρ) ∈ Disc(Frags∗A).

Lemma 8.20 (20 of [CCK+06b]). Let µ ∈ Disc(Frags∗A) and ρ1, ρ2, . . . be a finite or infinite
sequence of task schedulers for A. For each i > 0 let ηi = apply(µ, ρ1ρ2 . . . ρi). Let ρ =
ρ1ρ2 . . . be the concatenation of the all the task schedulers, and let η = apply(µ, ρ). Then
the ηi’s form a chain and η = limi→∞ ηi.

183



Chapter 9

Conclusions

9.1 Evaluation

The objective of this PhD thesis project was to explore a general class of hybrid system
models with the purpose of developing specification and verification for embedded software
systems that interact with physical processes.

The language proposed here, HIOA, provides structures and compositional semantics for
specifying a very general class of nonprobabilistic hybrid systems. We have found that a vari-
ety of system models including vehicle and air-traffic control systems [UL07, MWLF03], car-
diac cell models used in systems biology [GMY+07], algorithms for mobile robotics [LMN],
real-time and distributed algorithms [FDGL07, ALL+06, CLMT05], can be expressed natu-
rally in HIOA . While in the thesis we focused on formal analysis of HIOA specifications, these
specifications are also amenable to simulation. The TIOA subset of HIOA forms the back-
bone of the Tempo toolset [TEM07]. This toolset supports simulation and model checking,
in addition to some of the verification techniques presented in the thesis, hence making it
possible to apply different analysis techniques to the same hybrid system specification.

For the majority of the applications we have studied, direct automatic verification would
be impossible, and therefore, we decided to focus on verification methods that depend
on user guidance. Invariance and implementation verification techniques proposed here
rely on inductive properties and simulation relations—which the user has to supply; but
once these are obtained, the desired property can be deduced with relative ease. In fact,
our theorem prover interface for HIOA partially, and sometimes completely, automates this
deduction process. In practice, finding the invariants and checking them is often an iterative
process, where one starts by guessing an invariant and then attempts to prove it; if the
proof fails then the invariant is refined and so on. This iterative process can be performed
more efficiently using our theorem prover interface because the existing proof script can be
executed automatically on the modified invariant.

Apart from the case studies presented here, the theorem prover interface has been ap-
plied by Umeno [UL07] in a major case study concerning safety verification of an aircraft
landing protocol. This is encouraging, and illustrates that it is possible to model and verify
realistic hybrid system models in our framework. Constructing proofs, even with the aid
our strategies, is not routine and takes significant effort. This is because our strategies
are able to automate only shallow proofs. We expect that new domain-specific strategies
will make the deductive verification practical for hybrid models that have relatively simple
continuous dynamics.

184



Our optimization-based stability verification approach gives a family of methods in
which the hardness of the optimization problem that one has to solve (for verifying stability)
depends on the complexity of the dynamics of the hybrid model in question. For certain
classes of hybrid systems, this means that stability can be verified automatically using
standard mathematical programming tools. These types of methods can help us decide on
the subclass of SHIOAs that we should restrict our attention to, while modeling the system,
so as to make verification feasible with the available resources.

Techniques for verifying quantitative properties allow us to prove performance (or reli-
ability) of a system within the same formal framework is used for proving correctness. We
have extended the usual notions of implementation for (discrete) probabilistic automata to
obtain approximate implementation relations. This lets us quantify how close an imple-
mentation is to an ideal specification. We have developed sound simulation-based proof
techniques for establishing these relationships. We have recently used these techniques to
verify the statistical zero-knowledge property of a classical authentication protocol [GPS06]
(not presented in the thesis).

In order to state and verify quantitative properties for hybrid systems we have to in-
corporate probabilities in the hybrid system model. This motivated us to develop the
Probabilistic Timed I/O Automata model. PTIOAs can model concurrent execution of
components, discrete and continuous evolution, and probabilistic choices based on general
continuous probability distributions. In developing semantics PTIOAs we had to first resolve
nontrivial measurability related issues and then find a way for resolving nondeterminism.
Defining a set of axioms that ensure measurability of reasonable sets of executions and
traces, and adapting the task mechanism of [CCK+06a] for resolving nondeterminism, we
were able to develop trace-based semantics for PTIOAs. Currently PTIOAs provide frame-
work for modeling probabilistic hybrid systems that arise in, for example, randomized,
real-time algorithms, timing based security protocols, and control systems with noisy sam-
pling, but much work remains to be done in developing verification techniques for boolean
and quantitative properties.

9.2 Future Directions

The state of research for probabilistic and nonprobabilistic hybrid systems are at two differ-
ent levels. The latter being more mature, future efforts should focus on new software tools
for verification and applications, while in the case of probabilistic hybrid systems emphasis
should be on developing the basic verification techniques.

9.2.1 Modeling Probabilistic Hybrid Systems

We show that the composition of two PTIOAs is also a PTIOA only if the composite
automaton satisfies an additional measurability requirement, namely, axiom M2. PTIOAs
we encountered do satisfy M2, but we would like to define a subclass of PTIOAs that is
closed under composition (without any extra assumptions). For obtaining this property
it may be necessary to impose restrictions on the trajectories of PTIOAs or to impose
additional measurability requirements.

A second improvement for the PTIOA framework would be to include input/output vari-
ables that will enable component automata to communicate continuously. Including input
variables pose a technical challenge: in defining the probability measure over executions of
such an automaton, the maximal progress assumption implied by time-action determinism

185



D3 will have to be removed. This is because a trajectory, in that case, would determined
only in part by the state, and it will also depend on the inputs.

Finally, the relative strengths of the different scheduling mechanisms has to be stud-
ied. In this thesis we used oblivious task schedulers for resolving external nondeterminism
and local schedulers for resolving internal nondeterminism. Other types of schedulers,
such as Markovian, history-dependent, and randomized schedulers should be considered for
PTIOAs. We can remove the time-action determinism axiom D3 by assuming that each
PTIOA component has a local scheduler, and therefore most of the scheduling conflicts
are resolved, except for races. Smolka and Stark [ES03, Sta03], assume that such conflicts
happen only with probability 0, and so can be ignored. The trace-based semantics obtained
for these different scheduling mechanism will no doubt be different from the one we have
proposed. Then, we have to draw a clear recipe of which semantics is suitable for what
application domain.

9.2.2 Stability

The definition of stability used in the hybrid systems literature and also in this thesis is
strictly concerned with the continuous state of the system. On the other hand, the notion of
self-stabilization has been widely used in designing distributed algorithms [Dol00, NA02].
A distributed algorithm is said to be self-stabilizing if it stabilizes to correct behavior,
from an arbitrary state, if the underlying components start “behaving well” from some
point onward. This is a common notion in algorithms designed for somewhat fault-prone
environments that must continue operations, even after periods of failures, e.g., the Internet,
or a mobile computing system. It is necessary to propose a general definition of stability of
hybrid systems, that encompasses both its discrete and its continuous variables. Theel et
al. have recently applied Lyapunov function based techniques for verifying self-stabilization
properties [DOT06], however, a theory that unifies these two distinct notions of stability
remains unknown. This generalized notion of stability will enable us to prove stability of
a hybrid system as a whole. Further, we can try to carry the techniques for developing
self-stabilizing algorithms, like those in [Dol00], over to designing stable hybrid systems
operating in uncertain real-world environments. For example, in a mobile network setting,
if we lose location information about where nodes are, we can search for them in the real
world, and restore the information to where it belongs.

Extending the the stability verification techniques proposed here to the stochastic setting
is a promising direction for future research. Stability conditions for probabilistic switched
systems using Lyapunov function-like arguments have been derived in [CL06, CL04]. It can
be shown that for certain classes of PTIOAs, the problem of proving almost sure stability ,
using these Lyapunov arguments can be formulated as optimization problems that can be
solved efficiently. In the simplest case, we consider PTIOAs where the discrete transitions
are triggered by a discrete time Markov chain. That is, the mode switches occur periodically
every ∆ time and the new modes is chosen probabilistically. In this simple setting it can
be shown that the Average Dwell Time (ADT) property reduces to detecting the minimum
cost cycle in a graph, as in the case of one-clock initialized SHIOAs. It would be interesting
to explore similar verification approaches for other, more expressive, classes of probabilistic
hybrid systems.

186



9.2.3 Approximate Implementations

Research on quantitative and approximate verification techniques is in its early stages and
much work remains to be done. In the context of discrete probabilistic automata, an
immediate research goal, is to develop discounted expanded simulations as a more powerful
substitute for the ordinary discounted simulation proposed here.

In our formulation of expanded approximate simulations, a simulation proof reduces to
finding an optimal joint distribution satisfying certain constrains on the marginals. This
is closely related to the well-known Kantorovich optimal transportation problem [Kan].
Exploring the connection between these two problems, it may become possible to prove
approximate simulations by solving optimization problems.

Notions of approximate implementations for probabilistic hybrid will have to be robust
with respect to small perturbations to 1. time of occurrence of events, and also 2. probability
of occurrence of events. This means that we have to use metrics on trace distributions that
take into account both the differences in timing and probability characteristics. Fortunately,
there exists a rich body of literature (see, for example, [Rac91]) that offers many choices
for such metrics on probability distributions. Based on these metrics we should develop
notions of approximate implementation for PTIOAs and simulation-based techniques for
establishing these relationships. The techniques introduced in Chapter 8 will be useful in
attacking this problem, but tools from functional analysis will also have to be employed
along the way.

9.2.4 Software Tools

The HIOA -PVS interface enables effective verification of hybrid system models with complex
data-types and logical expressions. However, significant user interaction becomes necessary
for models with nonlinear algebraic equations. We have to address this issue by developing
a verification platform, based on Tempo, that integrates theorem provers, model checkers,
computer algebra systems, and mathematical program solvers. As an example of how these
different tools can be utilized with in the same framework, consider the safety and stability
verification conditions of Chapters 4 and 5. These conditions could be checked by computer
algebra systems and optimization tools, whereupon, these conditions can be used by theorem
prover strategies for automatically deducing the properties.

The long-term success of any model-based software development methodology depends
on how well marginal efforts in development translate to quantifiable gains in quality . Build-
ing coarse models and proving that they roughly conform to an ideal design should be
relatively easy; and by refining models, improving designs, and expending extra effort in
verification, it should be possible to prove closer conformance, and sharper guarantees. It
is important that we create software development platforms that are recognized to have the
above marginal gain property. Approximate implementations provide one possible basis for
measuring conformance, and it is necessary to develop other, non-probabilistic metrics.

187



List of Symbols and Functions

A ≤ B A implements B, i.e., TracesA ⊆ TracesB, 27

A ≤δ B A δ-approximately implements B w.r.t. uniform metric, 166

A ≤δk B A δk-approximately implements B w.r.t. discounted uniform metric, 178

A ≤switch B A switches slower than B, 80

D Set of discrete transitions of a hybrid automaton, 25

Disc(Q) Set of discrete probability distributions over (Q,FQ), 160

ExecsA Set of all executions of automaton A, 26

ExtBehA External behavior of A, a map from environment(E) to TdistsAE , 151

FragsA Set of all execution fragments of automaton A, 26

M Set of mode switching discrete transitions of a SHIOA, 35

(S,FS) A measurable space on set S; FS is a σ-algebra over S., 136

µx,B If unique action a ∈ B is enabled at x such that x a→ µ, then µx,B = µ, 138

ReachA Set of all reachable states of automaton A, 26

supp(µ) Support of discrete probability measure µ, 160

TdistsA Set of trace distributions for A, 151

T Set of time points which is R≥0 ∪ {∞}, 22

TracesA Set of all traces of A, 27

v,x A valuation for the set of variables V , X., 23

b[i] The ith element of array (or tuple) b, 22

dom(f) Domain of function f , 22

dtype(v) Dynamic type of variable v, 23

EB set of states from which some action a ∈ B is enabled, 137

ER,P set of states from which there exists a closed trajectory τ , such that τ.ltime ∈
R and τ.lstate ∈ P , 138

188



enabled(x) Set of actions enabled at state x, 137

enabled(a) Set of states at which action a is enabled, 25

ltime The limit time of a trajectory or an execution fragment, 24

N(α) Number of mode switches over execution fragment α, 77

range(f) Range of function f , 22

Sτa(α) Number of extra switches in execution fragment α w.r.t. ADT τa, 78

tdist(ρ) tdist(µρ) or the trace distribution corresponding to the task schedule ρ, 151

type(v) Static type of variable v, 23

val(V ) Set of all valuations of the variables V , 23

189



Index

abstraction, see implementation
Actuator, 62
ADT, 77

equivalent, 80
automaton

generalized PTIOA, 152
PIOA, 160
pre-PTIOA, 138
Task DPTIOA, 139
task-PIOA, 160

Average Dwell Time, see ADT

base, 143
basic set, 143
Bounce, 38

in PVS , 113
Burner, 85

ClockSync, 48
compatible, 27
composition, 27, 29, 35, 141, 153

in HIOA language, 49
of PIOA, 161

compositionality, 12
cone, 162

DAI, 30
in HIOA language, 47

deadline variable, 40
deterministic trajectories, 136
Dirac measure, 136
dtype, 23

in HIOA language, 41
continuous, 30
discrete, 30

dynamic type, see dtype

environment, 181
environment automaton, 151
execution, 26, 140, 161

fragment, 26, 140

probabilistic, 146
expansion

of function, 166
of relation, 164

external behavior, 151

failure detector, 50, 129
flattening, 163
formal parameter, see parameter
forward simulation relation, 55
functions

in HIOA language, 43

Helicopter, 58
hierarchical refinement, 12
hysteresis

linear, 91
scale-independent, 86

HystSwitch, 86

implementation, 27, 29, 35, 151, 153
discounted approximate, 178
proving inductively, 55
uniform approximate, 165

inductive property, 54
invariant, 26, 53

in HIOA language, 50
in PVS , 117
of composed automaton, 55
proving inductively, 54

kinds
of variables, 40

lifting, 164
LinHSwitch, 91
Lyapunov stability, see stability

Markov chain, 172
metric, 165
mode switch, 35, 77

190



NoisySensor, 154

parameter, 39
constant, 44
type, 40

polymorphism, 40
pre-HIOA, 29
pre-SHIOA, 34
precondition

in HIOA language, 44
preconditions

in PVS , 112
pseudometric, 165
PTIOA, 137
PVS strategy, see strategy

reachability, 26
reachable state, 26
reachable states, 26
restriction, 26

safety, 26
scheduler, 145
semi-ring, 137
Sensor, 58
SHIOA

initialized, 35, 96
linear, 35
one-clock initialized, 90
rectangular, 35

signature, 43
in PVS , 110

simulation
discounted approximate, 179
expanded approximate, 168

simulation relation, 55
in HIOA language, 50
in PVS , 119

Spec, 50, 130
in PVS , 115

stability, 26, 76
asymptotic, 76
exponential, 77
global asymptotic, 76
global exponential, 77
uniform, 77

stable, 76
state models

in HIOA language, 45

in PVS , 110
semantics, 30

static type, see type
strategy, 105, 123
substitutivity, 152

HA, 28
Supervisor, 59
switched system, 75
switching simulation relation, 80

task correspondence, 164
task schedule, 145
see Task DPTIOA, 139
tasks, 139
Two-TaskRace, 130
theory instantiation, 120
thermostat, 47
Thermostat2, 100
Thermostat, 47
TimedChannel, 47
Timeout, 51
Timeout

in PVS , 118
trace, 26, 161

distribution, 148
PTIOA, 140

trace basic set, 145
trace distribution, 151
trajectories

in HIOA language, 45
in PVS , 109, 113

trajectory, 24
closed, 24
open, 24
point, 24

transitions
in HIOA language, 44
in PVS , 111, 112

type, 23
constructors, 40
parameter, 40

types
in HIOA language, 40

valuation, 23
variable

continuous, 23
discrete, 23

191



variables
in HIOA Language, 39
in PVS , 109

vocabulary, 40

where-clause, 38

192



Bibliography

[A+95] R. Alur et al. The algorithmic analysis of hybrid systems. Theoretical Com-
puter Science, 138:3–34, 1995.

[ABD+00] Eugene Asarin, Olivier Bournez, Thao Dang, Amir Pnueli, and Oded Maler.
Effective synthesis of switching controllers for linear systems. In Proceedings
of IEEE, volume 88, pages 1011–1025, July 2000.

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger,
P.-H. Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine.
The algorithmic analysis of hybrid systems. Theoretical Computer Science,
138(1):3–34, 1995.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[AHH93] R. Alur, C. Courcoubetis T. A. Henzinger, and P. H. Ho. Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems.
In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid
Systems, volume 736 of LNCS, pages 209–229. Springer-Verlag, 1993.

[AHS98] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS interface to simplify
proofs for automata models. In Proceedings of UITP ’98, July 1998.

[ALL+06] Myla Archer, HongPing Lim, Nancy Lynch, Sayan Mitra, and Shinya Umeno.
Specifying and proving properties of timed I/O automata in the TIOA toolkit.
In In Fourth ACM-IEEE International Conference on Formal Methods and
Models for Codesign (MEMOCODE’06). IEEE, 2006.

[Alu91] R. Alur. Techniques for automatic verification of real-time systems. PhD
thesis, Stanfor University, 1991.

[AP04] Rajeev Alur and George J. Pappas, editors. Hybrid Systems: Computation and
Control, 7th International Workshop, HSCC 2004, Philadelphia, PA, USA,
March 25-27, 2004, Proceedings, volume 2993 of LNCS. Springer, 2004.

[Arc01] Myla Archer. TAME: PVS Strategies for special purpose theorem proving.
Annals of Mathematics and Artificial Intelligence, 29(1/4), February 2001.

[ASL93] P. J. Antsakis, J. A. Stiver, and M. D. Lemmon. Hybrid system modeling
and autonomous control systems. In R. L. Grossman et al., editors, Hybrid
Systems, volume 736 of LNCS, New York, 1993.

193



[AVM03] Myla Archer, Ben Di Vito, and Cesar Munoz. Developing user strategies in
pvs: A tutorial. In STRATA 2003, Rome, Italy, 2003.

[BBM98] M. Branicky, V. Borkar, and S. Mitter. A unified framework for hybrid control:
model and optimal control theory. IEEE Transactions on Automatic Control,
43(1):31–45, 1998.

[BCG06] C. Baier, F. Ciesinski, and M. Grer. ProbMela and model checking markov
decision processes. In ACM Performance Evaluation Review on Performance
and Verification, 2006. to appear.

[BCT02] Alexandre M. Bayen, Eva Cruck, and Claire Tomlin. Guaranteed overap-
proximations of unsafe sets for continuous and hybrid systems: solving the
hamilton-jacobi equation using viability techniques. In Tomlin and Green-
street [TG02], pages 90–104.

[BGL02] A. Bogdanov, S. Garland, and N. Lynch. Mechanical translation of I/O au-
tomaton specifications into first-order logic. In Formal Techniques for Net-
worked and Distributed Sytems - FORTE 2002 : 22nd IFIP WG 6.1 Interna-
tional Conference, pages 364–368, Texas, Houston, USA, November 2002.

[BGM93] A. Back, J. Guckenheimer, and M. Myers. A dynamical simulation facility for
hybrid systems. In R. L. Grossman et al., editors, Hybrid Systems, volume
736 of LNCS, New York, 1993.

[BLB05] Manuela L. Bujorianu, John Lygeros, and Marius C. Bujorianu. Bisimulation
for general stochastic hybrid systems. In Morari and Thiele [MT05], pages
198–214.

[BO83] M. Ben-Or. Another advantage of free choice: Completely asynchronous agree-
ment protocols. In PODC, pages 27–30, Montreal, Canada, August 1983.

[Bra95] M. Branicky. Studies in hybrid systems: modeling, analysis, and control. PhD
thesis, MIT, Cambridge, MA, June 1995.

[Bro94] R. W. Brockett. Hybrid models for motion control systems. In H. L. Trentel-
man and J. C. Willems, editors, Essays in Control: Perspectives in the Theory
and its Applications, pages 20–53, Boston, 1994. Birkhauser.

[BS67] N. P. Bhatia and G. P. Szegö. Dynamical Systems: Stability Theory and
Applications, volume 35 of Lecture notes in mathematics. Springer-Verlag,
Berlin; New York, 1967.

[C. 96] C. Baier. Polynomial-time algorithms for testing probabilistic bisimulation
and simulation. In Rajeev Alur and Thomas A. Henzinger, editors, Proceed-
ings of the Eighth International Conference on Computer Aided Verification
CAV, volume 1102, pages 50–61, New Brunswick, NJ, USA, / 1996. Springer
Verlag.

[CCK+05] Ran Canetti, Ling Cheung, Dilsun Kirli, Moses Liskov, Olivier Pereira
Nancy Lynch, and Roberto Segala. Using probabilistic I/O automata to an-
alyze an oblivious transfer protocol. Technical report, MIT LCS Technical

194



Reports - MIT-LCS-TR-1001, August 2005. Also in MIT CSAIL Technical
Reports - MIT-CSAIL-TR-2005-055.

[CCK+06a] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch,
Olivier Pereira, and Roberto Segala. Task-structured Probabilistic I/O Au-
tomata. In Proceedings of the 8th International Workshop on Discrete Event
Systems – WODES’2006, 2006. IEEE catalog number 06EX1259.

[CCK+06b] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch,
Olivier Pereira, and Roberto Segala. Task-structured probabilistic I/O au-
tomata. Technical Report MIT-CSAIL-TR-2006-060, Massachusetts Institute
of Technology, Cambridge, MA, September 2006.

[CCK+06c] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch,
Olivier Pereira, and Roberto Segala. Time-bounded task-PIOAs: a frame-
work for analyzing security protocols. In 20th International Symposium on
Distributed Computing, (DISC 2006), volume 4167 of LNCS, pages 238–253.
Springer, 2006.

[CCK+06d] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch,
Olivier Pereira, and Roberto Segala. Using task-structured probabilistic I/O
automata to analyze an oblivious transfer protocol. Technical Report MIT-
CSAIL-TR-2006-019, Massachusetts Institute of Technology, Cambridge, MA,
March 2006. Available from http://theory.csail.mit.edu/tds/papers/
Kirli/TR-2006-019.pdf.

[CES86] E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transac-
tions on Programming Languages and Systems, 8(2):244–263, 1986.

[Che06] L. Cheung. Reconciling nondeterministic and probabilistic choices. PhD thesis,
ICIS, Radboud University Nijmegen, The Netherlands, 2006.

[CL04] D. Chatterjee and D. Liberzon. On stability of stochastic switched systems. In
Proceedings of the 43rd Conference on Decision and Control, pages 4125–4127,
Paradise Island, Bahamas, December 2004.

[CL06] Debasish Chatterjee and Daniel Liberzon. Stability analysis of deterministic
and stochastic switched systems via a comparison principle and multiple lya-
punov functions. SIAM Journal on Control and Optimization, 45(1):174–206,
March 2006.

[CLMT05] Gregory Chockler, Nancy Lynch, Sayan Mitra, and Joshua Tauber. Proving
atomicity: an assertional approach. In Pierre Fraigniaud, editor, Proceedings
of Nineteenth International Symposium on Distributed Computing (DISC’05),
volume 3724 of LNCS, pages 152 – 168, Cracow, Poland, September 2005.
Springer.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. MIT Press/McGraw-Hill, 1990.

195

http://theory.csail.mit.edu/tds/papers/Kirli/TR-2006-019.pdf
http://theory.csail.mit.edu/tds/papers/Kirli/TR-2006-019.pdf


[CLSV04] L. Cheung, N. A. Lynch, R. Segala, and F. Vaandrager. Switched probabilistic
I/O automata. In First International Colloquium on Theoretical Aspects of
Computing, July 2004.

[COR+95] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Mandayam
Srivas. A tutorial introduction to PVS. Presented at WIFT ’95: Workshop
on Industrial-Strength Formal Specification Techniques, Boca Raton, Florida,
April 1995. Available, with specification files, at http://www.csl.sri.com/
wift-tutorial.html.

[Cru91] Rene L. Cruz. A calculus for network delay, part i: Network elements in
isolation. IEEE Transactions on Information Theory, 37(1):114–131, 1991.

[CSKN05] Stefano Cattani, Roberto Segala, Marta Z. Kwiatkowska, and Gethin Nor-
man. Stochastic transition systems for continuous state spaces and non-
determinism. In FoSSaCS’05, volume 3441 of LNCS, pages 125–139. Springer,
2005.

[dA97] Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis,
Stanford University, CA, 1997. Technical Report STAN-CS-TR-98-1601.

[Dav83] Martin Davis. The prehistory and early history of automated deduction.
Automated Reasoning, 1:1–28, 1983.

[Dav93] M. H. A. Davis. Markov Models and Optimization. Chapman & Hall, 1993.

[DDLP05] Vincent Danos, Jose Desharnais, Francois Laviolette, and Prakash Panan-
gaden. Bisimulation and cocongruence for probabilistic systems. Information
and Computation, Special issue for selected papers from CMCS04, 2005.

[Dev99] Marco Devillers. Translating IOA automata to PVS. Technical Report
CSI-R9903, Computing Science Institute, University of Nijmegen, Febru-
ary 1999. Available at http://www.cs.ru.nl/research/reports/info/
CSI-R9903.html.

[DGJP03] Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panan-
gaden. Approximating labelled markov processes. Inf. Comput., 184(1):160–
200, 2003.

[DGJP04] Jose Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Metrics for labelled markov processes. Theor. Comput. Sci., 318(3):323–354,
2004.

[DGRV00] M. Devillers, D. Griffioen, J. Romijn, and F. Vaandrager. Verification of
a leader election protocol—formal methods applied to IEEE 1394. Formal
Methods in System Design, 16(3):307–320, June 2000.

[DJGP02] J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden. The metric ana-
logue of weak bisimulation for probabilistic processes. In Proceedings of the
17th Annual IEEE Symposium on Logic in Computer Science (LICS), Copen-
hagen, Denmark, 22-25 July 2002, pages 413–422. IEEE Computer Society,
2002.

196

http://www.csl.sri.com/wift-tutorial.html
http://www.csl.sri.com/wift-tutorial.html
http://www.cs.ru.nl/research/reports/info/CSI-R9903.html
http://www.cs.ru.nl/research/reports/info/CSI-R9903.html


[DL97] Ekaterina Dolginova and Nancy Lynch. Safety verification for automated
platoon maneuvers: A case study. In HART’97 (International Workshop
on Hybrid and Real-Time Systems), volume 1201 of LNCS. Springer Verlag,
March 1997.

[DLL97] R. DePrisco, Butler Lampson, and Nancy Lynch. Revisitng the paxos algo-
rithm. In Distributed Algorithms 11th Workshop WDAG’97, pages 111–125,
Berlin-Heidelberg, 1997.

[Dol00] Shlomi Dolev. Self-stabilization. MIT Press, Cambridge, MA, USA, 2000.

[Doo53] J. L. Doob. Stochastic Processes. John Wiley & Sons, Inc., New York, 1953.

[DOT06] A. Dhama, J. Oehlerking, and O. Theel. Verification of orbitally self-
stabilizing distributed algorithms using lyapunov functions and poincare
maps. In 12th Intl. Conf. on Parallel and Distributed Systems (ICPADS’06),
pages 23–30, 2006.

[Dud76] R. M. Dudley. Probabilities and Metrics:Convergence of laws on metric spaces,
with a view to statistical testing. Number 45 in Lecture Notes Series. Aarhus
Universitet, June 1976.

[Dud89] R. M. Dudley. Real Analysis and Probability. Wadsworth, Belmont, Calif,
1989.

[ES03] S. Smolka E. Stark, R. Cleaveland. A process-algebraic language for proba-
bilistic I/O automata. In Proc. CONCUR 03, volume 2761 of LNCS 2761,
pages 189–203, Marseille, France, September 2003. Springer.

[FDGL07] Rui Fan, Ralph E. Droms, Nancy D. Griffeth, and Nancy A. Lynch. The dhcp
failover protocol: A formal perspective. In Formal Techniques for Networked
and Distributed Systems - FORTE 2007, pages 211–226, 2007.

[FK98] Enrique D. Ferreira and Bruce H. Krogh. Switching controllers based on
neural network: Estimates of stability regions and controller performance. In
Hybrid Systems: Computation and Control 1998, pages 126–142, 1998.

[Flo67] Robert Floyd. Assigning meanings to programs. In Sympyposium on Ap-
plied Mathematics. Mathematical Aspects of Computer Science, pages 19–32.
American Mathematical Society, 1967.

[Fre05] Goran Frehse. Phaver: Algorithmic verification of hybrid systems past hytech.
In Morari and Thiele [MT05], pages 258–273.

[GCMF93] Gordon, M. J. C., Melham, and Thomas F. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press, 1993.

[GG91] Stephen J. Garland and John V. Guttag. A guide to LP, the Larch prover.
Technical report, DEC Systems Research Center, 1991. Available at http:
//nms.lcs.mit.edu/Larch/LP.

[GGC81] Keith O. Geddes, Gaston H. Gonnet, and Bruce W. Char. Maple user’s man-
ual. Technical Report CS-81-25, Computer Science Department, University
of Waterloo, Waterloo, Ontario, Canada, 1981.

197

http://nms.lcs.mit.edu/Larch/LP
http://nms.lcs.mit.edu/Larch/LP


[Gir81] M. Giry. A categorical approach to probability theory. In B. Banaschewski,
editor, Categorical Aspects ofTopology and Analysis, number 915 in Lecture
Notes in Mathematics, pages 68–85. Springer-Verlag, 1981.

[GJP04] Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Approximate
reasoning for real-time probabilistic processes. The Quantitative Evaluation
of Systems, First International Conference on (QEST’04), 00:304–313, 2004.

[GJP06] Antoine Girard, A. Agung Julius, and George J. Pappas. Approximate sim-
ulation relations for hybrid systems. In IFAC Analysis and Design of Hybrid
Systems, Alghero, Italy, June 2006.

[GLTV03] S. Garland, N. Lynch, J. Tauber, and M. Vaziri. IOA User Guide and Refer-
ence Manual. MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA, 2003. Available at http://theory.lcs.mit.edu/tds/ioa.
html.

[GMY+07] Radu Grosu, Sayan Mitra, Pei Ye, Emilia Entcheva, I. V. Ramakrishnan, and
Scott A. Smolka. Learning cycle-linear hybrid automata for excitable cells. In
HSCC, pages 245–258, 2007.

[GNU] GNU. GLPK - GNU linear programming kit. Available from http://www.
gnu.org/directory/libs/glpk.html.

[GP05] Antoine Girard and George J. Pappas. Approximation metrics for discrete
and continuous systems. In IEEE Transactions on Automatic Control, 2005.

[GPS06] Marc Girault, Guillaume Poupard, and Jacques Stern. On the fly authenti-
cation and signature schemes based on groups of unknown order. Journal of
Cryptology, 19(4):463—487, 2006.

[Hen96] Thomas Henzinger. The theory of hybrid automata. In Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science (LICS ’96), pages
278–292, New Brunswick, New Jersey, 1996.

[Her02] Holger Hermanns. Interactive Markov Chains : The Quest for Quantified
Quality. Springer Berlin / Heidelberg, 2002.

[Hes04] João P. Hespanha. Stochastic hybrid systems: Application to communication
networks. In Alur and Pappas [AP04], pages 387 – 401.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech: A model
checker for hybrid systems. In Computer Aided Verification (CAV ’97), vol-
ume 1254 of LNCS, pages 460–483, 1997.

[HK96] Thomas A. Henzinger and Peter W. Kopke. State equivalences for rectan-
gular hybrid automata. In International Conference on Concurrency Theory
(CONCUR‘96), pages 530–545, 1996.

[HKNP06] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for
automatic verification of probabilistic systems. In H. Hermanns and J. Pals-
berg, editors, Proc. 12th International Conference on Tools and Algorithms

198

http://theory.lcs.mit.edu/tds/ioa.html
http://theory.lcs.mit.edu/tds/ioa.html
http://www.gnu.org/directory/libs/glpk.html
http://www.gnu.org/directory/libs/glpk.html


for the Construction and Analysis of Systems (TACAS’06), volume 3920 of
LNCS, pages 441–444. Springer, 2006.

[HKPV95] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? In ACM Symposium on Theory of
Computing, pages 373–382, 1995.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of Computer and Sys-
tem Sciences, 57:94–124, 1998.

[HL94] Connie Heitmeyer and Nancy Lynch. The generalized railroad crossing: A
case study in formal verification of real-time system. In Proceedings of the
15th IEEE Real-Time Systems Symposium, San Juan, Puerto Rico, December
1994. IEEE Computer Society Press.

[HLM03] J.P. Hespanha, D. Liberzon, and A.S. Morse. Hysteresis-based switching algo-
rithms for supervisory control of uncertain systems. Automatica, 39:263–272,
2003.

[HLS00] J. Hu, J. Lygeros, and S. Sastry. Towards a theory of stochastic hybrid
systems. In N. Lynch and B. H. Krogh, editors, Hybrid Systems: Computation
and Control, 3rd Int. Workshop (HSCC 2000), volume 1790 of LNCS, pages
160–173, 2000, 2000.

[HM99] J.P. Hespanha and A. Morse. Stability of switched systems with average dwell-
time. In Proceedings of 38th IEEE Conference on Decision and Control, pages
2655–2660, 1999.

[HNSY94] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model check-
ing for real-time systems. Information and Computation, 111(2):193–244,
1994.

[HR95] M. Hennessy and T. Regan. A process algebra for timed systems. Information
and Computation, 117:221–239, 1995.

[HT06] João P. Hespanha and Ashish Tiwari, editors. Hybrid Systems: Computation
and Control, 9th International Workshop, HSCC 2006, Santa Barbara, CA,
USA, March 29-31, 2006, Proceedings, volume 3927 of LNCS. Springer, 2006.

[Int06] SRI International. The PVS bibliography, 2006. http://pvs.csl.sri.com/
papers/pvs-bib/pvs-bib.html.

[JS90] C.-C. Jou and S. A. Smolka. Equivalences, congruences and complete approx-
imations for probabilistic processes. In CONCUR 90, number 458 in LNCS.
Springer-Verlag, 1990.

[Kan] L. Kantorovich. On the transfer of masses. Doklady Akademii Nauk,
37(i2):227–229.

[Kha02] H. K. Khalil. Nonlinear Systems. Prentice Hall, New Jersey, 3rd edition, 2002.

199

http://pvs.csl.sri.com/papers/pvs-bib/pvs-bib.html
http://pvs.csl.sri.com/papers/pvs-bib/pvs-bib.html


[KLMG05] D. Kaynar, N. Lynch, S. Mitra, and S. Garland. TIOA Language. MIT
Computer Science and Artificial Intelligence Laboratory, Cambridge, MA,
2005.

[KLSV03] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager.
Timed I/O automata: A mathematical framework for modeling and analyz-
ing real-time system. In RTSS 2003: The 24th IEEE International Real-Time
Systems Symposium, Cancun,Mexico, December 2003.

[KLSV04] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The theory of timed
I/O automata. Technical Report MIT/LCS/TR-917a, MIT Laboratory for
Computer Science, 2004. Available at http://theory.lcs.mit.edu/tds/
reflist.html.

[KLSV05] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The
Theory of Timed I/O Automata. Synthesis Lectures on Computer Science.
Morgan Claypool, November 2005. URL:http://www.morganclaypool.com/
doi/abs/10.2200/S00006ED1V01Y200508CSL001. Also available as Technical
Report MIT-LCS-TR-917.

[KN96] Marta Z. Kwiatkowska and Gethin Norman. Probabilistic metric semantics
for a simple language with recursion. In MFCS ’96: Proceedings of the 21st
International Symposium on Mathematical Foundations of Computer Science,
pages 419–430, London, UK, 1996. Springer-Verlag.

[KNSW04] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic
model checking for probabilistic timed automata. In In Proc. FORMAT-
S/FTRTFT’04, volume 3253 of LNCS, pages 293–308. Springer-Verlag,
September 2004.

[Lib03] Daniel Liberzon. Switching in Systems and Control. Systems and Control:
Foundations and Applications. Birkhauser, Boston, June 2003.

[Lim01] Hongping Lim. Translating timed I/O automata specifications for theorem
proving in PVS. Master’s thesis, Massachusetts Institute of Technology,
February 2001.

[LKLM05] Hongping Lim, Dilsun Kaynar, Nancy Lynch, and Sayan Mitra. Translating
timed I/O automata specifications for theorem proving in pvs. In Proceedings
of Formal Modelling and Analysis of Timed Systems (FORMATS’05), number
3829 in LNCS, Uppsala, Sweden, September 2005. Springer.

[LL96] Gunter Leeb and Nancy Lynch. Proving safety properties of the steam boiler
controller. In Egon Boerger Jean Raymond Abrial and Hans Langmaack,
editors, Formal Methods for Industrial Applications: Specifying and Program-
ming the Steam Boiler Control, volume 11654 of LNCS, 1996.

[LLL99] Carolos Livadas, John Lygeros, and Nancy A. Lynch. High-level modeling
and analysis of TCAS. In Proceedings of the 20th IEEE Real-Time Systems
Symposium (RTSS’99),Phoenix, Arizona, pages 115–125, December 1999.

200

http://theory.lcs.mit.edu/tds/reflist.html
http://theory.lcs.mit.edu/tds/reflist.html
http://www.morganclaypool.com/doi/abs/10.2200/S00006ED1V01Y200508CSL001
http://www.morganclaypool.com/doi/abs/10.2200/S00006ED1V01Y200508CSL001


[LMMS98] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-
time framework for protocol analysis. In CCS ’98: Proceedings of the 5th
ACM conference on Computer and communications security, pages 112–121,
New York, NY, USA, 1998. ACM Press.

[LMN] Nancy Lynch, Sayan Mitra, and Tina Nolte. Motion coordination using virtual
nodes. In Proceedings of 44th IEEE Conference on Decision and Control
(CDC05), Seville, Spain, December.

[LPY99] Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. A new class of
decidable hybrid systems. In HSCC ’99: Proceedings of the Second Inter-
national Workshop on Hybrid Systems, pages 137–151, London, UK, 1999.
Springer-Verlag.

[LS91] Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic
testing. Inf. Comput., 94(1):1–28, 1991.

[LSV03] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O automata.
Information and Computation, 185(1):105–157, August 2003.

[LTS99] John Lygeros, Claire Tomlin, and Shankar Sastry. Controllers for reachability
specifications for hybrid systems. In Automatica, volume 35, March 1999.

[Lue79] David G. Luenberger. Introduction to Dynamic Systems: Theory, Models,
and Applications. John Wiley and Sons, Inc., New York, 1979.

[LV96] Nancy Lynch and Frits Vaandrager. Forward and backward simulations - part
II: Timing-based systems. Information and Computation, 128(1):1–25, July
1996.

[Lyn96a] Nancy Lynch. A three-level analysis of a simple acceleration maneuver, with
uncertainties. In Proceedings of the Third AMAST Workshop on Real-Time
Systems, pages 1–22, Salt Lake City, Utah, March 1996. World Scientific Pub-
lishing Company.

[Lyn96b] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc.,
1996.

[MA03] Sayan Mitra and Myla Archer. Developing strategies for specialized theorem
proving about untimes, timed, and hybrid I/O automata. In STRATA 2003,
Rome, Italy, 2003.

[MA04] Sayan Mitra and Myla Archer. Reusable pvs proof strategies for proving ab-
straction properties of I/O automata. In STRATEGIES 2004, IJCAR Work-
shop on strategies in automated deduction, Cork, Ireland, July 2004.

[MA05] Sayan Mitra and Myla Archer. PVS strategies for proving abstraction
properties of automata. Electronic Notes in Theoretical Computer Science,
125(2):45–65, 2005.

[Mat74] Mathlab Group. MACSYMA primer: introductory section. Cambridge, MA,
USA, 1974.

201



[Meg01] Alexandre Megretski. On automatic search for invariants of hybrid systems.
In American Control Conference, pages 217–223, Arlington, VA, 2001.

[Mit01] Sayan Mitra. HIOA - a specification language for hybrid Input/Output au-
tomata. Master’s thesis, Department of Computer Science and Automation,
IISc, Indian Institute of Science, Bangalore, 2001.

[ML06] Sayan Mitra and Nancy Lynch. Approximate simulations for task-structured
probabilistic I/O automata. In LICS workshop on Probabilistic Automata and
Logics (PAul06), Seattle, WA, August 2006.

[ML07] Sayan Mitra and Nancy Lynch. Proving approximate implementation relations
for probabilistic I/O automata. Electronic Notes in Theoretical Computer
Science, 174(8):71–93, 2007.

[MLL06] Sayan Mitra, Daniel Liberzon, and Nancy Lynch. Verifying average dwell time
by solving optimization problems. In Hespanha and Tiwari [HT06], pages
476–490. Full version: http://theory.lcs.mit.edu/~mitras/research/
hscc06_full.pdf.

[MM01] C. Muñoz and M. Mayero. Real automation in the field. Technical Report
NASA/CR-2001-211271 Interim ICASE Report No. 39, ICASE-NASA Lang-
ley, ICASE Mail Stop 132C, NASA Langley Research Center, Hampton VA
23681-2199, USA, December 2001.

[MMS05] J. Misra, G. Morrisett, and N. Shankar, editors. Workshop on The Verification
Grand Challenge, SRI International, Menlo Park, CA, 2005.

[MMT91] Michael Merritt, Francesmary Modugno, and Mark Tuttle. Time constrained
automata. In J. C. M. Baeten andJ. F. Goote, editor, CONCUR ’91: 2nd
International Conference of Concurrency Theory, volume 527, pages 408–423,
1991.

[Mor96] A. S. Morse. Supervisory control of families of linear set-point controllers, part
1: exact matching. IEEE Transactions on Automatic Control, 41:1413–1431,
1996.

[MOW04] M. W. Mislove, J. Ouaknine, and J. Worrell. Axioms for probability and
nondeterminism. ENTCS, 2004.

[MP81] Z. Manna and A. Pnueli. The Correctness problem in Computer Science,
chapter The temporal framework for concurrent programs. Academic Press,
1981.

[MP03] Oded Maler and Amir Pnueli, editors. Hybrid Systems: Computation and
Control, 6th International Workshop, HSCC 2003 Prague, Czech Republic,
April 3-5, 2003, Proceedings, volume 2623 of LNCS. Springer, 2003.

[MT05] Manfred Morari and Lothar Thiele, editors. Hybrid Systems: Computation
and Control, 8th International Workshop, HSCC 2005, Zurich, Switzerland,
March 9-11, 2005, Proceedings, volume 3414 of LNCS. Springer, 2005.

202

http://theory.lcs.mit.edu/~mitras/research/hscc06_full.pdf
http://theory.lcs.mit.edu/~mitras/research/hscc06_full.pdf


[MWLF03] Sayan Mitra, Yong Wang, Nancy Lynch, and Eric Feron. Safety verification
of model helicopter controller using hybrid Input/Output automata. In Maler
and Pnueli [MP03], pages 343–358.

[MWMW04] D. Pavlovic M. W. Mislove, J. Ouaknine and J. Worrell. Duality for labelled
markov processes. In Proceedings of FOSSACS 04, volume 2987 of LNCS.
Springer, 2004.

[NA02] Mikhail Nesterenko and Anish Arora. Stabilization-preserving atomicity re-
finement. J. Parallel Distrib. Comput., 62(5):766–791, 2002.

[NK93] A. Nerode and W. Kohn. Models for hybrid systems: Automata, topologies,
stability. In R. L. Grossman et al., editors, Hybrid Systems, volume 736 of
LNCS, New York, 1993.

[NW03] Toh Ne Win. Theorem-proving distributed algorithms with dynamic analysis.
Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, May
2003.

[Oga97] Katsuhiko Ogata. Modern control engineering (3rd ed.). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1997.

[ORR+96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Com-
bining specification, proof checking, and model checking. In Rajeev Alur and
Thomas A. Henzinger, editors, Computer-Aided Verification, CAV ’96, num-
ber 1102 in LNCS, pages 411–414, New Brunswick, NJ, July/August 1996.
Springer-Verlag.

[ORSSC98] Sam Owre, John Rushby, N. Shankar, and David Stringer-Calvert. PVS: an
experience report. In Dieter Hutter, Werner Stephan, Paolo Traverso, and
Markus Ullman, editors, Applied Formal Methods—FM-Trends 98, volume
1641 of LNCS, pages 338–345, Boppard, Germany, oct 1998. Springer-Verlag.

[OS01] S. Owre and N. Shankar. Theory interpretations in PVS. Technical report,
Computer Science Lab., SRI Intl., Menlo Park, CA, 2001.

[OSRSC99] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Language Reference. Computer Science Laboratory, SRI International, Menlo
Park, CA, September 1999.

[Pau93] Lawrence C. Paulson. The Isabelle reference manual. Technical Report 283,
University of Cambridge, 1993.

[Pnu77] A. Pnueli. The temporal logic of programs. In IEEE Symposium on Founda-
tions of Computer Science, pages 46–77, 1977.

[Qua] Quanser. Control challenges: 3 DOF helicopter http://www.quanser.
com/english/html/products/fs_product_challenge.asp?lang_code=
english&pcat_code=exp-spe&prod_code=S1-3dofheli&tmpl=1.

[Rac91] Svetlozar T. Rachev. Probability metrics and the stability of stochastic models.
John Wiley & Sons, 1991.

203

http://www.quanser.com/english/html/products/fs_product_challenge.asp?lang_code=english&pcat_code=exp-spe&prod_code=S1-3dofheli&tmpl=1
http://www.quanser.com/english/html/products/fs_product_challenge.asp?lang_code=english&pcat_code=exp-spe&prod_code=S1-3dofheli&tmpl=1
http://www.quanser.com/english/html/products/fs_product_challenge.asp?lang_code=english&pcat_code=exp-spe&prod_code=S1-3dofheli&tmpl=1


[Seg95a] R. Segala. A compositional trace-based semantics for probabilistic automata.
In Proceedings of the 6th International Conference on Concurrency Theory
(CONCUR ’ 95), volume 962 of LNCS, pages 234–248, Philadelphia, PA,
USA, August 1995.

[Seg95b] Roberto Segala. Modeling and Verification of Randomized Distributed Real-
Time Systems. PhD thesis, Laboratory for Computer Science, Massachusetts
Institute of Technology, June 1995.

[Seg96] R. Segala. Testing probabilistic automata. In Proceedings of the 7th Interna-
tional Conference on Concurrency Theory (CONCUR ’ 96), volume 1119 of
LNCS, pages 299–314, Pisa, Italy, August 1996.

[SORSC99] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Prover Guide. Computer Science Laboratory, SRI International, Menlo Park,
CA, September 1999.

[SSM04] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Constructing
invariants for hybrid systems. In Alur and Pappas [AP04], pages 539–554.

[Sta03] E. Stark. On behavior equivalence for probabilistic I/O automata and its
relationship to probabilistic bisimulation. Journal of Automata, Languages,
and Combinatorics, 8(2):361–395, 2003.

[SvdS05] Stefan Strubbe and A. J. van der Schaft. Bisimulation for communicat-
ing piecewise deterministic markov processes (cpdps). In Morari and Thiele
[MT05], pages 623–639.

[TEM07] Tempo toolset, version 0.1.9 beta, August 2007. http://www.veromodo.com/
tempo/.

[TG02] Claire Tomlin and Mark R. Greenstreet, editors. Hybrid Systems: Compu-
tation and Control, 5th International Workshop, HSCC 2002, Stanford, CA,
USA, March 25-27, 2002, Proceedings, volume 2289 of LNCS. Springer, 2002.

[The04] The Coq Development Team. The Coq Proof Assistant Reference Manual –
Version V8.0, April 2004. http://coq.inria.fr.

[TK02] Ashish Tiwari and Gaurav Khanna. Series of abstractions for hybrid au-
tomata. In Tomlin and Greenstreet [TG02], pages 465–478.

[TPL02] Paulo Tabuada, George J. Pappas, and Pedro U. Lima. Composing abstrac-
tions of hybrid systems. In Tomlin and Greenstreet [TG02], pages 436–450.

[UL07] Shinya Umeno and Nancy A. Lynch. Safety verification of an aircraft landing
protocol: A refinement approach. In HSCC, pages 557–572, 2007.

[vBMOW03] F. van Breugel, M. Mislove, J. Ouaknine, and J. B. Worrell. An intrinsic
characterization of approximate probabilistic bisimilarity. In Proceedings of
FOSSACS 03, LNCS. Springer, 2003.

[vBMOW05] F. van Breugel, M. W. Mislove, J. Ouaknine, and J. Worrell. Domain theory,
testing and simulation for labelled markov processes. Theoretical Computer
Science, 2005.

204

http://www.veromodo.com/tempo/
http://www.veromodo.com/tempo/
http://coq.inria.fr


[vBW01a] Franck van Breugel and James Worrell. An algorithm for quantitative ver-
ification of probabilistic transition systems. In CONCUR ’01: Proceedings
of the 12th International Conference on Concurrency Theory, pages 336–350,
London, UK, 2001. Springer-Verlag.

[vBW01b] Franck van Breugel and James Worrell. Towards quantitative verification
of probabilistic transition systems. In ICALP ’01: Proceedings of the 28th
International Colloquium on Automata, Languages and Programming,, pages
421–432, London, UK, 2001. Springer-Verlag.

[VCL06] L. Vu, D. Chatterjee, and D. Liberzon. Input-to-state stability of switched
systems and switching adaptive control. Automatica, 2006.

[vdSS00] A. van der Schaft and H. Schumacher. An Introduction to Hybrid Dynamical
Systems. Springer, London, 2000.

[Vit02] Ben Di Vito. A PVS prover strategy package for common manipulations.
Technical report, NASA Langley Research Center, 2002.

[Wil90] H.P. Williams. Model building in mathematical programming. J. Wiley, New
York, 1990. third edition.

[WIM+02] Yong Wang, Masha Ishutkina, Sayan Mitra, Nancy A. Lynch, and Eric
Feron. Design of Supervisory Safety Control for 3DOF Helicopter using
Hybrid I/O Automata, 2002. http://gewurtz.mit.edu/ishut/darpa_sec_
mit/papers/quanser.ps.

[WL96] H. B. Weinberg and Nancy Lynch. Correctness of vehicle control systems
– a case study. In 17th IEEE Real-Time Systems Symposium, pages 62–72,
Washington, D. C., December 1996.

[WLD95] H. B. Weinberg, Nancy Lynch, and Norman Delisle. Verification of automated
vehicle protection systems. In T. Henzinger R. Alur and E. Sontag, editors,
Hybrid Systems III: Verification and Control Workshop on Verification and
Control of Hybrid Systems), volume 1066 of LNCS, pages 101–113. Springer-
Verlag, October 1995.

[ZHYM00] G. Zhai, B. Hu, K. Yasuda, and A. Michel. Stability analysis of switched sys-
tems with stable and unstable subsystems: An average dwell time approach. In
Proceedings of the 2000 American Control Conference (2000), chicago,illinois,
2000.

205

http://gewurtz.mit.edu/ishut/darpa_sec_mit/papers/quanser.ps
http://gewurtz.mit.edu/ishut/darpa_sec_mit/papers/quanser.ps

	printedversionwithlinks.pdf
	1 Introduction
	1.1 Modeling and Verification of Embedded Software
	1.2 Hybrid Systems
	1.3 Thesis Overview
	1.3.1 Modeling
	1.3.2 Verification
	1.3.3 Software Tools
	1.3.4 Reading the Thesis

	1.4 Related Work

	I Non-probabilistic Hybrid Systems
	2 Interactive State Machines
	2.1 Preliminaries
	2.2 Hybrid Automata
	2.2.1 Definition of Hybrid Automata
	2.2.2 Executions and Traces
	2.2.3 Composition of HA

	2.3 Hybrid Input/Output Automata
	2.3.1 Composition of HIOA

	2.4 Structured Hybrid I/O Automata
	2.4.1 State models
	2.4.2 Definition of Structured HIOA
	2.4.3 Some Special Classes of SHIOAs
	2.4.4 Composition of SHIOA
	2.4.5 Summary


	3 The HIOA Language
	3.1 An Overview
	3.2 Variables
	3.2.1 Built-in Types
	3.2.2 Vocabularies
	3.2.3 Dynamic Types
	3.2.4 Initial Values

	3.3 Functions
	3.4 Signature
	3.5 Transitions
	3.5.1 Preconditions
	3.5.2 Effects

	3.6 Trajectories
	3.6.1 Invariant Condition
	3.6.2 Stopping condition
	3.6.3 DAIs

	3.7 Operations and Properties
	3.7.1 Composition
	3.7.2 Property Assertions

	3.8 Summary

	4 Verifying Safety Properties
	4.1 An Overview
	4.2 Proving Invariants
	4.3 Proving Implementation Relations
	4.4 Case Study: Safety Verification of Helicopter Testbed
	4.4.1 System Specification
	4.4.2 Safety Verification
	4.4.3 Preliminary Properties
	4.4.4 User Mode
	4.4.5 Supervisor Mode

	4.5 Summary

	5 Verifying Stability Properties
	5.1 Assumptions
	5.2 Stability and Average Dwell Time 
	5.2.1 Stability Definitions
	5.2.2 ADT Theorem of Heshpanha and Morse

	5.3 An Overview
	5.4 ADT Equivalence
	5.5 Verifying ADT: Invariant approach
	5.5.1 Transformations for ADT verification
	5.5.2 Case Study: Leaking Gas-burner
	5.5.3 Case Study: Scale-independent Hysteresis Switch

	5.6 Verifying ADT: Optimization-based Approach
	5.6.1 One-clock Initialized SHIOA
	5.6.2 Case Study: Linear Hysteresis Switch
	5.6.3 Initialized SHIOA
	5.6.4 MILP formulation of OPT(a)
	5.6.5 Case Study: Thermostat

	5.7 Summary

	6 Mechanizing Proofs
	6.1 An Overview
	6.2 Translation
	6.2.1 Assumptions
	6.2.2 Types and Vocabularies
	6.2.3 Variables and Initial States
	6.2.4 Trajectory Types
	6.2.5 Actions, State Models, and Moves
	6.2.6 Transitions
	6.2.7 Trajectories
	6.2.8 Invariants
	6.2.9 Simulation Relations

	6.3 Strategies
	6.3.1 Strategies for Proving Invariants
	6.3.2 Strategies for Proving Forward Simulation

	6.4 Discussion of Case Studies
	6.4.1 Failure Detector
	6.4.2 Two-Task Race

	6.5 Summary


	II Probabilistic Hybrid Systems
	7 Probabilistic State Machines
	7.1 An Overview
	7.2 Preliminaries
	7.3 Task-Deterministic Probabilistic Timed I/O Automata
	7.3.1 Definition of Task DPTIOAs
	7.3.2 Executions and Traces
	7.3.3 Composition of Task-DPTIOAs

	7.4 Probabilistic Semantics for Task-DPTIOAs
	7.4.1 Semi-ring on Executions and Traces
	7.4.2 Probability Measure Over Executions
	7.4.3 Probability Measure Over Traces

	7.5 Implementation and Compositionality
	7.6 PTIOAs and Local Schedulers
	7.7 A Language for Specifying PTIOAs
	7.8 Summary

	8 Verifying Approximate Implementation Relations
	8.1 An Overview
	8.2 Task-structured PIOA
	8.2.1 Definition of Task Structured PIOA
	8.2.2 Executions and Traces
	8.2.3 Composition of Task-PIOAs
	8.2.4 Probabilistic Executions and Trace Distributions
	8.2.5 Exact implementations and Simulations

	8.3 Uniform Approximate Implementation
	8.3.1 Uniform Metric on Traces
	8.3.2 Expanded Approximate Simulations
	8.3.3 Soundness of Expanded Approximate Simulations
	8.3.4 Need for Expansion
	8.3.5 Probabilistic Safety

	8.4 Discounted Uniform Approximate Implementation
	8.4.1 Discounted Uniform Metric on Traces
	8.4.2 Discounted Approximate Simulation
	8.4.3 Soundness of Discounted Approximate Simulation

	8.5 Approximations for Task-PIOAs
	8.6 Related Work
	8.7 Summary
	8.8 Appendix: Limits of Chains of Distributions

	9 Conclusions
	9.1 Evaluation
	9.2 Future Directions
	9.2.1 Modeling Probabilistic Hybrid Systems
	9.2.2 Stability
	9.2.3 Approximate Implementations
	9.2.4 Software Tools


	List of Symbols and Functions



