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1. Introduction 

The news media often bombards the public with 

forecasts of election results. Polls predict, sometimes 

years in advance; exit polls are more accurate, and unoffi- 

cial tallies tend to be closer to the final results. If close 

elections are disputed, it may take the courts weeks to 

determine the actual outcome of an election. If the elec- 

tion is nearly unanimous, however, a few disputed votes 

can have no outcome on the final results. The time at 

which the final results may be known with certainty thus 

depends upon the accuracy of the forecast (the number of 

disputed votes), and the closeness of the election. 

In a network of processors, determining the out- 

come of an election quickly could have many advantages. 

For example, early motivation for agreement problems 

was that of several processors reading a single sensor, and 

voting on the value read [PSL80]. Under normal condi- 

tions, each processor would read the same value, and the 

election would be unanimous. Accurate forecasts would 

free the processors to act on the election results, even 

before the final returns were obtained. Only under 

increasingly unlikely conditions of multiple failure would 
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there be sustained disagreement about the election results. 

This paper explores the problem of forecasting elec- 

tion results quickly and accurately in a network of unreli- 

able processes. It presents synchronous protocols which 

forecast results with known accuracy, under a variety of 

failure assumptions. It is really a close examination of 

the Interactive Consistency problem [PSLS0], which is 

essentially an election, with the new feature of exploring 

the amount of partial information available during the 

course of the election. 

The protocols for restrictive failure models are 

similar to known solutions to the Interactive Consistency 

problem--for less restrictive (byzantine) failures, the pro- 

tocols are original, and introduce the notion of witnesses. 

This technique may be of use in the design of other proto- 

cols. All the protocols are simple to present and under- 

stand, and straightforward proofs of correctness are 

presented. 

The results presented here raise more questions 

than they answer, however. For the less restricted failure 

model, lower bounds are conjectured which match the 

behavior of the protocols presented, but known techniques 

for obtaining lower bounds do not extend directly. 

'Finer' techniques for examining the executions of proto- 

cols are needed. Even extending the protocols presented 

is a hard problem--showing that optimal use has been 

made of the witnessing technique would solve a fifteen 

year-old graph conjecture, if only in a restricted case! 

The remainder of this paper is organized as fol- 

lows. The rest of this section introduces the Election 

problem more carefully, and discusses its relation to 

Interactive Consistency in more detail. In the second sec- 
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tion, protocols for restrictive Stopping-Fault models are 

discussed. Authenticated protocols for byzantine failures 

are addressed in the third section, and the paper closes 

with a brief discussion. 

1.1. Network Assumptions 

The scenario consists of n processors, a subset of 

whom (the voters) each have a local value they wish to 

broadcast. Each processor is trying to collect the election 

results--a vote for each voter. 

We make several assumptions about the communi- 

cations network. It is fully connected, so that any proces- 

sor may send messages to any other. The network never 

loses or alters messages, and reliably identifies the sender 

of any message to the receiver. We bound the time it 

takes the net to deliver a message, and assume that the 

processors are themselves synchronized, so that protocols 

can be executed in synchronous rounds. During each 

round every processor p will: 

a) Send some messages (any number, to any processor), 

b) Receive all the messages sent to p this round, and 

c) Evaluate a decision function, which returns p's current 

best guess at the final election results. 

A synchronous election protocol tells each processor what 

messages to send each round (on the basis of messages 

received previously), and what decision function to use. 

Individual processors may fail (in a variety of ways) dur- 

ing a protocol execution, but in all cases the following 

assumption is made. 

k-Fault Assumption 

The number of processors which may suffer faults 

during a protocol's execution is bounded by a constant k. 

We consider protocols which are resistant to three dif- 

ferent types of failures: two types of Stopping-Faults, in 

which failed processors behave correctly until failure and 

then halt permanently, and Byzantine Failures, in which 

failed processors may behave arbitrarily, though we 

assume a secure authentication (signature) scheme. 

We are interested in protocols which take few 

rounds in the worst case; we would also like certain 

'well-behaved' properties to hold. Typically, this will 

mean that wrong forecasts can occur only for a failed 

processor's vote, and that the number of disputed votes is 

small. 

1.2. Elections and the Interactive Consistency Problem 

If we were not concerned about forecasting results, 

the Election problem we have described reduces to the 

Interactive Consistency problem [PSL80]. By allowing 

processors to commit outcomes early, accurate forecasting 

of election results may be important to specific applica- 

tions, especially those in which close elections are rare 

and time is important. 

Another reason for examining the Election problem 

is the light it sheds (or shade it produces) on the question 

of lower bounds on the time needed to reach agreement. 

A series of results have established ever stronger lower 

bounds for Byzantine Agreement and for the Interactive 

Consistency problem ([DLM82], [DS82], [FL82], [LF84]). 

These results depend upon a particular technique which 

does not extend to the Election problem. Whether or not 

the lower bounds conjectured here are correct, new tech- 

niques will be required to obtain lower bounds for the 

Election problems considered here. 

2. Stopping-Fault Elections 

Stopping-Fault describes processors with well- 

behaved failure characteristics. Stopping-Fault processors 

behave correctly until failure, after which they do noth- 

ing. The system failure characteristics depend upon the 

atomic actions of the processors--the indivisible steps dur- 

ing which no failure can occur. For example, if broad- 

casting is an atomic action, it is trivial to design an elec- 

tion protocol producing exact returns after only a single 

round. We consider the sending of a single message to a 

single recipient an atomic act. Depending upon a 

processor's control over the message-sending mechanism, 

there may still be different types of system behavior. In 

particular, we consider two cases, one in which each pro- 

cessor can determine the order in which messages are to 
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be sent each round, and another in which this order is not 

determined. These alternatives are referred to as 

Sequenced or Unsequenced Stopping-Fault processors, 

respectively. The difference affects the inferences about 

failure that processors can make--if Alice fails to receive 

a scheduled message from Bob, she knows he has failed. 

In the sequenced case, she knows that anyone scheduled 

to receive a message from Bob after her will not receive 

it, but in the unsequenced case everyone else may receive 

a message from Bob that round. 

The next section presents a simple election proto- 

col, and shows that it permits accurate forecasting as the 

election progresses. 

2.1. The Stopping-Fault Election 

Messages sent in this protocol have the form (p,v), 

where p is a processor name and v is a vote. The rounds 

of execution are numbered from 0 on, so that round j is 

actually the j +  l'st round of execution. The protocol fol- 

lows. 

Stopping-Fault Election 

Round 0 

Every voter p broadcasts (p,v), 

where v is p's vote. 

Round j, l<-j<-k 

Every processor broadcasts 

any new messages received 

during the previous round. 

Decision Procedure 

Each processor p does the following, 

for every processor q; 

If a message of the form (q,v) 

has been received, choose v as q's vote. 

Choose error otherwise. 

Because processors are Stopping-Fault, the decision pro- 

eedure will always be uniquely determined (there cannot 

be two messages of the form (p,v) and (p,u) sent during 

the same protocol execution). 

Theorem 1 

For Stopping-Fault (Sequenced or Unsequenced) 

processors, executions of the Notarized protocol satisfy 

the following properties: 

i) If p does not fail, every correct processor 

will choose p's value every round. 

ii) After round k, all correct processors 

have chosen the same values. 

iii) After round j ,  0 < j < k ,  values chosen 

for at most k - j  different processors 

are different from those eventually chosen. 

Proof 

Property (i) is clearly true. To see that (ii) and (iii) 

are true, note that there can only be disagreement on a 

value for a processor that fails during round 0. Note also 

that every processor receives the same messages during 

any round in which noone fails (all transmissions are 

broadcasts). More importantly, everyone has seen the 

same set of messages after such a round, and noone will 

later change any value. Then (ii) follows immediately. 

For any value to change after round j ,  there must there- 

fore have been at least one failure each round through 

round j.  This means at most k - j  processors could have 

failed during round 0, since there are at most k failures in 

all. [] 

For Unsequenced Stopping-Faults, Theorem 1 is as strong 

as possible; there are executions in which there is 

disagreement on as many as k - j  values after round j. It 

was conjectured for a time that this was a general lower 

bound for Unsequenced Stopping-Faults. As with all the 

failure models considered here, showing that there may 

be k disagreements after the first round is trivial, and 

k + l  rounds are necessary for total agreement, by the 
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known bound on Interactive Consistency [FL84]. Cynthia 

Dwork has shown, however, that agreement on at least 

k - 2  values is possible after round 1, when k>2 [D84]. 

Protocols achieving this small additional agreement are 

fairly complex, and it is not known if the techniques used 

can be extended to provide further early agreement. 

As we are about to see, the simple Stopping-Fault 

protocol allows earlier agreement in the Sequenced 

Stopping-Fault model. 

2.2. Sequenced Stopping-Fault Processors 

If processors can schedule the order in which mes- 

sages are sent during a given round, the Stopping-Fault 

Election can actually guarantee earlier agreement on more 

votes, although k+ 1 rounds are still required in the worst 

case (by a simple extension of the lower bound for 

Interactive Consistency in the unsequenced case). Exactly 

how much better is not known--deciding which schedules 

allow the strongest inferences is a difficult problem. 

Suppose every round each processor p sends first to 

p + k + l  (mod n), then to p + k + 2  (rood n) and so on. 

Call this scheduling a k-sequencing. We can show the 

following. 

Theorem 2 

Let k~-(r2+3r)/2, and n>(r+l)k .  Then after two 

rounds of the Stopping-Fault protocol, Sequenced 

Stopping-Fault processors using k-sequencing will disagree 

on no more than k - r  votes. 

The proof of this theorem shows that if more than 

k - r  processors fail in the first round, there will be agree- 

ment on more than k - r  votes after the second round. 

The k-sequencing is crucial to the argument. 

3. Authenticated Protocols for Byzantine Elections 

In this section we present protocols for systems in 

which processors may suffer byzantine failures--failures 

which can lead to arbitrary, even malicious behavior. 

The only limitation we make is that each processor can 

authenticate messages (e.g., using a digital signature 

scheme) in an unforgeable way. An authenticated proto- 

col is a Byzantine Election protocol if it satisfies conditions 

i-iii of Theorem 1, in the face of byzantine failures. 

When there is only one voter, these requirements are 

those for Byzantine Agreement on the voter's value, with 

the restriction that agreement be reached in at most k + l  

rounds, and with the addition of 'guesses' at every round. 

It is known that no such protocol takes less than k + l  

rounds to reach agreement, in the worst case 

([DS82],[DLM82]). 

3.1. Witnesses 

The idea behind both protocols presented below is 

that each processor p has an associated set of wimesses: 

these witnesses sign and forward messages containing 

values signed by p. More importantly, only forwarded 

information from appropriate witnesses is used to decide 

on a processor's vote. Witnesses are assigned a priori, in 

such a way that k liars (faulty processors) cannot simul- 

taneously lie about their own values and about the values 

of other liars. In the first protocol these witnesses do not 

themselves participate in the election; like notary publics, 

they participate only as witnesses. In the second protocol, 

processors act as both voters and witnesses. 

3.2. Notarized Election 

As indicated above, the processors in this protocol 

are divided into two sets: the voters and the wimesses. 

Any processor may suffer from a byzantine failure, 

though no processor may forge another's signature. We 

require there to be at least 2k witnesses--thus, at least k 

witnesses are correct. 

Definitions. A value signed by voter i is an i -vote.  A 

witness's signature of an /-vote is an affadavit for that i- 

vote. 

If there are 2k witnesses, the following protocol 

satisfies the Byzantine Election requirements for any 

number of voters. 
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Notarized Election 

Round 0: 

Each voter signs and broadcasts his vote. 

Witnesses send no messages. 

Round j ,  l<-j<--k: 

Voters send no messages. 

Every witness w does the following: 

For every voter i 

Any /-vote with j - 1  or more 

different affadavits is valid. 

Sign any new valid /-votes, 

producing new affadavits. 

Broadcast every valid /-vote or affadavit 

for a valid /-vote that was not 

broadcast by w in earlier rounds. 

Decision Procedure for Round j,O<--j<--k 

If processor p has received exactly one /-vote 

with at least j different affadavits 

(counting his own, if p is a witness) 

then p chooses the value signed as i 's vote. 

Otherwise p chooses error as i's vote. 

Lemma 1 

In any execution of  the Notarized Election, if any 

processor q receives an affadavit with p ' s  signature for 

some /-vote v by the end of  round j ,  1 <-j<k, then one of  

the following is true: 

i) p is. faulty, or 

ii) every processor receives k 

different affadavits for v 

by the end of round j +  1. 

Proof 

If p is not faulty, then the affadavit received by q 

was originally broadcast by p,  along with the /-vote and 

at least i - 1  other affadavits, during some round i, i<_j. 

There must be at least k correct witnesses, each of whom 

receive this broadcast, and for whom v is thus valid dur- 

ing round i + I .  Thus (ii) is true. [] 

Lemma 2 

In any execution of  the Notarized Election, if any 

correct processor p changes its guess for some processor i 

after round j ,  O<-j<k, then at least j witnesses are faulty. 

Proof 

The lemma is trivial for j = 0 .  Suppose j > 0 ,  and 

some correct processor p chooses a value for i after round 

j that is different from some value chosen at a later 

round. Then p has chosen a value v or error, and later 

changes the value to another. There are three cases; 

Case 1: Processor p chooses v after round j ,  and later 

agrees on a different value u. Since (ii) of  Lemma 1 is 

false, the j signers of the affadavits for v are faulty. 

Case 2: Processor p chooses v after round j ,  and during r 

agrees on error. Possibly p never receives more than j 

affadavits for v or any other /-vote, and chooses error for 

this reason. Then the j signers of the affadavits he now 

holds are faulty, by Lemma 1. The other possibility is 

that p later receives more than j affadavits for at least 

two /-votes, one of  which contains a value u different 

from v. Either all of the witnesses signing these affadav- 

its are faulty or choose the first correct processor q to 

sign u. This must happen after round j ,  so q has at least 

j affadavits from faulty processors. 

Case 3: Processor p chooses error after round j ,  and 

later chooses a value v. Suppose p chooses error because 

he has no adequately witnessed /-votes. Later p has more 

than j affadavits for v. The witnesses for these affadavits 

are either all faulty, or some correct witness first signs v 

after round j ,  so that at least j of  the affadavits seen by 

this witness are signed by faulty processors. The other'  
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possibility is that p chooses error after round j because of 

having at least two adequately witnessed /-votes. Since p 

later has only one adequately witnessed /-vote, by Lemma 

1 the witnesses for at least one of the two are faulty. [] 

Theorem 3 

If there are at least 2k witnesses, the Notarized 

Election is a Byzantine Election protocol. 

Proof 

First we must show that there is never any 

disagreement on correct processor's votes. Each correct 

processor i broadcasts an /-vote containing his value dur- 

ing round 0, and signs no other values at all during the 

protocol. Thus there can be at most one valid /-vote 

received by any processor in any round. Since at least k 

of the witnesses are not faulty, they will each receive this 

/-vote during round 0, and rebroadcast it with their affa- 

davit during round 1. Thereafter,  every processor will 

have received at least k different affadavits for that i- 

vote, so the appropriate value will be chosen as i's vote 

each round through round k. 

Next, we show that all correct processors have 

reached byzantine agreement on every vote after round k. 

Suppose two processors r and s disagree on i's vote. 

Then one, say r, must have chosen a value v, while s has 

chosen error or a different value, u. In any case, one of 

the two has received some /-vote with k affadavits and 

the other has not. Then all k of the witnesses signing the 

affadavits are faulty--otherwise, they would have for- 

warded the /-vote and affadavits to both r and s, not just 

one of the two. But i must be faulty, too, since there is 

never disagreement on a correct processor's value. This 

is a total of k4-1 faults, contradicting the k-fault 

hypothesis. 

Finally, we show that after round j ,  for O<-j<k, 

final agreement is reached on max(O,]voters[+j-k) 

values. If any value at all is changed after round j ,  there 

are j faulty witnesses, by Lemma 2. Thus there are at 

most k - j  faulty voters. Since values for correct proces- 

sors are never changed, the result follows. [] 

3.3. Mutually Verified Election 

The Notarized protocol required the presence of 2k 

processors who act only as witnesses. This may be incon- 

venient or expensive for many applications. What if 

every processor ~ s h e s  to participate in the election? The 

following presents a Byzantine Election protocol for 

n>k(k+ 1) processors, in which all processors vote. 

Definitions. Numbering the processors from 1 to n, for 

n >k(k + 1), we designate the processors 

i+1 .. . . .  i+k+j(mod n) as j-wimesses for processor i. 

As before, an /-vote is a value signed by i. A 

j-affadavit for an /-vote is the signature by a j-witness of 

that /-vote. For each j from 1 to k, construct Gi, the 

digraph with n nodes and k+j  arcs from each node to it's 

j-witn esses. 

Mutually Verified Election 

Round 0: 

Each processor signs and broadcasts his vote. 

Round j , l  <-j<_k: 

Every processor w does the following. 

For  every processor i: 

A n y / - v o t e  or more different 

j-affadavits is valid. 

Sign any valid /-vote that was not valid 

in previous rounds. 

If there are no valid /-votes, or w is not 

a j-witness for i, send nothing. 

Else broadcast all of the / -vo tes  

and their j-affadavits that have 

not been broadcast by w in earlier rounds. 
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Decision Procedure for Round j,O<-j<--k 

If processor p has received exactly one 

/-vote with j or more different j-affadavits 

(counting his own, if p is a j-witness for i) 

then p chooses the value signed as i's vote. 

Otherwise, p chooses error as i's vote. 

Lemma 3 

The shortest cycle in G 1 has length greater than 

k - j+  1. 

Proof 

Picture the nodes of G 1 on a circle--each node con- 

nected to the next k+j in the clockwise direction. Start- 

ing at any node, the farthest around the circle one can get 

following a single edge is k+j nodes. Any cycle must go 

completely around the circle, so the number of nodes in 

the cycle, times this maximum 'distance' covered by a sin- 

gle edge, must be at least n. Since n>k(k4-1), the result 

follows. 

Lemma 4 

Among any subset S of k processors, at most k - j  

have j or more j-witnesses in S, for l<-j<-k. 

Proof 

The lemma follows if any k-node subdigraph of Gj 

has at most k - j  nodes with outdegree j or more. Sup- 

pose that k - j  + 1 nodes in some k-node subdigraph G' of 

G 1 have outdegree at least j .  Then there is a cycle of 

length at most k - j +  1 in G',  and so in Gj, contradicting 

Lemma 3. 

terBma 5 

In any execution of the Mutually Verified Election, 

if any correct processor p changes its guess for some pro- 

cessor i after round j, O<-j<k, then at least j of the j-  

witnesses for i are faulty. 

Proof 

By a case analysis similar to that in Lemma 2. 

Theorem 4 

If n > k(k+l) ,  the Mutually Verified Election is a 

Byzantine Election protocol. 

Proof 

Every correct processor signs and broadcasts a sin- 

gle value during round 0; furthermore, each correct pro- 

cessor has at least j correct j-witnesses. Thus, there will 

never be any disagreement on correct processors' values. 

Now we argue that Byzantine Agreement is 

reached on every vote at the end of round k. Two proces- 

sors r and s can disagree on some value for i only if one, 

say r, has received an /-vote with k k-affadavits that s has 

not received. Then each of these k k-witnesses must be 

faulty, along with i itself, contradicting the k-fault 

hypothesis. 

Finally, we must show that after round j ,  for 

O<-j<-k, final agreement is reached on at least n + j - k  

values. Suppose this is not the case; that after round j of 

some execution, for each processor i among some set S of 

k - j + l  processors there is a correct processor who will 

later choose a different value for i than the one currently 

chosen. Since the values chosen for correct processors 

never change, each processor in S is faulty. By Lemma 3, 

the subdigraph of G 1 generated by S has no cycles. Thus 

there must be a processor i in S such that every j-witness 

for i is not in S. By Lemma 4, i has at least j faulty j-  

witnesses; the j faulty witnesses for i, together with the 

k - j + l  members of S, contradict the k-fault assumption. 

[] 

3.4. Other Byzantine Election Protocols 

Neither the Notarized Election nor the Mutually 

Verified Election will work for general networks of 

processors--the one requires 2k witnesses, the other 

requires that there be more than k(k+l)  voters. While 

one can trade-off witnesses against the total number of 

voters by-combining tricks from both protocols, this will 

not produce a completely general algorithm. It is possible 

that an execution-dependent choice of witnesses (replacing 

the fixed k-witnesses of the Mutually Verified protocol) 

might produce a completely general protocol--this possi- 
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bility is under investigation. 

Another possiblility is that a better fixed assign- 

ment of witnesses might be possible in the Mutually Veri- 

fied .protocol. Translated to a graph problem, and res- 

tricted to just the second round of the protocol, we need 

to know the following; is there a digraph on n<-k(k+l) 

vertices, such that each node has outdegree k + l  and 

there is no cycle of size less than or equal to k? A nega- 

tive answer is a restricted case of a fifteen year-old con- 

jecture ([BT81])r 

Conjecture 

If D is a digraph of degree at most dr, such that 

every vertex has outdegree r or more, then D contains a 

cycle of length at most d. 

The best known result is that there is a cycle of length at 

most d+ 2500 [CS83]. This is an indication of the diffi- 

culties encountered in designing good election protocols, 

and in attempting to di~over strong lower bounds to 

match. 

4. Lower Bounds 

This paper has conjectured the optimality of the 

two Byzantine Election protocols--that no protocols can 

forecast more accurate returns more quickly, in the 

byzantine failure model. For the first round, it is obvious 

there may be disagreement on as many as k votes, and 

after k rounds the bounds for Interactive Consistency 

show there is at least one vote of disagreement, in the 

worst case. It is interesting to note that the processors 

cannot all know on which votes they disagree--for then 

they could all pick a default value, and achieve Interac- 

tive Consistency too early. 

These bounds for the first and kth round also hold 

for the Stopping-Fault failure models, but in these cases 

more votes can be accurately forecast early in the elec- 

tion. How many more votes can be forecast, and how 

early? Theorem 2 suggests about Vk more votes can be 

forecast after two rounds, but nothing more is known. 

This is as far as known results and techniques go. 

Lower bounds for Interactive Consistency depend cru- 

dally on the requirement that total agreement be reached 

among the participating, failure-free processors. Crudely, 

this means that one can reason: "If Alice saw X and Bob 

saw Y, then if Bob saw Y and Carol saw Z, Carol would 

have to choose what Alice chose when she saw X, since 

Bob will choose the same values and they must both agree 

with him." This reasoning is not valid in our setting, as 

both Alice and Carol are free to disagree a little with 

Bob, and thence perhaps completely with each other. 

Thus a relation which is transitive when everyone must 

always agree is no longer transitive, and the known tech- 

niques do not extend directly. 

Whence from here? The Sequenced Stopping-Fault 

model may have useful applications, and should be inves- 

tigated further. The problem of choosing an optimal 

broadcast sequence for this or other interesting problems 

appears hard, however. 

Proofs of the lower bounds might provide interest- 

ing tools, and constructive disproofs would provide faster 

protocols. Both would increase our understanding of 

"what we know that he knows that you know that they 

know about what we all know!" 
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