
Energy Efficient Connected Clusters for

Mobile Ad Hoc Networks

Sayan Mitra* and Jesse Rabek**
fmitras,jesrabg@csail.mit.edu

MIT Computer Science and Artificial Intelligence Laboratory,

32 Vassar Street,

Cambridge, MA 02139, USA

Abstract— A Mobile Ad Hoc Network (MANET) is

a wireless infrastuctureless network with mobile nodes.

Clustering is a common basis for building higher level

applications for such networks. The merit of a clus-

tered decomposition depends on the application that

is meant to use it. A power control based distributed

clustering service is proposed that maintains cluster

connectivity under reasonable assumptions. The size

and sparsity of the clustering can be controlled by two

parameters, namely, the minimal separation between the

clusterheads, and the maximum angular gap between

neighboring clusterheads. The optimal value of the

latter is derived; this minimizes the transmission power

of the clusterheads while guaranteeing connectivity of

the cluster graph. Experimental studies presented show

that the algorithm rapidly stabilizes to a new clustered

organization after the network topology changes due to

node joins and failures.

Index Terms— Ad hoc networks; Power control; Clus-

tering algorithms; Cluster graph connectivity.

I. INTRODUCTION

In mobile ad hoc networks (MANETs) clustering is

a common basis for building higher level applications

like routing, tracking, and location management. Un-

derlying every MANET application there are inherent

trade-offs between accuracy, energy consumption, ro-

bustness, and memory requirements [22]. Accordingly,

the merit of a clustered decomposition depends on the

application which uses it. In a routing protocol, for

example, where each clusterhead maintains complete

route to all cluster members, smaller clusters imply

less state maintained by the clusterhead and therefore

are preferable over larger clusters for scalability. Al-

though small clusters result in a high latency between

nodes that are far apart in the network, this delay in

*The first author’s research is supported by AFRL contract

number F33615-010C-1850.

**The second author was an M.Engg student at the Laboratory

for Computer Science, MIT, at he time of this work.

message delivery is tolerated. Accordingly, the clus-

tering schemes typically used for routing decompose

the network into 2-clusters. In contrast, for refer-

ence broadcast based clock synchronization (RBS) [6]

large, densely overlapping clusters are preferable. In

RBS, each cluster behaves as a synchronized unit and

timing information is shared between nodes belonging

to different clusters through common “gateway” nodes

constituting a time-routing path. Shorter the path, more

accurate the synchronization between clusters. So, it is

desirable to have few large clusters spanning the entire

graph. In general, larger, heavily overlapping clusters

improve the robustness, accuracy, and latency of the

application using the clusters, while adversely affect-

ing the power consumption, memory requirements,

and the longevity of the mobile nodes.

Irrespective of the size of the clusters, most applica-

tions require the clusters to be connected. This can be

achieved in an ad hoc fashion, by arbitrarily increasing

the broadcast radius of the clusterheads. This is unde-

sirable for two reasons: first, it shortens the battery

life of the clusterheads because the power required to

transmit a message over distance d increases as an

n

th degree polynomial of d, where n � 2 [20], and

secondly, it gives rise to extra interference.

In this paper, we propose a robust distributed clus-

tering service which can produce the desired type

of clustering of a network for a wide range of

MANET applications. The size and the sparsity of

the clustered decomposition are controlled by two

parameters, namely, s - the minimal separation be-

tween clusterheads, and a - the maximum allowed

angular gap between neighboring clusterheads. Fur-

ther, the algorithm minimizes the broadcast power of

the clusterheads while guaranteeing the connectivity

of the cluster graph. We prove that for any value

of s, the optimal value of a is 2 sin

�1

p

15

8

(1.0107

radians approx.), in following sense: this value of a

minimizes the transmission power of the clusterheads

while guaranteeing connectivity of the cluster graph,

provided the given distribution of the mobile nodes

can be connected when each node transmits with

maximum power.

The clustering service is implemented in two layers.

The bottom layer selects the clusterheads based on

a maximal independent set algorithm, such that each

clusterhead is at least s distance away from all other

clusterheads. The top layer decides the transmission

power used by the clusterheads, based on certain

locally checkable condition. Specifically, each cluster-

head increases its transmission power until it learns

about another clusterhead (via some common node)

in every a-cone around itself. We discuss the different

clustered decompositions that can be obtained by

running the algorithm with different (s; a) settings.

We also present experimental evidence supporting the

robustness of the algorithm when subjected to changes

in the underlying network topology owing to node

failures and joins.

The rest of the paper is organized as follows: The

next section cites and differentiates related work. In

Section III the system model is described. In Sec-

tion IV the details of the algorithms constituting the

clustering service are presented. In Section V the

optimal value of the parameter a, the angular gap, is

derived and certain other optimizations to the basic

clustering service are suggested. In Section VI the

simulation results evaluating the behavior of the algo-

rithm with different parameter settings are presented,

with respect to stability, robustness, and the generated

cluster topologies. Finally, Section VII concludes the

paper with a synopsis of the contributions and direc-

tions for future research.

II. RELATED WORK

The notion of cluster organization has been used for

ad hoc networks ever since their appearance. In [2],

[7] a distributed clustered architecture is introduced

for hierarchical routing. Gerla et. al. [9], [16] have

presented clustering algorithms for efficient resource

allocation, namely bandwidth and channel, in order to

support multimedia traffic. Most clustering algorithms

produce a 2-clustering of the network graph. The

generalization of this problem to k-clustering was

introduced in [1], and used for routing in [13]. It

is known that k-clustering is NP-complete [5] for

simple undirected graphs. Fernandess and Malkhi [8]

have given a polynomial time approximation algorithm

for k-clustering with O(k) worst case ratio over the

optimal solution.

Most clustering algorithms including ours, work in

two phases. First, a subset of nodes in the network are

selected to act as coordinators or the clusterheads. The

criterion for selecting the clusterheads differ between

algorithms, the most common ones being based on the

node identifiers [2], [7], [9] and node degrees [17].

In [3] a node mobility based criterion has been used

for selecting the clusterheads to cope with dynamic

changes in the network topology. The second phase,

which is typically initiated by the clusterheads, is

concerned with maintaining the extent of the clusters.

A clusterhead may inform its member nodes about

their membership explicitly, by sending a message,

or depending on the application, may just store the

membership information in its own state.

Instead of sending messages expressly for imparting

the membership information to each member node,

the clusterhead can periodically broadcast a beacon

with a particular transmission power to mark its ex-

tent [14]. It has been shown in [10] that for a uniform

distribution of a large number of wireless nodes, a

common transmit power level is optimal with respect

to the capacity of the network. In general, however

this is not true, and hence the need for clustering by

power control arises. In [12] two routing algorithms

are proposed which decide the transmit power for each

packet, thereby implicitly creating transmission power

based clusters. Our clustering service is closer to the

algorithm presented in [14], in that, we use power

control to explicitly maintain the extent of the clusters.

Varying the transmission power of nodes for effi-

cient topology control in wireless networks was stud-

ied in [19]. Li et al. [15], [21] describe a cone based

topology control (CBTC) algorithm using directional

sensors which guarantees global connectedness. The

CBTC(a) algorithm increases the transmission power

of a node v until there is a node within its transmission

radius in every cone of angle a around it. It has

been shown in [21], [15] that for a � 2�=3 the

power settings obtained from CBTC(a) are sufficient

for maintaining connectivity. Hajiaghayi et. al. [11]

presented a modified version of the CBTC protocol

with a �

2�

3k

, to ensure k-connectivity of the network.

Our algorithm for determining the transmission power

of each clusterhead is similar to CBTC but it maintains

connectivity between clusters rather than individual

vertices.

III. PRELIMINARIES

In this section we discuss our model and introduce

the notations and definitions used throughout the rest

of this paper.

The mobile nodes are assumed to be distributed in

a 2-dimensional plane and each node has an unique

identifier. Each node can broadcast messages at dif-

ferent transmission power levels; the maximum power

P being the same for all nodes. The nodes do not

possess knowledge about their location in the plane,

however they do have directional antennas, and a

common sense of direction. Having directional anten-

nas is considered to be a reasonable assumption and

have been used elsewhere in the ad hoc networking

literature (see, e.g., [15], [21], [4]). The common sense

of direction can be achieved by means of a compass.

The mobile nodes can fail or migrate, and new

nodes can join the network. When a node fails it loses

its state. If a failed node recovers, it behaves as if it

were a new node and tries to join the network.

At a given instant of time the mobile ad hoc network

is represented as a directed graph G = (V;E), where

V is the set of mobile nodes and E the set of edges

determined by the transmission power of the nodes.

The transmission power p
v

of node v determines the

transmission radius, d(p
v

), and if v is a cluster head

then d(p

v

) also defines the cluster around v, which is

the set of nodes Ck

v

= fx j dist(v; x) � d(p

v

)g.

A clustering algorithm organizes a network of nodes

into a set of clusters C = fC

1

; : : : ; C

m

g. The cluster

cover C is characterized by its radius or size, and

its sparsity. The radius of C is the radius of its

largest cluster in terms of physical distance, or the

number of network hops. The size is the cardinality

of the largest cluster in C. The sparsity of C is a

measure of connectivity between the clusters. It is the

maximum number of clusters to which any particular

node belongs. If C is a partition, that is, if all the

clusters are disjoint, then sparsity is the maximum

number of neighboring clusters of any cluster.

Definition 1. The cluster graph induced by a

set of clusters C = fC

1

; : : : ; C

m

g is the undi-

rected graph G = (V; E) with V = C and

E= f(C

u

; C

v

) j C

u

\ C

v

6= ;g.

Definition 2. A path in a cluster graph G = (V; E)

is a sequence of clusters (C
1

; : : : ; C

l

), such that each

C

i

2 V and (C

i

; C

i+1

) 2 E for every i < m. The

cluster graph G is connected if there is a path between

every pair of cluster in V .

IV. THE ALGORITHMS

The clustering service is implemented in two layers.

The first layer, namely the Start Cluster algorithm

(SC), maintains a set of cluster heads W , no two

of which are closer than a distance s, where s is a

parameter of the algorithm. The second layer, namely

the Cluster Control (CC) algorithm, determines the

broadcast power of the clusterheads thus defining

the extent of each cluster. The broadcast power is

determined by monitoring local membership and the

overlap with neighboring clusters. This ensures that

the set of clusters cover the entire network and that

the resulting cluster graph is connected.

A. Start Cluster Algorithm

The Start Cluster algorithm (SC) is a dynamic

version of the classical maximal independent set (MIS)

algorithm [18]. The nodes selected to be in the set are

the clusterheads and all other nodes are the ordinary

nodes.

Definition 3. The s-neighborhood �

s

(v) of node v is

the set of nodes within distance s from v.

Definition 4. An s-independent set of a graph G with

vertices V is a set of vertices W � V , no two of

which are within a distance of S of each other. An s-

independent set is maximal if no vertex can be added

to it without violating s-independence property.

In the classical MIS algorithm a node decides to be a

clusterhead once and for all when it learns that all the

neighboring nodes with higher identifier have decided

not to be clusterheads. And, a node decides to be an

ordinary node when it learns about a neighbor who has

decided to be a clusterhead. Our reactive version of the

MIS algorithm makes decisions for a finite interval of

time, and so it has to be executed repeatedly by every

participating node. This makes it possible for a node

to take the necessary actions when there are significant

changes in its neighborhood. Once a node decides

to be a clusterhead, it remains a clusterhead for an

interval T
b

, after which it continues to be a clusterhead

only if all the nodes with higher identifiers in its s-

neighborhood are ordinary. A node decides to remain

ordinary for as long as it is aware of a clusterhead in

its S-neighborhood, and renews its bid to become a

clusterhead only when it stops hearing from the latter.

Every participating node executes the SC algorithm

shown in Figure 1. The main subroutine decides if the

particular node is going to be a clusterhead or not, and

the messages thread handles the input message

queue. Every decision message received by a node

is stamped with an expiration time (TTL) measured

by the local clock now of the node. When node v

receives a de
ided(0) message from node u in its

s-neighborhood, it adds id
u

in an array K
v

with a TTL

T

b

time after the time of reception of the message.

Node v decides to become/remain a clusterhead at

time now
v

if it has received a decided(0) message

from every node in its s-neighborhood within the last

T

b

interval of time. The algorithm is said to have

stabilized once all the nodes in the network G have

decided. Once the network stabilizes, and there are no

further joins, failures, or migrations, the set of nodes

W with h

v

= 1 constitute a maximal s-independent

set of the network. In the worst case, stabilization may

take O(diam(G)) time.

message thread:

On receiving (de
ided(1); id

u

)

if id
v

> id

u

then

h

v

 0 ; bcast(de
ided(0); id
v

) with r

v

= S.

On receiving (de
ided(0); id

u

)

K

v

 K

v

[f(id

u

; now

v

+ T

b

)g

main:

initially h

b

 ?; every T

b

time

If for every w 2 �

S

(v) ^ id

w

> id

v

9 (w; t) 2 K

v

; t > now

v

then h

v

 1 ;

bcast(de
ided(1); id
u

) with r

v

= S.

Fig. 1. The Start Cluster algorithm. The decided(1) message

is sent when a node decides to become a clusterhead, while

decided(0) is sent when a node decides otherwise.

B. Stability of SC

If the network topology changes owing to failure,

migration, or joining of nodes, the algorithm regains

stability, in O(diam(G)) time, in the worst case. We

briefly discuss the performance of the algorithm in

each of these cases.

Joins: When a new node v joins the network

G, there are two possible scenarios that may arise.

First, if v is within the s-neighborhood of some other

vertex u 2 W , then it receives the decided(1)

message from u and immediately decides to be

an ordinary node. Otherwise, v is outside the s-

neighborhood of every node in W and it would

decide to be a clusterhead within T

b

time. Therefore,

in either case the algorithm regains stability within

O(1) time.

Failures: When node v 2 V fails, again there

are two possibilities. Let the network after the

failure be denoted G

0. If v =2 W , that is if v is not a

clusterhead then its failure does not affect the stability

of the algorithm. Otherwise, v 2 W then one or

more of the nodes in �

S

(v) would become eligible to

be a clusterhead. This change may propagate across

the network, and in the worst cast a new stable

configuration would be achieved in O(diam(G

0

))

time.

Migrations: When an ordinary node v =2 W

changes its physical location it can be viewed as a

combination of the above two cases. That is, it fails

in its existing cluster and joins the cluster in its new

location (or becomes a new clusterhead). On the

other hand, if a clusterhead v 2W moves into �

S

(u)

for some other clusterhead u 2 W , then the situation

is indistinguishable from the case where u migrates

into v

0

s cluster. We break the symmetry using some

heuristics, e.g., the clusterhead with the larger cluster

and the lower identifier remains a clusterhead and

the other node becomes ordinary. If v 2 W then its

movement would be indistinguishable from its failure

to the nodes in �

S

(v) and this may trigger a complete

reorganization as discussed above.

Thus, under all possible scenarios the SC algorithm

regains stability within O(diam(G)) time. If the rate

of failures, migrations, etc., in the network is not

too large then the set W remains stable most of the

time. The Cluster control algorithm presented in the

next section relies on the stability of W to produce a

robust clustered decomposition of the network.

C. Control Cluster Algorithm

The Control Cluster algorithm (CC) determines the

minimum transmission power for each clusterheads

such that the cluster graph is connected. The idea

behind CC is similar to the cone based topology

control algorithm (CBTC) of [15]. The algorithm is

parameterized by a cone angle a which can be tuned

to change the sparsity of the cluster graph. The cone

angle a defines the gap

a

predicate which is the key

property that enables the clusterheads to guarantee

global connectivity.

Definition 5. For a given angle a, a clusterhead v

is said to satisfy the gap

a

condition if there exists an

a-cone at v in which there is no cluster graph edge

from v to any other clusterhead (see Figure 2).

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

v

u

w

x

dir

v

(w)

z

Fig. 2. The dark vertices are clusterheads and the light ones are

ordinary nodes. There is a cluster graph edge between the clusters

C

v

and C
w

through node x, and the direction of the edge dir
v

(w)

is known to v. There is no edge between C
v

and C
z

because there

is no common node. Clusterhead v satisfies gap�
3

but clusterhead

u does not.

The CC algorithm proceeds in rounds; starting from

some initial value p

0

, in each round the transmis-

sion power is increased in steps, according to some

function In
, until the maximum power P is reached

or the gap

a

predicate is violated. An exception to

this stepwise power increment rule is made when an

ordinary node u requests to join the cluster. In which

case, the clusterhead increases its transmission power

in a single step to include u in its cluster.

Before presenting the algorithm more formally, we

discuss how the gap

a

predicate can be efficiently

checked by a clusterhead using only local information.

As Figure 2 shows, there exists an edge between two

clusterheads v and w, if and only if some node x is

located in the intersection of their clusters C
v

\ C

w

.

Since the nodes possess a common sense of direction,

assuming that the nodes can also infer their distances

from signal attenuation, a clusterhead v can derive the

direction of the common edge dir

v

(w) to w, using

dir

v

(x) and dir
x

(w), if the latter direction is informed

by x. Once v learns about all its common edges, the

gap

a

condition can be checked by maintaining a sorted

list D
v

of all edges; if there exists two consecutive

elements in D

v

whose difference is greater than a,

then v satisfies gap
a

.

The CC algorithm (see Figure 3) has a main

subroutine that controls the periodic broadcasts

and manages the internal data structures, and a

message thread that handles the incoming mes-

sages. Each node u in the network maintains a set

M

u

containing an element (v; d) for every cluster it

belongs to. The first component v is the unique iden-

tifier of the clusterhead, and the second component

d = dir

u

(v), that is, the direction of v with respect to

u. In addition to the set M
v

and the list D
v

mentioned

above, a clusterhead v also stores the highest value of

req

u

received through a JoinReq message (described

below), in a variable called J

v

.

Message thread:

On receiving (Hello; id

u

)

M

v

 M

v

[f(id

u

; dir

v

(u))g

send(A
k;M

v

; id

v

) with power a
k

v

On receiving (A
k; id

u

;M

u

)

if h
b

= 1 then

D

v

 D

v

+ fdir

v

(x) j (id

x

; dir

u

(x)) 2M

u

g

% sorted list

gap

a

(D

v

) 9d

i

2 D

v

; jd

i

� d

i+1

j � a

On receiving (joinReq; req

u

)

if h
b

= 1 then

J

v

 max(J

v

; req

u

)

main:

if h
b

= 0 then % ordinary node

Wait for T

b

if M
v

= ; then

bcast (JoinReq; req

v

) with power req

v

req

v

 min(P; In
(req

v

))

if h
b

= 1 then % clusterhead

if gap
a

(D

v

) ^ p

v

< P then

p

v

 max(In
(p

v

); J

v

)

J

v

 0

Fig. 3. Cluster control procedure. For ordinary nodes h

b

= 0

and for clusterheads h
b

= 1.

In each round a clusterhead v broadcasts a (Hello,

id

v

) message with its current power p
v

and waits for

Acks. Upon receiving an (Ack, id

u

, M

u

) from

node u, a clusterhead v transforms the directions in

M

u

to its own coordinate system and adds them to

the list D
v

in sorted order. The clusterhead checks

the gap
a

condition by computing differences between

consecutive members of D
v

. If the gap

a

condition is

satisfied and the transmission power is less than the

maximum power P , then the tentative transmission

power for the next round is increased according to

some function In
. The actual power used for broad-

cast is the maximum of this tentative power and J

v

.

An ordinary node v upon receiving a (Hello,

id

u

) message adds (id

u

; dir

v

(u)) to its membership

set M
v

and transmits an (Ack, id

v

;M

v

) message

with power a
k

v

. The power a
k

v

is locally

determined by v such that it is sufficient to either

reach some intermediate node that can forward the

message to u, or it reaches u directly. If it times out

before receiving a Hello message then it sends a

(JoinReq, req

v

) message with power req
v

to the

nearest known clusterhead. If there is a clusterhead v

0

within s distance from v, then v sends the JoinReq

to v

0, otherwise v performs a discovery process by

broadcasting JoinReq with increasing power until

it receives a Hello message.

For small values of a, the gap

a

predicate is easier

to satisfy, and the broadcast power of a clusterhead

has to be high in order to discover nodes which

are farther away and learn about other clusterheads.

On the other hand, with large values of a the gap

a

condition might be violated with a small broadcast

radius, but this may result in disconnected clusters.

Therefore, we have to find the maximum value of a

which ensures connectivity of the cluster graph. In

the next section we derive this value of a for a static

network.

V. OPTIMAL CONE ANGLE FOR POWER

EFFICIENCY AND CONNECTIVITY

Given a network G = (V;E) and a set W � V of

clusterheads, let GR
W

and G

a

W

be the induced cluster

graphs corresponding to every w 2 W transmitting

with maximum power P and the power assigned by

CC(a) algorithm, respectively. We shall prove that for

a � a

max

= 2 sin

�1

p

15

8

, the cluster graph G

a

W

is

guaranteed to be connected if GR
W

is connected. The

value a

max

corresponds to the angle at the center of

a circle with radius R subtended by the intercepts of

an arc of radius 2R drawn with the same center with

another circle of radius R touching the first circle (see

Figure 4). For proving the above statement we make

use of the following geometric Lemma:

R

2R

a

max

R

Fig. 4. Geometric interpretation of the maximal cone angle a =

2 sin

�1

p

15

8

: the angle subtended at the center of a circle from

the intercepts of an adjacent circle with the same radius and a

concentric circle with double the radius.

Lemma 1. Consider a point x on the line segment uv

such that juxj � R and jvxj � R, and any point

w on the line uz making \zuv � sin

�1

p

15

8

. If 0 <

juwj < juvj, then min(jwxj; jwvj) � R.

Proof. See the appendix.

Theorem 1. If a � 2 sin

�1

p

15

8

then G

a

W

preserves

connectivity of GR
W

; for u; v 2 W , Ca

u

and C

a

v

are

connected iff CR

u

and C

R

v

are connected.

Proof. Given the same set of clusterheads W , the

induced cluster graph Ga
W

is a subgraph of the cluster

graph G

R

W

, therefore it is clear that if C

a

u

; C

a

v

are

connected then C

R

u

; C

R

v

must also be connected. We

prove the converse as follows.

Suppose cluster graph G

R

W

is connected while Ga

W

is not. So, there exists at least one pair of clusters, such

that there is no path between them in G

a

W

. We select

one such pair Ca

u

; C

a

v

, for which the distance between

their clusterheads, dist(u; v) is the smallest. Since GR
W

is connected we know that dist(u; v) � 2R and that

there exists a vertex x 2 C

R

u

\C

R

v

. Since x =2 C

a

u

\C

a

v

,

it follows that the radius of the clusters C

a

u

and C

a

v

cannot both be equal to R. At least one of the radii is

less than R, let us assume without loss of generality

that r
u

< R, therefore r

v

= R. Then, u must have

terminated the CC(a) with gap

a

(D

u

) = false, that

is, there exists an edge between u and some other

clusterhead within the a cone bisected by uv (as shown

in Figure 5). Let w be such a cluster head that makes

the angle
 minimum. Therefore,
 � sin

�1

p

15

8

, and

wu � r

u

+ r

w

� r

u

+ R < uv. From Lemma 1 we

know that either x 2 C

R

w

or v 2 C

R

w

. In other words,

C

R

w

and C

R

v

are connected in G

R

W

.

Since 0 < uw < uv, and
 <

�

3

, it follows

that wv < uv. By our assumption C

a

w

and C

a

v

are not connected. So we have a pair of clusters

C

R

u

; C

R

w

which are connected in G

R

W

but not in G

a

W

,

with dist(u;w) < dist(u; v). This contradicts our

assumption that u; v were the closest such pair of

disconnected clusterheads.

To show that the above value a = 2 sin

�1

p

15

8

is in

fact the maximum possible value ensuring connectiv-

ity, we construct a simple counterexample. Consider

the scenario where a+2� is used as the cone angle for

the gap condition (Figure 5). The clusters CR

u

and CR

v

are connected through vertex x. Owing to the presence

of the node p within R� Æ distance of u, there is an

edge between Ca+2�

u

and Ca+2�

w

in the upper half
+�-

cone. Similarly, there is an edge between C

a+2�

u

and

C

a+2�

y

. Clusterhead u, therefore, violates the gap

a+2�

condition and terminates the cluster control algorithm

with a d(p

v

) = R � Æ. As a result x =2 C

a+2�

u

, and

C

a+2�

v

is not connected to the rest of Ga+2�.

x

w

v

R

y

u

R� Æ

p

 + �

Fig. 5. Clusterhead uses a gap

a+2�

criterion which makes its

radius R� Æ, disconnecting cluster C
v

.

A. Optimizations

It is possible that the power assigned by the CC

algorithm described above is too high for a cluster-

head after new nodes join in its neighborhood. In

this section we present some optimizations to the

basic CC algorithm to improve its efficiency under

such dynamic conditions. Essentially, a clusterhead v

should shrink its broadcast radius from a high value

p

0

v

to a lower value p

v

when the member nodes at a

distance farther than d(p

v

) do not contribute to D

v

.

The Shrink back procedure, shown in Figure 6 is

invoked by the cluster control algorithm to reduce the

transmission radius.

Shrink back(c):

B

v

 fu ju 2 C

v

^ (M

u

= fid

v

g)g

B

0

v

 C

v

n B

v

d

v

 max

u2B

v

dist(v; u)

d

0

v

 max

u2B

0

v

dist(v; u)

D

0

v

 fdir

v

(x) j (id

x

; dir

u

(x)) 2M

u

^ dist(u; v) � d

0

v

�
g

if (gap
a

(D

v

) _ :gap

a

(D

0

v

) ^ (d

0

v

�
 > d

v

)

then d(p

v

) d

0

v

�

Fig. 6. Shrink back optimization.
 is a parameter of the procedure

which determines how aggressively the broadcast radius is cut

down.

Clusterhead v keeps record of the distance to the

farthest member node which actually contributes to-

wards satisfying the gap predicate. The sets B

v

and

B

0

v

are complementary subsets of Cv: B
v

is the set

of nodes which do not belong to any other cluster; d
v

and d

0

v

are the corresponding distances to the farthest

node. Clearly, v can not shrink the cluster radius below

d

v

, because that would make some of the nodes in

B

v

cluster-less. The set D0

v

is the set of directions

in which v has edges via nodes which are closer than

d

0

v

�
. The the broadcast radius is reduced to a d0
v

�
,

if this does not create new gaps, and if the new radius

does not exclude any of the nodes in B

v

.

VI. SIMULATION

In this section we study the performance of the clus-

tering service through simulation based experiments.

We observe the cluster graph topologies generated by

setting different values of the parameters s and a and

the robustness of the algorithm under dynamic changes

in the network topology due to node joins and failures.

Our discrete event simulator, implemented in C++,

emulates individual mobile nodes with asynchronous

communication. For the results presented in this sec-

tion we have used a set of 100 nodes placed in a

2-dimensional plane of 300x300 square units. The

nodes are distributed randomly in the plane such that

each node lies within the maximum broadcast distance

of at least one other node; this guarantees that the

underlying network is connected when all the nodes

broadcast with maximum transmission power.

A. Cluster Graph Topology

One of the main advantages of our clustering service

is that, one can control the type of clustered decompo-

sition of the network by appropriately setting the s and

(a) s=20 a=1.01 (b) s=30 a=1.01 (c) s=30 a=1.57

(d) s=40 a=0.8 (e) s=60 a=1.01 (f) s=50 a=1.57

Fig. 7. Generated Network Topologies for Different Values of s and a. Dark dots are the ordinary nodes, and light dots with outer

concentric circle are the clusterheads. A line between nodes u and v indicates the presence of an edge between clusters C
u

and C

v

in

the cluster graph.

a. Figure 7 shows the qualitatively different clusterings

that were generated by the service on the same distri-

bution of mobile nodes. In Figure 7(a), the minimal

distance between clusterheads s = 20 is small, as a

result a large fraction of the nodes in the network are

clusterheads. The cone angle a is set to 1:01 radians,

which is close to the maximal cone angle (1:0107

radians) prescribed by Theorem 1, and therefore the

cluster graph is sparsely connected. In comparison, the

cluster graph of Figure 7(b) with s = 30 has fewer

clusterheads but they are more densely connected.

Increasing the cone angle a keeping s fixed at 30 we

observe (Figure 7(c)) that the sparsity of the cluster

graph increases. Increasing s to 40 and reducing the

cone angle a to 0:8 results in a further decrease in

the number of clusterheads and gives the densely con-

nected cluster graph of Figure 7(d). With larger values

of a, the gap
a

predicate in the CC algorithm is violated

with a lower power level for clusterheads which are

surrounded by other clusterheads, and therefore the

resulting cluster graph is sparser with smaller clusters.

Comparing Figures 7(e) and 7(f) to Figures 7(b)

and 7(c) respectively, we observe that for the same

value of a, increasing s results reduction in the number

of clusterheads and an increase in the sparsity of the

cluster graphs.

In general, with larger values of s the connectivity

of the cluster graph, the size of the clusters, and

the power consumed increases, while larger values

of a decreases connectivity and size of the clusters.

Therefore, based on the requirements of a particular

application the values of s and a can be so chosen as

to produce desirable clustered decomposition.

B. Average Cluster Degree

Unlike sparsity (the maximum cluster degree), the

average cluster degree measures how well the cluster

graph is connected, on an average. Average cluster de-

gree is an important robustness metric because it tells

us the number of neighboring clusterheads that can fail

before an average clusterhead gets disconnected from

the rest of the cluster graph. The degree of cluster C
v

is obtained simply by counting the number of elements

in the set D
v

. We take the average over all clusters and

observe this value over time as the service stabilizes

(Figure 8).

Our first observation is that, with s = 40 the stable

value of the average cluster degree is higher than that

with s = 20, irrespective of the value of a. Secondly,

for each value of s, the average cluster degree is higher

for a smaller value of a. Both these observations are in

accordance with our expectations as explained in the

previous section. It is to be noted that, for large values

of s, a smaller fraction of clusterheads are located

at the edge of the grid. Since, these edge clusters

have fewer neighboring clusters, and therefore a lower

cluster degree, the average degree of the cluster graph

is lower than what would be expected otherwise.

Fig. 8. Average degree of the clusterheads.

C. Stability after Failures and Joins

In this section we study the robustness of the clus-

tering service under dynamic changes in the underly-

ing network topology. The network topology changes

when mobile nodes move, fail, or new nodes join

the network, and we are interested to examine the

stabilization time, that is, how quickly the remaining

nodes of the network reach a agreeable state where

they are organized into a cluster graph. In the simulator

we measure stabilization time as follows: First we let

the CC algorithm stabilize on the initial network of

100 randomly distributed mobile nodes; then, a certain

number randomly chosen existing nodes are failed or

new nodes are added in random locations, and we

observe the number of rounds required for the network

to re-stabilize. The number of execution rounds for

re-stabilization give us an indirect measure of time

required by the algorithm to reorganize the network.

0 2 4 6 8 10 12
30

40

50

60

70

80

90

Rounds

N
u
m

b
e
r

o
f
s
ta

b
le

 n
o
d
e
s

Stabilization after failure of 10 nodes from a network of 100

s=40 a=3
s=40 a=1
s=20 a=3

0 2 4 6 8 10 12
20

30

40

50

60

70

80

Rounds

N
u
m

b
e
r

o
f
s
ta

b
le

 n
o
d
e
s

Stabilization after failure of 20 nodes from a network of 100 nodes

s=40 a=3
s=40 a=1
s=20 a=3

Fig. 9. Stabilization after node failures. Large and heavily

overlapping cluster stabilize faster than small and sparse clusters.

The plots in Figure 9 show the changing number

of stable nodes in the network after the set of nodes

have failed. Initially the number of stable nodes de-

creases as the effect of failure propagates through the

network, but this effect stops and eventually the new

cluster structure emerges leading to stability of all

the remaining nodes in the network. As expected, we

observe larger clusters with greater overlaps (s = 40)

regain stability more quickly than smaller clusters

(s = 20). A smaller a results in larger clusters and

more overlaps, but also takes longer time for the

cluster control algorithm to terminate, so the effects

of a on the the network stabilization time is complex

and dependent on the number of failed nodes.

We performed a similar set of simulations with

new nodes joining the stable network of 100 mobile

nodes (Figure 10). There are two opposing effects that

determine the total time to stabilize the network in this

case: first, with larger clusters (s = 40) larger fraction

of the new nodes turn out to be ordinary nodes and

therefore are stable right when they join the network.

This makes the initial number of stable nodes large

for large values of s. Secondly, small and densely

connected clusters (s = 20, a = 1:01) react more

sharply to new nodes than large and sparse (s = 40,

a = 3) clusters.

0 2 4 6 8 10 12 14 16 18 20
101

102

103

104

105

106

107

108

109

110

111

Rounds

N
u

m
b

e
r

o
f

S
ta

b
le

 N
o

d
e

s

Stabilization After Nodes Join

s=20 a=1.01
s=40 a=0.5
s=40 a=3
s=40 a=1.01

Fig. 10. Stabilization of algorithm after new nodes join the

network. With larger values of s, fewer nodes are unstable initially,

but the response of the clusterheads in absorbing the new nodes

is also slower.

D. Network Longevity

Our last set of simulation results deal with the

longevity of the mobile network with the nodes ex-

ecuting the clustering algorithm. We assume that each

node is equipped with identical battery packs. The

battery power consumed to transmit over a distance

d is an n

th degree function of d, where 2 � n � 3.

For this simulation we assume that no new nodes join

the network, the only failures are due to battery power

outage, and that the nodes are static. Typically, the

ordinary nodes broadcast infrequently and over short

distances and the clusterheads broadcast frequently

over longer distances. Therefore, clusterheads would

typically run out of battery and die sooner than the

ordinary nodes. Once a clusterhead dies, an ordinary

node takes up the job of being the clusterhead and

the cycle continues until the very last node runs out

of power. The early expiration of the clusterheads can

be mitigated by systematically rotating the broadcast

responsibility of the clusterhead within the cluster,

however we have not implemented this modification

in our algorithm in presenting the following results.

Figure 11 shows the number of surviving nodes

as the execution of the algorithm progresses over

time. With large, dense clusters (s = 40; a = 1:01),

there is a distinct ’knee’ in the curve beyond which

the number of surviving nodes diminish sharply. In

contrast, sparser clusters (s = 40; a = 3) result in a

gradually degrading network. Further, when the (s =

40; a = 1:01) curve starts to drop at the ’knee’ point,

the number of surviving nodes on (s = 40; a = 3) is

already down to 45. Therefore, form the point of view

of longevity, the preferred type of clustering would be

determined by the type of degradation desired of the

network.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

110
Node Longevity

Time Elapsed

P
e

rc
e

n
ta

g
e

 o
f

liv
e

 n
o

d
e

s

s=40 a=3
s=40 a=1.01
s=20 a=3

Fig. 11. Lifespan of network executing the clustering algorithm.

There is a distinct knee in the curve for large dense clusters(s =

40; a = 1:01), whereas sparse clusters (s = 20; 40; a = 3) result

in a graceful degradation of the network.

VII. CONCLUSIONS

The merits of a clustered decomposition for a given

network graph depends on the MANET application

which uses the clustering. For most applications,

however, it is desirable to have a connected cluster

graph. In this paper we have proposed an adaptive

clustering service that can be tuned to suit particular

MANET applications. The cluster control algorithm

minimizes the transmission power of the clusterheads

while guaranteeing that the produced clusters are

connected whenever it is physically possible.

The clustering service does not rely on global

location information. Two parameters s - the inter-

cluster distance and a - the maximum allowed angular

gap between neighboring clusterheads, are used to

control the size and sparsity of the clusters produced

by the service, and thereby achieve the desired trade-

offs among latency, energy efficiency, and robustness.

We have shown that 2 sin�1

p

15

8

(approx. 1.0107 rads)

is the optimal value of a which minimizes the trans-

mission power of the clusterheads while guarantee-

ing connectivity of the cluster graph, provided that

the underlying network is connected when all nodes

broadcast with maximum power. We have presented

experimental results showing the qualitatively differ-

ent type of clustered organizations that can be ob-

tained from the algorithm. Our simulation experiments

demonstrate that the algorithm rapidly recovers from

instability caused by node failures and joins.

The empirical evidence presented here suggests that

the algorithm has nice self stabilization properties; in

the future we plan to rigorously analyze its behavior

under dynamic topology changes and also extend the

results to three dimensional distribution of mobile

nodes. Our long term goal is to focus on particular

MANET applications (e.g., tracking, routing), and

use this clustering algorithm in conjunction with the

chosen application to examine the performance of the

application as a function of the cluster metrics.

VIII. ACKNOWLEDGMENTS

The authors would like to thank to Ben Leong and

Hari Balakrishnan for their comments and suggestions

on this work.

REFERENCES

[1] R. Prakash A. Amis, T. Vuong, and D. Huynh. Max-

min d-cluster formation in wireless ad hoc networks. In

Proceedings of IEEE INFOCOM, pages 32–41, March 1999.

[2] D. J. Baker and A. Ephremides. The architectural organiza-

tion of a mobile radio network via a distributed algorithm.

IEEE Transactions on Communications, COM-29(11):1694–

1701, Nov 1981.

[3] S. Basagni. Distributed clustering for ad hoc networks.

In Proceedings of the IEEE International Symposium on

Parallel Architectures, Algorithms, and Networks (I-SPAN),

pages 310–315., Perth, Western Australia, June 1999.

[4] R. Choudhury and N. Vaidya. On ad hoc routing using di-

rectional antennas. In Illinois Computer Systems Symposium

(iCSS), 2002.

[5] J. S. Deogun, D. Kratsch, and G. Steiner. An approximation

algorithm for clustering graphs with dominating diametral

path. Information Processing Letters, 61(3):121–127, Febru-

ary 1997.

[6] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-

grained network time synchronization using reference broad-

casts. SIGOPS Oper. Syst. Rev., 36(SI):147–163, 2002.

[7] A. Ephremides, J. E. Wieselthier, , and D. J. Baker. A design

concept for reliable mobile radio networks with frequency

hopping signaling. In IEEE, volume 75, pages 56–73, Jan

1987.

[8] Yaacov Fernandess and Dahlia Malkhi. K-clustering in

wireless ad hoc networks. In Proceedings of the second ACM

international workshop on Principles of mobile computing,

pages 31–37, Toulouse, France, 2002. ACM Press.

[9] M. Gerla and J. Tsai. Multicluster, mobile, multimedia

radio network. ACM/Baltzer Journal of Wireless Networks,

1(3):255–265, 1995.

[10] P. Gupta and P. Kumar. Capacity of wireless networks. In

IEEE Transactions on Information Tehory, volume IT-46,

pages 388–404, 2000.

[11] M. T. Hajiaghayi, M. Bahramgiri, and V. S. Mirrokni.

Fault-tolerant and 3-dimensional distributed topology control

algorithms in wireless multi-hop networks. In Proceedings of

the 11th IEEE International Conference on Computer Com-

munications and Networks (IC3N), pages 392–398, Miami,

Floria., October 2002.

[12] Vikas Kawadia and P. R. Kumar. Clustering by power control

in ad hoc networks. In Proceedings of IEEE MILCOM,

Atlantic City, NJ, October 1999.

[13] P. Krishna, N. Vaidya, M. Chatterjee, and D. Pradhan. A

cluster-based approach for routing in dynamic networks. In

ACM SIGCOMM Computer Communication Review, pages

49–65, April 1997.

[14] Taek Jin Kwon and Mario Gerla. Clustering with power

contol. In Proceedings of IEEE MILCOM, Atlantic City,

NJ, October 1999.

[15] Li Li, Joseph Y. Halpern, Paramvir Bahl, Yi-Min Wang, and

Roger Wattenhofer. Analysis of a cone-based distributed

topology control algorithm for wireless multi-hop networks.

In Proceedings of the twentieth annual ACM symposium on

Principles of distributed computing, pages 264–273. ACM

Press, 2001.

[16] Chunhung Richard Lin and Mario Gerla. Adaptive clustering

for mobile wireless networks. IEEE Journal of Selected

Areas in Communications, 15(7):1265–1275, 1997.

[17] A. K. Parekh. Selecting routers in ad hoc wireless networks.

In ITS, 1994.

[18] David Peleg. Distributed computing: a locality-sensitive

approach. Society for Industrial and Applied Mathematics,

2000.

[19] Ram Ramanathan and Regina Hain. Topology control of

multihop wireless networks using transmit power adjustment.

In INFOCOM (2), pages 404–413, 2000.

[20] Theodore Rappaport. Wireless Communications: Principles

and Practice. Prentice Hall PTR, 2001.

[21] Roger Wattenhofer, Li Li, Paramvir Bahl, and Yi-Min Wang.

Distributed topology control for wireless multihop ad-hoc

networks. In INFOCOM, pages 1388–1397, 2001.

[22] Bhaskar Krishnamachari Yasser. The energy-robustness

tradeoff for routing in wireless sensor networks.

url:citeseer.nj.nec.com/552652.html.

APPENDIX

Proof of Lemma 1.

Proof. Draw circles A and B with radii R and centers

u and v, respectively. Let the points of intersection of

uz with A and B be
, b, and b

0 respectively. We

consider three cases based on the position of w in uz

(see Figure 12).

v

(a) (b)

u

A

v

z

w

0

�

x

B

b

0

b

A

u

�

z

b

0

w

0

b

B

�

�

t

x

Fig. 12. Nodes are present at u, v, x, and w which is any point

on uz, with juvj > juwj.(a) Cases 1 and 2: node w is located

either inside circle A or B. (b) Case 3: node w is between
 and

b but outside both A and B.

Case 1: w is located to between b and z. Let w0

be the closest possible location of w from z. Since

sin
 <

p

15

8

and juw

0

j < juvj it follows that � > �

and sin� >

p

15

4

. Using sin �

juvj

=

sin

jvw

0

j

, we get jvw0

j �

juvj=2 � R. Therefore, for any location of w in bw

0,

jwvj � R.

Case 2: w is located between
 and u. From juxj �

R, juaj = R, and
 <

�

3

, it follows that jx
j � R.

Therefore, for any location of w in ua, jw
j � R.

Case 3: w is located in between
 and b and outside

of both A and B (Figure 12(b)). First we show that

jxbj � R. Let ut be a tangent to B on the same side of

uv as uz. Since juvj � 2R, it follows that jxtj � R.

Therefore jxbj � R. From case 2 it is known that

jx
j � R, it follows that for any position of w between

a and b, jxwj � R.

