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Abstract. In the French flag problem, initially uncolored cells on a grid must
differentiate to become blue, white or red. The goal is for the cells to color
the grid as a French flag, i.e., a three-colored triband, in a distributed manner.
To solve a generalized version of the problem in a distributed computational
setting, we consider two models: a biologically-inspired version that relies
on morphogens (diffusing proteins acting as chemical signals) and a more
abstract version based on reliable message passing between cellular agents.

Much of developmental biology research focuses on concentration-based ap-
proaches, since morphogen gradients are an underlying mechanism in tissue
patterning. We show that both model types easily achieve a French ribbon -
a French flag in the 1D case. However, extending the ribbon to the 2D flag in
the concentration model is somewhat difficult unless each agent has additional
positional information. Assuming that cells are identical, it is impossible to
achieve a French flag or even a close approximation. In contrast, using a
message-based approach in the 2D case only requires assuming that agents
can be represented as logarithmic or constant size state machines.

We hope that our insights may lay some groundwork for what kind of message
passing abstractions or guarantees, if any, may be useful in analogy to cells com-
municating at long and short distances to solve patterning problems. We also
hope our models and findings may be of interest in the design of nano-robots.

Keywords: Distributed Computing · French Flag · Biologically Inspired
Algorithms.

1 Introduction

In the French flag problem, initially uncolored cells on a grid must differentiate to
become blue, white or red, ultimately coloring the grid as a three-colored triband
without centralized decision-making. Lewis Wolpert’s original French flag problem
formulation [19,20] has been applied and extended to understand how organisms
determine cell fate, or final differentiated cell type, a question central to developmental
biology. Wolpert’s formulation of positional information models is both complementary
? The authors were supported in part by NSF Award Numbers CCF-1461559 and
CCF-0939370.
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to and contrasted with Turing’s earlier formulation of reaction-diffusion instability [18],
which relies on random asymmetries that arise from activator-inhibitor dynamics in
a developmental system. Our methods make use of both positional information and
initial asymmetry. However, we distinguish between absolute and relative positional
information to probe whether full knowledge of the coordinates is needed to solve
the problem, or if strictly less information suffices.

Broadly speaking, our work is inspired by the biological mechanisms leading to
cell fate decisions in the original French flag problem. These long and short-distance
mechanisms inform the design of algorithms and analyses of the problem in two
distributed computing contexts. More precisely, we relate a reliable message passing
model (Section 2.2) to local cell-cell communication, and a concentration-based model
(Section 2.1) to morphogen gradients over long distances.

We analyze a generalized French flag problem for k colors in these two computa-
tional models. We aim to understand the resources and minimum set of assumptions
required to solve the problem exactly or approximately. In particular, we study whether
cells must know their exact positions and the grid dimensions in order to solve the k-flag
problem. We hope that characterizing the resources and information required might
have some translation back to the mechanisms enabling scale-invariant patterning.

We begin by studying the French ribbon problem, the 1D scenario in our models.
Both exact and approximate solutions are possible, with a general tradeoff between
precision and space complexity. While both models easily achieve a French ribbon,
extending 1D decision-making to the 2D setting is provably difficult in the concentra-
tion model. We show that in a 2D grid with point sources at the corners, each agent
knowing its absolute distance to every source is insufficient positional information
to color the grid even approximately correctly. On the other hand, extending to the
2D setting is easy in the message passing model. We analyze numerous algorithms
to demonstrate tradeoffs between time complexity, message size, memory size and
precision of the obtained French flag.

We do not claim more accurate or thorough models than those proposed by
the biology community. However, we hope this work may illuminate computational
abstractions or guarantees that may be useful in analogy to cells communicating at
long and short distances to solve patterning problems.

1.1 Biology Background and Related Work

A key principle of our models is that initial asymmetry and local communication
eventually leads to long-distance transmission of the relative positional information
of cellular agents, allowing for distributed decision-making. Morphogens, or molecules
acting as chemical signals, underlie cell-cell communication over long distances. Two
well-studied morphogens are Bicoid (Bcd) for anterior-posterior patterning in fruit
flies [5,14], and Sonic hedgehog (Shh), a morphogen for neural patterning in vertebrates,
including humans [4, 15]. Exactly how these morphogens produce scale-invariant
patterns in organisms and tissues of varying size is an interesting biological question [8].

Mechanisms for local cell-cell communication include cell surface receptors and
ligands, such as the Notch-Delta system previously studied in a distributed computing
context [1]. There are also physical channels for signalling molecules, such as gap
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junctions in animal cells and plasmodesmata in plant cells [2]. We liken local signalling
to message passing between neighboring agents.

Building on earlier work on gradients [12,16], Wolpert focused the French flag
problem and model [19,20] on the concept of positional information and its general-
ization to other patterning mechanisms. Subsequent papers validated the importance
of positional information through empirical studies in model species [5,14,17]. Turing
had previously studied reaction-diffusion instability as a driver of morphogenesis [18],
theorizing that periodic patterns could spontaneously arise from activator-inhibitor
dynamics. Turing’s paradigm is often contrasted with Wolpert’s notion of positional
information. The idea that cells may learn positional information via concentration
has fundamentally altered the field of developmental biology [7, 10]. The French
flag problem has been studied using various models, including growth and repair
simulation models [11] and reaction-diffusion experimental models [21].

1.2 Results

Here we summarize results in the two computational models. We first present our
results for the concentration model, where we assume that each node on a line has
access to just morphogens concentrations c1 and c2, each emitted from an endpoint
of the line, and no other information. We define the model formally in Section 2.1.

On the positive side, it is possible to solve the French ribbon problem exactly.

Theorem 1. Algorithm Exact Concentration Ribbon solves the concentration model
k-ribbon for an n-agent line graph of arbitrary finite length a with constant time and
communication complexity, given that agents have knowledge of morphogen concen-
trations c1 and c2, which have reached steady states, as well as the gradient function.

On the negative side, we show that extending to the French flag (2D-case) with
just four point-sources at the corners is infeasible. Here, symmetry prevents us from
obtaining a ε-approximate algorithm in this model.

Theorem 2. Consider the concentration model. Fix any ε∈(0,1/6). No algorithm
can produce an ε-approximate French flag.

The concentration model contrasts the message passing model, in which even
exact solutions are possible. Results for the message passing model are summarized
in Table 1 below, and the exact statements can be found in section 4. Finally, we
show in Section 4.1 how these algorithms can be extended to the 2D case.
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Algorithm Rounds Agent Memory Msgs Msg Bits Exact Reference
Exact Count (2−1/k)n 3logn+O(1) O(n) O(logn) X Thm. 3
Exact Silent Count 3n 2logn+O(1) O(n) O(1) X Thm. 4
Bubble Sort 3n O(logk) O(n2) O(logk) X Thm. 7
Approx Count 2n 2loglogn+O(1) O(n) O(loglogn) × Thm. 6

Table 1. Comparison of k-ribbon algorithms in the message passing model. For brevity we
ignore additive O(k) terms in the round complexity. The time complexity of Exact Count
is tight up to an additive 2k term, regardless of k and the starting agent. The memory
and message complexity of Bubble Sort are independent of n and in fact constant assuming
k=O(1).

2 Models and Notation

2.1 Concentration Model

For concentration-based solutions to the French flag problem, we assume that each
agent receives concentration inputs from up to four source agents s1, s2, s3, and s4.
The measured concentration a cell at 2D coordinate C=(x,y) receives from source si,
i∈ [4] is given by the following gradient function, which is assumed to be invertible
and monotonically decreasing in dist(C,si), the distance between cell C and the
source si. For concreteness, consider the following power-law function

λi(C)=
1

dist(C,si)α
(1)

where α is the power-law constant. This family of functions is also handy for the
1D case with coordinate C=x and source si, i∈ [2] in section 3, where we argue that
coloring correctly can be reduced to comparing λ1(C)/λ2(C) to 2α and 2−α.

Though we choose a power-law for convenience, our upper bounds and lower
bounds hold for more general gradient functions satisfying the above constraints.
Deriving precise thresholds for λ1(C) and λ2(C) is more difficult when the thresholds
fall close together or when the gradient function is complicated. The more difficult
these conditions, the less biologically practical it may be.

We do not assume any noise, so agents have arbitrarily good precision in mea-
suring concentration. Additionally, we assume that the cells do not receive any other
input apart from measured concentration. In particular, they do not have any other
positional information such as knowledge of their coordinate or the total ribbon or
flag size. We assume all agents behave identically, performing the same algorithms.
No messages are passed between agents, so we consider only local computation for
time complexity, assuming morphogen concentrations have reached steady state.

For the French ribbon, we assume that the two sources s1 and s2 are positioned at
the ends of the line. We have two sources rather than one because a single source only
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gives an agent information about the distance of that agent to the source, without
giving information about the agent’s distance to the other side of the line.

For the French flag we assume the si∈ [4] are positioned at the four corners. We
make this assumption in order to understand if the concentration model is ‘strong’
enough to solve the French flag problem without any additional communication.
Assuming that additional sources are placed at convenient positions such as (a/3,0)
for example, defies the idea of of scale invariant systems. The corner points are
already distinguished in that they only have two neighbors, and if one were to place
a constant number of sources, these positions are somewhat natural.

2.2 Message Passing Model

We first consider a 1D version of the French flag problem which we call the French
ribbon problem. We assume a line graph consisting of n nodes which we refer to as
agents. We later consider the 2D version, the standard French flag problem, where
the graph is a a×b grid on n=a·b agents.

Our message-passing model is similar to the standard LOCAL distributed model,
with a few exceptions. Though agents have no knowledge of their global position, they
do have a common sense of direction dir∈{up,down,left,right}. Additionally, agents
know which of their neighbors exist, meaning they know whether they are endpoints
of rows or columns (or both, if they are corners). Initially, all but one arbitrary agent
called the starting agent s, representing the source of the communication signal, are
asleep and thus perform no computation. Sleeping agents wake upon receiving a
message.

The goal is to design algorithms that solve the French ribbon problem. Eventually,
each agent must output a color so that the line is segmented into three colors: blue,
white, and red from left to right. Formally, if b, w, and r denote the number of agents
of each respective color, max{|b−w|,|b−r|,|w−r|}≤1. In addition, each color should
be in a single, contiguous sub-line of the graph—blue, white, red from left to right.
We also define the more general 1D k-Ribbon problem in the same model, in which
there are k distinct colors {1, ..., k} which must form bands of approximately equal
size, in increasing numerical order, along a line graph of n agents.

The 2D model is similar to the static, oriented 1D line graph model, but the system
consists of an r by c grid of agents, oriented with up and down as well as left and right.
A solution to the French flag problem requires that every agent outputs a single color,
such that the grid is divided into three vertical blocks. Every row must abide by the
requirements of the French ribbon problem, such that the left side is blue and the right
side is red. Furthermore, an agent should be the same color as the agent above and
below it in its column. The 2D k-Flag problem generalizes in the same manner as above.

2.3 Approximation Definition

Intuitively speaking, the definition of approximation ensures two properties. First,
agents that are clearly within one stripe should have the corresponding color. Second,
agents that are close to a color border (c1,c2) should have either color c1 or c2.
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We say a k-colored flag of dimensions a×b is an ε-approximate (French) flag if for
every color z∈{1,...,k} the following hold. For each agent u with coordinates (x,y):

1. if x∈
[
(z−1
k +ε)·a,(zk−ε)·a

]
, then the agent has color z.

2. if u has color z, then x∈
[
(z−1
k −ε)·a,(

z
k+ε)·a

]
.

3 Concentration Model Results

3.1 1D Exact Concentration Ribbon

Algorithm Exact Concentration Ribbon We consider an n-agent line of arbi-
trary finite length a in the concentration model. Assume morphogens m1 and m2

(with concentrations c1 and c2) are each secreted by one of the endpoint agents. We
assume the underlying gradient function for concentration given position x is the
inverse power law in α, which is assumed to be noiseless.

Assume thatm1 is secreted at x=0 andm2 is secreted at x=a, we have c1 =1/xα

and c2 =1/(a−x)α. The ratio of c2 to c1 is then (a−x)α/xα. Each agent computes
this ratio independently from the measured values of c1 and c2. Let ratio = c2/c1.
After calculating its measured ratio, each agent computes the smallest color z such
that ratio ≥((z−1)/(k−z))α, decides color z, and halts.

The algorithm is size-invariant and works for a line graph of arbitrary finite length.

3.2 2D Concentration Lower Bound

In this section we sketch a proof of Theorem 2, showing that the concentration model,
without absolute positional information, cannot produce a correct French flag (or
even a good approximation) regardless of the gradient function.

Given an arbitrary flag G of dimensions a×b, we show that we can construct
a flag G′ with dimensions a′×b′ such that there are two agents in both flags that
1) have exactly the same distances from the respective sources and 2) must choose
different colors. Since the two agents have the same respective distance to every
source, they receive the same concentration input and cannot distinguish between
settings, making it impossible to always color correctly. See Figure 1 for an illustration.
To show that such a flag G′ exists, we frame the constraints as a system of equations
and we show that there exists a valid solution.

4 Message Passing Model

Before we present our algorithms, note there is a trivial algorithm that works as
follows for k=3. The starting agent sends a wakeup message to the leftmost and
rightmost agents. Then start a counter from each of these agents. When an agent
receives the counters n` and nr, it can determine in which stripe it is by testing
whether n`/nr≥2 or n`/nr≤1/2. This idea generalizes to arbitrary k.

The algorithms we present improve on the trivial algorithm in various ways.
Table 1 summarizes the tradeoffs of our approaches in the message passing model.
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a

b
(x,y)

a′

b′
(x’,y’)

A) B) C)

Fig. 1. A) depicts an arbitrary original flag. In the proof of Theorem 2 we argue how to
construct a new flag as in C) such that there are two agents in both flags that have exactly
the same distances from the respective sources and must also choose different colors. Since
the two agents have the same respective distance to every source, they receive the same
concentration input and cannot distinguish between the settings, making it impossible to
always color correctly. We construct the new flag by changing the aspect ratio in a way that
maintains the distances. B) depicts this transformation.

As a starting point, we observe that each agent can learn the number of agents to
its left and right, from which information it can determine its own color [20]. This
principle is central to some of our algorithms.

Note 1. An agent in the k-ribbon problemmay determine its correct color knowing the
number of agents on each side of it in line, and knowing which side should be color 1.

Algorithm Exact Count The starting agent stores the value nmid←0 and sends
nmid+1 in both directions. Intuitively, the value measures the distance to the starting
agent. All other agents upon waking store the received value as nmid and forward
the value nmid+1 to the next agent in the same direction. Each agent also stores
t←nmid and increments t every round after.

When the left endpoint receives a value for nmid, it decides on color 1 and sends
n`=1 to its right neighbor. When the right endpoint receives a value for nmid, it
decides on color k and sends nr = 1 to its left neighbor. Each agent stores nd for
either direction d∈{`,r} which is the number of agents to the left (right, respectively).
Upon receiving nd, the agents forwards nd+1 in the same direction.

After an agent receives both n` and nr, it decides its color using Note 1. In order to
get an improved time complexity, an agent may also decide early: if an agent has a value
nd and t≥2((k−1)·nd)−nmid, it should decide color 1 if d is ` or color k otherwise.

Theorem 3. Algorithm Exact Count solves the k-ribbon problem and requires at
most (2− 1

k)·n+k rounds, (4− 2
k)·nlogn message bits, and 3logn+logk+O(1) bits

of memory per agent.
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In reliable and synchronous models, it is well-known that silence conveys infor-
mation. We improve the message bit complexity in Theorem 3 using the absence of
a message as information, at a small cost to round complexity.

Algorithm Exact Silent Count The starting agent sends the message 0 to the
left and 1 to the right. If it is an endpoint, the starting agent sends a 0 and a 1 in
the same, 2-bit message to its neighbor. Agents will forward any received messages
in the same direction, except endpoints which will send the messages back.

The agents do additional processing. The endpoint on the d side sets nd←0 upon
waking and never modifies it. Otherwise, the first time an agent receives a message
from direction d, it sets nd̄←0, and each round thereafter the agent increments nd̄,
until it receives a message from the d̄ direction, at which point it stops incrementing
nd̄ and sets nd̄←nd̄/2. When an agent has final values for n` and nr, and has sent
0 to the left and 1 to the right, it decides its color based on its stored values of n`
and nr using Note 1 and halts. 1

Theorem 4. Algorithm Exact Silent Count solves the k-Ribbon problem and requires
3n rounds, 6n message bits, and 2logn+logk+O(1) bits of memory per agent.

Proof. We show correctness for the case when the starting agent is not an endpoint;
we leave that end-case for the reader. W.l.o.g. consider an agent that first receives
a 0 from the right. After 2n` rounds, the 0 bit will return to the agent after having
been forwarded to the left endpoint and back, so the stored value of n` at the end
of the round will be correct. After 2nr more rounds, the 0 bit is received again from
the right and nr is correctly set. Thus, as long as the agent receives the 0 bit 3 times,
it will color itself correctly. The 0 bit must then travel from the starting agent to
the left, back to the right endpoint, then back to the left endpoint; at that point, all
agents to the left of the starting agent will correctly color themselves. As long as the
agents to the right of the starting agent return the 0 bit leftward, this will occur. We
thus have correctness, because all agents only halt after forwarding the opposite bit
back to the other side. The same argument applies to the 1 bit in the other direction.

A bit travels at most 3 times down the line, so all agents terminate after 3n rounds.
Each round has 2 bits sent, so the message bit complexity is 6n. Each agent stores
k and two values in Θ(n), requiring only 2logn+logk+O(1) bits of memory each. ut

Next, we use the approximation approach of Morris [13] and Flajolet [6] to reduce
space complexity in exchange for a slight increase in error for the final k-ribbon. The
randomized modification is made to our deterministic exact counting algorithm.

The following theorem gives the guarantees of each counter.

Theorem 5 ( [6]). Let β=22−δ

. Consider the counter procedure of [6], in which we
maintain a counter c over n increments, and increase the counter by one only with
probability ( 1

β )c at each increment. Using loglogn+δ bits for the counter, the expected
value of the counter is logβ((β−1)·n+β), and the value of n we could recover from
the counter has standard deviation at most n/2−δ.
1 We note that a similar algorithm may use a single token rather than binary messages,
at an additional constant-factor increase in round complexity.
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Algorithm Approximate Count The starting agent sends a bit in either direction
to wake all agents. When the endpoint in the d direction wakes up, it sets a counter
cd to 0, increments it as in [6], and sends the resulting value to its neighbor. Each
agent upon receiving a message from direction d, stores the message as cd, increments
it in the same way and forwards the result to the next agent.

When an agent has received two values of cd, it does the following: For each i
in the sequence 1,...,k, if c`−cr≤ logβ

i
k−i , then the agent decides on color i. If the

agent has not decided on a color yet after all i, the agent decides on color k. After
deciding on a color, the agent halts.

Theorem 6. Fix any k. For n large enough, Algorithm Approximate Count solves
the ε-approximate k-Ribbon problem for constant ε< 1

2(k−1) with probability 1− 1
32k

and requires 2n rounds, O(nloglogn) total message bits, and 2loglogn+O(1) bits of
memory per agent.

We restrict ε< 1
2(k−1) because otherwise the color thresholds would bleed into each

other and we would have regions with more than two valid colors. The core idea of
using an approximate counter as proposed in [6] is that when subtracting the counter
from the left and from the right, we get for some β, ignoring small standard deviations,

logβ((β−1)n`+β)−logβ((β−1)nr+β)≈ log(n`/nr).

Using thresholds for each color then gives the right color. Using monotonicity of
the counters, we only need to consider O(k) different counters which allows us to
take a union bound over O(k) of them, showing that all n counters are ‘correct’. The
proof can be found in the full version [3].

We next demonstrate how to use bubble sort to color the flag exactly. Assume blue,
white and red are 1, 2, and 3 respectively.

Algorithm Bubble Sort The algorithm is an application of the parallel sorting
algorithm of [9]. The idea is to naively color agents, in alternating fashion with the
colors of the flag, to ensure correct total counts of each color regardless of the ribbon
length. The algorithm then performs swaps in parallel to ensure that blue elements
ripple to the left, white elements to the middle, and red elements to the right. In
an even round, any agent at an even position swaps the value (color) with its right
neighbor if the right neighbor has a larger value. Odd rounds are analogous.

In order to avoid cases in which a agent would like to swap its color with both
neighbors at same time, we also ensure through message passing that each agent knows
whether it is at an odd or even position and whether the current round is odd or even.

Theorem 7. Algorithm Bubble Sort solves the 1-D k-Ribbon problem and requires
at most 2n rounds, n2logk message bits, and O(logk) bits of memory per agent.

Proof. The algorithm of [9] requires at most n time-steps to sort an array using neigh-
bor swaps in parallel. However, to assign each node a starting color, a message must
be propagated from the leader to all nodes, requiring up to an additional n rounds.
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Each round, up to half of the nodes send messages of size logk to broadcast their
current values to one of their neighbors, for a total of at most n2logk message bits.
Each node must store its own value using logk bits. ut

4.1 Extending from Ribbon to Flag

We may solve the k-flag problem by extending any k-ribbon algorithm, with little
loss in most parameters.

Algorithm Up & Down The starting agent begins the k-ribbon algorithm for its
row, and all agents in the row follow the algorithm to completion once awakened.
However, after deciding on a color but before halting, each agent in the row tells its
color to above and below neighbors. When an agent is awoken with a color, it decides
that color and forwards the color either above or below before halting.

Theorem 8. Given an algorithm for the k-ribbon problem which takes T(n,k) rounds,
M(n,k) total message bits, and S(n,k) bits of memory per agent, Algorithm Up &
Down solves the k-flag problem on a a× b grid with at most a+ T(b,k) rounds,
ablogk+M(b,k) total message bits, and S(b,k) bits of memory per agent.

Other reductions to the k-ribbon problem that optimize for round complexity
rather than space and message bit complexity are left to the reader.

4.2 Message-Passing Lower Bounds

There are straightforward lower bounds for the 1D and 2D cases.

Theorem 9. No algorithm exists that can solve the k-Ribbon problem on an oriented
line graph if all agents are identical, even if endpoints know that they are endpoints,
in less than (2− 1

k)·n−3 rounds.

Theorem 10. No algorithm exists to solve the k-flag problem on an a×b grid in
less than max{(2− 1

k)·b−k,a+b−2} rounds.

Conclusion

The 1D French ribbon problem can be solved exactly and approximately in both the
concentration and the message passing models. However, the 2D French flag problem
requires additional positional information in order to satisfy size invariance.

One direct extension of this work is a randomized version of the Silent Count
algorithm (Theorem 4). An exciting new research direction is how other pattering
problems can be solved in more general settings and under the influence of noise.
Future work could develop models that better capture important biological constraints.
For example, one could study models in which part of an organism (e.g., a finger or
the beak of a bird) grows over time.
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