A Tight Lower Bound for Processor Coordination*

Soma Chaudhurif Maurice Herlihy* Nancy A. Lynchf Mark R. Tuttle?

Abstract

We prove a tight lower bound on the running time of oblivious solutions to k-set agreement.
In k-set agreement, processors start with input values from a given set and choose output values
from the same set. In every execution, the set of output values must be contained in the set
of input values, and the set of output values must have size at most k. A solution is oblivious
if it does not make use of processor identities. We analyze this problem in a synchronous
model where processors can fail by just stopping. We prove a lower bound of | f/k| + 1 rounds
of communication for oblivious solutions that tolerate f failures. This shows that there is an
inherent trade-off between the running time, the degree of coordination required, and the number
of faults tolerated, even in idealized models like ours.

1 Introduction

Many of the problems that arise when building a responsive system are related to problems in
theoretical distributed computing. These problems include coordinating the activities of concur-
rent processors—both the actions they perform and the resources they use—and resolving the
conflicts that arise, recovering from the failure of processors and communication links, and coping
with uncertainty about the amount of time taken by events like message delivery and processor
steps. Given the long history of theoretical work on these problems in distributed computing, it
is reasonable to hope that some of the tools and techniques developed there might be useful when
building and analyzing responsive systems. For example, over the years, the theory has developed
some sophisticated techniques for proving lower bounds on the amount of time or resources needed
to solve a problem in a distributed system, and we believe these techniques may be useful when
proving lower bounds in responsive systems. In this paper, we illustrate an elegant combination of
these techniques [FL82, DM90, MT88, Cha9l, HS93] by proving a tight lower bound on the time
needed to solve a processor coordination problem called k-set agreement [Cha91].

The k-set agreement problem is defined as follows. Each processor in the system starts with
an arbitrary input value from a set V', and halts after choosing an output value from V. These
output values must satisfy two conditions: each output value must be some processor’s input value,

*This paper appeared in Proceedings of the Third International Workshop on Responsive Computer Systems, pages
4-15, September 1993.

'MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139. Authors’ email addresses
are soma@theory.lcs.mit.edu and lynch@theory.lcs.mit.edu. Supported in part by NSF grant CCR-89-15206,
DARPA contracts N00014-89-J-1988, N00014-92-J-4033, and N00014-92-J-1799, and ONR contract N00014-91-J-
1046.

*Digital Equipment Corporation, Cambridge Research Lab, One Kendall Square, Bldg. 700, Cambridge, MA
02139. Authors’ email addresses are herlihy@crl.dec.com and tuttle@crl.dec.com.

and at most k£ distinct output values are chosen. The first condition rules out trivial solutions
in which a hardwired value v € V is chosen by all processors in all executions, and the second
condition requires that the processors coordinate their choices in some way. When & = 1, the
second condition requires that all processors choose the same output value, so 1-set agreement is
equivalent to the well-known consensus problem [LSP82, PSL80, FL82, FLP85, Dol82, Fis83]. The
consensus problem demands a high degree of processor coordination, and arises in applications as
diverse as on-board aircraft control [W*78], database transaction commit [BHG87], and concurrent
object design [Her88]. Varying the value of k allows us to vary the degree of coordination required.

Before we can prove any lower bound for k-set agreement in a responsive system, we have to
choose a system model. The purpose of a model is to define the set of behaviors that the processors
in the system can exhibit. The strategy for proving a lower bound is to show that, in one of these
behaviors, the processors run for a long time before solving the problem. Choosing the right system
model is difficult, since it is not clear what properties determine whether a system is responsive or
not. Fortunately, there is a popular model in distributed computing that is likely to be a special case
of whatever more general model emerges as the definition of a responsive system. The synchronous
model consists of n processors that communicate by sending messages over a completely connected
network. The model makes some strong (and possibly unrealistic) assumptions, such as that all
processors take steps at the same rate, and that all messages take the same amount of time to be
delivered. Communication is considered to be reliable, but up to f processors can fail by stopping
in the middle of their protocol.

We prove our lower bound in this synchronous model, and we show that any oblivious protocol
for k-set agreement in this model requires | f/k] + 1 rounds of communication in the worst case,
assuming n > f+k-+1 (that is, there are at least k+ 1 nonfaulty processors). Loosely speaking, an
oblivious protocol is one that is oblivious to processor identities, in the sense that two processors
receiving the same set of messages will choose the same output value, regardless of their processor
ids. This lower bound is tight, since Chaudhuri has already demonstrated a protocol solving k-set
agreement in | f/k|+1 rounds [Cha91].! In addition, since consensus is 1-set agreement, this lower
bound implies the well-known lower bound of f 4 1 rounds for consensus when n > f + 2. Our
lower bound is intriguing because it shows that there is a smooth and inescapable tradeoff between
the number f of faults tolerated, the degree k& of coordination demanded, and the execution time
required.

Our synchronous model is a special case of almost every realistic model of a responsive system
we can imagine. Proving lower bounds in this model is a good idea, because any lower bound
holding in this model also holds in more general models. For example, consider the slightly more
realistic partially synchronous model. In this model, the rate at which processors take steps varies
between two constants ¢; and cs, and message delivery times vary between 0 and d. Every be-
havior possible in the synchronous model corresponds to an orderly, well-behaved execution in the
partially synchronous model in which all processors take steps every ¢; time units and all messages
are delivered in d time units, so the existence of a long execution in the first model implies the
existence of a long execution in the second. In particular, our lower bound of | f/k] + 1 rounds in
the synchronous model translates into a lower bound of (| f/k| 4+ 1)d time units in the partially
synchronous model.

'In the same paper, she also proves the matching lower bound of | f/k] + 1 rounds for k-set agreement, but for
a much more restricted class of protocols. In particular, a protocol’s decision function can depend only on vectors
giving partial information about which processors started with which initial values, but can not depend on processor
identities or message histories.

The problem with this kind of translation is that the translated lower bound may not be
as tight as possible. For example, the well-known f 4 1 round lower bound for consensus in the
synchronous model translates into a lower bound of (f+1)d time units in the partially synchronous
model. On the other hand, Attiya et al. [ADLS93] have proven a lower bound of (f — 1)d + Cd,
where C' = ¢y/c1, and this is better than the translated lower bound when C > 2. We think that
proving lower bounds for k-set agreement in this partially synchronous model is important. Either
the techniques in [ADLS93] can be used to translate our lower bound for k-set agreement into this
model, or new techniques will be required. In either case, we will better understand how to reason
about responsive systems. Good lower bounds in this model remain for future work.

2 Overview

In this section, we give an informal overview of our lower bound proof for k-set agreement. Suppose
P is a protocol solving k-set agreement in r rounds, and tolerating the failure of f out of n processors.
Our goal is to consider the global states that occur at time r in executions of P, and to show that
in one of these states there are k + 1 processors that have chosen &k + 1 distinct values, violating
k-set agreement. Our strategy is to consider the local states of processors that occur at time r
in executions of P, and to investigate the combinations of these local states that occur in global
states. This investigation depends on constructing a geometric object, and in this section we use
a simplified version of this object to illustrate the general ideas in the proof. These ideas include
ideas due to Chaudhuri [Cha91, Cha93], Fischer and Lynch [FL82], Herlihy and Shavit [HS93], and
Dwork, Moses, and Tuttle [DM90, MT88].

We begin by constructing a k-dimensional simplez in k-dimensional Euclidean space [Cha93,
HS93]. A simplex is just the natural generalization of a triangle to k dimensions: for example,
a 1-dimensional simplex is an edge, a 2-dimensional simplex is a triangle, and a 3-dimensional
simplex is a tetrahedron. We jokingly refer to this simplex as the Bermuda Triangle B, since all
fast protocols vanish somewhere in its interior. The simplex contains a number of grid points,
which are the points in Euclidean space with integer coordinates. We triangulate this simplex with
respect to these grid points via a collection of smaller k-dimensional simplexes. We then label each
grid point with a local state in such a way that for each simplex T in the triangulation there is a
global state g consistent with the local states labeling the simplex: for each local state s labeling a
corner of T', there is a nonfaulty processor p with local state s in g.

A simplified Bermuda Triangle B is illustrated in Figure 1, assuming P is a protocol for 5
processors solving 2-set agreement in 1 round. Given 3 distinct input values a, b, ¢, we write bb7aa
to denote the local state of a processor p at the end of a round in which the first two processors have
input value b and send messages to p, the middle processor fails to send a message to p, and the
last two processors have input value a and send messages to p. We label the points of B with local
states as shown in Figure 1. Following any horizontal line from left to right, the input values are
changed from a to b. The value of each processor is changed (one after another) by first silencing
the processor, and then reviving the processor with the input value b. Similarly, moving along any
vertical line from bottom to top, processors’ input values change from b to c.

This labeling of local states has the following property. In the local state on a corner of B, each
processor starts with the same input value, so any processor with this local state at the end of P
must choose this value. In a local state on an edge of B, each processor starts with one of the two
input values labeling the ends of the edge, so any processor with this local state at the end of P

CCCaa

ccece
cc?aa cc?aa
ccec? ccec?
ccecca ccech
?
coc2a cec?b cc?aa cchaa
cccaa cccbb
ccaa cc?bb c??aa c?baa
ccaaa ccbbb
2 ?bbb
creaa ¢ ch?aa cbhbaa
caaaa cbbbb
2aaaa ?bbbb
?b?aa ?bbaa
aaaaa bbbbb
?: ?; 2, ?: ?
?aaaa b b?aaa bbasa bb?aa bbbaa bbb?a bbbba bbbb?
bb?aa bbbaa

Figure 1: The Bermuda Triangle for 5 processors and a 1-round protocol for 2-set agreement.

must choose one of these two values. Similarly, in a local state in the interior of B, any processor
with this local state at the end of P must choose one of the three values labeling the corners of B.

Now let us “color” each grid point with the output value that P has a processor choose when its
local state is the state labeling the grid point. This coloring of B has the property that the color of
each of the corners is determined uniquely, the color of each point on an edge between two corners
is forced to be the color of one of the corners, and the color of each interior point can be the color
of any corner. Colorings with this property are called Sperner colorings, and have been studied
extensively in the field of algebraic topology. At this point, we exploit a remarkable combinatorial
result first proved in 1928: Sperner’s Lemma [Spa66, p.151] states that any Sperner coloring of any
triangulated k-dimensional simplex must include at least one simplex whose corners are colored
with all £+ 1 colors. In our case, however, this simplex corresponds to a global state in which £+ 1
processors choose k + 1 distinct values, which contradicts the definition of k-set agreement. Thus,
in the case illustrated above, there is no protocol for 2-set agreement halting in 1 round.

The technical challenge in this paper is labeling the grid points of B with local states when the
protocol P runs for more than a single round. Our approach consists of three steps. First, we label
points on the edges of B with global states. For example, consider the edge between the corner
where all processors start with input value a and the corner where all processors start with 6. We
construct a long sequence of global states that begins with a global state in which all processors start
with a, ends with a global state in which all processors start with b, and in between systematically
changes input values from a to b. These changes are made so gradually, however, that for any
two adjacent global states in the sequence, at most one processor can distinguish them. Second,
we then label each remaining point by combining global states on the edges. Finally, we project

each global state onto the local state of an arbitrarily chosen nonfaulty processor, completing the
labeling of B.

In the remainder of the paper, we define k-set consensus and our model more precisely, describe
the construction above in more detail, and discuss generalizing our lower bound to other models.

3 The Problem

In this section, we define the k-set agreement problem, define our model of computation, and define
a compact representation of global and local states.

3.1 k-Set Agreement

The k-set agreement problem [Cha91] is defined as follows. We assume that each processor p; has
two private registers in its local state, a read-only input register and a write-only output register.
Initially, p;’s input register contains an arbitrary input value v; from a set V containing at least k41
values, and its output register is empty. A protocol solves the problem if it causes each processor
to halt after writing an output value to its output register in such a way that (1) every processor’s
output value is some processor’s input value, and (2) the set of output values chosen has size at
most k.

3.2 Model

We use a synchronous, message-passing model with processor stopping failures. The system con-
sists of n processors, p1,...,pn. Processors share a global clock that starts at 0 and advances in
increments of 1. Computation proceeds in a sequence of rounds, with round r lasting from time r—1
to time r. Computation in a round consists of three phases: first each processor p sends messages
to some of the processors in the system, possibly including itself, then it receives the messages
sent to it during the round, and finally it performs some local computation and changes state.
We assume that the communication network is totally connected: every processor is able to send
distinct messages to every other processor in every round. We also assume that communication is
reliable (although processors can fail): if p sends a message to ¢ in round 7, then the message is
delivered to ¢ in round 7.

Processors follow a deterministic protocol that determines what messages a processor should
send and what output a processor should generate. A protocol has two components: a message
component that maps a processor’s local state to the list of messages it should send in the next
round, and an output component that maps a processor’s local state to the output value (if any)
that it should choose. Processors can be faulty, however, and any processor p can simply stop at
any time r. In this case, processor p follows its protocol and sends all messages the protocol requires
in rounds 1 through r — 1, sends some subset of the messages it is required to send in round r, and
sends no messages in rounds after r. We say that p is silent from round r if p sends no messages
in round r or later.

A full-information protocol is one in which every processor broadcasts its entire local state to
every processor, including itself, in every round. For simplicity, and without loss of generality,
we restrict attention to full-information protocols. Thus, in an r round full-information protocol,

Figure 2: A three-round communication graph.

processors exchange their local states for r rounds and then simultaneously apply their output
functions to their local states to choose an output value.

We need one more technical restriction. An r-round full-information protocol is said to be
oblivious if the output component applied to processor states occurring after r rounds is a function
of just the list of messages a processor p receives in the rth round, independent of p’s proces-
sor id. We assume that our protocols are oblivious, but more recent results have removed this

restriction [CHLT93].

3.3 Communication Graphs

We end this section with a compact way to represent an execution of a full-information protocol
P called a communication graph [MT88]. The communication graph G for an r-round execution
of P is a two-colored graph. The vertices form an n X r grid, with processor names 1 through n
labeling the vertical axis and times 0 through r labeling the horizontal axis. The node representing
processor p at time ¢ is labeled with the pair {p,?). Given any pair of processors p and ¢ and any
round 1, there is an edge between (p,7 — 1) and (g, 1) whose color determines whether p successfully
sends a message to ¢ in round ¢: the edge is green if p succeeds, and red otherwise. In addition,
each node (p,0) is labeled with p’s input value. Figure 2 illustrates a three round communication
graph; in this figure, only green edges are indicated.

In the stopping failure model, a processor is silent in all rounds following the round in which it
stops. This means that all communication graphs representing executions in this model have the
consistency property that if there is a red edge from (p,7 — 1) to (g, 7), then all edges leaving nodes
of the form (p, j), 7 > 1+ 1, are also red. We assume that all communication graphs in this paper
have this property, and we note that every r-round graph with this property corresponds to an
r-round execution of P.

Since a communication graph G describes an execution of P, it also determines the global state
at the end of P, so we sometimes refer to G as a global communication graph. In addition, for
each processor p, there is a subgraph of G that corresponds to the local state of p at the end of P,
and we refer to this subgraph as a local communication graph. If G is an r-round graph, the local
communication graph for p is the is the subgraph G(p) containing all the information visible to p.
Namely, G(p) consists of the node (p,r) and all earlier nodes reachable from (p,r) by a sequence
(directed backwards in time) of green edges followed by at most one red edge. In the remainder of
this paper, we use graphs to represent states, and the word “graph” should be substituted for the
word “state” wherever we used “state” in the informal overview of Section 2.

If G is an r-round communication graph, then the output produced by process p in the cor-
responding execution can be represented as a function of the local communication graph of p at

time r. In an oblivious protocol, this output is actually a function of a reduced form of the local
communication graph, with the processor label (p,r) removed from the final node (p,).

4 The Bermuda Triangle

We now define the Bermuda Triangle B, which is the heart of our proof. For the rest of this paper,
suppose there exists a protocol P solving k-set agreement in r rounds and tolerating the failure of
f out of n processors, and suppose n > f + k+ 1 and rk < f (which implies r < | f/k]). We will
use the Bermuda Triangle to prove that there exists an execution of P in which & + 1 processors
choose k 4 1 distinct values, violating the definition of k-set agreement.

We define the Bermuda Triangle B in three steps. First we describe the structure of the triangle
(really, a k-dimensional simplex), and its triangulation into smaller simplexes. Next we show how to
label the points of B with (global) communication graphs. Finally, we project each communication
graph onto the reduced local graph of some nonfaulty processor, thus producing a labeling of
points of B with reduced local communication graphs. Each simplex in the triangulation of B will
be labeled with compatible local graphs.

The structure of the Bermuda Triangle B is defined by a k-dimensional simplex in k-dimensional
Euclidean space, the k-dimensional analogue of a triangle. The corners of the triangle B are the

k + 1 grid points (0,...,0), (N,0,...,0), (N, N,0,...,0), ..., (N,...,N), where N is some huge
integer to be determined in Section 4. The points of B are the grid points contained in B, namely
the grid points of the form z = (21, ..., zk), where the z; are integers between 0 and N satisfying
T; > Tiyl.

The Bermuda Triangle B is triangulated with respect to its points by a collection of smaller
k-dimensional simplexes whose corners are points of B. We sometimes refer to them as primitive
simplezes to distinguish them from the simplex B itself. Speaking informally, these primitive
simplexes are defined as follows: pick any point of B and walk one step in the positive direction
along each dimension. The set of k + 1 points visited by this walk are the corners of the simplex,
and the triangulation consists of all simplexes determined by such walks. This is known as Kuhn’s
triangulation [Cha93].

We can now define the assignment of global communication graphs to points in B. We begin by
defining three simple operations on communication graphs. Then we define a sequence o[v] of these
operations that can be used to change any failure-free communication graph to the failure-free graph
with all inputs equal to v, by changing just one edge or input value at a time. Finally, we use the
intermediate graphs in this sequence to construct a labeling of the points of B by communication
graphs.

The operations on communication graphs are as follows:

1. delete(t, p, q): This operation changes the color of the edge between {p,¢ — 1) and (g, ¢) to red,
and has no effect if the edge is already red. This makes the delivery of the round ¢ message
from p to q unsuccessful. It can only be applied to a graph if p and q are silent in rounds 1+ 1
through r.

2. add(t,p, q): This operation changes the color of the edge between (p, ¢ — 1) and (g, 7) to green,
and has no effect if the edge is already green. This makes the delivery of the round i message
from p to ¢ successful. It can only be applied to a graph if p and g are silent in rounds 7z + 1
through r, and if p does not fail in rounds 1 through ¢ — 1.

3. change(p,v): This operation changes the input value for processor p to v, and has no effect if
the value is already v. It can only be applied to a graph if p is silent in rounds 1 through r.

In each case, since p and q are silent from the moment of the change, no other processor can detect
the change.

We now define a sequence o[v] of graph operations that can be applied to a failure-free graph G,
resulting in another failure-free graph G[v] in which all processors have input v. Given a graph G,
let G;[v] be a graph identical to G, except that processor p; has input v. Moses and Tuttle [MT88]
prove a technical lemma implying that there is a “similarity chain” of graphs between G and G;[v].
The proof shows that each graph in the chain can be obtained from the preceding graph by applying
a sequence of graph operations of the three kinds defined above, and that at most r processors fail in
any graph in the chain. Their proof is a refinement of a similar proof by Dwork and Moses [DM90],
and implies the following:

Lemma 1: If G is a failure-free graph, then there is a sequence o;[v] of graph operations that
transforms G into G;[v] and fails at most r processors at any step.

By concatenating some of these operation sequences, we can transform G into G[v] by changing
processors’ input values one at a time:

Lemma 2: Let o[v] = o1[v]- - -ou[v]. If G is a failure free graph, then o[v] transforms G into G[v]
and fails at most r processors at any step.

Now we can define the parameter N used in defining the shape of B: N is the length of the
sequence o[v].

Next we describe how to label points in B with communication graphs. For simplicity, and
without loss of generality, let 0,..., %k be the set of & + 1 distinct input values. Informally, we will
use the operations in o[1],..., o[k] along the respective dimensions 1,...,k in B, and “merge” the
results from different dimensions.

More formally, we define the merge of a collection Hi, ..., Hy of r-round communication graphs
as follows: first, an edge e is colored red if it is red in any of the graphs Hi,...,Hg, and green
otherwise; and second, an initial node (p,0) is labeled with the maximum ¢ such that (p,0) is
labeled with ¢ in #;, (or 0 if no such ¢ exists). The first condition says that a message is missing in
the merged graph if it is missing in any of the communication graphs. To understand the second
condition, study Figure 1 and notice that if we move along any line in the jth dimension, then
processor input values are being changed from j7 — 1 to j. If we choose a grid point z in B and
move from the origin to £ by moving along each dimension in turn, then the second condition is
just a compact way of identifying the last dimension in which a processor’s input value is changed,
and hence identifying the processor’s final input value.

Now let z = (z1,...,2k) be an arbitrary point of B. For each value i, let F; be the failure-free
communication graph in which all processors have input ¢. For each coordinate 7, let o; be the
prefix of o[j] consisting of the first z; operations, and let H; be the result of applying o; to F;_;.
In H;, some subset pi,...,p; of the processors have had their inputs changed from j — 1 to j.
The graph G labeling z is defined to be the merge of H,..., Hg. It turns out that G satisfies the
consistency property required by the definition of a communication graph, and so it is actually
a communication graph. We can also show that, for any set of communication graphs Gy, ..., Gk

labeling a primitive simplex in B, the set of processors that fail in any graph G; is of size no greater
than kr, which is no greater than f.

Now we define the assignment of reduced local communication graphs to points in B. Suppose
that z is any point in B, and that z is labeled with global communication graph G. Let p be any
nonfaulty processor in G, and let £ be the reduced local communication graph of p in G. Then
L will be the reduced local communication graph associated with z. We can show that the local
graphs labeling a simplex are guaranteed to be consistent with some global communication graph
with no more than f failures:

Lemma 3: Let Log,..., L be the reduced local communication graphs labeling a simplex. Then
there are distinct processors qq, ..., ¢x and a communication graph G with at most f faulty proces-
sors, in which all the ¢; are nonfaulty and each ¢; has reduced local communication graph L;.

5 The Lower Bound

We now state Sperner’s Lemma [Spa66, p.151], and use it to prove our lower bound on the number
of rounds required to solve k-set agreement.

Remember that a k-dimensional simplex S (like the Bermuda Triangle) is determined by & + 1
grid points called corners, and an ¢-dimensional face F' of this simplex is an £-dimensional simplex
determined by £+ 1 corners of S. Both the simplex S and the face F' contain some set of grid
points called the points of § and F. The simplex S is triangulated with respect to its points via a
collection of primitive simplexes as defined earlier. We note that these primitive simplexes partition
the space defined by S, and that if a point is contained in a primitive simplex, then it is a corner
of that simplex.

A Sperner coloring of a k-simplex S is a coloring of the points of S using &£+ 1 colors such that
each corner of S is colored with a distinct color, and the color of every point contained in a face F
of S is the color of a corner of F. Sperner’s Lemma says that Sperner colorings have a remarkable

property:

Lemma 4 (Sperner’s Lemma): Given a Sperner Coloring of a k-simplex S and a triangulation
of § with respect to its points into primitive k-simplexes, there is a primitive k-simplex whose £+ 1
corners are colored with k + 1 distinct colors.

Now consider the protocol P and the corresponding Bermuda Triangle B defined in the previous
section, and define a coloring Cp of B as follows. If £ is the reduced local communication graph
labeling a point z, then color z with the value v that the assumed protocol P causes any processor
to choose when L is its reduced local communication graph. Since P is an oblivious protocol, this
coloring Cp is well-defined. Now we can show that Cp is a Sperner coloring of B, and we can apply
Sperner’s Lemma and find a global communication graph in which & + 1 processors choose k£ + 1
distinct values, contradicting the fact that P solves k-set agreement:

Theorem 5: If n > f + k + 1, then no oblivious protocol for k-set agreement can halt in fewer

than | f/k] + 1 rounds.

Proof: As above, suppose P is an oblivious protocol for k-set agreement tolerating f faults and
halting in » < | f/k]| rounds. Let B be the Bermuda Triangle constructed as above, and Cp the
coloring of B derived from P. Since Cp is a Sperner coloring of B, Sperner’s Lemma 4 implies that

there is a primitive simplex S in B whose corners are colored by the k£ + 1 distinct values 0, ..., k.
Let Lo, ..., Ly be the reduced local communication graphs labeling the corners of §.
Lemma 3 implies that there are distinct processors qo,...,qr and a communication graph G

in which all the ¢; are nonfaulty and each ¢; has reduced local communication graph £;. This
implies that in the execution associated with communication graph G, the k+1 processors qq, . . ., gk
collectively produce the k+1 distinct output values 0, ..., k+1. But this contradicts the assumption
that P solves the k-set agreement problem.]

6 Generalizing to the Partially Synchronous Model

As we mentioned in the introduction, one important problem left open by this paper is the gener-
alization of our lower bound from the synchronous model to the partially synchronous model. The
key to this problem may lie in work by Attiya et al. [ADLS93]. They generalize the well-known
lower bound of f+ 1 rounds for consensus in the synchronous model [FL82] to (f — 1)d 4+ Cd time
units in the partially synchronous model, where f is the number of processor failures allowed, d
is the upper bound on message delivery time, and C' is the ratio between the fastest and slowest
processor step times c¢; and cs. We hope that their proof technique will help us to generalize our
lower bound of | f/k| + 1 rounds for k-set agreement in the synchronous model to something like
(Lf/k] —1)d+Cd time units in the partially synchronous model, so we end this paper with a sketch
of their proof.

Consider the consensus problem in which {0,1} is the set of input values, and suppose P is a
protocol for consensus that halts in time less than (f — 1)d 4+ Cd. Given a finite execution a of P,
a fast, failure-free extension of « is one in which all processors run using the fastest step time ¢;
and no additional processors fail. The execution « is v-valent if v is the output value in every fast,
failure-free extension of @, in which case v is the valence of . The execution « is univalent if it is
v-valent for some v, and bivalent otherwise.

The key idea in the proof is the notion of “retiming” executions—taking one execution with
processors running at one speed and transforming it into another execution with processors running
at another speed—and this idea is captured within a single key lemma. Let @ and a; be two
executions of length ¢t > (f — 1)d, and suppose that a total of at most f — 1 processors fail in
the two executions, and that p is the only processor with different views in the two executions.
The lemma states that if ap and a; are both univalent, then they have the same valence. To
see this, suppose ag and a; are 0- and 1-valent, respectively. Extend both executions by failing
all the processors that failed in either ag and a1, plus the one processor to which the executions
appear different. Allow the remaining processors to take steps using the slowest step time c;. By
the definition of consensus and the execution time of P, within an additional time less than Cd,
both extensions must yield outputs. Furthermore, these outputs must be identical; without loss
of generality, suppose the outputs are 0. Now modify the extension of a; to get a contradiction
to the 1-valence assumption. Namely, shrink the slow extension so that all processors run using
the fastest step time c¢;; this means that the extension takes time less than d. Also, instead of
failing any new processors in the extension, keep them alive but allow their messages to take the
maximum delivery time d. This means that they will not arrive in time to cause any change in the

10

output value 0. It follows that 0 results from a fast failure-free extension of a;, which contradicts
the 1-valence of @y, and the lemma follows.

This lemma is applied twice to prove the lower bound. First, we prove that there is a bivalent
execution o of length at least (f — 1)d in which at most f — 1 processors fail. If not, then all such
executions « are univalent, and we can use techniques like the ones in this paper and in [FL82] to
prove the existence of 0- and 1-valent executions ag and «; satisfying the hypothesis of the key
lemma; but the key lemma says that they must have the same valence, which is a contradiction.
Second, given the existence of a bivalent execution o, there must be a “maximal” bivalent execution
o that has no bivalent extension. Using the assumption that all extensions of a terminate in an
additional Cd time, there are two extensions of a of the same length, one 0-valent and the other 1-
valent, and again we can use techniques like the ones in this paper and [FL82] to prove the existence
of 0- and 1-valent extensions that are nearly identical. The resulting pair of executions satisfy the
hypothesis of the key lemma, so they must have the same valence, which is a contradiction.

This retiming technique is interesting because it exploits the need to time out failed messages—
the need for a processor to wait up to Cd time to ensure itself that d time has actually passed,
and hence ensure itself that an expected but undelivered message will never arrive—which is the
primary difficulty of programming in this model. We believe this technique will be helpful in the
case of k-set agreement, but we have been unsuccessful so far, and this remains for future work.

References

[ADLS93] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds on the
time to reach agreement in the presence of timing uncertainty. Journal of the ACM,
1993. To appear. An earlier version appeared in ACM STOC, 1991.

[BHGS87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1987.

[Cha9l] Soma Chaudhuri. Towards a complexity hierarchy of wait-free concurrent objects. In
Proceedings of the 3rd IEEE Symposium on Parallel and Distributed Processing. IEEE,
December 1991. Also appeared as Technical Report No. 91-024, lowa State University,
1991.

[Cha93] Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally
asynchronous systems. Information and Computation, 105:132-158, July 1993. A pre-
liminary version appeared in ACM PODC, 1990.

[CHLT93] Soma Chaudhuri, Maurice Herlihy, Nancy Lynch, and Mark R. Tuttle. A tight lower
bound for k-set agreement. In Proceedings of the 34th IEEE Symposium on Foundations
of Computer Science. IEEE, October 1993. To appear.

[DM90] Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a Byzantine
environment: Crash failures. Information and Computation, 88(2):156-186, October
1990.

[Dol82] Danny Dolev. The byzantine generals strike again. Journal of Algorithms, 3(1):14-30,
March 1982.

11

[Fis83]

[FL82]

[FLP85]

[Her88]

[HS93]

[LSP82]

[MT88]

[PSL80]

[Spa66]
[WT78]

Michael J. Fischer. The consensus problem in unreliable distributed systems (a brief
survey). In Marek Karpinsky, editor, Proceedings of the 10th International Colloquium
on Automata, Languages, and Programming, pages 127-140. Springer-Verlag, 1983. A
preliminary version appeared as Yale Technical Report YALEU/DCS/RR-273.

Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive
consistency. Information Processing Letters, 14(4):183-186, June 1982.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis-
tributed consensus with one faulty processor. Journal of the ACM, 32(2):374-382, 1985.

Maurice Herlihy. Impossibility and universality results for wait-free synchronization. In
Proceedings of the Tth Annual ACM Symposium on Principles of Distributed Computing,
pages 276-290. ACM, August 1988.

Maurice P. Herlihy and Nir Shavit. The asynchronous computability theorem for t-
resilient tasks. In Proceedings of the 25th ACM Symposium on Theory of Computing,
pages 111-120. ACM, May 1993.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382-401, July 1982.

Yoram Moses and Mark R. Tuttle. Programming simultaneous actions using common
knowledge. Algorithmica, 3(1):121-169, 1988.

Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the pres-
ence of faults. Journal of the ACM, 27(2):228-234, 1980.

E.H. Spanier. Algebraic Topology. Springer-Verlag, New York, 1966.

J. H. Wensley et al. Sift: Design and analysis of a fault-tolerant computer for aircraft
control. Proceedings of the IEEE, 66(10):1240-1255, October 1978.

12

