
Simple C o n s t a n t - T i m e Consensus P r o t o c o l s
in Real i s t ic Failure Mode l s

(E x t e n d e d A b s t r a c t)

Benny Chor 1

MIT
Cambridge, MA

Michael Merritt 2 David B. Shmoys 3

AT& T Bell Labs Harvard University
Murray Hill, NJ Cambridge, MA
and MIT

Cambridge, MA

A b s t r a c t : Using simple and elegant protocols,
we show how to achieve consensus in constant
expected time, within realistic failure models.
Significantly, the strongest models considered
are completely asynchronous. A nearly match-
ing lower bound is also given.

1. In troduct ion
Randomization has proved to be an ex-

tremely useful tool in the design of protocols
for distributed agreement. In this paper we

1 Research supported in part by an IBM grad-
uate fellowship.

2Research supported in part by ONR under
N00014-85-K-0168, by OAR under DAAG29-84-
K-0058, by NSF under DCR-8302391, and by
DARPA under N00014-83-K-0125.

3Research supported in part by the NSF under
DCR-8302385.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and /o r specific permission.

©1985 ACM0-89791-167-9/1985/0800-0152 $00.75

present new randomized protocols for the con-
sensus problem in synchronous and asynchro-
nous fail-stop and failure-by-omission models.
These protocols all terminate within constant
expected time, and unlike previous efficient pro-
tocols, are very simple and need not rely on any
preprocessing. The major novelty of our algo-
rithms is the notion of a weak form of a global
coin, and a method for generating it.

We define the consensus problem as follows:
processor i has a private binary value vi; at the
termination of the protocol all processors have
agreed on a common value v; if all vi were equal
initially, the final value agreed upon is this com-
mon value.

We shall initially consider the following syn-
chronous model. We are given a system of n pro-
cessors that can communicate through a com-
pletely connected network. The processors act
synchronously, where at each time step each
processor can broadcast a message, receive all
incoming messages, and perform some private
computation (possibly involving coin tossing).
In the absence of failure, any message sent at
time i will be received at time i + 1. As a re-
sult, we will view the computation as occurring
in rounds.

The situation for deterministic algorithms
for consensus is well understood. A result of
Dolev and Strong implies that in a synchronous
fail-stop model, at least t + 1 rounds are needed,
in the worst case, to achieve consensus; they
also provided an algorithm that achieved this

152

bound and transmits only a polynonfial number
of messages [DS]. In the asynchronous case, Fis-
cher, Lynch and Paterson showed that no pro-
tocol exists for consensus in the fail-stop model
which tolerates even a single fault [FLP].

Fortunately, randomization can overcome
this inherent intractability. Ben-Or gave a pro-
tocol for asynchronous consensus that tolerates
up to n/2 faults in the fail-stop model, and ter-
minates with probability I [Be]. (Results of a
similar nature were given by Braeha and Toueg
[BT].) Unfortunately, the expected number of
rounds needed to reach agreement is exponen-
tial in the asynchronous case (and can be shown
to he O (~) in the synchronous one). Rabin

gave a different protocol that uses a global coin
flip, so that each processor can use the outcome
of a common coin, and the expected number
of rounds is O(T(n)), where T(n) is the time
required to flip the coin. In order to imple-
ment his global coin, Rabin required some pre-
dealt, information to be distributed by a trusted
third party. Bracha, using a beautiful "boot-
strapping" construction, showed that Rabin's
result could be improvcd to O(T(log n)) rounds.
Recently it has been shown how to use crypto-
graphic techniques to implement such an un-
biased, provably-secure coin in T(n) = O(n)
rounds, so that overall, Bracha's procedure can
be run in O(log n) expected time [Y2,ABCGM].
This O(log n) bound is the best known for Byz-
antine fault model without predealt informa-
tion. Since our algorithms for omission faults
run in constant expected time, current results
leave a log n separation between the Byzantine
and omission fault models.

In this paper we present protocols for achiev-
ing consensus in completely connected networks
that can tolerate as many as t = O(n) omis-
sion faults of various types. The algorithms that
we present are based on producing a coin that
is essentially global. We can relax the condi-
tion tha t each processor's view of the coin must
always be identical, and in fact, the coin may
even be somewhat biased. More precisely, we
define a weakly global coin as a coin where, for
both possible outcomes, at least [n/2J + t + 1
processors have a common view of the outcome
with constant probability. If this many proces-
sors see the same outcome, then a majority of

the processors ([n /2 j + 1) will use this value in
the consensus protocol, and reach consensus in
a few more rounds. The essence of our proce-
dure is to randomly select a temporary leader,
and then to use the leader's local coin flip for
the given round. After showing how such a coin
can be produced in a variety of omission fault
models, we then indicate how to use it to acheive
consensus.

The design strategy of our protocols reflects
a heuristic rule prevalent in distributed proto-
col design: it should be possible for simpler al-
gorithms to defeat weaker adversaries. In the
search for provably good algorithms that are
also useful in practise, this rule suggests that
some complex protocols have simple counter-
parts in more realistic fault models. In the case
studied here, the algorithm against the adap-
tive adversary is t ransparent in comparison to
the protocol for the Byzantine case that results
from the combined work in [Br] an~ [ABCGM].

Finally, we show that these results are nearly
tight, by showing that for any protocol for the
fail-stop model, if t processor faults are toler-
ated, then the probability that all correct pro-
cessors have decided after k rounds (k < t)

t k is at most 1 - ½. (~) . (The same result
was obtained independently by Karlin and Yao
[KY].) By comparison, our protocol achieves

i - + .

2 . F a i l u r e M o d e l s
Correctness proofs for fault-tolerant algo-

r i thms have a game theoretic character. They
argue that the algorithms behave appropriately,
even when the faults are being caused by an in-
telligent adversary. The capabilities a t t r ibuted
to this adversary have a profound effect on the
design of algorithms meant to defeat it. Indeed,
there are cases in which no algorithm is capa-
ble of defeating sufficiently powerful adversaries
[PSL, FLP].

In Byzantine fault models, the adversary
can control the behavior of some processors,
causing them to send arbitrary messages when-
ever it likes. Such an adversary is extremely
powerful, and defeating it seems to require com-
plex and expensive algorithms. If one is model-
ing physical failures (as opposed to intentional

153

attacks), such an adversary may be unrealisti-
cally powerful.

Consider the following example. On Octo-
ber 27, 1980, the A R P A N E T suffered a catas-
trophic failure as the result of hardware failures
in two processors. Two spurious messages were
generated that brought down the whole network
for a period of several hours. Clearly, the net-
work protocols were not capable of surviving
even a small number of Byzantine faults. In-
stead of changing the protocols, hardware error-
detection was added in the next generation pro-
cessors, reducing the likelihood of repetition of
this Byzantine failure to an extremely small
probabil i ty [Ro]. Rather than implementing
protocols to defeat a Byzantine adversary, the
network designers effectively chose to weaken
the adversary.

The new A R P A N E T implementation might
be best described by an omission fault model,
in which processors never send spurious mes-
sages, b - t some messages may fail to arrive at
their destination. The adversary is thus limited
to specifying which messages will be delivered
to their destination, and which will not. The
failure models we consider here are variants of
failure by omission.

For deterministic protocols, an adversary,
causing failures to produce the worst possible
performance, can determine the outcome of a
strategy in advance. With randomization, this
is no longer possible, so that it may be advan-
tageous for the adversary to decide its strategy
adaptively, as random bits are generated and
used. Therefore~ in modeling the power of the
adversary it is crucial to specify the extent to
which the adversary is adaptive, and the infor-
mation it has available to determine its strategy.
We will consider three limitations on the adap-
tiveness of the adversary.

Static faults: Throughout the life of the sys-
tem, messages sent by at most t processors fail
to reach their destination on time (within the
round they are sent). Static faults include the
fail-stop model as a special case. Most previous
work on omission fault models has focused on
this type of fault.

Dynamic-broadcast: During each round, mes-
sages sent by at most t processors fail to reach
their destination (but this may happen to a dif-

ferent t processors each round). These models
are more general than static fault models. They
are similar to models s tudied in [Pi].

Dynamic-reception: Each processor receives
all but at most t messages sent to it during every
round (so that, if all processors broadcast ~very
round, each processor receives at least n - t mes-
sages). However, any two processors may fail to
hear from a different set of t others. These mod-
els are more general than dynamic-broadcast
models, and are similar to the models we will
use for the asynchronous case.

We present algorithms for dynamic-broadcast
and dynamic-reception models. Because these
models are more general than the fail-stop or
static models, our algorithms will work in these
cases as well.

In addit ion to the limitations on the adap-
tiveness of the adversary mentioned above, we
consider two different limitations on the knowl-
edge available to the adversary in determining
its strategy.

Message-oblivious: The adversary 's choice
of failure (which messages will not be delivered)
is independent of the contents of the messages.

Message-dependent: The adversary is lim-
ited to polynomial resources (time and space),
but its choice of failures may depend on the con-
tents of the messages.

Finally, we will assume that the adversary
has full knowledge of the hardware and software
running at each processor and of the commu-
nication over the network (subject to the lim-
itations above), but does not know the local
state of the individual processors during execu-
tion (which may depend on the outcome of local
coin tosses not observed by the adversary). For
each combinat ion of adaptiveness and knowl-
edge constraints, we present an algorithm to
achieve consensus in constant expected time.

3. T h e Message-Obl iv ious Case
In this section we show how to toss a weakly

global coin in message-oblivious models. For the
dynamic-broadcast failure model, the ~oin will
have the property that for each outcome (heads
or tails), there is some constant probability of
that outcome being received by every proces-
sor. For the dynamic-reception failure model,
there is some constant probabil i ty that for each

154

outcome, at least [n/2J + t + 1 processor will
recieve that outcome (provided t is slightly less
than n/4).

The algorithm is perhaps the most natu-
ral one. A leader randomly volunteers, and this
leader tosses a coin. More precisely, consider the
following algorithm: the procedure L E A D E R pro-
duces a local biased bit where the probability of
a 1 ("I volunteer") is equal to i . the procedure
RANDOM BIT produces a local unbiased bit.

Code for processor P:
1. f u n c t i o n COIN TOSS:
2. lp ~-- LEADER
3. Cp +-- R A N D O M B I T

4. broadcast (%,Ip)
5. receive all (c, l) messages
6. i f a unique message with l = 1 was received
7. t h e n COIN TOSS ~ C of tha t message
8. else C O I N T O S S ~ 0

T h e o r e m I : The function COIN TOSS produces
a weakly global coin in the dynamic-broadcast
message-oblivious fault model, where the con-
stant probability for either common outcome is

at least ~ , provided n > fit (where/~ > 1 is a
constant).
Proof: In a single execution of COTN TOSS, the
probability that exactly one processor volun-
teers is

1 1 - = 1 > - .
n - - e

In the analysis, we will restrict attention to ex-
ecutions of the procedure when this event hap-
pens. How can the adversary thwart a good coin
toss? Only by preventing the leader's message
from getting to all other processors. However,
he must select the set of at most t faulty pro-
cessors with no information about the random
bits, so that if t h e leader is not among those
picked by the adversary, its messages will reach
all processors. Hence all the messages of the
leader reach their destination with probability
at least ,~-t > 1 - ,2 . The second coin toss of

n

the leader was made independently of the above
t

conditions, and the probability of each outcome
is the same. Put t ing the pieces together, we get
the claimed bounds. []

Remark: While it suffices to require ,3 > 1 in or-
der to achieve a weakly global coin, we actually
will require /3 > 2. This requirement is needed
in the consensus protocol (see section 6).

T h e o r e m 2: The function COIN TOSS produces
a weakly global coin in the dynamic-reception
message-oblivious fault model, when t is slightly
less than n/4. / f t = n(1/4 - e), the con-
stant probability for either common outcome is
at least a /2e, where ~ is approximately se 4 ~ + 1 "

Proof: Once again, we locus on the case that ex-
actly one processor volunteers, which happens

i Recall that in the with I)robability at least Z.
dynamic-reception fault model, every processor
receives at least n - t different messages each
round, but different processors may receive mes-
sages from different sets of senders. Recall also,
that tile conditions for a weakly global coin only
require that at least Ln/2J ÷ t ÷ 1 processors
agree on the outcome of the global coin. This
happens if the leader succeeds in reaching this
many processors. Accordingly, call processors
whose messages are received by ~n/2j ÷ t ÷ l
processors persuasive. Since the failures are cho-
sen independently of the identity of the leader,
it is enough to show that a constant fraction,
o~, of the processors are persuasive during each
round. Since everyone receives at least n - t
messages, the number of messages received is at
least n(n - t). Assume exactly a,n processors
are persuasive-then the number of messages re-
ceived is at most om2+(n-o~n)([n/2J +t). This
number is achieved if each persuasive processor
has n messages received, and the rest lack only
1 message received to be persuasive themselves.
From n (n - t) < o~n 2 ÷ (n - o~n)([n/2J + t),

In~21-2t we derive [n/2]--t -< c~. The number of faults,
t, must be such that c~ is forced by this rela-
tion to be a positive fraction. This occurs when
t < n/4. In particular, when t = n(1/4 - e), ot

, /2-0/~-2~) s6
is about 1/2-(1/4-~) - as+l"

Thus there is at least probability 1/e that
there is a single leader, for each value (heads or
tails), there is probability 1/2 that the leader's
other coin has that value, and there is at least a
probability that the leader is persuasive. By the
message oblivious assumption, all these events
are independcnt so that overall the probability
of each outcome is at least o~/2e. []

155

It is critical to the correctness of this proto-
col that the adversary 's choice of messagcs deliv-
ered each round be independent of the contents
of the messages. A stronger adaptive adversary
might simply check cach message as it is sent; if
the processor is a potential leader (its message
is (b, 1)) then the adversary blocks the message.
This stronger adversary (:an also be defeated, as
long as the contents of the messages are unin-
telligible to him. In this case, any a t t empt at
blocking the leader's message is still an essen-
tially random act, because the adversary cannot
unders tand the messages. This suggests that
encryption could be a useful tool in designing a
protocol that can defeat a more powerful adver-
sary.

4. T h e M e s s a g e - D e p e n d e n t
Case

In this section we show how cryptographic
techniques can be used to toss a weakly global
coin in the presence of an adaptive adversary
using a message-dependent strategy. We prove
that if the adversary can block the weakly global
coin, then it can break the cryptosystem. There-
fore, if we assume that the cryptosystem is se-
cure, and that the adversary is limited to poly-
nomial computing resources, then it cannot pre-
vent consensus within constant expected time.

Let E be a probabilistic encryption scheme
that hides one bit [GM]. The scheme E can be
based on any t rapdoor function [Y1]. As an ex-
ample, the familiar RSA cryptosys tem can be
used, with 0 encrypted by E(x), where x is cho-
sen at random among all numbers in ZN with
least significant bit 0, and 1 encrypted by E(x),
where x is chosen at random among all num-
bers in ZN with least significant bit 1 [ACGS].
(For this example, we assume that RSA is hard
to crack.) The main theorem of this section is
based on the following assumption:
(.) The encryption function E cannot be in-
verted in random polynomial time.

We first make the assumption that all pro-
cessors use the same public key E whose decryp-
tion key they all hold (but the adversary has no
access to). At the end of this section we indicate
how this assumption can be removed, at some
expense in the number of faults tolerated.

The only modification to the algorithm of
the previous section is to replace the broadcast-
ing of (c, l) (line 4 of the COIN TOSS function) by
the broadcast ing of (E(c), E(1)). The modified
code is now:

Code for processor P :
1. f u n c t i o n COIN TOSS:
2. Ip ~-- L E A D E R

3. Cp ~ R A N D O M BIT

4. broadcast (E(cp), E(lp))
5. receive and decrypt all (c, l) messages
6. i f recieved a unique message with l ---- 1
7. t h e n COIN TOSS ~ c of that message
8. else COIN TOSS ~ - - 0

We now prove that the new protocol is as
hard to break as the c ryptosys tem it uses.

T h e o r e m 3: Under the assumption (,), the
modified function COIN TOSS produces a weakly
global coin in the message-dependent fault mod-
els, provided n > fit for tile dynamic-broadcast
case, and n > 4t for the dynamic-reception case.
The probabilities of each outcome are as in The-
orems I and 2, respectively.

Proof Sketch: We will prove the result for the
static and dynamic-broadcast model; the proof
for the dynamic-reception model is very simi-
lar. We will again restrict a t tent ion to the event
that exactly one processor volunteers, and that
its random bit is 1 (the case of 0 is handled
identically). This event occurs with probabil i ty
at least 1/2e. Suppose the adversary can block
some of the messages of the leader with proba-

1 (where > 0). We show that in bility > ~ + e e
fact the adversary has the power to distinguish
between the encryption of (RANDOM BIT~ 0) and
the encrypt ion of (1, 1). (An adversary can dis-
tinguish between two outcomes if there exists
an e > 0 such that the difference between the
probabilit ies of the outcomes is at least e.) Us-
ing a theorem of Goldwasser and Micali [GM],
this leads to a polynomial time algorithm for the
adversary to invert E.

The proof consists of two parts. The first
part is tha t the modified c o I ~ TOSS function
is a zero knowledge protocol [GMR]. This ba-
sically means that the adversary can simulate
polynomially many executions of this function
by itself, wi thout having any secret information,

156

with the same probabil i ty distribution. There-
fore previous executions give the adversary no
information that it cannot get by itself.

The second par t of the proof is done by a
protocol simulation. Suppose the adversary can
make the leader faulty with probabil i ty > 5 + e'
That means that the adversary implements a
blocking algorithm B £ which, given as inputs n
encrypted pairs

(E l (C l) , E l (l l)) ,. .. , (E~(c~) ,E~(l ,~))

(where n - 1 of the li's are 0, and their corre-
sponding ci's arc random bits, exactly one li is 1,
and the ci corresl)onding to this i is 1), outputs
n - t pairs, that contain the (E(1), E(1)) with

1 (The messages probabil i ty no greater than ~ - ~ .
that B~ outputs correspond to the correct pro-
cessors, while the blocked ones are those origi-
nating in processors that are made faulty.)

We build a dist inguisher for the encryption
function E. The distinguisher is a polynomial
time algorithm that 'behaves' differently when
given as input the pair (E(1), E(1)) versus the
pair (E(RANDOM B1T),E(0)); (RANDOM BIT E
{ 0, 1} is randomly chosen). To this end, we first
create n - 1 pairs of probabilistic encryptions

(El(RANDOM BIT1) , E l (0)) , . . .

. . . , (E"-- ' (aANDOM BIT,_ i) , E'~-~(0))

(where RANDOM mTi E { 0, 1} is randomly cho-
sen).

Given a pair (E(x) , E(y)) , the n - 1 pairs
are joined to it and we feed the n pairs to B£
(in a random order). If x = 1 ,y -- 1, then
this is a random instance of the event "exactly
one leader volunteered and its random bit is
1". Therefore, according to the assumption,
B~ will ou tput (E (x) , E (y)) with probabili ty
no greater than ½ - e. If, on the other hand,
X = RANDOM BIT, y ---- 0 , then the inputs to
B/~ are n pairs whose elements are probabilis-
tic encryptions of identical sources. Hence the
ou tpu ts are just a random subset of n - t out
of these n encryptions, and so the original pair
(E (x) , E (y)) is ou tpu t with probabili ty at least
n=t ~ 1

The net effect of the whole procedure is
that if x : 1 ,y : 1 then (E (x) , E (y)) is out-
pu t with probabil i ty <_ ½ - ~, while if x =

RANDOM mw, y = 0 then (E (x) , E (y)) is out-
put with probabil i ty > ½. Thus a distinguisher
{'or E is constructed using the adversary 's B.~.

As we remarked earlier, the problem of key
distr ibution can be solved by having each pro-
cessor p broadcas t its own (individually gener-
ated) public key Ep. In the dynamic-broadcast
model, processors spend an extra initial round
broadcast ing their public keys. This can be
done once, (luring system initialization, or anew
with every coin toss execution. This guaran-
tees that there are n - t processors whose pub-
lic keys are known to everyone. During a coin
toss broadcast , each processor encrypts mes-
sages with the public key of the reciPient ' or
sends nothing if the recipient's public key is not
known. A different set of t processors may fail
during the toss than fail during the key distri-
bution. By using 2t as the maximum number
of faults possible, the proof of Theorem 3 shows
that COIN TOSS produces a weakly global coin
in the dynamic-broadcast model for n > 4t.

In the dynamic-reception case, processors
part icipate in two rounds of broadcasting and
forwarding public keys. Once again, this can be
done once, during system initialization, or anew
with every COIN TOSS execution. Let n = at .
In the full paper, we prove tha t a two-round
exchange is sufficient to guarantee that all but
at most (a / a - 1)t public keys have been fully
distributed. Conversely, there is a set of at
least n - (o~/a - 1)t processors whose public
keys are known by every processor. Sett ing
T = t + (a / a - 1)t as the new bound on the
number of faults, the proof of Theorem 3 shows
that COIN TOSS produces a weakly global coin
in the dynamic-recept ion model for n > 4T.

5. T h e A s y n c h r o n o u s Case
In this section we abandon the assumption

that processors run in synchronous rounds. Cor-
rect processors may run arbitrarily fast or slow,
and messages may arrive out of order, or take
arbitrari ly long to arrive, even in the absence
of failures. We make the following assumption
about the nature of failures in the asynchronous
model.

157

Asynchronous Failures: Except for a set of
at most t sending processors, all messages sent
by every processor are eventually delivered.

If m processors send to processor p, this
in, plies that p eventually receives at least m - t
of those messages.

We assume tha t processors begin each con-
sensus protocol with the same value in its local
round counter. In our algorithms, processors
append the current value of the round counter
to each message. Each processor counts local
rounds, consisting of a broadcasting phase and
a reception phase. During the reception, the
processor waits for exactly n - t messages with
the current round number (some of which may
already be received, and stored locally). (For
simplicity, we assume tha t extra messages with
a given round number are discarded.) In gen-
eral, it would be foolish for any processor to wait
for more than n - t messages from a given round,
since failures may prevent more than this many
messages from ever arriving.

We consider two failure models for the asyn-
chronous case, the asynchronous message-oblivious
and asynchronous message-dependent models.
These both assume the asynchronous failure as-

sumption, adding, respectively, the message-
oblivious and message-dependent limitations from
the synchronous case. In these models, the ad-
versary has full control of the order and tim-
ing of arriving messages and of the rates of in-
ternal clocks, and is therefore more powerful
than in the synchronous case. The adversary
is limited in only two ways. The constraints
of the failure assumption require it to eventu-
ally deliver enough messages, and the message-
oblivious and message-dependent limitations re-
strict the information it may use to determine
its strategy. Despite the adversary's increased
power, a suitable modification will still guaran-
tee that agreement is reached in constant ex-
pected time for n > 6t.

Before we describe the modification, let us
first explain why it is needed at all. One might
be tempted to argue "once the coin tosses are
hidden (by assumption or by encryption), the
adversary cannot know which messages to block
and so everything works just as it did in the syn-
chronous case". This naive argument is incor-
rect because an adversary can in general infer

information about messages from the way that
processors who receive these messages react to
them. If the reaction of each processor to n - t
coin toss messages is sufficient to infer that a
single processor volunteered, the adversary can
successively deliver different subsets of messages
to different processors, implementing a simple
elimination procedure to determine the identity
of the leader. The leader's messages can then
be held back from the remaining processers un-
til they have finished the coin toss, rendering
the leader useless.

Our solution is to add an acknowledgement

round to the end of the coin toss, so tha t no
processor will exit the coin toss routine until re-
ceiving acknowledgements from n - t processors.
This means tha t during a coin toss, no proces-
sor's observable behavior depends upon the val-
ues of the coin toss messages, until at least n - t
processors have each received n - t current coin
toss messages. The choice of messages to deliver
to these n - t processors is thus independent of
their contents. The parameter t is chosen so
that by this time there is a constant probability
that it is too late for the adversary to effect the
outcome.

Because of the round structure we impose,
the leader's messages are only effective if they
are among the first n - t messages for that round
to arrive at [n/2] + t + 1 other processors. For
the asynchronous case th:.~ will be our defini-
t ion of a persuasive processor for a given round.
Our algorithms work by guaranteeing a constant
probability tha t a single volunteer will be per-
suasive. Without making it explicit in the code,
we implicitly assume tha t a round counter is t.o-
cally maintained and incremented by each pro-
cessor. When we say tha t a processor recieves
n - t messages, we mean that it reads messages
from its buffer until recieving n - t messages
with its current round number. The code for
the asynchronous, message-oblivious model is as
follows.

158

Code for processor P :

1. f u n c t i o n ASYNCHRONOUS COIN TOSS:
2. lp ~-- LEADER
3. Cp +-- RANDOM BIT
4. b r oa dc a s t (cp, lv)
5. receive the first n - t (c, l) messages

wi th cu r ren t r o u n d number

6. b roadcas t an acknowledgement
7. receive n - t acknowledgements wi th

cu r ren t r o u n d n u m b e r
8. i f a lmique message wi th l = 1 was received
9. t h e n COIN TOSS ~ C of t ha t message
10. e l se COIN TOSS ~ 0

T h e o r e m 4: The funct ion ASYNCIIRONOUS COIN
TOSS produces a weakly global coin in the asyn-
chronous, message-obl iv ious fault models , pro-
v ided n _> 6t.

Proof: From the discussion above, the adver-
sary ' s choice of the initial n - t coin toss mes-
sages to del iver to some set of n - t processors is
made i ndependen t ly of the message 's contents .
We will pick t so t h a t delivering n - t messages to
n - t processors implies tha t some cons tan t frac-
t ion a of the processors are persuasive. Since
the adve r sa ry cannot identify the single volun-
teer , the leader will have probabi l i ty a of being
persuasive. (This is very similar to the argu-
men t for the dynamic -b roadcas t , synchronous
case). Let a n be the n u m b e r of persuas ive pro-
cessors. T h e r e are (n - t) (n - t) messages deliv-
ered, of which at mos t a n 2 come from persua-
sive processors , and (n - a n) (Ln/2J + t) f rom oth-
ers. F r o m (n - t) 2 ~ a n 2 + (n - a n) ([n / 2 J + t),

we derive [n/2 l - t < a. The number of
faults, t, mus t be such tha t a is forced by this
re la t ion to be a posi t ive fract ion. This occurs
when t < (3 - v /7) /2 . In par t icu lar , when
t < n / 6 , c~ is abou t 1/12. []

To defeat a message-dependen t adversary
in the a synchronous case, we make the same al-
t e r a t i on as in the synchronous case, enc ryp t ing
the r a n d o m bits.

Code for processor P :

1. f u n c t i o n ASYNCHRONOUS COIN TOSS:
2. lp ~-- LEADER
3. Cp +-- RANDOM]3IT
4. b ro ad cas t (E (%) , E(lp))
5. receive and d e c r y p t the first n - t

(E(c) , E(1)) messages wi th current round number
6. b ro ad cas t an acknowledgement
7. receive n - t acknowledgements wi th

cu r ren t r o u n d n u m b e r
8. i f recieved a un ique message with l = 1
9. t h e n COIN TOSS ~ C of t ha t message
10. e l se COIN TOSS ~---0

T h e o r e m 5: Under the as sumpt ion (,) , the
modi t ied funct ion ASYNCItRONOUS COIN TOSS
produces a weakly global coin in the asynchro-
nous message-dependen t model , provided n ~
6t.

Proof Sketch: As in T h e o r e m 3, we will argue
tha t an adversa ry who can p reven t a success-
ful coin toss is capable of inver t ing tile cryp-
tosys tem. To p reven t a successful coin toss, the
adversa ry must be capable of prevent ing a tem-
porary leader f rom becoming persuasive. As we
argued in the p ro o f of T h e o r e m 4, the acknowl-
edgement round prevents any processor f rom
leaking in fo rma t ion abou t a pa r t i cu l a r coin toss
until at least n - t processors each receive n - t
e n c r y p t e d coin toss messages. If n _> 6t, the ad-
versary m u s t use the contents of these en c ryp t ed
messages to p reven t a t e m p o r a r y leader f rom be-
coming persuasive. If he succeeds subs tant ia l ly
more o f t en than he would by guessing at ran-
dom, he could use this capabi l i ty to invert the
c ryp tosys t em. []

As in the synchronous case, it is possible to
pe r fo rm key d is t r ibu t ion as pa r t of the protocol ,
a t some cost in the n u m b e r of faul ts to lera ted.
Full de ta i l s will a p p e a r in the final paper .

6. Using A Weakly Global
Coin In Achieving Consensus

In this sect ion we present an agreement
a lgo r i thm which can be imp lemen ted using a
weakly global coin. For s implici ty o f presenta-
t ion, the a lgor i thm given here is b inary (reach-
ing ag reemen t on one bit) , and is basically a
modif ica t ion of those in [Be] and [BT]. It can
easily be ex t ended to be mul t iva lued (reaching
ag reemen t on a r b i t r a r y values) using the tech-
n ique of Turp in and Coan [TC].

159

First , we give an informal description of the
algorithm, and then we give a formal descrip-
tion. The algorithm is organized as a series of
epochs of message exchange. Each epoch con-
sists of several rounds. The round structure
is provided automatical ly in the synchronous
models. In the asynchronous models, the round
structure is imposed locally by each processor,
as was discussed earlier. In this case, reaching
consensus in 'constant expected time', means
that each processor will complete the proto-
col within a constant expected number of local
rounds.

We describe the algorithm for the proces-
sor P. (All processors run the same code.)
Epoch and round numbers are always the first
two components of each message. The variable
CURRENT holds the value that processor P cur-
rently favors as the answer of the agreement al-
gorithm. At the start of the algorithm CURRENT
is set to processor P 's input value. In the first
round of each epoch, processor P broadcasts
CURRENT. Based on the round 1 messages re-
ceived, processor P changes CURRENT. If it
sees at least [n/2J + 1 round 1 messages for
some particular value, then it assigns that value

to CURRENT; otherwise, it assigns the distin-
guished value "?" to CURRENT. In the second
round of each epoch, processor P broadcasts the
new CURRENT. Next, the COIN TOSS subroutine
is run. Based on the round 2 messages received,
processor P either changes CURRENT again, or
decides on an answer and exits the algorithm.
Let ANS be the most frequent value (other than
"?") in round 2 messages received by P. Let
NUM be the number of such messages. There
are three cases depending on the value of NUM.
If NUM ~ [n/2] + 1 then processor P decides
on the value ANS and exits the algorithm. If
In/2] _> NUM ~ 1 then processor P assigns the
value ANS to the variable CURRENT and contin-
ues the algorithm. If NUM -~- 0 then processor P
assigns the result of the coin toss to the variable
C U R R E N T .

Code for processor P
1. p r o c e d u r e AGREEMENT(INPUT):
2. CURRENT +-- INPUT
3. fo r e +- 1 to co do
4. broadcast (e , 1, C U R R E N T)

5. receive (e, 1, ,) messages
6. i f for some v there are > [n/2J + 1

messages (e, 1, v)
7. t h e n C U R R E N T +-- V
8. e l s e C U R R E N T +-- '~?"
9. broadcast (e, 2, CURRENT)
10. receive (e, 2,*) messages
11. ANS ~ the value v # "?" such. t h a t

(e, 2, v) messages are most frequent
12. NUM ~-- number of occurrences

of (e, 2, ANS) messages
13. C O I N +- -COIN T O S S
14. i f NUM ~ [n/2J + 1 t h e n decide ANN,

broadcast ANS DECIDED and t e r m i n a t e
15. e l se i f NUM ~ 1 t h e n CURRENT + - - ANS
16. else CURRENT +--COIN

We make several remarks about the al-
gorithm. COIN TOSS, depending on the fault
model, is one of the protocols described earlier
for producing a weakly global coin. In mes-
sage descriptions, "*" is a wild-card character
that matches anything. The t e r m i n a t e state-
mcnt in step 14 hides a model-dependent detail.
In the synchronous models, processors simply
halt. In the asynchronous models, processors
send four more rounds of messages, as though
they were executing the for-loop a final time,
but wi thout bothering to recieve any messages.
This is needed because, once the first correct
processor decides and terminates, the other cor-
rect processors may not decide until the next
epoch (as we argue below). The extra broad-
casts are solely to insure that these ' t a rdy ' pro-
cessors receive a sufficient number of messages
during each round of tha t epoch. (Recall that in
the asynchronous fault models, processors must
wait for n - t messages during each reception).

Define value as a legal input to the algo-
ri thm, either 0 or 1. Specifically, "?" is not a
value.

The following claims establish the desired
properties of the agreement algorithm.
L e m m a 6: During each epoch, conflicting val-
ues are never sent in round 2 (step 9).

Theorem 7 establishes tha t our algori thm
never produces a wrong answer and tha t in each
epoch there is at least one coin toss value tha t
will terminate the algorithm.

160

T h e o r e m 7: The algorithm has the following
three properties.

Validity: I f value v is distributed as input
to all processors, then all correct processors de-
cide v during epoch 1.

Agreement: Let e be the first epoch in which
a correct processor decides. I f correct proces-
sor P decides v in epoch e, then by the end of
epoch e + 1 all correct processors decide v.

Termination: In any epoch, e, there is at
least one value which, i f it is adopted by [n/2J +
t + 1 processors executing the assignment in
step 16, will cause all correct processors to de-
cide by the end of epoch e + 1.

The terminat ion property guarantees that
a weakly global coin will lead to a decision with
constant probability. The agreement property
guarantees that once a single processor decided,
all others will decide in the next epoch, regard-
less of the adversary behaviour. In particu-
lar, this holds for the asynchronous, message-
dependent model, the one in which the adver-
sary has the most power. The proofs follow by
the techniques of [Be] and [CC]. We omit details
here.

7. Lower Bounds
In this section we show that our upper

bound is almost optimal in a strong sense. We
demonst ra te a lower bound on the tail of the
distribution of non-termination probabilities for
any randomized agreement algorithm. This lower
bound holds for the case of a non-adaptive ad-
versary in the fail-stop model, and therefore in
the stronger failure models as well.

Let A be a randomized agreement algo-
r i thm that is resilient to t processor failures and
never errs. Such an algorithm, together with the
n input values and n (possibly infinite) 0 - 1
strings (outcome of individual coin tosses) to-
tally determine the behavior of each processor.
Denote by qk the maximum probability, over
all (non-adaptive) adversarial strategies, that
does not terminate in k rounds (k _< t).

T h e o r e m 8: qk > _ ' ' " - - "~(2 |~ |) -k-

Proof." Following the Dolev and Strong lower
bound proof for deterministic agreement algo-
rithms, we construct a chain S1, $2 , . . . , $m of
partially specified executions in the fail-stop model.

Each $i consists of k rounds, and it specifies tile
identity of faulty processors, their failure time,
and identity of receivers of their last round mes-
sage. (Thus every St can be viewed as a strategy
of a non-adaptive adversary). These partially
specified executions include the initial input val-
ues to each processor. Together with the n coin
tossing strings ~'= (cz, c2 , . . . , c~) , each Si gives
a complete specification of an execution, which
we'll denote by $[. For every if, the following
properties hold:
1) S~" ~ $i~-1 (i.e. both executions look the
same for at least one processor which is non-
faulty through the k-th round).
2) If all processors agree in S(, then they must
agree on the value 1.
3) If all processors agree in $~, then they must
agree on the value O.

2 ~ k 4)
We show that qk _> 1 / m . Substituting (4), this
establishes the result.

Assume to the contrary tha t qk < 1/m.
Then the probability (over all ~'s) that ~ does
not te rminate in $ (o r in $~ . . . or in $~ is
at most m ' q k < 1. Hence the set of ff's for
which A terminates in all $~" (1 < i < m) has
measure > 0. For each ~ in this set, all cor-
rect processors will decide on the value 1 in $~"
(by property 2). Hence, by property 1, there

is a correct processor which will decide on the
value 1 in $~, and therefore, by the agreement
requirernent, all correct processors will decide
on the value 1 in $~'. Carrying this argument
inductively, it follows tha t for all 1 < i < m, all
correct processors will decide on the value 1 in
$~'. But for i = m, this contradicts property 3.
[]

A c k n o w l e d g m e n t
We would like to thank Brian Coan for his

comments on an earlier version of this manuscript .

161

R e f e r e n c e s

[ABCGM] B. Awerbuch, M. Blum, B. Chor,
S. Gohlwasser, and S. Micali, "How to hnple-
ment Bracha's O(log n) Byzantine Agreement
Algorithm", unpublished manuscript, MIT.

[ACGS] W. Alexi, B. Chor, O. Goldreich,
1 and C.P. Schnorr, "RSA/Rabin Bits Are ~ +

1 Secure", Proc. 25 th Annual Sym- poly(log N)
posium on Foundations of Computer Science
(1984), pp. 449-457.

[Be] M. Ben-Or, "Another Advantage of Free
Choice: Completely Asynchronous Agreement
Protocols", Proc. 2 nd Annual A CM Symposium
on Principles of Distributed Computing (1983),
pp. 27-30.

[Br] G. Bracha, "An O(lg n) Expected Rounds
Randomized Byzantine Generals Algorithm", Proc.
17 th Annual A C M Symposium on Theory of
Computing (1985), pp. 316-326.

[BT] G. Bracha and S. Toueg, "Resilient
Consensus Protocols", Proc. 2 nd Annual A C M
Symposium on Principles of Distributed Com-
puting (1983).

[CC] B. Chor and B. Coan, "A Simple and
Efficient Randomized Byzantine Agreement A1-

(1984), pp. 98-106. To appear in IEEE Trans-
actions on Software Engineering.

[DS] D. Dolev and H. R. Strong, "Polynomial
Algorithms for Multiple Processor Agreement",
Proe. 14 th Annual ACM Symposium on Theory
of Computing (1982), pp. 401-407.

[FLP] M.J. Fischer, N.A. Lynch, and M.S.
Paterson, "Impossibility of Distributed Consen-
sus with One Faulty Process", Proc. 2 nd A CM
Symposium on Database Systems (1983), pp. 1-
7.

[GM] S. Goldwasser and S. Micali, "Prob-
abilistic Encryption", dour. of Computer and
System Sciences, 28(2) (1984), pp. 270-299.

[GMR] S. Goldwasser, S. Micali, and C.
Rackoff, "The Knowledge Complexity of Inter-
active Proof", Proc. 17 ~h Annual ACM Sym-
posium on Theory of Computing (1985), pp.
291-304.

[KY] A.R. Karlin and A.C. Yao, "Prob-
abilistic Lower Bounds for Byzantine Agree-
ment and Clock Synchronizati~Jn", unpublished
manuscript, Stanford University.

[LSP] L. Lamport, R. Shostak, and M. Pease,
"The Byzantine Generals Problem", A CM Trans-
actions on Programming Languages and Sys-
tems 4(3) (1982), pp. 382-401.

[PSL] M. Pease, R. Shostak, and L. Lamport,
"Reaching Agreement in the Presence of Faults"
JACM 27(2) (1980)pp. 228-234.

[Pi] S. Pinter, Distributed Computation Sys-
tems, Ph.D. thesis, Boston University, (1983).

IRa] M.O. Rabin, "Randomized Byzantine
Generals", Proe. 24 th Annual Symposium on
Foundations o/ Computer Science (1983), pp.
403-409.

[Ro] E .C. Rosen, ~'Vulnerability of Network
Control Protocols: An Example" A CM SIG-
S O F T Software Engineering Notes, 6(1) (1981),
pp. 6-8.

[TC] R. Turpin and B. Coan, "Extending Bi-
nary Byzantine Agreement to Multivalued Byz-
antine Agreement", Information Processing Let-
ters 18(2) (1984), pp. 73-76.

[Y1] A.C. Yao, "Theory and Applications of
Trapdoor Functions", Proc. of the 23rd IEEE
Symposium on Foundations of Computer Sci-
ence, (1982), pp. 80-91.

[Y2] A.C. Yao, private communication.

162

