IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987 39

Discarding Obsolete Information in a Replicated
Database System

SUNIL K. SARIN, MEMBER, IEEE, AND NANCY A. LYNCH

Abstract—A replicated database architecture is described in which
updates processed at a site must be saved to allow reconcilliation of
newly arriving updates in a way that preserves mutual consistency.
The storage space occupied by the saved updates increases indefinitely,
and periodic discarding of old updates is needed to avoid running out
of storage. A protocol is described which allows sites in the system to
agree that updates older than a given timestamp are no longer needed
and can be discarded. This protocol uses a ‘‘distributed snapshot’’ al-
gorithm of Chandy and Lamport and represents a practical application
of that algorithm. A protocol for permanent removal of sites is also
described, which will allow the discarding of updates to continue when
one or more sites crash and are expected not to recover.

Index Terms—Distributed databases, distributed snapshots, mutual
consistency, network partitions, replicated data, timestamps.

I. INTRODUCTION

RECOGNIZED approach to providing high avail-

ability of replicated data is to allow sites to issue up-
dates at any time and to reconcile their database copies
after the fact when they learn of each others’ updates.
This approach was proposed by Johnson and Thomas [6]
and was used successfully in Grapevine [2]. Mutual con-
sistency of sites’ database copies is ensured by defining a
total order on all updates issued, typically using time-
stamps [7]. A site’s database copy at any given time must
reflect those updates that it has received so far, as if they
had been executed in timestamp order.

Eventual mutual consistency in systems such as the
above requires that all sites eventually see all updates;
copies of updates may therefore need to be retained for
retransmission to failed or disconnected sites. Further-
more, because updates may not arrive at a site in time-
stamp order, it is necessary for sites to retain information
(including timestamps of deleted items) that will allow
late-arriving updates with old timestamps to be correctly
processed. This information grows over time, and may

Manuscript received January 31, 1986; revised June 16, 1986. This work
was supported by the Defense Advanced Research Projects Agency of the
Department of Defense and by the Air Force Systems Command at Rome
Air Development Center under Contract F30602-84-C-0112. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either
expressed or implied, of DARPA, RADC, or the U.S. Government.

S. K. Sarin is with Computer Corporation of America, Cambridge, MA
02142.

N. A. Lynch is with the M.I.T. Laboratory for Computer Science, Cam-
bridge, MA 02139.

IEEE Log Number 8611360.

eventually exhaust available storage at a site if it is not
discarded. Johnson and Thomas use a two-phase protocol
in which sites first report to each other which deleted items
they have seen, and then discard deleted items which
every site is known to have seen. (This information is
compressed into a single timestamp for efficiency.)
Grapevine, on the other hand, retains deleted items for
two weeks, to protect against communication delays and
to preserve the record for administrative purposes. This
arbitrary expiration period may sometimes be overly con-
servative (holding on to old information for longer than
necessary) or may sometimes be overly optimistic (dis-
carding information that may later be needed to recover
from an error or from a prolonged network partition).

This paper describes a more systematic method for dis-
carding old information in systems such as the above. Our
protocol takes into account both administrative needs for
historical information (as does Grapevine, but without
setting an arbitrary fixed expiration period) and the status
of communication among sites (as does the Johnson and
Thomas protocol). We assume that sites can issue updates
with old timestamps (older than their clock readings), rep-
resenting real-world events that have not yet been re-
ported or corrections of past errors. Discarding of old in-
formation requires agreement among site administrators
not to issue any further updates with timestamps older than
some ‘‘cutoff’’ value. To achieve this agreement and es-
tablish a cutoff timestamp, our protocol uses the ‘‘distrib-
uted snapshot’’ algorithm of Chandy and Lamport [3] to
record a consistent global state of the system and avoid
anomalies. The protocol for discarding old information
can be run in ‘‘background,’’ and does not hold up the
issuing and processing of new updates.

The protocol we describe was developed for CCA’s
System for Highly Available Replicated Data (SHARD)
[8]. (A prototype of SHARD has been implemented, but
does not yet include this protocol.) The updates issued by
applications in SHARD may be complex computations,
including abstract operations such as incrementing or dec-
rementing a numeric quantity, and conditional updates
whose effects depend on the contents of the database. The
latter can be used to detect nonserializable transaction ex-
ecution; for example, the data that a user saw when he
issued an update can be tested for changes when the up-
date is later executed. This allows the application to per-
form additional database updates and external actions that
may be needed to compensate for inconsistencies. This

0098-5589/87/0100-0039$01.00 © 1987 IEEE

40 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

capability is not supported in previous systems of this
kind, which assume that an update can only replace a data
item with a specified new value, or add or delete an ele-
ment of a set. '

In order to maintain mutual consistency in the presence
of complex update types, a site in SHARD must retain all
updates that it has seen. When a new update is received
that conflicts with a previously executed update that has
higher timestamp, the latter must be rolled back and the
updates executed in timestamp order [9]. Because it may
need to be reexecuted, an update with timestamp 7 must
be retained until the site is certain that it will not subse-
quently receive any updates with timestamps smaller than
T; this is established using the protocol we describe. In
systems that support only the simpler update types de-
scribed above, updates are never reexecuted; it is only
necessary to remember one timestamp per data item
changed or added or deleted, rather than every update.
The protocol we describe can be used in such systems as
well, to determine when these timestamps (and the rec-
ords of deleted items) can be forgotten.

Since discarding of old information requires receiving
assurances from every site, it can be held up indefinitely
by a site failure. We describe a protocol by which site
administrators can remove one or more sites that they have
declared to be ‘‘dead’’ for all intents and purposes; dis-
carding of updates can then proceed at the remaining sites.
The site removal protocol requires careful synchroniza-
tion to ensure that all remaining sites receive the same set
of updates from the sites being removed.

Section II of this paper presents an abstract model of
the operation of our system, which will be used in de-
scribing the algorithms. Section III describes how updates
can be determined to be obsolete and thereby discarded.
Section IV describes the site removal protocol. Section V
concludes the paper by summarizing the key features of
the protocols.

II. SystTeM MODEL

The system consists of a fixed collection of sites. Each
site x carries the following state information:

Copy{x}: The site’s database copy, whose
value is some element of the set
of possible database states.

The set of updates (described be-
low) seen by the site so far.

Num-Issued{x}: A counter indicating how many up-

dates this site has issued.

History{x}:

A database update has the following components:

1) A site-id, identifying the site that issued the update.

2) A sequence number, which is the value of the site’s
Num-Issued just after the update was issued.

3) A timestamp, used to totally order this update with
respect to all other updates. Timestamps are globally
unique in that no two updates have the same timestamp,
even if issued by different sites. Updates issued by a site
do not necessarily have increasing timestamps.

4) A mapping from database states to database states,
which describes the intended effect of executing the up-
date on the database.)

This model does not specify the nature of the possible
database states; it applies equally to traditional database
applications with records of entities and attributes as to
directory systems where values of various types are stored
under arbitrary string names. The types of mappings al-
lowed in an update, and their encoding for transmission
and execution, are also not specified because the proto-
cols in this paper apply to any kind of update so long as
it is deterministic.

In addition to sites’ local states, the state of the system
includes a Channel{x, s} for every site x and every site
s, which is a first-in-first-out (FIFO) queue of updates is-
sued by s but not yet received by x. The system starts up
with every site’s Copy in the same initial state C,, with
every History and every Channel empty, and every site’s
Num-Issued equal to zero. The operation of the system
can be characterized as a sequence of the following kinds
of atomic events:

1) Site x spontaneously issues an update. The update is
assigned an appropriate timestamp, by any mechanism
that guarantees global uniqueness. The counter Num-Is-
sued{x} is incremented, and the resulting value is the se-
quence number of the update. The update is enqueued at
the end of Channel{s, x} for every site s. This includes
Channel{x, x}; we distinguish the issuing of an update by
a site from the receipt and execution of that update by the
same site.

2) Site x receives the update at the front of Channel{x,
s} for some s: The update is removed from Channel{x,
s} and added to History{x}. Copy{x} is updated to reflect
the database state that would have resulted if all the up-
dates in History{x} were executed in increasing time-
stamp order starting with the initial state C,. In order to
achieve this starting with the current value of Copy{x},
some undoing and reexecution of higher timestamped
conflicting updates (that are already in History{x}) may
be needed. ,

The above model is an abstraction of the SHARD pro-
totype, that hides the details of the implementation and of
how updates are issued (in response to a user command,
or a stimulus from an external device, or a trigger con-
dition on the database). In SHARD, site failures are
masked by preserving state information on ‘‘stable stor-
age’’ so that if a site does crash it can resume processing
from the same state on recovery. A failed site is assumed
not to corrupt its state information or issue bad messages,
i.e., Byzantine failures are not handled. The logical
Channels of the model are implemented, on whatever
physical communication network is available, using an ef-
ficient reliable broadcast protocol [1], [4]. In this strat-
egy, the implementation of each Channel is distributed
among all the sites. When an update is issued by some
site s, delivery of the update to site x does not require that
s and x ever be in direct physical communication; any site
that did receive the update (directly or indirectly) from s

SARIN AND LYNCH: DISCARDING OBSOLETE INFORMATION

can forward it to any site that did not receive it. Because
updates are permanently recorded in sites’ Histories and
are transmitted whenever communication is possible, the
logical Channels are also ‘‘stable.’’ That is, site failures
and network partitions are masked; their only observable
effect is a very long communication delay during which
newer updates enqueued on the affected Channels cannot
be received and processed.

III. DiscarRDING OLD UPDATES

In the system model we described above, updates are
only added to a site’s update history, never removed. This
section addresses the problem of discarding updates from
the history in order to reclaim storage space.

A. The Problem

If a site has received and processed an update with
timestamp 7, it can discard the update when it knows that
all of the following conditions are true:

P1(T): Every site in the system has received the given
update.

There are no updates in transit to this site with
timestamp smaller than T.

No site in the system will issue any further

updates with timestamp smaller than 7.

P2(T):

P3(T):

Condition P1 implies that the update is no longer needed
by the reliable broadcast algorithm for retransmission to
sites that have not received it. Conditions P2 and P3 to-
gether imply that no further updates with timestamp
smaller than T will be received by this site, which means
that the given update (with timestamp 7) will never have
to be undone and reexecuted by the mutual consistency
algorithm. A record of the update is therefore no longer
needed.

We can extend the above to obtain the following con-
ditions on when a site can discard all updates with times-
tamp up to (but not including) a given timestamp 7:

QI1(T): All sites in the system have received all up-
dates that were ever issued with timestamp
smaller than T.

Q2(T): No site in the system will issue any further

updates with timestamp smaller than T.

That the above conditions do allow all updates with time-
stamp smaller than T to be discarded can be seen from the
following:

QI(T) implies PI(T') and P2(T") forall T’ < T
Q2(T) implies P3(T") forall T' < T

Any timestamp T satisfying Q1 and Q2 will be called a
Global-Cutoff timestamp. If T is a Global-Cutoff time-
stamp, so is any timestamp smaller than 7. This means
that, while sites should strive to determine the ‘‘maxi-
mal’’ Global-Cutoff timestamp possible, it is sufficient for
them to determine some such timestamp in order to dis-
card older updates. Different sites do not have to deter-

41

mine a Global-Cutoff at exactly the same time, nor do
they have to determine exactly the same value.

B. Issuing Updates with Old Timestamps

In the design of SHARD, we have chosen not to assume
that sites issue updates in increasing timestamp order. In
particular, an update that reports a real-world event is as-
sumed to carry as its timestamp the time of occurrence of
the external event, not the time that the event is reported
to a site in the system. (Errors in reporting the external
time can be compensated for by issuing additional updates
with old timestamps.) Since such reports may be subject
to arbitrary delays outside the system (e.g., the event is
recorded on paper and data entry is performed at a later
time), there is no guarantee that any site will issue them
in increasing timestamp order. The ability to submit up-
dates with old timestamp is also needed to correct past
errors, since the system does not allow an update, once
issued, to be retracted. The timestamp of an update is thus
selected by the agent submitting the update (be it a human
user or an automatic sensing device), not by the site to
which the update is submitted. The site may, however,
append additional bits to the selected time to ensure
uniqueness of all timestamps ever issued.

If arbitrarily old updates can arrive at any time, then
existing updates from the history can never be discarded.
In reality, the relevance of old data decreases over time,
and most applications choose not to deal with very old
updates even if they are not completely certain that no
such updates are missing. In a centralized database sys-
tem, we would expect an administrator to specify a cutoff
timestamp such that he is certain (to a very high proba-
bility) that no further updates with timestamp smaller than
the cutoff will be received or will need to be issued to
correct past errors; updates older than the cutoff would
then be discarded. If in fact some information with time-
stamp smaller than the cutoff subsequently needs to be
entered or corrected, this will no longer be possible. In
this unlikely situation, the administrator would probably
have to intervene and decide to either ignore the old up-
date or approximate its effect as best as possible using
updates that have timestamp greater than the cutoff.

In a distributed system such as SHARD, there may be
multiple administrators each of whom has only limited
knowledge of the external world and of what the other
sites are doing. No site administrator can on his own spec-
ify a cutoff timestamp and discard older updates because
some other site may issue an update with older timestamp.
Instead, some kind of agreement among the site admin-
istrators is needed in order to properly determine a time-
stamp that satisfies our condition for being a Global-Cut-
off. This is done using the protocol described below.

We assume that every site has an administrator who is
responsible for monitoring the database at that site,
checking for inconsistency, investigating errors and cor-
recting for erroneous or missing reports, and so on. The
administrator role at a site may be filled by one person or
by many, or may be partially or wholly automated; dif-

42 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

ferent sites may exhibit different degrees of automation.
Each site’s administrator periodically determines a Local-
Cutoff timestamp such that, as far as this administrator
can ascertain, there are no updates missing or errors to be
corrected with timestamp earlier than the Local-Cutoff.
When the administrator specifies a Local-Cutoff time-
stamp, he is making the following guarantees:

So long as the site does not subsequently re-
ceive any update with timestamp smaller than
Local-Cutoff, it will not issue any update with
timestamp smaller than Local-Cutoff.

LC2: If the site does receive an update with time-

stamp smaller than Local-Cutoff, it may reset

Local-Cutoff to a smaller value, subject to the

conditions described below. The guarantees

(LC1 and LC2) will now apply for the new,

smaller, value of Local-Cutoff.

LC1:

When a site receives an update with timestamp smaller
than the current value of its Local-Cutoff, it applies some
rule to determine the oldest possible timestamp that might
be needed to correct errors introduced by the receipt of
this update. This timestamp is used as the site’s new Lo-
cal-Cutoff. The most conservative rule a site may use is
to reset Local-Cutoff to the timestamp of the incoming
update, implying that the site’s administrator, in the light
of the new information received about the past, may
change his mind about the absence of errors and need to
issue error-correcting updates as far back as the time-
stamp of the new update. At the opposite extreme, the
rule used by the site may leave Local-Cutoff unchanged,
reflecting an unconditional commitment by the site’s ad-
ministrator not to issue any updates with timestamps ear-
lier than Local-Cutoff, even if such updates are subse-
quently received. Arbitrary rules between the above
extremes are permitted, so long as Local-Cutoff is not re-
set to be smaller than the timestamp of the incoming up-
date and is not moved forward by the rule. The rule may
take into account the nature of the new update, the data-
base contents, and other related updates already received.

The rule used in resetting Local-Cutoff at a site can be
tailored to the application’s needs. It is also possible to
have different sites follow different rules. For example,
the system designers may tailor the protocol to be depen-
dent on a small set of human administrators (rather than

on one at every site) by making all but a few key sites.

advance Local-Cutoff along with their local clocks and
never set it backward; these sites will always issue up-
dates in increasing timestamp order. How the rules should
be chosen for different sites is a problem for future re-
search.

If a site’s Local-Cutoff is reset by the receipt of an old
update, the site’s administrator may need to issue updates
with old timestamps to correct newly introduced errors.
Whether or not he actually issues such updates, the ad-
ministrator will advance Local-Cutoff to a higher value
when he is once again satisfied about the absence of er-
rors. Note that only the administrator can advance Local-

Site A Site B

issue <Updatel,timestamp=90>

issue <Update2,timestamp=97>

no further errors through timestamp 101,

issue <Local-Cutoff[B]=101>

I receive <Update2,timestamp=97>

! no further errors through timestamp 100,
issue <Local-Cutoff[A]=100>

receive <Local-Cutoff(B]=101>,
set Global-Cutoff=min(100,101)=100,
discard updates with timestamp < 100
receive <Updatel,timestamp=90>,
reset Local-Cutoff,
issue <Local-Cutoff[B]=91>,
discover error,
issue <Update3,timestamp=93> to fix
receive <Local-Cutoff[B]=91>,
receive <Update3,timestamp=93>,
unable to reconcile

Fig. 1.

Cutoff, while only the receipt of an earlier timestamped
update can move Local-Cutoff backwards.

If every site’s administrator specifies a Local-Cutoff, it
might appear that no further updates will ever be issued
with timestamp smaller than the smallest of the Local-
Cutoffs. This does not take into account updates in transit
that have not yet been received. If we use a naive ap-
proach in which sites simply inform each other of their
Local-Cutoffs and take the minimum to be the value of
Global-Cutoff, errors may occur, such as illustrated in
Fig. 1. When A both issues a <Local-Cutoff[4] = 100>
and receives a < Local-Cutoff[B] = 101>, it mistakenly
believes that no new updates with timestamps earlier than
100 will ever be issued; A therefore discards all earlier
updates. The reason this is a mistake is that the Local-
Cutoff from B is obsolete, in that B had not yet seen
Updatel, with timestamp 90, when it issued < Local-Cut-
off[B] = 101>. On receiving this update, B changes its
mind about the absence of errors (which it is allowed to
do) and issues Update3 with timestamp 93. Previously is-
sued updates (such as Update2, with timestamp 97) that
had timestamps between 93 and 100 will have been dis-
carded by A. Therefore, A can no longer reconcile
Update3 and establish a database copy consistent with B’s.
Furthermore, A may no longer be able to reacquire the
discarded updates from B: If B’s administrator, after is-
suing Update3, decides again that there are no further er-
rors through timestamp 101, then on receiving < Local-
CutofffA] = 100> B will also set Global-Cutoff to 100
and discard earlier timestamped updates.

C. Distributed Snapshot Solution

To avoid the problem above, it is necessary to take into
account updates in transit (sent but not yet received) when
computing Global-Cutoff. If a ‘‘snapshot’’ of the global
system state could be taken at the time when A4 and B set
their Local-Cutoffs to 100 and 101, respectively, it would
include the undelivered Updatel with timestamp 90. If we
take the smallest of the Local-Cutoffs and the timestamps
of updates in transit, the value of Global-Cutoff would be
only 90. The sites would therefore not prematurely dis-
card updates with timestamps smaller than 100, and 4

SARIN AND LYNCH: DISCARDING OBSOLETE INFORMATION

would be prepared to deal with Update3, with timestamp
93, subsequently issued by B.

To formalize the above, we define Smallest(s) to be the
smallest of the following timestamps in global state s:

® All sites’ Local-Cutoff timestamps. '

¢ The timestamps of all updates in transit.

We can prove that no update issued in the future can have
timestamp smaller than Smallest(s) by establishing that
Smallest(s) cannot decrease. This is done by induction on
global system states. Consider the next event that occurs
in state s. This event can only be one of the following
kinds:

1) Some site receives an update. If this update has
timestamp greater than or equal to the site’s Local-Cutoff,
the site’s Local-Cutoff will not change and therefore
Smallest(s) will not change. If the timestamp of the up-
date is smaller than Local-Cutoff, the site’s Local-Cutoff
may be reset but will be no smaller than the timestamp of
the update. Since the definition of Smallest(s) includes
updates in transit, the timestamp of the incoming update
cannot be smaller than Smallest (s). Therefore, the site’s
new Local-Cutoff cannot be smaller than Smallest(s), and
Smallest(s) remains unchanged.

2) Some site issues an update. The timestamp of this
update cannot be smaller than the site’s Local-Cutoff, and
therefore cannot be smaller than Smallest(s). Since Local-
Cutoff does not change on issuing an update, Smallest(s)
remains unchanged. ’

3) Some site’s administrator specifies a new Local-
Cutoff for the site. Since the administrator cannot make
the site’s Local-Cutoff smaller, the new Local-Cutoff can-
not be smaller than Smallest(s). That is, Smallest(s) can
only increase or remain unchanged; it cannot become
smaller.

Thus, the value of Smallest(s) cannot decrease, and no
future update can have a smaller timestamp (condition
Q2). By definition, no update in transit in state s has a
timestamp smaller than Smallest(s); all updates issued that
did have smaller timestamp have already been received
by all sites (condition Q1). Therefore, Smallest(s) satis-
fies our conditions for being a Global-Cutoff timestamp.
(In fact, for a given state s, Smallest(s) is the highest
timestamp that is a valid Global-Cutoff.) The problem, in
a distributed system without a global clock, is that it is
not possible to take an instantaneous snapshot of all sites’
local states (Local-Cutoff timestamps in this case) and
messages in transit. However, Chandy and Lamport have
developed a distributed snapshot algorithm [3] in which
the recording of pieces of the snapshot at the various sites
is synchronized in such a way as to obtain a global state
that could have occurred at some instant of time. More
precisely, if s, is the state recorded by the snapshot, and
s; and s are the system states at the beginning and end of
the snapshot, respectively, then s, is reachable from s; and
sy is reachable from s,.

Because of the reachability guarantee, and because
Smallest(s) is nondecreasing, the following must be true:

Smallest(s;) < Smallest(r,) < Smallest(s,)

43

Even though the recorded state s, may not actually have
occurred during the execution of the system, we see that
Smallest(s,) is an acceptable if not maximal Global-Cut-
off. If a site computes the value of Smallest(s,) from a
completed snapshot, it can safely use this value as Global-
Cutoff and discard earlier timestamped updates.

The Chandy-Lamport snapshot algorithm works as fol-
lows. An arbitrary directed graph of FIFO communica-
tion channels connects the sites (or processes) in the sys-
tem. The goal of the algorithm is to have every site take
a snapshot of its local state and of the unreceived mes-
sages on its incoming communication channels, such that
the collection of local snapshots represents a meaningful
global snapshot. The algorithm uses special marker mes-
sages to synchronize the local snapshots, according to the
following rules:

1) When a site records its local state, it issues a marker
on every outgoing channel. (In our system model, this
includes the channel carrying messages from the site to
itself.)

2) For each incoming channel, a site remembers in a
buffer all messages received between its recording of the
local state and the receipt of a marker on that channel.

3) A site must record its local state no later than the
receipt of the first marker on an incoming channel. If a
marker is received and the site has not yet recorded its
local state, the marker is not processed (in effect not ‘‘re-
ceived’”) until the state is recorded. For the channel on
which this first marker was received, the buffer of mes-
sages (between the saving of the local state and the receipt
of the marker) will be empty.

The snapshot algorithm is superimposed on the under-
lying distributed computation and does not affect it in any
way. The messages remembered in the channel buffers are
not held up by the snapshot; the site continues to process
them normally as they arrive.

A distributed snapshot is initiated by any site saving its
local state and issuing markers. A snapshot may also be
initiated concurrently by more than one site. Once a site
has received a marker on every incoming channel, it has
constructed its piece of the global snapshot, namely the
local state that it saved and the messages subsequently
received on all incoming channels; these messages are the
ones that were in transit in the state recorded by the snap-
shot. If the sites then wish to use the snapshot to perform
some computation or test some property, e.g., determine
a Global-Cutoff timestamp, relevant information from the
snapshots can be collected in a variety of ways. Sites are
fully connected in our system, and broadcast of a message
along all outgoing channels is particularly efficient.
Therefore, we choose to have every site broadcast its piece
of the snapshot to all sites. The computation of Global-
Cutoff is then replicated at all sites.

Assuming one or more site administrators initiate a
snapshot, the computation of Global-Cutoff at a site pro-
ceeds as follows. Each site uses a register Saved-Local-
Cutoff to record the value of Local-Cutoff at the begin-
ning of the snapshot, when the site issues its markers.
(Saving this value is necessary because the site adminis-

44 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

trator may advance Local-Cutoff while the snapshot is
taking place, in preparation for a future snapshot.) Once
the site’s local snapshot is complete (i.e., it has received
markers from all other sites), it examines the timestamps
on the updates saved in the channel buffers and computes
the minimum of Saved-Local-Cutoff and the timestamps
of the buffered updates. The site broadcasts this value,
and then waits to receive such a value from every site.
When all of these are received, Global-Cutoff is set to the
smallest of the values reported (this is the value of Small-
est(s,) for the snapshot). The site can then discard updates
with timestamp earlier than this Global-Cutoff.

The distributed snapshot algorithm can be simplified
somewhat for computing Global-Cutoff. It is not neces-
sary to actually accumulate all updates received (before
the corresponding markers) in buffers and then examine
them only at the end of the snapshot. Instead, the relevant
information can be extracted from each update as it ar-
rives. When an update arrives, Saved-Local-Cutoff is set
to the smaller of the timestamp of the update and the cur-
rent value of Saved-Local-Cutoff. At the end of the snap-
shot the value of Saved-Local-Cutoff will be the smaller
of the original Local-Cutoff and the timestamp on the
lowest-timestamped update in transit; this is the same
value that is broadcast in the above computation of Global-
Cutoff.

A site administrator can advance Local-Cutoff at any
time, and can start a new snapshot at any time. Typically,
the administrator will wait until the previous snapshot
completes, but this is not strictly necessary. Thus, snap-
shots may be *‘pipelined’’ and a site may be involved con-
currently in multiple instances that are in different stages
of progress. Incoming updates must therefore be checked
against the Saved-Local-Cutoffs of all of the snapshots in
progress at the site. Messages related to different snap-
shots (such as markers and final values of Saved-Local-
Cutoff) can be sorted out by assigning sequence numbers
to successive snapshots.

D. Discussion

Our definition of ‘‘Global-Cutoff’’ is similar to Jeffer-
son’s ‘‘Global Virtual Time’’ [5], which is the minimum
of all sites’ local clock timestamps and the timestamps of
all messages in transit. Like sites’ Local-Cutoff time-
stamps, a site clock in Jefferson’s model is set backward
on the arrival of a lower-timestamped update. The main
difference is the context in which the concept is being ap-
plied; Jefferson’s method is used for all processing in the
system, while ours applies only to the determination of a
cutoff timestamp and not to the normal issuing and pro-
cessing of updates. We have also extended the idea to
allow more flexibility in determining how far back to reset
Local-Cutoff when a lower timestamped update is re-
ceived. ,

The protocol we presented for computing a Global-Cut-
off can also be used for distributed termination or shut-
down of the entire system. If we let infinity be a special
timestamp larger than any timestamp that can be assigned

to an update, the system can shut down when a value of
Global-Cutoff equal to infinity is established. This will
happen when all sites declare themselves to be ‘‘idle’’ (by
setting Local-Cutoff to infinity) and there are no updates
in transit. (This point has been noted by Jefferson as well.)
A Global-Cutoff of infinity implies that all stored updates
are no longer needed and all sites’ database copies are in
a mutually consistent state that reflects all updates ever
issued. '

The protocol as described assumes that the set of sites
in the system is fixed. We are currently developing a pro-
tocol for SHARD that will allow new sites to be added
dynamically. The addition of a new site interacts with the
discarding of old updates (by existing sites), in that the
new site’s initial database copy must already reflect any
updates that have been discarded by existing sites, and the
new site must not issue updates with timestamps smaller
than the timestamp of any update already discarded by
existing sites. The site addition protocol will be docu-
mented separately.

IV. REMOVING SITES

The protocol for discarding updates requires the active
participation of and communication among all sites in the
system. If there is a network partition or if some site is
down, Global-Cutoff cannot be advanced because one or
more sites will be unable to report their Saved-Local-Cut-
offs for a given snapshot. When the partition is repaired
or the down site recovers, Global-Cutoff can be advanced
and updates with earlier timestamp discarded. However,
this may take an arbitrary amount of time during which
storage space at one or more sites may be exhausted.

Since each site in our system is permitted to issue up-
dates without consulting other sites, there is no way to
avoid the above vulnerability to single site failures or dis-
connections. However, if one or more sites are known to
be permanently dead, it is desirable to allow the remain-
ing sites to exclude the dead sites from further consider-
ation and advance Global-Cutoff based on a smaller set of
sites. We do not specify how a site is declared to be dead;
this will typically involve external investigation by site
administrators, possibly triggered by lack of communi-
cation from the site in question. It is not necessary for a
site to actually have failed in order for it to be removed,
so long as the other site administrators decide that they
wish to stop communicating with the given site. For ex-
ample, a site may be faulty and be issuing incorrect up-
dates, in which case removal of the site will limit the
damage done to the rest of the system. (Correcting any
damage already done will require additional effort by site
administrators.)

When the administrator at site x decides that site r is
dead and begins removing r, x ceases all further commu-
nication (over network links) with r. However, if other
sites that x is still communicating with have received more
updates from r than x has, the system’s reliable broadcast
algorithm will continue to deliver these updates to x.
Thus, x cannot immediately expunge r, i.e., forget all

SARIN AND LYNCH: DISCARDING OBSOLETE INFORMATION

knowledge of r and ignore r in the protocol for discarding
updates, until these updates are delivered. The objective
of the protocol below is to ensure that a group of sites,
say R, is expunged by the remaining group of sites, say
S, only when each site in § has received exactly the same
set of updates issued by each site in R and will receive no
more updates from these sites. The removal of sites must
not be held up indefinitely if additional sites fail during
execution of the protocol. The protocol allows a site ad-
ministrator to add more sites to the current set of sites
being removed, and then wait for agreement from the re-
maining sites to expunge the expanded set.

The state information needed by the site removal pro-
tocol consists of two two-dimensional tables indexed by
site identifier:

Is-Removing|x, r]: A Boolean flag indicating whether
or not site x is in the process of removing site
r. A site administrator cannot change his mind
about removing a given site; once Is-Remov-
ing[x, r] becomes true, it cannot become false.
Is-Removing[x, x] is always false; a site never
attempts to remove itself.

Num-Received[x, r]: The sequence number of the last
update from r received by x. Num-Received|[x,
r] never decreases because updates issued by
a given site are delivered in order.

Each site maintains a copy of the above tables. Site x al-
ways has the ‘‘true’” value of Is-Removing[x, r] and Num-
Received[x, r]; other sites’ copies learn of these values
only via messages (described below) and may lag behind
the true values. Because of this, Is-Removing[x, 7] cannot
become true in site y’s copy unless it first becomes true
in site x’s copy; similarly, the value of Num-Received|[x,
r] at site y is never greater than the value of Num-Re-
ceived[x, r] at x. A given site x manipulates its copy of
the above tables according to the following rules:

1) The administrator at site x issues a command to be-
gin removing site r (other than x itself): Set Num-Re-
ceived[x, 7] to be the sequence number of the last update
received from r, and broadcast this value to all sites. Then
set Is-Removing[x, r] to true, and broadcast this value.

2) A message is received carrying Is-Removing[y, 7]
for some y and r: Enter the value in the local copy of Is-
Removing. If Is-Removing[x, r] is currently false, alert
the site’s administrator; he may wish to investigate the

situation and decide whether x should also begin remov-

ing r.

3) A message is received carrying Num-Received| y, 7]
for some y and r: Enter the value in the local copy of
Num-Received. ‘

4) A new update (with sequence number one greater
than Num-Received[x, r]) is received from some site r
that is being removed (i.e., Is-Removing[x, r] is true):
Increment Num-Received[x, 7] and broadcast the new
value. Note that this new update is received over the log-
ical communication channel (see Section II) from r to x.
Because the network link from r and x has been severed,

45

this update can be received by x only if some other site y
that x is still in communication with (Is-Removing[x, y]
is false) has already received the update.

In order to expunge one or more sites, site x waits for
the following condition to become true:

for each site r such that Is-Removing[x, r]:
for each site y such that not Is-Removing[x, y]:
Is-Removing[y, r] is true
and Num-Received[y, r] = Num-Received[x, r]

Essentially, all sites y that this site is not removing must
have agreed to remove all sites r that this site is removing
and must have received the same number of updates from
each such r. If while waiting for the above the site’s ad-
ministrator decides to begin removing one or more addi-
tional sites, the site must now wait for the condition to

_become true for the expanded set of sites.

The correctness of the above condition can be demon-
strated as follows. Suppose that, at time T'1, site x deter-
mines that the above condition is true and expunges some
set of sites that includes site r after having received N
updates from r; that is, Num-Received[x,] = N at site
x at time 71. We then know that the following are true,
at site x at time 7’1, for all sites y that x is not removing:

Is-Removing[x, y] is false
Is-Removing| y, r] is true
Num-Received[y, r] = N

Because the value of Num-Received[y, 7] at site x cannot
be greater than its value at site y, there can be no site y
that x is not removing that has received fewer than N up-
dates from r. Therefore, the only way the protocol can do
the wrong thing is if there is some site y that x is not
removing such that y receives more than N updates from
r. We will prove that this is impossible by contradiction.

Let y be the first site, from the sites that x is not re-
moving, that receives the (N + 1)st update from r. Since
Is-Removing|[y, r] is true at x at T'1, it must have become
true at y (i.e., y began removing r) at some earlier time,
say T0. Because y broadcasts Num-Received[y,] when
it sets Is-Removing[y, r] true, and because Num-Re-
ceived[y, r] equals N at time T1 at site x, Num-Re-
ceived[y, r] cannot be greater than N at time 70 at site y.
Therefore, y can receive the (N + 1)st update from r only
after it began removing r. However, the rules governing
receipt of a new update from a site being removed state
that y can receive this update only if some site s that y is
not removing (Is-Removing| y, s] is false when y receives
this update) has already received the (N + 1)st update. If
there is such an s, the following must be true at site x at
time 71 (when x expunges r):

1) Is-Removing[y, s] must be false. If Is-Removing[y,
s] were true, y must have set it true at some earlier time.
Site y must have received r’s (N + 1)st update from s
even earlier, at which point it must have broadcast Num-
Received[y, r] = N + 1. Therefore, if x knows that Is-
Removing[y, s] is true at time T'1, it must have already
learned that Num-Received[y, r] equals N + 1 (or

46 , IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

greater), which contradicts the condition that Num-Re-
ceived[y, r] equals N at time T'1. ‘

2) Is-Removing[x, s] must be false (i.e., x is not re-
moving s), because if it were true then x could not ex-
punge r without simultaneously expunging s, which is not
possible because y’s agreement is needed and Is-Remov-
ing[y, s] is false.

~ Therefore, y could have received the (N + 1)st update

from r only if some other site s that x is not removing
received the update before y did. This is however impos-
sible because it contradicts our assumption that y is the
first such site to receive the (N + 1)st update.

The protocol above does not allow a site administrator
to change his mind once he has initiated the removal of a
site. (A future extension of the protocol will allow a site
being removed to be ‘‘added’’ back into the system again.)
If the administrator at site x decides to remove r but the
administrator at y does not, then x’s removal of r will not
terminate until either y decides to remove r or x decides
to remove y as well. That is, x must get all sites other than
r to also remove r, or else remove those sites that are not
removing r. How the administrators make such decisions
is not addressed by the protocol; this may involve com-
munication and negotiation among administrators outside
the system. If it is desired to reduce the dependence of
the protocol on a human administrator at every site, some
or all sites may be programmed to automatically join in
the removal of a site when they hear of such removal from
any other site, or from any of a set of specified sites, or
from some number of sites, or from a set of sites satis-
fying some other arbitrary predicate.

The site removal protocol allows one group of sites §
to remove a group R from its view of the system while R
is concurrently removing S. (It is even possible for the
administrator at one site to ‘‘remove’’ the rest of the sys-
tem and continue operation on his own.) This results in a
partition of the replicated database into two or more rep-
licated databases. If the two groups are able to commu-
nicate at some later time, reintegration of the database
copies will not be possible if any group issued a new up-
date with timestamp smaller than the timestamp of any
update discarded by the other group. This problem could
be avoided by requiring that only a majority group of sites
can remove the sites outside the group, but that is too
restrictive for our purposes because it does not allow the
system to continue operation if a majority of sites die.
Rather, we rely on site administrators to perform site re-
moval only when absolutely certain that they do not wish
to communicate further with the sites being removed. Re-
covering from mistakes requires mechanisms (such as
manual intervention to patch the divergent database cop-
ies) outside the scope of this paper.

V. CONCLUSION

We presented a protocol that allows sites in a replicated
database system to discard old updates that are no longer
needed for maintaining mutual consistency. This protocol
represents a practical application of Chandy and Lam-

port’s distributed snapshot algorithm, which we used to
check whether there are any updates in transit that would
cause a site to retract its declared ‘‘cutoff’’ timestamp.

When compared to other systems that discard old up-
dates after an arbitrary expiration period, our protocol
provides a more systematic approach that will prevent an
old update from being prematurely discarded if it is needed
for maintaining mutual consistency, and may allow an un-
needed update to be discarded sooner than the expiration
time. The discarding of old updates is dependent on how
long past errors and missing updates remain relevant in
the application, not just on system communication delays.
It is left to site administrators to specify the relevance of
old information via the sites’ cutoff timestamps and the
rules used for resetting them. The system configuration
can be varied by having different sites implement different
rules, and by having some sites automate the advancing
of their cutoff timestamps. This provides the system de-
signer with a fine degree of control over how dependent
the protocol is on each site’s local administrator.

We also presented a site removal protocol that will per-
mit the discarding of old updates to proceed if it has been
held up due to lack of response from a dead site. The
protocol allows for the simultaneous removal of multiple
sites, and therefore works even if additional sites fail dur-
ing the removal of a site. The site removal protocol is in
fact orthogonal to the protocol for discarding old updates,
and is not constrained to timestamp-based systems. It is
applicable in any situation where one group of sites wishes
to cease communication with another group of sites but
wishes to do so with a consistent view of what messages
were issued by the other group. We hope to explore more
general formulations and applications of this protocol.

ACKNOWLEDGMENT

We would like to thank B. Blaustein, C. Kaufman, and
M. Siegel for their suggestions during the development of
these protocols.

REFERENCES

[1] B. Awerbuch and S. Even, ‘‘Efficient and reliable broadcast is achiev-
able in an eventually connected network,’” in Proc. ACM Symp. Prin-
ciples of Distributed Comput., 1984, pp. 278-281.

[2] A. D. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder,
‘‘Grapevine: An exercise in distributed computing,”” Commun. ACM,
vol. 25, no. 4, pp. 260-274, Apr. 1982.

[3] K. M. Chandy and L. Lamport, ‘‘Distributed snapshots: Determining
global states of distributed systems,’” ACM Trans. Comput. Syst., vol.
3, no. 1, pp. 63-75, Feb. 1985.

[4] H. Garcia-Molina, N. Lynch, B. Blaustein, C. Kaufman, S. Sarin, and
O. Shmueli, ‘‘Notes on a reliable broadcast protocol,’” Computer Cor-
poration of America, Tech. Rep. CCA-85-08, +585.

[5] D. R. Jefferson, ‘‘Virtual time,”” ACM Trans. Program. Lang., Syst.,
vol. 7, no. 3, pp. 404-425, July 1985.

[6] P. R. Johnson and R. H. Thomas, ‘‘The maintenance of duplicate da-
tabases,”’ Bolt Beranck and Newman Inc., Arpanet Request for Com-
ments (RFC) 677, Jan. 1975.

[7]1 L. Lamport, ‘“Time, clocks, and the ordering of events in a distributed
system,”” Commun. ACM, vol. 21, no. 7, pp. 558-565, July 1978.

[8] S. K. Sarin, B. T. Blaustein, and C. W. Kaufman, ‘‘System architec-
ture for partition-tolerant distributed databases,”’ IEEE Trans. Com-
put., vol. C-34, pp. 1158-1163, Dec. 1985.

[9]1 S. K. Sarin, C. W. Kaufman, and J. E. Somers, ‘‘Using history infor-
mation to process delayed database updates,’’ in Proc. Twelfth Int.
Conf. Very Large Data Bases, Aug. 1986.

SARIN AND LYNCH: DISCARDING OBSOLETE INFORMATION

Sunil K. Sarin (S’76-M’82) received the B.Tech.
degree in electronics and electrical communica-
tion engineering from the Indian Institute of Tech-
nology, Kharagpur, India, in 1974, and the S.M.
and Ph.D. degrees in computer science from the
Massachusetts Institute of Technology, Cam-
bridge, in 1977 and 1984, respectively.

He is now a Computer Scientist in the Research
and Systems division of Computer Corporation of
America. His research interests are in the man-
agement of shared distributed information: data-
base systems, concurrency control and recovery, object management for
cooperative design applications, network protocols and distributed oper-
ating systems, and user interfaces.

47

Nancy A. Lynch received the B.S. degree in
mathematics from Brooklyn College, Brooklyn,
NY, in 1968 and the Ph.D. degree in mathematics
from Massachusetts Institute of Technology,
Cambridge, in 1972.

She is currently Professor of Computer Science
at M.L.T., and heads the Theory of Distributed
Systems group in M.I.T.’s Laboratory for Com-
puter Science. Her interests are in all aspects of
distributed computing theory, including formal
models, algorithms, analysis, and correctness

proofs. She has served on the faculty of Tufts University, the University
of Southern California, Florida International University, and Georgia Tech.

