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Abstract13

We study a process of averaging in a distributed system with noisy communication. Each of the14

agents in the system starts with some value and the goal of each agent is to compute the average of15

all the initial values. In each round, one pair of agents is drawn uniformly at random from the whole16

population, communicates with each other and each of these two agents updates their local value17

based on their own value and the received message. The communication is noisy and whenever an18

agent sends any value v, the receiving agent receives v+N , where N is a zero-mean Gaussian random19

variable. The two quality measures of interest are (i) the total sum of squares TSS(t), which measures20

the sum of square distances from the average load to the initial average and (ii) φ̄(t), which measures21

the sum of square distances from the average load to the running average (average at time t).22

It is known that the simple averaging protocol—in which an agent sends its current value and23

sets its new value to the average of the received value and its current value—converges eventually to24

a state where φ̄(t) is small. It has been observed that TSS(t), due to the noise, eventually diverges25

and previous research—mostly in control theory—has focused on showing eventual convergence26

w.r.t. the running average. We obtain the first probabilistic bounds on the convergence time of27

φ̄(t) and precise bounds on the drift of TSS(t) that show that although TSS(t) eventually diverges,28

for a wide and interesting range of parameters, TSS(t) stays small for a number of rounds that is29

polynomial in the number of agents. Our results extend to the synchronous setting and settings30

where the agents are restricted to discrete values and perform rounding.31
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1 Introduction41

We consider the problem of distributed averaging by a group of agents (e.g., sensors), ini-42

tialized with values that represent, for example, different temperature measurements. The43

agents’ goal is to compute the average of all the initial values using the following simple44
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dynamic: In each discrete round, two agents are drawn uniformly at random from the whole45

population, communicate their values to each other and set their new values to the average46

of their old value and the received value. Converging to the average plays a key role in47

many applications, e.g., for sensor networks [58, 52], social insects [10], and robotics [21, 31].48

In all of these applications, the agents (sensors, ants, and robots) are very simple and are49

therefore limited in both memory and communication. Moreover, communication is often50

erroneouees.1 This motivates the study of the aforementioned simple averaging dynamic51

in a setting where the agents only remember one value, do not use any additional memory,52

and the communication is subject to noise. We model the noise in the communication as53

follows: Whenever an agent sends any value v, the receiving agent receives v + N , where54

random variable N is distributed according to some zero-mean probability distribution ℵ,55

e.g., a normal distribution. The agents update their values as follows: whenever two agents56

communicate, each agent sets its new value to the average of their old value and the received57

value; note that—due to the noise—the two agents might have distinct new values.58

The values of the n nodes in step t of the process are denoted by X
(t)
1 , X

(t)
2 , . . . , X

(t)
n .59

We consider the following models: (i) the sequential setting where one pair of agents is60

chosen uniformly at random and (ii) the synchronous setting where each agent is matched61

to exactly one other agent chosen uniformly at random. The two quality measures of the62

convergence used in this work are (i) the total sum of squares TSS(t) =
∑
i(X

(t)
i −∅(0))2,63

where ∅(0) =
∑
iX

(0)
i /n is the initial average and (ii) the sum of squared distances to the64

running average φ̄(t) =
∑
i(X

(t)
i −∅(t))2, where ∅(t) =

∑
iX

(t)
i /n is the running average.65

Our contributions can be informally summarized as follows:66

(i) We give, under mild assumptions on the noise, the first bounds on the convergence time67

of the running average φ̄(t) in the noisy gossip-based communication setting. The bounds68

we obtain are—up to a constant factor—tight. In particular, the potential converges to69

a value that is linear in n and the second moment of the noise E
[
N2 ]; which is tight.70

So far it was only known that the process eventually converges to a state where φ̄(t) is71

small (e.g., [56]), but precise bounds were not known. (Thm. 1)72

(ii) We show that, in contrast to the current belief, one can hope to converge to the initial73

average in addition to convergence to the running average as long as the number of rounds74

are bounded: It was known that TSS(t), due to the noise, eventually diverges (the running75

average diverges from the initial average) and for this reason related research—mostly in76

control theory—has focused on showing eventual convergence w.r.t. φ̄(t); leaving TSS(t)77

aside. Since we give precise bounds on the convergence time of the running average,78

we can show the following. Under mild assumptions on the noise, TSS(t) converges to79

almost the same value as φ̄(t) as long as the number of time steps t is bounded by O(n2),80

where n is the number of nodes. (Cor. 2)81

(iii) We pioneer in the discrete setting in which the agents can store only integer values and the82

noise is also an integer. In this setting the agents in our algorithm perform randomized83

rounding. We show that this only causes a negligible difference from the continuous case.84

(Cor. 3)85

(iv) We study both the sequential and the synchronous setting and show that there is no86

significant difference (up to a scaling of time) between the models. (Cor. 4)87

(v) We perform simulations in the setting where nodes are limited in storage, i.e., they88

can only store values from a bounded range. This leads to a much faster (by order89

1 Consult Sec. 1.1 for a more detailed review of these applications including the limitation of agents
and further motivation. Sec. 1.1 also contains related work on the averaging protocol.
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of magnitude) divergence between the running average and the initial average. Our90

simulations also seem to indicate strong bounds on the distribution of distances to the91

running average in our main model (unbounded values). (Sec. 5)92

The convergence time of the averaging processes in the gossip-based communication setting93

without noise has been studied before (e.g., [39]). However, to the best of our knowledge, no94

bounds on the convergence time are known in the gossip-based communication setting with95

noise. We continue with a detailed motivation for studying noise in the simple averaging96

dynamic and related work.97

1.1 Motivation and Related Work98

Converging to the average plays a key role in many applications in which agents have limited99

computational and communication power, e.g.,100

(i) sensor networks [58, 52]: here there is a wide range of application including terrain101

monitor applications [53], computing an average temperature, PIR sensors measuring102

the infrared light radiation emitted from objects, and many more applications. In such103

scenarios links are often faded [48, 14],104

(ii) social insects: for ants, values could represent the individuals’ different assessments of105

nest qualities when house hunting [10] or the deficit of workers at a given task [43], and106

(iii) robotics [21, 31] and in particular memory-limited robots, e.g., Kilobots exploring the107

percentage of white tiles in an area [22], or microbots measuring the concentration of108

chemicals.109

In all of these applications the agents (representing sensors, ants or robots) are very simple110

and severely limited in both memory and communication. Moreover, the communication is111

often not only limited but also erroneous (e.g., consider wireless communication with obstacles112

between robots), or received messages are subject to interpretation (e.g., when insects com-113

municate through gestures [41]). Motivated by this unreliable communication in applications114

we study the simple averaging dynamic where the communication is subject to noise.115

We continue with related work. The problem of distributed values converging to the average116

(often without noise) has been studied in various areas reaching back to early versions studied117

in statistics [19, 27, 32]. However, to the best of our knowledge, none of the studied models118

match our model. We review the related work by areas: (i) average consensus and its appli-119

cations, (ii) gossip-based communication models, (iii) consensus protocols in population pro-120

tocols, (iv) biological distributed algorithms, (v) noise and failures in sensor networks.121

Average consensus and its applications. Consensus has been studied intensively in122

various settings in general network topologies, much of it under the name of average consensus123

[57, 55]. Most of this work is orthogonal to our work: First, due to the general network124

topology and the fact that, in each step of the studied algorithms, the agents update their125

values with a weighted average of all of their neighbors’ values whereas in our averaging126

dynamic, an agent can only access a single other value per interaction. Second, while the127

potential functions in these works and the noise, if any, are usually identically or similarly128

defined as in our work the main goal of these papers is—just as in the classic works—to129

study under which circumstances the processes eventually converge to a state with a small130

potential function [57], whereas we are interested in the number of interactions until our131

process obtains a small potential. Recent papers [47, 11, 42, 15] consider the convergence132

rate of the weighted averaging process, but only in the noiseless setting. Average consensus133

has also been studied in networks with time-varying topologies [46, 51]. Variants with noisy134

communication were studied [57, 38], but they only consider additive noise and assume it to135

be zero-mean with unit variance (as mentioned before, only convergence in the limit is shown).136

ICALP 2019
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The noisy version of the problem also received ample attention in control theory [54, 50, 49].137

Already in the early works on average consensus immediate applications of converging to the138

average were discovered and intensively studied, e.g., applications to load balancing between139

parallel machines [9, 18] or to coordinate distributed mobile agents [9, 36, 24]. For a more140

detailed overview on average linear consensus consult the survey [28].141

Gossip-based communication models. Much closer to our work is the study of142

aggregating information in gossip-based model. In this model, each node can contact one of143

its neighbors in the network in each round and exchange information with it. Even though a144

node can be contacted by many neighbors in a single round, this model, if applied to the145

complete graph, is very similar to our synchronous model. On the complete graph [39] shows146

that O(n · lnn) interactions are enough to approximate the average well with high probability.147

On the one hand they consider more general graphs (in some sense we consider the complete148

graph); on the other hand they do not consider noise, which simplifies their analysis of the149

convergence time significantly.150

Consensus protocols in population protocols, biological distributed algorithms.151

Motivated by biological applications, population protocols have also been studied in the152

noisy setting in the context of biological distributed algorithms. The authors of [25] study153

rumor spreading and consensus in extremely faulty networks where a bit in a message can154

be flipped with probability 1/2− ε. This was later generalized in [26] to plurality consensus.155

The authors of [8] study the differences between pull and push rumor spreading in the noisy156

setting. Reaching consensus to an opinion in population protocols in the noiseless setting157

has received much attention (see e.g., [4, 23, 1, 2, 5, 6, 20, 7, 40, 30, 29, 37]).158

Noise and failures in sensor networks. The problem of converging to the average159

(and similar problems) have also been studied in (noisy) sensor networks [58, 52] where nodes160

again can interact with all their neighbors. In these networks another type of unreliable161

communication, i.e., packages might be dropped, has received ample attention, e.g., [12]162

studies the broadcast problem and [13] develops a framework to transform certain algorithms163

for failure free networks to also work in faulty sensor networks.164

An interesting type of failure has been studied in [33]. There failures do not happen during165

the communication but the algorithm itself might be faulty, i.e., a state machine run at an166

agent might switch to a wrong state.167

1.2 Formal Results168

We now formally state our main theorems. For the ease of presentation, in the discussion169

we assume that noise is normally distributed with unit variance, N ∼ N (0, 1), but our170

results hold for general variance σ2. Let φ0 = φ̄(X(0)) be the initial potential. Our first171

theorem shows that the agents converge to a small value of φ̄(t) = O(n) after parallel172

time2 that is logarithmic in φ0/n. In particular, if we use b to denote the initial imbalance173

(b = maxi,j{x(0)
i − x

(0)
j }), then it takes O(ln b) parallel steps for the potential to become174

φ̄(t) = O(n). Note that φ̄(t) = O(n) means that the ‘average’ difference between the values of175

any two agents is constant and we show that the constant hidden in the O-notation is actually176

very small. It is worth mentioning that this is tight in two senses: (i) In expectancy we have177

φ̄(t) = Ω(n) for any fixed time step t ≥ n, (i.e., after one parallel time step). Even in the case178

where all nodes initially have the same value, our results show that the potential increases179

2 Recall that in parallel time we scale time by a factor of n for a fair comparison with the synchronous
time model.
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after n interactions in expectation by Ω(nE
[
N2 ]) = Ω(n). (ii) At least Ω(ln b) parallel180

time steps are required3 to decrease the potential to O(n), since the potential only drops181

in expectation by a constant factor in each parallel step. The formal statement is as follows.182

B Theorem 1 (Convergence to Running Avg.). Consider any noise-distribution ℵ with (at183

least) exponential-decay4. Fix any δ ∈ R. Let n = n(δ) be large enough. The following hold:184

(i) for any t = Ω
(
n ln

(
φ0
δσ2n

))
with probability at least 1−δ we have φ̄(X(t)) = O(σ2n ln(1/δ)) ,185

(ii) for any t ≥ n (parallel time) with constant probability we have φ̄(X(t)) = Ω(σ2n) and186

(iii) even without noise, for any t = o
(
n ln

(
φ0
σ2n

))
we have E

[
φ̄(X(t))

]
= ω(σ2n) .187

While the above theorem shows a quick convergence to the running average, this does not188

imply convergence to the initial average. In fact, as time progresses the distance to the initial189

average (TSS(X(t))) is likely to increase. Nonetheless, in the case of the Gaussian white noise190

model we can bound the drift of the running average from the initial average in a time window191

of O(n2) steps (see Lem. 17). Thm. 1 roughly says that after at least t = Ω(n logn) steps192

the distance to the running average is small if we start with a potential that is polynomial193

in n. Thus, as long as t = Ω(n logn) and t = O(n2) we obtain TSS(X(t)) = O (n). After194

the O(n2) step time window the potential starts to increase again, which, is unavoidable,195

due to the noise causing drift of the running average; in Gaussian white noise model, the196

running average after t steps diverges with constant probability from the initial average by197 √
t
n (Lem. 17). This in turn implies that TSS(X(t)) ≥ t/n.198

B Corollary 2 ((Bounded) Divergence from Initial Avg.). In the case of Gaussian white noise199

model, for any δ ∈ R and large enough n = n(δ) and all t = Ω
(
n ln

(
φ̄(X(0))
δσ2n

))
we have200

(i) ‘non-divergence for O(n2) steps’, i.e., TSS(X(t)) = O
((

t
n + n

)
σ2 ln(1/δ)

)
with proba-201

bility at least 1− δ and202

(ii) ‘divergence for ω(n2) steps’, i.e., TSS(X(t)) = Ω
((

t
n + n

)
σ2) with constant probability.203

If one can bound the divergence between the running average and the initial average for a204

general noise-distribution ℵ with (at least) exponential-decay5 the following remark is useful205

to obtain a similar bound for the TSS(X(t)) as in Cor. 2. Recall that ∅(t) =
∑
iX

(t)
i /n206

and in particular, ∅(0) denotes the initial average.207

I Remark 2. Fix any δ ∈ R. Let n = n(δ) be large enough. For any fixed t = Ω
(
n ln

(
φ0
δσ2n

))
208

with probability at least 1− δ we have TSS(X(t)) = Θ
(
n
(
∅(t) −∅(0))2 + σ2n ln(1/δ)

)
.209

Remark 2 follows by rewriting TSS(t) = φ̄(X(t))+n ·
(
∅(0) −∅(t))2 (cf. Fact 9) and plugging210

in the first part of Thm. 1. Cor. 2 then follows by plugging in the bounded deviation of the211

running average from the initial average for the Gaussian white noise model (cf. Lem. 17).212

The Influence of Rounding. Agents with limited computational power might not be213

able to store real values. Motivated by this we also consider the setting where agents can only214

store integers. In particular, we consider the case that the averaging protocol is augmented215

with the following rounding procedure: Assume that the noise N ∼ ℵ takes only integer216

3 For the case where constant fraction of the values are at distance b.
4 In fact we only require the function to be smooth, which we define later. This class is much broader

and contains most of the famous distributions including the normal distribution, geometric distribution
and the Poisson distribution.

5 Again, we only require the function to be smooth, which we define in Sec. 3.

ICALP 2019
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variables. After a node i receives the value from node j, the node averages it as before and217

then rounds up or down with equal probability. In the full version we show how to relate the218

setting of rounding to the original setting allowing us to derive the following corollary.219

B Corollary 3. The bounds of Thm. 1 and Cor. 2 hold even if rounding is used.220

The Synchronous Model. In the full version, we show how our results extend to the221

synchronous setting. It turns out that the results are the same up to a rescaling of time.222

B Corollary 4 (Synchronous Setting). The bounds of Thm. 1 and Cor. 2 hold even in the223

synchronous setting, where time is rescaled by a factor of 2/n.224

Experimental Results. In Sec. 5, we simulate the averaging dynamic in various settings.225

In the first setting, we consider the distribution of the distances between agents’ values and226

the running average. Our simulations show that these distances seem to follow an exponential227

law, i.e., the concentration is even stronger than what Thm. 1 implies.228

Due to the limited memory of agents it would be desirable to obtain similar results as in229

Thm. 1 for the averaging dynamic in the setting where agents can only store values from230

a bounded range. However, our simulations in Sec. 5 show that this setting leads to a much231

faster (by order of magnitude) divergence between the running average and the initial average.232

1.3 Technical Contributions233

While it is not hard to show that in expectation the potentials TSS(t) and φ̄(t) decrease in one234

step as long as their value is large, it is surprisingly challenging to derive probabilistic bounds235

on either potential at an arbitrary point in time, i.e., bounds of the type P
[
φ̄(t) ≥ b

]
≤ p(b).236

Two of the reasons are as follows. (i) The potential decreases (expectedly) only conditioned237

on the fact that it is large enough. In fact, when the potential is small, then due to the noise238

it will increase in expectation. (ii) Since we study general distributions and in particular239

the normal distribution, the noise in a given round can be arbitrarily large leading to an240

arbitrarily large increase in φ̄(t); if the protocol runs long enough (possibly exponentially long241

in n) we, indeed, will have encountered some time steps with a very large potential increase.242

There are surprisingly few analytical tools for using potentials as φ̄(t) with challenges (i) and243

(ii). One notable exception is Hajek’s theorem [34], which can be used to bound the value of244

such a potential at a given time t. However, in our setting—with our potential function—the245

results obtained are very weak.6246

Instead, we use a more sophisticated approach that at its core has a decomposition of the247

potential change in a single time step into three additive (but dependent) random variables.248

We iterate this decomposition over time throughout some interval I = (t0, t1] and sum the249

respective variables which we will denote as S−(I), S′(I), and S∗(I). Then (cf. Pro. 12)250

we are able to bound the potential change at the end of the interval as251

φ̄(X(t1)) ≤
(

1− S−(I)
t1 − t0

)t1−t0
· φ̄(X(t0)) + S′(I) + S∗(I). (1)252

253
Due to the dependencies between the three variables we use strong Martingale concentration254

bounds to separately upper bound S′(I) + S∗(I) and lower bound S−(I) (cf. Lem. 13). We255

6 Hajek’s theorem considers the moment generating function of the potential. In order to apply the theorem
to our potential, it seems that one would need to consider a logarithmic version of the potential, which
together with the moment generating function results in bound that is weaker than a simple union bound.
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then use a union bound—to circumvent the dependencies—to bound each of these variables256

allowing us to get a bound on Eq. 1. It is critical that we define the random variable S−257

in such a way that it always has an expected decrease. This is in stark contrast to the entire258

potential, which, as we mentioned before in (i), only decreases in expectation when it is large.259

Having an unconditional decrease of S− allows us to consider arbitrarily large intervals. With260

these bounds at hand one can use Eq. 1 to obtain probabilistic bounds on the potential at any261

given point time t1. However, due to the bound on S′(I)+S∗(I) the total bound becomes very262

weak for large intervals. As a remedy, we carefully trace the change in the potential in different263

regimes (with several phases in each regime) and we separately apply the aforementioned anal-264

ysis with a fresh (small) interval in each phase. The intervals (and thus also the phases) have265

variable length—decreasing geometrically or even exponentially, depending on the regime.266

All missing proofs can be found in the full version [?].267

2 Model268

In this section we present the model including all assumptions. We have a collection of n agents269

that have initial values X(0)
1 , X

(0)
2 , . . . , X

(0)
n . Time is discrete and X(t)

i denotes the value of270

agent i ∈ [n] at time t. Recall that ∅(t) =
∑
iX

(t)
i /n denotes the average value at time t; in271

particular, ∅(0) denotes the initial average. For two random variables X and Y we write X d=272

Y if they have the same (probability) distribution. Next, we define the communication models.273

I Definition 5 (Communication Models). We consider two communication models.274

(i) Sequential model: At every discrete time step two of the agents i, j are chosen uniformly275

at random (with replacement7) and send their current values xi and xj to each other,276

where the values received are xi +Ni and xj +Nj , where Ni, Nj
d= N .277

(ii) Synchronous model: At every discrete time step a perfect matching is chosen u.a.r. among278

all perfect matchings on the n agents8. All matched agents interchange their values as279

in the sequential model.280

We use the parallel time, which was first defined in [3], to denote the time step t/n in the281

sequential model. This notion eases the comparison of results in both models, as the total282

number of interactions is up to a factor of 2 equal.283

IDefinition 6 (Noise Models). Let v be the value sent by an agent. The value received is v+N ,284

where N is distributed according to some zero-mean noise distribution ℵ with σ2 = Var [N ].285

We consider general noise distributions and our results depend on the moments of N . The286

following two models are of special interest in this paper.287

(i) Gaussian white noise model where ℵ = N (0, σ2) for an arbitrary σ.288

(ii) Discrete white noise model where ℵ = D(p), with P [N = i ] = 1
2p(1− p)|i|, for i ∈ Z \ {0}289

and P [N = 0 ] = p, where p ∈ (0, 1]. Note that Var [N ] = 1−p
p2 .290

From now on we assume that the noise N is distributed according to a fixed noise distribution291

ℵ that is independent of n.292

I Definition 7 (Averaging Dynamic). We consider the real valued and the discrete valued293

algorithm. A node with value v at time receiving the input w sets its new value to294

7 This is not crucial to our results, but simplifies the calculations slightly.
8 Again, we allow matchings of the kind (i, i) for simplicity. It is easy but slightly less aesthetic to modify
our results to exclude matchings (i, i).

ICALP 2019
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(i) v′ = (v + w)/2 in the real valued model.295

(ii) v′ =
{
d(v + w)/2e w.p. 1

2

b(v + w)/2c otherwise
in the discrete valued model.296

A probability distribution D is called sub-Gaussian if for X ∼ D we have that there exists297

positive constants c1, c2 such that for every x we have P [ |X| ≥ x ] ≤ c1 exp(−c2x2).298

Whenever we calculate the new values X(t+1) by conditioning on the current state, X(t) =299

x(t) we use small letters x(t)
i to denote fixed values and capitalized letters X(t+1)

i to denote300

random variables. Furthermore, we use bold-face to denote vectors. Throughout the paper301

we will assume that the number of agents n is large enough and in particular nE
[
N2 ] ≥ 1.302

We define the following potentials which are essential in all our proofs and formal results.303

I Definition 8 (Potentials).

TSS(x(t)) =
∑
i

(
x

(t)
i −∅(0)

)2
, φ̄(x(t)) =

∑
i

(
x

(t)
i −∅(t)

)2
, φ(x(t)) =

∑
i,j

(
x

(t)
i − x

(t)
j

)2
.304

When clear from the context we drop the time index t and we write x instead of x(t), xi305

instead of x(t)
i , etc. Similarly we will use the following short forms TSS(t) = TSS(x(t))306

and φ̄(t) = φ̄(x(t)). We emphasize that the difference between φ̄(x) and TSS(t) is that the307

former measures the squared distance w.r.t. the running average and the latter w.r.t. initial308

average. Initially, we have φ̄(x(0)) = TSS(0). In Appendix B we prove the following fact309

that shows how φ̄(X(t)) relates to TSS(t) and how φ̄ relates to φ.310

B Fact 9. We have that (i) TSS(t) = φ̄(X(t)) + n ·
(
∅(0) −∅(t))2 and (ii) φ(x) = 2n · φ̄(x).311

Note that many alternative ways to define the potential at a time t such as the max312

distance and `1 norm give only a very partial picture: The max distance to the mean for313

example does not distinguish between just one node being far and all nodes being far. On314

the other hand, the `1 norm does not ‘punish’ outliers enough: there is no difference between315

n nodes being off by 1 from the average and one node being off by n.316

Notation317

We use X ∼ D to denote that X is distributed according to probability distribution D. For318

two random variables X and Y we write X ≤st Y if X is stochastically dominated by Y , i.e.,319

P [X ≥ x ] ≤ P [Y ≥ x ] for all x ∈ R. We use ‖x‖2 to denote the L2-norm. In the sequential320

model we have two random variables N (t)
1 and N (t)

2 for the noise of the channel at time step321

t (recall that N (t)
1 and N (t)

2 are distributed according to ℵ). We define the following two322

random variables N ′(t) and N∗(t) that will play a key role in our analysis:323

N ′(t) =
(
N

(t)
1

)2
+
(
N

(t)
2

)2
, N∗(t) = N

(t)
1 +N

(t)
2 .324

B Fact 10. In the Gaussian noise model, we have N∗(t) ∼ N (0, 2σ2) and N ′(t) ∼ Γ(1, 2σ2),325

where Γ(·, ·) denotes the gamma distribution.326

When clear from the context we simply write N ′ and N∗ instead of N ′(t) and N∗(t), respec-327

tively. We use Ft to denote the filtration at time t, which encapsulates all randomness up to328

time t as well as the initial values of the nodes; hence it defines the state at time t completely.329
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3 The Sequential Setting: Convergence towards the Running Average330

Conditioning on all the randomness until time t, i.e., conditioning on Ft, we define331

∆(t+1) =


(
x

(t)
i
−x(t)

j

)2

2φ̄(x(t)) for φ̄(x(t)) > 0
1/n otherwise

, where i and j are the chosen in round t.332

B Lemma 11 (One Step Bound). Fix an arbitrary potential at time t. Suppose the pair i, j333

was chosen to communicate and condition on the filtration Ft (all events that happened up334

to round t). Then, the following holds335

φ̄(X(t+1))− φ̄(x(t)) ≤ −∆(t+1)φ̄(x(t)) + N ′(t+1)

4 +N∗(t+1)

(
x

(t)
i + x

(t)
j

2 −∅(t)

)
.336

Further we have E
[

∆(t+1) | Ft
]

= 1
n .337

In order to prove the statement, we first calculate the exact expected change in one step338

(which we do in the full version). We then majorize (stochastic dominance) with the slightly339

more convenient statement above.340

For an arbitrary time interval I define341

S′(I) =
∑
τ∈I

N ′(τ)/4, S∗(I) =
∑
τ∈I

N∗(τ)

(
x

(τ−1)
i + x

(τ−1)
j

2 −∅(τ)

)
, S−(I) =

∑
τ∈I

∆(τ) .342

Note that, in the definition of S∗, we sum up over all time steps τ in the interval I and we343

consider the pair i and j that is chosen in round τ (in each round a different pair i and j can344

be chosen). With Lem. 11 and the definitions of S′, S∗ and S− we can deduce the following345

decomposed bound on the potential for an arbitrary interval.346

B Proposition 12 (Decomposition of Potential). Fix arbitrary t0, t1 and consider the interval347

I = (t0, t1]. For t = t1 − t0 we have that348

φ̄(X(t1)) ≤
(

1− S−(I)
t

)t
φ̄(X(t0)) + S′(I) + S∗(I). (1)349

350

Our results only hold for smooth noise distributions, which we define in the following. Let351

mt,δ = arg max
`

{
P
[

max
({
N
′(t0), . . . , N

′(t0+t)
}
∪
{
N∗(t0), . . . , N∗(t0+t)

})
≤ `

]
≥ 1− δ

}
.352

I Definition 13. A noise distribution ℵ is smooth if for all δ > 0 and all t > 0 we have353

mt,δ ≤
(
t
δ

)1/20.354

Any (sub-)linear probability distribution and even some inverse polynomial distributions are355

smooth. Thus many practically relevant distributions such as Gaussian, binomial and Poisson356

distributions are smooth. For example, for the standard normal distribution (N ∼ N (0, 1))357

we have mt,δ = log(t/δ), since in each time step the probability that the N2 exceeds log(t/δ)358

is equal to the probability that N exceeds
√

log(t/δ) which happens w.p. at most δ/t. Taking359

union bound over all t steps shows that it is smooth.360

Using strong martingale concentration bounds (Thm. 22 and Thm. 23) and bounding the361

variance, we deduce the following upper bound on S∗ + S′ and lower bound on S−.362

B Lemma 14. Let t0, t1 be such that t1 > t0 and consider the interval I = (t0, t1].363

(i) With probability 1− δ we have364

S∗(I) + S′(I) ≤365

t

4E [N ′ ] + 5
√
t

n

(
ln(4t/δ)m∗t,δ/4

)2
(2 + E [N ′ ])

√
φ̄(x(t0)) + 9tE [N ′ ] + 2 .366

367

368
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(ii) For any γ < 1, w.p. at least 1− exp
(
− 3γ2t

8n

)
we have S−(I) ≥ (1− γ) tn .369

The following proposition almost directly implies Thm. 1.370

B Proposition 15. Fix any δ ∈ (0, 1] and assume that the noise distribution is smooth. There371

exists a constant c such that for a time step t0 with potential φ̄(x(t0)) we have372

P
[
φ̄(X(t∗)) ≥ ln(1/δ)nE [N ′ ] + b | Ft0

]
≤ δ,373

where t∗ = t0 + cn ln
(
φ̄(x(t0))
E[N ′ ]nδ

)
and b = 2 (1 + E [N ′ ]) (ln(1/δ))9

n9/10.374

Proof Sketch. We only sketch the proof idea for a simplified setting; during the sketch we375

assume that N ∼ N (0, 1) (with E [N ′ ] = O(1)) and also that δ is at least 1/n3. The main376

ingredients for the proof are Pro. 12 and Lem. 13. For an interval I = (t0, t1] Pro. 12 upper377

bounds the potential at time t1 by378

φ̄(X(t1)) ≤
(

1− S−(I)
t

)t
φ̄(X(t0)) + S′(I) + S∗(I), (2)379

380

where t is the length of the interval. Lem. 13 lower bounds S−(I) and upper bounds the sum381

S′(I) + S∗(I). To prove Pro. 15 we have to show that the initial potential φ̄(x(t0)) decreases382

to O(n) after O(n · log φ̄(x(t0))) time steps with probability 1− δ. Optimally, we would use383

a single application of Pro. 12 to upper bound the potential as in Eq. 2 and then bound the384

terms S−(I) and S′(I)+S∗(I) via Lem. 13. However, the bounds on S− and S′+S∗ given by385

Lem. 13 are too loose to yield the desired result via a single application of Pro. 12 and Lem. 13386

with the whole time interval I = [t0, t0 + O(n log φ̄(x(t0)))]. For example, the bound on387

S′+S∗ inherently has a term of order
√
φ̄, where φ̄ is the potential at the start of the interval388

for which Lem. 13, (i) is applied. Thus a one shot proof as described above can never reach a389

potential below
√
φ̄. This is not sufficient if the initial potential is large, e.g., say for φ̄� n8/3.390

To circumvent this problem we apply Pro. 12 and Lem. 13 several times for smaller time391

intervals: More detailed, we split the proof of Pro. 15 into two regimes. In regime 2 we use392

several phases to decrease the potential to Θ(n4/3). If the potential is φ̄ at the beginning393

of a phase a single application of Pro. 12 and Lem. 13 reduces the potential to φ̄3/4. The394

length of each such phase is geometrically decreasing by a factor 3/4 where the first phase is395

of length O
(
n ln

(
φ̄(x(t0))
nδ

))
. After the last phase of regime 2 the potential is of order n4/3.396

Then, in regime 1 the potential reduces from Θ(n4/3) to O(n), again through several397

phases. If the first phase of regime 1 starts with a potential of size B, the phase has length398

t = O(n ln(B)). If there was no additive increase due to the noise, then this would reduce399

the potential to 0. However, there is an additive increase of Θ(t) = Θ(n ln(B)) which leaves400

us with a potential of size O(n ln(B)). The next phase will therefore be of length n ln ln(B)401

etc. This is repeated for ln∗(B) phases until the potential reduces to O(n), which, as we402

explained in Sec. 1.2, is the furthest the potential can be decreased .403

Putting everything together, we get that after O
(
n ln

(
φ̄(x(t0))
nδ

))
rounds the potential404

reduces to O(n). J405

The full proof of Pro. 15 handles general E [N ′ ] and general δ and thus it is significantly more406

technical. It can be found in the full version. From Pro. 15 we are able to derive Thm. 1.407

4 Deviation from the Initial Average408

An informal argument for the statements in this section in the special case of σ = 1 can409

be found in [56]. Before we state our results we need the following result on the standard410

normal distribution.411
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B Theorem 16 ([17]). Let Φ(x) denote the cumulative distribution function of the standard412

normal distribution. We have for x ≥ 0:413

1√
2π

x

x2 + 1 exp
(
−x2/2

)
≤ Φ(x) ≤ 1√

2π
1
x

exp
(
−x2/2

)
.414

We can now state and prove the main results of this section.415

B Lemma 17. For any t and any δ < 1 , we have ∅(t) −∅(0) ∼
∑2t

τ=1
N(τ)

2n with probability416

at least 1− δ, where N (τ) is the noise of the channel. In particular, for the Gaussian white417

noise model setting where N ∼ N (0, σ2) we have
∑2t
τ=1N

(τ) ∼ N (0, 2tσ2). Thus418

(i) |∅(t) −∅(0)| ≤ σ
√
t ln(1/δ)
n w.p. at least 1− δ419

(ii) |∅(t) −∅(0)| ≥ σ
√
t ln(1/δ)
n w.p. at least δ

2
√

2 ln(1/δ)
.420

Using the Berry-Esseen theorem, one can easily prove similar bounds for any distribution421

with bounded third moment including discrete white noise.422

In the following we consider the potential (∅t)t≥0 as a Martingale allowing us to use423

Thm. 22 to derive the desired concentration bounds. The following bound is weaker than the424

aforementioned bounds, however, it is useful whenever the noise is such that mt,δ/(2t) is small.425

B Proposition 18. For any t ≥ 2 and any δ < 1, we have −mt,δ/(2t)σ
√

2t ≤ ∅(t) −∅(0) ≤426

mt,δ/(2t)σ
√

2t with probability at least 1− δ.427

5 Experimental Results428

The goal of this section is twofold. First, we seek to better understand the distribution D429

of the distances x(t)
i − ∅(t). Second, we simulate a setting in which the range of values is430

bounded, motivated by computational and storage limited agents. All results in this section431

are based on an implementation of the simple averaging dynamic. The code (python3) for432

the experiments can be found here [44].433

(a) The setting of this example is: n = 106, initial
distribution of values is uniformly at random in
the range [1, n2], 10n iterations, Gaussian white
noise with variance 1, unbounded range.

(b) The setting of this example is: n = 1000,
all values equal to 10, using discrete white noise
model D(0.8) (see Definition 6), bounded range
in the interval [1, 10], 104n iterations. The avg.
of the values drifts from 10 to 6.

Figure 1 The figure depicts the distribution of distances as well as the bounded value setting.
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5.1 The Distribution of the Distances434

The experiments suggest that the distance decays at least exponentially. Note that the experi-435

ments only show a single iteration, however, this phenomena was observable in every single run.436

The bound on E
[
φ̄
(
X(t)) ] we obtained in Thm. 1 only implies that D is at most O(1/d3).437

However, we conjecture, for sub-Gaussian noise that P
[
|X(t)

i −∅(t)| ≥ x
]

= O(exp−x) (cf.438

Fig. 1a). Showing this rigorously is challenging due to the dependencies among the values.439

Nonetheless, such bounds are very important since they immediately bound the maximum440

difference and we consider this the most important open question.441

5.2 The Bounded Values Setting442

One of the motivations for the very simple averaging dynamic arises in the setting of limited443

computational power of the interacting agents. So far we assumed that agents can store444

and transmit (intermediate) values from an unbounded range. For many applications and445

in particular motivated by agents with bounded memory one would hope for similar results446

if there is a maximum and a minimum value that can be stored or transmitted. The formal447

definition is as follows: values can only be from the range [vmin, vmax] (= [1, 10] in our448

experiments). We assume noise of the channel cannot produce values larger than vmax449

or smaller than vmin, which can be motivated as follows in the setting where the values450

correspond to amplitudes: here vmax and vmin are simply the amplitudes (high amplitude451

and no amplitude) where the signal-to-noise ratio is very large, and noise becomes negligible.452

An equivalent model is that the agents know the range of possible communication values,453

and hence, they can simply correct every value larger than vmax to vmax. In particular when454

agents only have limited storage, the communication range will often be bounded, and even455

rounding might become necessary (see the full version).456

We refer to these equivalent models as the model with cutoffs. While the experiments457

indicate that values still converge towards the running average, there is a clear drift of the458

running average from the initial average if the input values are chosen unsuitably. In our459

experiments, we set the range of values to [1, 10], use the noise described in the discrete460

noise model together with rounding. Initially, all agents have value 10. We see a drastic461

drift of the running average (see Fig. 1b). Even though the initial average is 10, the running462

average appears to approach the midpoint of the range, i.e., 5. The histogram of distances463

to the initial average shows even more clearly that the values are not concentrated around464

the initial average. Although the experiments only show a single iteration, this phenomena465

was observable in every single run. We believe that the reason for this is simply that the466

noise is no longer symmetric and no longer zero-mean due to the cutoffs [1, 10]. Proving467

convergence to the running-average in this model seems challenging and interesting.468

We believe that the insights in bounding this potential might be useful in similar problems.469

6 Conclusion and Open Problems470

In this paper we showed bounds on the convergence time for the unbounded setting. Our471

simulations in Sec. 5 yield two interesting open problems: (i) study the setting where the472

values are restricted to some interval (in this case the noise is no longer symmetrical) and473

(ii) prove tail bounds on the distance distribution w.r.t. to the running or initial average.474

Another interesting research direction is to move away from zero-mean noise and consider475

biased noise models: how quickly can the bias(es) be estimated and is convergence still476

feasible by compensating for the (learned) bias?477
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A Appendix658

All missing proofs can be found in the full version [?]. Here, we only present the type of659

generalized Hoeffding bounds that we use and the proof of Fact 9. We use the following660

slightly generalized versions of the Hoeffding bound (see [35]).661

B Theorem 19 ([35]). Let X =
∑m
i=1Xi be a sum of m independent random variables with662

ai ≤ Xi ≤ bi for all i. Then663

P [ |X − E [X ] | ≥ b ] ≤ exp
(
− 2b2∑m

i=1(bi − ai)2

)
. (3)664

665

The following Theorem finds its origins in the work of [45].666

B Theorem 20 ([16, Theorem 6.1]). Let X be the martingale associated with a filter F667

satisfying668

(i) Var [Xi | Fi−1 ] ≤ σ2
i , for 1 ≤ i ≤ m;669

(ii) |Xi −Xi−1| ≤M , for 1 ≤ i ≤ m.670

Then we have671

P [X − E [X ] ≥ b ] ≤ exp
(
− b2

2 (
∑m
i=1 σ

2
i +Mb/3)

)
.672

B Theorem 21 ([16, Theorem 6.5]). Let X be the martingale associated with a filter F673

satisfying674

(i) Var [Xi | Fi−1 ] ≤ σ2
i , for 1 ≤ i ≤ m;675

(ii) Xi−1 −M − ai ≤ Xi, for 1 ≤ i ≤ m.676
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Then we have677

P [X ≤ E [X ]− b ] ≤ exp
(
− b2

2 (
∑m
i=1(σ2

i + a2
i ) +Mb/3)

)
.678

Throughout this paper we will frequently make use of the fact that the sum of independent679

variables is a martingale.680

Proof of Fact 9. Consider part (i).681

TSS(t) =
∑
i

(
x

(i)
t −∅(0)

)2
=
∑
i

(
xi −∅(t) + ∅(t) −∅(0)

)2
682

=
∑
i

((
x

(i)
t −∅(t)

)2
+ 2(x(i)

t −∅(t))(∅(0) −∅(t)) +
(
∅(0) −∅(t)

)2
)

683

= φ̄(X(t)) + 2
(∑

i

x
(i)
t − n∅(t)

)
(∅(0) −∅(t)) + n

(
∅(0) −∅(t)

)2
684

= φ̄(X(t)) + n
(
∅(0) −∅(t)

)2
.685

686
Consider part (ii).687

φ(x) =
∑
i,j

(xi − xj)2 = 2n
∑
i

x2
i − 2

∑
i,j

xixj = 2n
∑
i

x2
i − 2n∅

∑
i

xi688

= 2n
(∑

i

x2
i −

∑
i

xi∅

)
= 2n

(∑
i

x2
i − 2

∑
i

xi∅ + n∅2

)
= 2n

∑
i

(xi −∅)2
689

= 2n · φ̄(x).690
691

J692
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