
Des Autom Embed Syst
DOI 10.1007/s10617-008-9022-2

Specifying and proving properties of timed I/O automata
using Tempo

Myla Archer · Hongping Lim · Nancy Lynch ·
Sayan Mitra · Shinya Umeno

Received: 13 November 2006 / Accepted: 29 April 2008
© Springer-Verlag 2008

Abstract Timed I/O automata (TIOA) is a mathematical framework for modeling and veri-
fication of distributed systems that involve discrete and continuous dynamics. TIOA can be
used for example, to model a real-time software component controlling a physical process.
The TIOA model is sufficiently general to subsume other models in use for timed systems.
The Tempo Toolset, currently under development, is aimed at supporting system develop-
ment based on TIOA specifications. The Tempo Toolset is an extension of the IOA toolkit,
which provides a specification simulator, a code generator, and both model checking and
theorem proving support for analyzing specifications. This paper focuses on the model-
ing of timed systems and their properties with TIOA and on the use of TAME4TIOA, the
TAME1 (Timed Automata Modeling Environment) based theorem proving support provided
in Tempo, for proving system properties, including timing properties. Several examples are
provided by way of illustration.

1TAME is a trademark of the U.S. Naval Research Laboratory.

This research is funded by the Air Force Office of Scientific Research and the Office of Naval Research.

M. Archer (�)
Naval Research Laboratory, Code 5546, Washington, DC 20375, USA
e-mail: archer@itd.nrl.navy.mil

H. Lim · N. Lynch · S. Mitra · S. Umeno
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

H. Lim
e-mail: hongping@mit.edu

N. Lynch
e-mail: lynch@mit.edu

S. Mitra
e-mail: mitras@mit.edu

S. Umeno
e-mail: umeno@mit.edu

mailto:archer@itd.nrl.navy.mil
mailto:hongping@mit.edu
mailto:lynch@mit.edu
mailto:mitras@mit.edu
mailto:umeno@mit.edu

M. Archer et al.

Keywords System development frameworks · Modeling environments · Tool suites ·
Automata models · Timed automata · Hybrid systems · Formal methods · Specification ·
Verification · Theorem proving

1 Introduction

For the development of high assurance complex systems, an appropriate development frame-
work supporting system specification, implementation, and analysis is essential. To be gen-
erally usable, the support provided by the framework should apply not only to those systems
that can be modeled as finite state machines but also to those that cannot, such as many
real-time embedded or hybrid systems involving software and/or continuous behavior. Thus
an ideal general development framework should provide:

1. A mathematical model capable of capturing the range of discrete and continuous phe-
nomena that arise in typical systems,

2. A well defined notion in the model of external (visible) behavior, and a definition of
implementation of one component by another, or equivalence of two components, in
terms of their visible behavior,

3. Compositionality—i.e, the ability to build larger systems by composing smaller compo-
nents in a manner that respects the notion of implementation,

4. User-friendly tool support for proving the commonly encountered types of properties for
the models, such as invariant properties, implementation relations, and stability, and

5. A basis supporting the use of automatic analysis and other software development and
analysis tools to the extent possible.

The Tempo Toolset, based on the Timed Input/Output Automaton (TIOA) specification
language and tools [10, 16, 27], provides just such a framework. The TIOA model [17] is
especially suited to the specification and analysis of real-time, embedded systems.

The Tempo Toolset provides a spectrum of complementary analysis tools, including sup-
port for simulation of specifications and analysis of specification properties using model
checking and theorem proving. The focus of this paper is on Tempo’s support for theorem
proving. With a set of small examples, we illustrate how one can use Tempo to model timed
systems and specify their properties in the TIOA language, and then verify the specified
properties using the theorem prover PVS [34] through the interface TAME4TIOA, an exten-
sion of TAME [3].

This paper is an expanded version of [6]. It makes at least three contributions: First, it
demonstrates the use of the Tempo Toolset by showing how it can be used to specify three
example systems and their properties of interest and to verify these properties using PVS
through TAME4TIOA. Second, it describes how TAME has been extended to TAME4TIOA
by adding new strategies for reasoning about the trajectories in a TIOA specification, and
illustrates how these new strategies can be used in mechanized proofs of invariant proper-
ties. Third, it illustrates by example the improved translation scheme that supports the new
strategies.

The paper is organized as follows. Section 2 gives an overview of the Timed I/O Automa-
ton (TIOA) model and the Tempo Toolset that supports its use. Section 3 describes how one
can specify and prove properties of TIOA models and how Tempo supports verifying (or
proof checking) the properties mechanically in PVS. Section 4 presents our example TIOA
specifications of automata and their properties, and shows how the properties can be proved
in a “natural”, high-level fashion in PVS using the toolkit’s TAME4TIOA support. Finally,

Specifying and proving properties of timed I/O automata using Tempo

Sect. 5 discusses some lessons learned from these and other examples, Sect. 6 mentions
some related work, and Sect. 7 describes our future plans and presents some conclusions.

Except where the distinction is significant, in the remainder of this paper, we will refer
to TAME4TIOA simply as TAME.

2 Background

2.1 The TIOA model

The TIOA model is a timed version of the I/O (Input/Output) automaton model described
in [24]. In the I/O automaton model, the states states(A) of an automaton A are repre-
sented as assignments of values to state variables, the possible initial states of A are a subset
init(A) of states(A), and state transitions are the result of actions. The state transitions
resulting from actions are defined in terms of preconditions and effects. Actions are clas-
sified as external (i.e., input or output) or internal. I/O automata can be composed through
shared actions: an output action of one automaton can be combined with compatible input
actions of one or more other I/O automata. Actions may have parameters. Typical uses of
parameters are, e.g., to index the action by the system process performing it, or, for a shared
action, to represent information that is being passed. To be compatible with an input ac-
tion, an output action must have parameters whose types are compatible with (i.e., at least
subtypes of) the types of the input action’s parameters.

Timing can be added to I/O automata by various means: see, for example [25, 29]. In
the TIOA model, time passage is modeled using trajectories, which represent paths through
the state space that are followed during the passage of time. A trajectory is specified by (1)
an evolve clause describing its evolution over time, which may be nondeterministic, given,
e.g., in terms of algebraic or differential equations or inequalities; (2) an (optional) stopping
condition that, when it becomes true, ends the trajectory; and (3) an (optional) state invariant
that must hold throughout the trajectory. The TIOA model is sufficiently general to subsume
most other commonly used models for timed automata (e.g., [1, 2]). A detailed description
of the theory of the TIOA model and its comparison with other models can be found in [17].

2.2 The Tempo toolset

The Tempo Toolset [10, 27] is a tool supported formal framework for system development
based on specifications in the TIOA language. The formal theory underlying the Tempo (or
TIOA) framework is described in detail in [16] and [17]. The theory distinguishes TIOA
from the very similar HIOA (Hybrid Input/Output Automata) by restricting trajectories in
TIOA to being internal rather than potentially external (and hence potentially sharable)
actions. The TIOA language extends the IOA language [12], a programming and model-
ing language based on the I/O Automaton model, with additional constructs for describing
timing characteristics of systems. The TIOA language constructs related to timing are dis-
cussed in Sect. 4, which also contains several example TIOA specifications; see, for instance,
Figs. 2, 7, and 8.

Tempo extends and updates the IOA toolkit described in [12]. Like the IOA toolkit,
Tempo provides a specification simulator, as well as both model checking and theorem
proving support, for analyzing specifications. Using Tempo, a user can write a system spec-
ification in the TIOA language and apply one of the analysis tools to verify properties of the
system, using an appropriate automatic translator, if necessary, to recast the specification in

M. Archer et al.

Table 1 New TAME strategies for trajectories

TAME proof step Effect

(apply_traj_evolve t) Compute state time t from now

(apply_traj_stop t) Deduce that the stopping condition cannot hold after time t in a

trajectory T unless T ends at t

(apply_traj_invariant t) Deduce trajectory invariant holds time t from now

(deadline_reason t) Deduce trajectory cannot evolve more than time t if a deadline

is reached time t from now

the language of a particular tool. Tempo’s beta version 0.2.2 was released on February 6,
2008, and is available at www.veromodo.com.

The TIOA simulator [28] provides a way to test an automaton before developing correct-
ness proofs. By simulating the execution of an automaton for a fixed number of steps, it is
possible to either discover the presence of errors in the automaton’s specification (by finding
cases when a desired invariant fails), or increase the confidence that an automaton works as
expected (by demonstrating that the desired invariants hold at all steps of the simulation).

For model checking an appropriately restricted class of timed systems in TIOA, an in-
terface to UPPAAL [18] has been developed. The TIOA2XTA tool [37] of the TIOA toolkit
translates specifications written in TIOA into XTA—the input language of the UPPAAL
model checker—and invokes UPPAAL on the generated XTA code to perform model check-
ing.

Because of the richness of the TIOA specification language, TIOA specifications may
describe continuous behavior or involve unbounded parameters, making them unsuitable for
verification directly with a model checker. Thus, Tempo supports theorem proving to handle
the more complex cases. Theorem proving is supported by translating the TIOA specifica-
tion of a system and its properties to be verified into a PVS specification of the system and
the properties, after which PVS can be applied. The translation scheme followed uses a PVS
theory template which is instantiated with the states, actions and transitions of an automa-
ton. A tool [19, 22] developed as part of Tempo performs the translation automatically. The
PVS theory template used in the translation scheme is a new variant of the TAME (Timed
Automata Modeling Environment) [3, 5] automaton template, whose original variants sup-
ported modeling and proving properties of MMT automata [29] and SCR automata [15].
Following this template allows previously developed TAME proof steps to be used when
doing proofs with PVS.

The proof support in Tempo includes new TAME strategies as well. An important part of
the design of TAME proof support for any particular automaton model is the design of the
PVS theory template which representations of model instances will follow [20]. In particu-
lar, a special aim of the design of the TAME template for TIOA is to support TAME proof
steps (which are implemented as PVS strategies) for reasoning about trajectories. Table 1
describes the new TAME proof steps for reasoning about trajectories. Example proofs using
apply_traj_evolve and deadline_reason can be seen in Sect. 4.1, Fig. 6 and
Sect. 4.2, Fig. 14 respectively. Additional TAME proof steps and the descriptions of their
purposes can be found in Appendix A; a TAME proof using a richer subset of the TAME
steps than shown in Figs. 6 and 14 can be seen in Fig. 21 in Appendix C. A short sample
interaction with the PVS theorem prover during reasoning about a trajectory is shown in
Appendix D.

Specifying and proving properties of timed I/O automata using Tempo

3 Overview of the Tempo proof methodology

3.1 Proving invariant and simulation properties

The TIOA mathematical model is useful for specifying timed distributed systems and for
supporting analysis of the systems for properties that can be represented as invariants and
simulation relations. By organizing the description of possible changes of state into discrete
transitions resulting from actions and continuous transitions resulting from following a tra-
jectory, the model furnishes the basis for organizing proofs of such properties by induction
over the length of an automaton execution into a systematic case analysis with respect to
these actions and trajectories. Here, the length of an execution is measured as the total num-
ber of discrete actions plus the total number of interludes between discrete actions during
which some trajectory is followed.

To prove a state invariant property, one must prove that the property holds in every reach-
able state of an automaton. Since every reachable state is reached during some execution of
the automaton, it is enough to establish that for every n > 0, the property holds in every
state reached after some execution of length n. The standard approach to doing this is to use
induction on n. Because each execution begins with the automaton in an initial state, proof
of a property by induction over the length of an execution is equivalent to a proof that the
property holds in every initial state (n = 0), and that whenever the property holds in some
state (after an execution of length n), it also holds in any possible next state in an extension
of this execution (to length n+ 1). But any possible next state is reached by a discrete action
or a trajectory. Thus, one can drop the reference to n and simply organize the proof into a
proof of the base case (initial state) and a set of induction cases (one for each action and
trajectory).

The proof organization in the case of a simulation relation property is similar, though
there are a few differences. A major difference is that a simulation relation from an automa-
ton A to an automaton B is defined in terms of the traces of A and B, which consist of the
sequences of external actions in executions. A and B must have corresponding external ac-
tions, and the goal of a proof of simulation is to establish trace inclusion, i.e., that the traces
of A are a subset of the traces of B. The simulation relation is specified as a relation on
states(A) × states(B), and the proof of simulation is done by showing that, modulo
internal actions, executions of A and B with the same traces lead to states in A and B in the
specified relation. Thus, the proof is organized around a base case, in which each initial state
of A is shown to correspond to some initial state of B, and a set of induction cases, one for
each external action of A.

Because of the standard organization of proofs of invariant and simulation properties, it
is possible to partially automate such proofs. The representations of both types of property
also lend themselves to a standard organization, which can be used to advantage in the partial
automation.

3.2 Using PVS with Tempo

The Tempo methodology for theorem proving is illustrated in Fig. 1, which we reproduce
from [22]. The methodology, updated since publication of [22], involves (1) writing the spec-
ification of a system and its properties in the TIOA language, (2) using the translator tool to
generate the PVS equivalent of the system as an instantiation of the TAME4TIOA template,
and then (3) proving the properties in PVS using TAME4TIOA strategies. The user describes
the system in the TIOA language using the state-transition structure. The user writes sim-
ple program statements to describe transitions, and specifies trajectories using differential

M. Archer et al.

Fig. 1 TIOA framework for theorem-proving

equations. Once the TIOA description is type checked by the front end of the toolkit, the
translator generates a set of PVS files. Together with the TAME4TIOA libraries contain-
ing PVS definitions for timed I/O automata and any additional data type theories required,
these generated files specify the automaton and its properties. For example, in Fig. 1, the file
A_decls.pvs and A_invariants.pvs contain the TAME4TIOA representations of automaton
A and its invariants; A2B.pvs contains the TAME4TIOA representation of the definition of
the forward simulation relation from A to B; and the library theories time_machine.pvs and
forward_simulation.pvs provide the lemmas supporting the case breakdown in induction
proofs of invariants and forward simulation. The user then uses the TAME4TIOA strategies
in pvs-strategies, which were adapted from TAME [3] or developed specifically for TIOA,
to prove the properties of the system in PVS.

By using this approach, the user avoids having to write the automaton description directly
in PVS, and obtains a PVS description in a form supporting the use of TAME4TIOA proof
steps in the PVS theorem prover. Moreover, the translator also performs the tasks of trans-
lating (1) each transition definition, possibly given most naturally in TIOA by a sequence
of program statements, into functional relations that capture the effects of the transition in
PVS, and (2) each trajectory with differential equations into a time-passage action. A major
additional benefit gained from specifying a system in TIOA rather than directly in PVS is
that the user can also use other tools in the toolkit including the simulator, code generator
and model checker.

TAME proof support is designed to allow a PVS user to prove a given property of an
automaton by using proof steps that mimic the steps in a high level hand proof of the prop-
erty. For example, the TAME step auto_induct (for “automaton induction”) performs
the initial case breakdown and simplifications (including the dismissing of trivial cases) of
the proof by induction of an invariant property of an automaton, and presents the nontrivial
cases as (labeled) subgoals; this mimics “the proof is by induction over the reachable states;
only the following cases are nontrivial: . . .”. Thus, starting from a high level proof sketch of
a property, a user can often simply choose corresponding TAME steps to follow this proof
in order to easily construct a mechanized proof of the property. The TAME steps are also
helpful in proof exploration, to users comfortable with interpreting the PVS sequents that
represent subgoals in the proof. Another helpful feature of the TAME proof support is that
the rerunnable, saved PVS scripts of proofs done using the TAME steps contain enough
information to be understood without being rerun [5].

Specifying and proving properties of timed I/O automata using Tempo

4 Examples

This section provides three simple examples that together illustrate how TIOA is used to rep-
resent systems and properties, how trajectories can be used to capture desired timing behav-
ior, and how system properties can be mechanically verified using PVS. The first example,
fischer, is a timed version of Fischer’s mutual exclusion algorithm. We use this example
to illustrate in some detail how various features of a TIOA specification, in particular, its
trajectories, are represented in PVS. We also illustrate how its main correctness property, an
invariant, can be proved using TAME. The second example, TwoTaskRace (representing,
as its name suggests, a two task race), is used as an example in which the main correctness
property is an abstraction property (forward simulation). The last example, timeout, rep-
resenting a simple timeout system, is used to illustrate the support provided for expressing
and reasoning about complex data types in Tempo.

4.1 Fischer’s mutual exclusion algorithm

Fischer’s mutual exclusion algorithm solves the mutual exclusion problem in which multiple
processes compete for a shared resource. Figure 2 shows the TIOA specification of a timed
version of the Fischer algorithm.

In the Fischer algorithm, each process proceeds through different phases in order to reach
the critical phase where it gains access to the shared resource. In the automaton used
to model the algorithm, each phase has a corresponding action; timing is modeled in the
algorithm by time bounds on the actions. The interesting action cases are test, set, and
check. The action set has an upper time bound u_set, while the action check has a
lower time bound l_check, with u_set < l_check. When a process enters the test
phase, it tests whether the value of a shared variable x has been set by any process; if not,
the process can proceed to the next phase, set, within the upper time bound u_set. In
the set phase, the process sets a shared variable x to its index. Thereafter, the process can
proceed to the next phase check only after l_check amount of time has elapsed. In the
check phase, the process checks to see if x contains its process index. If so, it proceeds to
the critical phase.

In the TIOA specification for fischer in Fig. 2, the state variable pc[i] represents
the program counter, or phase, of process i, last_set[i] and first_check[i] are
used to enforce the time bounds on set and check, and now represents the current time.
The shared variable x is represented by the state variable turn, whose type Null[pro-
cess] is the type process with an added “bottom” element nil to represent the case
when turn is undefined.

The safety property we want to prove1 is that no two processes are simultaneously in
the critical phase. We also prove a set of auxiliary invariants to help us prove this
main invariant. Auxiliary invariants are generally needed to prove a property that is not
inductive. Rather than creating a complex, inductive invariant that combines an invariant
with its auxiliary invariants, we find it more practical in an interactive theorem prover, where
screen space is at a premium, to prove a sequence of simpler invariants, introducing earlier
invariants as lemmas when they are needed in the proofs of later invariants. This approach
also helps to make both the invariants and their proofs more human understandable. Figure 3

1Note that the fischer example is a clear candidate for the use of theorem proving rather than model
checking to establish properties, since its specification applies to a set of processes that has unknown size.

M. Archer et al.

Fig. 2 TIOA specification for fischer

shows the sequence of invariants we proved for fischer, the last invariant being the safety
property.

To illustrate how the various elements of an automaton specification in TIOA translate
into TAME, Fig. 4 shows the TAME specification output by the TIOA-to-TAME transla-

Specifying and proving properties of timed I/O automata using Tempo

Fig. 3 TIOA invariants for fischer

tor applied to the TIOA specification in Fig. 2. The TAME specification has been edited
slightly to save space. In the TAME specification, automaton parameters are translated as
(uninterpreted) constants, and the where clause constraining the parameters is expressed
as an axiom named const_facts. The state variables are represented as a record type
named states. A start predicate is defined to be true for states with the specified initial
values. The actions of the automaton are declared as a subset of the actions data type in
the TAME specification. A predicate enabled captures the precondition for each action,
while a transition function trans captures the post-state obtained by applying the transi-
tion of an action on a given pre-state. In translating the effect of an action into the transition
function, the translator performs explicit substitutions in accordance with the program state-
ments in the specification of the effect of the action in TIOA, in order to express each state
variable in the post-state explicitly in terms of the variables in the pre-state.

The trajectory definition traj in the TIOA specification is translated as a time passage
action nu_traj in the actions data type in the TAME specification which has two para-
meters: delta_t, the duration of the trajectory, and F, a function representing the trajec-
tory, which maps time values to states. The definitions traj_invariant, traj_stop,
and traj_evolve capture the invariant, stopping condition and evolve clause of
the trajectory definition respectively. The effect of the “trajectory action” nu_traj is
constrained—and thus, effectively, captured—by the precondition of nu_traj, which as-
serts that (1) the invariant holds throughout the duration of the trajectory, (2) the stopping
condition can hold in the trajectory only at the last state of the trajectory, and (3) the evolu-
tion of the state variables satisfies the evolve clause. The transition function for nu_traj
simply returns the post-state obtained by applying the trajectory function F after an elapsed
time of delta_t. (Following a technique of Luchangco [23], a slight variation of this tra-
jectory representation method, in which the trajectory action has an additional, “new state”
argument, appropriately constrained in the precondition, allows a trajectory action to have a
nondeterministic effect, with trans remaining a function from actions and states to states.)

The new TAME strategies in Table 1, combined with the existing TAME strategies, pro-
vide a set of proof steps that allow the fischer invariants shown in Fig. 3 to be proved
interactively in PVS in a clear, high-level fashion. The TIOA-to-TAME translator trans-

M. Archer et al.

Fig. 4 TAME representation of fischer

Specifying and proving properties of timed I/O automata using Tempo

Fig. 5 TAME lemma_5 for fischer

forms the six invariants in Fig. 3 into TAME invariants and lemmas numbered starting
from 0. Thus, the goal safety property, the last invariant in Fig. 3, becomes the TAME in-
variant/lemma pair shown in Fig. 5.

Figure 6 shows a verbose TAME proof of lemma_5 in Fig. 5. To create this proof,
which can be rerun in PVS, the user simply types in the eight TAME proof steps in the proof
script—(auto_induct), (apply_specific_precond), and so on. The comments
in this proof (which appear as text after semicolons) are generated by the TAME strate-
gies, and serve to label the proof branches and document the facts introduced by the proof
steps in these branches. Because TAME automatically handles “trivial” cases, only the proof
steps requiring human guidance need to be recorded. This proof can be understood as fol-
lows: The proof step auto_induct automates as far as possible the standard initial steps
of a proof by induction on the reachable states, including skolemization. The values with
names ending in “_theorem” or “_action” are skolem constants standing for variables
in the invariant of the lemma and parameters in the current action, respectively. The name
prestate refers to the prestate of the current action, and the values of state variables in
any state s are represented as functions of s. The base case and all the action cases ex-
cept nu_traj(delta_t_action, F_action) and crit(i_action) are trivial.
The nu_traj(delta_t_action, F_action) case is proved by recalling the full
precondition with apply_specific_precond, and then using the new TAME step
traj_evolve in Table 1 to compute what the current state will be after time del-
ta_t_action. Once this is done, only “obvious” reasoning is needed, which is performed
by try_simp. The proof in the crit(i_action) case first recalls the precondition and
then twice uses apply_inv_lemma to apply the invariant lemma 4: first to i_theorem
and j_theorem (the skolem constants for the i and j under the universal quantifier in
Inv_5), and then, symmetrically, to j_theorem and i_theorem. The PVS formulation
of lemma 4, which corresponds to the fifth invariant in Fig. 3, is provided in the comment
after each use of apply_inv_lemma. After the two appeals to lemma 4, only “obvious”
reasoning with try_simp is needed to complete the proof.

4.2 A two task race

The two-task race system TwoTaskRace (see Fig. 7 for its TIOA description) increments
a variable count repeatedly, after time passage of between a1 and a2 time units, a1 ≤
a2, until it is interrupted by a set action. This set action can occur between b1 and
b2 time from the start, where b1 ≤ b2. After set, the value of count is decremented,
again at time intervals between a1 and a2 units, and a report action is triggered when
count reaches 0. The report action in TwoTaskRace sets the variable reported to
true, and no TwoTaskRace action can reset this variable to false. Thus, the time of
the report action is the same as the time in which reported becomes true. We want
to show that the time bounds on the occurrence of the report action are: lower bound: if
a2 < b1 then min(b1,a1) + (b1-a2)*a1

a2 else a1, and upper bound: b2 +

M. Archer et al.

Fig. 6 Verbose TAME proof of lemma_5 in fischer

a2 + b2*a2
a1 . This property is proved by first specifying an appropriate abstract automaton

TwoTaskRaceSpec that performs a report action within these bounds (see Fig. 8),
then defining a relation from TwoTaskRace to TwoTaskRaceSpec (see Fig. 10) that
maintains equality between the values of reported and the current time now in the two
automata, and finally, establishing that the relation is a forward simulation.

The relation defined in Fig. 10 is expressed as a universally quantified implication which,
when instantiated by the (shared) parameters of TwoTaskRace and TwoTaskRaceSpec,

Specifying and proving properties of timed I/O automata using Tempo

Fig. 7 TwoTaskRace in TIOA

has hypotheses that can be discharged by state invariants, and a conclusion in six parts. The
first two parts of the conclusion guarantee the required correspondence between now and
reported in the two automata. The remaining four parts support the proof that this relation
is a simulation relation.

The abstract automaton TwoTaskRaceSpec has two trajectories: pre_report and
post_report. The TAME representation of TwoTaskRaceSpec (see Fig. 9) illustrates
how the translator represents multiple trajectories in TAME: the preconditions in enabled
and postconditions in trans are expressed identically, while the details of the trajectories
are captured in separate cases in traj_invariant, traj_stop, and traj_evolve.

The TIOA-to-TAME translator transforms the TIOA specification in Fig. 10 of the for-
ward simulation relation into the PVS theory in Fig. 11 that asserts (as a theorem to be

M. Archer et al.

Fig. 8 TwoTaskRaceSpec in TIOA

proved) the property forward_simulation. The theory in Fig. 11 follows the TAME
template for formulating abstraction relations between automata described in [30]. The pa-
rameterized theory forward_simulation, imported with appropriate actual parameters
in Fig. 11 just before the statement of the theorem provides the generic definition in PVS of
the property forward_simulation stating what it means for a relation between two au-
tomata to be a forward simulation. The PVS formulation of the forward simulation property,
the gist of which is described above in Sect. 3, is based on the definition in [26]. The proof
of this property for TwoTaskRace and TwoTaskRaceSpec uses invariants of both au-
tomata. A high level view of the saved proof of this property can be seen in Fig. 25 in
Appendix F.

The invariants of TwoTaskRace and TwoTaskRaceSpec needed for the forward
simulation proof are a subset of the invariants shown in Figs. 12 and 13, all of which
have been proved in TAME. Although the discovery of invariants is not always so
simple, these invariants were straightforward to discover, either by a “bottom-up” ap-
proach based on an intuitive understanding of the specifications or by the “top-down”
approach from proof goals at dead ends in a simulation proof attempt. The proofs of
these invariants are all quite simple; in fact, most of the TwoTaskRaceSpec invari-
ants can be proved using just the TAME induction strategy auto_induct followed
by the sequence (apply_specific_precond), (apply_traj_evolve “del-
ta_t_action”), (try_simp) for each of the two (trajectory) actions. The proofs
of a few of the invariants for TwoTaskRace are interesting because they illustrate the
use of the new TAME strategy deadline_reason, which was not used in the invari-
ant proofs for fischer. One such invariant is invariant 4 in Fig. 12, whose TAME
proof is shown in Fig. 14. Invariant 4 essentially says that in the TIOA model of Two-
TaskRace, the current time now cannot pass beyond the deadline last_main. In this

Specifying and proving properties of timed I/O automata using Tempo

Fig. 9 TwoTaskRaceSpec trajectories in TAME

proof, auto_induct has determined that the base case and four of the five possible
action cases are nontrivial. The crux of this proof is the reasoning in the single time
passage case, namely, the action case nu_traj(delta_t_action,F_action). Af-
ter using apply_specific_precond and apply_traj_evolve to compute the
state after time delta_t_action and using apply_inv_lemma to use invariant 1
to establish that now >= 0 at the beginning of the trajectory, the new TAME step
deadline_reason argues that now <= last_main at the end of the trajectory.
The step try_simp then completes the proof with “obvious” reasoning. The remaining
cases are easily proved using “obvious” reasoning following, in some cases, the use of
const_facts to introduce facts about the constants in the specification.

TAME also provides strategies for establishing abstraction relations between automata,
including forward simulation. Forward simulation proofs have a high-level structure similar
to the structure of induction proofs of invariants; however, rather than beginning with the
proof step auto_induct, they begin with the proof step prove_fwd_sim. They also
typically have fewer induction cases (see Sect. 3.1). For more details, see [30].

M. Archer et al.

Fig. 10 Forward simulation from TwoTaskRace to TwoTaskRaceSpec

4.3 A simple timeout system

A simple timeout system consists of a sender, a delay prone channel, and a receiver. The
sender sends messages to the receiver, within u1 time after the previous message has been
sent. A timed message queue, in which messages are queued together with their delivery
deadline, is used to model the fact that the delivery of each message is delayed by at most
b time. A failure can occur at any time, after which the sender stops sending. The receiver
times out after not receiving a message for at least u2 time. When the receiver times out, the
sender is considered to be “suspected”. Figure 15 shows the TIOA description of the abstract
automaton timeout for this simple timeout system. In this description, the boolean valued
variables suspected and failed indicate whether the sender is suspected or failed,
respectively. The variable queue represents the timed message queue, and the variables
p_clock and t_clock are used, respectively, to keep track of the current deadlines on
the send and timeout actions. The variable now, as usual, represents the current time.

We are interested in proving the two following properties for this system: (1) Safety:
A timeout occurs only after a failure has occurred; (2) Timeliness: A timeout occurs within
u2 + b time after a failure. Because the flag suspected becomes true only when a time-
out occurs, the Safety property can be captured by the system invariant suspected ⇒
failed on line 23 of Fig. 16 (invariant 7, numbering the invariants from 0). As in the two-
task race example, to establish the Timeliness property, we first create an abstract automaton
timeout_spec that times out within u2 + b time of occurrence of a failure, and then
prove a forward simulation from the system timeout to its abstraction timeout_spec.
The TIOA description of timeout_spec is shown in Fig. 17. The state variables sus-
pected, failed, and now in this description have the same meanings as the analogous
variables in the TIOA description of timeout; a new variable last_timeout is used
to keep track of the current deadline on the timeout action. The definition of the actual
forward simulation relation between timeout and timeout_spec, which is similar in
form to the definition in Fig. 10, is given in Appendix E.

Specifying and proving properties of timed I/O automata using Tempo

Fig. 11 TwoTaskRace to TwoTaskRaceSpec simulation relation in TAME

Both the Safety and Timeliness properties have been proved using the TAME strategies
in a manner analogous to the invariant and forward simulation proofs in the previous ex-
amples, with one extra complication: the need to introduce knowledge about special data
types referred to in the TIOA specifications. The timeout system uses a custom data type
timed_message_Queue. TIOA provides a vocabulary syntax to allow the user to de-
clare custom data types and operators. Figure 18 shows how the data type for timed_mes-
sage_Queue and the associated operators are declared in TIOA. The actual definitions of
the types and operators in the timed_queue vocabulary come from PVS, and are provided
as part of a TIOA library of PVS data type theories; Fig. 19 shows a sample of these defin-
itions. Aside from the PVS operator enQ? (which implements the TIOA operator enQ_qn
for querying whether a timed_message_Queue is a nonempty queue), the PVS vocab-
ulary is identical to the TIOA vocabulary. Properties of these types and operators have been
proved in PVS, and have been used in proofs of the Safety and Timeliness properties. The
timed_queue properties which were actually used in proofs of timeout and time-
out_spec are shown in Appendix B.

M. Archer et al.

Fig. 12 TwoTaskRace invariants 0–19

Fig. 13 TwoTaskRaceSpec invariants 0–3

Both the Queue and timed_message_Queue data types and theories have proved
useful in other examples. Because developing PVS theories for complex data types is not
trivial, a goal for Tempo is to populate the library tioa_types_lib with theories of data
types that are apt to be reused.

Specifying and proving properties of timed I/O automata using Tempo

Fig. 14 Proof of TwoTaskRace invariant 4

5 Discussion

5.1 Developing theorem proving support

Our approach to developing appropriate theorem proving support for Tempo is to study
many examples of TIOA specifications and their properties and identify what is needed for
implementing a standard, straightforward set of proof steps sufficient to mechanize proofs of
the properties. One lesson we have learned is that the details of the specification template that

M. Archer et al.

Fig. 15 TIOA description of the timeout system

a translator to PVS targets can, if chosen carefully, greatly facilitate the implementation of
PVS strategies. Details of the TAME template for TIOA that have proved helpful for strategy
development include the overall scheme for representing trajectories illustrated in Fig. 9 and
the scheme for representing the start state predicate start(s) as an equality of the form
s = ... (see, for example, Fig. 4), possibly in conjunction with additional restrictions.
Another detail of our translation scheme is the use of symbolic computation, if necessary,
to permit the effects of transitions, which are defined in TIOA as the effect of a sequence of
computations, to be represented in trans by explicit updates to state variables. This allows
the theorem prover to reason directly about new state values of individual variables with less
effort. A full description of the lessons we have learned about template details can be found
in [21].

One goal in developing support for interactive theorem proving is to find a minimal set
of proof steps that are natural to use in high level reasoning and that are sufficient (or nearly
so) for mechanizing proofs of properties. Studying many examples has helped us in this
regard. For example, we observed that many proofs included the assertion that time cannot

Specifying and proving properties of timed I/O automata using Tempo

Fig. 16 Invariant time_ordered and invariants 0–6 of the timeout system

pass beyond a given deadline unless some discrete action occurs. This observation led us to
include deadline_reason among our set of proof steps. Based on examples we have
seen so far, we believe we are at least close to having a minimal set or proof steps sufficient
for mechanizing proofs of invariant properties, but expect to discover additional proof steps
useful in proofs of simulation.

5.2 Mechanizing proofs

The theorem proving support we are developing for TIOA does not make mechanizing
proofs of properties automatic, but it does make it simpler. A user who wishes to prove
properties of a TIOA specification using TAME must in general be a domain expert for the
system modeled in TIOA. To prove the desired safety or simulation properties, the user of-
ten must first find an appropriate set of supporting lemmas. Doing this may require some
creativity; some guidance on how to go about it can be found in [26]. The user must also
be able to sketch out at a high level why, based on the set of supporting lemmas, a given
property is expected to hold. To produce a mechanical proof of the property, the user then
can apply TAME reasoning steps that match this high level reasoning. Alternatively, the
user can find a TAME expert to mechanize the proof. Typically, the proof mechanization
can be done using steps such as const_facts, apply_inv_lemma, apply_spe-
cific_precond, deadline_reason, and so on, to introduce the facts appealed to in
each nontrivial case in the proof sketch, and then invoking try_simp to do the “obvious”
reasoning based on these facts.

While it is good to have a mechanical check of a proof’s validity, it is equally important
to have some feedback on what went wrong if the mechanical check fails. For failed proofs,
TAME provides some useful feedback: the saved TAME proof script can be used to detect
the place in the proof where the proof breaks down. The user can then review the high level
reasoning to see whether there is an error or if introducing additional facts can complete the
proof.

M. Archer et al.

Fig. 17 TIOA description of timeout_spec

Fig. 18 TIOA declaration of custom data types and operators used in timeout

5.3 Scalability

For the three examples described in Sect. 4, the Tempo theorem proving support has ac-
ceptable time performance. Translation of each of the TIOA specifications executes almost
instantaneously. The TAME proofs of invariants run in times ranging from about 1 second to
about 15 seconds, with most proofs executing in 1 to 5 seconds. The most time consuming
proof steps are, unsurprisingly, those that perform the largest amount of automated reason-
ing, such as auto_induct and try_simp. The two TAME simulation proofs consume

Specifying and proving properties of timed I/O automata using Tempo

Fig. 19 PVS definitions of custom data types and operators used in timeout

more time: on the order of 60 to 90 seconds. This may partly be because the current versions
of these proofs make extensive use of deduce, which uses the PVS strategy grind (which
makes a serious attempt to discharge its current proof goal automatically) in a hidden way.
Individual proof steps in the simulation proofs execute in times ranging from a few seconds
to a fraction of a second. Thus, interactive use of the theorem prover is reasonably efficient
in terms of human time.

To explore the scalability of Tempo’s theorem proving support, we have begun experi-
menting with Tempo and TAME on larger examples. Our first larger example is the Small

M. Archer et al.

Aircraft Traffic System protocol SATS developed at NASA Langley. An abstract model of
this system has been defined in [9]. TIOA versions of both the discrete and hybrid models
have been formulated, and the discrete model has been verified directly in PVS [36]. In ad-
dition, a candidate forward simulation relation from the hybrid TIOA model to the discrete
TIOA model has been formulated and proved by hand to be a forward simulation [35]. We
have used the TIOA-to-TAME translator to represent the discrete TIOA model in TAME,
and have redone many of the invariant proofs using the TAME strategies. So far, the TAME
proofs have been easier to construct, and their saved scripts much easier to understand and
significantly shorter than the “raw PVS” versions. A mechanical verification of the hybrid
model can be obtained by creating a TAME version of the forward simulation proof. From
our experience with the invariant proofs for the discrete model of SATS, we are hopeful of
being able to accomplish this.

The SATS example has raised an issue that is likely to arise in many large examples:
the use by specifiers of multi-layered definitions of application-specific functions and pred-
icates. One way to manage the many definition expansions for proof efficiency would be to
expand them in layers to allow reasoning to proceed at the highest possible layer. A goal
for the translator is to generate “local strategies” for a specific application that group defini-
tions by layer. A scheme of this sort is used in the SCR-to-TAME translator to increase the
efficiency of the TAME strategies that support reasoning about SCR automata [3].

6 Related work

Previous work has been performed to develop tools to translate specifications written in
the IOA language to the language of various theorem provers, for example, Larch [7, 11],
PVS [8], and Isabelle [33, 38]. Our implementation of the TIOA-to-PVS translator described
in [22] builds upon [7]. The target PVS specifications of this translator strongly resem-
ble TAME specifications. In addition, an early version of TAME’s deadline_reason
strategy was implemented as the PVS strategy deadline_check described in [22]. The
TIOA-to-TAME translator is essentially a version of the TIOA-to-PVS translator of [22]
with modifications that allow the straightforward implementation of new TAME strategies
for TIOA and the most effective use of existing TAME strategies. A more complete descrip-
tion of the recent improvements made to the translation scheme and strategies described
in [22] can be found in [21]. In [13], a slightly different approach using urgency predicates
instead of stopping conditions or invariants to limit trajectories is used to describe timed
I/O automata. An approach to proving invariant properties of timed I/O automata using ur-
gency predicates is described, but no tool support. A proposed design for supporting urgency
predicates in the Tempo toolset is given in [4].

A hybrid model of the SATS system has been verified by encoding it as a discrete system
and then applying a combination of explicit state model checking (implemented as a PVS
strategy) and automated theorem proving in PVS [31, 32]. The argument for the correctness
of the encoding is given in natural language. By contrast, the “encoding correctness” argu-
ment in the TIOA approach is done in terms of a forward simulation that can be verified
mechanically. There is much more automation in the proof process described in [31, 32]
than in the TIOA approach using TAME; however, this proof process involves first defin-
ing and implementing several application-specific techniques and strategies, and the extent
to which these techniques and strategies can be reused in other applications remains to be
clarified.

Specifying and proving properties of timed I/O automata using Tempo

Fig. 20 Lemmas about timed queues needed in proofs of timeout properties

7 Conclusion

Tempo is ultimately intended to support all phases of system development from specifica-
tion, through verification and validation, to implementation. In this paper, we have focused
on the usability of Tempo for modeling and mechanical verification of properties of timed
systems with both discrete and continuous transitions. We have described the theorem prov-
ing support provided, and illustrated how it is used in examples where the properties of
interest are invariant properties or simulation properties, and where the models involve non-
trivial data types.

Our plan for the future is to use experimentation with more complex examples, such as
SATS or the Dynamic Host Configuration Protocol DHCP (using models based on the work
described in [14]), to explore extensions and improvements to our proof support.

Acknowledgements We wish to thank the anonymous reviewers of earlier versions of this paper for helpful
suggestions for improvements.

Appendix A: TAME proof steps for TIOA

Table 2 lists and describes most of the TAME proof steps (strategies) provided for TIOA,
including all of those appearing in TAME proof scripts in this paper.

M. Archer et al.

Table 2 Major TAME proof steps for TIOA

TAME proof step Effect

(auto_induct) Set up the proof by induction of an invariant
and perform initial simplifications

(direct_proof) Set up the non-induction proof of an invari-
ant and perform initial simplifications

(apply_specific_precond) Introduce the specific precondition of the
current action in an induction step of a proof
by induction

(prove_fwd_sim) Set up the proof by induction of a forward
simulation and perform initial simplifica-
tions

(apply_ind_hyp args) Apply the inductive hypothesis in the current
induction proof to the (non-default) values
args

(apply_inv_lemma lemma-tag args) Introduce the invariant lemma with tag
lemma-tag instantiated with the values args

(use_defs (formula-label) names) Use the definitions of the entities named
in names, optionally only in formulas la-
beled by formula-label, and perform TAME-
appropriate simplifications

(apply_lemma lemma_name args) Introduce the lemma lemma-name instanti-
ated with the values args

(skolem_in formula-label skolem-names) Skolemize an imbedded quantifier in for-
mula formula-label with the names skolem-
names

(inst_in formula-label values) Instantiate an embedded quantifier in for-
mula formula-label with the values values

(suppose assertion) Suppose assertion is true, and label it Sup-
pose; then suppose it is false, and label it
Suppose not

(partition_proof comments) Split the proof into separate branches
for disjuncts in conclusion or
inductive-conclusion formula
and label branches with comments

(deduce assertion) Attempt to deduce assertion with PVS’s
strategy grind; if successful, label new as-
sertion Deduce

(apply_traj_evolve t) Compute state time t from now

(apply_traj_stop t) Deduce that the stopping condition cannot
hold after time t in a trajectory T unless T
ends at t

(apply_traj_invariant t) Deduce trajectory invariant holds time t from
now

(deadline_reason t) Deduce trajectory cannot evolve more than
time t if a deadline is reached time t from
now

(try_simp) Attempt to complete the current proof
branch automatically

Specifying and proving properties of timed I/O automata using Tempo

Fig. 21 TAME proof of timeout lemma_4

Appendix B: Lemmas about queues

Although TAME provides steps for proving invariant and simulation properties of timed I/O
automata models, it is often necessary to use lemmas from theories about the data types used
in specifying the models. TAME does not provide support for proving data type lemmas;
however, such lemmas can be accumulated in appropriate theories and placed in the TIOA
TAME library tioa_types_lib for reuse.

Figure 20 shows the lemmas about queues that were used directly or indirectly in
proofs of timeout invariants and the forward simulation between timeout and time-
out_spec. The lemmas come from two theories in tioa_types_lib: timed_
message_Queue_thy and Queue_thy.

Appendix C: A more complex invariant proof

Figure 21 shows the proof of timeout lemma_4, which illustrates the use of several
TAME proof steps beyond those used in Figs. 6 and 14: suppose, use_defs, ap-
ply_ind_hyp, and apply_lemma. Unlike the proofs in Figs. 6 and 14, the proof
in Fig. 21 is in nonverbose form. In verbose form, comments describing introduced
facts would have been printed after each use of apply_specific_precond, ap-
ply_traj_evolve, apply_ind_hyp, and apply_lemma.

M. Archer et al.

Fig. 22 Sample interaction with PVS from proof of timeout lemma_4

Specifying and proving properties of timed I/O automata using Tempo

Fig. 23 Forward simulation from timeout to timeout_spec

Fig. 24 Skeleton of forward simulation proof for timeout example

Appendix D: An example interaction with PVS

Figure 22 shows part of the user interaction with the PVS prover during execution of
the proof in Fig. 21. The first sequent in Fig. 22 represents the current proof goal
in the induction case nu_traj(delta_t_action, F_action) after the (ap-
ply_specific_precond) step in the proof, and the second sequent shows the resulting
proof goal after the subsequent apply_traj_evolve step. In these sequents, every for-
mula is labeled with a number and one or more names. Curly braces (as opposed to square
brackets) around the list of labels for a formula indicate the formula has been changed (or
added) by the last proof step. The formulas above the turnstile (i.e., |----) are hypotheses,
all of which can be assumed known; to discharge the proof goal, one must prove one of the
formulas below the turnstile.

M. Archer et al.

Fig. 25 Skeleton of forward simulation proof for TwoTaskRace example

Appendix E: TIOA forward simulation specification for timeout

The TIOA specification of the forward simulation relation between timeout and time-
out_spec is shown in Fig. 23.

Appendix F: Structure of saved forward simulation proofs

Figures 24 and 25 show the forward simulation proof skeletons for timeout and
TwoTaskRace after the TAME step start_fwd_sim_proof is applied and the in-
stantiation required in the base case is provided. This instantiation must be an abstract
start state related to the concrete start state by the simulation relation. For timeout, the
instantiation is trivially proved correct using try_simp. For TwoTaskRace, the proof
of correctness for the instantiation requires facts about the constants a1, a2, b1, and b2
followed by additional reasoning about nonlinear real arithmetic.

The proofs of the remaining branches (not shown) appeal to the concrete and abstract
preconditions, and apply invariants of the concrete and abstract specifications. They also
appeal to lemmas from appropriate supporting theories. For example, the TwoTaskRace
proof uses lemmas from the theory of real arithmetic, and the timeout proof uses lemmas
from the theory of queues.

Specifying and proving properties of timed I/O automata using Tempo

References

1. Alur R (1999) Timed automata. In: Proceedings of the 11th international conference on computer aided
verification (CAV ’99). Lecture notes in computer science, vol 1633. Springer, Berlin, pp 8–22

2. Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126:183–235
3. Archer M (2000) TAME: Using PVS strategies for special-purpose theorem proving. Ann Math Artif

Intell 29(1-4):139–181
4. Archer M (2006) Basing a modeling environment on a general purpose theorem prover. Technical report

NRL/MR/5546–06-8952, NRL, Washington, DC, December 2006. Presented at the Monterey Workshop
on Software Engineering Tools: Compatibility and Integration, Baden, Austria, October 2004

5. Archer M, Heitmeyer C, Riccobene E (2002) Proving invariants of I/O automata with TAME. Autom
Softw Eng 9(3):201–232

6. Archer M, Lim H, Lynch N, Mitra S, Umeno S (2006) Specifying and proving properties of timed
I/O automata in the TIOA toolkit. In: Formal methods and models for codesign (MEMOCODE 2006),
pp 129–138

7. Bogdanov A, Garland S, Lynch N (2002) Mechanical translation of I/O automaton specifications into
first-order logic. In: Formal techniques for networked and distributed systems—FORTE 2002: 22nd IFIP
WG 6.1 international conference, Houston, TX, USA, November 2002, pp 364–368

8. Devillers M (1999) Translating IOA automata to PVS. Technical report CSI-R9903, Computing Science
Institute, University of Nijmegen, February 1999

9. Dowek G, Muñoz C, Carreño V (2004) Abstract model of the SATS concept of operations: Initial re-
sults and recommendations. Technical report NASA/TM-2004-213006, NASA Langley Research Center,
Hampton, VA

10. Garland S (2006) TIOA user guide and reference manual. Technical report, MIT CSAIL, Cambridge,
MA. URL http://tioa.csail.mit.edu

11. Garland S, Guttag J (1991). A guide to LP, the Larch prover. Technical report, DEC Systems Research
Center. URL http://nms.lcs.mit.edu/Larch/LP

12. Garland S, Lynch N, Tauber J, Viziri M (2004) IOA user guide and reference manual. Technical report
MIT-LCS-TR-961, MIT CSAIL, Cambridge, MA

13. Gebremichael B, Vaandrager FW (2005) Specifying urgency in timed I/O automata. In: Proceedings
of the 3rd IEEE international conference on software engineering and formal methods (SEFM 2005).
Koblenz, Germany, 5–9 September 2005. IEEE Computer Society, Los Alamitos, pp 64–73

14. Griffeth N, Cantor Y, Djouvas C (2006) Testing a network by inferring rerpresentative state machines
from network traces. In: Proceedings of the international conference on software engineering advances
2006. IEEE Computer Society, Los Alamitos

15. Heitmeyer C, Archer M, Bharadwaj R, Jeffords R (2005) Tools for constructing requirements specifica-
tions: the SCR toolset at the age of ten. Int J Comput Syst Sci Eng 20(1):19–35

16. Kaynar D, Lynch NA, Segala R, Vaandrager F (2003) A mathematical framework for modeling and
analyzing real-time systems. In: The 24th IEEE international real-time systems symposium (RTSS),
Cancun, Mexico, December 2003

17. Kaynar D, Lynch NA, Segala R, Vaandrager F (2005) The theory of timed I/O automata. In: Synthesis
lectures on computer science. Morgan Claypool

18. Larsen KG, Pettersson P, Yi W (1997) UPPAAL in a nutshell. Int J Soft Tools Tech Transf 1(1–2):134–
152

19. Lim H (2006) Translating timed I/O automata specifications for theorem proving in PVS. Master’s thesis,
Mass Inst of Tech, Cambridge, MA. URL http://tioa.csail.mit.edu/

20. Lim H, Archer M (2006) Translation templates to support strategy development in PVS. In: Proceedings
of the 6th international workshop on strategies in automated deduction (STRATEGIES06), Seattle, USA,
August 2006

21. Lim H, Archer M (2007) Translation templates to support strategy development in PVS. Electron Notes
Theor Comput Sci 174(1):59–79

22. Lim H, Kaynar D, Lynch N, Mitra S (2005) Translating timed I/O automata specifications for theorem
proving in PVS. In: Formal modeling and analysis of timed systems (FORMATS), Uppsala, Sweden,
September 2005, pp 17–31

23. Luchangco V (1996) Personal communication. MTT Computer Science Laboratory
24. Lynch N, Tuttle M (1989) An introduction to input/output automata. CWI-Quarterly 2(3):219–246
25. Lynch N, Vaandrager F (1996) Forward and backward simulations, part II: timing-based systems. Inf

Comput 128(1):1–25
26. Lynch NA (1996) Distributed algorithms. Morgan Kaufmann, San Mateo
27. Lynch NA, Garland SJ, Kaynar D, Michel L, Shvartsman A (2007) The Tempo language user guide

and reference manual. Technical report, MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA, October 2007. URL http://www.veromodo.com/tempo

http://tioa.csail.mit.edu
http://nms.lcs.mit.edu/Larch/LP
http://tioa.csail.mit.edu/
http://www.veromodo.com/tempo

M. Archer et al.

28. Mavromattis PP (2006) TIOA simulator manual. February 15, 2006. URL http://tioa.csail.
mit.edu/public/Tools/simulator/

29. Merritt M, Modugno F, Tuttle MR (1991) Time constrained automata. In: Baeten JCM, Goote JF (eds)
CONCUR’91: 2nd international conference on concurrency theory. Lecture notes in computer science,
vol 527. Springer, Berlin

30. Mitra S, Archer M (2005) PVS strategies for proving abstraction properties of automata. Electron Notes
Theor Comput Sci 152(2):45–65

31. Muñoz C, Carreño V, Dowek G (2006) Formal analysis of the operational concept for the small aircraft
transportation system. In: Rigorous engineering of fault-tolerant systems. Lecture notes in computer
science, vol 4157. Springer, Berlin, pp 306–325

32. Muñoz C, Dowek G (2005) Hybrid verification of an air traffic operational concept. In: Proceedings
of IEEE ISoLA workshop on leveraging applications of formal methods, verification, and validation,
Columbia, MD

33. Paulson LC (1994) In: Isabelle: a generic theorem prover. Lecture notes in computer science, vol 828.
Springer, Berlin

34. Shankar N, Owre S, Rushby JM, Stringer-Calvert DWJ (2001) PVS Prover Guide, Version 2.4. Technical
report, Comp Sci Lab, SRI Int, Menlo Park, CA, November 2001

35. Umeno S (2006) Proving safety properties of an aircraft landing protocol using timed and untimed I/O
automata: a case study. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA

36. Umeno S, Lynch N. Proving safety properties of an aircraft landing protocol using I/O automata and the
PVS theorem prover: a case study (submitted); long version to appear as an MIT Technical report

37. VeroModo (2006) TIOA model checker user guide and reference manual. 30 August 2006. URL
http://www.veromodo.com

38. Win TN (2003) Theorem-proving distributed algorithms with dynamic analysis. Master’s thesis, Massa-
chusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May
2003

http://tioa.csail.mit.edu/public/Tools/simulator/
http://tioa.csail.mit.edu/public/Tools/simulator/
http://www.veromodo.com

	Specifying and proving properties of timed I/O automata using Tempo
	Abstract
	Introduction
	Background
	The TIOA model
	The Tempo toolset

	Overview of the Tempo proof methodology
	Proving invariant and simulation properties
	Using PVS with Tempo

	Examples
	Fischer's mutual exclusion algorithm
	A two task race
	A simple timeout system

	Discussion
	Developing theorem proving support
	Mechanizing proofs
	Scalability

	Related work
	Conclusion
	Acknowledgements
	Appendix A: TAME proof steps for TIOA
	Appendix B: Lemmas about queues
	Appendix C: A more complex invariant proof
	Appendix D: An example interaction with PVS
	Appendix E: TIOA forward simulation specification for timeout
	Appendix F: Structure of saved forward simulation proofs
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

