
A Tight Lower Bound for Processor Coordination�Soma Chaudhuriy Maurice Herlihyz Nancy A. Lynchy Mark R. TuttlezAbstractWe prove a tight lower bound on the running time of oblivious solutions to k-set agreement.In k-set agreement, processors start with input values from a given set and choose output valuesfrom the same set. In every execution, the set of output values must be contained in the setof input values, and the set of output values must have size at most k. A solution is obliviousif it does not make use of processor identities. We analyze this problem in a synchronousmodel where processors can fail by just stopping. We prove a lower bound of bf=kc+ 1 roundsof communication for oblivious solutions that tolerate f failures. This shows that there is aninherent trade-o� between the running time, the degree of coordination required, and the numberof faults tolerated, even in idealized models like ours.1 IntroductionMany of the problems that arise when building a responsive system are related to problems intheoretical distributed computing. These problems include coordinating the activities of concur-rent processors|both the actions they perform and the resources they use|and resolving thecon
icts that arise, recovering from the failure of processors and communication links, and copingwith uncertainty about the amount of time taken by events like message delivery and processorsteps. Given the long history of theoretical work on these problems in distributed computing, itis reasonable to hope that some of the tools and techniques developed there might be useful whenbuilding and analyzing responsive systems. For example, over the years, the theory has developedsome sophisticated techniques for proving lower bounds on the amount of time or resources neededto solve a problem in a distributed system, and we believe these techniques may be useful whenproving lower bounds in responsive systems. In this paper, we illustrate an elegant combination ofthese techniques [FL82, DM90, MT88, Cha91, HS93] by proving a tight lower bound on the timeneeded to solve a processor coordination problem called k-set agreement [Cha91].The k-set agreement problem is de�ned as follows. Each processor in the system starts withan arbitrary input value from a set V , and halts after choosing an output value from V . Theseoutput values must satisfy two conditions: each output value must be some processor's input value,�This paper appeared in Proceedings of the Third International Workshop on Responsive Computer Systems, pages4{15, September 1993.yMIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139. Authors' email addressesare soma@theory.lcs.mit.edu and lynch@theory.lcs.mit.edu. Supported in part by NSF grant CCR-89-15206,DARPA contracts N00014-89-J-1988, N00014-92-J-4033, and N00014-92-J-1799, and ONR contract N00014-91-J-1046.zDigital Equipment Corporation, Cambridge Research Lab, One Kendall Square, Bldg. 700, Cambridge, MA02139. Authors' email addresses are herlihy@crl.dec.com and tuttle@crl.dec.com.1

and at most k distinct output values are chosen. The �rst condition rules out trivial solutionsin which a hardwired value v 2 V is chosen by all processors in all executions, and the secondcondition requires that the processors coordinate their choices in some way. When k = 1, thesecond condition requires that all processors choose the same output value, so 1-set agreement isequivalent to the well-known consensus problem [LSP82, PSL80, FL82, FLP85, Dol82, Fis83]. Theconsensus problem demands a high degree of processor coordination, and arises in applications asdiverse as on-board aircraft control [W+78], database transaction commit [BHG87], and concurrentobject design [Her88]. Varying the value of k allows us to vary the degree of coordination required.Before we can prove any lower bound for k-set agreement in a responsive system, we have tochoose a system model. The purpose of a model is to de�ne the set of behaviors that the processorsin the system can exhibit. The strategy for proving a lower bound is to show that, in one of thesebehaviors, the processors run for a long time before solving the problem. Choosing the right systemmodel is di�cult, since it is not clear what properties determine whether a system is responsive ornot. Fortunately, there is a popular model in distributed computing that is likely to be a special caseof whatever more general model emerges as the de�nition of a responsive system. The synchronousmodel consists of n processors that communicate by sending messages over a completely connectednetwork. The model makes some strong (and possibly unrealistic) assumptions, such as that allprocessors take steps at the same rate, and that all messages take the same amount of time to bedelivered. Communication is considered to be reliable, but up to f processors can fail by stoppingin the middle of their protocol.We prove our lower bound in this synchronous model, and we show that any oblivious protocolfor k-set agreement in this model requires bf=kc + 1 rounds of communication in the worst case,assuming n � f +k+1 (that is, there are at least k+1 nonfaulty processors). Loosely speaking, anoblivious protocol is one that is oblivious to processor identities, in the sense that two processorsreceiving the same set of messages will choose the same output value, regardless of their processorids. This lower bound is tight, since Chaudhuri has already demonstrated a protocol solving k-setagreement in bf=kc+1 rounds [Cha91].1 In addition, since consensus is 1-set agreement, this lowerbound implies the well-known lower bound of f + 1 rounds for consensus when n � f + 2. Ourlower bound is intriguing because it shows that there is a smooth and inescapable tradeo� betweenthe number f of faults tolerated, the degree k of coordination demanded, and the execution timerequired.Our synchronous model is a special case of almost every realistic model of a responsive systemwe can imagine. Proving lower bounds in this model is a good idea, because any lower boundholding in this model also holds in more general models. For example, consider the slightly morerealistic partially synchronous model. In this model, the rate at which processors take steps variesbetween two constants c1 and c2, and message delivery times vary between 0 and d. Every be-havior possible in the synchronous model corresponds to an orderly, well-behaved execution in thepartially synchronous model in which all processors take steps every c1 time units and all messagesare delivered in d time units, so the existence of a long execution in the �rst model implies theexistence of a long execution in the second. In particular, our lower bound of bf=kc+ 1 rounds inthe synchronous model translates into a lower bound of (bf=kc + 1)d time units in the partiallysynchronous model.1In the same paper, she also proves the matching lower bound of bf=kc + 1 rounds for k-set agreement, but fora much more restricted class of protocols. In particular, a protocol's decision function can depend only on vectorsgiving partial information about which processors started with which initial values, but can not depend on processoridentities or message histories. 2

The problem with this kind of translation is that the translated lower bound may not beas tight as possible. For example, the well-known f + 1 round lower bound for consensus in thesynchronous model translates into a lower bound of (f+1)d time units in the partially synchronousmodel. On the other hand, Attiya et al. [ADLS93] have proven a lower bound of (f � 1)d+ Cd,where C = c2=c1, and this is better than the translated lower bound when C > 2. We think thatproving lower bounds for k-set agreement in this partially synchronous model is important. Eitherthe techniques in [ADLS93] can be used to translate our lower bound for k-set agreement into thismodel, or new techniques will be required. In either case, we will better understand how to reasonabout responsive systems. Good lower bounds in this model remain for future work.2 OverviewIn this section, we give an informal overview of our lower bound proof for k-set agreement. SupposeP is a protocol solving k-set agreement in r rounds, and tolerating the failure of f out of n processors.Our goal is to consider the global states that occur at time r in executions of P , and to show thatin one of these states there are k + 1 processors that have chosen k + 1 distinct values, violatingk-set agreement. Our strategy is to consider the local states of processors that occur at time rin executions of P , and to investigate the combinations of these local states that occur in globalstates. This investigation depends on constructing a geometric object, and in this section we usea simpli�ed version of this object to illustrate the general ideas in the proof. These ideas includeideas due to Chaudhuri [Cha91, Cha93], Fischer and Lynch [FL82], Herlihy and Shavit [HS93], andDwork, Moses, and Tuttle [DM90, MT88].We begin by constructing a k-dimensional simplex in k-dimensional Euclidean space [Cha93,HS93]. A simplex is just the natural generalization of a triangle to k dimensions: for example,a 1-dimensional simplex is an edge, a 2-dimensional simplex is a triangle, and a 3-dimensionalsimplex is a tetrahedron. We jokingly refer to this simplex as the Bermuda Triangle B, since allfast protocols vanish somewhere in its interior. The simplex contains a number of grid points,which are the points in Euclidean space with integer coordinates. We triangulate this simplex withrespect to these grid points via a collection of smaller k-dimensional simplexes. We then label eachgrid point with a local state in such a way that for each simplex T in the triangulation there is aglobal state g consistent with the local states labeling the simplex: for each local state s labeling acorner of T , there is a nonfaulty processor p with local state s in g.A simpli�ed Bermuda Triangle B is illustrated in Figure 1, assuming P is a protocol for 5processors solving 2-set agreement in 1 round. Given 3 distinct input values a; b; c, we write bb?aato denote the local state of a processor p at the end of a round in which the �rst two processors haveinput value b and send messages to p, the middle processor fails to send a message to p, and thelast two processors have input value a and send messages to p. We label the points of B with localstates as shown in Figure 1. Following any horizontal line from left to right, the input values arechanged from a to b. The value of each processor is changed (one after another) by �rst silencingthe processor, and then reviving the processor with the input value b. Similarly, moving along anyvertical line from bottom to top, processors' input values change from b to c.This labeling of local states has the following property. In the local state on a corner of B, eachprocessor starts with the same input value, so any processor with this local state at the end of Pmust choose this value. In a local state on an edge of B, each processor starts with one of the twoinput values labeling the ends of the edge, so any processor with this local state at the end of P3

ccccc

cccc?

ccccb

ccc?b

cc?bb

ccbbb

c?bbb

cbbbb

cccbb

?bbbb

bbbbb

cccc?

cccca

ccc?a

cccaa

cc?aa

ccaaa

c?aaa

caaaa

?aaaa

aaaaa

?aaaa
baaaa

b?aaa
bbaaa

bb?aa
bbbaa

bbb?a
bbbba

bbbb?

cccaa

bbbaabb?aa

cc?aa

?bbaa

cbbaa

c?baa

ccbaa

cc?aa

?b?aa

cb?aa

c??aa

cc?aa

Figure 1: The Bermuda Triangle for 5 processors and a 1-round protocol for 2-set agreement.must choose one of these two values. Similarly, in a local state in the interior of B, any processorwith this local state at the end of P must choose one of the three values labeling the corners of B.Now let us \color" each grid point with the output value that P has a processor choose when itslocal state is the state labeling the grid point. This coloring of B has the property that the color ofeach of the corners is determined uniquely, the color of each point on an edge between two cornersis forced to be the color of one of the corners, and the color of each interior point can be the colorof any corner. Colorings with this property are called Sperner colorings, and have been studiedextensively in the �eld of algebraic topology. At this point, we exploit a remarkable combinatorialresult �rst proved in 1928: Sperner's Lemma [Spa66, p.151] states that any Sperner coloring of anytriangulated k-dimensional simplex must include at least one simplex whose corners are coloredwith all k+1 colors. In our case, however, this simplex corresponds to a global state in which k+1processors choose k + 1 distinct values, which contradicts the de�nition of k-set agreement. Thus,in the case illustrated above, there is no protocol for 2-set agreement halting in 1 round.The technical challenge in this paper is labeling the grid points of B with local states when theprotocol P runs for more than a single round. Our approach consists of three steps. First, we labelpoints on the edges of B with global states. For example, consider the edge between the cornerwhere all processors start with input value a and the corner where all processors start with b. Weconstruct a long sequence of global states that begins with a global state in which all processors startwith a, ends with a global state in which all processors start with b, and in between systematicallychanges input values from a to b. These changes are made so gradually, however, that for anytwo adjacent global states in the sequence, at most one processor can distinguish them. Second,we then label each remaining point by combining global states on the edges. Finally, we project4

each global state onto the local state of an arbitrarily chosen nonfaulty processor, completing thelabeling of B.In the remainder of the paper, we de�ne k-set consensus and our model more precisely, describethe construction above in more detail, and discuss generalizing our lower bound to other models.3 The ProblemIn this section, we de�ne the k-set agreement problem, de�ne our model of computation, and de�nea compact representation of global and local states.3.1 k-Set AgreementThe k-set agreement problem [Cha91] is de�ned as follows. We assume that each processor pi hastwo private registers in its local state, a read-only input register and a write-only output register.Initially, pi's input register contains an arbitrary input value vi from a set V containing at least k+1values, and its output register is empty. A protocol solves the problem if it causes each processorto halt after writing an output value to its output register in such a way that (1) every processor'soutput value is some processor's input value, and (2) the set of output values chosen has size atmost k.3.2 ModelWe use a synchronous, message-passing model with processor stopping failures. The system con-sists of n processors, p1; : : : ; pn. Processors share a global clock that starts at 0 and advances inincrements of 1. Computation proceeds in a sequence of rounds, with round r lasting from time r�1to time r. Computation in a round consists of three phases: �rst each processor p sends messagesto some of the processors in the system, possibly including itself, then it receives the messagessent to it during the round, and �nally it performs some local computation and changes state.We assume that the communication network is totally connected: every processor is able to senddistinct messages to every other processor in every round. We also assume that communication isreliable (although processors can fail): if p sends a message to q in round r, then the message isdelivered to q in round r.Processors follow a deterministic protocol that determines what messages a processor shouldsend and what output a processor should generate. A protocol has two components: a messagecomponent that maps a processor's local state to the list of messages it should send in the nextround, and an output component that maps a processor's local state to the output value (if any)that it should choose. Processors can be faulty, however, and any processor p can simply stop atany time r. In this case, processor p follows its protocol and sends all messages the protocol requiresin rounds 1 through r� 1, sends some subset of the messages it is required to send in round r, andsends no messages in rounds after r. We say that p is silent from round r if p sends no messagesin round r or later.A full-information protocol is one in which every processor broadcasts its entire local state toevery processor, including itself, in every round. For simplicity, and without loss of generality,we restrict attention to full-information protocols. Thus, in an r round full-information protocol,5

0 1 2 3p0p1p2 r r r rr r r rr r r r���

JJJJJZZZJJJJJZZZJJJJJFigure 2: A three-round communication graph.processors exchange their local states for r rounds and then simultaneously apply their outputfunctions to their local states to choose an output value.We need one more technical restriction. An r-round full-information protocol is said to beoblivious if the output component applied to processor states occurring after r rounds is a functionof just the list of messages a processor p receives in the rth round, independent of p's proces-sor id. We assume that our protocols are oblivious, but more recent results have removed thisrestriction [CHLT93].3.3 Communication GraphsWe end this section with a compact way to represent an execution of a full-information protocolP called a communication graph [MT88]. The communication graph G for an r-round executionof P is a two-colored graph. The vertices form an n � r grid, with processor names 1 through nlabeling the vertical axis and times 0 through r labeling the horizontal axis. The node representingprocessor p at time i is labeled with the pair hp; ii. Given any pair of processors p and q and anyround i, there is an edge between hp; i� 1i and hq; ii whose color determines whether p successfullysends a message to q in round i: the edge is green if p succeeds, and red otherwise. In addition,each node hp; 0i is labeled with p's input value. Figure 2 illustrates a three round communicationgraph; in this �gure, only green edges are indicated.In the stopping failure model, a processor is silent in all rounds following the round in which itstops. This means that all communication graphs representing executions in this model have theconsistency property that if there is a red edge from hp; i� 1i to hq; ii, then all edges leaving nodesof the form hp; ji, j � i+ 1, are also red. We assume that all communication graphs in this paperhave this property, and we note that every r-round graph with this property corresponds to anr-round execution of P .Since a communication graph G describes an execution of P , it also determines the global stateat the end of P , so we sometimes refer to G as a global communication graph. In addition, foreach processor p, there is a subgraph of G that corresponds to the local state of p at the end of P ,and we refer to this subgraph as a local communication graph. If G is an r-round graph, the localcommunication graph for p is the is the subgraph G(p) containing all the information visible to p.Namely, G(p) consists of the node hp; ri and all earlier nodes reachable from hp; ri by a sequence(directed backwards in time) of green edges followed by at most one red edge. In the remainder ofthis paper, we use graphs to represent states, and the word \graph" should be substituted for theword \state" wherever we used \state" in the informal overview of Section 2.If G is an r-round communication graph, then the output produced by process p in the cor-responding execution can be represented as a function of the local communication graph of p at6

time r. In an oblivious protocol, this output is actually a function of a reduced form of the localcommunication graph, with the processor label hp; ri removed from the �nal node hp; ri.4 The Bermuda TriangleWe now de�ne the Bermuda Triangle B, which is the heart of our proof. For the rest of this paper,suppose there exists a protocol P solving k-set agreement in r rounds and tolerating the failure off out of n processors, and suppose n � f + k + 1 and rk � f (which implies r � bf=kc). We willuse the Bermuda Triangle to prove that there exists an execution of P in which k + 1 processorschoose k + 1 distinct values, violating the de�nition of k-set agreement.We de�ne the Bermuda Triangle B in three steps. First we describe the structure of the triangle(really, a k-dimensional simplex), and its triangulation into smaller simplexes. Next we show how tolabel the points of B with (global) communication graphs. Finally, we project each communicationgraph onto the reduced local graph of some nonfaulty processor, thus producing a labeling ofpoints of B with reduced local communication graphs. Each simplex in the triangulation of B willbe labeled with compatible local graphs.The structure of the Bermuda Triangle B is de�ned by a k-dimensional simplex in k-dimensionalEuclidean space, the k-dimensional analogue of a triangle. The corners of the triangle B are thek + 1 grid points (0; : : : ; 0), (N; 0; : : : ; 0), (N;N; 0; : : : ; 0), : : : , (N; : : :; N), where N is some hugeinteger to be determined in Section 4. The points of B are the grid points contained in B, namelythe grid points of the form x = (x1; : : : ; xk), where the xi are integers between 0 and N satisfyingxi � xi+1.The Bermuda Triangle B is triangulated with respect to its points by a collection of smallerk-dimensional simplexes whose corners are points of B. We sometimes refer to them as primitivesimplexes to distinguish them from the simplex B itself. Speaking informally, these primitivesimplexes are de�ned as follows: pick any point of B and walk one step in the positive directionalong each dimension. The set of k + 1 points visited by this walk are the corners of the simplex,and the triangulation consists of all simplexes determined by such walks. This is known as Kuhn'striangulation [Cha93].We can now de�ne the assignment of global communication graphs to points in B. We begin byde�ning three simple operations on communication graphs. Then we de�ne a sequence �[v] of theseoperations that can be used to change any failure-free communication graph to the failure-free graphwith all inputs equal to v, by changing just one edge or input value at a time. Finally, we use theintermediate graphs in this sequence to construct a labeling of the points of B by communicationgraphs.The operations on communication graphs are as follows:1. delete(i; p; q): This operation changes the color of the edge between hp; i� 1i and hq; ii to red,and has no e�ect if the edge is already red. This makes the delivery of the round i messagefrom p to q unsuccessful. It can only be applied to a graph if p and q are silent in rounds i+1through r.2. add(i; p; q): This operation changes the color of the edge between hp; i� 1i and hq; ii to green,and has no e�ect if the edge is already green. This makes the delivery of the round i messagefrom p to q successful. It can only be applied to a graph if p and q are silent in rounds i+ 1through r, and if p does not fail in rounds 1 through i� 1.7

3. change(p; v): This operation changes the input value for processor p to v, and has no e�ect ifthe value is already v. It can only be applied to a graph if p is silent in rounds 1 through r.In each case, since p and q are silent from the moment of the change, no other processor can detectthe change.We now de�ne a sequence �[v] of graph operations that can be applied to a failure-free graph G,resulting in another failure-free graph G[v] in which all processors have input v. Given a graph G,let Gi[v] be a graph identical to G, except that processor pi has input v. Moses and Tuttle [MT88]prove a technical lemma implying that there is a \similarity chain" of graphs between G and Gi[v].The proof shows that each graph in the chain can be obtained from the preceding graph by applyinga sequence of graph operations of the three kinds de�ned above, and that at most r processors fail inany graph in the chain. Their proof is a re�nement of a similar proof by Dwork and Moses [DM90],and implies the following:Lemma 1: If G is a failure-free graph, then there is a sequence �i[v] of graph operations thattransforms G into Gi[v] and fails at most r processors at any step.By concatenating some of these operation sequences, we can transform G into G[v] by changingprocessors' input values one at a time:Lemma 2: Let �[v] = �1[v] � � ��n[v]. If G is a failure free graph, then �[v] transforms G into G[v]and fails at most r processors at any step.Now we can de�ne the parameter N used in de�ning the shape of B: N is the length of thesequence �[v].Next we describe how to label points in B with communication graphs. For simplicity, andwithout loss of generality, let 0; : : : ; k be the set of k + 1 distinct input values. Informally, we willuse the operations in �[1]; : : : ; �[k] along the respective dimensions 1; : : : ; k in B, and \merge" theresults from di�erent dimensions.More formally, we de�ne the merge of a collection H1; : : : ;Hk of r-round communication graphsas follows: �rst, an edge e is colored red if it is red in any of the graphs H1; : : : ;Hk, and greenotherwise; and second, an initial node hp; 0i is labeled with the maximum i such that hp; 0i islabeled with i in Hi, (or 0 if no such i exists). The �rst condition says that a message is missing inthe merged graph if it is missing in any of the communication graphs. To understand the secondcondition, study Figure 1 and notice that if we move along any line in the jth dimension, thenprocessor input values are being changed from j � 1 to j. If we choose a grid point x in B andmove from the origin to x by moving along each dimension in turn, then the second condition isjust a compact way of identifying the last dimension in which a processor's input value is changed,and hence identifying the processor's �nal input value.Now let x = (x1; : : : ; xk) be an arbitrary point of B. For each value i, let Fi be the failure-freecommunication graph in which all processors have input i. For each coordinate j, let �j be thepre�x of �[j] consisting of the �rst xj operations, and let Hj be the result of applying �j to Fj�1.In Hj , some subset p1; : : : ; pi of the processors have had their inputs changed from j � 1 to j.The graph G labeling x is de�ned to be the merge of H1; : : : ;Hk. It turns out that G satis�es theconsistency property required by the de�nition of a communication graph, and so it is actuallya communication graph. We can also show that, for any set of communication graphs G0; : : : ;Gk8

labeling a primitive simplex in B, the set of processors that fail in any graph Gi is of size no greaterthan kr, which is no greater than f .Now we de�ne the assignment of reduced local communication graphs to points in B. Supposethat x is any point in B, and that x is labeled with global communication graph G. Let p be anynonfaulty processor in G, and let L be the reduced local communication graph of p in G. ThenL will be the reduced local communication graph associated with x. We can show that the localgraphs labeling a simplex are guaranteed to be consistent with some global communication graphwith no more than f failures:Lemma 3: Let L0; : : : ;Lk be the reduced local communication graphs labeling a simplex. Thenthere are distinct processors q0; : : : ; qk and a communication graph G with at most f faulty proces-sors, in which all the qi are nonfaulty and each qi has reduced local communication graph Li.5 The Lower BoundWe now state Sperner's Lemma [Spa66, p.151], and use it to prove our lower bound on the numberof rounds required to solve k-set agreement.Remember that a k-dimensional simplex S (like the Bermuda Triangle) is determined by k + 1grid points called corners, and an `-dimensional face F of this simplex is an `-dimensional simplexdetermined by ` + 1 corners of S. Both the simplex S and the face F contain some set of gridpoints called the points of S and F . The simplex S is triangulated with respect to its points via acollection of primitive simplexes as de�ned earlier. We note that these primitive simplexes partitionthe space de�ned by S, and that if a point is contained in a primitive simplex, then it is a cornerof that simplex.A Sperner coloring of a k-simplex S is a coloring of the points of S using k+ 1 colors such thateach corner of S is colored with a distinct color, and the color of every point contained in a face Fof S is the color of a corner of F . Sperner's Lemma says that Sperner colorings have a remarkableproperty:Lemma 4 (Sperner's Lemma): Given a Sperner Coloring of a k-simplex S and a triangulationof S with respect to its points into primitive k-simplexes, there is a primitive k-simplex whose k+1corners are colored with k + 1 distinct colors.Now consider the protocol P and the corresponding Bermuda Triangle B de�ned in the previoussection, and de�ne a coloring CP of B as follows. If L is the reduced local communication graphlabeling a point x, then color x with the value v that the assumed protocol P causes any processorto choose when L is its reduced local communication graph. Since P is an oblivious protocol, thiscoloring CP is well-de�ned. Now we can show that CP is a Sperner coloring of B, and we can applySperner's Lemma and �nd a global communication graph in which k + 1 processors choose k + 1distinct values, contradicting the fact that P solves k-set agreement:Theorem 5: If n � f + k + 1, then no oblivious protocol for k-set agreement can halt in fewerthan bf=kc + 1 rounds. 9

Proof: As above, suppose P is an oblivious protocol for k-set agreement tolerating f faults andhalting in r � bf=kc rounds. Let B be the Bermuda Triangle constructed as above, and CP thecoloring of B derived from P . Since CP is a Sperner coloring of B, Sperner's Lemma 4 implies thatthere is a primitive simplex S in B whose corners are colored by the k + 1 distinct values 0; : : : ; k.Let L0; : : : ;Lk be the reduced local communication graphs labeling the corners of S.Lemma 3 implies that there are distinct processors q0; : : : ; qk and a communication graph Gin which all the qi are nonfaulty and each qi has reduced local communication graph Li. Thisimplies that in the execution associated with communication graph G, the k+1 processors q0; : : : ; qkcollectively produce the k+1 distinct output values 0; : : : ; k+1. But this contradicts the assumptionthat P solves the k-set agreement problem.6 Generalizing to the Partially Synchronous ModelAs we mentioned in the introduction, one important problem left open by this paper is the gener-alization of our lower bound from the synchronous model to the partially synchronous model. Thekey to this problem may lie in work by Attiya et al. [ADLS93]. They generalize the well-knownlower bound of f + 1 rounds for consensus in the synchronous model [FL82] to (f � 1)d+ Cd timeunits in the partially synchronous model, where f is the number of processor failures allowed, dis the upper bound on message delivery time, and C is the ratio between the fastest and slowestprocessor step times c1 and c2. We hope that their proof technique will help us to generalize ourlower bound of bf=kc + 1 rounds for k-set agreement in the synchronous model to something like(bf=kc�1)d+Cd time units in the partially synchronous model, so we end this paper with a sketchof their proof.Consider the consensus problem in which f0; 1g is the set of input values, and suppose P is aprotocol for consensus that halts in time less than (f � 1)d+ Cd. Given a �nite execution � of P ,a fast, failure-free extension of � is one in which all processors run using the fastest step time c1and no additional processors fail. The execution � is v-valent if v is the output value in every fast,failure-free extension of �, in which case v is the valence of �. The execution � is univalent if it isv-valent for some v, and bivalent otherwise.The key idea in the proof is the notion of \retiming" executions|taking one execution withprocessors running at one speed and transforming it into another execution with processors runningat another speed|and this idea is captured within a single key lemma. Let �0 and �1 be twoexecutions of length t � (f � 1)d, and suppose that a total of at most f � 1 processors fail inthe two executions, and that p is the only processor with di�erent views in the two executions.The lemma states that if �0 and �1 are both univalent, then they have the same valence. Tosee this, suppose �0 and �1 are 0- and 1-valent, respectively. Extend both executions by failingall the processors that failed in either �0 and �1, plus the one processor to which the executionsappear di�erent. Allow the remaining processors to take steps using the slowest step time c2. Bythe de�nition of consensus and the execution time of P , within an additional time less than Cd,both extensions must yield outputs. Furthermore, these outputs must be identical; without lossof generality, suppose the outputs are 0. Now modify the extension of �1 to get a contradictionto the 1-valence assumption. Namely, shrink the slow extension so that all processors run usingthe fastest step time c1; this means that the extension takes time less than d. Also, instead offailing any new processors in the extension, keep them alive but allow their messages to take themaximum delivery time d. This means that they will not arrive in time to cause any change in the10

output value 0. It follows that 0 results from a fast failure-free extension of �1, which contradictsthe 1-valence of �1, and the lemma follows.This lemma is applied twice to prove the lower bound. First, we prove that there is a bivalentexecution � of length at least (f � 1)d in which at most f � 1 processors fail. If not, then all suchexecutions � are univalent, and we can use techniques like the ones in this paper and in [FL82] toprove the existence of 0- and 1-valent executions �0 and �1 satisfying the hypothesis of the keylemma; but the key lemma says that they must have the same valence, which is a contradiction.Second, given the existence of a bivalent execution �, there must be a \maximal" bivalent execution� that has no bivalent extension. Using the assumption that all extensions of � terminate in anadditional Cd time, there are two extensions of � of the same length, one 0-valent and the other 1-valent, and again we can use techniques like the ones in this paper and [FL82] to prove the existenceof 0- and 1-valent extensions that are nearly identical. The resulting pair of executions satisfy thehypothesis of the key lemma, so they must have the same valence, which is a contradiction.This retiming technique is interesting because it exploits the need to time out failed messages|the need for a processor to wait up to Cd time to ensure itself that d time has actually passed,and hence ensure itself that an expected but undelivered message will never arrive|which is theprimary di�culty of programming in this model. We believe this technique will be helpful in thecase of k-set agreement, but we have been unsuccessful so far, and this remains for future work.References[ADLS93] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds on thetime to reach agreement in the presence of timing uncertainty. Journal of the ACM,1993. To appear. An earlier version appeared in ACM STOC, 1991.[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Controland Recovery in Database Systems. Addison-Wesley Publishing Company, Reading,Massachusetts, 1987.[Cha91] Soma Chaudhuri. Towards a complexity hierarchy of wait-free concurrent objects. InProceedings of the 3rd IEEE Symposium on Parallel and Distributed Processing. IEEE,December 1991. Also appeared as Technical Report No. 91-024, Iowa State University,1991.[Cha93] Soma Chaudhuri. More choices allow more faults: Set consensus problems in totallyasynchronous systems. Information and Computation, 105:132{158, July 1993. A pre-liminary version appeared in ACM PODC, 1990.[CHLT93] Soma Chaudhuri, Maurice Herlihy, Nancy Lynch, and Mark R. Tuttle. A tight lowerbound for k-set agreement. In Proceedings of the 34th IEEE Symposium on Foundationsof Computer Science. IEEE, October 1993. To appear.[DM90] Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a Byzantineenvironment: Crash failures. Information and Computation, 88(2):156{186, October1990.[Dol82] Danny Dolev. The byzantine generals strike again. Journal of Algorithms, 3(1):14{30,March 1982. 11

[Fis83] Michael J. Fischer. The consensus problem in unreliable distributed systems (a briefsurvey). In Marek Karpinsky, editor, Proceedings of the 10th International Colloquiumon Automata, Languages, and Programming, pages 127{140. Springer-Verlag, 1983. Apreliminary version appeared as Yale Technical Report YALEU/DCS/RR-273.[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactiveconsistency. Information Processing Letters, 14(4):183{186, June 1982.[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis-tributed consensus with one faulty processor. Journal of the ACM, 32(2):374{382, 1985.[Her88] Maurice Herlihy. Impossibility and universality results for wait-free synchronization. InProceedings of the 7th Annual ACM Symposium on Principles of Distributed Computing,pages 276{290. ACM, August 1988.[HS93] Maurice P. Herlihy and Nir Shavit. The asynchronous computability theorem for t-resilient tasks. In Proceedings of the 25th ACM Symposium on Theory of Computing,pages 111{120. ACM, May 1993.[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem.ACM Transactions on Programming Languages and Systems, 4(3):382{401, July 1982.[MT88] Yoram Moses and Mark R. Tuttle. Programming simultaneous actions using commonknowledge. Algorithmica, 3(1):121{169, 1988.[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the pres-ence of faults. Journal of the ACM, 27(2):228{234, 1980.[Spa66] E.H. Spanier. Algebraic Topology. Springer-Verlag, New York, 1966.[W+78] J. H. Wensley et al. Sift: Design and analysis of a fault-tolerant computer for aircraftcontrol. Proceedings of the IEEE, 66(10):1240{1255, October 1978.
12

