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Abstract. Given a set of n points in a d-dimensional space, we seek to
compute the skyline, i.e., those points that are not strictly dominated by
any other point, using few comparisons between elements. We adopt the
noisy comparison model ( [13]) where comparisons fail with constant proba-
bility and confidence can be increased through independent repetitions of a
comparison. In this model motivated by Crowdsourcing applications, Groz
& Milo [16] show three bounds on the query complexity for the skyline
problem. We improve significantly on that state of the art and provide
two output-sensitive algorithms computing the skyline with respective
query complexity O(ndlog(dk)) and O(ndklog(k)), where k is the size of
the skyline. These results are tight for low dimensions.

Keywords: Skyline - Noisy comparisons - Fault-tolerance: CrowdSourc-
ing.

1 Introduction

Skylines have been studied extensively, since the 1960s in statistics [5], then in algo-
rithms and computational geometry [21] and in databases [6,10,14,20]. Depending
on the field of research, the skyline is also known as the set of mazimum vectors,
the dominance frontier, admissible points, or Pareto frontier. The skyline of a set
of points consists of those points which are not strictly dominated by any other
point. A point p is dominated by another point g if p; < ¢; for every coordinate
(attribute or dimension) 4. It is strictly dominated if in addition the inequality is
strict for at least one coordinate; see Figure 1.

Noisy comparison model, and parameters. In many contexts, comparing attributes
is not straightforward. Consider the example of finding optimal cities from [16].

To compute the skyline with the help of the crowd we can ask people ques-
tions of the form “is the education system superior in city x or city y?” or

* This paper is NOT eligible for the best student paper award.
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A

skyline point
x dominated point

salary

cducation=quality

Fig. 1: Given a set of points X, the goal is to find the set of skyline points, i.e.,points
are not dominated by any other points.

“can I expect a better salary in city x or city y”. Of course, people are likely
to make mistakes, and so each question is typically posed to multiple people.
Our objective is to minimize the number of questions that need to be issued
to the crowd, while returning the correct skyline with high probability.

Thus, much attention has recently been given to computing the skyline when
information about the underlying data is uncertain [24], and comparisons may give
erroneous answers. In this paper we investigate the complexity of computing skylines
in the noisy comparison model, which was considered in [16] as a simplified model for
crowd behaviour: we assume queries are of the type is the i-th coordinate of point p
(strictly) smaller than that of point q 2, and the outcome of each such query is indepen-
dently correct with probability greater than some constant better than 1/2 (for defi-
niteness we assume probability 2/3). As a consequence, our confidence on the relative
order between p and ¢ can be increased by repeatedly querying the pair on the same
coordinate. Our complexity measure is the number of comparison queries performed.

This noisy comparison model was introduced in the seminal paper [13] and has
been studied in [7, 16]. There are at least 2 straightforward approaches to reduce
problems in this model to the noiseless comparison setting. One approach is to take
any "noiseless" algorithm and repeat each of its comparisons log(f(n)) times, where
n is the input size and f(n) is the complexity of the algorithm. The other approach is
to sort the n items in all d dimensions at a cost of ndlog(nd), then run some noiseless
algorithm based on the computed orders. The algorithms in [13,16] and this paper
thus strive to avoid the logarithmic overhead of these straightforward approaches.

Three algorithms were proposed in [16] to compute skylines with noisy compar-
isons. Figure 2 summarizes their complexity and the parameters we consider. The
first algorithm is the reduction through sorting discussed above. But skylines often
contain only a small fraction of the input items (points), especially when there are
few attributes to compare (low dimension). This leads to more efficient algorithms
because smaller skylines are easier to compute. Therefore, [16] and the present
paper investigate the complexity of computing skylines expressed as a function of
three parameters: n=|X|, the number of input points; d, the number of dimensions;
and k= |skyline(X)|, the size of the skyline (output). There is a substantial gap
between the lower bounds and the upper bounds achieved by the skyline algorithms
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in [16]. In particular, the authors raised the question whether the skyline could
be computed in o(nk) for any constant k& when k < n. In this paper, we tighten
the gap between the lower and upper bounds and settle this open question.

Contributions. We propose 2 new algorithms that compute skylines with probability
at least 1—¢ and establish a lower bound:

— Algorithm SkyLowDim-Search(X,d) computes the skyline in O(ndlog(dk/5))
query complexity and O(ndlog(dk/d)+ndk) overall running time.

— Algorithm SkyHighDim-Search(X,0) computes the skyline in O(ndklog(k/d))

— 2(ndlogk) queries are necessary to compute the skyline.

— Additionally, we show that Algorithm SkyLowDim-Search can be adapted
to compute the skyline with O(ndlog(dk)) comparisons in the noiseless setting.

Our first algorithm answers positively the above question from [16]. Together with
the lower bound, we thus settle the case of low dimensions, i.e., when there is a
constant ¢ such that d <k¢. Our 2 skyline algorithms both shave off a factor k from
the corresponding bounds in the state of the art [16], as illustrated in Figure 2
with respect to query complexity. We point out that SkyLowDim-Search is a
randomized algorithm: it needs to sample the input. In our bounds we guarantee
that the combined probability of incorrect comparisons and poor sample choice
is low: this is because we tailor the sample size to the desired accuracy. But having
a randomized algorithm is still a weakness in the sense that our approach cannot
yield a "trust-preserving" algorithm: even in the extreme case where comparison
queries all return a correct answer (noiseless setting), our algorithm still relies on
sampling and therefore has some probability of failing to return the skyline within
the running time bound. However, we show that for the specific case of the noiseless
setting, our algorithm can be adapted to compute the skyline in O(ndlog(dk)) .

As a subroutine for our algorithms, we developped a new algorithm to eval-
uate disjunctions of boolean variables with noise ("OR"). We believe algorithm
NoisyFirstTrue to be interesting in its own right: it returns the first positive
variable in input order, with a running time that scales linearly with the position
of that variable in the input order.

. d: dimensio
[16] O(ndlog(nd/3))"|O(ndklog(dk/))|O(ndklog(k/))|"* Jﬁl;& I‘:Omts

this paper — O(ndlog(dk/8))" |O(ndklog(k/5)) |k : # skyline points
0 : error rate tolerated

best when: ke 2(n) d<k‘<n k<d

Fig. 2: Query complexity of skyline algorithms depending on the values of k. For
t-labeled bounds, the running time is larger than the number of queries.

Technical core of our algorithms. The algorithm underlying the two bounds for
k< n in [16] recovers the skyline points one by one. It iteratively adds to the skyline
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the maximum point, in lexicographic order, among those not dominated by the
skyline points already found. > However, the algorithm in [16] essentially considers
the whole input for each iteration. Our two algorithms, on the opposite, can identify
and thus discard some dominated points early. The idea behind our algorithm
SkylineHighDim is that it is more efficient to separate the two tasks: (i) finding a
point p not dominated by the skyline points already found, on the one hand, and (ii)
computing a maximum point (in lexicographic order) among those dominating p, on
the other hand. Whenever a point is considered for step (i) but fails to satisfy that
requirement, the point can be discarded definitively. The O(ndk) skyline algorithm
from [11] for the noiseless setting also decomposes the two tasks, although the point
they add to the skyline in each of the k iteration is not the lexicographic maximum.

Our algorithm SkylineLowDim can be viewed as a 2-steps algorithm where
the first step prunes a huge fraction of dominated points from the input through
discretization, and the second step applies a cruder algorithm on the surviving
points. We partition the input into buckets for discretization, identify “skyline
buckets” and eliminate all points in dominated buckets. The bucket boundaries
are defined by sampling the input points and sorting all sample points in each
dimension. In the noisy comparison model, the approach of sampling the input
for some kind of discretization was pioneered in [7] for selection problems, but
with rather different techniques and objectives. One interesting aspect of our
discretization is that a fraction of the input will be, due to the low query complexity,
incorrectly discretized yet we are able to recover the correct skyline.

Our lower bound constructs a technical reduction from the problem of identifying
null vectors among a collection of vectors, each having at most one non-zero coor-
dinate. That problem can be studied using a two-phase process inspired from [13].

Related work. The noisy comparison model was considered for sorting and searching
objects [13]. While any algorithm for that model can be reduced to the noiseless
comparison model at the cost of a logarithmic factor (boosting each comparison so
that by union bound all the comparisons required are correct), [13] shows that this
additional logarithmic factor can be spared for sorting and for maxima queries,
though it cannot be spared for median selection. [25], [15] and [7] investigate the
trade-off between the total number of queries and the number of rounds for (variants
of) top-k queries in the noisy comparison model and some other models. The noisy
comparison model has been refined in [12] for top-k queries, where the probability of
incorrect answers to a comparison increase with the distance between the two items.
Other models for uncertain data have also been considered in the literature: in
some, the location of each point is determined by a probability distribution over a set
of locations, whereas in other models the data is incomplete [18,23]. Some previous
work [2,26] model uncertainty about the output by computing a p-skyline: points
having probability at least p to be in the skyline. We refer to [4] for skyline com-
putation using the crowd and [22] for a survey in crowdsourced data management.
Our paper aims to establish the worst-case number of comparisons required
to compute skylines with output-sensitive algorithms, i.e., when the cost is

5 The difference between those two bounds is due to different subroutines to check
dominance.
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parametrized by the size of the result set. While one of our algorithm is ran-
domized, we do not make any further assumption on the input (we do not assume
input points are uniformly distributed, for instance). In the classic noiseless com-
parison model, the problem of computing skylines has received a large amount of
attention [6,19,21]. For any constant d, [19] show that skylines can be computed
in O(nlog?~?k). When d € {2,3}, Barbay et al. [3] provide stronger efficiency
guarantees with “instance-optimal" algorithms. [9] investigates the constant factor
for the number of comparisons required to compute skyline, when d € {2,3}. The
technique does not seem to generalize to arbitrary dimensions, and the authors ask
among open problems whether arbitrary skylines can be computed with fewer than
dnlogn comparisons. To the best of our knowledge, our O(ndlog(dk)) is the first
non-trivial output-sensitive upper bound that improves on the folklore O(dnk)
for computing skylines in arbitrary dimensions. Many other algorithms have been
proposed that fit particular settings (big data environment, particular distributions,
etc), as evidenced in the survey [17], but those works are further from ours as
they generally do not investigate the asymptotic number of comparisons. Other
skyline algorithms in the literature for the noiseless setting have used bucketing. In
particular, [1] computes the skyline in a massively parallel setting by partitioning
the input based on quantiles along each dimension. This means they define similar
buckets to ours, and they already observed that the buckets that contain skyline
points are located in hyperplanes around the "bucket skyline", and therefore those
buckets only contain a small fraction of the whole input.

Organization. In Section 2, we recall standard results about the noisy comparison
model and introduce some procedure at the core of our algorithms. Section 3
introduces our algorithm for high dimensions (Theorem 4) and Section 4 introduces
the counterpart for low dimensions (Theorem 6). Section 5 establishes our lower
bound (Theorem 7).

2 Preliminaries

The complexity measured is the number of comparisons in the worst case. Whenever
the running time and the number of comparisons differ, we will say so. With respect
to the probability of error, our algorithms are supposed to fail with probability
at most J. Following standard practice we only care to prove that our algorithms
have error in O(9): 59, for instance. This is because we can run the algorithm with
an adjusted value for the parameter (¢’ =¢§/5) while maintaining the asymptotic
complexity of our algorithms.

Given two points, p= (p1,p2...,pq) and ¢=(q1,92...,q4) point p is lexicograph-
ically smaller than ¢, denoted by p <jex q , if p; <g; for the first ¢ where p; and ¢;
differ. If there is no such 7, meaning that the points are identical, we use the id of
the points in the input as a tie-breaker, ensuring that we obtain a total order.

In the noisy comparison model, we call an algorithm trust-preserving( [16]°) if for
every d <1/3 it is guaranteed to return the correct answer with probability at least

6 |25] calls such algorithms fault-tolerant
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1—4§ whenever the input comparisons are correct with probability at least 1—3. We
next describe and name algorithms that we use as subroutines to compute skylines.
Algorithm NoisySearch takes as input an element y, an ordered list (y1,y2,---,%m ),
accessible by comparisons that each have error probability at most p, and a pa-
rameter d. The goal is to output the interval I = (y;_1,y;] such that y € I.
Algorithm NoisySort relies on NoisySearch to solve the noisy sort prob-
lem. It takes as input an unordered set Y ={y1,y2,...,ym }, and a parameter §. The
goal is to output an ordering of Y that is the correct non-decreasing sorted order.
Algorithm NoisyMax returns the maximum item in the unordered set Y
whose elements can be compared, but we will rather use another variant: algorithm
MaxLex takes as input an unordered set Y = {y1,y2,...,Um }, a point z and a
parameter . The goal is to output the maximum point in lexicographic order
among those that dominate z. Algorithm SetDominates is the boolean version
whose goal is to output whether there exists a point in Y that dominates x.
Algorithm NoisyOr takes as input a list (y1,y2,...,ym)} of boolean elements
that can be compared to true with error probability at most p (typically the result
of some comparison or subroutines such as SetDominates). The original goal
was to output whether at least one of the elements is true. But we rather adopt the
enhanced version discussed in [16] which solves the first positive variable problem.
The goal is to output the index of the first element with value true (and m+1,
which we assimilate to false, if there are none).

Theorem 1 ( [13], [16]). When the input comparisons have error probability at
most p=1/3, the table below lists the number of comparisons performed by the
algorithms to return the correct answer with success probability 1—9:

Algorithm ‘ ‘ NoisyOr ‘ NoisyMax ‘ NoisySort ‘ NoisySearch ‘ SetDominates ‘ MaxLex

Comparisons"O(mlog%)‘O(mlog%) ‘O(mlog%) ‘O(log%) ‘O(mdlog%) ‘O(mdlog%)

Furthermore, these algorithms are trust preserving. This means that when the
input comparisons already have error probability at most §, we can discard from
the complexity the dependency in § (replacing 6 by some constant).

We first refine the complexity of NoisyOr and call NoisyFirstTrue the re-
fined algorithm which only spends constant time per variable it processes, and
which identifies correctly all processed variables with high probability.

Theorem 2. Algorithm NoisyFirstTrue solves the first positive variable prob-
lem with success probability 1—0 in O(j-log(1/9)) where j is the index output by
the algorithm. Furthermore, the algorithm is trust-preserving.

Proof. The proof, left for the Appendix, shows that the error (resp. the cost) of
the whole algorithm is dominated by the error (resp. the cost) of the last iteration.
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Algorithm NoisyFirstTrue(x,...,x,,0)  (see Theorem 2)
input: {x1,...,x,} set of boolean random variables, ¢ error probability
output: the index j of the first positive variable, or m+1 (=false).

1: 11
2: §'«4§/2
3: whilei<n do

4:  j+NoisyOr(z1,...,z:,0")
5. if CheckVar(z;,6'/2%) then
6: return j

7. else

8: 1421

9:

return false

3 Skyline computation in high dimension

We first assume that an estimate k of k is known in advance. We will show afterwards
how we can lift that assumption.
We are now ready to give the full description of our algorithm SkylineHighDim.

Algorithm SkylineHighDim(k,X,§)  (see Theorem 3)
input: X = {p1,...,pn} set of points, k upper bound on skyline size, J error
probability

output: min{l;:,skyline(X)} skyline points w.p. 1—0

1: Initialize S¢-0,i+1
2: while i#—1 and |S|<k do
3: i’ < index of the first point p;; not dominated by current skyline points.”

{Find a skyline point dominating p; }

4 Compute p* + MaxLex(p;/ ,{pi,...,pn},é/(QI;))
5 S« Su{p*}

6: i

7: Output S

Theorem 3. Givend € (0,1/2) and a set X of data items, SkylineHighDim(X,0)
outputs a subset of X which, with probability at least 1—46, is the first min(| X |,k)
skyline points. The running time and number of queries is O(ndklog(k/9)).

Proof. Eachiteration through the loop adds a point to the skyline S with probability
of error at most §/ k. The final result is therefore correct with success probability 1—4.

7 This point can be computed using algorithm NoisyFirstTrue on the boolean variables:
—SetDominates(S,p;,/(2k)),. . ., ~SetDominates(S,pn,5/(2k)), where we denote
by — the negation. This means that ~SetDominates(S,p,,d/(2k)) returns true when
the procedure SetDominates(S,p,,d/(2k)) indicates that p, is not dominated.
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The complexity is O((i’ —i)xdklog(k/d)) to find a non-dominated point p; at line
3, and O(ndlog(k/d)) to compute the maximal point above p;s at line 4. Summing
over all iterations, the running time and number of queries is O(ndklog(k/0)).

Algorithm SkylineHighDim(X,d) can only return the skyline in O(ndklog(k/J))
if it is provided with a good estimate of the skyline cardinality ke O(k). We next
show how to guarantee the complexity by trying a sequence of successive values
for k. The successive values in the sequence grow exponentially to prevent failed
attempts from penalizing the complexity.

Algorithm SkyHighDim-Search(X,5) (see Theorem 4)
input: X set of points, J error probability
output: skyline(X) w.p. 1—¢

1: Initialize j <0, k<1

2: repeat

3:  j<j+1; k< 2k; S« SkylineHighDim(k,X,5/27)
until |S|<k

5: Output S

Theorem 4. Givend€(0,1/2) and a set X of data items, SkyHighDim-Search(X,9)
outputs a subset of X which, with probability at least 1—0, is the skyline. The running
time and number of queries is O(ndklog(k/J)).

Proof. The proof is relatively straightforward and left for the Appendix.

4 Skyline computation in low dimension

Let us first sketch our algorithm SkylineLowDim(k,X,d) . The algorithm works
in 3 phases. The first phase partitions input points in buckets. We sort the i-th
coordinate of a random sample to define s+1 intervals in each dimension i € [d],
hence (s+1)% buckets, where each bucket is a product of intervals of the form [L,1:
then we assign each point p of X to a bucket by searching in each dimension for
the interval I; containing p;.

The second phase eliminates irrelevant buckets: those that are dominated by
some non-empty bucket and therefore have no chance of containing a skyline
point. With high probability the bucketization obtained from the first phase will
be "accurate enough" so that we will be able to identify efficiently the irrelevant
buckets, and will also guarantee that the points in the remaining buckets form
a small fraction of the input (provided k is small). In phase 3, we thus solve the
skyline problem on a much smaller dataset, calling Algorithm SkylineHighDim
to find the skyline of the remaining points.

8 Alternatively, one could use an algorithm provided by Groz and Milo [16], it is only
important that the size of the input set is reduced to n/k to cope with the larger
runtime of the mentioned algorithms.



Skyline Computation with Noisy Comparisons 9

4.1 Emptiness testing, and domination relationships between buckets

Our bucketization does not guarantee that all points are assigned to the proper
bucket. In particular, empty buckets may erroneously be assumed to contain
some points. To drop the irrelevant buckets, we thus design a subroutine First-
Nonempty-Bucket that processes a list of buckets, and returns the first bucket
that really contains at least one point. Incidentally, we will not double-check the
emptiness of every bucket using this procedure, but will only check those that may
possibly belong to the skyline: those that we will define more formally as buckets
of type (i), (ii) and (iv) in the proof of Theorem 5. We could not afford to "fix" the
whole assignment as it may contain too many buckets.

In the First-Nonempty-Bucket problem, the input is a sequence of pairs
[(B1,X1),-..,(Bpn,Xn)] where B; is a bucket and X; is a set of points. The goal is
to return the first ¢ such that B;NX; # 0 with success probability 1—4. The test
B;NX; #0 can be formulated as a DNF with | X;| conjunctions of O(d) boolean
variables each. To solve First-Nonempty-Bucket, we can flatten the formulas
of all buckets into a large DNF with conjunctions of O(d) boolean variables (one
conjunction per bucket point). Using NoisyFirstTrue to compute the first true
conjunction (while keeping tracks of which point belongs to which bucket with
pointers) yields the following complexity:

Lemma 1. Algorithm FirstBucket([(B1,X1),...,(Bn,Xn)],0) solves First-Nonempty-

Bucket in O(3_,<;d-|X;[log(1/0)) with success probability 1 — 4, where j is the
index returned by the algorithm (the algorithm is trust-preserving).

In the second phase, Algorithm SkylineLowDim(k,X,d) uses elimination. To
manage ties, we need to distinguish two kinds of intervals: the trivial intervals that
match a sample coordinate: I =[z,z] and the non-trivial intervals I =|a,b[ (a <b)
contained between samples (or above the largest sample, or below the smallest
sample). To compare easily those intervals, we adopt the convention that for a non-
trivial interval I =|a,b[, min I =a+e€ and max I =b—e for some infinitesimal € >0:
e=(b—a)/3 would do. We say that a bucket B=]],1; is dominated by a different
bucket B’ =]],I; if in every dimension max I; <min I;. Equivalently: we say that B’
dominates B if every point (whether in the dataset or hypothetical) in B’ dominates
every point in B. The idea is that no skyline point belongs to a bucket dominated by
a non-empty bucket. See Figure 3 for an illustration. We observe that the relative po-
sition of buckets is known by construction, so deciding whether a bucket dominates
another one may require time O(d) but does not require any comparison query.

4.2 Properties satisfied by the bucket assignments

Theorem 5. Givend €(0,1/2) and a set X of data items, SkylineLowDim(X,J)
outputs a subset of X which, with probability at least 1—0, is the first min(\X|7lA€)
skyline points. The number of queries is O(ndlog(dk/8)). The running time is
O(ndlog(dk/8)+nd-min(k,|skyline(X)|))
9 Note that X can contain points sharing the same coordinate meaning that the S; are
not necessarily distinct.
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Yy . .
x actual location of a point
X . .
y x x incorrect location
&l B : (the true location of the point
X is below skyline)
X
X
% X

bucket kept in reduced problem

X % X dominated bucket (discarded)

Fig. 3: An illustration of the bucket dominance and its role in SkylineLowDim.
Here bucket b dominates ¢ and f but not a, d, e or g. Buckets ¢, f,g are dominated
by some non-empty bucket and therefore cannot contain a skyline point. Bucket
a does not contain a skyline point, but this cannot be deduced from the bucket
assignments, therefore points in bucket a are passed on to the reduced problem. In
this figure we may assume to simplify that a bucket contains its upper boundary.
But in our algorithm bucket a would actually contain only the 4 leftmost points,
and the fifth point would belong to a distinct bucket with a trivial interval on x. ..

Proof. The proof, left for the Appendix, first shows by Chernoff bounds that the
assignment satisfies with high probability some key properties: (1) few points are
erroneously assigned to incorrect buckets (2) the skyline points are assigned to the
correct bucket, and (3) there are at most O(n/(dk?)) points on any hyperplane
(i.e., in buckets that are ties on some dimension). The proof then shows that:

— there are at most O(n/ IAc) points in the reduced problem. This is because those
points belong to skyline buckets or buckets that are tied with a skyline bucket
on at least one dimension (every other non-empty bucket is dominated), and
property (3) of the assignment guarantees that the union of all such buckets
has at most O(n/k) points.

— the buckets above the skyline buckets which are erroneously assumed to contain
points can quickly be identified and eliminated since they contain few points.

Algorithm SkylineLowDim(X,§) can only return the skyline in O(ndlog(dk/d))
if it is provided with a good estimate of the skyline cardinality: we must have k>k
and log(k) € O(log(k)). We next show how to guarantee the complexity by trying
a sequence of successive values for k. The successive values in the sequence grow
super exponentially (similarly to [8,16]) to prevent failed attempts from penalizing

the complexity.
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Algorithm SkylineLowDim(lAc,X,é) (see Theorem 5)
input: k integer, X set of points, § error probability
output: min{k,|skyline(X)|} points of skyline(X)

error probability: §

1: if k®>>nord®>n or (log(1/6))° >n then
2:  Compute the skyline by sorting every dimension, as in [16]. Return that skyline.
3: 8« 5/(2dk)® and s+ dk?log(d*k?/8")

{Phase (i): bucketing}

4: for each dimension i €{1,2,....d} do
5: S, + NoisySort(sample of X of size s,i,0" /d)
6:  Remove duplicates so that, with prob. 1—4'/d, the values in S; are all distinct.’
7: for each point p€ X do
8:  Place pinset Xp associated to B= Hleli, with I; = NoisySearch(p;,S;,0' / (dk)).
9: Drop all empty buckets (those that were assigned no point).

10: Sort buckets into a sequence Bji,...,Bj so that each bucket comes before buckets it

dominates.

{Phase (ii): eliminating irrelevant buckets}
11: Initialize X' <0, i<1
12: while i#—1do
13: i< FirstBucket([(B1,X5,),-...(Bn,X5,)],0'/k))
14 X'+ X'UXp,
15:  if | X'|>8n/k then
16: Raise an error.
17: Drop from Bs,...,B}, all buckets dominated by B;, and also buckets B to B;.

{Phase (iii): solve reduced problem}
18: Output SkyHighDim-Search(X’,§").

Algorithm SkyLowDim-Search(X,§)  (see Theorem 6)
input: X set of points, J error probability

output: skyline(X)

error probability: §

1: k< (|d/s])?
repeat
646/2 ; k«k?*; S+ SkylineLowDim(k,X,0)
until |S|<k
Output S

Theorem 6. Givend € (0,1/2) and a set X of data items, SkyLowDim-Search(X,0)

outputs a subset of X which, with probability at least 1 —0, is the skyline. The number
of queries is O(ndlog(dk/d)). The running time is O(ndlog(dk/d)+ndk).

Proof. For iteration j, the probability of error is §/27, and the cost is given by
Theorem 5. Consequently, we obtain the complexity we claim by summing those
terms over all iterations.
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Remark 1. In the noiseless setting, we could adopt the same sampling approach
to assign points to buckets and reduce the input size. On line 18 we could use any
noiseless skyline algorithm such as the O(ndk) algorithm from [11], or our own
similar SkyHighDim-Search which can clearly run in O(dnk) in the noiseless
case. The cost of the bucketing phase remains O(ndlog(dk/é)). The elimination
phase becomes rather trivial since all points get assigned to their proper bucket,
and therefore there is no need to check buckets for emptiness as in Line 13. By
setting 6 = 1/k failures are scarce enough so that the higher cost of O(ndk) in
case of failure is covered by the cost of an execution corresponding to a satisfying
sample. Consequently, the expected query complexity is O(ndlog(dk)), and the
running time O(ndlog(dk)+ndk).

Better yet: we can replace random sampling with quantile selection to obtain a
deterministic algorithm with the same bounds. Algorithms for the multiple selection
problem are surveyed in [9]. Actually, our algorithm can be viewed as some kind of
generalization to higher dimensions of an algorithm from [9] which assigns points
to buckets before recursing, the buckets being the quantiles along one coordinate.

5 Skyline Lower Bound

Theorem 7. Let A be an algorithm that computes the skyline with error probability
at most 1/2. Then the expected number of queries of A is £2(dnlogk).

Proof. The proof is left for the Appendix.
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Appendix for the upper bounds

Proof of Theorem 2

Proof. We denote by CheckVar(x,0) the procedure that checks if x =true with
er. pr. 0 by majority vote, and returns the corresponding boolean. We finally denote
by j’ the true index of the first positive variable in x1,...,2,,. We assume the input
comparison oracles with error probability 9.

The probability that NoisyOr fails to identify j/ for i =2°8%1 (i.e., the first
time it faces variable ;) is at most ¢’. The probability that an incorrect index is
returned (before i > j') is at most 3,0’ /2*. The algorithm thus returns an incorrect
index with probability at most 6’4 ,d"/2" <6.

NoisyOr requires O(i) comparisons at line 4, whereas CheckVar requires O(%)
comparisons at line 5. Replacing 7 with 2", the total cost on a successful execution

is therefore Z,Eliglj/] 2"=0(j").

Proof of Theorem 4

Proof. Foriteration j, the probability of error is § /27, and the cost is O (ndklog(k/#)).
Consequently, the probability that the algorithm fails to return the correct answer
is at most: ) ;/27 <4, and the running time is O(Z]L:%kJHndWlog(Qj x27/8)) €
O(ndklog(k/5)). The complexity is O((i’ —i) xdklog(k/8)) to find a non-dominated
point p; at line 4, and O(ndlog(k/d)) to compute the maximal point above p;
at line 6. Summing over all iterations, the running time and number of queries is

O(ndklog(k/é)).

Proof of Theorem 5

The following Lemma lists properties that our bucketing assignment satisfies with
high probability. We will show in Theorem 5 that our algorithm can compute the
skyline efficiently for any assignment satisfying those properties.

Lemma 2. Assume that the samples have been correctly ordered at line 5. With
error probability 6 /k, the assignment performed at line 8 satisfies the following two
properties:

— if I is a non-trivial interval (i.e., unless it matches the coordinate of a sample
point), |{p: I=NoisySearch(p;,S;,0'/(dk))}| <4n/(dk?)

— less than 2n/(dk?) points are (erroneously) assigned to buckets above the real
skyline buckets.

— the skyline points are assigned to their correct bucket.

Proof. Recall that &' =§/(2dk)?, and that p; denotes the 5 coordinate of point
4. Assume the points of X are ordered w.r.t. to their j*" coordinate, breaking ties
arbitrarily. Consider these ordered points to be divided into blocks, each one having
{=n/ (dl%Q) consecutive points, except the last which may have less. In particular,
the number of blocks is dk?2.
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Consider now the samples after line 5. Each block (but the last) contains at
least one sample with probability at least 1—(1—£/n)* >1—4'/d*k2. If one sample
is indeed taken from every block (except maybe the last), the distance between any
two samples is at most 2¢. As a consequence, the number of points p that should
be assigned to any given bucket is bounded by 2¢, except for buckets with a trivial
interval because several such buckets can be merged when removing duplicates
at line 6. By Chernoff bounds, the number of points assigned to wrong buckets is
at most 2n/(dk?) w.p. at least 1—¢’. By union bound over all d dimensions and
over all s intervals, we therefore have probability at least 1—34’ that one sample
is taken from each block and that the total number w of points assigned to wrong
buckets (over all dimensions and blocks) is less than 2n/(dk?). Consequently, with
probability at least 1— 34’ the assignment satisfies the first property. Indeed, for each
dimension j and interval I, the number of points in I is bounded by 2¢ (maximum
distance between two samples) plus 2n/(dk?) (incorrect assignments into buckets):

[{p: p was sorted into I in line 8}| §2€+2£ = g
dk?  dk?
As for the number of buckets erroneously assumed to be non-empty, it is bounded by
the number of points assigned to wrong buckets and is therefore at most 2n/ (dl%z).

This concludes the proof of the Lemma. We next turn to the proof of Theorem 5:

Proof. When k% >n, d®>n or (log(1/8)) >n, the bounds can clearly be achieved
by the other algorithms discussed previously, so we assume w.l.o.g. that k5 <n
and d® <n and (log(1/6))> <n. We evaluate the cost of the algorithm assuming
that (a) the samples are correctly sorted at Line 5, (b) the assignment satisfies the
properties in Lemma 2, and (c¢) no mistakes are made at lines 13 and 18. In other
words, we only accept a few mistakes at Line 8.

Phase (i) Bucketing. Line 5: by Theorem 1 (noisy sorting) the sample is
sorted in d-O(slog(sd/é')) = O(ndlog(dk/8)). Line 8: by Theorem 1 (noisy search)
the points are assigned to their bucket in nd-O(log(sdk/¢’)) = O(ndlog(dk/5)).

We will distinguish 4 kinds of (presumably) non-empty buckets (all other buck-
ets are dropped at line 9): (i) those above the skyline that have been erroneously
assigned some points, (ii) the buckets containing skyline points, (iii) the buckets
that are dominated by buckets of type (ii), and (iv) the other (non-empty) buckets:
they are not above the skyline but we do not have sufficient information to realize
that they have no skyline points, because they are not dominated by any non-empty
bucket. The algorithm is obviously not able to distinguish buckets of type (ii) and
(iv), hence both are passed on to SkylineHighDim at line 18.

The number h of non-empty buckets is not necessarily much smaller than n as
h may grow exponentially with d. Line 10 does not contribute to query complexity,
but contributes O(hd) € O(nd) to the running time, using radix sort. Everything
considered, the query complexity and running time of the bucketing phase are
O(ndlog(dk/5)).

Phase (ii) Eliminating irrelevant buckets. The buckets that are tested for
emptiness are those of type (i), (ii) and (iv) because buckets of type (iii) are dropped
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at line 17. The number of buckets of type (ii) is at most k. Furthermore, a bucket
can be of type (iv) iff there is one dimension i such that they share the same
coordinates I; as a skyline bucket on dimension ¢, and the interval I; is not trivial.
Consequently, by Lemma 2, there are at most (dk) x 4n/(dk?) points that belong
to buckets of type (iv). The number of points in buckets of type (ii) is even smaller:
when such a bucket is trivial it contains only skyline points, and when it is not
trivial, there is a dimension on which it is a non-trivial interval and therefore by
Lemma 2 it has at most 4n/(dk?) points, hence a total of at most k x 4n/(dk?)
points in buckets of type (ii). When the estimate k is large enough (k € O(k)),
the number of points in buckets of type (ii) or (iv) is therefore O(n/k). The case
when this is not O(n/k) because the estimate is not large enough is handled on
line 15. Similarly, Lemma 2 guarantees that O(n/k) points have been assigned to
buckets of the first kind. Therefore, the total number of points ever considered
on line 13 is O(n/k). The contribution of line 13 to the complexity is therefore
O(d(n/k)log(k /")) by Lemma 1. Line 17 does not contribute to query complexity,

but contributes hdk € O(nd-min(k,|skyline(X)|)) to the running time.

Actually, we need to optimize a bit the algorithm to achieve that running time.
There can be much more than k iterations, but there are only min(k,|skyline(X)|)
"relevant" iterations in which we need to drop buckets. So we first strengthen
the requirement on the order at line 10, so that a bucket comes before buckets
it weakly dominates, where B’ weakly dominates B (using the notation above) if
in every dimension max; < maxI]. At line 17, if B; has already been marked as
weakly dominated, we move on to the next iteration (any bucket that B; would
dominate has already been dropped). Otherwise, we iterate through the list of
remaining buckets, and we perform the following operations at a cost of O(d) per
bucket: we drop the buckets that B; dominates, and mark the other buckets that
B; weakly dominates. There are only min(k, |skyline(X)|) buckets that are not
weakly dominated, hence the running time.

Phase (iii) Solving the reduced problem. Finally, at line 18 the size of

X'is O(n/k),soits skyline can be computed in O(ndlog(k /")) by SkyHighDim-Search.

We next show that the correct answer is returned with high probability. First,
the probability that the algorithm fails to satisfy our requirements (a) to (c) above
are respectively d-&'/d, §/k and k-&' /k+6'. So the conditions are met — hence
the algorithm returns the correct output — with probability at least 1—46.

Appendix for the lower bounds

In this section, we exhibit an {2(dnlogk) lower bound on the query complexity in
the noisy skyline problem, denoted Skyline. To that end, we define a noisy vector
problem, in which one is given k vectors each of length ¢ and needs to decide for each
vector whether it is the all-zero vector. We prove a lower bound for this problem
and reduce it to Skyline yielding the desired result.



18 B. Groz, F. Mallmann-Trenn, C. Mathieu and V. Verdugo

5.1 (k,£)-Null-Vectors: Definition and Lower Bound

In the (k,¢)-Null-Vectors the input S is a collection {v!,v2,....v¥} C {0,2}* of vectors
such that for each i € [k], Zﬁ:ﬂ’; <2, and the output is a vector (wy,wa,...,wg) €

{0,2}* such that for each i € [k], w; = Zf:ﬂ’;‘- We define the distribution p
over vectors of {0,2} as follows. For each j €[], u(2e;) =1/(2¢), where ¢, is the
canonical vector with a 1 in the j-th entry and zero elsewhere; 1(0,...,0)=1/2. For

inputs to (k,¢)-Null-Vectors, we will consider the product distribution j*.

Lemma 3. For (k,/)-Null-Vectors under the product distribution u*, if A is a
deterministic algorithm with success probability at least 3/4, then the worst case
number of queries of A is 2(¢klogk).

Proof. The proof is by contradiction. Assume that A is an algorithm with success
probability at least 3/4 and worst case number of queries T' < (¢klogsk)/1000. We
assume that the adversary is generous, i.e. the adversary tells the truth for every
entry (¢,7) such that Uj» =0, and that lies with probability 1/3 otherwise.

Generalizing the 2-phase computational model by Feige, Peleg, Raghavan and
Upfal [13], we will give the algorithm more leeway and study a 4-phase computation
model, defined as follows. In the first phase, the algorithm queries every entry v}
(logsk)/100 times. In the second phase, the adversary reveals to the algorithm all
remaining hidden entries (,7) such that v;- =2, except for a single random one.
In the third phase, the algorithm can strategically and adaptively choose kl/10
entries, and the adversary reveals their true value at no additional cost. Finally,
in phase 4, the algorithm outputs w; =2 for every vector where it found an entry
equal to 2, and w; =0 for the rest of the vectors.

To see how the two models are related, observe that since T' < (¢klogsk)/20,
by Markov’s inequality at most a set S of £k/10 entries are queried by algorithm
A more than (loggk)/2 times, so at the end of the first phase we have queried
every entry at least as many times as A, except for those £k/10 entries, and in the
beginning of the third phase there is all the necessary information to simulate the
execution of A, adaptively finding S (and getting those values correctly), hence
the success probability of the three-phase algorithm is greater than or equal to the
success probability of A. Also observe that, thanks to the definition of p and to
the generosity of the adversary, any execution where all queries to a vector lead
to 0 answers must lead to an output where w; =0—else the algorithm would be
incorrect when p selects the null vector.

We now sketch the analysis of the success probability of the three-phase algo-
rithm. Due to the definition of 4, with probability at least 9/10 the ground-truth
input drawn from p* has k/2+O(Vk) vectors that contain an entry equal to 2.
At the end of the first phase, and due the fact that the adversary is generous, we
have that at most of them have been identified. There remain k/2+0(V/k) vectors
that appear to be all zeroes, and about (k/2)(1/3)1°8:5)/2 = (1/2)v/k of those
vectors contain a still-hidden entry whose true value is 2. During the third phase,
all of those hidden 2’s are revealed except for one. At that point, there still remain
k/2+ O(Vk) vectors whose entries appear to be all zeroes, there is a 2 hidden
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somewhere uniformly at random, but all entries have been queried an equal number
of times, all in vain. To find that remaining hidden entry (and therefore decide
which w; is equal to 2), the algorithm has no information to distinguish between
the £(k/2+0(V/k)) remaining entries. Since, the algorithm may only select £k/10
elements to query further, the algoirthm’s success probability after the fourth
phase cannot be better than (k£/10)/(¢(k/2+0(Vk))) <1/4, a contradiction.

5.2 Reduction: Proof of Theorem 7

Step 1. Assume, for simplicity, that d—2 divides k. From an input S = {u!,u?,...,u*}
to the (k,£)-Null-Vectors, we first show how to construct an input Zg for Skyline
with n points in d dimensions and a skyline that is likely to be of size k, where
n=({+d-2)k/(d—2). We first randomly permute the entries of each u’, by
using k independent permutations, resulting in S, ={v!,v?,....vk}. Partition S,
into k/(d—2) blocks of d—2 vectors, where for j € {0,1,....,k/(d—2) —1}, block
SJ = {vIild=2)+i . j c[d—2]}. For each block, define £+d —2 points, as displayed
(one point per row) on Figure 4, and the union over all blocks is the input Zg to
the Skyline. Formally, we define point p® with ¢t =j¢+i as follows.

J ifr=d—1,

n—j ifr=d,

1 ifr=i—fand (<7,
VI i~ and i€ [d—2],
0

otherwise.

—d-2 —+—2 —
p/(trd=2)+1  Trmrm T T T
g (0+d—2)+2 | R

i J n—J 1

; | I oalt

. j A —J

i =y
- (E+d—2)+¢ | on-g
b; (+d=2)++11 1 0 0 0 z ”_% |

c 10 10 0 7 n=7 j_o

P00 1 0 3 n—3 |

pli+D) (¢+d-2) 00 0 1 5 on=ji]

Fig. 4: Block (j,n—j) of the reduction. The vectors of SJ placed in this block are
vild=2)+1 yi(d=2)+2 i(d=2)+(d~2)

Step 2. Because of the non-domination implied by the last two coordinates of any
point, the skyline of the set of points is the sum over all blocks of the skyline of
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each block. Fix an arbitrary block and focus on the first d—2 dimensions. For each
dimension, the corresponding column (whose first £ coordinates are those of some
vector v*) contains exactly one 1 (on the row of some point p) and possibly one
2, the remaining entries being all 0. Thus it is easy to verify that p is part of the
skyline if and only if v¢ =0.

From the output skyline(I) it is now easy to construct the output of the (k,¢)-
Null-Vectors: For all blocks, for all dimensions <d—2, if p € skyline(I) then w; <0
else w; <— 2. This yields the correct output w = (wy,wa,...,wy). Thus we derive the
following observation.

Observation 1 Given the set of points skyline(Zs), one can recover the solution
to the (k,£)-Null-Vectors without further queries.

Furthermore, in the following we prove that the construction is likely to have
k skyline points.

Lemma 4. Let & be the event that the input s has exactly k skyline points. Then,
P(£)>1-1/k as long as k° <n.

Proof. First observe that, by construction, regardless of whether £ holds, every
block contains at most d—2 skyline points: Consider an arbitrary block. The last
two dimensions are identical for each point belonging to that block and we focus
thus on the first d—2 dimensions. There are exactly d—2 points with one coordinate
being 1 and all of these points are potential skyline points. In particular, take any
such point p and assume that the i’th coordinate of p is 1. Then p is part of the
skyline if and only if the vector v’ is the null vector. Moreover, every block can
have at most d—2 entries with value 2 and each such 2 eliminating one potential
skyline point. Thus, there are at most d—2 skyline points per block.

Consider the vertices vit,vi1 1 .. v%2 of any block. We say they are collision
free if the following holds: if v;:* =2 for j € [i1,i2], then v;; =0 for all j’ € [i1,i2]\ {j}
Observe that if the vertices of any block are collision free, then each of the first d—2
dimensions is dominated by a distinct skyline point and thus there d—2 skyline
points in that block. Thus, if the vectors of every block are collision free, then there
d—2 skyline points per block and summing up over all k/(d—2) blocks, we get
that there are thus k skyline points in total.

Thus, in order to bound P(€) it suffices to bound the probability that all blocks
are collision free.. Recall that the random permutations my,ms,...,m; permute each
vector v' independently. Since in a block at most k? pairs may collide, and each
collision happens with probability 1/¢, the expected number of collisions per block
is at most k2 /. The expected number of collisions over all blocks is thus, by the
union bound, at most (k/(d—2))-k?/¢<1/k, by assumption on k. Thus, the claim
follows by applying Markov inequality.

Proof (Proof of Theorem 7). Suppose for the sake of contradiction that there exists
an algorithm A recovering the skyline for any input with exactly k skyline points,
with error probability at most 1/10, and using o(ndlogk) queries in expectation.
By Markov inequality, the probability that the number of queries exceeds 5 times
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the expectation is at most 1/5, so truncating the execution at that point adds 1/5
to the error probability, transforming A4 into an algorithm B that recovers the
skyline for any input with exactly k skyline points, with error probability at most
1/54+1/10<1/3, and using o(5ndlogk) queries in the worst case. We claim that
this implies that one can solve the (k,£)-Null-Vectors with o(ndlogk) w.p. at least
1/3 contradicting Lemma 3.

Let S be the input of the (k,¢)-Null-Vectors. We cast S as an input Zg of B as
described in Section 5.2. By Lemma 4, the event & holds w.p. at least 1—1/k and
thus there are k skyline points.

By assumption, B can thus compute the skyline w.p. at least 1/2—1/k>1/3,
where we used the Union bound. Thus, by Observation 1, one can obtain w.p. at
least 1/3 the solution to (k,¢)-Null-Vectors using o(ndlogk) queries, a contradiction.



	Skyline Computation with Noisy Comparisons

