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Abstract

Hiererachical clustering, that is computing a recursive partitioning of a dataset to
obtain clusters at increasingly finer granularity is a fundamental problem in data
analysis. Although hierarchical clustering has mostly been studied through proce-
dures such as linkage algorithms, or top-down heuristics, rather than as optimization
problems, recently Dasgupta [1] proposed an objective function for hierarchical
clustering and initiated a line of work developing algorithms that explicitly optimize
an objective (see also [2, 3, 4]). In this paper, we consider a fairly general random
graph model for hierarchical clustering, called the hierarchical stochastic block
model (HSBM), and show that in certain regimes the SVD approach of McSherry [5]
combined with specific linkage methods results in a clustering that give an Op1q
approximation to Dasgupta’s cost function. We also show that an approach based
on SDP relaxations for balanced cuts based on the work of Makarychev et al. [6],
combined with the recursive sparsest cut algorithm of Dasgupta, yields an Op1q
approximation in slightly larger regimes and also in the semi-random setting, where
an adversary may remove edges from the random graph generated according to an
HSBM. Finally, we report empirical evaluation on synthetic and real-world data
showing that our proposed SVD-based method does indeed achieve a better cost
than other widely-used heurstics and also results in a better classification accuracy
when the underlying problem was that of multi-class classification.

1 Introduction

Computing a recursive partitioning of a dataset to obtain a finer and finer classification of the data is a
classic problem in data analysis. Such a partitioning is often refered to as a hierarchical clustering and
represented as a rooted tree whose leaves correspond to data elements and where each internal node
induces a cluster of the leaves of its subtree. There exists a large literature on the design and analysis of
algorithms for hierarchical clustering (see e.g., [7]). Two main approaches have proven to be successful
in practice so far: on the one hand divisive heuristics compute the hierarchical clustering tree in a
top-down fashion by recursively partitioning the data (see e.g., [8]). On the other hand, agglomerative
heuristics produce a tree by first defining a cluster for each data elements and successively merging
clusters according to a carefully defined function (see e.g., [9]). These heuristics are widely used in
practice and are now part of the data scientists’ toolkit—standard machine learning libraries contain
implementations of both types of heuristics.
Agglomerative heuristics have several appealing features: they are easy to implement, easy to tune,
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and their running time is rOpn2q1 on a dataset of size n. Standard divisive heuristics based on graph
partitioning or clustering methods (like for example the bisection k-means or the recursive sparsest-cut
approaches) often involve solving or approximating NP-hard problems.2 Therefore, it is natural to
ask how good the solution output by an agglomerative method is compared to the solution output by
a top-down method.
From a qualitative perspective, this question has been addressed in a large body of work (see e.g., [10]).
However, from a quantitative perspective little is known. As Dasgupta observes in his recent work [1],
both agglomerative and divisive heuristics are defined procedurally rather than in term of an objective
function to optimize, a reason why a quantitative comparision of the different heuristics is rather
difficult. Dasgupta introduced an objective function to model the problem of finding a hierarchical clus-
tering of a similarity graph—such an objective can be used to explicitly design optimization algorithms
that minimize this cost function as well as serve as a quantitative measure of the quality of the output.
Given a similarity graph i.e., a graph where vertices represent data elements and edge weights sim-
ilarities between data elements, Dasgupta’s objective function associates a cost to any hierarchical
clustering tree of the graph. He showed that his objective function exhibits several desirable properties:
For example, if the graph is disconnected i.e., data elements in different connected components are very
dissimilar, a tree minimizing this objective function will first split the graph according to the connected
components.
This axiomatic approach to defining a “meaningful” objective function for hierarchical clustering has
been further explored in recent work by Cohen-Addad et al. [4]. Roughly speaking, they characterize
a family of cost functions, which includes Dasgupta’s cost function, that when the input graph has a
“natural” ground-truth hierarchical clustering tree (in other words a natural classification of the data),
this tree has optimal cost (and any tree that is not a “natural” hierarchical clustering tree of the graph
has higher cost). Therefore, the results by Dasgupta and Cohen-Addad et al. indicate that Dasgupta’s
cost function provides a sound framework for a rigorous quantitative analysis of agglomerative and
divisive heuristics.
A suitable objective function to measure the quality of a clustering also allows one to explicitly design
algorithms that minimize the cost. Dasgupta showed that the recursive sparsest-cut heuristic is an
Oplog3{2nq-approximation algorithm for his objective function. His analysis has been improved by
Charikar and Chatziafratis [2] and Cohen-Addad et al. [4] to Op

?
log nq. Unfortunately, Charikar

and Chatziafratis [2] and Roy and Pokutta [3] showed that, for general inputs, the problem cannot be
approximated within any constant factor under the Small-Set Expansion hypothesis. Thus, as suggested
by Charikar and Chatziafratis [2], a natural way to obtain a more fine-grained analysis of the classic
agglomerative and divisive heuristics is to study beyond-worst case scenarios.

Random (and semi-random) Graph Model for Hierarchical Clustering. A natural way to analyse
a problem beyond the worst-case is to consider a suitable random input model, which is the focus of this
paper. More precisely, we introduce a random graph model and a semi-random graph model which are
based on the notion of “hierarchical stochastic block model” (HSBM) introduced by Cohen-Addad et
al., which is a natural extensions of the stochastic block model introduced. Our random graph model
relies on the notion of ultrametric, a metric in which the triangle inequality is strengthened by requiring
dpx,yqďmaxpdpx,zq,dpy,zqq. This is a key concept as ultrametrics exactly capture the notion of data
having a “natural” hierarchical structure (cf. [10]). The random graphs are generated from data that
comes from an ultrametric, but the randomness hides the natural hierarchical structure. Two natural
questions are: Given a random graph generated in such a fashion, when is it possible to identify the
underlying ultrametric and is the optimization of Dasgupta’s cost function easier for graphs generated
according to such a model. The former question was partially addressed by Cohen-Addad et al. and
our focus is primarily on developing algorithms that achieve anOp1q approximation to the expected
Dasgupta cost, not on recovering the underlying ultrametric.
More formally, assume that the data elements lie in an unknown ultrametric space pA,distq and so
exhibit a natural hierarchical clustering defined by this ultrametric. The input is a random graph
generated as follows: an edge is added between nodes u,vPAwith probability p“fpdistpu,vqq, where
f is an (unknown) non-increasing function with range p0,1q.Thus, vertices that are very close in the
ultrametric (and so very similar) have a higher probability to have an edge between them than vertices

1The rO notation hides polylogarithmic factors.
2In some cases, it may be possible to have a very fast algorithms based on heuristics to compute partitions,

however, we are unaware of any such methods that would have provable guarantees for the kinds of graphs that
appear in hierarchical clustering.
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that are further apart. Given such a random graph, the goal is to obtain a hierarchical clustering tree
that has a good cost for the objective function. The actual ground-truth tree is optimal in expectation
and we focus on designing algorithms that with high probability output a tree whose cost is within
a constant factor of the expected cost of the ground-truth tree. Although, we do not study it in this
work, the question of exact recovery is also an interesting one and the work of Cohen-Addad et al. [4]
addresses this partially in certain regimes. We also consider the semi-random case, where an adversary
may remove edges from the random graph generated as above, but not add any edges. Such a model
has been considered by Makarychev et al. [6] in the context of planted partition problems. The goal
is still to obtain a constant factor approximation to the expected cost of the ground-truth tree.

Algorithmic Results. Even in the case of random graphs, the linkage algorithms may perform quite
poorly, mainly because ties may be broken unfavourably at the very bottom, when the clusters are
singleton nodes; these choices cannot be easily compensated later on in the algorithm. We thus
consider the LINKAGE++ algorithm which first uses a seeding step using a standard SVD approach
to build clusters of a significant size, which is an extension of the algorithm introduced in [4]. Then,
we show that using these clusters as starting point, the classic single-linkage approach achieves a
p1`εq-approximation for the problem (cf. Theorem 2.3).
We also consider the semi-random model and show that by recursively computing an Op1q-
approximation to the problem of computing a (roughly) balanced min-cut produces an Op1q-
approximation to the hierarchical clustering problem. To do so we harness an algorithm introduced by
Makarychev et al. [6] for the Small-Set Expansion problem in a semi-random version of the stochastic
blockmodel (cf. Theorem 2.6).

Experimental Results. We evaluate the performance of LINKAGE++ on real-world data (Scikit-learn)
as well as on synthetic hierarchical data. The measure of interest is the Dasgupta cost function and
for completeness we also consider the classification error (see e.g., [3]). Our experiments show that 1)
LINKAGE++ performs well on all accounts and 2) that a clustering with a low Dasgupta cost appears to
be correlated with a good classification. On synthetic data LINKAGE++ seems to be clearly superior.

Related Work. Our work follows the line of research initiated by Dasgupta [1] and further studied
by [3, 2, 4]. Dasgupta [1] introduced the cost function studied in this paper and showed that the recursive
sparsest-cut approach yields an Oplog3{2 nq. His analysis was recently improved to Op

?
lognq

by [2, 4]. Roy and Pokutta [3] and Charikar also considered LP and SDP formulations with spreading
constraints to obtain approximation algorithms with approximation factor Oplognq and Op

?
lognq

respectively. Both these works also showed the infeasibility of constant factor approximations under
the small-set expansion hypothesis. Cohen-Addad et al. [4] took an axiomatic approach to identify
suitable cost functions for data generated from ultrametrics, which results in a natural ground-truth
clustering. They also looked at a slightly less general hierarchical stochastic blockmodel (HSBM),
where each bottom-level cluster must have a linear size and with stronger conditions on allowable
probabilities. Their algorithm also has a “seeding phase” followed by an agglomerative approach. We
go beyond their bounds by focusing on approximation algorithms (we obtain a p1`εq-approximation)
whereas they aim at recovering the underlying ultrametric. As the experiments show, this trade-off
seem not to impact the classification error compared to classic other approaches.
There is also a vast literature on graph partitionning problems in random and semi-random models.
Most of this work (see e.g., [5, 11]) focuses on recovering a hidden subgraph e.g., a clique, whereas
we address the problem of obtaining good approximation guarantees w.r.t. an objective function. At
a high-level our approach is related to the work of Makarychev et al. [6, 12] in the semi-random model
for graph partitioning objectives like balanced cut, multicut, etc.
The reader may refer to [13, 14] for the definitions and the classic properties on agglomerative and
divisive heuristics. Agglomerative and divisive heuristics have been widely studied from either a
qualitative perspective or for classic “flat” clustering objective like the classic k-median and k-means,
see e.g., [15, 16, 17, 18, 19]. For further background on hierarchical clustering and its application
in machine learning and data science, the reader may refer to e.g., [20, 21, 22, 23].

Preliminaries In this paper, we work with undirected weighted graphG“pV,E,wq, where V is a set
of vertices,E a set of edges, andw :EÑR`. In the random and semi-random model, we work with
unweighted graphs. We slightly abuse notation and extend the function w to subsets of V . Namely,
for any A,B Ď V , let wpA,Bq “

ř

aPA,bPBwpa,bq. We use weights to model similarity, namely
wpu,vq ąwpu,wq means that data element u is more similar to v than to w. When G is clear from
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the context, we let |V | “n and |E| “m. For any subset S of vertices of a graph G, let GrSs be the
subgraph induced by the nodes of S.

In the following, letG“pV,E,wq be a weighted graph on n vertices. A cluster tree or hierarchical
clustering T forG is a rooted binary tree with exactly |V | leaves, each of which is labeled by a distinct
vertex v PV . We denote LCAT pu,vq the lowest common ancestor of vertices u,v in T . Given a tree
T and a nodeN of T , we say that the subtree ofN in T is the the connected subgraph containing all
the leaves of T that are descendant ofN and denote this set of leaves by V pNq. A metric space pX,dq
is an ultrametric if for every x,y,zPX , dpx,yqďmaxtdpx,zq,dpy,zqu.
We borrow the notion of a (similarity) graph generated from an ultrametric and generating tree
introduced by [4]. A weighted graph G “ pV,E,wq is a generated from an ultrametric, if there
exists an ultrametric pX,dq, such that V ĎX , and for every x,y P V,x ‰ y, e “ tx,yu exists, and
wpeq“fpdpx,yqq, where f :R`ÑR` is a non-increasing function.

Definition 1.1 (Generating Tree). LetG“pV,E,wq be a graph generated by a minimal ultrametric
pV,dq. Let T be a rooted binary tree with |V | leaves; let N denote the internal nodes and L the
set of leaves of T and let σ :LÑV denote a bijection between the leaves of T and nodes of V . We
say that T is a generating tree for G, if there exists a weight function W : N Ñ R`, such that for
N1,N2 PN , if N1 appears on the path from N2 to the root, W pN1qďW pN2q. Moreover for every
x,yPV ,wptx,yuq“W pLCAT pσ´1pxq,σ´1pyqqq.

As noted in [4], the above notion bear similarities to what is referred to as a dendrogram in the machine
learning literature (see e.g., [10]).

Objective Function. We consider the objective function introduced by Dasgupta [1]. LetG“pV,E,wq
be a weighted graph and T “ pN ,Eq be any rooted binary tree with leaves set V . The cost induced
by a node N of T is costT pNq “ |V pNq| ¨wpV pC1q,V pC2qq where C1,C2 are the children of N in
T . The cost of T is costT “

ř

NPN costT pNq. As pointed out by Dasgupta [1], this can be rephrased
as costT “

ř

pu,vqPEwpu,vq¨|V pLCAT pu,vqq|.

2 A General Hierarchical Stochastic Block Model

We introduce a generalization of the HSBM studied by [4] and [24]. Cohen-Addad et al. [4] introduce
an algorithm to recover a “ground-truth” hierarchical clustering in the HSBM setting. The regime
in which their algorithm works is the following: (1) there is a set of hidden clusters that have linear
size and (2) the ratio between the minimum edge probability and the maximum edge probability is
Op1q. We aim at obtaining an algorithm that “works” in a more general setting. We reach this goal
by proposing on p1`εq-approximation algorithms. Our algorithm very similar to the widely-used
linkage approach and remains easy to implement and parallelize. Thus, the main message of our work
is that, on “structured inputs” the agglomerative heuristics perform well, hence making a step toward
explaining their success in practice.
The graphs generated from our model possess an underlying, hidden (because of noise) “ground-truth
hierarchical clustering tree” (see Definition 2.1). This aims at modeling real-world classification
problem for which we believe there is a natural hierarchical clustering but perturbed because of missing
information or measurement erros. For example, in the tree of life, there is a natural hierarchical cluster-
ing hidden that we would like to reconstruct. Unfortunately because of extinct species, we don’t have a
perfect input and must account for noise. We formalize this intuition using the notion of generating tree
(Def 1.1) which, as hinted at by the definition, can be associated to an ultrametric (and so a “natural” hi-
erarchical clustering). The “ground-truth tree” is the tree obtained from a generating tree on k leaves to
which we will refer as “bottom”-level clusters containingn1,n2,...,nk nodes (following the terminology
in [4]). Each edge of a generated graph has a fixed probability of being present, which only depends on
the underlying ground-truth tree. This probability is a function of the clusters in which their endpoints
lie and the underlying graph on k vertices for which the generating tree is generating (as in Def 1.1).

Definition 2.1 (Hierarchical Stochastic Block Model – Generalization of [4]). Let n be a positive
integer. A hierarchical stochastic block model with k bottom-level clusters is defined as follows:
1) Let rGk “ prVk, rEk,wq be a graph generated from an ultrametric, where |rVk| “ k for each e P rEk,
wpeqPp0,1q. let rTk be a tree on k leaves, let rN denote the internal nodes of rT and rL denote the leaves;
let rσ : rLÑrks be a bijection. Let rT be generating for rGk with weight function ĂW : rNÑr0,1q.
2) For each iPrks, let pi Pp0,1s be such that piąĂW pNq, ifN denotes the parent of rσ´1piq in rT .
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3) For each iPrks, there is a positive integer ni such that
řk
i“1ni“n.

Then a random graphG“pV,Eq onn nodes is defined as follows. Each vertex iPrns is assigned a label
ψpiqP rks, so that exactly nj nodes are assigned the label j for j P rks. An edge pi,jq is added to the
graph with probability pψpiq ifψpiq“ψpjq and with probability ĂW pNq ifψpiq‰ψpjq andN is the least
common ancestor of rσ´1piq and rσ´1pjq in rT . The graphG“pV,Eq is returned without any labels.

We use, for a generating tree rT , the notation pmin to denote ĂW pN0q, where N0 is the root node of
rT . Let nmin be the size of the smallest cluster (of the k clusters) As in [4], we will use the notion of
expected graph. The expected graph as the is the weighted complete graph Ḡ in which an edge pi,jq
has weight pi,j , where pi,j is the probability with which it appears in the random graphG. We refer
to any tree that is generating for the expected graph Ḡ as a ground-truth tree forG. In order to avoid
ambiguity, we denote by costT pGq and costT pḠq the costs of the cluster tree T for the unweighted
(random) graph G and weighted graph Ḡ respectively. Observe that due to linearity of expectation
for any tree T and any admissible cost function, costT pḠq“ErcostT pGqs, where the expectation is
with respect to the random choices of edges in G. We investigate the cost of a ground-truth tree in
Proposition C.2 and the following theorem.

Algorithm LINKAGE++, a p1`εq-Approximation Algorithm in the HSBM. We consider a simple
algorithm, called LINKAGE++, which works in two phases (see Alg. 1 for more details in Section C):
1) Apply an SVD to the input data and apply single-linkage using the Euclidean distance to build big
enough clusters.
2) Consider these bottom clusters in the original input and apply single-linkage using the edge weights
of the input graph to finish building the hierarchical clustering tree.
We use a result of [5] who considers the planted partition model. His approach however does not allow
to recover directly a hierarchical structure when the input has it.
Theorem 2.2 ([5], Observation 11 and a simplification of Theorem 12). Let δ be the confidence
parameter. Assume that for all u,v belonging to different clusters with adjacency vectors u,v (i.e.,
ui is 1 if the edge pu,iq exists inG and 0 otherwise) satisfy

}Erus´Ervs}22ěc¨k ¨
`

σ2n{nmin`logpn{δq
˘

(1)

for a large enough constant c, where Erus is the entry-wise expectation and σ2“ωplog6n{nq is an
upper bound on the variance. Then, the algorithm of [5, Thm. 12] with parameters G,k,δ projects
the columns of the adjacency matrix of G to points tζp1q,...,ζp|V |qu in a k-dimensional subspace
of R|V | such that the following holds w.p. at least 1´δ over the random graphG and with probability
1{k over the random bits of the algorithm. There exists ηą0 such that for any u in the ith cluster and
v in the jth cluster: 1) if i“j then }ζpuq´ζpvq}22ďη and 2) if i‰j then }ζpuq´ζpvq}22ą2η.

In the remainder we assume δ“1{|V |2. We are ready to state our main theorem.
Theorem 2.3. Let n be a positive integer and εą0 a constant. Assume that the separation of bottom
clusters given by (1) holds, pmin“ωp

a

logn{nq, and nmině
?
n¨log1{4n. Let k be a fixed constant

andG be a graph generated from an HSBM (as per Defn. 2.1) where the underlying graph rGk has
k nodes with satisfying the above constraints.

With high probability, Algorithm 1 with parameter k on graph G outputs a tree T 1 that satisfies
costT 1ďp1`εqOPT.

We note that k might not be known in advance. However, different values of k can be tested and an
Op1q-estimate on k is enough for the proofs to hold. Thus, it is possible to run Algorithm 1Oplog nq
times with different “guesses” for k and take the best of these runs.

Let G “ pV,Eq be the input graph generated according to an HSBM. Let T be the tree output by
Algorithm 1. We divide the proof into two main lemmas that correspond to the outcome of the two
phases mentioned above.

The algorithm of [5, Thm. 12] might fail for two reasons: The first reason is that the random choices
by the algorithm result in an incorrect clustering. This happens w.p. at most 1´1{k and we can simply
repeat the algorithm sufficiently many times to be sure that at least once we get the desired result, i.e.,
the projections satisfy the conclusion of Thm. 2.2. Lemmas 2.4, 2.5 show that in this case, Steps 6
to 11 of LINKAGE++ produce a tree that has cost close to optimal. Ultimately, the algorithm simply
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outputs a tree that has the least cost among all the ones produced (and one of them is guaranteed to
have cost p1`εqOPT) with high probability.

The second reason why the McSherry’s algorithm may fail is that the generated random graphGmight
“deviate” too much from its expectation. This is controlled by the parameter δ (which we set to 1{|V |2).
Deviations from expected behaviour will cause our algorithm to fail as well. We bound this failure
probability in terms of two events. The first bad event is that McSherry’s algorithm fails for either of the
aforementioned reasons. We denote the complement of this event E1. The second bad event it that the
number of edges between the vertices of two nodes of the ground-truth tree deviates from it’s expectation.
Namely, that given two nodesN1,N2 of T˚, we expect the cut to beEpN1,N2q“|V pN1q|¨|V pN1q|¨

W pLCAT˚pN1,N2qq. Thus, we define E2 to be the event that |wpV pN1q,V pN2qq ´EpN1,N2q| ă

ε2EpN1,N2q for all cuts of the k bottom leaves. Note that the number of cuts is bounded by 2k and we
will show that, due to size ofnmin and pmin this even holds w.h.p.. The assumptions on the ground-truth
tree will ensure that the latter holds w.h.p. allowing us to argue that both events hold w.p. at least Ωp1{kq
Thus, from now on we assume that both “good” events E1 and E2 occur. We bound the probability of
event E1 in Lemma C.1. We now prove a structural properties of the tree output by the algorithm, we
introduce the following definition. We say that a treeT “pN ,Eq is aγ-approximate ground-truth tree for
G and T˚ if there exists a weight functionW 1 :N ÞÑR` such that for any two vertices a,b, we have that

1. γ´1W 1pLCAT pa,bqqďW pLCAT˚pa,bqqďγW 1pLCAT pa,bqq and

2. for any nodeN of T and any nodeN 1 descendant ofN in T ,W pNqďW pN 1q.

Lemma 2.4. Assume that the separation of bottom clusters given by (1) holds, pmin“ωp
a

logn{nq,
and nmině

?
n ¨ log1{4n. LetG be generated according to an HSBM and let T˚ be a ground-truth

tree forG. Assume that events E1 and E2 occur, and that furthermore, the clusters obtained after Step 4
correspond to the assignment ψ, i.e., there exists a permutation π : rksÑrks such that for each vPCi,
ψpvq“πpiq. Then, the output by the algorithm is a p1`εq-approximate ground-truth tree.

The following lemma allows us to bound the cost of an approximate ground-truth tree.

Lemma 2.5. LetG be a graph generated according to an HSBM and let T˚ be a ground-truth tree
forG. Let Ḡ be the expected graph associated to T˚ andG. Let T be a γ-approximate ground-truth
tree. Then, costT ďγ2OPT.

This allows us to bound the outcome of the second phase using the following lemma and prove the
main theorem of this section.

Proof of Theorem 2.3. Conditioning on E1 and E2 which occur w.h.p. and combining Lemmas C.1, 2.5,
and 2.4 together with Theorem C.3 yields the result. As argued before, E1 holds at least w.p. 1{k and it
is possible to boost part of this probability by running Algorithm 1 multiple times. Running it Ωpklognq
times and taking the tree with the smallest cost yields the result. Moreover, E2 also holds w.h.p.:
Note that due to our assumption the expected number of edges on each of these cuts is n2

minpmin“

ωp
?
nlognq and hence, Chernoff bounds, give us a probability of at least 1´2´klogn. Taking union

bound over all 2k cuts yields the result, where we used that kď
?
n due to the bound on nmin.

2.1 Algorithm for Semi-Random Model using SDP Relaxations

We show that in random and semi-random graph models generated according to an HSBM and
SDP-based algorithm can be used to guarantee an Op1q-approximation with high-probability in
a regime beyond that proved in Theorem 2.3. The proof of the following result follows using the
technique of Makarychev et al. [6] to obtainOp1q-approximations to problems such as sparsest cut and
small-set expansion (SSE) in random and semi-random settings combined with a result in Cohen-Addad
et al.. [4] that shows that approximations to (roughly) balanced min-cut problems can be used to obtain
an equivalent approximation ratio for the problem of finding a minimum cost hierarchical cluster tree.

To generate a random graph, G “ pV,Eq, we use an HSBM (Defn. 2.1), however, we allow allow
k“|rVk| to be as large as n, i.e., bottom-level clusters may be individual nodes, and allow the weights
wpeq to depend on n. The semi-random model simply considers a random graph generated as above
and an adversary is allowed to remove edges from G, but not add any. Note that in either case the
comparison is to the cost of the generating tree on the graph rG (cf. Defn. 2.1).
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Theorem 2.6. Let rG“prVn, rEn,wq be a graph generated from an ultrametric where with |rVn|“n and
w : rEnÑp0,1q satisfying pmin :“min

pu,vqP rEn
wpeq“Ωplogn{n2{3q. Let rT be a generating tree for rG.

SupposeG“pV,Eq is a random graph with V “ rVn generated as follows: an edge e“pu,vq is added
toE with probabilitywpeq. Then, there exists a randomized polynomial time algorithm that with proba-
bility 1´op1q outputs a tree T such that, costT “OpOPTpGqq,where OPTpGq denotes the value of the
optimal tree forG. Furthermore, the above holds even in the semi-random case, i.e., when an adversary
is allowed to remove any subset of the edges fromE (though the adversary cannot add any edges).

3 Empirical Evaluation

In this section, we evaluate the effectiveness of LINKAGE++ on real-world and synthetic datasets.
We compare our results to the classic agglomerative heuristics for hierarchical clustering both in
terms of the cost function and the classification error. Our goal is answering the question: How good
is LINKAGE++ compared to the classic agglomerative approaches on real-world and synthetic data
that exhibit a ground-truth clustering?

Datasets. The datasets we use are part of the standard Scikit-learn library [25] (and most of them are
available at the UCI machine learning repository [26]). Most of these datasets exhibit a “flat” clustering
structure, with the exception of the newsgroup datasets which is truly hierarchical. The goal of the
algorithm is to perform a clustering of the data by finding the underlying classes. The datasets are: iris,
digits, newsgroup3, diabetes, cancer, boston. For a given dataset, we define similarity between
data elements using the cosine similarity, this is a standard approach for defining similarity between data
elements (see, e.g., [3]) This induces a weighted similarity graph that is given as input to LINKAGE++.

Synthethic Data. We generate random graphs of sizes n P t256,512,1024u according to the model
described in Section 2.1. More precisely, we define a binary tree on `Pt4,8u bottom clusters/leaves.
Each leaf represents a “class”. We create n{` vertices for each class. The probability of having an
edge between two vertices of class a and b is given by the probability induced by lowest common
ancestor between the leaves corresponding to a and b respectively. We first define pmin“2logn¨`{n.
The probability induced by the vertices of the binary tree are the following: the probability at the root
is p“pmin`p1´pminq{logp`q, and the probability induced by a node at distance d from the root is
pd`1qp. In particular, the probability induced by the leaves is pmin` logp`qp1´pminq{logp`q “ 1.
We also investigate a less structured setting using a ground truth tree on three nodes.

Method. We run LINKAGE++ with 9 different breakpoints at which we switch between phase 1
and phase 2 (which corresponds to “guesses” of k). We output the clustering with the smallest cost.
To evaluate our algorithm, we compare its performances to classic agglomerative heuristics (for the
similarity setting): single linkage, complete linkage, (see also [13, 14] for a complete description)
and to the approach of performing only phase 1 of LINKAGE++ until only one cluster remains; we
will denote the approach as PCA+. Additionally, we compare ourselves to applying only phase 2 of
LINKAGE++, we call this approach density-based linkage. We observe that the running times of the
algorithms are of order rOpn2q stemming already from the agglomerative parts.4 This is close to the
rOpn2qq running time achieved by the classic agglomerative heuristics.
We compare the results by using both the cost of the output tree w.r.t. the hierarchical clustering cost
function and the classification error. The classification error is a classic tool to compare different
(usually flat) clusterings (see, e.g., [3]). For a k-clusteringC :V ÞÑt1,...,ku, the classification error w.r.t.
a ground-truth flat clustering C˚ :V ÞÑ t1,...,ku is defined as minσPSk

`
ř

xPV 1Cpxq‰σpC˚pxqq
˘

{|V |,
where Sk is the set of all permutations σ over k elements.
We note that the cost function is more relevant for the newsgroup dataset since it exhibits a truly
hierarchical structure and so the cost function is presumably capturing the quality of the classification
at different levels. On the other hand, the classification error is more relevant for the others data sets as
they are intrinsically flat. All experiments are repeated at least 10 times and standard deviation is shown.

Results. The results are summarized in Figure 1, 2, and 3 (App. A). Almost in all experiments
LINKAGE++ performs extremlely well w.r.t. the cost and classification error. Moreover, we observe

3Due to the enormous size of the dataset, we consider a subset consisting of ’comp.graphics’, ’comp.os.ms-
windows.misc’, ’comp.sys.ibm.pc.hardware’, ’comp.sys.mac.hardware’, ’rec.sport.baseball’, ’rec.sport.hockey’

4Top k singular vectors of an nˆn matrix can be approximately computed in time rOpkn2
q.
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(a) (b)

Figure 1: A comparison of the algorithms on real-world data. (a) The figure shows the cost costp¨q of the
algorithm normalized by the the cost of LINKAGE++. (b) The figure shows the percentage of misclassified nodes.
By looking more closely at the output of the algorithm, one can see that a large fraction of the misclassifications
happen in subgroups of the same group.

(a) (b)

Figure 2: A comparison of the algorithms on synthetic data for highly structured ground-truth for different n,k.
PCA+ performs well on these inputs and we conjecture that this due to the highly structured nature of the ground-
truth. (a) The cost of LINKAGE++ and PCA+ are well-below the costs’ of the standard linkage algorithms. (b) We
see a threshold phenomena for k“8 from n“512 to n“1024. Here the classification error drops from 0.5 to 0,
which is explained by concentration of the eigenvalues allowing the PCA to separated the bottom clusters correctly.

that a low cost function correlates with a good classification error. For synthetic data, in both
LINKAGE++ and PCA+, we observe in Figure 2b that classification error drops drastically from
k“4 to k“8, from 0.5 to 0 as the size is number of nodes is increased from n“512 to n“1024. We
observe this threshold phenomena for all fixed k we considered. We can observe that the normalized
cost in Figure 2a for the other linkage algorithms increases in the aforementioned setting.
Moreover, the only dataset where LINKAGE++ and PCA+ differ significantly is the hierarchical
dataset newsgroup. Here the cost function of PCA+ is much higher. While the classification error
of all algorithm is large, it turns out by inspecting the final clustering of LINKAGE++ and PCA+ that
the categories which were being misclassified are mostly sub categories of the same category. On
the dataset of Figure 3 (App. A) only LINKAGE++ performs well.

Conclusion. Overall both algorithms LINKAGE++ and Single-linkage perform considerably better
when it comes to real-world data and LINKAGE++ and PCA+ dominate on our synthetic datasets.
However, in general there is no reason to believe that PCA+ would perform well in clustering truly
hierarchical data: there are regimes of the HSBM for which applying only phase 1 of the algorithm
might lead to a high missclassification error and high cost and for which we can prove that LINKAGE++
is an p1`εq-approximation.
This is exemplified in Figure 3 (App. A). Moreover, our experiments suggest that one should use in addi-
tion to LINKAGE++ other linkage algorithm and pick the algorithm with the lowest cost function, which
appears to correlate with the classification error. Nevertheless, a high classification error of hierarchical
data is not a bad sign per se: A misclassification of subcategories of the same categories (as we observe in
our experiments) is arguably tolerable, but ignored by the classification error. On the other hand, the cost
function captures such errors nicely by its inherently hierarchical nature and we thus strongly advocate it.
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A Additional Experimental Evaluation

(a) (b) (c)

Figure 3: The clustering obtained by PCA+ on a ground truth tree on three nodes induced by the adjacency matrix
rr1.,0.49,0.39sr0.49,0.49,0.39sr0.39,0.39,0.62ss and n“999 nodes split equally. Here only LINKAGE++ and
PCA+ classify the bottom clusters of the subtrees correctly. However, the projection to the euclidian space (PCA)
does not preserve the underlying ultramtric causing PCA+ to merge incorrectly. (a) LINKAGE++ recovers the
ground truth. All other algorithm merge incorrectly. (b) LINKAGE++ and PCA+ classify the bottom clusters
correctly causing the classification to be perfect even though PCA+ failed to correctly reconstruct the ground-truth.
This suggests that the classification error is less suitable measure for hierarchical data. (c) PCA+ in contrast
to LINKAGE++ merges incorrectly two bottom clusters of different branches in the ground-truth tree (green and
blue as opposed to green and red).

B Algorithm in Semi-Random Model using SDP Relaxations

This section is dedicated to the proof of the following theorem.

Theorem 2.6. Let rG“prVn, rEn,wq be a graph generated from an ultrametric where with |rVn|“n and
w : rEnÑp0,1q satisfying pmin :“min

pu,vqP rEn
wpeq“Ωplogn{n2{3q. Let rT be a generating tree for

rG. Suppose G“pV,Eq is a random graph with V “ rVn generated as follows: an edge e“pu,vq is
added to E with probability wpeq. Then, there exists a randomized polynomial time algorithm that
with probability 1´op1q outputs a tree T such that,

costT “OpOPTpGqq, (2)

where OPTpGq denotes the value of the optimal tree for G. Furthermore, the above holds even in
the semi-random case, i.e., when an adversary is allowed to remove any subset of the edges fromE
(though the adversary cannot add any edges).

B.1 Background

In this section, we recall the work of Makarychev et al. [6]. Essentially all of this section is directly
cited from this work and we only provide it in this paper for completeness.

While we don’t require to go into details, we define the crude SDP for Small-Set Expansion (SSE)
used by Makarychev et al. [6] below. ū denotes some vector representation corresponding to vertex
u in the SDP. The reader may refer to SDP solutions ϕ occurring in the rest of this section to mean
feasible solutions to the following SDP. Note that solving the SSE problem gives a (roughly) balanced
sparse cut when ρ“Θp1q.
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min
1

2

ÿ

pu,vqPEpGq

}ū´v̄}
2

subject to

for all uPV,
ÿ

v

xū,v̄yďρ|V | (Spreading Constraints)

for all u,v,wPV, }ū´v̄}2`}v̄´w̄}2ě}ū´v̄}2 (`22-triangle inequalities)
for all u,vPV, xū,v̄yě0

for all uPV, }ū}2“1

Definition B.1 (Heavy Set,Hδ,ϕpMq [6]). Let V be a set of n vertices andMĎN . Consider an SDP
solution ϕ :V ÑH. We say that a vertex uPM is δ-heavy inM if the `22-ball of radius δ around ϕpuq
contains at least δ2n vectors from ϕpMq, i.e., |vPM | ϕpvqPBallpϕpuq,δq|ěδ2n. We denote the set
of all vertices that are δ-heavy inM byHδ,ϕpMq.
Definition B.2 (Geometric Expansion [6]). A graph G“ pV,Eq satisfies the geometric expansion
property with cut value X at scale δ, if for every SDP solution ϕ : V ÑH satisfying Hδ,ϕpV q “H
(recall thatHδ,ϕpV q is the set of δ-heavy vertices in V ):

ˇ

ˇ

ˇ
tpu,vqPE | }ϕpuq´ϕpvq}

2
ďδ{2u

ˇ

ˇ

ˇ
ď2δ2X.

A graphG“pV,Eq satisfies the geometric expansion property with cut valueX up to scale 2´T for
T PN if it satisfies the geometric expansion property for every δPt2´t | 1ď tďT u.
Theorem B.3 (Theorem 3.4 from [6]). LetG“pV,Eq be a graph that satisfies the geometric expansion
property with cut valueX at scale up to c

a

log|V |. Then, there exists a randomized polynomial time that
with high probability outputs a partitionL,R of V such that |cutpL,Rq|“OpXq and |L|,|R|ě|V |{3.

B.2 Geometric Expansion of HSBM

Let rGn “ prVn, rEn,wq be a graph generated according to an ultrametric, where for each e P rEn,
wpeqPp0,1q. In this case, we allowwpeq to be depend on n—in particular it is possible thatwpeqÑ0

as nÑ8. Let G“ pV,Eq be an unweighted random graph with |V | “ |rVn| “ n generated from rG
as follows. An edge pu,vq is added to G with probability wppu,vqq, for the corresponding vertices
u,vP rVn. Note that this is a special case of the hierarchical stochastic blockmodels (Defn. 2.1), where
the number of leaves in the generating graph is the same as that in the random graph generated, i.e.,
in principle there may be n bottom-level clusters.

For the rest of this discussion we assume that V “ rVn as a natural bijection exists between the two
vertex sets. Let rT be a generating tree for rG. Let U ĎV and let rT |U be the restriction of rT to leaves
inU (removing unnecessary leaves and reducing internal nodes as necessary). LetNpUq be the root
of rT |U . Consider the following procedure the nodes appearing as leaves in the left and right subtrees
of the root of T̄ |U . Suppose we follow the convention that the left subtree is never any smaller than
the right subtree in rT |U . We say that the canonical node of rT |U is the first left nodeNL encountered in
a top-down traversal starting fromNpUq such that 2|U |{3ěV pNLqě|N |{3. We defineUL“V pNLq,
andUR“UzUL. We say that pUL,URq is the canonical cut ofU . It is easy to see that such a cut always
exists since the tree is binary and left subtrees are never smaller than right subtrees.
Lemma B.4. For a random graphG generated according the model described above with probability at
least 1´op1q, for every subsetU of size at leastn2{3

?
logn, letUL,UR be the canonical cut ofU and let

Ernd“tpu,vq | uPUL,vPURu. Then the subgraph pU,Erndq is geometrically expanding with cut cost

X“C ¨maxtwpL,Rq,|U |¨D ¨log2D,|U |¨D¨lognu (3)

up to scale 1{
?
D. Furthermore, the result also applies in the semi-random setting where an adversary

may remove any subset of edges from the random graphG.

Proof. The proof is essentially identical to that of Theorem 5.1 in [6]. However, as there are some
minor modifications, we are unable to cite their result directly and hence provide the entire proof here
for completeness.
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Fix some subsetU and letUL,UR be the canonical cut ofU given by the generating tree rT of rG. Let
Eall “ tpu,vq | u P UL,v P URu and let Ernd “EallXE, where E is the set of edges in the realized
random graphG“pV,Eq. As the adversary in the semi-random graph can only remove edges it suffice
to show that pU,Erndq is geometrically expanding with high probability. We fix the parameter δ“2´t

(where 1ď tď T ), and prove that the graph pU,Erndq is geometrically expanding with cut value X
at scale δ. The probability that this fails to happen will be low enough for us to take a simple union
bound over all the posible values of δ.

The conditionHδ,ϕpUq“H implies that,

|tpu,vqPUˆU | }ϕpuq´ϕpvq}2δu|ďδ2n2

We need to bound the probability of the bad event, the existence of an SDP solutionϕ :UÑH such that
ˇ

ˇ

 

pu,vqPUˆU | }ϕpuq´ϕpvq}2ďδ
(
ˇ

ˇďδ2n2 (4)
ˇ

ˇ

ˇ

ˇ

"

pu,vqPErnd | }ϕpuq´ϕpvq}
2ď

δ

2

*ˇ

ˇ

ˇ

ˇ

ě2δ2X (5)

Makarychev et al. [6] show that if ϕ satisfying Eqn. (4) and (5) exists, then provided |Ernd|ď2X , there
exists ϕ1 :UÑNδ satisfying:

ˇ

ˇ

ˇ

ˇ

"

pu,vqPUˆU | }ϕ1puq´ϕ1pvq}2ď
3

4
δ

*
ˇ

ˇ

ˇ

ˇ

ď
5

4
δ2n2 (6)

ˇ

ˇ

ˇ

ˇ

"

pu,vqPErnd | }ϕ
1puq´ϕ1pvq}2ď

3

4
δ

*ˇ

ˇ

ˇ

ˇ

ě
3

4
δ2X (7)

whereNδĂH is a set of size exppOplog2δ´1qq.

The remainder of the proof is showing that the existence of ϕ1 is a very low-probability event. First,
as |Ernd|“wpUL,URqďX , Pr|Ernd|ě2Xsďe´c0X . Note that if we fix a ϕ1 :UÑNδ , the probability
(over the random choice of Ernd) that Eqns. (6) and (7) is at most e´c1δ

2X , by using the Chernoff
bound. Finally, we note that there are at most |Nδ||U | such ϕ1, thus we can safely take a union bound
provided X{Dě c3 ¨ |U |log2D. Finally, there are n|U | subsets of size |U | and again we can safely
apply a union bound providedX{děc4|U |logn. The choice ofX ensures that this happens.

We can now complete the proof of Theorem 2.6.

Proof of Theorem 2.6. We aim at applying Theorem 4.1 of Cohen-Addad et al. [4], where they
essentially show that if one obtains a φ approximation to the 1{3-balanced min-cut problem (i.e.,
minimise cut subject to the constraint that both sides have at least 1{3 of the vertices being cut), then
the recursive algorithm gives aOpφq approximation for minimizing Dasgupta’s cost function.

We observe that costp rT ; rGq“Ωpn3 ¨pminq“Ωpn7{3lognq. Thus, we notice that once we obtain sets
U of size n0“n

2{3
?

logn, since there are at most n{n0, even if we use an arbitrary tree on any such
U , together this can only add Op nn0

¨n3
0q “Opn

7{3 ¨ lognq. Thus, we only need to be able to obtain
suitable approximations during the recursive procedure as long as |U |ěn2{3logn. This is precisely
given by using Lemma B.4. Observe that in Eq. (3), wpL,Rq“Ωp|U |2 ¨pminq“Ωpn2{3log2nq and
|U |Dlog2D“ op|U |Dlognq and D|U |lognq “Opn2{3 log2nq. Thus, the algorithm of [6] given by
Theorem B.3 returns a cut that is a constant factor approximation to the 1{3-balanced min-cut problem
on the induced subgraph of rG on the vertex setU . This observation together with a slight modification
of the charging argument in the proof of Theorem 4.1 of Cohen-Addad et al. [4] to account for the
case where subgraphs have size less than n2{3logn finishes the proof.

C LINKAGE++ (Continuation of Section 2)

The full algorithm is the following.

We show the proof of Lemmas 2.4, 2.5 and C.1.
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Algorithm 1 LINKAGE++

1: Input: GraphG“pV,Eq generated from an HSBM.
2: Parameter: An integer k.
3: Apply (SVD) projection algorithm of [5, Thm. 12] with parameters G, k, δ “ |V |´2, to get
ζp1q,...,ζp|V |qPR|V | for vertices in V , where dimpspanpζp1q,...,ζp|V |qqq“k.

4: Run the single-linkage algorithm on the points tζp1q,...,ζp|V |qu until there are exactly k clusters.
Let C“tCζ1 ,...,C

ζ
ku be the clusters (of points ζpiq) obtained. LetCiĎV denote the set of vertices

corresponding to the clusterCζi .
5: Define dist :CˆC ÞÑR`: distpCζi ,C

ζ
j q“wpC

ζ
i ,C

ζ
j q{p|C

ζ
i ||C

ζ
j |q.

6: while there are at least two clusters in C do
7: Take the pair of clustersC 1i,C

1
j of C that maximizes distpC 1i,C

1
jq.

8: Define a new clusterC 1“tC 1iYC
1
ju.

9: Update dist: distpC 1,C 1`q“maxpdistpC 1i,C
1
`q,distpC 1j ,C

1
`qq

10: CÐC z tCiu z tCju Y tC 1u
11: end while
12: The sequence of merges in the while-loop (Steps 6 to 11) induces a hierarchical clustering tree

on tC1,...,Cku, say T 1k with k leaves (represented by C1,...,Ck). Replace each leaf of T 1k by an
arbitrary binary tree on |Ck| leaves labelled according to the verticesCk to obtain T .

13: Repeat the algorithm k1 “ 2k logn times. Let T 1, ... T k
1

be the corresponding hierarchical
clustering trees.

14: Output: Tree T i (out of the k1 candidates) that minimises ΓpTiq.

Proof of Lemma 2.5. By Theorem 3.4 of Cohen-Addad et al. [4], the cost of T˚ is optimal for Ḡ.
Furthermore, by Theorem C.3, we have that the cost of T˚ on Ḡ and the cost of T˚ are within a factor
of p1`op1qq. We thus aim at showing that costT ďγ2costT˚ .

We now define a new graph ḠpT qwhich has the same set of vertices V than Ḡ. For each pair of vertices
u,vPV we create an edge in ḠpT qwith weightwḠpT qpu,vq“W 1pLCAT pu,vqq. By definition ofW 1

follows that T is generating for ḠpT q, and so applying Theorem 3.4 of Cohen-Addad et al. [4], we
obtain that the cost of T for ḠpT q, say costḠpT qT , is less than the cost of T˚ for ḠpT q, say costḠpT qT˚ .

Now recall that the cost of a tree for any given graph G1 can be rewritten as follows:
costḠpT qT “

ř

u,vwG1pu,vq¨|V pLCAT pu,vqq|, wherewG1pu,vq is the weight of the edge u,v inG1.

Thus, since by definition ofT , we haveγ´1W 1pLCAT pa,bqqďW pLCAT˚pa,bqqďγW 1pLCAT pa,bqq.
Hence,

costḠT ď
ÿ

u,v

wḠpu,vq¨|V pLCAT pu,vqq|ď
ÿ

u,v

γ ¨wḠpT qpu,vq¨|V pLCAT pu,vqq|

“γ ¨costḠpT qT ďγ ¨costḠpT qT˚ .

A similar observation implies that costḠpT qT˚ ďγ ¨costḠT˚ . Combining yields the lemma.

Recall that ψ :V Ñrks is the (hidden) labelling assigning each vertex ofG to one of the k bottom-level
clusters. LetC˚i “tvPV | ψpvq“ iu. Recall that ni“|V pC˚i q|.
Lemma C.1. LetG be generated by an HSBM. Assume that the separation of bottom clusters given
by (1) holds. Let C˚1 , ... ,C

˚
k be the hidden bottom-level clusters, i.e., C˚i “ tv | ψpvq “ iu. With

probability at least Ωp1{kq, the clusters obtained after Step 4 correspond to the assignment ψ, i.e.,
there exists a permutation π : rksÑrks, such thatCj“C˚πpjq.

Proof. The proof relies on Theorem 2.2. Let u,v be two nodes such that i“ψpuq ‰ψpvq “ j. Let
u and v denote the random variables corresponding to the columns of u and v in the adjacency matrix
ofG. Let q“ĂW pNqwhereN is the LCA

rTk
prσ´1piq,rσ´1pjqq in rTk, the generating tree for rGk used

in defining the HSBM.
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By assumption, if have that (1) holds. for δ“ 1
n2 . This satisfies the condition of Theorem 2.2. Thus,

with probability at least 1{k´δ“Ωp1{kq the conclusions of Theorem 2.2 hold. In the rest of the proof
we assume that the following holds: There exists ηą0 such that for any pair of nodes u,v we have

1. if ψpuq“ψpvq then }ζpuq´ζpvq}22ďη;

2. if ψpuq‰ψpvq then }ζpuq´ζpvq}22ą2η.

Therefore, any linkage algorithm, e.g., single linkage, performing merges starting from the set
tζp1q,...,ζpnqu until there are k clusters will merge clusters at a distance of at most η and hence, the
clusters obtained after Step 4 correspond to the assignment ψ. This yields the claim.

We now condition on Event E1. Thus, by the above lemma, there exists a 1-to-1 mapping
π : tC1,...,Cku ÞÑ tC

˚
1 ,...,C

˚
k u such that Ci“C˚πpiq. We define Ct the set of clusters in the variable

C of Alg. 1 at the tth iteration of the while-loop. Finally, observe that since Event E1 holds, we have
that at any iteration t, any cluster Cti P Ct consists of a union of clusters of C˚ “ tC˚1 ,...,C

˚
k u. Let

LpCti q denote the set of clusters ofC˚ inCti .

Proof of Lemma 2.4. Given a set of hidden bottom clusters S, denote by LCAT˚pSq the lowest
common ancestor of all the clusters in S.

We show by induction on the number of iterations of the while-loop (Step 4) that, with high probability,
ifCti ,C

t
j PCt are merged at iteration t, then for anyC˚` PLpC

t
i q,C

˚
s PLpC

t
jq,

W pLCAT˚pLpCti qYLpC
t
jqqqďW pLCAT˚pC˚` ,C

˚
s qqďp1`εqW pLCAT˚pLpCti qYLpC

t
jqqq,

and

W pLCAT˚pLpCti qYLpC
t
jqqqďdistpCti ,C

t
jqďp1`εqW pLCAT˚pLpCti qYLpC

t
jqqq.

We note that since the distances “dist” between merged clusters are non-increasing as t is increasing,
the above claim implies that T is a p1`εq-approximate ground-truth tree and so the lemma.

Observe that since Event E2 occurs, we have that for anC˚` PLpC
t
i q,C

˚
s PLpC

t
jq,

p1´ε2qW pLCAT˚pC˚` ,C
˚
s qqďwpC

˚
` ,C

˚
s q{p|C

˚
` |¨|C

˚
s |qďp1`ε

2qW pLCAT˚pC˚` ,C
˚
s qq

Equipped with this observation, we turn to the proof of the claim. We proceed by induction on the
number of merges. At t“ 0, the claim is true as no merge has been done yet. We now consider the
tth merge done by the algorithm. LetRj be the lowest common ancestor of the nodes inLpCjq in T˚
and letRi be the lowest common ancestor of the nodes inLpCiq in T˚. LetR˚ be the lowest common
ancestor ofRj andRi.

We differentiate two cases: (1) either R˚ P tRi,Rju and Ri ‰ Rj or (2) either R˚ R tRi,Rju
or Ri “ R˚ “ Rj . First, Assume (2) i.e., R˚ is not in tRi,Rju or that Ri “ Rj “ R˚. Thus by
definition of the rTk we have that for any C˚` P LpC

t
i q,C

˚
s P LpC

t
jq, LCAT˚pC˚` ,C

˚
s q “R

˚ and so
W pLCAT˚pC˚` ,C

˚
s qq“W pR

˚q. Since Event E2 holds, the claim is true in that case.

We thus turn to case (1): R˚ is eitherRi orRj andRi‰Rj , and w.l.o.g., we assume thatR˚“Ri‰Rj .
From this we can provide a lower bound on the edge density between the clusters ofCtj andCti . Indeed,
since Event E2 occurs, we have that the edge density is at least p1´ε2qW pRiq. We now provide an
upper bound. Consider C˚k PLpC

t
i q and C˚s PLpC

t
jq such that W pLCAT˚pC˚k ,C

˚
s qq is maximized.

By definition of the algorithm we have that

p1´ε2qW pLCAT˚pC˚k ,C
˚
s qqďdistpCti ,C

t
jqďp1`ε

2qW pLCAT˚pC˚k ,C
˚
s qq.

Now, by definition of T˚ and sinceRi“R˚, we have thatW pRiq“W pR˚qďW pLCAT˚pC˚k ,C
˚
s qq.

Furthermore, since clusters with lowest common ancestorRi were merged beforeCtj andCti and since
distances between merged clusters are non-increasing as the number of iterations is increasing, we
can conclude:

p1´ε2qW pLCAT˚pC˚k ,C
˚
s qqďdistpCti ,C

t
jqďp1`ε

2qW pRiq.
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Assuming ε to be a small enough constant, and recalling that Ri is the lowest common ancestor of
all the clusters inCtiYC

t
j , we conclude that for anyC˚` PC

t
i ,C

˚
s PC

t
j ,

W pRiqďW pLCAT˚pC˚` ,C
˚
s qqďp1`εqW pRiq,

and
W pRiqďdistpCti ,C

t
jqďp1`εqW pRiq,

and the lemma follows.

C.1 Objective Functions and Ground-Truth Tree

The proof of these sections are not technically involved and follows the proofs proposed by
Cohen-Addad et al. [4] for their less general model. They are included here for completeness. We start
with a few observations. Note that Ḡ itself is generated from an ultrametric and the generating trees
for Ḡ are obtained as follows: Let rTk be any generating tree for rGk, let T̂1,T̂2,...,T̂k be any binary trees
with n1,...,nk leaves respectively. Let the weight of every internal node of T̂i be pi and replace each
leaf l in rTk by T̂

rσplq. In particular, this last point allows us to derive Proposition C.2. We will use κpnq
to denote the cost of a clique which is the same for all trees for the clique, as argued in [4, Thm. 3.4].
Proposition C.2 (Slight generalization of [4]). LetG be a graph generated according to an HSBM
(See Defn. 2.1). Let ψ be the (hidden) function mapping the nodes of G to rks (the bottom-level
clusters). Let T be a ground-truth tree forG Then,

ErcostpT qsďmin
T 1

E
“

costpT 1q
‰

.

Moreover, for any tree T 1, ErcostpT qs“ErcostpT 1qs if and only if T 1 is a ground-truth tree.

Proof. Recall that we have ni ą 0 for all i. Let Ḡ be a the expected graph, i.e., Ḡ is complete
and an edge pi, jq has weight pij , the probability that the edge pi, jq is present in the random
graph G generated according to the hierarchical model. Thus, by definition of admissibility
costpT ;Ḡq“minT 1costpT 1;Ḡq if an only if T is generating (see [4, Defn. 3.1]). As ground-truth trees
forG are precisely the generating trees for Ḡ; the result follows by observing that for any tree T (not
necessarily ground-truth) ErcostpT ;Gqs “ costpT ;Ḡq, where the expectation is taken only over the
random choice of the edges, by linearity of expectation and the definition of the cost function.

The following is a generalisation of [4].

Theorem C.3. Let n be a positive integer and pmin “ ωp
a

logn{nq. Let k be a fixed constant and
G be a graph generated from an HSBM (as per Defn. 2.1) where the underlying graph rGk has k nodes
and minimum probability is pmin. For any binary tree T with n leaves labelled by the vertices ofG,
the following holds with high probability:

|costpT q´ErcostpT qs|ďopErcostpT qsq.

The expectation is taken only over the random choice of edges. In particular if T˚ is a ground-truth
tree forG, then, with high probability,

costpT˚qďp1`op1qqmin
T 1

costpT 1q“p1`op1qqOPT.

Proof. Our goal is to show that for any fixed cluster tree T 1 the cost is sharply concentrated around
its expectation with an extremely high probability. We then apply the union bound over all possible
cluster trees and obtain that in particular the cost of OPT is sharply concentrated around its expectation.
Note that there are at most 2c¨nlogn possible cluster trees (including labellings of the leaves to vertices
ofG), where c is a suitably large constant. Thus, it suffices to show that for any cluster tree T 1 we have

P
“
ˇ

ˇcostpT 1q´E
“

costpT 1q
‰
ˇ

ˇěopE
“

costpT 1q
‰

q
‰

ďexpp´c˚nlognq,

where c˚ąc.

Recall that for a given node N of T 1 with children N1, N2, we have costpNq “

wpV pN1q, V pN2qq ¨ p|V pN1q| ` |V pN2q|q and costpT 1q “
ř

NPT 1 costpNq. Let Yi,j “ 1pi,jqPE
for all 1ď i,j ď n and observe that tYi,j |iă ju are independent and Yi,j “ Yj,i. Furthermore, let
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Zi,j “p|V pchild1pN
i,jqq|`|V pchild2pN

i,jqq|q¨Yi,j , whereN i,j is the node in T 1 separating nodes
i and j and child1pN

i,jq and child2pN
i,jq are the two children ofN i,j . We can thus write

costpT 1q“
ÿ

NPT 1

p|V pchild1pNqq|`|V pchild2pNqq|q
ÿ

iPV pchild1pNqq
jPV pchild2pNqq

Yi,j (8)

“
ÿ

NPT 1

ÿ

iPV pchild1pNqq
jPV pchild2pNqq

Zi,j (9)

“
ÿ

iăj

Zi,j , (10)

where we used that every potential edge i,j, i‰j appears in exactly one cut and thatZi,j“Zj,i. Observe
that

ř

iăjZi,j is a sum of independent random variables. Assume that the following claim holds.

Claim C.4 (Slight generalization of [4]). Let pmin be the minimum weight in rTk, the tree generating
tree for rGk (see Defn. 2.1), i.e.,wmin“minNP rTk

ĂW pNq). We have

1. ErcostpT 1qsěκpnq¨pmin

2.
ř

iăjp|V pchild1pN
i,jqq|`|V pchild2pN

i,jqq|q2ďn¨κpnq

We defer the proof to later and first finish the proof of Theorem C.3. We will make use of the slightly
generalized version of Hoeffding bounds (see [27]). ForX1,X2,...,Xm independent random variables
satisfying aiďXiďbi for iPrns. LetX“

řm
i“1Xi, then for any tą0

Pr|X´ErXs|ě tsďexp

ˆ

´
2t2

řm
i“1pbi´aiq

2

˙

. (11)

By assumption, there exists a function yn :NÑR` such that pmin“ω

ˆ

yn ¨
b

logn
n

˙

with yn“ωp1q.

We apply (11) with t“ErcostpT 1qs¨ yn¨
?

logn
n

pmin
“opErcostpT 1qsq and derive

P

»

–

ˇ

ˇcostpT 1q´E
“

costpT 1q
‰
ˇ

ˇďE
“

costpT 1q
‰

¨
yn ¨

b

logn
n

pmin

fi

flě

ě1´exp

¨

˚

˚

˚

˝

´

2

ˆ

ErcostpT 1qs¨ yn¨
?

logn
n

pmin

˙2

ř

iăjgp|V pN
i,j
1 q|,|V pN i,j

2 q|q2

˛

‹

‹

‹

‚

ě1´exp

ˆ

´
2¨κpnq¨y2

n ¨logn

n2

˙

ě1´expp´c˚ ¨nlognq,

where the last inequality follows by assumption of the lemma and since yn “ ωp1q and
κpnq“Θpn3q.

We now turn to the proof of Claim C.4.

Proof of Claim C.4. Note that for any two vertices i,j ofG, the edge pi,jq exists inGwith probability
at least pmin. Thus, we have

E
“

costpT 1q
‰

“
ÿ

NPT 1

p|V pchild1pNqq|`|V pchild2pNqq|q
ÿ

iPV pchild1pNqq
jPV pchild2pNqq

wpi,jq

ěpmin ¨
ÿ

NPT 1

p|V pchild1pNqq|`|V pchild2pNqq|q|V pchild1pNqq|¨|V pchild2pNqq|

“pmin ¨κpnq.
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Furthermore, we have
ÿ

iăj

p|V pchild1pN
i,jqq|`|V pchild2pN

i,jqq|q2“

“
ÿ

NPT 1

p|V pchild1pNqq|`|V pchild2pNqq|q
2 ¨|V pchild1pNqq|¨|V pchild2pNqqq|

ďn
ÿ

NPT 1

p|V pchild1pNqq|`|V pchild1pNqq|q¨|V pchild1pNqq|¨|V pchild2pNqqq|

“n¨κpnq.
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