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Abstract12

We give a simple distributed algorithm for computing adjacency matrix eigenvectors for the13

communication graph in an asynchronous gossip model. We show how to use this algorithm14

to give state-of-the-art asynchronous community detection algorithms when the communication15

graph is drawn from the well-studied stochastic block model. Our methods also apply to a natural16

alternative model of randomized communication, where nodes within a community communicate17

more frequently than nodes in different communities.18

Our analysis simplifies and generalizes prior work by forging a connection between asyn-19

chronous eigenvector computation and Oja’s algorithm for streaming principal component anal-20

ysis. We hope that our work serves as a starting point for building further connections between21

the analysis of stochastic iterative methods, like Oja’s algorithm, and work on asynchronous and22

gossip-type algorithms for distributed computation.23
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1 Introduction32

Motivated by the desire to process and analyze increasingly large networks—in particular33

social networks—considerable research has focused on finding efficient distributed protocols34

for problems like triangle counting, community detection, PageRank computation, and node35

centrality estimation. Many of the most popular systems for massive-scale graph process-36

ing, including Google’s Pregel [23] and Apache Giraph [33] (used by Facebook), employ37

programming models based on the simulation of distributed message passing algorithms, in38

which each node is viewed as a processor that can send messages to its neighbors.39

Apart from computational benefits, distributed graph processing can also be required40

when privacy constraints apply: for example, EU regulations restrict the personal data41
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sent to countries outside of the EU [9]. Distributed algorithms avoid possibly problematic42

aggregation of network information, allowing each node to compute a local output based on43

their own neighborhood and messages received from their neighbors.44

One of the main problems of interest in network analysis is the computation of the eigen-45

vectors of a networks’ adjacency matrix (or related incidence matrices, such as the graph46

Laplacian). The extremal eigenvectors have many important applications—from graph par-47

titioning and community detection [15, 26], to embedding in graph-based machine learning48

[5, 29], to measuring node centrality and computing importance scores like PageRank [6].49

Due to their importance, there has been significant work on distributed eigenvector50

approximation. In synchronous message passing systems, it is possible to simulate the well-51

known power method for iterative eigenvector approximation [21]. However, this algorithm52

requires that each node communicates synchronously with all of its neighbors in each round .53

In an attempt to relax this requirement, models in which a subset of neighbors are54

sampled in each communication round [22] have been studied. However, the computation55

of graph eigenvectors in fully asynchronous and gossip-based message passing systems, in56

which nodes communicate with a single neighbor at a time in an asynchronous fashion,57

is not well-understood. While a number of algorithms have been proposed, which give58

convergence to the true eigenvectors as the number of iterations goes to infinity, strong59

finite iteration approximation bounds are not known [16, 27].60

Our contributions.61

In this work, we give state-of-the-art algorithms for graph eigenvector computation in62

asynchronous systems with randomized schedulers, including the classic gossip model [8, 14]63

and population protocol model [2]. We show that in these models, communication graph64

eigenvectors can be computed via a very simple adaption of Oja’s classic iterative algorithm65

for principal components analysis [30]. Our analysis leverages recent work studing Oja’s66

algorithm for streaming covariance matrix eigenvector estimation [1, 20].67

By making an explicit connection between work on streaming eigenvector estimation68

and asynchronous computation, we hope to generally expand the toolkit of techniques that69

can be applied to analyzing graph algorithms in asynchronous systems.70

As a motivating application, we use our results to give state-of-the-art distributed71

community detection protocols, significantly improving upon prior work for the well-studied72

stochastic-block model and related models where nodes communicate more frequently within73

their community than outside of it. We summarize our results below.74

Asynchronous eigenvector computation. First, we provide an algorithm (Algorithm 2)75

that approximates the k largest eigenvectors v1, ...,vk for an arbitrary communication ma-76

trix (essentially a normalized adjacency matrix, defined formally in Definition 1).77

For an n-node network, the algorithm ensures, with good probability, that each node78

u ∈ [n] computes the uth entries of vectors ṽ1, ..., ṽk such that for all i ∈ [k], ‖ṽi−vi‖22 ≤ ε.79

Each message sent by the algorithm requires communicating just O(k) numbers, and the80

global time complexity is Õ( Λk3

gap ·min(gap,γmix)ε3 ) local rounds, where gap is the minimal gap81

between the k largest eigenvalues, γmix is roughly speaking the spectral gap, i.e., the dif-82

ference between the largest and second-largest eigenvalue, and Λ is the sum of the k largest83

eigenvalues. We note that we use Õ(·) to suppress logarithmic terms, and in particular,84

factors of poly logn. See Theorem 6 for a more precise statement.85

For illustration, consider a communication graph generated via the stochastic block86

model – G(n, p, q), which has n nodes, partitioned into two equal-sized clusters. Each in-87

tracluster edge added independently with probability p and each intercluster edge is added88
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with probability q < p. If, for example, p = Ω
(

logn
n

)
and q = p/2, and k = 2, we can bound89

with high probability Λ = Θ(1/n), gap = Θ(1/n), and γmix = Θ(1/n), which yields an90

eigenvector approximation algorithm running in Õ( nε3 ) global rounds, or Õ( 1
ε3 ) local rounds.91

Approximate community detection. Second, we harness our eigenvector approximation92

routine for community detection in the stochastic block model with connection probabilities93

p, q (we give two natural definitions of this model in an asynchronous distributed system with94

a random scheduler; see Definitions 2 and 3). After executing our protocol (Algorithm 5),95

with good probability, all but an ε fraction of the nodes output a correct community label96

in Õ
(
1/ε3ρ2) local rounds, where ρ = min

(
q
p+q ,

p−q
p+q

)
. For example, when q = p/2, this97

complexity is Õ
(
1/ε3

)
. See Theorem 8 and Theorem 9 for precise bounds.98

Exact community detection. Finally, we show how to produce an exact community99

labeling, via a simple gossip-based error correction scheme. For ease of presentation, here100

we just state our results in the case when q = p/2 and we refer to section 5 (Theorems 10101

and 11) for general results. Starting from an approximate labeling in which only a small102

constant fraction of the nodes are incorrectly labeled, we show that, with high probability,103

after O(logn) local rounds, all nodes are labeled correctly.104

Related work.105

Community detection via graph eigenvector computation and other spectral methods has106

received ample attention in centralized setting [25, 10, 38]. Such methods are known to107

recover communities in the stochastic block model close to the information theoretic limit.108

Interestingly, many state-of-the-art community detection algorithms in this model, which109

improve upon spectral techniques, are based on message passing (belief propagation) algo-110

rithms [12, 28]. However, these algorithms are not known to work in asynchronous contexts.111

Community detection in asynchronous distributed systems has received less attention. It112

has recently been tackled in a beautiful paper by Becchetti et al. [3]. The algorithm studied113

in this paper is a very simple averaging protocol, originally considered by the authors in a114

synchronous setting [4]. Each node starts with a random value chosen uniformly in {−1, 1}.115

Each time two nodes communicate, they update their values to the average of their previous116

values. After each round of communication, a node’s estimated community is given by the117

sign of the change of its value due to the averaging update in that round.118

As discussed in [3], in regular graphs, which their analysis is restricted to, this protocol119

can be viewed as a method for estimating the sign of the second largest adjacency matrix120

eigenvector. Thus, it has close connections with our protocols, which explicitly estimate121

this eigenvector and form community labels using the signs of its entries.122

The analysis of Becchetti et al. applies to regular clustered graphs, under certain eigen-123

value gap restrictions. For comparison, we focus on regular stochastic block model graphs,124

in which all nodes have exactly a edges to (randomly selected) nodes in their cluster and125

exactly b < a edges to nodes outside their cluster. We also focus on the case when the com-126

munity detection algorithm succeeds with constant probability and a large constant fraction127

of nodes with correct cluster labels. It is possible to boost probability of success and/or128

the fraction of nodes with correct labels via the ‘community sensitive labeling’ approach of129

Becchetti et al. or our clean up phase, and by repeating the algorithm multiple times.130

The results of Becchetti et al. apply with O(polylogn) local rounds of communication131

when either a
b = Ω(log2 n), or when a−b = Ω(

√
a+ b). In contrast, our results for the (non-132

regular) stochastic block model give O(polylogn) local runtime when p
q = Ω(1) or n(p−q) =133

Ω(
√
n(p+ q) logn). Here we assume that q is not too small – see Theorem 9 for details.134
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Note that n · p and n · q can be compared to a and b, since they are the expected number135

of intra- and inter-cluster edges respectively. Thus, our results give comparable bounds,136

tightening those of Becchetti et al. in some regimes and holding in the most commonly137

studied family of stochastic block model graphs, without any assumption of regularity1.138

Outside of community detection, our approach to asynchronous eigenvector approxi-139

mation is related to work on asynchronous distributed stochastic optimization [37, 11, 31].140

Often, it is assumed that many processors update some decision variable in parallel. If141

these updates are sufficiently sparse, overwrites are rare and the algorithm converges as if it142

were run in a synchronous manner. Our implementation of Oja’s algorithm falls under this143

paradigm. Each update to our eigenvector estimates is sparse – requiring a modification144

just by the two nodes that communicate at a given time. In this way, we can fully parallelize145

the algorithm, even in an asynchronous system.146

2 Preliminaries147

2.1 Notation148

For integer n > 0, let [n] def= {1, . . . , n}. Let 1n,m be an n × m all-ones matrix and In×n149

be an n × n identity. Let ei be the ith standard basis vector, with length apparent from150

context. Let V denote a set of nodes with cardinality |V | = n. Let P be the set of all151

unordered node pairs (u, v) with u 6= v. |P| =
(
n
2
)
.152

For vector x ∈ Rn, ‖x‖2 is the Euclidean norm. For matrix M ∈ Rn×m, ‖M‖2 =153

maxx
‖Mx‖2
‖x‖2

is the spectral norm. ‖M‖F =
√∑n

i=1
∑m
j=1 M2

i,j denotes the Frobenius154

norm. MT is the matrix transpose of M. When M ∈ Rn×n is symmetric we let λ1(M) ≥155

λ2(M) ≥ ... ≥ λn(M) denote its eigenvalues. M is positive semidefinite (PSD) if λi(M) ≥ 0156

for all i. For symmetric M,N ∈ Rn×n we use M � N to indicate that N−M is PSD.157

2.2 Computational model158

We define an asynchronous distributed computation model that encompasses both the well-159

studied population protocol [2] and asynchronous gossip models [8]. Computation proceeds160

in rounds and a random scheduler chooses a single pair of nodes to communicate in each161

round. The choice is independent across rounds, but may be nonuniform across node pairs.162

I Definition 1 (Asynchronous communication model). Let V be a set of nodes with |V | = n.163

Computation proceeds in rounds, with every node v ∈ V having some state s(v, t) in round t.164

Recall that P denotes all unordered pairs of nodes in V . Let w : P → R+ be a165

nonnegative weight function. In each round, a random scheduler chooses exactly one166

(u, v) ∈ P with probability w(u, v)/
[∑

(i,j)∈P w(i, j)
]
and u, v both update their states167

according to some common (possibly randomized) transition function σ. Specifically, they168

set s(v, t+ 1) = σ(s(v, t), s(u, t)) and s(u, t+ 1) = σ(s(u, t), s(v, t)).169

Note that in our analysis we often identify the weight function w with a symmetric170

weight matrix W ∈ Rn×n where Wu,u = 0 and Wu,v = Wv,u = w(u, v)/
[∑

(i,j)∈P w(i, j)
]
.171

Let D be a diagonal matrix with Du,u =
∑
v∈V Wu,v. Du,u is the probability that node u172

communicates in any given round. Since two nodes are chosen in each round,
∑
u Du,u = 2.173

We will refer to D + W as the communication matrix of the communication model.174

1 We note that the analysis of Bechitti et al seems likely to extend to our alternative communication
model (Definition 2), where the communication graph is weighted and regular
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I Remark (Asynchronous algorithms). Since the transition function σ in Definition 1 is175

universal, nodes can be seen as identical processes, with no knowledge of w or unique ids.176

We do assume that nodes can initiate and terminate a protocol synchronously. That is,177

nodes interact from round 0 up to some round T , after which they cease to interact, or178

begin a new protocol. This assumption is satisfied if each node has knowledge of the global179

round number but, in general, is much weaker. For example, in the asynchronous gossip180

model discussed below, it is sufficient for nodes to have access to a synchronized clock.181

We use algorithm to refer to a sequence of transition functions, each corresponding to182

a subroutine run for specified number of rounds. Subroutines are run sequentially. The183

first has input nodes with identical starting states (as prescribed by Definition 1) but later184

subroutines start once nodes have updated their states and thus have distinguished inputs.185

I Remark (Simulation of existing models). The standard population protocol model [2] is186

recovered from Definition 1 by setting w(u, v) = 1 for all (u, v) – i.e., pairs of nodes commu-187

nicate uniformly at random. A similar model over a fixed communication graph G = (E, V )188

is recovered by setting w(u, v) = 1 for all (u, v) ∈ E and w(u, v) = 0 for (u, v) /∈ E.189

Definition 1 also encompasses the asynchronous gossip model [8, 14], where each node190

holds an independent Poisson clock and contacts a random neighbor when the clock ticks.191

If we identify rounds with clock ticks, let λu be the rate of node u’s clock, and let p(u, v)192

be the probability that u contacts v when its clock ticks. Then the probability that nodes193

u and v interact in a given round is 1
2

[
λu∑
z∈V

λz
· p(u, v) + λv∑

z∈V
λz
· p(v, u)

]
. With w(u, v)194

set to this value, Definition 1 corresponds exactly to the asynchronous gossip model.195

2.3 Distributed community detection problem196

This paper studies the very general problem of computing communication matrix eigenvec-197

tors with asynchronous protocols run by the nodes in V . One primary application of comput-198

ing eigenvectors is to detect community structure in G. Below we formalize this application199

as the distributed community detection problem and introduce two specific cases of interest.200

In the distributed community detection problem, the weight function w and correspond-201

ing weight matrix W of Definition 1 are clustered: nodes in the same cluster are more likely202

to communicate than nodes in different clusters. The goal is for each node to independently203

identify what cluster it belongs to (up to a permutation of the cluster labels).204

We consider two models of clustering. In the first (n, p, q)-weighted communication model,205

the weight function directly reflects the increased likelihood of intracluster communication.206

In the second, G(n, p, q)-communication model, weights are uniform on a graph sampled207

from the well-studied planted-partition or stochastic block model [19]. For simplicity, we fo-208

cus on the setting in which there are two equal sized clusters, but believe that our techniques209

can be extended to handle a larger number of clusters, potentially with unbalanced sizes.210

I Definition 2 ((n, p, q)-weighted communication model). An asynchronous model (Defini-211

tion 1), where node set V is partitioned into disjoint sets V1, V2 with |V1| = |V2| = n/2. For212

values q < p, w(u, v) = p if u, v ∈ Vi for some i and w(u, v) = q if u ∈ Vi and v ∈ Vj for i 6= j.213

I Definition 3 (G(n, p, q)-communication model). An asynchronous model (Definition 1),214

where node set V is partitioned into disjoint sets V1, V2 with |V1| = |V2| = n/2. The weight215

matrix W is a normalized adjacency matrix of a random graph G(V,E) generated as follows:216

for each pair of nodes u, v ∈ V , add edge (u, v) to edge set E with probability p if u and v217

are in the same partition Vi and probability q < p if u and v are in different partitions.218

ICALP 2018
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Analysis of community detection in the (n, p, q)-weighted communication model is more219

elegant, and will form the basis of our analysis for theG(n, p, q)-communication model, which220

more closely matches models considered in prior work on in both distributed and centralized221

settings. Formally, we define the distributed community detection problem as follows:222

I Definition 4 (Distributed community detection problem). An algorithm executing in the223

communication models of Definition 2 and Definition 3 solves community detection in T224

rounds if for every t ≥ T , all nodes in V1 hold some integer state s1 ∈ {−1, 1}, while all225

nodes in V2 hold state s2 = −s1. An algorithm solves the community detection problem in226

L local rounds if every node’s state remains fixed after L local interactions with other nodes.227

3 Asynchronous Oja’s algorithm228

Our main contribution is a distributed algorithm for computing eigenvectors of the commu-229

nication matrix D + W. These eigenvectors can be used to solve the distributed community230

detection problem or in other applications. Our main algorithm is a distributed, asyn-231

chronous adaptation of Oja’s classic iterative eigenvector algorithm [30], described below:232

Algorithm 1 Oja’s method (centralized)
Input: x0, ...,xT−1 ∈ Rn drawn i.i.d. from some distribution D such that for some constant
C, Px∼D[‖x‖22 ≤ C] = 1 and Ex∼D[xxT ] = M. Rank parameter k and step size η.
Output: Orthonormal Ṽ ∈ Rn×k whose columns approximate M’s k top eigenvectors.
1: Choose Q0 with entries drawn i.i.d. from the standard normal distribution N (0, 1).
2: for t = 0, ...., T − 1 do
3: Qt+1 := (I + ηxtxTt )Qt.
4: end for
5: return ṼT := orth(QT ). . Orthonormalizes the columns of QT .

3.1 Approximation bounds for Oja’s method233

A number of recent papers have provided strong convergence bounds for the centralized234

version of Oja’s method [1, 20]. We will rely on the following theorem, which we prove in235

full verison using a straightforward application of the arguments in [1].236

I Theorem 5. Let M ∈ Rn×n be a PSD matrix with
∑k

i=1
λi(M)
C ≤ Λ and λk(M)−λk+1(M)

C ≥
gap for some values Λ, gap. For any ε, δ ∈ (0, 1), let ξ = n

δε·gap , η = c1ε
2·gap ·δ2

CΛk log3 ξ
for some

sufficiently small constant c1, and T = c2·(log ξ+1/ε)
C·gap ·η for sufficiently large c2. Then with

probability ≥ 1− δ, Algorithm 1 run with step size η returns ṼT satisfying,
‖ZT ṼT ‖2F ≤ ε.

where Z is an orthonormal basis for the bottom n− k eigenvectors of M.237

If ṼT exactly spanned M’s top k eigenvectors, ‖ZT ṼT ‖2F would equal 0. To obtain an238

approximation of ε, the number of iterations required by Oja’s method naturally depends in-239

versely on ε, the failure probability δ, and the gap between eigenvalues λk(M) and λk+1(M).240

3.2 Distributed Oja’s method via random edge sampling241

Oja’s method can be implemented in the asynchronous communication model (Definition 1)242

to compute top eigenvectors of the communication matrix D+W, defined in subsection 2.2.243
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For any pair of nodes (u, v), let eu,v = eu + ev be the vector with all zero entries except244

1’s in its uth and vth positions. Given weight function w and associated matrix W, let DW245

be the distribution in which each eu,v is selected with probability Wu,v. That is, the same246

distribution by which edges are selected to be active by the scheduler in Definition 1. Noting247

that eu,veTu,v is all zero except at its (u, u), (v, v), (u, v), and (v, u) entries, we can see that248

E
eu,v∼DW

[
eu,veTu,v

]
=

∑
(u,v)∈P

Wu,v · eu,veTu,v = D + W, (1)249

250

where P denotes the set of unordered node pairs (u, v) with u 6= v. So if we run Oja’s251

algorithm with eu,v sampled according to DW, we will obtain an approximation to the top252

eigenvectors of D+W. Note that this matrix is PSD, by the fact that each eu,veTu,v is PSD.253

Furthermore, the algorithm can be implemented in our communication model as an254

extremely simple averaging protocol. Each iteration of Algorithm 1 requires computing255

Qt+1 = (I + ηxtxTt )Qt. If xt = eu,v for eu,v ∼ DW, we can see that computing Qt+1 just256

requires updating the uth and vth rows of Qt. Thus, if the n rows of Qt are distributed257

across n nodes, this update can be done locally by nodes u and v when they are chosen to258

interact by the randomized scheduler. Specifically, letting [q(1)
u , ..., q

(k)
u ] be the uth row of259

Qt, stored as the state at node u, applying (I+ηeu,veTu,v) just requires setting for all i ∈ [k]:260

q(i)
u := (1 + η)q(i)

u + ηq(i)
v . (2)261

262

Node v makes a symmetric update, and all other entries of Qt remain fixed.263

We give the pseudocode for this protocol in Algorithm 2. Along with the main iteration264

based on the simple update in (2), the nodes need to implement Step 5 of Algorithm 1, where265

QT is orthogonalized. This can be done with a gossip-based protocol, which we abstract as266

the routine AsynchOrth. We give an implementation of AsynchOrth in subsection 3.3.267

I Remark (Choice of communication matrix). While, as we will show, the eigenvectors of268

D+W are naturally useful in our applications to community detection, the above techniques269

easily extend to computing eigenvectors of other matrices. For example, if we set eu,v =270

eu−ev, Eeu,v∼DW [eu,veTu,v] = D−W = L, a scaled Laplacian of the communication graph.271

Algorithm 2 Asynchronous Oja’s (AsynchOja(T, T ′, η))
Input: Time bounds T, T ′, step size η.
Initialization: ∀u, chose [q(1)

u , ..., q
(k)
u ] independently from standard Gaussian N (0, 1).

1: if t < T then
2: (u, v) is chosen by the randomized scheduler.
3: For all i ∈ [k], q(i)

u := (1 + η)q(i)
u + ηq

(i)
v . . Computes of (I + ηeu,veTu,v)Qt.

4: else
5: [v̂(1)

u , ..., v̂
(k)
u ] = AsynchOrth([q(1)

u , ..., q
(k)
u ], T ′). . Implements of ṼT = orth(QT ).

6: end if

Note that in the pseudocode above, when nodes u, v interact in the asynchronous model,272

they only need to share their respective values of q(i)
u and q(i)

v for i ∈ [k].273

Up to the orthogonalization step, we see that Algorithm 2 exactly simulates Algorithm 1274

on input M = D + W. Thus, assuming that AsynchOrth([q(1)
u , ..., q

(k)
u ]) exactly computes275

ṼT = orth(QT ) as in Step 5 of Algorithm 1, the error bound of Theorem 5 applies directly.276

Specifically, if we let the local states, [q(1)
1 , . . . , q

(1)
n ], . . . , [q(k)

1 , . . . , q
(k)
n ] correspond to the k277

length-n vectors in ṼT , Theorem 5 shows that ‖ZT ṼT ‖2F ≤ ε. In subsection 3.3 we show278

that this bound still holds when AsynchOrth computes an approximate orthogonalization.279
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3.3 Distributed orthogonalization and eigenvector guarantees280

In fact, a specific orthogonalization strategy yields a stronger bound, which is desirable281

in many applications, including community detection: Algorithm 2 can actually well282

approximate each of D + W’s top k eigenvectors, instead of just the subspace they span.283

Specifically, let ṽi denote the ith column of ṼT and vi denote the ith eigenvector of284

D + W. We want (ṽTi vi)2 ≥ 1− ε for all i. Such a guarantee requires sufficiently large gaps285

between the top k eigenvalues, so that their corresponding eigenvectors are identifiable. If286

these gaps exist, the guarantee can by using the following orthogonalization procedure:287

Algorithm 3 Orthogonalization via Cholesky Factorization (centralized)
Input: Q ∈ Rn×k with full column rank. Output: Orthonormal span for Q, Ṽ ∈ Rn×k.
1: L := chol(QTQ) . Cholesky decomp. returns lower triangular L with LLT = QTQ.
2: return Ṽ := Q(LT )−1 . Orthonormalize QT ’s columns using the Cholesky factor.

I Remark. Algorithm 3 requires an input that is full-rank, which always includes QT in288

Algorithms 1 and 2: Q0’s entries are random Gaussians so it is full-rank with probability 1289

and each (I + ηxTt xt) is full-rank since η < ‖xt‖. Thus, QT =
∏T−1
t=0 (I + ηxTt xt)Q0 is too.290

Ultimately, our AsynchOrth is an asynchronous distributed implementation of Algo-291

rithm 3. We first prove an eigenvector approximation bound under the assumption that this292

implementation is exact and then adapt that result to account for the fact that AsynchOrth293

only outputs an approximate solution.294

Pseudocode for AsynchOrth is included below. Each node first computes a (scaled)295

approximation to every entry of QTQ using a simple averaging technique. Nodes then296

locally compute L = chol
(
QTQ

)
and the uth row of ṼT = Q(LT )−1. In the full version297

we argue that, due to numerical stability of Cholesky decomposition, each node’s output is298

close to the uth row of an exactly computed ṼT , despite the error in constructing QTQ.299

Algorithm 4 Asynchronous Cholesky Orthogonalization (AsynchOrth(T ))
Input: Time bound T .
Initialization: Each node holds [q(1)

u , ..., q
(k)
u ]. For all i, j ∈ [k], let r(i,j)

u := q
(i)
u · q(j)

u .
1: if t < T then
2: (u, v) is chosen by the randomized scheduler.
3: for all i, j ∈ [k], r(i,j)

u := r(i,j)
u +r(i,j)

v

2 . . Estimation of 1
nqTi qj via averaging.

4: else
5: Form Ru ∈ Rk×k with (Ru)i,j = (Ru)j,i := n · r(i,j)

u . . Approximation of QTQ.
6: Lu := chol(Ru).
7: [v̂(1)

u , ..., v̂
(k)
u ] := [q(1)

u , ..., q
(k)
u ] · (LTu )−1. . Approximation of uth row of Q(LTu )−1.

8: end if

In the full version we prove the following result when Algorithm 4 is used to implement300

AsynchOrth as a subroutine for Algorithm 2, AsynchOja(T, T ′, η):301

I Theorem 6 (Asynchronous eigenvector approximation). Let v1, ...,vk be the top k
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eigenvectors of the communication matrix D + W in an asynchronous commu-
nication model, and let Λ, gap, γmix be bounds satisfying: Λ ≥

∑k
j=1 λj(D + W),

gap ≤ minj∈[k][λj(D+W)−λj+1(D+W)], and γmix ≤ min
[ 1
n , log

(
λ−1

2 (I− 1
2D + 1

2W)
)]
.

For any ε, δ ∈ (0, 1), let ξ = n
δε·gap . Let η = c1ε

2·gap ·δ2

Λk3 log3 ξ
for sufficiently small c1, and T =

c2·(log ξ+1/ε)
gap ·η , T ′ = c3(log ξ+1/ε)·λ1(D+W)

gap ·γmix for sufficiently large c2, c3. For all u ∈ [n], i ∈ [k],
let v̂(j)

u be the local state computed by Algorithm 2. If V̂ ∈ Rn×k is given by (V̂)u,j = v̂
(j)
u

and v̂i is the ith column of V̂, then with probability ≥ 1− δ − e−Θ(n), for all i ∈ [k]:∣∣v̂Ti vi
∣∣ ≥ 1− ε and ‖v̂i‖2 ≤ 1 + ε.

4 Distributed community detection302

From the results of section 3, we obtain a simple population protocol for distributed commu-303

nity detection that works for many clustered communication models, including the (n, p, q)-304

weighted communication and G(n, p, q)-communication models of Definitions 2 and 3.305

In particular, we show that if each node u ∈ V can locally compute the uth entry of an306

approximation v̂2 to the second eigenvector of the communication matrix D+W, then it can307

solve the community detection problem locally: u just sets its state to the sign of this entry.308

Algorithm 5 Asynchronous Community Detection (AsynchCD(T, T ′, η))
Input: Time bounds T, T ′, step size η.
1: Run AsynchOja(T, T ′, η) (Algorithm 2) with k = 2.
2: Set χ̂u := sign(v̂(2)

u ).

Here χ̂u ∈ {−1, 1} is the final state of node u. We will claim that this state solves309

the community detection problem of Definition 4. We use the notation χ̂u because we will310

use χ to denote the true cluster indicator vector for communities V1 and V2 in a given311

communication model: χu = 1 for u ∈ V1 and χu = −1 for u ∈ V2.312

In particular, we will show that if η is set so that AsynchOja outputs eigenvectors with ac-313

curacy ε, then a 1−O(ε) fraction of nodes will correctly identify their clusters. In section 5 we314

show how to implement a ‘cleanup phase’ where, starting with ε set to a small constant (e.g.315

ε = .1), the nodes can converge to a state with all cluster labels correct with high probability.316

4.1 Community detection in the (n, p, q)-weighted communication model317

We start with an analysis for the (n, p, q)-weighted communication model. Recall that in this318

model the nodes are partitioned into two sets, V1 and V2, each with n/2 elements. Without319

loss of generality we can identify the nodes with integer labels such that 1, . . . , n/2 ∈ V1320

and n/2 + 1, . . . , n ∈ V2. We define the weighted cluster indicator matrix, C(p,q) ∈ Rn×n:321

C(p,q) def=
[
p · 1n

2×
n
2

q · 1n
2×

n
2

q · 1n
2×

n
2

p · 1n
2×

n
2

]
. (3)322

323

p and q can be arbitrary, but we will always take p > q > 0. It is easy to check that C(p,q)
324

is a rank two matrix with eigendecomposition:325

C(p,q) = n

2

v1 v2

[p+ q 0
0 p− q

] [
vT1
vT2

]
where v1 = 1n×1√

n
, v2 = χ√

n
. (4)326

327
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So, if all nodes could compute their corresponding entry in the second eigenvector of C(p,q),328

then by simply returning the sign of this entry, they would solve the distributed community329

detection problem (Definition 4). If they compute this eigenvector approximately, then we330

can still show that a large fraction of them correctly solve community detection. Specifically:331

I Lemma 7. Let v2 be the second eigenvector of C(p,q) for any p > q > 0. If ṽ2 satisfies:332 ∣∣ṽT2 v2
∣∣ ≥ 1− ε and ‖ṽ2‖2 ≤ 1 + ε. (5)333

334

for ε ≤ 1, then sign(ṽ2) gives a labeling such that, after ignoring at most 5εn nodes, all335

remaining nodes in V1 have the same labeling, and all in V2 have the opposite.336

A proof can be found in the full version. With Lemma 7 in place, we can then apply337

Theorem 6 to prove the correctness of AsynchCD (Algorithm 5) for the (n, p, q)-weighted338

communication model339

I Theorem 8 (ε-approximate community detection: (n, p, q)-weighted communication
model). Consider Algorithm 5 in the (n, p, q)-weighted communication model. Let
ρ = min

(
q
p+q ,

p−q
p+q

)
. For sufficiently small constant c1 and sufficiently large c2 and c3, let

η = c1ε
2δ2ρ

log3
(
n
εδρ

) , T =
c2n

(
log3

(
n
εδρ

)
+ log( n

εδρ )
ε

)
ε2δ2ρ2 , T ′ =

c3n
(

log
(
n
εδρ

)
+ 1

ε

)
ρ2 .

With probability 1 − δ, after ignoring εn nodes, all remaining nodes in V1 terminate in
some state s1 ∈ {−1, 1}, and all nodes in V2 terminate in state s2 = −s1. Suppressing
polylogarithmic factors in the parameters, the total number of global rounds and local rounds
required are: T + T ′ = Õ

(
n

ε3δ2ρ2

)
and L = Õ

(
1

ε3δ3ρ2

)
.

Proof. In the (n, p, q)-weighted communication model the weight and degree matrices are:340

W = 4
n2(p+ q)− 2np · (C

(p,q) − p · In×n) and D = 2
n
· In×n.341

342

Thus, referring to the eigendecomposition of C(p,q) shown in (4), the top eigenvector of D +
W is v1 = 1n×1/

√
n with corresponding eigenvalue: λ1 = 4

n2(p+q)−2np ·
(
n(p+q)

2 − p
)

+ 2
n =

4
n . The second eigenvector is the scaled cluster indicator vector v2 = χ/

√
n with eigenvalue

λ2 = 4
n2(p+ q)− 2np ·

(
n(p− q)

2 − p
)

+ 2
n

= 4
n
· p

p+ n
n−2 · q

.

Finally, for all remaining eigenvalues of D + W, {λ3, ..., λn}, λi = 2
n −

4p
n2(p+q)−2np . We can343

bound the eigenvalue gaps:344

λ1 − λ2 ≥
4
n
− 4
n
· p

p+ q
= 4q
n(p+ q) λ2 − λ3 = 2(p− q)

n(p+ q)− 2p ≥
2(p− q)
n(p+ q)345

346

Let ρ = min
(

q
p+q ,

p−q
(p+q)

)
. We bound the mixing time of W + D by noting that347

λ2(I − 1/2D + 1/2W) ≤ 1 − 2q
n(p+q) . Then using that log(1/x) ≥ 1 − x for all x ∈ (0, 1],348

log(λ−1
2 (I − 1/2D + 1/2W) ≥ 2q

n(p+q) ≥
2ρ
n . We then apply Theorem 6 with k = 2,349

Λ = 4
n + 4

n
p

p+ n
n−2 q

≤ 8
n , gap = 4

n · min
(

q
p+q ,

p−q
2(p+q)

)
≥ 2ρ

n , and γmix = 2ρ
n . With these350

parameters we set, for sufficiently small c1 and large c2, c3,351

η = c1ε
2δ2 · ρ

log3
(
n
εδρ

) , T =
c2 · n ·

(
log3

(
n
εδρ

)
+ log( n

εδρ )
ε

)
ε2δ2ρ2 , T ′ =

c3 · n ·
(

log
(
n
εδρ

)
+ 1

ε

)
ρ2352

353
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where to bound T ′ we use that λ1(D+W)
gap ≤ 2

ρ . Let V̂ ∈ Rn×k be given by (V̂)u,j = v̂
(j)
u where354

v̂
(j)
u are the states of AsynchOja(T, T ′, η) and let v̂2 be the second column of V̂. With these355

parameters, Theorem 6 gives with probability ≥ 1−δ that
∣∣v̂T2 v2

∣∣ ≥ 1−ε and ‖v̂2‖2 ≤ 1+ε.356

Applying Lemma 7 then gives the theorem if we adjust ε by a factor of 1/5. Recall that the357

second eigenvector of D+W is identical to that of C(p,q). Additionally, in expectation, each358

node is involved in L = 2(T+T ′)
n interactions. This bound holds for all nodes within a factor 2359

with probability 1−δ by a Chernoff bound, since L = Ω(log(n/δ)). We can union bound over360

our two failure probabilities and adjust δ by 1/2 to obtain overall failure probability ≤ δ. J361

4.2 Community Detection in the G(n, p, q)-communication model362

In the G(n, p, q)-communication model, nodes communicate using a random graph which is363

equal to the communication graph in the (n, p, q)-weighted communication model in expecta-364

tion. Using an approach similar to [34], which is a simplifies the perturbation method used in365

[24], we can prove that in the G(n, p, q)-communication model W is a small perturbation of366

C(p,q) and so the second eigenvector of D+W approximates that of C(p,q) – i.e., the cluster367

indicator vector χ. We defer this analysis to the full version, stating the main result here:368

I Theorem 9 (ε-approximate community detection: G(n, p, q)-communication model).
Consider Algorithm 5 in the G(n, p, q)-communication model. Let ρ = min

(
q
p+q ,

p−q
p+q

)
. For

sufficiently small constant c1 and sufficiently large c2 and c3 let

η = c1ε
2δ2ρ

log3
(
n
εδρ

) , T =
c2n

(
log3

(
n
εδρ

)
+ log( n

εδρ )
ε

)
ε2δ2ρ2 , T ′ =

c3n
(

log
(
n
εδρ

)
+ 1

ε

)
ρ2 .

If min[q,p−q]√
p+q ≥ c4

√
log(n/δ)
ε
√
n

for large enough constant c4, then, with probability 1 − δ, after
ignoring εn nodes, all remaining nodes in V1 terminate in some state s1 ∈ {−1, 1}, and all
nodes in V2 terminate in state s2 = −s1. Supressing polylogarithmic factors, the total num-
ber of global rounds and local rounds required are: T +T ′ = Õ

(
n

ε3δ2ρ2

)
and L = Õ

(
1

ε3δ3ρ2

)
.

If for example, p, q = Θ(1) and thus the G(n, p, q) graph is dense, we can recover the369

communities with probability 1 − δ up to O(1) error as long as q ≤ p − c
√

log(n/δ)/n for370

sufficiently large constant c. Alternatively, if p, q = Θ (log(n/δ)/n), so the G(n, p, q) graph371

is sparse, we require q ≤ cp for sufficiently small c.372

5 Cleanup Phase373

After we apply Theorem 9 (respectively, Theorem 8) an ε-fraction of nodes are incorrectly374

clustered. The goal of this section is to provide a simple algorithm that improves this375

clustering so that all nodes are labeled correctly after a small number of rounds.376

For the (n, p, q)-weighted communication model, doing so is straightforward. After377

running Algorithm 2 and selecting a label, each time a node communicates in the future it378

records the chosen label of the node it communicates with. Ultimately, it changes its label379

to the majority of labels encountered. If ε is small enough so p(1− ε) > q+ εp, this majority380

tends towards the node’s correct label. The number of required rounds for the majority to381

be correct, with good probability for all nodes, is a simple a function of p, q, and ε.382

TheG(n, p, q)-communication model is more difficult. Theorem 9 does not guarantee how383

incorrectly labeled nodes are distributed: it is possible that a majority of a node’s neighbors384
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fall into the set of εn “bad nodes”. In that case, even after infinitely many rounds of commu-385

nication, the majority label encountered will not tend towards the node’s correct identity.386

As a remedy, we introduce a phased algorithm (Algorithm 6) where each node updates387

its label to the majority of labels seen during a phase. We show that in each phase the388

fraction of incorrectly labeled nodes decreases by a constant factor. Our analysis establishes389

a graph theoretic bound on the external edge density of most subsets of nodes. Specifically,390

for all subsets S below a certain size, we show that, with high probability, there are at most391

|S|/3 nodes which have enough connections to S so that if an adversary gave all nodes in S392

incorrect labels, it could cause these nodes to have an incorrect majority label. This bound393

guarantees that at most |S|/3 bad labels ‘propagate’ to the next phase of the algorithm.394 Algorithm 6 Cleanup phase (pseudocode for node u)
Input: Number of phases k and number of rounds per phase r.
Output: Label χ̂u ∈ {−1, 1}
1: for Phase 1 to k do
2: for Round i = 1 to r do
3: Si := χ̂v, where χ̂v denotes the ith sample of node u.
4: end for
5: χ̂u := 1 if

∑r
i Si ≥ 0, χ̂u := −1 otherwise.

6: end for

I Theorem 10. Consider the (n, p, q)-weighted communication model. Assume that a
fraction of at most ε ≤ 1/64 of the nodes are incorrectly clustered after Algorithm 2. As
long as p′ = (1− ε)p and q′ = q + εp satisfy p′ > q′, Algorithm 6 ensures that all nodes are
correctly labeled with high probability after O( p lnn

(
√
p′−
√
q′)2

) local rounds. In particular, for
q ≤ p/2 and ε < 1/8, the number of local rounds required is O(logn).

I Theorem 11. Consider the G(n, p, q)-communication model. Let ∆ = p
2 −

q
2 −√

12p lnn/n −
√

12q lnn/n. Assume that ∆ = Ω(lnn/n) and at most ε ≤ ∆/24p nodes
are incorrectly clustered after Algorithm 2. As long as p′′ = p

2 −
√

6p lnn
n − ∆

12 and

q′′ = q
2 +

√
6q lnn
n + ∆

12 satisfy p′′ > q′′, Algorithm 6 ensures that all nodes are correctly

labeled with high probability after O( p ln2 n

(
√
p′′−
√
q′′)2

) local rounds. In particular, for q ≤ p/2

the number of local rounds required is O(log2 n).

Note that if p − q = Ω(
√

logn/n), then ∆ simplifies to ∆ = Θ(p − q). Incidentally,395

p− q = Ω(
√

logn/n) is sometimes tight because, in this regime, clustering correctly can be396

infeasible: some nodes will simply have more neighbors in the opposite cluster. Consider397

for example when p = 1/2 +
√

lnn/(10n) and q = 1/2.398
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