A Specification and Verification of Intermittent Global
Order Broadcast

by
Catherine A. Matlon

Submitted to the Department of Electrical Engineering and Computer Science in parital fulfillment
of the requirements for the degrees of

Bachelor of Science
and

Master of Engineering in Computer Science and Engineering

¢ th MASSACHUSETTS INSTITUTE
at the OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUL 2 0 2004

May 2004~ _ LIBRARIES

Juwnma 2o

The author hereby grants to M.I.T. permission to reproduce and distribute publicly paper and
electronic copies of this thesis and to grant others the right to do so.

AUthor . o e
Department of Electrical Engineering and Computer Science

May 20, 2004

Certified by e
[J ! g Nancy A. Lynch

Professor

Thesis Supervisor

Certified by /- P S e T e e
. . Roger I. Khazan
— /—-7 ey) Research Staff
' “Thesis Supervisor
\"——“-——-.v

Accepted by.............. W’ “ k_,//‘/// R P REITEEE

- Arthur C. Smith
Chairman, Department Committee on Graduate Students

This work is sponsored by the United States Air Force Contract F19628-00-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the author and are not necessarily
endorsed by the United States Government.

 ARCHIVES |~

A Specification and Verification of Intermittent Global Order Broadcast
by
Catherine A. Matlon

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2004, in partial fulfillment of the
requirements for the degrees of
Bachelor of Science
and
Master of Engineering in Computer Science and Engineering

Abstract

The goal of my thesis is to specify, model and verify intermittent global order broadcast. Broadcast
means that every process in the system receives a copy of every message. Global order means that
all processes deliver the messages in the same order. Intermittent global order means that global
order holds during periods of stability and there are no guarantees during periods of instability. A
group of processes is stable if each process can communicate with each other process with some
minimal quality of service and no process can communicate with another process outside the group.

Intermittent properties, such as intermittent global order, are useful for certain collaborative ap-
plications operating in dynamic environments. They help balance conflicting needs for the different
applications. We want to be able to formally specify intermittent properties in order to precisely
express the guarantees provided by these applications and to be able to verify the algorithms im-
plementing these properties. Because the guarantees hold intermittently, simply stating a definition
and building a state-machine specification for an intermittent property is non-trivial. The same is
true about verifying that an algorithm satisfies an intermittent property. Existing specification and
verification techniques may need to be adjusted.

Acknowledgments

I'm incredibly grateful to Roger Khazan for his patience and insight. We’ve shared numerous in-
tellectually provoking conversations throughout the course of this project. Special thanks also to

Nancy Lynch for introducing me to Roger and helping me find such a rewarding research opportunity.

I'd also like to thank my wonderfully supportive family for all the encouragement they’ve given
me over the years. There’s nothing so rewarding at the end of a hard semester as a relaxing visit
with a warm and loving family. Thank you for straightening out my priorities when I seemed to lose

track of the real world.

Special thanks also to my incredibly tolerant roommate Samantha. I can’t believe she’s put up
with all of my daily idiosyncrasies for so long. It hasn’t always been easy, but she’s been incredibly
helpful and supportive throughout the last five years. Best of luck to her in her new career as we

both finally move on to the next big stage in our lives.

Contents

1 Introduction
2 Formal Framework

3 Global Order Broadcast

3.1 GOB Specification
3.1.1 Overview
3.1.2 GOB Automaton
3.2 Logical Time Specification
321 Overview L e
3.22 LT, Automaton
3.23 FIFO Automaton
3.3 Intermediate Specification
3.3.1 Overview
3.3.2 GBI Automaton
3.4 Proof that GBI Spec implements GOB Spec
3.5 Proof that LT Spec implements GBI Spec
3.5.1 Lemma and Invariants Lo
3.5.2 Mapping and Simulation oL

4 Intermittent Global Order Broadcast

4.1 Formal Definition
4.2 Specification L
421 Overview
422 IGOB Automaton
4.3 Intermittent Logical Time Specification
4.3.1 Overview
4.3.2 ILT, Automaton

4.3.3 COFIFO Automaton 45

4.4 Intermediate Intermittent Global Order Broadcast Specification 46
441 Overviewo 46

4.42 IGBI Automaton 47

4.5 Proof Overview 48
4.6 Proof that IGBI Spec implements IGOB Spec 48
4.7 Proof that ILT Spec implements IGBI Spec 52
4.7.1 Lemma and Invariantso Lo o 52

4.7.2 Mapping and Simulationo 57

4.7.3 Dealing with late messages L. 62

5 Connection Manager 66
5.1 How it works L 66
5.2 Properties L e e 68

6 Conclusion 71

List of Figures

1-1
1-2

4-1
4-2
4-3

A high-level diagram of the Robust Chat System architecture 8
Alice, Bob and Carol example 9
Stability Example L 39
Connected Example 39

A model of the ILT automaton with all of the transitions between different component

automata displayed. L. 46
Example of ’late discrepancy L. 63
Internal Connection States.o 67
External Connection States 68
Timing Example0 o 69

Chapter 1

Introduction

The Information Systems Technology group at MIT Lincoln Labs is currently working on a project
informally known as “Robust Chat” (RC) [5]. This project is motivated by the need for robust
collaboration systems in dynamic, mission-critical environments. For example, suppose there are
several aircrafts flying around as well several separate ground control stations and they would all
like to communicate with each other. During a battle, it may be difficult for messages to get through
to all recipients. Many communications may be lost or delayed. RC is designed to operate in such an
environment. One of the goals of this project is to create a communication system that will balance
the needs for global consistency and low latency. Intermittent global order broadcast (IGOB) is one
of the properties of the prototype system to achieve this balance.

The RC system is built with several layers. At the top there is a chat server that communicates
with remote chat clients. This layer is responsible for the graphical user interface. Beneath that there
is a special broadcast server that handles communication with other sites. The broadcast server is
composed of ILT and COFIFO algorithms as well as a connection manager. The ILT (Intermittent
global order broadcast based on Logical Time) implementation is responsible for broadcasting the
messages sent by its clients and ordering the messages received from other clients. This section will be
the main focus of this thesis. Next, there is a set of connection-oriented first-in-first-out (COFIFO)
channels that enqueue messages for delivery. There is one COFIFO channel for each sender-receiver
pair. The COFIFO layer is responsible for ensuring that all messages are received by the process at
the other end. This layer also deletes enqueued messages when the process at the other end has been
disconnected for an extended period of time. At the same level, there is also a connection manager
that is responsible for detecting connection qualities and passing that information on to the COFIFO
algorithm and the algorithm for implementing IGOB. This module can be customized by the client
to create different standards for different classifications of the connection qualities. Finally, at the

bottom, there is a communication channel with a TCP-like protocol used for the actual transmission

of messages. Other transfer protocols may be used as long as they can implement a first-in-first-out

property. All of this is outlined in Figure 1-1.

Chat Clients Chat Clients
Chat Server Chat Server
Generic Broadcast 4 Generic Broadcast 4
Service] Service L 4
ILT Algorithm ILT Algorithm

N ™.

Connection Connection
COFIFO Manager ! COFIFO % Manager

a/ _. TCP Channel T
0

Figure 1-1: A high-level diagram of the Robust Chat System architecture

T ——

For my thesis, I am contributing to the RC project by developing the theory for intermittent
global order broadcast (IGOB). IGOB is a special property for message ordering in a dynamic
environment. Imagine that an airplane and two different ground crews are involved in a discussion
in a chat room. The connections between the airplane and the ground may be erratic due to the
mobility of planes, attacks, obstructions or other physical factors. Likewise, the communication
between the two ground crews may also experience some problems. The three different sites would
still like to have a fairly consistent view of the conversation. Specifically, each individual site would
like to see the same messages with the same ordering as the other sites. However, if this is a rigid
requirement, there may be arbitrarily long message latencies. To illustrate why this may happen, say
that Alice and Bob are at the two different ground sites, while Carol is flying around in an airplane.
If Carol gets a message through to Bob and then loses contact with Alice, she can’t send her message
to Alice until she reconnects. However, during this time, Alice wants to be able to receive messages

from Bob. But since Bob has already seen Carol’s message, Alice needs to wait to receive Carol’s

message before she can read Bob’s messages. Otherwise the order in which Alice views messages
would be different from the order in which Bob and Carol view the messages. Depending on the
precise algorithm used to implement global order broadcast, different but similar situations may
arise. There is no global order broadcast implementation that guarantees perfect ordering without

arbitrarily long latencies like the one just presented.

Figure 1-2: Alice, Bob and Carol example

Clearly this is an undesirable situation. Therefore, when the communication channels are unre-
liable, one would like to loosen the requirements on the message ordering. In the previous example,
it would be nice if Alice and Bob could continue to communicate with each other and disregard
Carol until she is able to re-establish communication channels with each of them. However, as long
as the connections are operating well, one would like to be able to guarantee that Alice, Bob and
Carol all see the same messages in the same order. This is roughly how intermittent global order
broadcast works. Formally, the specification does not require any guarantees while connections are
unstable. But once the connections are stabilized, the different parties must eventually agree on a
global ordering for all the messages.

There are other also other methods for weakening global order. The Robust Chat system uses
a very lightweight protocol that requires a minimal amount of communication. Therefore, one can
only prove that globally consistent ordering will eventually hold after all of the connections stabilize.
There are other methods that may require additional synchronization. These methods may guarantee
global order starting from the end of a synchronization round until a process disconnects.

Although there are many different techniques for handling a dynamic environment, there has
been little formal work done in the area of specifying and verifying intermittent properties. Speci-

fication i1s important because it allows us to clearly define what it means to fulfill an intermittent

property. The possible limits of a system are much easier to understand once the specification is
complete. Verification helps to ensure that a system fulfills a specification. Also, the process of
verifying a property typically leads to a greater depth of understanding of how the system behaves.
This is because the verification must extend to all possible executions of a system. For example,
while verifying intermittent global order, issues of lateness and symmetry arose. Lateness refers to
messages that are delivered out of order. In the scenario above, when Carol reconnects and sends
her message to Alice, Alice will view that message with a special 'late marking to signal that it was
delivered out of order. Connectional symmetry refers to clients at both ends of a channel agreeing on
their connection quality. Because the system is asynchronous and distributed, there are situations
where Bob may see a brief disconnected from Alice, but Alice does not consider herself disconnected
from Bob. Verification of intermittent global order broadcast led to a much fuller understanding of
these other issues.

My first step is to create a formal specification for IGOB and model it as a state machine/
automaton. This is a useful computational model that makes it easier for us to reason about which
behaviors fulfill the requirements of IGOB. Then, I will model the distributed system developed
in the RC project as a composition of state machine components. This places the RC system in
the same format as the IGOB specification and allows greater insight into the possible executions.
Finally, I will prove that the model of the distributed system satisfies the IGOB specification using a
technique known as a simulation proof. Informally speaking, a simulation proof guarantees the the
externally visible behavior of the RC system is indistinguishable from the externally visible behavior

of the IGOB specification.

10

Chapter 2

Formal Framework

The techniques used here require all algorithms and properties to be specified with an input/output
automaton (IOA). The formal framework for an TOA presented here closely follows chapter 8 of [2].
An automaton A is a special computational structure sometimes also referred to as a state machine.
The state of A contains all the values of any variables that may affect the transitions of A. There are
also actions (acts(A)) the automaton may take in order to transition between the different states.
IOA are convenient for modelling distributed systems for a variety of reasons. This model is ideal
for asynchronous systems where each component may work at a different speed.

An automaton A consists of five components:

e sig(A), the signature of A, which is a list consisting of all the actions A may take.

e states(A), the set of states of A, which may be infinite.

e start(A), a non-empty subset of states(A), which contains all of the valid start states.

e trans(A), the transitions of A. A transition is a triple (s, m, s’) of two states and an action. For

every state s and action 7, there is a (s, 7, s’) in trans(A).

o tasks(A), a task partition, which is an equivalence relation on the output and internal actions

and breaks them down into countably many equivalence classes.
A transition can be notated as an action name with parameters, preconditions and effects. The

preconditions describe in which state the action is legal or enabled. For example, say an automaton

is designed to control a bank account. If a person wants to withdraw ten dollars from their account,

11

a precondition for the withdraw(10) action will require that the account have at least ten dollars in
it. The effects describe exactly how the state variables should be altered to reflect the changes made
by the action. So using the same example, an effect of withdraw(10) would be reducing the value of
the account by ten dollars. There are three types of actions: input actions (tn(S)), output actions
(out(S)), and internal actions (in¢(S)), where S is the signature of A. So in our banking example,
an input action could be a request for account information, an output action would be the ATM
displaying the account information, and an internal action would be the bank automatically adding
interest to the account at the end of the day. Input actions are externally controlled and must be
enabled at all times. For example, a client should always be able to request account information.
Internal and output actions are controlled by the automaton. Fzternal actions are input or output
actions, so named because they are visible to an outside observer of the automaton.

An ezecution fragment is a list of alternating states and actions sg, 71, $1, 72, S2,... in which
for every k > 0, (Sg, Tk+1,Sk+1) € trans(A). An ezecution is any execution fragment where sy €
start(A). Executions may be infinite, but every finite execution must end with a state. A reachable
state of A is any state that may be the final state of a finite execution of A. The trace of an execution
of A is the subsequence of the execution that consists only of the external actions. So in the banking
example, the trace would show only the requests for account information and the displaying of the
account information. Updates from additional interest would not be included.

The equvalence classes of tasks represent different threads of execution. The idea is that during
a fair execution, each equivalence class gets a fair number of turns to perform a step. If an execution
lasts forever, each equivalence class must get an infinite number of chances to perform. With this
requirement, we can prove that something will eventually happen. For example, if one automaton
sends a message to another automaton, fairness requires that the message will eventually be received.

Different automata can be combined to form a single automaton through a process called com-
position. This can be useful in an environment where we want to use different automata to model
different aspects of the system. For example, if Alice and Bob are sending messages to each other,
there may be one automaton for Alice, one for Bob, and one for the communication channel in
between them. This makes the automata easier to write and understand. In order to compose

automata, they must be compatible. A set of signatures S; is compatible if:

o int(S;) Nacts(S;) =0Vi # j

e out(S;) Nout(S;) =0Vi#j

e No action belongs to infinitely many acts(S;)

12

Once a set of signatures is compatible, we can define a composition of the corresponding au-

tomata with the following definition. The composition A = [],.; is defined as follows:

o 5ig(A) = [Le; sig(As)

o states(A) = [];¢, states(A;)

o start(A) = [];c; start(A;)

e trans(A) = the set of triples (s, m, s’) such that for all ¢ € I, if 7 € acts(4;), then (s;,7,s}) €

. 3 3 — ’
trans(A;); otherwise s; = s/

o tasks(A) = J;c tasks(A;)

If there are output actions that we don’t want to include in the external trace, there is an option
for hiding them. We may want to do this if we are composing automata, and the output action of
one corresponds to the input action of another. In this case, these external actions are actually being
used for internal communication between different components. Thus, we don’t want to include these
actions in the external trace. Formally, if S is a signature and ® is an output action, then hideg(S)
is the new signature S’ where in(S’) = in(S), out(S’) = out(S) — @, and int(S’) = int(S) U P.

An TIOA can be used to define a specification. In this situation, the IOA is designed to generate
exactly traces that fit the specification. Then, we can show that some other algorithm fulfills the
specification by proving that an automaton that models the algorithm implements the specification
automaton. Automaton A implements automaton B if all traces generated A are also traces gener-
ated by B. So if B is a specification automaton, we know that A can only generate traces that fulfill
the specification. Once both the specification and the algorithm are modeled as automata, we can
prove that the algorithm implements the specification by using a simulation proof. The simulation
proof is based on the idea of trace inclusion. Trace inclusion means that the set of traces that may
be produced by the algorithm is a subset of the traces that may be produced by the specification.

Generally speaking, a simulation proof works by creating an abstraction that maps states of the
algorithm automaton to states of the specification automaton. One must show that this abstraction
function is true for all reachable states of the algorithm. Showing that the abstraction function
is valid requires two steps. First, one must prove that the initial states of the algorithm map to
valid initial states of the specification. Then one must show that each transition in the algorithm
corresponds to some sequence of transitions in the specification in such a way that preserves the

abstraction function. Furthermore, if a transition 7 in the algorithm corresponds to the sequence

13

of transtions in the specification, then both 7 and 8 must create the same external trace and
must be enabled whenever 7 is enabled. Abstractly, it is good to think of a simulation proof as a

proof by induction similar to that used in mathematics.

Theorem 2.0.1 A implements B in the sense of trace inclusion if there is an abstraction function

f that maps states of automaton A to states of automaton B with the following properties:

1. If s € start(A), then f(s) N start(B) #0

2. If s is a reachable state of A, u € f(s) is a reachable state of B, and (s, w,s’) € trans(A),
then there is an exzecution fragment a of B starting with u and ending with some u’ € f(s'), such

that trace(a)=trace(r)

During the course of a proof, when reasoning about a transition, the only thing that one can
assume is that the transition begins in a reachable state of the automaton. Therefore, the only
information that can be used during the simulation proof is information contained in the state. In
order to make this viable, it is usually necessary to have some invariants. Invariants are properties of
the state that hold in every reachable state of the automaton. Invariants can be proved by induction
on the length of the execution sequence. One must show that the invariant holds in the initial states
and that, given a reachable state that satisfies the invariant, all transitions from that state preserve
the invariant.

Sometimes an automaton discards information that is no longer relevant. Occasionally, it would
be nice to still have access to that information in order to prove invariants. For example, say there is
a special savings account where no money is withdrawn but interest is compounded monthly. Each
month, the automaton deletes the previous value of the account and replaces it with a new value.
One might want to prove that the value of the account is always increasing by a larger amount each
month. However, proving this requires knowing the previous account values. Therefore, we may
introduce what is known as a history variable. A history variable [6] is some additional state variable
that records information that is not necessary for transitions. Keeping the additional information
should not affect the trace of the automaton in any way. Formally, a history variable must satisfy

the following constraints:

e Every initial state has at least one value for the history variables.

¢ No existing transition is disabled by the addition of predicates involving history variables.

o A value assigned to an existing state component does not depend on the value of a history

variable.

14

Chapter 3

Global Order Broadcast

Before we jump into Intermittent Global Order Broadcast, it is important to have an understand-
ing of how message ordering is handled when communication is perfect. Furthermore, the IGOB
specification will be based on the GOB Specification. In GOB, there are no disconnections or even
temporary loss of communication. In this situation, it is simple to assure total ordering on all mes-
sages all of the time. This is referred to as global order broadcast (GOB). Another key motivation
for analyzing the case with ideal connections is proof reuse. Proving that an algorithm based on
logical time implements intermittent global order broadcast is very similar to proving that a logical
time algorithm implements global order broadcast. Later there will be an analysis of the differences
between this situation and the dynamic situation.

Suppose Alice is chatting online with a group of friends and they are all in the same chat room.
There are some basic properties Alice would like to assume. First, Alice would like to think that all
of her friends can see all of the messages she sends. In turn, she would like to see every message sent
by her friends. It would also be nice if everybody viewed the messages in the same order. These are
some of the properties of global order broadcast.

When a process broadcasts a message, this means that it sends a copy of that message to every
process with which it is currently communicating, including itself. In a broadcast system, every
process will receive all the messages sent by every other process. There are many different ways to
implement a broadcast. One possible algorithm could simply deliver messages to the user in the
order that they are received. Another algorithm may hold the messages and deliver them to the
user in some special order. This is the case in global order broadcast. A thorough compilation and
analysis of different methods for achieving global order broadcast can be found in {1].

Global order broadcast means that every process delivers all the messages in some globally consis-
tent order. This property is vital when users need to have a consistent view of the communications.

For example, say that Alice, Bob and Carol are playing a video game where they can shoot at each

other and move around. If Alice shoots at Bob and Bob moves at the same time, Bob could either
get shot or dodge the bullet depending on the ordering of these two actions. Regardless of what
happens, the important thing about the outcome is that Alice, Carol and Bob must all agree on
whether Bob was able to escape the bullet or not.

One could easily imagine many other situations where global order is an essential property.
Consider a military setting where Alice is trying to count the number of enemy tanks in some
region. Say she initially spots five tanks and reports that number back to her commanding officer.
Then she spots five additional tanks a few minutes later and reports that there are ten tanks total.
Then suppose she realizes the tanks are moving around and some of the new tanks were also part
of the initial five she reported, so there are actually only seven tanks total. If different recipients
receive her messages in different orders, some may think that the final count is seven tanks while
others think there are ten tanks. This is especially bad if there are different protocols to follow based

on the number of tanks spotted.

3.1 GOB Specification

3.1.1 Overview

Here we specify global order broadcast with an input-output automaton (IOA). The purpose of
this IOA is to make an automaton that may create all possible traces that have the Global Order
property. This specification works by placing all messages sent by any process in a GlobalQ. Now
when every process retrieves messages by reading them in order off the GlobalQ), it guarantees that

every process delivers the same messages in the same order.

16

3.1.2 GOB Automaton

Automaton GOBroadcastSpec| 2, M |, where € is a set of processes and M is a set message alphabet

Define first(queue) to be the first element in the queue

Define queue[i] where i€ Z* to be the it* element in the queue

Signature:

Input: sendp,(m), Process p € §2, Message m € M
Output: deliver,(m), Process p € Q, Message m € M
Internal: order(p), Process p € Q

States:

Vp € 2, message queue SendQ),, intially empty
GlobalQ, message queue, intially empty

Vp € (1, integer next,, initially 0

Transitions:

input send,(m)
effects: append m to SendQ,

internal order(p)

preconditions: first(SendQ,) # null

effects: append first(SendQ,) to GlobalQ
remove first(SendQp)

output deliver,(m)
preconditions: (m) = GlobalQ[next,|
effects: next, := next,+ 1

Tasks:

For every p € 1, {order(p)}
For every p and q € 2, {deliver,(m), m € M}

17

3.2 Logical Time Specification

3.2.1 Overview

A fundamental method for ensuring global order is based on logical time due to Lamport [3]. It
works by stamping each message with a logical time that creates a total ordering on all messages
exchanged within a group of processes. A logical time consists of a pair of numbers. The first number
represents the progress of the internal logical clock of a process. A process increments its logical
clock every time a message is sent or received so that no two messages sent by the same process will
have the same logical clock value. The second number is the unique identification number for that
process. Now a total ordering is obtained by sorting messages by the first number and using the
second number to break ties.

The logical time algorithm at some process p works by collecting all the messages it receives into
a special received, set. From there, a message m is removed from received, and delivered to the
client when it has the smallest logical time of all the messages in received, and there is no chance
that p will receive a message with a smaller logical time stamp later. Process p knows it will never
receive a message with a smaller time stamp when it receives verification from all other processes
that their logical clocks have advanced beyond the logical clock value stamped on message m.

In order to improve latency, processes also periodically send out special 'heartbeat messages.
These messages simply communicate how far the sender’s logical clock has advanced.

This algorithm works under the assumption that processes are connected to each other by first-
in-first-out (FIFO) communication channels. This simply means that for any pair of processes, the
first process receives the messages sent by the second process in the order that they are sent. Since
the logical time algorithm requires all processes to communicate through FIFO channels, we must
also specify these channels as IOA. One process transmits messages by placing them on the end of a

fifoQ queue, and a second process receives messages by taking them off of the front of the fifoQ queue.

18

3.2.2 LT, Automaton

Automaton LT,[€2, M], where £ is a set of processes, p is a process in and M is a set message
alphabet.

Let ’heartbeat denote a special character that is not a part of the message alphabet.

T is a set of pairs <n, p> where n € N and p € Q.
For all t = <n, p> in T, define t+ 1 as <n+1, p>, t.time as n, and t.process as p.

Define t<t’ to be true if and only if t.time<t’.time or t.time=t’.time and t.process<t’.process

Signature:
Input: send,(m), m € M

receive,,(<m, t>), Process q € - {p}, m € M U {heartbeat}, t € T
Output: deliver,(m), m € M

transmit,,(<m, t>), Process q € Q - {p}, m € M U {"heartbeat}, t € T
Internal: heartbeat()

order,(m) m € M

States:

V q€ Q - {p} pendingQ,(q), a (MU{ heartbeat}) x T queue, initially empty
clock, € T, initially <0, p>

Vg € Q - {p}, Itp(q) € T, initially <0, >

received,, M x T set, initially empty

next,, an integer, intially 0

GlobalQ,, message queue, intially empty

Transitions:

input sendy,(m)

effects: clock, := clock, + 1
Vg € © - {p} append <m, clock,> to pendingQ,(q)
add <m, clock,> to received,

output transmity, (<m, t>)
preconditions: <m, t> = first{pendingQ,(q))
effects: remove <m, t> from pendingQ,(q)

output deliver,(m)
preconditions: m = GlobalQj[next,]
effects: next, := next,+ 1

internal ordery(m)

preconditions: <m, t> € received
t.time < lt(q).time for all q € © - {p}
t < t’ for all <m’, t’> in received

effects: remove <m, t> from received
append m to GlobalQ,

input receiveg, (<m, t>)
effects: if m # ’heartbeat, add <m, t> to received
clock, = <max][clock,.time, t.time]+ 1, p>

Itlq] ==t

internal heartbeaty ()
preconditions: none
effect: Vg € Q - {p} append<’heartbeat, clock,> to pendingQ,(q)

Tasks:

V q € Q- {p}, {transmity,(<m, t>) | m € M, t € T}
{deliver,(m) | m € M} U {order,(m) | m € M}
{heartbeat,()}

20

3.2.3 FIFO Automaton

Automaton FIFO,q[A] where A is a set message alphabet and p and q are processes in 2.

Signature:
Input: transmitpe(m) Processes p, ¢ € @, m € A
Output: receivey,(m) Processes p, ¢ € Q, m € A

States:
fifoQpq, a queue of elements of type A, initially empty

Transitions:
input transmityq (m)
effects: append m to fifoQpq

oulput receiveyq(m)
preconditions: m = first(fifoQypg)

effects: remove m from fifoQp,

Tasks:
{receiveg,(m) | m € A}

21

3.3 Intermediate Specification

3.3.1 Overview

A formal proof that the logical time algorithm implements global order broadcast is a bit long and
tedious, and at times difficult. In the LT specification, there is a special property of all the messages
in the GlobalQ,’s. They are sorted in order of increasing logical times. The GlobalQ in the GOB
specification allows for almost any arrangement of messages, so there are no nice invariants on the
message ordering. This complicates everything because we would like to have nice invariants for the
messages ordering that can apply to both automata.

In order to help with that proof, here is an intermediate IOA. The purpose of this automaton
is to provide a stepping stone for the proof. Instead of proving that logical time implements global
order broadcast directly, we will instead prove that the logical time algorithm implements this inter-
mediate IOA, and the intermediate IOA implements global order broadcast. Then, by transitivity,
this proves that logical time implements global order broadcast. With that in mind, this IOA is
designed to look like the global order broadcast specification with some of the features of logical
time thrown in. Immediately you can see that this algorithm includes the logical clocks at each pro-
cess. This algorithm also implements the same GlobalQ that was used in the global order broadcast
specification, only this time messages are added to the end of the GlobalQ in order of increasing
logical time stamps. The ticker transition allows the logical clocks to be randomly incremented so

that the algorithm is never stuck.

22

3.3.2 GBI Automaton

Automaton GlobalBroadcastIntSpec| 2, M}, where Q is a set of processes and M is a set message

alphabet.

define getMessage(<m, t>) as m
define getLogicalTime(<m, t>) as t
Let T be defined as in the Logical Time IOA.

Signature:

Input: send,(m), process p € {2, message m € M
Output: deliver,(m), process p € 2, message m € M
Internal: order(p), process p € §2

ticker(p), process p € 2

States:

Vp € Q, M x T queue, SendQ,, initially empty
Vp € Q, integer next,, intially 0

GlobalQ, a M queue, initially empty

Vp € §, clock, € T, initially <0, p>

Transitions:

input send,(m)

effects: clock, := clock, + 1
append<m, clock, > to SendQ,

internal order(p)
preconditions: <m, t> = first(SendQj)
Vg €) - {p}, first(SendQ,) # null = getLogicalTime(first(SendQ,)) <
getLogical Time(first (SendQy))
Vg € 1 clock,.time > getLogical Time(first(SendQy)).time
effects: append getMessage(first(SendQ,)) to GlobalQ
remove first(SendQ,)

output deliver, (m)
preconditions: m = GlobalQ[next,)
effects: next, := next, + 1

internal ticker(p)
preconditions: none

effects: clock,:= clock, + 1

Tasks:
Vp € Q, {order(p)}.{ deliver,(m), m € M}, {ticker(p)}

23

3.4 Proof that GBI Spec implements GOB Spec

First, let us define the projection SendQ/,,. If SendQ is a M x T queue, then SendQ|,, is a queue

that contains only the messages in SendQ.

Lemma 3.4.1 g is an abstraction function for automaton GBI to automaton GOB.

Proof 3.4.1 Let us define how the states in GBI map to states in GOB.

g(s € GBI) = r € GOB such that:

GOB GBI
SendQ,() = SendQp|m

next, = next,

GlobalQ GlobalQ

Il

In both Automata, all numerical states are intially 0 and all queues are initially empty. So all
that remains to be shown is that for every transition in GBI, there is a corresponding sequence of

actions in GOB that preserves the mapping and creates the same trace.

Now we must prove that the abstraction function holds with each transition. Formally, if we are
in a reachable state s of GBI and r is the corresponding state of GOB created by the above mapping,
then for every action 7 in GBI, we can find a sequence of actions 8 in GOB such that the poststate
(s”) of w in GBI maps to the poststate of 8 (r') in GOB, or g(s’)=r’. Furthermore, 7 and 3 must

create the same trace and the sequence of actions § must be enabled whenever 7 is enabled.
Now, let us say that we are in a reachable state s of GBI and g(s) = r.
e m = GBl.send,(m)
The corresponding 8 in GOB is GOB.send,(m). Both transitions create the same trace, and

neither have any preconditions. We need only check that g(s’) = r’.

s’.SendQ, = s.SendQ, + <m, clock, >
r’.SendQ, = r.SendQ,+ m.

s’.clock, = s.clock, + 1.

24

g(s").SendQ, = g(s.SendQp|m + m) = r.SendQ, + m = r’.SendQ,.

All other aspects of the state are unaffected by this transition. Since the value of the clock,

variable does not affect the mapping g(), g(s’) is the same as r’.

e m = GBLorder(p)
The corresponding 3 in GOB is GOB.order(p). Neither action affects the trace. The precondi-
tions of GOB.order(p) are strictly contained in the preconditions of GBL.order(p), so GOB.order(p)

is enabled whenever GBIL.order(p) is enabled. Now we need to check that g(s’) is the same as 1.

s’.SendQ, = s.SendQ,, - first entry.
r’.SendQ, = r.SendQ), - first entry.

8’.GlobalQ = s.GlobalQ + m, where m= getMessage(first(s.SendQ,)).
r’.GlobalQ} = r.GlobalQ + m, where m=first(r.SendQ,).

g(s’).SendQp = g(s.5endQ(p)|m - first entry) = r.SendQ, - first entry = r’.SendQ,.

g(s’).GlobalQ = g(s.GlobalQ + getMessage(first(s.SendQ,)) = r.GlobalQ + first(r.GlobalQ) =
r’.GlobalQ.

All other state variables are unaffected by this transition. Hence, g(s’) = r".

o m = GBIl.deliver,(m)

The corresponding 3 in GOB is GOB.deliver,(m). Both actions create the exact same trace.
GBI.deliver,(m) is enabled when m=s.GlobalQ[s.next,]. Since r.GlobalQ = s.GlobalQ, s.next, =
r.next, and GOB.deliver,(m) is enabled when m=r.GlobalQ[r.next,], GOB.deliver,(m) is enabled

exactly when GBIL.deliver,(m) is enabled. Now we need to check that g(s’) = r’.

s’.next, = s.next, + 1.

r’.next, = r.next,+ 1.

g(s’) = g(s.nextp,+ 1) = rmext, + 1 = r’.next,.

All other state variables are unchanged by this action. Hence, g(s') = r’.

e m = GBI ticker(p)
The corresponding B in GOB is simply the empty action, A. Neither of these actions have any

effect on the trace, and X is enabled whenever GBI .ticker(p) is enabled. We need only show that

gs) =

s’.clock, = s.clock,+ 1.

g(s’) = g(s) = r = r’ since g() is unaffected by the clock, variable.

All other state variables are unchanged. Hence, g(s’) = r’

Therefore, since all transitions preserve the mapping, g is an abstraction function from automaton

GBI to automaton GOB. &
Corollary 3.4.1 GBI implements GOB in the sense of trace inclusion.

Proof 3.4.1 From Lemma 3.4.1 we have an abstraction function from GBI to GOB, so Theorem

2.0.1 tells us that GBI implements GOB.

26

3.5 Proof that LT Spec implements GBI Spec

First, we must formally define the automaton LT. Let LT be the composition of Logical Time and
FIFO automata, LT = [],cq LT:[Q2, M] ® Hje{Q—i} FIFO,;[A], where A = M U ’heartbeat. Also, let

us treat all trasmit,, and receiveg, actions as internal actions and hide them from the external trace.

Let us define a new M x T set LT.Unordered(p, q), where p and q are processes in §}. Informally,
this will be the set of all messages sent by p to q that have not been ordered by any process in 2.
Formally, we construct LT.Unordered(p, q) by appending two queues and a set together and then
filtering out irrelevant entries.

For this composition, let us add a history variable to GlobalQ,. Let us assume that GlobalQ,

contains <m, t> pairs instead of just messages.

LT .Unordered(p, q) = LT.pendingQ,(q) U fifoQpq U LT.received, -
{<m, t> such that m="heartbeat} - {<m, t> such that t.process#q} -

{<m, t> such that <m, t> € GlobalQ, for any process r € Q}

3.5.1 Lemma and Invariants

Now I will prove a lemma and several invariants that will be necessary when proving the validity of

the abstraction function.

Lemma 3.5.1 There are no non-heartbeat messages in either GB or LT with the same logical time.
Or, more formally, for all <m, t> where m € M that are either sent, transmitted, received, delivered
or ordered by any process p € §Q, there is no other <m’, t’> with m € M that is sent, transmitted,

recewed, delivered or ordered by any process in) where t=t’.

Proof 3.5.1 In order to prove this, consider extensions of both our current Automata with
modified send,(m) transitions. Say that each Automaton has a history variable MyMessages,, that
contains all the pairs of messages in M and the logical times at which they were created. Modify
send,(m) so that it adds <m, clock, > to MyMessages,, as well as SendQ, or pendingQ,(q). Now,
note that within each set of MyMessages,, no two messages have the same logical time. This is
true because clock, is never decreased by any transition, but it is increased during each send,(m)
transition before clock, is paired with the message and added to MyMessages,. It is also true that

logical times cannot be the same for messages created by different processes. This is true because

27

logical time is a pair that includes the process ID, which is unique to each process. So a logical time
created by one process can never be the same as a logical time created by another process.

Now realize that any message sent, received, transmitted, delivered, or ordered by any process
must be contained in MyMessages,, for some process p in {2. No message can enter the system unless
it is sent by a process, at which point it becomes a member of the MyMessage set of that process.

Thus, all the messages encountered in both LT and GBI have unique logical times.

Invariant 3.5.1 V <m, t> € pending@p(q) U fifoQpq, 1< clock,

Proof 3.5.1 Initially, both queues are empty and clock, = <0, p>, so the Invariant is satisfied.

LT .send,(m) increments clock, and appends <m, t> to pendingQ,(q) where t=clock,. Since
t<clock, this preserves the invahe principal difficulty in converting a proof from the stable case to
the intermittent case lies in the invariants. riant.

LT transmit,,(<m, t>) moves <m, t> from pendingQ,(q) to fifoQ,,. This also preserves the
invariant.

LT receivepe(<m, t>) removes <m, t> from fifoQ,, and increases clock,, which preserves the
invariant.

LT heartbeat,() adds <’heartbeat, clock,> to pendingQ,(q). Since clock, < clocky, this pre-
serves the invariant.

None of the other transitions affect the relevant state variables. Therefore, since all transitions

preserve the invariant, the invariant is true in every reachable state.

Invariant 3.5.2 In every reachable state of LT, LT.clock, > LT.lt;(p) for any pair of processes q
and p in 2 such that ¢ # p

Proof 3.5.2 Initial state: both LT.clock, and LT.lt4(p) = 0. Invariant holds.

Transitions: LT .send,(m) increments clock, and has no effect on LT.lty(p). So if clock, >
LT.1t4(p) before the transition, then it is also true after the transition.

LT receiveg,(<m, t>) may increase clock, and does not change LT lt,(p) so if the invariant was
true before this transition, then it is also true after the transition.

LT receivepq(<m, t>) does not change clock,, but it sets LT.ltq(p) to t. Since t < clock, (from
Invariant 1), Itq(p) < clock, after this transition.

No other transitions influence the relevant state variables. Since the invariant holds in the initial

state and is preserved by all the transitions, it is true in every reachable state of LT.

28

Invariant 3.5.3 All messages from a process p are received by another process q in the order in
which they were sent. Formally, when process q receives <m, t> from p, this implies that ¢ will

never recetve <m’, t’> from p where t’ < t.

Proof 3.5.3 It is sufficient to show that fifoQ,, + pendingQ,(q) is sorted in order of increasing
logical times and every time a <m, t> pair enters either fifoQ,, or pendingQ,(q), there will never be
another message <m’, t’> with t’<t that enters fifoQp, or pendingQ,(q). This is sufficient because
all messages received by process q from process p are taken off the front of fifoQ,q.

Initially, both queues are empty, so the invariant holds.

The only time any <m, t>> pair can ever enter pendingQ,(q) is during a heartbeat() or a send,(m)
action. Both of these actions pair a message with the current clock, before adding it to the end of
the pendingQ,(q). Since clock,, is a strictly non-decreasing function, it follows that pendingQ,(q) is
sorted in order of increasing logical times and after <m, t> enters the pendingQ,(q), no other <m’,
t’> with t’ < t will ever enter pendingQ,(q).

The only transition that may add <m, t> pairs to fifoQpq is transmit,,(<m, t>). Since this
takes messages off the front of pendingQ,(q) and appends them to the end of fifoQ,,, we can say
that fifoQ,, is also sorted in order of increasing ligocal times. Furthermore, after <m, t> enters the

fifoQpq, no other <m’, t'> with t’ < t will ever enter fifoQp,.

Invariant 3.5.4 LT.lt,(q) is always less than or equal to the time stamp of any messages from q that

p has not yet recewved. Or more formally, if <m, t> € LT.pendingQq(p)V fifoQqp, then t > LT.It,(q).

Proof 3.5.4 Initially LT 1t,(q) is <0, q>, LT.clock, is <0, ¢>, LT.PendingQ,(p) is empty, and
LT fifoQq, is empty, so the invariant is satisfied.

The only transition that ever changes LT.lt,(q) is receive,,(<m, t>). at this time LT.1t,(q)
is changed to t. From invariant 3, we can see that p will never receive a message <m’, t’> from
q with t < t. From liveness properties, we know that p must eventually receive all messages in
LT .pendingQ,, and LT fifoQ,,. Therefore, there are never any messages in either LT .pendingQq(p)
and LT .fifoQg, with logical time less than LT.1t,(q).

Invariant 3.5.5 In every reachable state of LT, Unordered(p, q) = Unordered(p, r) for any three

processes (not necessarily distinct) p, q, v in

Proof 3.5.5 Initially, all the queues and sets are empty, so the invariant holds.

29

Now we need to show that every possible transition preserves the invariant.

LT send,(m) appends the same message pair <m, clock,> to the pendingQ,(s) of every process
s # pin €2, and it also adds <m, clock,> to its received, set. So now <m, clock,> has been added
to Unordered(p, q) for all q € Q

LT transmitp,(<m, t>) removes <m, t> from LT.pendingQ,(q) and adds it to LT.fifoQ,,. If
<m, t> was in Unordered(p, q), this does not remove it. If <m, t> was not in Unordered(p, q)
then it is not added.

LT.orderp(<m, t>) If p is the first process to add <m, t> to its GlobalQ then it removes <m, t>
from Unordered(q, p) for all q and p in . Otherwise, some other process has already placed <m,
t> in its GlobalQ and it has already been removed from all Unordered(q, p), so this transaction has
no effect.

LT.receiveg,(<m, t>) simply removes <m, t> from LT.fifoQg, and adds it to LT.received,. If
<m, t> was in Unordered(p, q), this does not remove it. If <m, t> was not in Unordered(p, q)
then it is not added.

LT heartbeat,() does not affect Unordered(p, q) for any q in Q because the definition of Un-
ordered(p, q) does not allow it to include any heartbeat messages.

No other transitions affect any of the queues or sets involved in the definition of Unordered(p,
q).

Hence, in every reachable state of LT, Unordered(p, q) and Unordered (p, r) are the same for all

p,q, T €N

Invariant 3.5.6 All of the LT.GlobalQ’s are prefives of each other. Formally, for all LT.Global@Q,
and LT.Global@Qy, either LT.GlobalQ, is a prefic of LT.GlobalQq or LT.GlobalQ, is a prefix of
LT.GlobalQ),.

Proof 3.5.6 For this proof, let us consider an extension of LT where the GlobalQ contains
message and logical time pairs rather than just messages. Say that order, <m, t> appends <m, t>
to GlobalQ, instead of just m. I will first prove that each LT.GlobalQ contains M x T pairs sorted
by increasing values of t.

Proof that LT.GlobalQ, is sorted by increasing logical time values: LT.GlobalQ, is altered only
by the order,(<m, t>) transition. This will only append <m, t> to GlobalQ, if t < t’ for all <m’,
t’> in received, and if t.time < lt,(q) for all q in Q-{p}. From invariant 4 we know that we can
never receive any messages from q with logical time less than or equal to lt,(q). So if t.time < It,(q)
for all q, then we will never receive any messages <m’, t’> with t’ < t. If <m, t> has the smallest t

for all <m’, t"> in received and we can never receive any message with a smaller logical time, then

30

we can conclude that LT.GlobalQ, is sorted by increasing values of t. Also, because we can never
receive any messages with a smaller logical time than t and liveness tells us we eventually receive all
messages, this implies that there are no missing messages in any of the GlobalQ’s. That is, if some
GlobalQ contains message <m, t>, then it must also contain all <m’, t’> with t’ < t. Therefore,

all of the GlobalQ’s must be prefixes of each other.

3.5.2 Mapping and Simulation

Lemma 3.5.2 fis an abstraction function from automaton LT to automaton GBI

Proof 3.5.2 First, let’s go define the mapping f(), which maps states in GlobalBroadcastIntSpec

to states in LT.

f(s € LT) = r € GBI such that:

GBI LT
SendQ, = Unordered(p, q) sorted by increasing logical times
next,, = nextyp

GlobalQ = one of the longest GlobalQ, of all processes p in 2

clock, = clock,

In both Automata, all numerical states are initially 0 and all queues are initially empty. All clock
values are initially <0, p> in both Automata. Hence they both have the same initial state. We need
only to show that for every transition in LT there is a corresponding sequence of transitions in GBI

that preserves the mapping and creates the same trace.

Formally, we must show that if we are in a reachable state s of LT and r is the corresponding
state of GBI created by the above mapping, then for every action 7 in LT, we can find a sequence
of action 3 in GBI such that the poststate (s’) of m in LT maps to the poststate of 8 (r’) in GBI, or
f(s’)=r’. Furthermore, = and 3 must create the same trace and the sequence of actions 3 must be

enabled whenever 7 is enabled.

Now let us say that we are in a reachable state s of LT and f(s)=r

e 7w = LT .send,(m)

31

The corresponding 8 is GBl.send,(m). Both transitions create the same trace, and both are

always enabled. We need only check that f(s”)=r’.

s’.clock, = s.clockp,+ 1.

r’.clock, == r.clock,+ 1.

For all q € Q such that q # p, s’.pendingQ,(q) = s.pendingQ,(q) + <m, s.clock, +1 >. (Note
that for all q € Q such that p # q, s’.Unordered(p, q) = s.Unordered(p, q) U {<m, s.clock, >+ 1})
s .received, = s.received, U {<m, s.clock, +1 >}. (Note that

s8”.Undelievered(p, p) = s.Unordered(p, p) U {<m, s.clock,+ 1>})

s’.Unordered(p, q) = s.Unordered(p, q) U {<m, s.clock, + 1 >} for all q €).

r’.sendQ, = r.sendQ, + <m, r.clock, +1 >.

f(s’.clock,) = f(s.clockp+ 1) = r.clock, + 1 = r.clock,

f(s’.Unordered(p, q)) = f(s.Unordered(p, q) U {<m, s.clock,+1 >}) = r.sendQ, + <m, r.clock, +

1> =r.sendQ,.

f(s.Unordered(p,q)) is defined as a set with no ordering, and r.sendQ, does have order. Be-
cause GBIL.send,(m) appends <m, r.clock, +1 > to the end of r.SendQ,, we must confirm that <m,
r.clock, 41 > has the largest logical time of all elements of s”.Undelivered(p, q). This is true because
the clock, is a strictly nondecreasing variable and <m, s.clock,+ 1> is the most recent addition to
Unordered(p, q). Therefore <m, s.clock, +1 > must have the largest logical time of all M x T pairs
in Unordered(p, q).

’

All other state variables remain unchanged. Hence f(s’) = r’.
o m = LT .transmit,(<m, t>)
The corresponding 3 is simply the empty transition A. Since A is always enabled, we know that

0 is enabled whenever 7 is enabled. Since we will hide all transmit and receive actions in the final

trace, neither action here will impact the final trace. Now we need only show that f(s’) = r’.

s’.pendingQ,(q) = s.pendingQ,(q) - <m, t>

32

8" .1ifoQpq = s.fifoQpe + <m, t>.

From the definition, we can see that this change does not affect Unordered(p, q). Therefore
f(s’.Unordered(p, q)) = f(s.Unordered(p, q)) = r.SendQ,, = r’.SendQ,. Since all other state vari-

ables are unaffected by this transition, we can conclude that f(s’) = r’.

o m = LT .deliver,(m)

The corresponding 8 is GBl.deliver,(m). (Note: since the LT.GlobalQ,, are all prefixes of each
other, and GBIL.GlobalQ = one of the longest LT.GlobalQ, of all p € Q, it is safe to say that
LT.GlobalQ)y, is a prefix of GBI.GlobalQ for any p € 2) Since LT.GlobalQ),, is a prefix of GBL.GlobalQ,
if m = LT.GlobalQp[s.next,| then m = GBI.GlobalQ[r.next,]. Therefore, GBI.deliver,(m) is enabled
whenever LT .deliver,(m) is enabled. They both create the same external trace, so all we need to

check now is that f(s’) = r’.

=7 j— 3
s’.next, = s.next,+ 1

? p—
r’.next, = r.next,+ 1

f(s’.nexty,) = f(s.next,+ 1) = r.next,+ 1 = r’.next,.

All other state variables are not affected by this transition. Hence, f(s’) = r’.

e 7 = LT.order,(m), and let <m, t> be the message-logical time pair that satisfy the first
precondition.

The corresponding 3 can be one of two actions:

1. if V q € ©Q, m¢ GlobalQ,, then 8 = GBI.order(t.process).

2. Otherwise, Jq € § such that q has already performed LT.order,(m), so 3 is simply the empty
action A.

I will start with case 2, since it is the simpler one to prove. Since X is always enabled, we know
that (3 is enabled whenever LT .order,(m) is enabled. And since LT.order,, is an internal action, the

trace is the same in both cases. Now all that remains is to prove that f(s’) = r’

s’.received = s.received - <m, t>.

Note that since some other process q has already performed LT.order,(m), we know from the
definition of Unordered that <m, t> is not in Unordered(t.process, r) for any process r € €, so
Unordered(t.process, q) is unchanged for all q € 2. Hence, the mapping to GBL.SendQ; process 1s

unchanged.

33

s’.GlobalQ, = 5.GlobalQ, + <m, t>.

Note that some other process q has already performed order,(m}, so s.GlobalQ, already included
<m, t>. Since all GlobalQ’s are prefixes of each other, it follows that s.GlobalQy is strictly larger
than s.GlobalQ,,. Therefore, when we add a single message to s.GlobalQ,,, s’.GlobalQ, is at most
as long as s.GlobalQ,. Therefore, s’.GlobalQ, is not longer than one of the longest GlobalQ’s in
s. From invariant 3.5.6, we know that s’.GlobalQ, is a prefix of one of the longest GlobalQ’s in s.
Hence, the mapping to GBI.GlobalQ remains unchanged. Since A also does not affect the mapping,

it follows that f(s") = r’.

In the first case, we know that p is the first process to perform LT .order, on message <m, t>
and the corresponding 3 is GBIL.order(t.process). Since both are internal actions, they do not affect
the external trace. We need to show that GBl.order(t.process) is enabled whenever LT.order, <m,
t> is enabled.

The first precondition for GBL.order(t.process) is that <m, t> = first(SendQ; process). From the
definition of Unordered(p, q) we can see that in state s, <m, t> is in Unordered(t.process, p) for all
p € Q. We need only show that for all <m’, t’> in Unordered(t.process, p), t < t’. From invariant
3.5.4, we know that if t.process sent any earlier messages, they must have been received by p. Hence,
any <m’, t’> with t’ < t must be in either LT .received, or LT.GlobalQ,. If it is in LT.GlobalQ,,
then we know it cannot be in Unordered(t.process, p). If it is in LT .received,, then received, has
a message with a time stamp less than t, which contradicts the third precondition. Hence, <m,
t>=r first(SendQ process) Whenever LT .order, <m, t> is enabled.

With invariant 3.5.2 (LT.ltq(p) < LT.clocky), it follows that the third precondition of
GBlLorder(t.process) is satisfied whenever the second precondition of LT.order,(m) is satisfied.

From invariant 3.5.4 and the definition of Unordered(p, q), we can see that either r.first(SendQ,)
is in s.received, or s.lty(q) < t. If slt,(q) < t then 7 is not enabled. If r.first(SendQy) is in
s.received, then the third precondition of LT .order, <m, t> implies that the second precondition of
GBIl.order(t.process) is satisfied.

Hence, /3 is enabled whenever 7 is enabled.

Now we must show that f(s’) = r’.

s’.received, = s.received, - <m, t>.

s’.GlobalQ, = s.GlobalQ, + m.

s’.Unordered(t.process, q) = s.Unordered(t.process, q) - <m, t>.

34

r’.Send Q4 process = 1.3end Q¢ process - <m, t>. 1’.GlobalQ = r.GlobalQ + m.

So f(s’.Unordered(t.process, q)) = r’.SendQ; process for any q € €. Because p is the first process
to append m to its GlobalQ, and all of the GlobalQ’s are prefixes of each other, we can conclude
that s.GlobalQ, is not shorter than s.GlobalQ, for all q € €2 where q # p, and after appending m,
GlobalQ), is the longest GlobalQ. Therefore, s.GlobalQ, = r.GlobalQ and s’.GlobalQ,, = 1’.GlobalQ,.

Since no other state variables change, we can conclude that f(s’) = r’

e m = LT .receive,,(<m, t>)

The corresponding 3 is simply ticker(p) performed (max[t.time - s.clock,, 0] + 1) times. For
convenience, we will simply refer to this number as n in the next few paragraphs. Since GBI.ticker(p)
is always enabled, we know that (3 is enabled whenever 7 is enabled. Since we will hide all transmit
and receive actions in the final trace and GBI.ticker(p) is an internal action, neither will impact the
final trace. Now we need only show that f(s’) = 1.

" fifoQpq = s.fifoQpq - <m, t>

s’.received, = s.received, + <m, t>

From the definition of Unordered(p, q), we can see that this change does not affect Unordered(p,

q). So f(s’.Unordered(p, q)) = f(s.Unordered(p, q)) = r.SendQ, = r’.SendQ,,.

s’.clock, = s.clock, + n

r’.clock, = r.clock, + n

f(s’.clock,) = f(s.clock, + n) = r.clock, + n = r’.clocky.

s.1t,(t.process) is also changed, but this does not affect any of the states in GBI. Since all other

state variables remain unchanged, we can conclude that f(s’) = r’.

e 7w = LT heartbeat,()
The corresponding 8 in GBI is A. X is always enabled. LT .heartbeat,() is an internal action,

neither affect the external trace. Now we need only prove that f(s’) = r’.
s’ pendingQ,(q) = s.pendingQ,(q) + <’heartbeat, s.clock, > for all q # p.
Note that since all "'heartbeat messages are not a part of Unordered(p, q), we can see that Un-

ordered(p, q) is unaffected by this transition, for any p and q in 2. Therefore, the mapping is not

influenced and f(s’) = r’.

Hence, f is an abstraction function from automaton LT to automaton GBI. B

Corollary 3.5.1 LT implements GBI in the sense of trace inclusion. Furthermore, by transitivity,

LT implements GOB.

Proof 3.5.1 From lemma 3.5.2 we know that there is an abstraction function from LT to GBI
Therefore, by Theorem 2.0.1, LT implements GBI in the sense of trace inclusion. And by transitivity

and Corollary 3.4.1, we can see that LT implements GOB.

36

Chapter 4

Intermittent Global Order

Broadcast

Now imagine that a process is in a dynamic environment where any processes can enter or leave the
group (or disconnect and reconnect) at any time. With global order broadcast, one process cannot
view messages until all processes somehow agree on the order. So in this dynamic environment,
it is impossible to perfectly implement global order broadcast without allowing for arbitrarily long
message latency. Therefore, in order to bound message latency and increase availability of the
broadcast one must weaken the requirements on the message ordering.

There are many different scenarios where one could be concerned with group communication
in a dynamic environment. The RC project, for example, is designed for communication between
various ground control bases and aircrafts. In a mobile environment with wireless connections, the
communication between ground control and an airplane or between two airplanes may fail frequently.
Ideally, a single airplane with erratic connections should not slow down the communications of the
rest of the group beyond a certain point.

There are a number of different approaches to this problem. One approach is to simply guarantee
that all messages from a particular process are received in the order in which they were sent, without
requiring that the messages be globally ordered. Another approach is to simply provide a best-effort
global order broadcast algorithm without any strong assurances. One could also guess the ordering
of the messages and then correct it later if there are mistakes. Yet another possibility is to have
a special round of communication after someone is reconnected. This round would be used to
update everyone’s information so that global order within that subgroup could begin immediately.
While this guarantees global order broadcast as soon as possible after stability is reached, it also
requires additional rounds of communication, which is especially bad if there are frequent changes

in connectivity.

37

The approach taken in the RC project is different. It uses a light-weight approach that does not
include any special synchronization steps. Processes continue to send and receive messages using the
same protocol they used in the past, and global order will eventually start to hold during a period
of stability. Informally, a period of stability is a length of time when no processes enter or leave
the group and all the communication channels provide some minimal quality of service. To prevent
unbounded latencies, there are looser guarantees when the environment is unstable. If a subset of
processes always have good communication between each other, they will view each other’s messages
in a globally consistent order. The only messages they may disagree on are messages from outside

processes with faulty communication lines.

4.1 Formal Definition

Before formally defining intermittent global order, it is necessary to define a few other properties
first. To do this, we need to introduce the idea of a connection quality. In the RC system, we
use three different connection qualities designed to indicate how well the communication channel
is performing. The connection qualities are ‘connected’, ‘suspected’, and ‘disconnected’. A quality
level of ‘connected’ means that the connection is active, and the quality is above some minimal
level. A ‘disconnected’ quality represents a connection that is down. A ‘suspected’ quality may
either reflect a connection that is operating below some minimal quality level or a connection that
has recently been severed. The exact service requirements for each of the connection qualities may
be customized by the user.

In order to define everything formally, we must define the external interface of the system. Our
definitions will apply to an automaton that accepts 2 (a set of processes) and M (a set message

alphabet) as variables and has an external signature consisting of the following actions:

e send,,(m) where p, q are processes in ! and m € M
e receivey, (m) where p, q are processes in 2 and m € M
o statusUpdate,q (quality) where p, q are processes in § and

m € M and quality€‘connected’, ‘suspected’, ‘disconnected’

Definition 4.1.1 At some point in a trace, two processes p and q in 0 are ‘connected’ if the
last statusUpdate,, and the last statusUpdateq, both used the argument ‘comnected’, and no fur-

ther statusUpdatepq or statusUpdateq, are ever received with a different argument.

Definition 4.1.2 AT some point in a trace, two processes p and q in Q are ‘disconnected’ if the

last statusUpdateyq and the last statusUpdateyy, both used the argument ‘disconnected’ and no further

38

statusUpdate,q or statusUpdateq, are ever received with a different argument.

Definition 4.1.3 A subset S of processes is considered connected if Vp and g€ S, p and q are

‘connected’.

Definition 4.1.4 A set of processes § is stable when Vp € 2 and Vq € Q — {p}, the last
statusUpdate,q in the trace was statusUpdateyq (‘connected’) and Vr & §2 the last status updatep, is
statusUpdate,, (‘disconnected’) and no later statusUpdates are received that change a connection
quality. Stability officially begins in the state immediately following the statusUpdate that makes

these conditions true.

Two Stable Subgroups

T T
, o ~. . .
/ N, d N
/ ()\ \\ / / N / \\
/ N \ / / \
] o ! / \
| ® A
\ e . / /
\ 1o -
NG J/ () /
AN = e \, N /
S // - L

Figure 4-1: Stability Example

A Connected but not Stable
Subgroup

/I/ (—>\\\\

/7 \ T~
G
/

RN

Figure 4-2: Connected Example

In this definition, we require that stability last forever. While this is important in the theoretical
setting, it does not seem to make much sense in the practical world. We developed intermittent
global order broadcast because there environment is dynamic. The proof actually only requires that
stability hold long enough for all of the ‘old’ messages to be delivered. However, because there is no

way to specify time in this system, the only way to guarantee that stability lasts long enough is to

39

force it to hold forever. Then, we can use liveness properties to guarantee that all ‘old’ messages are
delivered. More infomally, it is okay to assume that stability lasts forever because the assumption
requires the system to try to implement intermittent global order during a temporary period of
stability. This is because when stability begins, there is no way to tell how long it will last.

Say a system implements intermittent global order broadcast if after achieving stability, it even-
tually generates a trace that is indistinguishable from the trace of the Intermittent Global Order
Broadcast Specification(IGOB), which follows on the next page. Formally, a system implements
IGOB if after achieving stability, there is some point in the execution where the tail of the trace
may be generated by the IGOB specification. A subset of processes may implement intermittent
global order broadcast if after it stabilizes, the projection of the trace that includes only transitions
involving the subset of processes eventually becomes indistinguishable from a trace of the IGOB
specification. That is, there is a point in the execution where the tail of the trace may also be
generated by the IGOB specification.

I will prove that our implementation ILT, which is specified in the following pages, implements
IGOB as described above. For notational purposes, let us say that messages sent before stability
is reached are ’old’, and messages sent after stability is reached are 'new’. The trace of ILT is
indistinguishable from the trace for IGOB starting immediately after all ’old” messages have either

been lost or delivered to their destinations.

40

4.2 Specification

4.2.1 Overview

This IOA is almost identical to the IOA for global order broadcast that was introduced earlier. In
fact, the only difference is the initial state of the algorithm. This is necessary to capture the idea
that this IOA begins in the middle of a conversation where different processes have already sent and

received messages.

4.2.2 IGOB Automaton

Automaton IGOBroadcastSpec| 2, M, GlobalQ;n;t, nextp_init, SendQp_init |, where is a set of
processes and M is a set message alphabet, GlobalQ;ns: is a queue of messages m € M, next,_;n;:

€ Z7%, SendQp_inst i a queue of messages m € M

Define first(queue) to be the first element in the queue

Define queueli] where i€ Z* to be the i*" element in the queue

Signature:

Input: send,(m), Process p € Q, Message m € M
Output: deliver,(m), Process p € 2, Message m € M
Internal: order(p), Process p € Q2

States:

Vp € Q, SendQ,, a M queue, intially SendQp_ini:
GlobalQ, a M queue, intially GlobalQ;,¢

Vp € Q, integer next,, initially next, i,

Transitions:

input send,(m)
effects: append m to SendQ,

internal order(p)

preconditions: first(SendQp) # null

effects: append first(SendQ,) to GlobalQ
remove first(SendQ,)

output delivery, (m)
preconditions: m = GlobalQ[next,)

effects: next, = next,+ 1

Tasks:
For every p € Q, {order(p)}; {deliver,(m), m € M}

41

4.3 Intermittent Logical Time Specification

4.3.1 Overview

Now I will provide an IOA that models the intermittent global order broadcast implementation used
in the RC project, which is designed to closely model the logical time algorithm. RC has a few special
features. This IOA is set up to handle inputs from a connection manager that provides updates on
the connection qualities. The specifics of the connection manager and its affect on performance will
be discussed later.

This implementation sends messages to all processes with ‘connected’ or ‘suspected’ connection
qualities. It only waits on advanced logical clocks from ‘connected’ processes before ordering and
delivering messages. There is also a special marker, that is used to record the latest logical time of
all ordered messages. This marker, is used to detect whether messages are late or not.

Because we are trying to model a dynamic environment, we have to allow for connections to
break down. A connection-oriented FIFO channel is designed to model a point-to-point protocol
that uses a TCP connection and tries to re-establish new TCP connections when old ones fail. While
a TCP connection is alive, all messages are guaranteed to be delivered in the order that they were
sent. When a TCP connection dies, the enqueued messages are lost. We model this with a losep
transition that allows the channel to drop the messages from the end of the fifoQ queue. And while

the quality is ‘disconnected’, messages can’t get through.
g g

42

4.3.2 ILT, Automaton

Automaton ILT,[©, M], where € is a set of processes, p is a process in {2 and M is a set message
alphabet.

Let "heartbeat and ’late denote special characters that are not a part of the message alphabet.

T is a set of pairs <n, p> where n € N and p € Q.
For all t == <n, p> in T, define t+ 1 as <n+1, p>, t.time as n, and t.process as p.

Define t<t’ to be true if and only if t.time<t’.time or t.time=t’.time and t.process<t’.process

Signature:
Input: send,(m), m € M
receiveg,(<m, t>), Process q € Q@ - {p}, m € M U {’heartbeat}, t € T
statusUpdatepq (quality), Process q € 2 - {p}, quality € {‘connected’,
‘suspected’, ‘disconnected’}
Output: deliver,(m), m € M
transmity,(<m, t>), Process q € Q - {p}, m € M U {’heartbeat}, t € T
Internal: heartbeat,()
order,(m) m € M

States:

V g€ Q - {p} pendingQ,(q), a (MU{ heartbeat}) x T queue, initially empty

clock, € T, initially <0, p>

Vg € Q- {p}, Itp(q) € T, initially <0, g>

received,, a M x T set, initially empty

next,, an integer, intially 0

GlobalQ,, a {M U ’late} queue, intially empty

vV qe Q - {p}, quality,, € {‘connected’, ‘suspected’, ‘disconnected’}, initially
‘disconnected’

suspConny, a € set, initially empty

goodConny, a 2 set, initially empty

marker,, € T, initially <0, 0>

Transitions:

input sendy(m)

effects: clock, := clock, + 1
Vq € goodConn, U suspConn,, append <m, clock,> to pendingQ,(q)
add <m, clock,> to received,

output transmity, (<m, t>)
preconditions: <m, t> = first{pendingQ,(q))
effects: remove <m, t> from pendingQ,(q)

output delivery, (m)
preconditions: m = GlobalQ,[next,]
effects: next, := next,+ 1

internal order,(m)

preconditions: <m, t> € received
t.time < It(q).time for all g € goodConn,,

43

t < t’ for all <m’, t"> in received
effects: remove <m, t> from received
if t>marker, append m to GlobalQ,
if t< marker, append (m + ’late) to GlobalQ,
marker, = max [markerp, t]

input receiveg, (<m, t>)

effects: if m#’heartbeat, add <m, t> to received
clock, := <max|clockp.time, t.time]+ 1, p>
ltlq] :=

internal heartbeat, ()
preconditions: none
effect: Vg € goodConn, U suspConn,, append<’heartbeat, clock,> to pendingQ,(q)

input statusUpdatepq (quality)

effects: quality,, = quality
if quality = ‘disconnected’ remove q from suspConn, and goodConn,
if quality = ‘connected’ remove q from suspConn,, and add q to goodConn,
if quality = ‘suspected’ remove q from goodConn,, and add q to goodConn,

Tasks:

YV q € Q- {p}, {transmitye(<m, t>) [m € M, t € T}
{deliver,(m) | m € M} U {orderp(m) | m € M}
{heartbeat,()}

44

4.3.3 COFIFO Automaton

Automaton COFIFO,4[A] where A is a set message alphabet and p and q are processes in ().

Signature:
Input: transmit,(m) Processes p, q € 2, m € A
statusUpdatepq (quality) Processes p, q € 2, quality €{‘connected’,
‘suspected’, ‘disconnected’}
statusUpdategp (quality) Processes p, q € €, quality €{‘connected’,
‘suspected’, ‘disconnected’}
Output: receiveg,(m) Processes p, q € 2, m € A
Internal: losep, Processes p, q € Q2

States:

fifoQypq, a {A} queue, initially empty

quality,, € {‘connected’, ‘suspected’, ‘disconnected’}, intially ‘disconnected’
quality,, € {‘connected’, ‘suspected’, ‘disconnected’}, intially ‘disconnected’

Transitions:
input transmityq (m)
effects: append m to fifoQpq

output receivepq (m)
preconditions: m = first(fifoQp,q)
qualityg, # ‘disconnected’

effects: remove m from fifoQ,,

input statusUpdatepq (quality)
effects: quality,, = quality

input statusUpdateg, (quality)
effects: quality,, = quality

internal losepq
preconditions: quality,, = ‘disconnected’
effects: remove message on end of fifoQpq

Tasks:
{receive,q(m) { m € A}; {losepq}

Client, Client,

d
de!iverf *sen deiiver* &send

statusUpdate statustipdate
/ ILT, ILT, \

Connection Connection
Manager, receive transmit receive] Manager,
transmit
- / statusUpdate
/ -
statusUpdat Q COFIFO
T

COFIFO,,

Figure 4-3: A model of the ILT automaton with all of the transitions between different component
automata displayed.

4.4 Intermediate Intermittent Global Order Broadcast Spec-

ification

4.4.1 Overview

We will encounter many of the same issues in proving that ILT implements IGOB that we saw in
proving that LT implements GOB. The actual proof and abstraction mappings will be very similar.
In order to reuse as much of the previous proof as possible, we need to specify another intermediate

IOA. This will be identical to the previous GBI with modifications to the initial state.

46

4.4.2 IGBI Automaton

Automaton GlobalBroadcastIntSpec[2, M, SendQp—init, nextp_init, GlobalQjnst, clocky_init], where
§2 is a set of processes, M is a set message alphabet, SendQp_in:: is a M x T queue, next,_;,; is a

positive integer, GlobalQ;,;: is a M queue, and clock,_;pi; is a logical time.

define getMessage(<m, t>) as m
define getLogicalTime(<m, t>) as t
Let T be defined as in the ILT, IOA.

Signature:

Input: send,(m), process p € §2, message m € M
Output: deliver,(m), process p € €2, message m € M
Internal: order(p), process p € Q2

ticker(p), process p € §2

States:

Vp € Q, M x T queue, SendQ,, initially SendQp—ini:
Vp € €2, integer next,, intially next,_;ni

GlobalQ, a M queue, initially GlobalQ;y¢

Vp € Q, clock, € T, initially clock,_in;:

Transitions:

input send,(m)

effects: clock, := clock, + 1
append<m, clock, > to SendQ,

internal order(p)
preconditions: <m, t> = first(SendQ,)
Vg € Q - {p}, first(SendQ,) # null = getLogicalTime(first(SendQ,)) <
getLogicalTime(first(SendQy))
Vg € Q clock,.time > getLogicalTime(first (SendQ,)).time
effects: append getMessage(first(SendQ,)) to GlobalQ
remove first(SendQ,)

output deliver,(m)
preconditions: m = GlobalQ[next,)
effects: next, := next, + 1

internal ticker(p)
preconditions: none

effects: clock,:= clock, + 1

Tasks:
¥p € Q, {order(p)},{ deliver,(m), m € M}, {ticker(p)}

47

4.5 Proof Overview

The proof that ILT implements [GOB will be very similar to the proof that LT implements GOB.

specification is virtually identical to the GOB specification.

The proof that the IGOB intermediate algorithm (IGBI) implements IGOB is the same as the
proof that GBI implements GOB. The only difference is outlining how the initial states correspond
to each other.

The proof that ILT implements IGBI is slightly trickier. Note that ILT is only guaranteed to
implement IGBI after some time has passed during a period of stability. Therefore, the simulation
proof does not begin with the start of execution. Furthermore, several of the invariants need to
be modified. Lemma 3.5.1(no two non-heartbeat messages have the same logical time) is still true
because ILT increments internal logical clocks each time a message is sent. Invariants 3.5.1, 3.5.2,
3.5.3 and 3.5.4 are all results of messages being received in the order that they were sent. Messages
may be lost (which is permissible in the COFIFO algorithm), but as long as the messages that are
eventually received by a process are received in order, the invariants are still true. The difficult
invariants will be 3.5.5 (the Unordered{p, q) sets are the same independent of the choice of q) and
3.5.6 (the GlobalQ’s are all prefixes of each other). These are harder because they are simply not
true at the beginning of the simulation. Instead, we will have to consider modified invariants that
consider only the 'new’ messages. Recall that a 'new’ message is any message sent after stability
has been reached.

The mapping from states of ILT to states of IGBI will also need a few changes. IGBIL.SendQ,
will comnsist of only the ‘new’ messages in ILT.Unordered(p, q) and IGBIL.GlobalQ will be the one of
the longest ILT.GlobalQ,’s with all of the 'old’ messages removed.

Other than these changes, the simulation proof should be fairly straightforward. The abstraction

function (which relates transitions in ILT to transitions in IGBI) remains unaffected.

4.6 Proof that IGBI Spec implements IGOB Spec

First, let us define the projection SendQ|,,. If SendQ is a M x T queue, then SendQ|,, is a queue
that contains only the messages in SendQ.

Lemma 4.6.1 g is an abstraction function from automaton IGBI to automaton IGOB

Proof 4.6.1 Let us define how g maps states in IGBI to states in IGOB.

48

g(s € IGBI) = r € IGOB such that:

IGOB IGBI
SendQp() = SendQp|m

next,, = next,

Global) = GlobalQ

In IGOB, we can set the initial states (SendQp_inis, nextp_inis and GlobalQins:) to be identical
to the initial states of IGBI. So we need only to show that for every transition in IGBI, there is

a corresponding sequence of actions in IGOB that preserves the mapping and creates the same trace.

Formally, if we are in a reachable state s of IGBI and r is the corresponding state of IGOB
created by the above mapping, then for every action n in IGBI, we can find a sequence of actions
8 in IGOB such that the poststate (s’) of 7 in IGBI maps to the poststate of 3 (r’) in IGOB, or
g(s’)=r’. Furthermore, 7 and § must create the same trace and the sequence of actions 3 must be

enabled whenever 7 is enabled.
Now, let us say that we are in a reachable state s of IGBI and g(s) = r.
e 7 = IGBLsend,(m).
The corresponding £ in IGOB is IGOB.send,(m). Both transitions create the same trace, and

neither have any preconditions. We need only check that g(s’) = r’.

s’.5endQ, is s.SendQ, + <m, clock, >
r’.SendQ, is r.SendQp+ m.

s’.clock, = s.clock, + 1.

g(s’).SendQ,, = g(s.SendQp|m + m) = r.SendQ, + m = r’.SendQ,,.

All other aspects of the state are unaffected by this transition. Since the value of the

clock, variable does not affect the mapping g(), g(s’) is the same as r’.

e 7 = IGBLorder(p)

The corresponding 3 in IGOB is IGOB.order(p). Neither action affects the trace. The precondi-
tions of IGOB .order(p) are strictly contained in the preconditions of IGBLorder(p), so IGOB.order(p)

49

is enabled whenever IGBlL.order(p) is enabled. Now we need to check that g(s’) is the same as 1.

s’.SendQ,, = 5.SendQ),, - first entry.
r’.SendQ, = r.SendQ), - first entry.

s’.GlobalQ = s.GlobalQ + m, where m= getMessage(first(s.SendQ,)).
r’.GlobalQ is r.GlobalQ + m, where m=first(r.SendQ,).

g(s").SendQ, = g(s.SendQ(p)|m - first entry) = r.SendQ, - first entry = r’.SendQ,,.

g(s’).GlobalQ = g(s.GlobalQ + getMessage(first(s.SendQ,)) = r.GlobalQ + first(r.GlobalQ) =
r’.GlobalQ.

All other state variables are unaffected by this transition. Hence, g(s’) = 1.

o m = IGBILdeliver,(m)

The corresponding 8 in IGOB is IGOB.deliver,(m). Both actions create the exact same trace.
IGBIL.deliver,(m) is enabled when m=s.GlobalQs.next,]. Since r.GlobalQ = s.GlobalQ, s.next, =
r.next, and [GOB.deliver,(m) is enabled when m=r.GlobalQ[r.next,}, IGOB.deliver,(m) is enabled

exactly when IGBI.deliver,(m) is enabled. Now we need to check that g(s’) = r’.

i

s’.next, = s.next, + 1.

r’.next, = r.next,+ 1.

g(s’) = g(s.next,+ 1) = r.next, + 1 = r’.next,.

b

All other state variables are unchanged by this action. Hence, g(s’) = r’.

o m = IGBI.ticker(p)
The corresponding @ in IGOB is simply the empty action, A. Neither of these actions have any
effect on the trace, and A is enabled whenever IGBI.ticker(p) is enabled. We need only show that

gs)=r

s’.clock, = s.clock,+ 1.

50

g(s’) = g(s) = r = 1’ since g() is unaffected by the clock, variable.

bl

All other state variables are unchanged. Hence, g(s’) =t

Therefore, since all transitions preserve the mapping, g is an abstraction function from IGBI to

GOB. m

Corollary 4.6.1 IGBI implements IGOB in the sense of trace inclusion.

Proof 4.6.1 From lemma 4.6.1 we know that there is an abstraction function from IGBI to

IGOB. Therefore, from theorem 2.0.1 we know that IGBI implements IGOB.

51

4.7 Proof that ILT Spec implements IGBI Spec

First, we must formally define the automaton ILT. Let ILT be the composition of ILT, and COFIFO
automata, ILT = [], ., ILT[Q, M] ® Hje{ﬂ—i} COFIFO;;[A], where A = M U ’heartbeat. Also, let

us treat all trasmit,, and receivey, actions as internal actions and hide them from the external trace.

For the simulation proof, we will ignore all "late markings added to any message. Later, we will
provide a proof that the simulation is valid with a small modification when we consider the ’late

markings.

Let us define a new M x T set ILT.Unordered(p, q), where p and q are processes in 2. Informally,
this will be a set of all “new” messages sent by p to q that have not been ordered by any process
in 2. Formally, we construct ILT.Unordered(p, q) by appending two queues and a set together and

then filtering out irrelevant entries.

For this composition, let us add a history variable to GlobalQ,. Let us assume that GlobalQ,

contains <m, t> pairs instead of just messages.

Definition 4.7.1 new, = clock, when stability begins.

Definition 4.7.2 A message pair <m, t> is “new” if t>new; process

Definition 4.7.3 ILT.Unordered(p, q) = ILT.pendingQy(q) U fifoQp, U ILT.receivedy - {<m, t>
such that m="heartbeat} - {<m, t> such that t.process#q} - {<m, t> such that <m, t> € GlobalQ,

for any process r € Q} - {<m, t> such that t.time<new,}

Definition 4.7.4 GlobalQ, | = all of the “new” messages in GlobalQ, with any ’late characters

removed.

4.7.1 Lemma and Invariants

Now we will prove a lemma and several invariants that will be necessary during the proof. Note
that the lemma and invariants 1 through 5 are true in all reachable states of ILT, and invariants 6

and 7 are true during periods of stability.

52

Lemma 4.7.1 There are no non-heartbeat messages in either IGBI or ILT with the same logical
time. Or, more formally, for all <m, t> where m € M that are either sent, transmitted, received,
delivered or ordered by any process p € (1, there is no other <m’, t’> with m € M that is sent,

transmitted, received, delivered or ordered by any process in Q) where t=t’.

Proof 4.7.1 In order to prove this, consider extensions of both our current Automata with
modified send,(m) transitions. Say that each Automaton has some set MyMessages, that contains
all the pairs of messages in M and the logical times at which they were created. Modify send,(m)
so that it adds <m, clock, > to MyMessages, as well as SendQ,, or pendingQ,(q). Now, note that
within each set of MyMessages,, no two messages have the same logical time. This is true because
clock, is never decreased by any transition, but it is increased during each send,{m) transition
before clock,, is paired with the message and added to MyMessages,. It is also true that logical
times cannot be the same for messages created by different processes. This is true because logical
time is a pair that includes the process ID, which is unique to each process. So a logical time created
by one process can never be the same as a logical time created by another process.

Now realize that any message sent, received, transmitted, delivered, or ordered by any process
must be contained in MyMessages,, for some process p in £2. No message can enter the system unless
it is sent by a process, at which point it becomes a member of the MyMessage set of that process.

Thus, all the messages encountered in both ILT and IGBI have unique logical times.

Invariant 4.7.1 V <m, t> € pendingQp(q) U fifoQpq, t< clock,

Proof 4.7.1 Initially, both queues are empty and clock, = <0, p>, so the Invariant is satisfied.

ILT send,(m) increments clock, and appends <m, t> to pendingQ,(q) where t=clock,. Since
t<clock, this preserves the invariant.

ILT transmit,,(<m, t>) moves <m, t> from pendingQ,(q) to fifoQ,,. This also preserves the
invariant.

ILT .receive,q(<m, t>) removes <m, t> from fifoQp, and increases clock,, which preserves the
invariant.

ILT heartbeat,() adds <’heartbeat, clock,> to pendingQ,(q). Since clock, < clock,, this pre-
serves the invariant.

None of the other transitions affect the relevant state variables. Therefore, since all transitions

preserve the invariant, the invariant is true in every reachable state.

Invariant 4.7.2 In every reachable state of ILT, ILT.clock, > ILT.lt,(p) for any pair of processes
q and p in) such that q # p

Proof 4.7.2 Initial state: both ILT.clock, and ILT.lt,(p) = 0. Invariant holds.

Transitions: ILT.send,(m) increments clock, and has no effect on ILT.lt,(p). So if clock, >
ILT.1t,(p) before the transition, then it is also true after the transition.

ILT receive,,(<m, t>) may increase clock, and does not change ILT .lty(p) so if the invariant
was true before this transition, then it is also true after the transition.

ILT .receive,q(<m, t>) does not change clock,, but it sets ILT .It4(p) to t. Since t < clock, (from
Invariant 1), Ity(p) < clock, after this transition.

No other transitions influence the relevant state variables. Since the invariant holds in the initial

state and is preserved by all the transitions, it is true in every reachable state of ILT.

Invariant 4.7.3 All messages from a process p are received by another process q in the order in
which they were sent. Formally, when process q receives <m, t> from p, this implies that q will

never recetwe <m’, t’> from p where t’ < t.

Proof 4.7.3 It is sufficient to show that fifoQ,, + pendingQ,(q) is sorted in order of increasing
logical times and every time a <m, t> pair enters either fifoQ, or pendingQp(q), there will never be
another message <m’, t’> with t’<t that enters fifoQ,, or pendingQ,(q). This is sufficient because
all messages received by process q from process p are taken off the front of fifoQ,,.

Initially, both queues are empty, so the invariant holds.

The only time any <m, t> pair can ever enter pendingQ,(q) is during a heartbeat() or a send, (m)
action. Both of these actions pair a message with the current clock, before adding it to the end of
the pendingQ,(q). Since clock, is a strictly non-decreasing function, it follows that pendingQy(q) is
sorted in order of increasing logical times and after <m, t> enters the pendingQ,(q), no other <m’,
t’> with t’ < t will ever enter pendingQ,(q).

The only transition that may add <m, t> pairs to fifoQpq is transmitye(<m, t>). Since this
takes messages off the front of pendingQ,(q) and appends them to the end of fifoQ,,, we can say
that fifoQ,, is also sorted in order of increasing ligocal times. Furthermore, after <m, t> enters the
fifoQpq. no other <m’, t’> with t’ < t will ever enter fifoQy,.

The lose,, may remove messages from fifoQ,,, but note that this does not affect the ordering of

the other messages. Therefore, the invariant is true in all reachable states of ILT.

54

Invariant 4.7.4 [LT.lt,(q) is always less than or equal to the time stamp of any messages from q
that p has not yet received. Or more formally, if <m, t> € ILT.pendingQqy(p)U fifoQqp, then t >
ILT 1, (q).

Proof 4.7.4 Initially ILT.It,(q) is <0, g>, ILT clock,y is <0, g>, ILT.PendingQq(p) is empty,
and ILT fifoQ)g, is empty, so the invariant is satisfied.

The only transition that ever changes ILT .It,(q) is receiveg,(<m, t>). At this time ILT lt,(q) is
changed to t. From invariant 3, we can see that p will never receive a message <m’, t’> from q with t’
< t. From liveness properties, we know that p must eventually receive all messages in ILT.pendingQg,
and ILT fifoQgp. Therefore, there are never any messages in either ILT.pendingQq(p) and ILT fifoQ,
with logical time less than ILT lt,(q).

Invariant 4.7.5 In every reachable state of ILT, ¥ <m, t>€ received,, t<clocks process-

Proof 4.7.5 Initially, received, is empty, so the invariant is true.

There are only two transitions that may add an element to received,, ILT receiveg,(<m, t>) and
ILT .send,(m). ILT .receivey,(<m, t>) removes <m, t> from fifoQ,, and places it in received,. From
invariant 1, we know that t.time<clock,, so this preserves the invariant. ILT.send,(m) places <m,
clock,> in received,. Since clock, <clock,, this also preserves the invariant. Hence, the invariant is

true in all reachable states of ILT.

Invariant 4.7.6 Unordered(p, q) = Unordered(p, r) for any three processes (not necessarily dis-

tinct) p, g, v in § in every reachable state of ILT during a period of stability.

Proof 4.7.6 At the beginning of stability, clock, = new,, for all p in Q. From invariants 1 and 5,
we know that for every message <m, t> in pendingQy,, U fifoQ,, U received,, t< clock,. Therefore,
if we look at the definition of Unordered(p, q), we can see that Unordered(P, q) is empty at the
beginning of stability for all p, q in 2. So the invariant holds.

Now we need to show that every possible transition preserves the invariant.

LT .sendy,(m) appends the same message pair <m, clock,> to the pendingQ, (k) of every process
k # pin 2, and it also adds <m, clock,> to its received, set. So now <m, clock,> has been added
to Unordered(p, q) for all q € Q

ILT transmit,,(<m, t>) removes <m, t> from ILT.pendingQ,(q) and adds it to ILT.fifoQp,. If
<m. t> was in Unordered(p, q), this does not remove it. If <m, t> was not in Unordered(p, q)

then it is not added.

55

ILT .orderp(<m, t>) If p is the first process to add <m, t> to its GlobalQ then it removes <m,
t> from Unordered(q, p) for all q and p in Q. Otherwise, some other process has already placed <m,
t> in its GlobalQ and it has already been removed from all Unordered(q, p), so this transaction has
no effect.

ILT receiveg,(<m, t>) simply removes <m, t> from ILT fifoQ,, and adds it to ILT received,.
If <m, t> was in Unordered(p, q), this does not remove it. If <m, t> was not in Unordered(p, q)
then it is not added.

ILT heartbeat,() does not affect Unordered(p, q) for any q in £ because the definition of Un-
ordered(p, q) does not allow it to include any heartbeat messages.

ILT lose,, is never enabled because quality,, = ‘connected’ during stability.

No other transitions affect any of the state variables involved in the definition of Unordered(p,
a).

Hence, during a period of stability, in every reachable state of ILT, Unordered(p, q) and Un-

ordered (p, r) are the same for all p, q, r € Q

Invariant 4.7.7 All of the ILT.GlobalQ),, |, are prefizes of each other. Formally, for all
ILT.GlobalQ, |n and ILT.GlobalQy |, either ILT.Global@, |, is a prefix of ILT.GlobalQ, or
ILT.GlobalQ, is a prefix of ILT.Global@) |,.

Proof 4.7.7 For this proof, let us consider an extension of ILT where the GlobalQ contains
message and logical time pairs rather than just messages. Say that order, <m, t> appends <m, t>
to GlobalQ, instead of just m. I will first prove that each ILT.GlobalQ contains M x T pairs sorted
by increasing values of t.

Proof that ILT.GlobalQ, |, is sorted by increasing logical time values: ILT.GlobalQ,, |, is altered
only by the order,(<m, t>) transition when <m, t> is a new message. At this time, we can assume
that goodConn, = 2 - p. order,(<m, t>) will only append <m, t> to GlobalQ, |, if t < t’ for all
<m’, t’> in received, and if t.time < lt,(q) for all q in Q-{p}. From invariant 3 we know that we
can never receive any messages from q with logical time less than or equal to lt,(q). So if t.time
< Itp(q) for all g(since all q are in goodConn,), then we will never receive any messages <m’, t’>
with t’ < t. If <m, t> has the smallest t for all <m’, t’> in received and we can never receive
any message with a smaller logical time, then we can conclude that ILT.GlobalQ, |, is sorted by
increasing values of t.

Also, note that we cannot lose any 'new’ messages because lose,, is never enabled during stability.
Therefore, by liveness, if stability lasts long enough we will eventually receive all 'new’ messages. This
implies that there are no missing messages in any of the GlobalQ,, |,’s. That is, if some GlobalQ, |,

contains 'new’ message <m, t>, then it must also contain all 'new’” messages <m’, t’> with t’ < t.

o6

Therefore, since all of the GlobalQ,, |,, have all the messages in the same order, and none can be

missing any messages, all of the GlobalQ,, |,.’s must be prefixes of each other.

4.7.2 Mapping and Simulation

Lemma 4.7.2 fis an abstraction function from automaton ILT to automaton IGBI

Proof 4.7.2 First let’s define the mapping () of how states in IntermittentGlobalBroadcastIn-

termediateSpec correspond to states in ILT.

f(s € ILT) = r € IGBI such that:

IGBI ILT

SendQ, = Unordered(p, q) sorted by increasing logical times
next, = next,

Global() = one of the longest GlobalQ,, |, of all processes p in 2
clock, = clock,

For the purposes of the simulation proof, we need some sort of first state from which the simu-
lation begins. In this case, the initial state of ILT will be the post-state of the ILT .deliver,(m) that
delivers the last “old” message. From here we simply let IGBI.SendQp_in;: = ILT.Unordered(p, q)
sorted by increasing logical times, IGBL.next,_;n;; = ILT .next,, IGBI.GlobalQ;y;, and
IGBI.clocky_inst = ILT .clock,. Thus, the initial state preserves the mapping. Now we need only to
show that for every transition in ILT there is a corresponding sequence of transitions in IGBI that

preserves the mapping and creates the same trace.

Formally, if we are in a reachable state s of ILT and r is the corresponding state of IGBI created
by the above mapping, then for every action 7 in ILT, we can find a sequence of action 3 in IGBI
such that the poststate (s”) of = in ILT maps to the poststate of 8 (r’) in IGBI, or f(s’)=r’. Further-
more, 7 and 3 must create the same trace and the sequence of actions 8 must be enabled whenever
7 is enabled.

Now let us say that we are in a reachable state s of ILT and f(s)=r

e 7 = ILT send,(m)

57

The corresponding § is IGBIL.send,(m). Both transitions create the same trace, and both are

always enabled. We need only check that f(s”)=r’".

if

s’.clock, = s.clock,+ 1.

i

r’.clock, = r.clock,+ 1.
For all q € such that q # p, s".pendingQ,(q) = s.pendingQ,(q) + <m, s.clock, +1 >. (Note
that for all q € 2 such that p # q, s’.Unordered(p, q) = s.Unordered(p, q) U {<m, s.clock, >+ 1})
s’.received, = s.received, U {<m, s.clock, +1 >}. (Note that s’.Undelievered(p, p) =

s.Unordered(p, p) U {<m, s.clocky,+ 1>})

s”.Unordered(p, q) = s.Unordered(p, q) U {<m, s.clock, +1 >} for all q € Q).
r’.sendQ, = r.sendQ, + <m, r.clock, +1 >.

f(s’.clock,) = f(s.clock,+ 1) = r.clock, + 1 = r.clock,

f(s".Unordered(p, q)) = f(s.Unordered(p, q) U {<m, s.clock,+1 >}) = r.sendQ, + <m, r.clock,+

1> =r"sendQ,.

f(s.Unordered(p,q)) is defined as a set with no ordering, and r.sendQ, does have order. Be-
cause IGBIL.send,(m) appends <m, r.clock, +1 > to the end of r.SendQ,, we must confirm that
<m, r.clock, +1 > has the largest logical time of all elements of s’.Undelivered(p, q). This is true
because the clock, is a strictly nondecreasing variable and <m, s.clock,+ 1> is the most recent
addition to Unordered(p, q). Therefore <m, s.clock, + 1 > must have the largest logical time of all
M x T pairs in Unordered(p, q).

’

All other state variables remain unchanged. Hence f(s’) = r’.

e 1 = ILT transmity,(<m, t>)
The corresponding 3 is simply the empty transition A. Since X is always enabled, we know that
[is enabled whenever 7 is enabled. Since we will hide all transmit and receive actions in the final

trace, neither action here will impact the final trace. Now we need only show that f(s’) = r’.

s’ .pendingQ,(q) = s.pendingQ,(q) - <m, t>

s’ fifoQpq = s.fifoQ,e + <m, t>.

From the definition, we can see that this change does not affect Unordered(p, q). Therefore
f(s’.Unordered(p, q)) = f(s.Unordered(p, q)) = r.SendQ, = r’.SendQ,. Since all other state vari-

ables are unaffected by this transition, we can conclude that f(s’) = r’.

e m = ILT .deliver,(m)

The corresponding 8 is IGBI.deliverp(m). (Note: since the ILT.GlobalQ, |, are all prefixes of
each other, and IGBIL.GlobalQ = one of the longest ILT.GlobalQ, |, of all p € , it is safe to say
that ILT.GlobalQ, |, is a prefix of IGBI.GlobalQ for any p € ©) Since ILT.GlobalQ,, |, is a prefix
of IGBL.GlobalQ, if m = ILT.GlobalQ, |,[s.nextp] then m = IGBI.GlobalQr.next,]. Therefore,
IGBI.deliver, (m) is enabled whenever ILT .deliver,(m) is enabled. They both create the same exter-

nal trace, so all we need to check now is that f(s’) = r".

s’.next, = s.next,+ 1

r’.next, == r.next,+ 1

f(s’.next,) = f(s.nextp,+ 1) = r.next,+ 1 = r’.next,.

k]

All other state variables are not affected by this transition. Hence, f(s’) = r’.

e 7 = ILT.order,(m), and let <m, t> be the message-logical time pair that satisfy the first
precondition.

Note that since m has not yet been delivered, and the simulation begins after all 'old’ messages
have been delivered, m must be a 'new’ message. The corresponding 4 can be one of two actions:

1. ifV q € ©, m¢ GlobalQy |, then 8 = IGBI.order(t.process).

2. Otherwise some other process has already performed the order operation on this message, so
(3 is simply the empty action, A.

I will start with case 2, since it is the simpler one to prove. Since A is always enabled, we know
that 8 is enabled whenever ILT.order,(m) is enabled. And since ILT.order, is an internal action,

the trace is the same in both cases. Now all that remains is to prove that f(s’) = r’

s’.received = s.received - <m, t>.
Note that since some other process q has already performed ILT.order,(m), we know from the
definition of Unordered that <m, t> is not in Unordered(t.process, r) for any process r € €2, so

Unordered(t.process, q) is unchanged for all q € ©. Hence, the mapping to IGBL.SendQ; process 1S

unchanged.

s’.GlobalQ, |, = s.GlobalQ, |, + <m, t>. (Note that it doesn’t matter whether or not m is
marked late since any 'late marking is removed by the |, mapping.)

ILT .marker, may or may not change. Since it doesn’t affect the mapping, it doesn’t matter.

Note that some other process ¢ has already performed ordery(m), so s.GlobalQ, |, already in-
cluded <m, t>. Since all GlobalQ},’s are prefixes of each other, it follows that s.GlobalQq | is
strictly larger than s.GlobalQ, |.. Therefore, when we add a single message to s.GlobalQy |n,
s’.GlobalQ,, |, is at most as long as s.GlobalQ, |,. Therefore, s’.GlobalQ,, |, is not longer than one
of the longest GlobalQ’s in s. From invariant 4.7.7, we know that s’.GlobalQ,, |, is a prefix of one
of the longest GlobalQ|,’s in s. Hence, the mapping to IGBI.GlobalQ remains unchanged. Since A

also does not affect the mapping, it follows that f(s’) = r’.

In the first case, we know that p is the first process to perform ILT .order, on message <m, t>
and the corresponding 3 is IGBI.order(t.process). Since both are internal actions, they do not affect
the external trace. We need to show that IGBLorder(t.process) is enabled whenever ILT.order, <m,
t> is enabled.

The first precondition for IGBIL.order(t.process) is that <m, t> = first(SendQ¢.process). From
the definition of Unordered(p, q) we can see that in state s, <m, t> is in Unordered(t.process, p)
for all p € 2. We need only show that for all <m’, t'> in Unordered(t.process, p), t < t’. From
invariant 4.7.3, we know that if t.process sent any earlier messages, they must have been received
by p. Hence, any <m’, t’> with t’ < t must be in either ILT received, or ILT.GlobalQ,, |,. If it is
in ILT.GlobalQy, |, then we know it cannot be in Unordered(t.process, p). If it is in ILT .received,,
then received, has a message with a time stamp less than t, which contradicts the third precondition
of IGBILorcer(t.process). Hence, <m, t>=r.first(SendQ; process) Whenever ILT.order, <m, t> is
enabled.

With invariant 4.7.2 (ILT.1t,(p) < ILT.clock,), it follows that the third precondition of
IGBIlL.order(t.process) is satisfied whenever the second precondition of ILT.order,(m) is satisfied.

From invariant 4.7.4 and the definition of Unordered(p, q), we can see that either r.first(SendQ,)
is in s.received, or s.lt,(q) < t. If s.lt,{q) < t then m is not enabled. If r first(SendQ,) is in
s.received, then the third precondition of ILT.order, <m, t> implies that the second precondition
of IGBIL.order(t.process) is satisfied.

Hence, 3 is enabled whenever 7 is enabled.

Now we must show that f(s’) = r’.

60

s’.received,, = s.received, - <m, t>.

s’.GlobalQ,, |, = s.GlobalQ, |, + m. (It doesn’t matter whether or not m is marked late because

the marking is removed with the |,, mapping)

s’.Unordered(t.process, q) = s.Unordered(t.process, q) - <m, t>.

r’.8endQ; process = I.3endQt process - <m, t>. 1’.GlobalQ = r.GlobalQ + m.

ILT.marker, may or may not be increased. It doesn’t matter since that does not affect the
mapping.

So f(s’.Unordered(t.process, q)) = r’.SendQ¢ process for any q € §2. Because p is the first process
to append m to its GlobalQ)|,, and all of the GlobalQ|,’s are prefixes of each other, we can conclude
that s.GlobalQ,, |, is not shorter than s.GlobalQq |, for all g € Q where q # p, and after appending
m, GlobalQ, |,, is the longest GlobalQ),,. Therefore, s.GlobalQ,, |, = r.GlobalQ and s’.GlobalQ, |,

= 1r".GlobalQ, |,. Since no other state variables change, we can conclude that f(s’) = r’

o m = ILT receive,,(<m, t>)

The corresponding (3 is simply ticker(p) performed (max[t.time - s.clock,, 0] + 1) times. For
convenience, we will simply refer to this number as n in the next few paragraphs. Since IGBL.ticker(p)
is always enabled, we know that (is enabled whenever 7 is enabled. Since we will hide all transmit
and receive actions in the final trace and IGBI.ticker(p) is an internal action, neither will impact
the final trace. Now we need only show that f(s’) = r’.

s'.fifoQpq = s.fifoQpq - <m, t>

s’.received, = s.receivedg + <m, t>

From the definition of Unordered(p, q), we can see that this change does not affect Unordered(p,
q). So f(s’.Unordered(p, q)) = f(s.Unordered(p, q)) = r.SendQ, = r’.SendQ,.

s’.clock, == s.clock, + n

r’.clock, = r.clock, + n

f(s’.clock,) = f(s.clock, + n) = r.clock, + n = r’.clock,.

s.1t,(t.process) is also changed, but this does not affect any of the states in IGBI. Since all other

state variables remain unchanged, we can conclude that f(s”) = r.

o 7 is ILT heartbeat,()

61

The corresponding 8 in IGBI is A. A is always enabled. ILT heartbeat,() is an internal action,

neither affect the external trace. Now we need only prove that f(s’) = r’.

s’.pendingQ,(q) = s.pendingQ,(q) + <’heartbeat, s.clock, > for all q # p.

Note that since all 'heartbeat messages are not a part of Unordered(p, q), we can see that Un-
ordered(p, q) is unaffected by this transition, for any p and q in . Therefore, the mapping is not

influenced and f(s’) = r’.

e 1 be ILT statusUpdatep, (quality)

The corresponding 3 is simply the empty action A. Both are always enabled and neither affect
the external trace.

This proof is only valid during a period of stability. This means that all connection qualities
must always be good. Therefore, the only valid quality is ‘connected’. Performing
ILT statusUpdateyq(‘connected’) when quality,, is already connected does not change any part of

the state. Therefore, f(s’)=f(s)=r=r".

o m = ILT losep,
The precondition for this action requires that quality,,=‘disconnected’. Since this proof is for a

period of stability, ILT lose,, is never enabled so we do not have to consider its affects.

Therefore, f is an abstraction function from ILT to IGBL. ®

Corollary 4.7.1 ILT implements IGBI in the sense of trace inclusion. Furthermore, by transitiv-

ity, ILT implements IGOB.

Proof 4.7.1 From lemma 4.7.2 we know that there is an abstraction function from ILT to IGBI.
Therefore, by theorem 2.0.1 we know that ILT implements IGBI. Furthermore, by transitivity and
lemma 4.6.1, we know that ILT implements IGOB.

4.7.3 Dealing with late messages

In the simulation proof, we ignored all of the "late markings. Here I will attempt to show how ’late
markings affect the proof.
Because all of the processes have varying logical clock values, it is possible that a message sent

by one process before stability begins will have a larger logical clock value than a message sent by

62

another process after stability begins. Then, because the processes try to deliver messages in order
of increasing logical times, there may be 'new’ messages delivered before some ’old’ messages. If
for some reason an ’old’ message with a late logical time was delivered before stability was reached,
then that process will mark all of the 'new’ messages with earlier logical times 'late. Furthermore,
processes may disagree on which 'new’ messages are marked 'late.

To outline this issue clearly, the following diagram illustrates an example involving three pro-
cesses: A, B and C. In order to simplify the diagram, logical times are represented by a single
number, and irrelevant transitions have been omitted. The first wavy line represents the beginning
of stability, and it implies that each process updates their connection qualities to ‘connected’. The
second wavy line represents the state immediately after C delivers m1 (the last ’old’ message), where
we want to say that global order begins. Note that even after global order is guaranteed, A and B

disagree on the ’late-ness of m2.

The initial connection qualities are all "suspected’

A (ciock = 10) B (ciock = 1) C (clock = 8)

send<mi, 9>

statusUpdateg
receive<m1, 9> ‘disconnected”)
deliver(m1) lose{m1})
~
send<m2, 2>
receiva<maz, 2> receive<mz, 2>

deliver{m2}

detiver(m1)

deliver(m2 + 'late) deliver(m?2}

Figure 4-4: Example of 'late discrepancy

63

The proof presented earlier takes the stance that the important thing is delivering messages in
order and ’late-ness is only secondary issue. However, if we treat a ’late marking as a sort of muta-
tion of a message, this is inacceptable. If we require that all processes agree on ’late markings, the
ILT algorithm does not implement IGOB until later. If we say that LOM (Latest 'Old’ Message) is
the latest logical time of all old’ messages, then ILT does not implement IGOB until all messages
with logical times less than or equal to LOM have been delivered. A few simple invariants show that

no messages delivered after this point could be marked ’late.

Invariant 4.7.8 When a process p orders <m, t>, this implies that p will never receive a <m’, t’>

with t>t’ unless t’.process ¢ goodConny,

Proof 4.7.8 This is the same as proving that for all g€goodConn,, p does not have and will
never receive a message from q with logical time less than t. We know that p does not have any
messages with logical times less than t in received,, or else the third precondition of order<m, t>
would not be satisfied. From invariant 4, we can see that if t.time<lt,(q) for all g € GoodConn,,
then we can never receive a message from q with logical time less than t. Hence, the invariant is

true in all reachable states of ILT.

Invariant 4.7.9 During a period of stability, if a message <m, t> is marked ’late, then t < LOM,

where LOM s as defined previously.

Proof 4.7.9 First let’s take a step back and look at ILT .order,(m). Note that marker), is always
the value of the latest logical time of messages on the GlobalQ,. In order for a message <m, t> to
be marked ’late, there must be a message on GlobalQ, with a logical time later than t. If <m, t>
is marked 'late and <m’, t’> is one message on GlobalQ, with t’>t, then with invariant 8 we know
that t.process was not in goodConn, when m’ was ordered. Hence, m’ could not have been ordered
during the period of stability. Therefore, m’ must be an ’old’ message. It follows that no message
<m, t> can be marked late unless t is less than the logical time of at least one ’old’ message. Thus,

the invariant is true.

Now that we have proved that ILT implements IGOB when we ignore all "late messages and ’late
messages will eventually end, we can say that ILT implements IGOB even if we consider a message
with a ’late marking a different message. IGOB will start at a later point in the trace (namely after

there can be no more ’late messages), but the proof is essentially identical.

64

It’s nice to pin down exactly when the algorithm will not have any more ’late messages, but how
does a client know when ’late messages stop? Or, if someone were looking at the trace of ILT with
no knowledge of the logical times assosciated with each message, how would that person know when
the ’late messages have stopped coming? Quite simply, you know that a process will never mark
another message as ’late as soon as it has delivered at least one 'mew’ message from every other
process. This is true because once a process has delivered a message from every other process, it
must have delivered a message from the process that sent the message with the LOM logical time.
Once that has been delivered, we know that there are no more messages with logical times less than
LOM. Hence, there are no more ’late messages. However, this analysis assumes that one can see the
trace. In actuality, a client at site A knows only how well other processes are connected to site A. It
has no knowledge of whether or not site B can communicate with site C. Therefore, any individual
client has no idea whether or not a system is stable. Hence, any individual client does not know

when global order is guaranteed.

65

Chapter 5

Connection Manager

Many performance trade-offs are controlled by the connection manager. Parameters in the connec-
tion manager determine how long one process will wait for another process to send it a message
before it changes the connection quality. This in turn directly affects message latency. The quicker a
process switches from connected to suspected, the lower the messages latencies will be. If a process
waits longer to switch from connected to suspected, there will be better global consistency with the
message ordering. The details of the connection manager also affect other properties and guarantees
that would be nice to analyze. For example, one property of the RC project implementation involves
what happens when clients at different ends of a TCP channel don’t see the same connection qual-
ities. A property like this is a function of the connection manager rather than the ILT algorithm
because there is no guarantee that processes A and B will always agree on the connection quality
between them. For instance, it is possible for A to receive notification that it was disconnected from
B for a short while and for B to think that the connection quality only got as bad as ‘suspected’.

We will address the ramifications of this after we describe how the connection manager works.

5.1 How it works

The connection manager is a special layer that sits on top of the TCP connection. The first thing
that needs to be clarified is how the connection manager interprets the traffic on a TCP chan-
nel. The connection manager allows the TCP connection to vary between three different states:
TCP_Connected, TCP_Silent, and TCP_Disconnected. Whenever a message is received via a TCP
connection, the connection is classified as TCP_Connected. If five seconds pass where no transmis-
sions are received, the connection is classified as TCP_Silent. If an additional thirty seconds pass
and no transmission is received, the connection manager kills the TCP channel and switches the
status to TCP _Disconnected. If at any time a TCP socket throws an exception, it is closed and the

TCP channel is immediately classified as TCP_Disconnected. When two processes want to establish

66

a TCP connection, the connection is initiated by the process with the smaller process ID. The first
communication over a new channel will include the sender’s identification information. This is de-
signed to prevent multiple TCP processes opening between a pair of processes. The state machine
governing internal connection state transitions is outlined in Figure 5-1. Please note that the actual

timing parameters may be customized by the client. The numbers given here are just one example.

Establish new TCP connection
-'”W\\
/ Receive }\

7 N

TCP_Connected > TCP_Silent

\\ . ™
\K/Receive timeout*r//
5 sec T T~

Connection

\ Exception-Line Dow.
i

Figure 5-1: Internal Connection States

There is a separate state machine governing external state transitions. The external state repre-
sents how the connection manager interprets the different internal states of the TCP connection. As
the state of the TCP connection changes, the connection quality must be re-evaluated. Whenever a
channel switches to TCP_Connected, the quality is deemed ‘connected’ and an update is sent to the
client. From the ‘connected’ state, if the channel either becomes TCP_Silent or TCP_Disconnected,
the quality is classified as ‘suspected’ and the client is notified. Once a connection quality is clas-
sified as ‘suspected’, the connection manager starts a clock. If the TCP status does not change to
TCP_Connected within sixty seconds, the connection is automatically killed and the quality changes
to ‘disconnected’. Note after a TCP channel is killed, there is a window of time where a new TCP
connection may be established without the client knowing it ever lost communication. If the connec-
tion quality is classified as ‘disconnected’ for more than five seconds, the connection manager deletes
all the messages that were enqueued to be sent along that channel. This five second delay is included
so that the old messages are not deleted until the process is fairly certain that both processes have
agreed on the disconnection. Figure 5-2 illustrates how connection qualities are updated. Once

again, the timing parameters may be customized by the user.

67

__—— TCP_Connected “‘_“\

oo N

L TCP_Silent . \\
- \\ o isconnecled,/
(Connected Suspected

\,
N

N

Disconnected)

~__

TCP_Disconnected
TCP_Disconnected

oy

Figure 5-2: External Connection States

By looking at these two diagrams together, we can make several statements about how the
connection manager behaves in different situations. The client will be notified every time more than
five seconds pass without receiving a communication from a particular process. This time window
was chosen because the RC implementation has each process sending out 'heartbeat messages every
five seconds. Therefore, if five seconds pass with no communication, the TCP channel is not operating
as well as it could. Also note that a TCP channel is killed if no message is received for 35 seconds,
but the client will not be notified that the channel is disconnected until 65 seconds have passed

without receiving a message.

5.2 Properties

The implementation choices that have just been described influence the properties we can assume in
our RC program. The proof presented earlier is meant to describe the behavior of the system during
a period of stability. Here I would like to address what may happen during periods of instability.
First, note that because we do not immediately change the quality to ‘disconnected’ whenever a
TCP channel is killed, the processes at the ends of the TCP channel may not agree on whether or

not they were ever ‘disconnected’. Consider the scenario outlined in Figure 5-3:

In this case, it’s clear that the client at point A saw that he had been disconnected from B,
but B’s client only saw a ‘suspected’ connection with A. However, because they re-established their
TCP connection before A deleted his queue of messages for B, there should be almost no gap in
the messages sent from A to B. I say almost, because any message that A sends while he perceives
B as ‘disconnected’ will not be added to the queue of messages from A to B. In this example, B

would not receive any message that A might have broadcasted between 1:08 and 1:09. So B could

68

Assume the initial time is ;.00

B & A

I ast message received at :03
—

Last message received at :07
-

‘suspected’ at :08
‘suspected' at 112

e - TCP ConnectionFails - - -~ — :
‘disconnected’ at 1.08

mreceived at 1:09
Message received at 1:10 Switgh to ‘connected’

Switch to ‘connected’

Figure 5-3: Timing Example

be missing a message that A broadcasted to other processes even though B’s client never sees a
‘disconnected’ connection quality. The client at process A, however, will know that B is missing
this message because it saw the disconnection. There may also be problems depending on exactly
when a channel is initially declared ‘connected’. In the RC system, A may try to establish a TCP
connection with B. If A is successful, it declares itself ‘connected’ and then proceeds to send its
contact information to B. However, if they are disconnected before B can receive this information,
B will never consider itself ‘connected’ to A.

On the other hand, we can guarantee that A will receive every message sent by B. This is because
B never deletes anything from its queue of messages for A unless it sees a ‘disconnected’ quality. In
this respect, this system is sender-oriented, because the sender has a fairly good idea of who receives
his messages while the receiver cannot always be sure of whether or not it is missing any messages.

There are methods for helping B know when it may be missing messages from A. One of these
methods is to add an additional connection quality to cover the window between when a process
considers itself ‘disconnected’ and when it knows that the process on the other end considers itself
‘disconnected’. However, too many connection qualities tend to confuse clients. Another possibility
is for processes to send additional messages between each other whenever a new TCP connection is
established to inform each other if the connection was classified as ‘disconnected’. Then, if A saw
a disconnection and B didn’t, B could quickly change the status to ‘disconnected’ and then back to
‘connected’ to communicate to the client that there may be messages missing. This approach means
that B will see a ‘disconnected’ quality even though it is connected to A, which seems somehow
inaccurate. FEither of these solutions would solve the problem with disagreeing on a ’disconnect’
when one process reconnects after being disconnected between a minute and a minute and five
seconds. Unfortunately, neither of these solutions would help with the discrepancies seen when one
process declares itself ‘connected’ and then disconnects before the process on the other end declares

itself ‘connected’. This situation is actually a special case of the “two generals” commitment problem

69

presented in chapter 5 of [2]. Essentially, it is impossible to create a protocol whereby two processes

can commit to being ‘connected’.

70

Chapter 6

Conclusion

It is easiest to model intermittent properties by first considering the non-dynamic case. The process
of creating a proof and analysis of this situation goes a long way in understanding the subtleties that
arise when disconnections are introduced. As an additional bonus, large parts of the non-dynamic
proof may be reused when attempting the proof in a dynamic environment. The next step is to
alter the initial conditions of the specification to reflect the state of the system during a period of
stability after there may have been an arbitrary time of instability in the past. Keeping the states
and transitions in the two specifications identical means that there will be large sections of the proof
that can simply be recycled. The similarities also clarifies the relationship between the intermittent
specification and the non-dynamic specification. This approach was also used in [4].

The changes in the proofs needed for the dynamic and non-dynamic cases may be divided into
two parts: the abstraction function and the invariants. When the specifications for the non-dynamic
and intermittent properties are virtually identical, the abstraction function changes either very little
or not at all. In the proof for IGOB, the abstraction function was identical to the one used for
LT. The invariants, however, are more difficult. Because the invariants are designed to prove the
abstraction function, and the abstraction functions are similar, one would hope to be able to prove
similar invariants as well. But in this proof, for example, there were two invariants that were
simply no longer true when disconnections were introduced. These had to be modified so that they
only applied to periods of stability. This enabled us to keep essentially the same invariants during
stability, which is what we are concerned with during the course of the proof.

The intermittent global order broadcast property presented here is only one way to solve the
problem of ordering messages in a dynamic environment. Like any other system, there are a number
of pros and cons. IGOB is a light-weight protocal. It doesn’t involve any additional synchronization
rounds during network changes, yet it guarantees global ordering properties under well-specified

conditions regardless of prior dynamic changes in the connection qualities. Because it is a light-

71

weight protocol, it may allow for asymmetric perceptions of communication at different clients. For
example, a client at one site does not know anything about what messages another site might be
receiving. So if Alice and Bob are connected with a perfect communication channel, Alice has no
idea whether or not Bob is receiving messages from Carol. If Alice knew that Bob was missing
messages from Carol, Alice could forward him the messages she had received from Carol. While
this is a desirable property, it would require lots of additional communication as well as a more
complicated protocol.

Future work may include formal proofs of other intermittent properties. One such possibility
is connection-oriented global order. Informally, connection-oriented global order means that any
pair of sites that have a stable connection will always view the same messages in the same order.
This is a more complicated property to fulfill because it would require an implementation with a
more complicated protocol that would involve additional communication between remote sites. The
specification would also involve more subtleties. However, it is clear that any system that fulfills the
requirements for connection-oriented global order would also implement intermittent global order
broadcast. Therefore, the proof presented here could be both an example and a building block for
such a proof.

Connection-oriented global order is another way to weaken global order. It would be implemented
with a protocol that involves a special synchronization round every time group membership changes.
During this synchronization round, no ‘new’ messages are shared until everyone has received and
delivered all of the ‘old’ messages. Then, global order broadcast begins immediately after the
synchronization round is complete. Furthermore, each client knows that global order has started.
Once again, this system requires additional rounds of communication. If processes are frequently
changing their connection status, consensus rounds are performed frequently. If stability does not
last long enough for the consensus round to terminate, the extra communication was wasted anyway.
Therefore, this technique is most useful in situations where the group membership does not change

frequently.

72

Bibliography

[1] Xavier Defago, Andre Schiper and Peter Urban. Totally Ordered Broadcast and Multicast Algo-
rithms: A Comprehensive Survey. Tech. Rep. DSC/2000/036, Swiss Federal Institute of Tech-

nology, Lausanne, Switzerland, September 2000.
[2] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[3] Leslie Lamport. Time, clocks, and the ordering of events in a distrubted system. Communcations

of the ACM, 21(7):558-565, July 1978.

[4] Roger Khazan and Nancy Lynch. An Algorithm for an Intermittently Atomic Data Service Based
on Group Communication. International Workshop on Large-Scale Group Communication, Oc-

tober 2003.

[5] Roger Khazan, et. al Robust Collaborative Multicast project. MIT Lincoln Laboratory. Informa-
tion Systems Technology group. Project report in preparation. 2003-2004.

(6] Butler Lampson. Generalizing Abstraction Functions. Massachusetts Institute of Technology,
Laboratory for Computer Science, principles of computer systems class, handout 8, 2002.

http://web.mit.edu/6.826/archive/S02/8.pdf

73

