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A b s t r a c t :  Using simple and elegant protocols, 
we show how to achieve consensus in constant 
expected time, within realistic failure models. 
Significantly, the strongest models considered 
are completely asynchronous. A nearly match- 
ing lower bound is also given. 

1. In troduct ion  
Randomization has proved to be an ex- 

tremely useful tool in the design of protocols 
for distributed agreement. In this paper we 
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present new randomized protocols for the con- 
sensus problem in synchronous and asynchro- 
nous fail-stop and failure-by-omission models. 
These protocols all terminate within constant 
expected time, and unlike previous efficient pro- 
tocols, are very simple and need not rely on any 
preprocessing. The major novelty of our algo- 
rithms is the notion of a weak form of a global 
coin, and a method for generating it. 

We define the consensus problem as follows: 
processor i has a private binary value vi; at the 
termination of the protocol all processors have 
agreed on a common value v; if all vi were equal 
initially, the final value agreed upon is this com- 
mon value. 

We shall initially consider the following syn- 
chronous model. We are given a system of n pro- 
cessors that can communicate through a com- 
pletely connected network. The processors act 
synchronously, where at each time step each 
processor can broadcast a message, receive all 
incoming messages, and perform some private 
computation (possibly involving coin tossing). 
In the absence of failure, any message sent at 
time i will be received at time i + 1. As a re- 
sult, we will view the computation as occurring 
in rounds. 

The situation for deterministic algorithms 
for consensus is well understood. A result of 
Dolev and Strong implies that in a synchronous 
fail-stop model, at least t +  1 rounds are needed, 
in the worst case, to achieve consensus; they 
also provided an algorithm that achieved this 
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bound and transmits only a polynonfial number 
of messages [DS]. In the asynchronous case, Fis- 
cher, Lynch and Paterson showed that no pro- 
tocol exists for consensus in the fail-stop model 
which tolerates even a single fault [FLP]. 

Fortunately,  randomization can overcome 
this inherent  intractability. Ben-Or gave a pro- 
tocol for asynchronous consensus that tolerates 
up to n/2 faults in the fail-stop model, and ter- 
minates with probability I [Be]. (Results of a 
similar nature were given by Braeha and Toueg 
[BT].) Unfortunately, the expected number of 
rounds needed to reach agreement is exponen- 
tial in the asynchronous case (and can be shown 
to he O ( ~ )  in the synchronous one). Rabin 

gave a different protocol that uses a global coin 
flip, so that  each processor can use the outcome 
of a common coin, and the expected number 
of rounds is O(T(n)), where T(n) is the time 
required to flip the coin. In order to imple- 
ment his global coin, Rabin required some pre- 
dealt, information to be distributed by a trusted 
third party. Bracha, using a beautiful "boot- 
strapping" construction, showed that Rabin's 
result could be improvcd to O(T(log n)) rounds. 
Recently it has been shown how to use crypto- 
graphic techniques to implement such an un- 
biased, provably-secure coin in T(n) = O(n) 
rounds, so that  overall, Bracha's procedure can 
be run in O(log n) expected time [Y2,ABCGM]. 
This O(log n) bound is the best known for Byz- 
antine fault model without  predealt informa- 
tion. Since our algorithms for omission faults 
run in constant  expected time, current results 
leave a log n separation between the Byzantine 
and omission fault models. 

In this paper  we present protocols for achiev- 
ing consensus in completely connected networks 
that can tolerate as many as t = O(n) omis- 
sion faults of various types. The algorithms that  
we present are based on producing a coin that  
is essentially global. We can relax the condi- 
tion tha t  each processor's view of the coin must 
always be identical, and in fact, the coin may 
even be somewhat biased. More precisely, we 
define a weakly global coin as a coin where, for 
both possible outcomes, at least [n/2J + t + 1 
processors have a common view of the outcome 
with constant probability. If this many proces- 
sors see the same outcome, then a majority of 

the processors ( [n /2 j  + 1) will use this value in 
the consensus protocol, and reach consensus in 
a few more rounds. The essence of our proce- 
dure is to randomly select a temporary  leader, 
and then to use the leader's local coin flip for 
the given round.  After showing how such a coin 
can be produced in a variety of omission fault 
models, we then indicate how to use it to acheive 
consensus. 

The design strategy of our protocols reflects 
a heuristic rule prevalent in distributed proto- 
col design: it should be possible for simpler al- 
gorithms to defeat weaker adversaries. In the 
search for provably good algorithms that  are 
also useful in practise, this rule suggests that  
some complex protocols have simple counter- 
parts in more realistic fault models. In the case 
studied here, the algorithm against the adap- 
tive adversary is t ransparent  in comparison to 
the protocol for the Byzantine case that  results 
from the combined work in [Br] an~ [ABCGM]. 

Finally, we show that  these results are nearly 
tight, by showing that  for any protocol for the 
fail-stop model, if t processor faults are toler- 
ated, then the probability that  all correct pro- 
cessors have decided after k rounds (k < t) 

t k is at most 1 -  ½. ( ~ )  . (The same result 
was obtained independently by Karlin and Yao 
[KY].) By comparison, our protocol achieves 

i - + . 

2 .  F a i l u r e  M o d e l s  
Correctness proofs for fault-tolerant algo- 

r i thms have a game theoretic character. They 
argue that  the algorithms behave appropriately, 
even when the faults are being caused by an in- 
telligent adversary. The capabilities a t t r ibuted 
to this adversary have a profound effect on the 
design of algorithms meant  to defeat it. Indeed, 
there are cases in which no algorithm is capa- 
ble of defeating sufficiently powerful adversaries 
[PSL, FLP]. 

In Byzantine fault models, the adversary 
can control the behavior of some processors, 
causing them to send arbitrary messages when- 
ever it likes. Such an adversary is extremely 
powerful, and defeating it seems to require com- 
plex and expensive algorithms. If one is model- 
ing physical failures (as opposed to intentional 
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attacks),  such an adversary may  be unrealisti- 
cally powerful. 

Consider the following example. On Octo- 
ber 27, 1980, the A R P A N E T  suffered a catas- 
trophic failure as the result of hardware failures 
in two processors. Two spurious messages were 
generated that  brought  down the whole network 
for a period of several hours. Clearly, the net- 
work protocols were not capable of surviving 
even a small number  of Byzantine faults. In- 
stead of changing the protocols, hardware error- 
detection was added in the next generation pro- 
cessors, reducing the likelihood of repetition of 
this Byzantine failure to an extremely small 
probabil i ty [Ro]. Rather  than  implementing 
protocols to defeat a Byzantine adversary, the 
network designers effectively chose to weaken 
the adversary. 

The new A R P A N E T  implementation might 
be best described by an omission fault model, 
in which processors never send spurious mes- 
sages, b - t  some messages may fail to arrive at  
their destination. The adversary is thus limited 
to specifying which messages will be delivered 
to their destination, and which will not. The 
failure models we consider here are variants of  
failure by omission. 

For deterministic protocols, an adversary, 
causing failures to produce the worst possible 
performance, can determine the outcome of a 
strategy in advance. With randomization, this 
is no longer possible, so that  it may be advan- 
tageous for the adversary to decide its strategy 
adaptively, as random bits are generated and 
used. Therefore~ in modeling the power of the 
adversary it is crucial to specify the extent to 
which the adversary is adaptive, and the infor- 
mation it has available to determine its strategy. 
We will consider three limitations on the adap- 
tiveness of the adversary. 

Static faults: Throughout  the life of the sys- 
tem, messages sent by at most  t processors fail 
to reach their destination on time (within the 
round they are sent). Static faults include the 
fail-stop model  as a special case. Most previous 
work on omission fault models has focused on 
this type of fault. 

Dynamic-broadcast: During each round, mes- 
sages sent by at most t processors fail to reach 
their destination (but this may happen to a dif- 

ferent t processors each round). These models 
are more general than static fault models. They 
are similar to models s tudied in [Pi]. 

Dynamic-reception: Each processor receives 
all but  at most t messages sent to it during every 
round (so that,  if all processors broadcast  ~very 
round, each processor receives at least n - t  mes- 
sages). However, any two processors may fail to 
hear from a different set of t others. These mod- 
els are more general than dynamic-broadcast  
models, and are similar to the models we will 
use for the asynchronous case. 

We present algorithms for dynamic-broadcast  
and dynamic-reception models. Because these 
models are more general than the fail-stop or 
static models, our algorithms will work in these 
cases as well. 

In addit ion to the limitations on the adap- 
tiveness of the adversary mentioned above, we 
consider two different limitations on the knowl- 
edge available to the adversary in determining 
its strategy. 

Message-oblivious: The adversary 's  choice 
of failure (which messages will not be delivered) 
is independent  of the contents of the messages. 

Message-dependent: The adversary is lim- 
ited to polynomial resources (time and space), 
but  its choice of failures may depend on the con- 
tents of the messages. 

Finally, we will assume that  the adversary 
has full knowledge of the hardware and software 
running at each processor and of the commu- 
nication over the network (subject to the lim- 
itations above), but  does not know the local 
state of the individual processors during execu- 
tion (which may depend on the outcome of local 
coin tosses not observed by the adversary).  For 
each combinat ion of adaptiveness and knowl- 
edge constraints,  we present an algorithm to 
achieve consensus in constant  expected time. 

3. T h e  Message-Obl iv ious  Case 
In this section we show how to toss a weakly 

global coin in message-oblivious models. For the 
dynamic-broadcast  failure model, the ~oin will 
have the  property that  for each outcome (heads 
or tails), there is some constant  probability of  
that outcome being received by  every proces- 
sor. For the dynamic-reception failure model, 
there is some constant probabil i ty that for each 
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outcome, at least [n/2J + t + 1 processor will 
recieve that  outcome (provided t is slightly less 
than n/4).  

The algorithm is perhaps the most natu- 
ral one. A leader randomly volunteers, and this 
leader tosses a coin. More precisely, consider the 
following algorithm: the procedure L E A D E R  pro- 
duces a local biased bit where the probability of 
a 1 ("I volunteer") is equal to i .  the procedure 
RANDOM BIT produces a local unbiased bit. 

Code for processor P: 
1. f u n c t i o n  COIN TOSS: 
2. lp ~-- LEADER 
3.  Cp +-- R A N D O M  B I T  

4. broadcast (%,Ip) 
5. receive all (c, l) messages 
6. i f  a unique message with l = 1 was received 
7. t h e n  COIN TOSS ~ C of tha t  message 
8. else C O I N  T O S S  ~ 0 

T h e o r e m  I :  The function COIN TOSS produces 
a weakly global coin in the dynamic-broadcast 
message-oblivious fault model, where the con- 
stant probability for either common outcome is 

at least ~ ,  provided n > fit (where/~ > 1 is a 
constant). 
Proof: In a single execution of COTN TOSS, the 
probability that  exactly one processor volun- 
teers is 

1 1 -  = 1 > - .  
n - -  e 

In the analysis, we will restrict attention to ex- 
ecutions of the procedure when this event hap- 
pens. How can the adversary thwart  a good coin 
toss? Only by preventing the leader's message 
from getting to all other processors. However, 
he must select the set of at most t faulty pro- 
cessors with no information about the random 
bits, so that  if t h e  leader is not among those 
picked by the adversary, its messages will reach 
all processors. Hence all the messages of the 
leader reach their destination with probability 
at least ,~-t > 1 - ,2 .  The second coin toss of 

n 

the leader was made independently of the above 
t 

conditions, and the probability of each outcome 
is the same. Put t ing the pieces together, we get 
the claimed bounds. [] 

Remark: While it suffices to require ,3 > 1 in or- 
der to achieve a weakly global coin, we actually 
will require /3 > 2. This requirement is needed 
in the consensus protocol (see section 6). 

T h e o r e m  2: The function COIN TOSS produces 
a weakly global coin in the dynamic-reception 
message-oblivious fault model, when t is slightly 
less than n/4.  / f  t = n(1/4 - e), the con- 
stant probability for either common outcome is 
at least a /2e,  where ~ is approximately se 4 ~ + 1  " 

Proof: Once again, we locus on the case that  ex- 
actly one processor volunteers, which happens 

i Recall that in the with I)robability at least Z. 
dynamic-reception fault model, every processor 
receives at least n - t different messages each 
round, but different processors may receive mes- 
sages from different sets of senders. Recall also, 
that  tile conditions for a weakly global coin only 
require that  at least Ln/2J ÷ t ÷ 1 processors 
agree on the outcome of the global coin. This 
happens if the leader succeeds in reaching this 
many processors. Accordingly, call processors 
whose messages are received by ~n/2j ÷ t ÷ l 
processors persuasive. Since the failures are cho- 
sen independently of the identity of the leader, 
it is enough to show that  a constant fraction, 
o~, of the processors are persuasive during each 
round. Since everyone receives at least n -  t 
messages, the number of messages received is at 
least n(n - t). Assume exactly a,n processors 
are persuasive-then the number of messages re- 
ceived is at most om2+(n-o~n)([n/2J +t). This 
number is achieved if each persuasive processor 
has n messages received, and the rest lack only 
1 message received to be persuasive themselves. 
From n ( n -  t) < o~n 2 ÷ (n - o~n)([n/2J + t), 

In~21-2t we derive [n/2]--t -< c~. The number of faults, 
t, must be such that  c~ is forced by this rela- 
tion to be a positive fraction. This occurs when 
t < n/4.  In particular, when t = n(1/4 - e), ot 

, /2-0/~-2~) s6 
is about 1/2-(1/4-~) - as+l" 

Thus there is at least probability 1/e that  
there is a single leader, for each value (heads or 
tails), there is probability 1/2 that  the leader's 
other coin has that  value, and there is at least a 
probability that  the leader is persuasive. By the 
message oblivious assumption, all these events 
are independcnt so that  overall the probability 
of each outcome is at least o~/2e. [] 
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It is critical to the correctness of this proto- 
col that  the adversary 's  choice of messagcs deliv- 
ered each round be independent of the contents 
of the messages. A stronger adaptive adversary 
might simply check cach message as it is sent; if 
the processor is a potential leader (its message 
is (b, 1)) then the adversary blocks the message. 
This stronger adversary (:an also be defeated, as 
long as the contents of the messages are unin- 
telligible to him. In this case, any a t t empt  at 
blocking the leader's message is still an essen- 
tially random act, because the adversary cannot 
unders tand the messages. This suggests that  
encryption could be a useful tool in designing a 
protocol that  can defeat a more powerful adver- 
sary. 

4. T h e  M e s s a g e - D e p e n d e n t  
Case  

In this section we show how cryptographic 
techniques can be used to toss a weakly global 
coin in the presence of an adaptive adversary 
using a message-dependent strategy. We prove 
that if the adversary can block the weakly global 
coin, then it can break the cryptosystem. There- 
fore, if we assume that  the cryptosystem is se- 
cure, and that the adversary is limited to poly- 
nomial computing resources, then it cannot pre- 
vent consensus within constant  expected time. 

Let E be a probabilistic encryption scheme 
that hides one bit [GM]. The scheme E can be 
based on any t rapdoor  function [Y1]. As an ex- 
ample, the familiar RSA cryptosys tem can be 
used, with 0 encrypted by E(x), where x is cho- 
sen at random among all numbers in ZN with 
least significant bit 0, and 1 encrypted by E(x), 
where x is chosen at random among all num- 
bers in ZN with least significant bit 1 [ACGS]. 
(For this example, we assume that  RSA is hard 
to crack.) The main theorem of this section is 
based on the following assumption: 
( . )  The encryption function E cannot be  in- 
verted in random polynomial time. 

We first make the assumption that all pro- 
cessors use the same public key E whose decryp- 
tion key they all hold (but  the adversary has no 
access to). At the end of this section we indicate 
how this assumption can be removed, at some 
expense in the number  of faults tolerated. 

The  only modification to the algorithm of 
the previous section is to replace the broadcast- 
ing of (c, l) (line 4 of the COIN TOSS function) by 
the broadcast ing of (E(c), E(1)). The modified 
code is now: 

Code  for processor P :  
1. f u n c t i o n  COIN TOSS: 
2. Ip ~-- L E A D E R  

3. Cp ~ R A N D O M  BIT  

4. broadcast  (E(cp), E(lp)) 
5. receive and decrypt  all (c, l) messages 
6. i f  recieved a unique message with l ---- 1 
7. t h e n  COIN TOSS ~ c of that  message 
8. else COIN TOSS ~ - - 0  

We now prove that  the new protocol is as 
hard to break as the c ryptosys tem it uses. 

T h e o r e m  3: Under the assumption (,), the 
modified function COIN TOSS produces a weakly 
global coin in the message-dependent fault mod- 
els, provided n > fit for tile dynamic-broadcast 
case, and n > 4t for the dynamic-reception case. 
The probabilities of each outcome are as in The- 
orems I and 2, respectively. 

Proof Sketch: We will prove the result for the 
static and dynamic-broadcast  model; the proof 
for the dynamic-reception model is very simi- 
lar. We will again restrict a t tent ion to the event 
that  exactly one processor volunteers, and that  
its random bit is 1 (the case of 0 is handled 
identically). This event occurs with probabil i ty 
at least 1/2e. Suppose the adversary can block 
some of the messages of the leader with proba- 

1 (where > 0). We show that  in bility > ~ + e  e 
fact the adversary has the power to distinguish 
between the encryption of (RANDOM BIT~ 0) and 
the encrypt ion of (1, 1). (An adversary can dis- 
tinguish between two outcomes if there exists 
an e > 0 such that  the difference between the 
probabilit ies of the outcomes is at least e.) Us- 
ing a theorem of Goldwasser and Micali [GM], 
this leads to a polynomial  time algorithm for the 
adversary to invert E.  

The proof  consists of two parts.  The first 
part  is tha t  the modified c o I ~  TOSS function 
is a zero knowledge protocol [GMR]. This ba- 
sically means that  the adversary can simulate 
polynomially many executions of this function 
by itself, wi thout  having any secret information, 
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with the same probabil i ty  distribution. There- 
fore previous executions give the adversary no 
information that  it cannot  get by itself. 

The second par t  of the proof  is done by a 
protocol simulation. Suppose the adversary can 
make the leader faulty with probabil i ty > 5 + e' 
That  means that  the adversary implements a 
blocking algorithm B £ which, given as inputs n 
encrypted pairs 

( E l ( C l ) , E l ( l l ) )  ,. .. , (E~(c~) ,E~( l ,~ ) )  

(where n - 1 of the li's are 0, and their corre- 
sponding ci's arc random bits, exactly one li is 1, 
and the ci corresl)onding to this i is 1), outputs  
n -  t pairs, that  contain the (E(1),  E(1))  with 

1 (The messages probabil i ty no greater than ~ - ~ .  
that  B~ outputs  correspond to the correct pro- 
cessors, while the blocked ones are those origi- 
nating in processors that  are made faulty.) 

We build a dist inguisher for the encryption 
function E. The distinguisher is a polynomial 
time algorithm that  'behaves'  differently when 
given as input the pair (E(1), E(1)) versus the 
pair (E(RANDOM B1T),E(0)); (RANDOM BIT E 
{ 0, 1} is randomly chosen). To this end, we first 
create n - 1 pairs of probabilistic encryptions 

(El(RANDOM BIT1) , E l ( 0 ) ) , . . .  

. . . ,  (E"-- ' (aANDOM BIT,_ i ) ,  E'~-~(0)) 

(where RANDOM mTi E { 0, 1} is randomly cho- 
sen). 

Given a pair (E(x) ,  E(y)) ,  the n -  1 pairs 
are joined to it and we feed the n pairs to B£ 
(in a random order). If x = 1 ,y  -- 1, then 
this is a random instance of the event "exactly 
one leader volunteered and its random bit is 
1". Therefore, according to the assumption, 
B~ will ou tput  ( E ( x ) , E ( y ) )  with probabili ty 
no greater than ½ - e. If, on the other hand, 
X = RANDOM BIT, y ---- 0 ,  then the inputs to 
B/~ are n pairs whose elements are probabilis- 
tic encryptions of identical sources. Hence the 
ou tpu ts  are just  a random subset  of n - t out 
of these n encryptions,  and so the original pair 
( E ( x ) ,  E ( y ) )  is ou tpu t  with probabili ty at least 
n=t ~ 1 

The net effect of the whole procedure is 
that  if x : 1 ,y  : 1 then ( E ( x ) , E ( y ) )  is out- 
pu t  with probabil i ty <_ ½ - ~, while if x = 

RANDOM mw, y = 0 then ( E ( x ) , E ( y ) )  is out- 
put with probabil i ty > ½. Thus a distinguisher 
{'or E is constructed using the adversary 's  B.~. 

As we remarked earlier, the problem of key 
distr ibution can be solved by having each pro- 
cessor p broadcas t  its own (individually gener- 
ated) public key Ep. In the dynamic-broadcast  
model, processors spend an extra  initial round 
broadcast ing their public keys. This can be 
done once, (luring system initialization, or anew 
with every coin toss execution. This guaran- 
tees that  there are n -  t processors whose pub- 
lic keys are known to everyone. During a coin 
toss broadcast ,  each processor encrypts mes- 
sages with the  public key of the reciPient ' or 
sends nothing if the recipient's public key is not 
known. A different set of t processors may fail 
during the toss than fail during the key distri- 
bution. By using 2t as the maximum number  
of faults possible, the proof  of Theorem 3 shows 
that COIN TOSS produces a weakly global coin 
in the dynamic-broadcast  model for n > 4t. 

In the dynamic-reception case, processors 
part icipate in two rounds of broadcasting and 
forwarding public keys. Once again, this can be 
done once, during system initialization, or anew 
with every COIN TOSS execution. Let n = at .  
In the full paper,  we prove tha t  a two-round 
exchange is sufficient to guarantee that all but  
at most  ( a / a  - 1)t public keys have been fully 
distributed. Conversely, there is a set of at 
least n - (o~/a - 1)t processors whose public 
keys are known by every processor. Sett ing 
T = t + ( a / a  - 1)t as the new bound on the 
number  of faults, the proof  of Theorem 3 shows 
that  COIN TOSS produces a weakly global coin 
in the dynamic-recept ion model for n > 4T. 

5. T h e  A s y n c h r o n o u s  Case 
In this section we abandon  the assumption 

that  processors run in synchronous rounds. Cor- 
rect processors may run arbitrarily fast or slow, 
and messages may  arrive out  of order, or take 
arbitrari ly long to arrive, even in the absence 
of failures. We make the following assumption 
about  the  nature of failures in the asynchronous 
model. 
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Asynchronous Failures: Except for a set of 
at most t sending processors, all messages sent 
by every processor are eventually delivered. 

If m processors send to processor p, this 
in, plies that  p eventually receives at least m - t 
of those messages. 

We assume tha t  processors begin each con- 
sensus protocol with the same value in its local 
round counter. In our algorithms, processors 
append the current value of the round counter 
to each message. Each processor counts local 
rounds, consisting of a broadcasting phase and 
a reception phase. During the reception, the 
processor waits for exactly n - t messages with 
the current round number (some of which may 
already be received, and stored locally). (For 
simplicity, we assume tha t  extra messages with 
a given round number are discarded.) In gen- 
eral, it would be foolish for any processor to wait 
for more than  n - t  messages from a given round, 
since failures may prevent more than  this many 
messages from ever arriving. 

We consider two failure models for the asyn- 
chronous case, the asynchronous message-oblivious 
and asynchronous message-dependent models. 
These both  assume the asynchronous failure as- 

sumption, adding, respectively, the message- 
oblivious and message-dependent limitations from 
the synchronous case. In these models, the ad- 
versary has full control of the order and tim- 
ing of arriving messages and of the rates of in- 
ternal clocks, and is therefore more powerful 
than in the synchronous case. The adversary 
is limited in only two ways. The constraints 
of the failure assumption require it to eventu- 
ally deliver enough messages, and the message- 
oblivious and message-dependent limitations re- 
strict the information it may use to determine 
its strategy. Despite the adversary's increased 
power, a suitable modification will still guaran- 
tee that  agreement is reached in constant ex- 
pected time for n > 6t. 

Before we describe the modification, let us 
first explain why it is needed at all. One might 
be tempted to argue "once the coin tosses are 
hidden (by assumption or by encryption), the 
adversary cannot know which messages to block 
and so everything works just  as it did in the syn- 
chronous case". This naive argument is incor- 
rect because an adversary can in general infer 

information about messages from the way that  
processors who receive these messages react to 
them. If the reaction of each processor to n - t 
coin toss messages is sufficient to infer that  a 
single processor volunteered, the adversary can 
successively deliver different subsets of messages 
to different processors, implementing a simple 
elimination procedure to determine the identity 
of the leader. The leader's messages can then 
be held back from the remaining processers un- 
til they have finished the coin toss, rendering 
the leader useless. 

Our solution is to add an acknowledgement 

round to the end of the coin toss, so tha t  no 
processor will exit the coin toss routine until re- 
ceiving acknowledgements from n - t  processors. 
This means tha t  during a coin toss, no proces- 
sor's observable behavior depends upon the val- 
ues of the coin toss messages, until at least n - t 
processors have each received n - t current coin 
toss messages. The choice of messages to deliver 
to these n - t processors is thus independent of 
their contents. The parameter t is chosen so 
that  by this time there is a constant probability 
that  it is too late for the adversary to effect the 
outcome. 

Because of the round structure we impose, 
the leader's messages are only effective if they 
are among the first n - t  messages for that  round 
to arrive at [n/2] + t + 1 other processors. For 
the asynchronous case th:.~ will be our defini- 
t ion of a persuasive processor for a given round.  
Our algorithms work by guaranteeing a constant  
probability tha t  a single volunteer will be per- 
suasive. Without  making it explicit in the code, 
we implicitly assume tha t  a round counter is t.o- 
cally maintained and incremented by each pro- 
cessor. When we say tha t  a processor recieves 
n - t messages, we mean that  it reads messages 
from its buffer until recieving n -  t messages 
with its current round number. The code for 
the asynchronous, message-oblivious model is as 
follows. 
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Code  for processor  P :  

1. f u n c t i o n  ASYNCHRONOUS COIN TOSS: 
2. lp ~-- LEADER 
3. Cp +-- RANDOM BIT 
4. b r oa dc a s t  (cp, lv)  
5. receive the first n - t (c, l) messages 

wi th  cu r ren t  r o u n d  number  

6. b roadcas t  an acknowledgement  
7. receive n - t acknowledgements  wi th  

cu r ren t  r o u n d  n u m b e r  
8. i f  a lmique message wi th  l = 1 was received 
9. t h e n  COIN TOSS ~ C of t ha t  message  
10. e l se  COIN TOSS ~ 0 

T h e o r e m  4: The funct ion ASYNCIIRONOUS COIN 
TOSS produces  a weakly  global coin in the asyn- 
chronous,  message-obl iv ious  fault  models ,  pro- 
v ided n _> 6t. 

Proof:  From the discussion above,  the adver-  
sary ' s  choice of the  initial n - t coin toss mes- 
sages to del iver  to some set of  n -  t processors  is 
made  i ndependen t ly  of the message 's  contents .  
We will pick t so t h a t  delivering n - t  messages to 
n - t  processors  implies tha t  some cons tan t  frac- 
t ion a of the  processors  are persuasive.  Since 
the  adve r sa ry  cannot  identify the  single volun- 
teer ,  the  leader  will have probabi l i ty  a of being 
persuasive.  (This  is very  similar to the  argu- 
men t  for the  dynamic -b roadcas t ,  synchronous  
case). Let  a n  be the  n u m b e r  of persuas ive  pro- 
cessors. T h e r e  are (n - t ) (n  - t) messages deliv- 
ered, of  which at mos t  a n  2 come from persua-  
sive processors ,  and ( n - a n ) (  Ln/2J + t )  f rom oth- 
ers. F r o m  (n - t) 2 ~ a n  2 + (n  - a n ) ( [ n / 2 J  + t), 

we derive [n/2 l - t  < a. The  number  of 
faults,  t, mus t  be such tha t  a is forced by  this 
re la t ion  to be  a posi t ive  fract ion.  This  occurs  
when  t < (3 - v /7) /2 .  In par t icu lar ,  when  
t < n / 6 ,  c~ is abou t  1/12.  [] 

To defeat  a message-dependen t  adversary  
in the a synchronous  case, we make  the  same al- 
t e r a t i on  as in the synchronous  case, enc ryp t ing  
the  r a n d o m  bits. 

Code  for processor  P :  

1. f u n c t i o n  ASYNCHRONOUS COIN TOSS: 
2. lp ~-- LEADER 
3. Cp +-- RANDOM ]3IT 
4. b ro ad cas t  ( E ( % ) ,  E( lp) )  
5. receive and  d e c r y p t  the first n - t 

(E(c ) ,  E(1))  messages wi th  current  round  number  
6. b ro ad cas t  an acknowledgement  
7. receive n - t acknowledgements  wi th  

cu r ren t  r o u n d  n u m b e r  
8. i f  recieved a un ique  message  with l = 1 
9. t h e n  COIN TOSS ~ C of  t ha t  message 
10. e l se  COIN TOSS ~---0 

T h e o r e m  5: Under  the as sumpt ion  ( , ) ,  the 
modi t ied  funct ion ASYNCItRONOUS COIN TOSS 
produces  a weakly  global coin in the asynchro- 
nous message-dependen t  model ,  provided n ~ 
6t. 

Proof  Sketch: As in T h e o r e m  3, we will argue 
tha t  an  adversa ry  who can p reven t  a success- 
ful coin toss is capable  of inver t ing tile cryp-  
tosys tem.  To p reven t  a successful coin toss, the 
adversa ry  must be  capable  of prevent ing  a tem- 
porary  leader  f rom becoming persuasive.  As we 
argued in the p ro o f  of T h e o r e m  4, the acknowl- 
edgement  round prevents  any processor  f rom 
leaking in fo rma t ion  abou t  a pa r t i cu l a r  coin toss 
until  at  least n - t processors each receive n - t 
e n c r y p t e d  coin toss  messages. If n _> 6t, the  ad- 
versary m u s t  use the  contents  of  these  en c ryp t ed  
messages to p reven t  a t e m p o r a r y  leader  f rom be- 
coming persuasive.  If  he succeeds subs tant ia l ly  
more o f t en  than  he would by  guessing at  ran- 
dom, he  could use this capabi l i ty  to invert  the 
c ryp tosys t em.  [] 

As in the synchronous  case, it is possible to 
pe r fo rm key d is t r ibu t ion  as pa r t  of  the protocol ,  
a t  some cost in the  n u m b e r  of faul ts  to lera ted.  
Full de ta i l s  will a p p e a r  in the  final paper .  

6. Using A Weakly Global 
Coin In Achieving Consensus 

In this  sect ion we present  an  agreement  
a lgo r i thm which can be  imp lemen ted  using a 
weakly global coin. For  s implici ty o f  presenta-  
t ion, the a lgor i thm given here  is b inary  (reach- 
ing ag reemen t  on one bit) ,  and  is basically a 
modif ica t ion  of those in [Be] and [BT]. It can  
easily be ex t ended  to be  mul t iva lued  (reaching 
ag reemen t  on a r b i t r a r y  values) using the  tech- 
n ique of Turp in  and  Coan  [TC]. 
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First ,  we give an informal description of the 
algorithm, and then we give a formal descrip- 
tion. The algorithm is organized as a series of 
epochs of message exchange. Each epoch con- 
sists of several rounds. The round structure 
is provided automatical ly in the synchronous 
models. In the asynchronous models, the round 
structure is imposed locally by each processor, 
as was discussed earlier. In this case, reaching 
consensus in 'constant expected time', means 
that  each processor will complete the proto- 
col within a constant expected number of local 
rounds. 

We describe the algorithm for the proces- 
sor P.  (All processors run the same code.) 
Epoch and round numbers are always the first 
two components of each message. The variable 
CURRENT holds the value that  processor P cur- 
rently favors as the answer of the agreement al- 
gorithm. At the start  of the algorithm CURRENT 
is set to processor P 's  input value. In the first 
round of each epoch, processor P broadcasts 
CURRENT. Based on the round 1 messages re- 
ceived, processor P changes CURRENT. If it 
sees at least [n/2J + 1 round 1 messages for 
some particular value, then it assigns that  value 

to CURRENT; otherwise, it assigns the distin- 
guished value "?" to CURRENT. In the second 
round of each epoch, processor P broadcasts the 
new CURRENT. Next, the COIN TOSS subroutine 
is run. Based on the round 2 messages received, 
processor P either changes CURRENT again, or 
decides on an answer and exits the algorithm. 
Let ANS be the most frequent value (other than 
"?") in round 2 messages received by P.  Let 
NUM be the number of such messages. There 
are three cases depending on the value of NUM. 
If NUM ~ [n/2] + 1 then processor P decides 
on the value ANS and exits the algorithm. If 
In/2] _> NUM ~ 1 then processor P assigns the 
value ANS to the variable CURRENT and contin- 
ues the algorithm. If NUM -~- 0 then  processor P 
assigns the result of the coin toss to the variable 
C U R R E N T .  

Code for processor P 
1. p r o c e d u r e  AGREEMENT(INPUT): 
2. CURRENT +-- INPUT 
3. fo r  e +- 1 to  co do  
4. broadcast  ( e ,  1, C U R R E N T )  

5. receive (e, 1, , )  messages 
6. i f  for some v there are > [n/2J + 1 

messages (e, 1, v) 
7. t h e n  C U R R E N T  +-- V 
8. e l s e  C U R R E N T  +-- '~?" 
9. broadcast  (e, 2, CURRENT) 
10. receive (e, 2,*) messages 
11. ANS ~ the value v # "?" such. t h a t  

(e, 2, v) messages are most frequent 
12. NUM ~-- number of occurrences 

of (e, 2, ANS) messages 
13. C O I N  +- -COIN T O S S  
14. i f  NUM ~ [n/2J + 1 t h e n  decide ANN, 

broadcast ANS DECIDED and t e r m i n a t e  
15. e l se i f  NUM ~ 1 t h e n  CURRENT + - -  ANS 
16. else CURRENT +--COIN 

We make several remarks about the al- 
gorithm. COIN TOSS, depending on the fault 
model, is one of the protocols described earlier 
for producing a weakly global coin. In mes- 
sage descriptions, "*" is a wild-card character 
that  matches anything. The t e r m i n a t e  state- 
mcnt in step 14 hides a model-dependent detail. 
In the synchronous models, processors simply 
halt. In the asynchronous models, processors 
send four more rounds of messages, as though 
they were executing the for-loop a final time, 
but wi thout  bothering to recieve any messages. 
This is needed because, once the first correct 
processor decides and terminates,  the other cor- 
rect processors may not decide until the next 
epoch (as we argue below). The extra broad- 
casts are solely to insure that  these ' t a rdy '  pro- 
cessors receive a sufficient number of messages 
during each round of tha t  epoch. (Recall that  in 
the asynchronous fault models, processors must 
wait for n - t messages during each reception). 

Define value as a legal input to the algo- 
ri thm, either 0 or 1. Specifically, "?" is not a 
value. 

The following claims establish the desired 
properties of the agreement algorithm. 
L e m m a  6: During each epoch, conflicting val- 
ues are never sent in round 2 (step 9). 

Theorem 7 establishes tha t  our algori thm 
never produces a wrong answer and tha t  in each 
epoch there is at least one coin toss value tha t  
will terminate  the algorithm. 
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T h e o r e m  7: The algorithm has the following 
three properties. 

Validity: I f  value v is distributed as input  
to all processors, then all correct processors de- 
cide v during epoch 1. 

Agreement: Let  e be the first epoch in which 
a correct processor decides. I f  correct proces- 
sor P decides v in epoch e, then by the end of  
epoch e + 1 all correct processors decide v. 

Termination: In any epoch, e, there is at 
least one value which, i f  it is adopted by [n/2J + 
t + 1 processors executing the assignment in 
step 16, will cause all correct processors to de- 
cide by the end of  epoch e + 1. 

The terminat ion property guarantees that  
a weakly global coin will lead to a decision with 
constant  probability. The agreement property 
guarantees that  once a single processor decided, 
all others will decide in the next epoch, regard- 
less of the adversary behaviour. In particu- 
lar, this holds for the asynchronous, message- 
dependent  model, the one in which the adver- 
sary has the most power. The proofs follow by 
the techniques of [Be] and [CC]. We omit details 
here. 

7. Lower Bounds  
In this section we show that  our upper 

bound is almost optimal in a strong sense. We 
demonst ra te  a lower bound on the tail of the 
distribution of non-termination probabilities for 
any randomized agreement algorithm. This lower 
bound holds for the case of a non-adaptive ad- 
versary in the fail-stop model, and therefore in 
the stronger failure models as well. 

Let A be a randomized agreement algo- 
r i thm that  is resilient to t processor failures and 
never errs. Such an algorithm, together with the 
n input values and n (possibly infinite) 0 -  1 
strings (outcome of individual coin tosses) to- 
tally determine the behavior of each processor. 
Denote by qk the maximum probability, over 
all (non-adaptive) adversarial strategies, that  
does not  terminate  in k rounds (k _< t). 

T h e o r e m  8: qk > _ ' '  " - - "~(2 |~ | )  -k-  

Proof." Following the Dolev and Strong lower 
bound proof for deterministic agreement algo- 
rithms, we construct a chain S1, $2 , . . . ,  $m of 
partially specified executions in the fail-stop model. 

Each $i consists of k rounds, and it specifies tile 
identity of faulty processors, their failure time, 
and identity of receivers of their last round mes- 
sage. (Thus every St can be viewed as a strategy 
of a non-adaptive adversary).  These partially 
specified executions include the initial input val- 
ues to each processor. Together with the n coin 
tossing strings ~'= (cz, c2 , . . . ,  c~) ,  each Si gives 
a complete specification of an execution, which 
we'll denote by $[. For every if, the following 
properties hold: 
1) S~" ~ $i~-1 (i.e. both executions look the 
same for at least one processor which is non- 
faulty through the k-th round). 
2) If all processors agree in S(, then they must 
agree on the value 1. 
3) If all processors agree in $~, then they must 
agree on the value O. 

2 ~ k 4) 
We show that  qk _> 1 / m .  Substituting (4), this 
establishes the result. 

Assume to the contrary tha t  qk < 1/m.  
Then the probability (over all ~'s) that  ~ does 
not te rminate  in $ ( o r  in $~ . . .  or in $~ is 
at most  m ' q k  < 1. Hence the set of ff's for 
which A terminates in all $~" (1 < i < m) has 
measure > 0. For each ~ in this set, all cor- 
rect processors will decide on the value 1 in $~" 
(by property 2). Hence, by property 1, there 

is a correct  processor which will decide on the 
value 1 in $~, and therefore, by the agreement 
requirernent, all correct processors will decide 
on the value 1 in $~'. Carrying this argument  
inductively, it follows tha t  for all 1 < i < m, all 
correct processors will decide on the value 1 in 
$~'. But for i = m,  this contradicts property 3. 
[] 
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