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Abstract. Given a set of n points in a d-dimensional space, we seek to12

compute the skyline, i.e., those points that are not strictly dominated by13

any other point, using few comparisons between elements. We adopt the14

noisy comparison model ( [13]) where comparisons fail with constant proba-15

bility and confidence can be increased through independent repetitions of a16

comparison. In this model motivated by Crowdsourcing applications, Groz17

& Milo [16] show three bounds on the query complexity for the skyline18

problem. We improve significantly on that state of the art and provide19

two output-sensitive algorithms computing the skyline with respective20

query complexity O(ndlog(dk)) and O(ndklog(k)), where k is the size of21

the skyline. These results are tight for low dimensions.22

Keywords: Skyline · Noisy comparisons · Fault-tolerance· CrowdSourc-23

ing.24

1 Introduction25

Skylines have been studied extensively, since the 1960s in statistics [5], then in algo-26

rithms and computational geometry [21] and in databases [6,10,14,20]. Depending27

on the field of research, the skyline is also known as the set of maximum vectors,28

the dominance frontier, admissible points, or Pareto frontier. The skyline of a set29

of points consists of those points which are not strictly dominated by any other30

point. A point p is dominated by another point q if pi≤ qi for every coordinate31

(attribute or dimension) i. It is strictly dominated if in addition the inequality is32

strict for at least one coordinate; see Figure 1.33

Noisy comparison model, and parameters. In many contexts, comparing attributes34

is not straightforward. Consider the example of finding optimal cities from [16].35

To compute the skyline with the help of the crowd we can ask people ques-36

tions of the form “is the education system superior in city x or city y?” or37

? This paper is NOT eligible for the best student paper award.
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Fig. 1: Given a set of pointsX, the goal is to find the set of skyline points, i.e.,points
are not dominated by any other points.

“can I expect a better salary in city x or city y”. Of course, people are likely38

to make mistakes, and so each question is typically posed to multiple people.39

Our objective is to minimize the number of questions that need to be issued40

to the crowd, while returning the correct skyline with high probability.41

Thus, much attention has recently been given to computing the skyline when42

information about the underlying data is uncertain [24], and comparisons may give43

erroneous answers. In this paperwe investigate the complexity of computing skylines44

in the noisy comparisonmodel, which was considered in [16] as a simplifiedmodel for45

crowd behaviour: we assume queries are of the type is the i-th coordinate of point p46

(strictly) smaller than that of point q?, and the outcome of each such query is indepen-47

dently correct with probability greater than some constant better than 1/2 (for defi-48

nitenesswe assumeprobability 2/3).As a consequence, our confidence on the relative49

order between p and q can be increased by repeatedly querying the pair on the same50

coordinate. Our complexitymeasure is the number of comparison queries performed.51

This noisy comparison model was introduced in the seminal paper [13] and has52

been studied in [7, 16]. There are at least 2 straightforward approaches to reduce53

problems in this model to the noiseless comparison setting. One approach is to take54

any "noiseless" algorithm and repeat each of its comparisons log(f(n)) times, where55

n is the input size and f(n) is the complexity of the algorithm. The other approach is56

to sort the n items in all d dimensions at a cost of ndlog(nd), then run some noiseless57

algorithm based on the computed orders. The algorithms in [13, 16] and this paper58

thus strive to avoid the logarithmic overhead of these straightforward approaches.59

Three algorithms were proposed in [16] to compute skylines with noisy compar-60

isons. Figure 2 summarizes their complexity and the parameters we consider. The61

first algorithm is the reduction through sorting discussed above. But skylines often62

contain only a small fraction of the input items (points), especially when there are63

few attributes to compare (low dimension). This leads to more efficient algorithms64

because smaller skylines are easier to compute. Therefore, [16] and the present65

paper investigate the complexity of computing skylines expressed as a function of66

three parameters: n= |X|, the number of input points; d, the number of dimensions;67

and k= |skyline(X)|, the size of the skyline (output). There is a substantial gap68

between the lower bounds and the upper bounds achieved by the skyline algorithms69
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in [16]. In particular, the authors raised the question whether the skyline could70

be computed in o(nk) for any constant k when k�n. In this paper, we tighten71

the gap between the lower and upper bounds and settle this open question.72

Contributions.We propose 2 new algorithms that compute skylines with probability73

at least 1−δ and establish a lower bound:74

– AlgorithmSkyLowDim-Search(X,δ) computes the skyline inO(ndlog(dk/δ))75

query complexity and O(ndlog(dk/δ)+ndk) overall running time.76

– AlgorithmSkyHighDim-Search(X,δ) computes the skyline inO(ndklog(k/δ))77

– Ω(ndlogk) queries are necessary to compute the skyline.78

– Additionally, we show that Algorithm SkyLowDim-Search can be adapted79

to compute the skyline with O(ndlog(dk)) comparisons in the noiseless setting.80

Our first algorithm answers positively the above question from [16]. Together with81

the lower bound, we thus settle the case of low dimensions, i.e., when there is a82

constant c such that d≤kc. Our 2 skyline algorithms both shave off a factor k from83

the corresponding bounds in the state of the art [16], as illustrated in Figure 284

with respect to query complexity. We point out that SkyLowDim-Search is a85

randomized algorithm: it needs to sample the input. In our bounds we guarantee86

that the combined probability of incorrect comparisons and poor sample choice87

is low: this is because we tailor the sample size to the desired accuracy. But having88

a randomized algorithm is still a weakness in the sense that our approach cannot89

yield a "trust-preserving" algorithm: even in the extreme case where comparison90

queries all return a correct answer (noiseless setting), our algorithm still relies on91

sampling and therefore has some probability of failing to return the skyline within92

the running time bound. However, we show that for the specific case of the noiseless93

setting, our algorithm can be adapted to compute the skyline in O(ndlog(dk)) .94

As a subroutine for our algorithms, we developped a new algorithm to eval-95

uate disjunctions of boolean variables with noise ("OR"). We believe algorithm96

NoisyFirstTrue to be interesting in its own right: it returns the first positive97

variable in input order, with a running time that scales linearly with the position98

of that variable in the input order.99

[16] O(ndlog(nd/δ))† O(ndklog(dk/δ)) O(ndk2log(k/δ))

this paper O(ndlog(dk/δ))† O(ndklog(k/δ))

best when: k∈Ω(n) d≤kc≤n k�d

d : dimension
n :# input points
k :# skyline points
δ : error rate tolerated

Fig. 2: Query complexity of skyline algorithms depending on the values of k. For
†-labeled bounds, the running time is larger than the number of queries.

Technical core of our algorithms. The algorithm underlying the two bounds for100

k�n in [16] recovers the skyline points one by one. It iteratively adds to the skyline101
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the maximum point, in lexicographic order, among those not dominated by the102

skyline points already found. 5 However, the algorithm in [16] essentially considers103

the whole input for each iteration. Our two algorithms, on the opposite, can identify104

and thus discard some dominated points early. The idea behind our algorithm105

SkylineHighDim is that it is more efficient to separate the two tasks: (i) finding a106

point p not dominated by the skyline points already found, on the one hand, and (ii)107

computing a maximum point (in lexicographic order) among those dominating p, on108

the other hand. Whenever a point is considered for step (i) but fails to satisfy that109

requirement, the point can be discarded definitively. The O(ndk) skyline algorithm110

from [11] for the noiseless setting also decomposes the two tasks, although the point111

they add to the skyline in each of the k iteration is not the lexicographic maximum.112

Our algorithm SkylineLowDim can be viewed as a 2-steps algorithm where113

the first step prunes a huge fraction of dominated points from the input through114

discretization, and the second step applies a cruder algorithm on the surviving115

points. We partition the input into buckets for discretization, identify “skyline116

buckets” and eliminate all points in dominated buckets. The bucket boundaries117

are defined by sampling the input points and sorting all sample points in each118

dimension. In the noisy comparison model, the approach of sampling the input119

for some kind of discretization was pioneered in [7] for selection problems, but120

with rather different techniques and objectives. One interesting aspect of our121

discretization is that a fraction of the input will be, due to the low query complexity,122

incorrectly discretized yet we are able to recover the correct skyline.123

Our lower bound constructs a technical reduction from the problemof identifying124

null vectors among a collection of vectors, each having at most one non-zero coor-125

dinate. That problem can be studied using a two-phase process inspired from [13].126

Related work.The noisy comparison model was considered for sorting and searching127

objects [13]. While any algorithm for that model can be reduced to the noiseless128

comparison model at the cost of a logarithmic factor (boosting each comparison so129

that by union bound all the comparisons required are correct), [13] shows that this130

additional logarithmic factor can be spared for sorting and for maxima queries,131

though it cannot be spared for median selection. [25], [15] and [7] investigate the132

trade-off between the total number of queries and the number of rounds for (variants133

of) top-k queries in the noisy comparison model and some other models. The noisy134

comparison model has been refined in [12] for top-k queries, where the probability of135

incorrect answers to a comparison increase with the distance between the two items.136

Other models for uncertain data have also been considered in the literature: in137

some, the location of each point is determined by a probability distribution over a set138

of locations, whereas in other models the data is incomplete [18,23]. Some previous139

work [2, 26] model uncertainty about the output by computing a ρ-skyline: points140

having probability at least ρ to be in the skyline. We refer to [4] for skyline com-141

putation using the crowd and [22] for a survey in crowdsourced data management.142

Our paper aims to establish the worst-case number of comparisons required143

to compute skylines with output-sensitive algorithms, i.e., when the cost is144

5 The difference between those two bounds is due to different subroutines to check
dominance.
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parametrized by the size of the result set. While one of our algorithm is ran-145

domized, we do not make any further assumption on the input (we do not assume146

input points are uniformly distributed, for instance). In the classic noiseless com-147

parison model, the problem of computing skylines has received a large amount of148

attention [6,19,21]. For any constant d, [19] show that skylines can be computed149

in O(n logd−2k). When d ∈ {2,3}, Barbay et al. [3] provide stronger efficiency150

guarantees with “instance-optimal" algorithms. [9] investigates the constant factor151

for the number of comparisons required to compute skyline, when d∈{2,3}. The152

technique does not seem to generalize to arbitrary dimensions, and the authors ask153

among open problems whether arbitrary skylines can be computed with fewer than154

dnlogn comparisons. To the best of our knowledge, our O(ndlog(dk)) is the first155

non-trivial output-sensitive upper bound that improves on the folklore O(dnk)156

for computing skylines in arbitrary dimensions. Many other algorithms have been157

proposed that fit particular settings (big data environment, particular distributions,158

etc), as evidenced in the survey [17], but those works are further from ours as159

they generally do not investigate the asymptotic number of comparisons. Other160

skyline algorithms in the literature for the noiseless setting have used bucketing. In161

particular, [1] computes the skyline in a massively parallel setting by partitioning162

the input based on quantiles along each dimension. This means they define similar163

buckets to ours, and they already observed that the buckets that contain skyline164

points are located in hyperplanes around the "bucket skyline", and therefore those165

buckets only contain a small fraction of the whole input.166

Organization. In Section 2, we recall standard results about the noisy comparison167

model and introduce some procedure at the core of our algorithms. Section 3168

introduces our algorithm for high dimensions (Theorem 4) and Section 4 introduces169

the counterpart for low dimensions (Theorem 6). Section 5 establishes our lower170

bound (Theorem 7).171

2 Preliminaries172

The complexity measured is the number of comparisons in the worst case.Whenever173

the running time and the number of comparisons differ, we will say so. With respect174

to the probability of error, our algorithms are supposed to fail with probability175

at most δ. Following standard practice we only care to prove that our algorithms176

have error in O(δ): 5δ, for instance. This is because we can run the algorithm with177

an adjusted value for the parameter (δ′=δ/5) while maintaining the asymptotic178

complexity of our algorithms.179

Given two points, p=(p1,p2...,pd) and q=(q1,q2...,qd) point p is lexicograph-180

ically smaller than q, denoted by p≤lex q , if pi<qi for the first i where pi and qi181

differ. If there is no such i, meaning that the points are identical, we use the id of182

the points in the input as a tie-breaker, ensuring that we obtain a total order.183

In the noisy comparisonmodel, we call an algorithm trust-preserving( [16]6) if for184

every δ<1/3 it is guaranteed to return the correct answer with probability at least185

6 [25] calls such algorithms fault-tolerant
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1−δ whenever the input comparisons are correct with probability at least 1−δ. We186

next describe and name algorithms that we use as subroutines to compute skylines.187

AlgorithmNoisySearch takes as input an element y, an ordered list (y1,y2,...,ym),188

accessible by comparisons that each have error probability at most p, and a pa-189

rameter δ. The goal is to output the interval I=(yi−1,yi] such that y∈I.190

Algorithm NoisySort relies on NoisySearch to solve the noisy sort prob-191

lem. It takes as input an unordered set Y ={y1,y2,...,ym}, and a parameter δ. The192

goal is to output an ordering of Y that is the correct non-decreasing sorted order.193

Algorithm NoisyMax returns the maximum item in the unordered set Y194

whose elements can be compared, but we will rather use another variant: algorithm195

MaxLex takes as input an unordered set Y = {y1,y2,...,ym}, a point x and a196

parameter δ. The goal is to output the maximum point in lexicographic order197

among those that dominate x. Algorithm SetDominates is the boolean version198

whose goal is to output whether there exists a point in Y that dominates x.199

Algorithm NoisyOr takes as input a list (y1,y2,...,ym)} of boolean elements200

that can be compared to true with error probability at most p (typically the result201

of some comparison or subroutines such as SetDominates). The original goal202

was to output whether at least one of the elements is true. But we rather adopt the203

enhanced version discussed in [16] which solves the first positive variable problem.204

The goal is to output the index of the first element with value true (and m+1,205

which we assimilate to false, if there are none).206

Theorem 1 ( [13], [16]). When the input comparisons have error probability at207

most p= 1/3, the table below lists the number of comparisons performed by the208

algorithms to return the correct answer with success probability 1−δ:209

Algorithm NoisyOr NoisyMax NoisySort NoisySearch SetDominates MaxLex

Comparisons O(mlog 1
δ
) O(mlog 1

δ
) O(mlogm

δ
) O(logm

δ
) O(mdlog 1

δ
) O(mdlog 1

δ
)

Furthermore, these algorithms are trust preserving. This means that when the210

input comparisons already have error probability at most δ, we can discard from211

the complexity the dependency in δ (replacing δ by some constant).212

We first refine the complexity of NoisyOr and call NoisyFirstTrue the re-213

fined algorithm which only spends constant time per variable it processes, and214

which identifies correctly all processed variables with high probability.215

Theorem 2. Algorithm NoisyFirstTrue solves the first positive variable prob-216

lem with success probability 1−δ in O(j ·log(1/δ)) where j is the index output by217

the algorithm. Furthermore, the algorithm is trust-preserving.218

Proof. The proof, left for the Appendix, shows that the error (resp. the cost) of219

the whole algorithm is dominated by the error (resp. the cost) of the last iteration.220
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Algorithm NoisyFirstTrue(x1,...,xn,δ) (see Theorem 2)
input: {x1,...,xn} set of boolean random variables, δ error probability
output: the index j of the first positive variable, or m+1 (=false).
1: i←1
2: δ′←δ/2
3: while i≤n do
4: j←NoisyOr(x1,...,xi,δ

′)
5: if CheckVar(xj ,δ′/2i) then
6: return j
7: else
8: i←2·i
9: return false

3 Skyline computation in high dimension221

Wefirst assume that an estimate k̂ of k is known in advance.Wewill show afterwards222

how we can lift that assumption.223

Weare now ready to give the full description of our algorithmSkylineHighDim.224

Algorithm SkylineHighDim(k,X,δ) (see Theorem 3)
input: X = {p1, ... , pn} set of points, k̂ upper bound on skyline size, δ error
probability
output: min{k̂,skyline(X)} skyline points w.p. 1−δ
1: Initialize S←∅, i←1
2: while i 6=−1 and |S|<k̂ do
3: i′← index of the first point pi′ not dominated by current skyline points.7

{Find a skyline point dominating pi}
4: Compute p∗←MaxLex(pi′ ,{pi,...,pn},δ/(2k̂))
5: S←S∪{p∗}
6: i← i′

7: Output S

Theorem 3. Given δ∈(0,1/2) and a setX of data items, SkylineHighDim(X,δ)225

outputs a subset of X which, with probability at least 1−δ, is the first min(|X|,k̂)226

skyline points. The running time and number of queries is O(ndk̂log(k̂/δ)).227

Proof. Each iteration through the loop adds a point to the skylineS with probability228

of error atmost δ/k̂. The final result is therefore correctwith success probability 1−δ.229

7 This point can be computed using algorithmNoisyFirstTrue on the boolean variables:
¬SetDominates(S,pi,δ/(2k̂)),. . . , ¬SetDominates(S,pn,δ/(2k̂)), where we denote
by ¬ the negation. This means that ¬SetDominates(S,pn,δ/(2k̂)) returns true when
the procedure SetDominates(S,pn,δ/(2k̂)) indicates that pn is not dominated.
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The complexity is O((i′−i)∗dk̂log(k̂/δ)) to find a non-dominated point pi′ at line230

3, and O(ndlog(k̂/δ)) to compute the maximal point above pi′ at line 4. Summing231

over all iterations, the running time and number of queries is O(ndk̂log(k̂/δ)).232

AlgorithmSkylineHighDim(X,δ) can only return the skyline inO(ndklog(k/δ))233

if it is provided with a good estimate of the skyline cardinality k̂∈O(k). We next234

show how to guarantee the complexity by trying a sequence of successive values235

for k̂. The successive values in the sequence grow exponentially to prevent failed236

attempts from penalizing the complexity.237

Algorithm SkyHighDim-Search(X,δ) (see Theorem 4)
input: X set of points, δ error probability
output: skyline(X) w.p. 1−δ
1: Initialize j←0, k̂←1
2: repeat
3: j←j+1 ; k̂←2k̂ ; S←SkylineHighDim(k̂,X,δ/2j)
4: until |S|<k̂
5: Output S

Theorem 4. Given δ∈(0,1/2) and a setX of data items,SkyHighDim-Search(X,δ)238

outputs a subset ofX which, with probability at least 1−δ, is the skyline. The running239

time and number of queries is O(ndklog(k/δ)).240

Proof. The proof is relatively straightforward and left for the Appendix.241

4 Skyline computation in low dimension242

Let us first sketch our algorithm SkylineLowDim(k,X,δ) . The algorithm works243

in 3 phases. The first phase partitions input points in buckets. We sort the i-th244

coordinate of a random sample to define s+1 intervals in each dimension i∈ [d],245

hence (s+1)d buckets, where each bucket is a product of intervals of the form
∏
iIi;246

then we assign each point p of X to a bucket by searching in each dimension for247

the interval Ii containing pi.248

The second phase eliminates irrelevant buckets: those that are dominated by249

some non-empty bucket and therefore have no chance of containing a skyline250

point. With high probability the bucketization obtained from the first phase will251

be "accurate enough" so that we will be able to identify efficiently the irrelevant252

buckets, and will also guarantee that the points in the remaining buckets form253

a small fraction of the input (provided k is small). In phase 3, we thus solve the254

skyline problem on a much smaller dataset, calling Algorithm SkylineHighDim255

to find the skyline of the remaining points. 8
256

8 Alternatively, one could use an algorithm provided by Groz and Milo [16], it is only
important that the size of the input set is reduced to n/k to cope with the larger
runtime of the mentioned algorithms.
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4.1 Emptiness testing, and domination relationships between buckets257

Our bucketization does not guarantee that all points are assigned to the proper258

bucket. In particular, empty buckets may erroneously be assumed to contain259

some points. To drop the irrelevant buckets, we thus design a subroutine First-260

Nonempty-Bucket that processes a list of buckets, and returns the first bucket261

that really contains at least one point. Incidentally, we will not double-check the262

emptiness of every bucket using this procedure, but will only check those that may263

possibly belong to the skyline: those that we will define more formally as buckets264

of type (i), (ii) and (iv) in the proof of Theorem 5. We could not afford to "fix" the265

whole assignment as it may contain too many buckets.266

In the First-Nonempty-Bucket problem, the input is a sequence of pairs267

[(B1,X1),...,(Bn,Xn)] where Bi is a bucket and Xi is a set of points. The goal is268

to return the first i such that Bi∩Xi 6=∅ with success probability 1−δ. The test269

Bi∩Xi 6=∅ can be formulated as a DNF with |Xi| conjunctions of O(d) boolean270

variables each. To solve First-Nonempty-Bucket, we can flatten the formulas271

of all buckets into a large DNF with conjunctions of O(d) boolean variables (one272

conjunction per bucket point). Using NoisyFirstTrue to compute the first true273

conjunction (while keeping tracks of which point belongs to which bucket with274

pointers) yields the following complexity:275

Lemma 1. AlgorithmFirstBucket([(B1,X1),...,(Bn,Xn)],δ) solves First-Nonempty-276

Bucket in O(
∑
i≤jd · |Xj |log(1/δ)) with success probability 1− δ, where j is the277

index returned by the algorithm (the algorithm is trust-preserving).278

In the second phase, Algorithm SkylineLowDim(k,X,δ) uses elimination. To279

manage ties, we need to distinguish two kinds of intervals: the trivial intervals that280

match a sample coordinate: I=[x,x] and the non-trivial intervals I=]a,b[ (a<b)281

contained between samples (or above the largest sample, or below the smallest282

sample). To compare easily those intervals, we adopt the convention that for a non-283

trivial interval I=]a,b[, min I=a+ε and max I=b−ε for some infinitesimal ε>0:284

ε=(b−a)/3 would do. We say that a bucket B=
∏
iIi is dominated by a different285

bucketB′=
∏
iI
′
i if in every dimensionmax Ii≤min I ′i. Equivalently: we say thatB′286

dominatesB if every point (whether in the dataset or hypothetical) inB′ dominates287

every point inB. The idea is that no skyline point belongs to a bucket dominated by288

a non-empty bucket. See Figure 3 for an illustration.We observe that the relative po-289

sition of buckets is known by construction, so deciding whether a bucket dominates290

another one may require time O(d) but does not require any comparison query.291

4.2 Properties satisfied by the bucket assignments292

Theorem 5. Given δ∈(0,1/2) and a setX of data items, SkylineLowDim(X,δ)293

outputs a subset of X which, with probability at least 1−δ, is the first min(|X|,k̂)294

skyline points. The number of queries is O(nd log(dk̂/δ)). The running time is295

O(ndlog(dk̂/δ)+nd·min(k̂,|skyline(X)|))296

9 Note that X can contain points sharing the same coordinate meaning that the Si are
not necessarily distinct.



10 B. Groz, F. Mallmann-Trenn, C. Mathieu and V. Verdugo

a b

c d e

f g

x

y
actual location of a point

incorrect location
(the true location of the point
is below skyline)

bucket kept in reduced problem

dominated bucket (discarded)

Fig. 3: An illustration of the bucket dominance and its role in SkylineLowDim.
Here bucket b dominates c and f but not a, d, e or g. Buckets c,f,g are dominated
by some non-empty bucket and therefore cannot contain a skyline point. Bucket
a does not contain a skyline point, but this cannot be deduced from the bucket
assignments, therefore points in bucket a are passed on to the reduced problem. In
this figure we may assume to simplify that a bucket contains its upper boundary.
But in our algorithm bucket a would actually contain only the 4 leftmost points,
and the fifth point would belong to a distinct bucket with a trivial interval on x. . .

Proof. The proof, left for the Appendix, first shows by Chernoff bounds that the297

assignment satisfies with high probability some key properties: (1) few points are298

erroneously assigned to incorrect buckets (2) the skyline points are assigned to the299

correct bucket, and (3) there are at most O(n/(dk̂2)) points on any hyperplane300

(i.e., in buckets that are ties on some dimension). The proof then shows that:301

– there are at most O(n/k̂) points in the reduced problem. This is because those302

points belong to skyline buckets or buckets that are tied with a skyline bucket303

on at least one dimension (every other non-empty bucket is dominated), and304

property (3) of the assignment guarantees that the union of all such buckets305

has at most O(n/k̂) points.306

– the buckets above the skyline buckets which are erroneously assumed to contain307

points can quickly be identified and eliminated since they contain few points.308

AlgorithmSkylineLowDim(X,δ) can only return the skyline inO(ndlog(dk/δ))309

if it is provided with a good estimate of the skyline cardinality: we must have k̂≥k310

and log(k̂)∈O(log(k)). We next show how to guarantee the complexity by trying311

a sequence of successive values for k̂. The successive values in the sequence grow312

super exponentially (similarly to [8,16]) to prevent failed attempts from penalizing313

the complexity.314
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Algorithm SkylineLowDim(k̂,X,δ) (see Theorem 5)
input: k̂ integer, X set of points, δ error probability
output: min{k̂,|skyline(X)|} points of skyline(X)
error probability: δ

1: if k̂5≥n or d5≥n or (log(1/δ))5≥n then
2: Compute the skyline by sorting every dimension, as in [16]. Return that skyline.
3: δ′←δ/(2dk̂)5 and s←dk̂2log(d2k̂2/δ′)

{Phase (i): bucketing}
4: for each dimension i∈{1,2,...,d} do
5: Si←NoisySort(sample of X of size s,i,δ′/d)
6: Remove duplicates so that, with prob. 1−δ′/d, the values in Si are all distinct.9
7: for each point p∈X do
8: Place p in setXB associated toB=

∏d
i=1Ii, with Ii=NoisySearch(pi,Si,δ

′/(dk̂)).
9: Drop all empty buckets (those that were assigned no point).
10: Sort buckets into a sequence B1,...,Bh so that each bucket comes before buckets it

dominates.
{Phase (ii): eliminating irrelevant buckets}

11: Initialize X ′←∅, i←1
12: while i 6=−1 do
13: i←FirstBucket([(B1,XB1),...,(Bh,XBh)],δ

′/k̂))
14: X ′←X ′∪XBi

15: if |X ′|>8n/k̂ then
16: Raise an error.
17: Drop from B1,...,Bh all buckets dominated by Bi, and also buckets B1 to Bi.

{Phase (iii): solve reduced problem}
18: Output SkyHighDim-Search(X ′,δ′).

Algorithm SkyLowDim-Search(X,δ) (see Theorem 6)
input: X set of points, δ error probability
output: skyline(X)
error probability: δ

1: k̂←(bd/δc)2
2: repeat
3: δ←δ/2 ; k̂← k̂2 ; S← SkylineLowDim(k̂,X,δ)
4: until |S|<k̂
5: Output S

Theorem 6. Given δ∈(0,1/2) and a setX of data items,SkyLowDim-Search(X,δ)315

outputs a subset ofX which, with probability at least 1−δ, is the skyline. The number316

of queries is O(ndlog(dk/δ)). The running time is O(ndlog(dk/δ)+ndk).317

Proof. For iteration j, the probability of error is δ/2j , and the cost is given by318

Theorem 5. Consequently, we obtain the complexity we claim by summing those319

terms over all iterations.320
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Remark 1. In the noiseless setting, we could adopt the same sampling approach321

to assign points to buckets and reduce the input size. On line 18 we could use any322

noiseless skyline algorithm such as the O(ndk) algorithm from [11], or our own323

similar SkyHighDim-Search which can clearly run in O(dnk) in the noiseless324

case. The cost of the bucketing phase remains O(ndlog(dk̂/δ)). The elimination325

phase becomes rather trivial since all points get assigned to their proper bucket,326

and therefore there is no need to check buckets for emptiness as in Line 13. By327

setting δ = 1/k failures are scarce enough so that the higher cost of O(ndk) in328

case of failure is covered by the cost of an execution corresponding to a satisfying329

sample. Consequently, the expected query complexity is O(ndlog(dk)), and the330

running time O(ndlog(dk)+ndk).331

Better yet: we can replace random sampling with quantile selection to obtain a332

deterministic algorithmwith the same bounds. Algorithms for themultiple selection333

problem are surveyed in [9]. Actually, our algorithm can be viewed as some kind of334

generalization to higher dimensions of an algorithm from [9] which assigns points335

to buckets before recursing, the buckets being the quantiles along one coordinate.336

5 Skyline Lower Bound337

Theorem 7. LetA be an algorithm that computes the skyline with error probability338

at most 1/2. Then the expected number of queries of A is Ω(dnlogk).339

Proof. The proof is left for the Appendix.340
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Appendix for the upper bounds425

Proof of Theorem 2426

Proof. We denote by CheckVar(x,δ) the procedure that checks if x= true with427

er. pr. δ by majority vote, and returns the corresponding boolean. We finally denote428

by j′ the true index of the first positive variable in x1,...,xm. We assume the input429

comparison oracles with error probability δ.430

The probability that NoisyOr fails to identify j′ for i=2dlogke (i.e., the first431

time it faces variable xj′) is at most δ′. The probability that an incorrect index is432

returned (before i≥j′) is at most
∑
iδ
′/2i. The algorithm thus returns an incorrect433

index with probability at most δ′+
∑
iδ
′/2i≤δ.434

NoisyOr requires O(i) comparisons at line 4, whereas CheckVar requires O(i)435

comparisons at line 5. Replacing i with 2h, the total cost on a successful execution436

is therefore
∑dlogj′e
h=1 2h=O(j′).437

Proof of Theorem 4438

Proof. For iteration j, the probability of error is δ/2j , and the cost isO(ndk̂log(k̂/δ)).439

Consequently, the probability that the algorithm fails to return the correct answer440

is at most:
∑
jδ/2

j≤δ, and the running time is O(
∑blogkc+1
j=1 nd2j log(2j×2j/δ))∈441

O(ndklog(k/δ)). The complexity isO((i′−i)∗dk̂log(k̂/δ)) to find a non-dominated442

point pi′ at line 4, and O(ndlog(k̂/δ)) to compute the maximal point above pi′443

at line 6. Summing over all iterations, the running time and number of queries is444

O(ndk̂log(k̂/δ)).445

Proof of Theorem 5446

The following Lemma lists properties that our bucketing assignment satisfies with447

high probability. We will show in Theorem 5 that our algorithm can compute the448

skyline efficiently for any assignment satisfying those properties.449

Lemma 2. Assume that the samples have been correctly ordered at line 5. With450

error probability δ/k̂, the assignment performed at line 8 satisfies the following two451

properties:452

– if I is a non-trivial interval (i.e., unless it matches the coordinate of a sample453

point), |{p : I=NoisySearch(pj ,Sj ,δ
′/(dk̂))}|≤4n/(dk̂2)454

– less than 2n/(dk̂2) points are (erroneously) assigned to buckets above the real455

skyline buckets.456

– the skyline points are assigned to their correct bucket.457

Proof. Recall that δ′=δ/(2dk̂)5, and that pj denotes the jth coordinate of point458

j. Assume the points of X are ordered w.r.t. to their jth coordinate, breaking ties459

arbitrarily. Consider these ordered points to be divided into blocks, each one having460

`=n/(dk̂2) consecutive points, except the last which may have less. In particular,461

the number of blocks is dk̂2.462
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Consider now the samples after line 5. Each block (but the last) contains at463

least one sample with probability at least 1−(1−`/n)s≥1−δ′/d2k̂2. If one sample464

is indeed taken from every block (except maybe the last), the distance between any465

two samples is at most 2`. As a consequence, the number of points p that should466

be assigned to any given bucket is bounded by 2`, except for buckets with a trivial467

interval because several such buckets can be merged when removing duplicates468

at line 6. By Chernoff bounds, the number of points assigned to wrong buckets is469

at most 2n/(dk̂2) w.p. at least 1−δ′. By union bound over all d dimensions and470

over all s intervals, we therefore have probability at least 1−3δ′ that one sample471

is taken from each block and that the total number w of points assigned to wrong472

buckets (over all dimensions and blocks) is less than 2n/(dk̂2). Consequently, with473

probability at least 1−3δ′ the assignment satisfies the first property. Indeed, for each474

dimension j and interval I, the number of points in I is bounded by 2` (maximum475

distance between two samples) plus 2n/(dk̂2) (incorrect assignments into buckets):476

|{p : p was sorted into I in line 8}|≤2`+
2n

dk̂2
=

4n

dk̂2
.

As for the number of buckets erroneously assumed to be non-empty, it is bounded by477

the number of points assigned to wrong buckets and is therefore at most 2n/(dk̂2).478

This concludes the proof of the Lemma.We next turn to the proof of Theorem 5:479

Proof. When k̂5≥n, d5≥n or (log(1/δ))5≥n, the bounds can clearly be achieved480

by the other algorithms discussed previously, so we assume w.l.o.g. that k̂5<n481

and d5<n and (log(1/δ))5<n. We evaluate the cost of the algorithm assuming482

that (a) the samples are correctly sorted at Line 5, (b) the assignment satisfies the483

properties in Lemma 2, and (c) no mistakes are made at lines 13 and 18. In other484

words, we only accept a few mistakes at Line 8.485

Phase (i) Bucketing. Line 5: by Theorem 1 (noisy sorting) the sample is486

sorted in d·O(slog(sd/δ′))=O(ndlog(dk̂/δ)). Line 8: by Theorem 1 (noisy search)487

the points are assigned to their bucket in nd·O(log(sdk̂/δ′))=O(ndlog(dk̂/δ)).488

We will distinguish 4 kinds of (presumably) non-empty buckets (all other buck-489

ets are dropped at line 9): (i) those above the skyline that have been erroneously490

assigned some points, (ii) the buckets containing skyline points, (iii) the buckets491

that are dominated by buckets of type (ii), and (iv) the other (non-empty) buckets:492

they are not above the skyline but we do not have sufficient information to realize493

that they have no skyline points, because they are not dominated by any non-empty494

bucket. The algorithm is obviously not able to distinguish buckets of type (ii) and495

(iv), hence both are passed on to SkylineHighDim at line 18.496

The number h of non-empty buckets is not necessarily much smaller than n as497

h may grow exponentially with d. Line 10 does not contribute to query complexity,498

but contributes O(hd)∈O(nd) to the running time, using radix sort. Everything499

considered, the query complexity and running time of the bucketing phase are500

O(ndlog(dk̂/δ)).501

Phase (ii) Eliminating irrelevant buckets. The buckets that are tested for502

emptiness are those of type (i), (ii) and (iv) because buckets of type (iii) are dropped503
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at line 17. The number of buckets of type (ii) is at most k. Furthermore, a bucket504

can be of type (iv) iff there is one dimension i such that they share the same505

coordinates Ii as a skyline bucket on dimension i, and the interval Ii is not trivial.506

Consequently, by Lemma 2, there are at most (dk)×4n/(dk̂2) points that belong507

to buckets of type (iv). The number of points in buckets of type (ii) is even smaller:508

when such a bucket is trivial it contains only skyline points, and when it is not509

trivial, there is a dimension on which it is a non-trivial interval and therefore by510

Lemma 2 it has at most 4n/(dk̂2) points, hence a total of at most k×4n/(dk̂2)511

points in buckets of type (ii). When the estimate k̂ is large enough (k ∈O(k̂)),512

the number of points in buckets of type (ii) or (iv) is therefore O(n/k̂). The case513

when this is not O(n/k̂) because the estimate is not large enough is handled on514

line 15. Similarly, Lemma 2 guarantees that O(n/k̂) points have been assigned to515

buckets of the first kind. Therefore, the total number of points ever considered516

on line 13 is O(n/k̂). The contribution of line 13 to the complexity is therefore517

O(d(n/k̂)log(k̂/δ′)) by Lemma 1. Line 17 does not contribute to query complexity,518

but contributes hdk̂∈O(nd·min(k̂,|skyline(X)|)) to the running time.519

Actually, we need to optimize a bit the algorithm to achieve that running time.520

There can be much more than k̂ iterations, but there are only min(k̂,|skyline(X)|)521

"relevant" iterations in which we need to drop buckets. So we first strengthen522

the requirement on the order at line 10, so that a bucket comes before buckets523

it weakly dominates, where B′ weakly dominates B (using the notation above) if524

in every dimension maxi≤maxI ′i. At line 17, if Bi has already been marked as525

weakly dominated, we move on to the next iteration (any bucket that Bi would526

dominate has already been dropped). Otherwise, we iterate through the list of527

remaining buckets, and we perform the following operations at a cost of O(d) per528

bucket: we drop the buckets that Bi dominates, and mark the other buckets that529

Bi weakly dominates. There are only min(k̂,|skyline(X)|) buckets that are not530

weakly dominated, hence the running time.531

Phase (iii) Solving the reduced problem. Finally, at line 18 the size of532

X ′ isO(n/k̂), so its skyline canbe computed inO(ndlog(k̂/δ′))bySkyHighDim-Search.533

We next show that the correct answer is returned with high probability. First,534

the probability that the algorithm fails to satisfy our requirements (a) to (c) above535

are respectively d ·δ′/d, δ/k̂ and k̂ ·δ′/k̂+δ′. So the conditions are met — hence536

the algorithm returns the correct output — with probability at least 1−4δ.537

Appendix for the lower bounds538

In this section, we exhibit an Ω(dnlogk) lower bound on the query complexity in539

the noisy skyline problem, denoted Skyline. To that end, we define a noisy vector540

problem, in which one is given k vectors each of length ` and needs to decide for each541

vector whether it is the all-zero vector. We prove a lower bound for this problem542

and reduce it to Skyline yielding the desired result.543
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5.1 (k,`)-Null-Vectors: Definition and Lower Bound544

In the (k,`)-Null-Vectors the input S is a collection {v1,v2,...,vk}⊆{0,2}` of vectors545

such that for each i∈ [k], ∑`
j=1v

i
j≤2, and the output is a vector (w1,w2,...,wk)∈546

{0,2}k such that for each i ∈ [k], wi =
∑`
j=1v

i
j . We define the distribution µ547

over vectors of {0,2}` as follows. For each j∈ [`], µ(2ej)=1/(2`), where ej is the548

canonical vector with a 1 in the j-th entry and zero elsewhere; µ(0,...,0)=1/2. For549

inputs to (k,`)-Null-Vectors, we will consider the product distribution µk.550

Lemma 3. For (k,`)-Null-Vectors under the product distribution µk, if A is a551

deterministic algorithm with success probability at least 3/4, then the worst case552

number of queries of A is Ω(`klogk).553

Proof. The proof is by contradiction. Assume that A is an algorithm with success554

probability at least 3/4 and worst case number of queries T ≤(`klog3k)/1000. We555

assume that the adversary is generous, i.e. the adversary tells the truth for every556

entry (i,j) such that vij=0, and that lies with probability 1/3 otherwise.557

Generalizing the 2-phase computational model by Feige, Peleg, Raghavan and558

Upfal [13], we will give the algorithmmore leeway and study a 4-phase computation559

model, defined as follows. In the first phase, the algorithm queries every entry vij560

(log3k)/100 times. In the second phase, the adversary reveals to the algorithm all561

remaining hidden entries (i,j) such that vij =2, except for a single random one.562

In the third phase, the algorithm can strategically and adaptively choose kl/10563

entries, and the adversary reveals their true value at no additional cost. Finally,564

in phase 4, the algorithm outputs wi=2 for every vector where it found an entry565

equal to 2, and wi=0 for the rest of the vectors.566

To see how the two models are related, observe that since T ≤ (`klog3k)/20,567

by Markov’s inequality at most a set S of `k/10 entries are queried by algorithm568

A more than (log3k)/2 times, so at the end of the first phase we have queried569

every entry at least as many times as A, except for those `k/10 entries, and in the570

beginning of the third phase there is all the necessary information to simulate the571

execution of A, adaptively finding S (and getting those values correctly), hence572

the success probability of the three-phase algorithm is greater than or equal to the573

success probability of A. Also observe that, thanks to the definition of µ and to574

the generosity of the adversary, any execution where all queries to a vector lead575

to 0 answers must lead to an output where wi=0—else the algorithm would be576

incorrect when µ selects the null vector.577

We now sketch the analysis of the success probability of the three-phase algo-578

rithm. Due to the definition of µ, with probability at least 9/10 the ground-truth579

input drawn from µk has k/2±O(
√
k) vectors that contain an entry equal to 2.580

At the end of the first phase, and due the fact that the adversary is generous, we581

have that at most of them have been identified. There remain k/2±O(
√
k) vectors582

that appear to be all zeroes, and about (k/2)(1/3)(log3k)/2 = (1/2)
√
k of those583

vectors contain a still-hidden entry whose true value is 2. During the third phase,584

all of those hidden 2’s are revealed except for one. At that point, there still remain585

k/2±O(
√
k) vectors whose entries appear to be all zeroes, there is a 2 hidden586
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somewhere uniformly at random, but all entries have been queried an equal number587

of times, all in vain. To find that remaining hidden entry (and therefore decide588

which wi is equal to 2), the algorithm has no information to distinguish between589

the `(k/2±O(
√
k)) remaining entries. Since, the algorithm may only select `k/10590

elements to query further, the algoirthm’s success probability after the fourth591

phase cannot be better than (k`/10)/(`(k/2±O(
√
k)))<1/4, a contradiction.592

5.2 Reduction: Proof of Theorem 7593

Step 1.Assume, for simplicity, that d−2 divides k. From an input S={u1,u2,...,uk}594

to the (k,`)-Null-Vectors, we first show how to construct an input IS for Skyline595

with n points in d dimensions and a skyline that is likely to be of size k, where596

n = (`+ d− 2)k/(d− 2). We first randomly permute the entries of each ui, by597

using k independent permutations, resulting in Sπ={v1,v2,...,vk}. Partition Sπ598

into k/(d−2) blocks of d−2 vectors, where for j ∈ {0,1,...,k/(d−2)−1}, block599

Sjπ= {vj(d−2)+i : i∈ [d−2]}. For each block, define `+d−2 points, as displayed600

(one point per row) on Figure 4, and the union over all blocks is the input IS to601

the Skyline. Formally, we define point p(t) with t=j`+i as follows.602

p(t)
r :=



j if r=d−1,
n−j if r=d,
1 if r= i−` and `≤ i ,
v
j(d−2)+i
i if r= i and i∈ [d−2],
0 otherwise.

1

Sjπ

0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

j n− j

`

pj·(`+d−2)+1

...

j n− j
j n− j
j n− j
j n− j
j n− j
j n− j
j n− j
j n− j
j n− j
j n− j
j n− j

pj·(`+d−2)+2

p(j+1)·(`+d−2)

pj·(`+d−2)+`

pj·(`+d−2)+`+1
... d− 2

d− 2 2

Fig. 4: Block (j,n−j) of the reduction. The vectors of Sjπ placed in this block are
vj(d−2)+1,vj(d−2)+2,...,vj(d−2)+(d−2).

Step 2. Because of the non-domination implied by the last two coordinates of any603

point, the skyline of the set of points is the sum over all blocks of the skyline of604
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each block. Fix an arbitrary block and focus on the first d−2 dimensions. For each605

dimension, the corresponding column (whose first ` coordinates are those of some606

vector vi) contains exactly one 1 (on the row of some point p) and possibly one607

2 , the remaining entries being all 0. Thus it is easy to verify that p is part of the608

skyline if and only if vi=0.609

From the output skyline(I) it is now easy to construct the output of the (k,`)-610

Null-Vectors: For all blocks, for all dimensions ≤d−2, if p∈skyline(I) then wi←0611

else wi←2. This yields the correct output w=(w1,w2,...,wk). Thus we derive the612

following observation.613

Observation 1 Given the set of points skyline(IS), one can recover the solution614

to the (k,`)-Null-Vectors without further queries.615

Furthermore, in the following we prove that the construction is likely to have616

k skyline points.617

Lemma 4. Let E be the event that the input IS has exactly k skyline points. Then,618

P(E)≥1−1/k as long as k5≤n.619

Proof. First observe that, by construction, regardless of whether E holds, every620

block contains at most d−2 skyline points: Consider an arbitrary block. The last621

two dimensions are identical for each point belonging to that block and we focus622

thus on the first d−2 dimensions. There are exactly d−2 points with one coordinate623

being 1 and all of these points are potential skyline points. In particular, take any624

such point p and assume that the i’th coordinate of p is 1. Then p is part of the625

skyline if and only if the vector vi is the null vector. Moreover, every block can626

have at most d−2 entries with value 2 and each such 2 eliminating one potential627

skyline point. Thus, there are at most d−2 skyline points per block.628

Consider the vertices vi1 ,vi1+1,...,vi2 of any block. We say they are collision629

free if the following holds: if vjj∗=2 for j∈ [i1,i2], then vj
′

j∗=0 for all j′∈ [i1,i2]\{j}.630

Observe that if the vertices of any block are collision free, then each of the first d−2631

dimensions is dominated by a distinct skyline point and thus there d−2 skyline632

points in that block. Thus, if the vectors of every block are collision free, then there633

d−2 skyline points per block and summing up over all k/(d−2) blocks, we get634

that there are thus k skyline points in total.635

Thus, in order to bound P(E) it suffices to bound the probability that all blocks636

are collision free.. Recall that the random permutations π1,π2,...,πk permute each637

vector vi independently. Since in a block at most k2 pairs may collide, and each638

collision happens with probability 1/`, the expected number of collisions per block639

is at most k2/`. The expected number of collisions over all blocks is thus, by the640

union bound, at most (k/(d−2))·k2/`≤1/k, by assumption on k. Thus, the claim641

follows by applying Markov inequality.642

Proof (Proof of Theorem 7). Suppose for the sake of contradiction that there exists643

an algorithm A recovering the skyline for any input with exactly k skyline points,644

with error probability at most 1/10, and using o(ndlogk) queries in expectation.645

By Markov inequality, the probability that the number of queries exceeds 5 times646
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the expectation is at most 1/5, so truncating the execution at that point adds 1/5647

to the error probability, transforming A into an algorithm B that recovers the648

skyline for any input with exactly k skyline points, with error probability at most649

1/5+1/10<1/3, and using o(5ndlogk) queries in the worst case. We claim that650

this implies that one can solve the (k,`)-Null-Vectors with o(ndlogk) w.p. at least651

1/3 contradicting Lemma 3.652

Let S be the input of the (k,`)-Null-Vectors. We cast S as an input IS of B as653

described in Section 5.2. By Lemma 4, the event E holds w.p. at least 1−1/k and654

thus there are k skyline points.655

By assumption, B can thus compute the skyline w.p. at least 1/2−1/k≥1/3,656

where we used the Union bound. Thus, by Observation 1, one can obtain w.p. at657

least 1/3 the solution to (k,`)-Null-Vectors using o(ndlogk) queries, a contradiction.658
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