
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 3, MAY 1982

Global States of a Distributed System
MICHAEL J. FISCHER, NANCY D. GRIFFETH, AND NANCY A. LYNCH

Abstract-A global state of a distributed transaction system is con-

sistent if no transactions are in progress. Aglobal checkpoint is a trans-

action which must view a globally consistent system state for correct
operation. We present an algorithm for adding global checkpoint trans-
actions to an arbitrary distributed transaction system. The algorithm
is nonintrusive in the sense that checkpoint transactions do not interfere
with ordinary transactions in progress; however, the checkpoint trans-
actions still produce meaningful results.

Index Ter?ns-Checkpoint, consistency, distributed system, global
state, transaction.

I. INTRODUCTION
COMPUTING systems operate by a sequence of internal

\ transitions on the global state of the system. The global
state represents the collective state of a set of objects which
the system controls. Often many primitive state transitions
are necessary to accomplish a larger semantically meaningful
task, called a transaction. Transactions are designed to take
the system from one meaningful or consistent state to another,
but during the execution of the transaction, the system may
go through inconsistent intermediate states. Thus, to insure
consistency of the system state, every transaction must either
be run to completion or not run at all.
Transactions are often the basis for concurrency control.

In- a distributed database system, a standard criterion for
correctness of a system is that all allowable interleavings of
transactions be "serializable" (cf. [1]). However, there are

systems which can run acceptably with unconstrained inter-
leavings. In a banking system, for example, a transfer trans-
action might consist of a withdrawal step followed by a

deposit step. In order to obtain fast performance, the with-
drawals and deposits of different transfers might be allowed
to interleave arbitrarily, even though the users of the banking
system are thereby presented with a view of the account
balances which includes the possibility of money being "in
transit" from one account to another.
One useful kind of transaction is a "checkpoint"-a transac-

tion that reads and returns all the current values for the objects
of the system. In a bank database, a checkpoint can be used
to audit all of the account balances (or the sum of all account
balances). In a population database, a checkpoint can be used

Manuscript received February 15, 1981. This work was supported in
part by the National Science Foundation under Grants MCS77-02474,
MCS77-15628, MCS80-03337, and MCS79-24370, the U.S. Army
Research Office under Contract DAAG29-79-C-0155, and the Office
of Naval Research under Contracts N00014-79-C-0873 and N00014-
80-C-0221. An earlier version of this paper was presented at the IEEE
Symposium on Reliability in Distributed Software and Database Sys-
tems, Pittsburgh, PA, July 2-1-22, 1981.
M. J. Fischer is with the Department of Computer Science, Yale Uni-

versity, New Haven, CT 06520.
N. D. Griffeth and N. A. Lynch are with the School of Information

and Computer Science, Georgia Institute of Technology, Atlanta, GA
30332.

to produce a census. In a general transaction system, the
checkpoint can be used for failure detection and recovery: if a
checkpoint produces an inconsistent system state, one assumes

that an error has occurred and takes appropriate recovery

measures.

For a checkpoint transaction to return a meaningful result,
the individual read steps of the checkpoint must not be per-

mitted to interleave with the steps of the other transactions;
otherwise an inconsistent state can be returned even for a

correctly operating system, and it might be quite difficult to
obtain useful information from such intermediate results. For
example, in a bank database with transfer operations, an arbi-
trarily interleaved audit might completely miss counting some

money in transit or count some transferred money twice,
thereby arriving at an incorrect value for the sum of all the
account balances.
A checkpoint which is not allowed to interleave with any

other transactions is called a global checkpoint. In the bank
database, a global checkpoint would only see completed trans-
fers; no money would be overlooked in transit, and a correct
sum would be obtained for all account balances. In general,
a global checkpoint views a globally consistent state of the
system.

In this paper, we present a method of implementing global
checkpoints in general distributed transaction systems. We
assume one starts with an underlying distributed transaction
system known to be correct. Next we add some checkpoint
transactions C which are known to be correct if run when
no other transactions are running. Call the resulting system
S. Finally, we show how to transform S into a new system S'
which does the "same" thing as S and which turns each of
the transactions in C into a global checkpoint, i.e., one that
always returns a view of a globally consistent system state
of the underlying transaction system.
Our introduction of the global checkpoints is "nonintrusive"

in the sense that no operations of the underlying system need
to be halted while the global checkpoint is being executed.
Because of this, it is not always possible to have the global
checkpoint view a consistent state in the recent history of the
underlying transaction system, for that system might enter
consistent states only infrequently because of -heavy transac-
tion traffic. Thus, instead of viewing a consistent state that
actually occurs, our global checkpoints view a state that could
result by running to completion all of the transactions that are

in progress when the global checkpoint begins, as well as some

of the transactions that are initiated during its execution.

II. A MODEL FOR ASYNCHRONOUS PARALLEL
PROC ESSES

The formal model used to state the correctness conditions
and describe the algorithm is that of [2]. Only a brief descrip-

0098-5589/82/0500-0198$00.75 1982 IEEE

198

FISCHER et al.: GLOBAL STATES OF A DISTRIBUTED SYSTEM

tion is provided in this paper; the reader is referred to [2] for
a complete, rigorous treatment.
The basic entities of the model are processes (automata) and

variables. Processes have states (including start states and
possibly also final states), while variables take on values.
An atomic execution step of a process involves accessing one
variable and possibly changing the process' state or the vari-
able's value or both. A system of processes is a set of pro-
cesses, with certain of its variables designated as internal and
others as external. Internal variables are to be used only by
the given system. External variables are assumed to be ac-
cessible to some "environment" (e.g., other processes or users)
which can change the values between steps of the given system.
The execution of a system of processes is described by a set

of execution sequences. Each sequence is a (finite or infinite)
list of steps which the system could perform when interleaved
with appropriate actions by the environment. Each sequence
is obtained by interleaving sequences of steps of the processes
of the system. Each process must have infinitely many steps
in the sequence unless that process reaches a final state.
For describing the external behavior of a system, certain

information in the execution sequences is irrelevant. The
external behavior of a system S of processes, extbeh(S), is the
set of sequences derived from the execution sequences by
"erasing" information about process identity, changes of pro-
cess state and accesses to internal variables. What remains is
just the history of accesses to external variables. This history
takes the form of a sequence of variable actions, which are
triples of the form (u, X, v), where u is the old value read from
the variable X, and v is the new value written by an atomic
step of the system. The external behavior completely charac-
terizes the system from the user's point of view; two systems
with the same external behavior are completely indistinguish-
able to the user.

III. AN ABSTRACT DISTRIBUTED TRANSACTION
SYSTEM

In a database system, a transaction is usually considered to
be a sequence of operations on the database entities which
should be performed according to some concurrency control
policy. For our purposes, we do not need to look inside the
transactions-all that we require is that a particular transaction
can be requested at any time, and once requested, it will even-
tually run to completion. What the transaction does while it is
running and how it interacts with other concurrent transactions
does not concern us. We simply assume a distributed system
which understands the initiation and completion of transac-
tions at its external variables.
We make the technical restriction that each transaction can

be invoked only once; thus, our transactions should be thought
of as instances of the usual database notion of transaction.
We also assume that an infinite number of transactions are
possible, although only a finite number can be running at any
given time; thus, our systems never stop.
Formally, an abstract transaction system is a distributed

system whose external variables, called ports, have a special
interpretation. Let T be an infinite set of transactions. Each
port can contain a finite set of transaction status words, each
of which is a triple (t, a, s), where t E T, a is an arbitrary
parameter or result value of the transactions, and s E {'RUN-

NING', 'COMPLETE'} describes the state of the transaction.
We require that each port can be accessed by only one process,
called the owner of the port.
The intended operation of the system is as follows. A user

initiates a transaction t with argument a by inserting the triple
(t, a, 'RUNNING') into the set of transaction status words in
some port. Eventually, the system replaces that triple by a
new triple (t, b, 'COMPLETE') in the same port. The value b is
the result of the transaction. We assume the user behaves
correctly in not trying to initiate the same transaction more
than once and in not modifying the transaction status word
once a transaction has been initiated. Likewise, a correct
abstract transaction system never changes the ports or modi-
fies the transaction status words except as described above.
Thus, a correct abstract transaction system running with a

correct user maintains a global invariant that for each transac-
tion t E T, there is at most one port containing a transaction
status word with t as first component, and there is at most
one such word in that port. We call that word, if it exists, the
status word for t, and we say t is running or completed de-
pending on the third component of its status word. We say t
is latent if it has no status word. The conditions above imply
that the only possible transitions in the status of a transaction
are from latent to running and from running to completed;
moreover, every running transaction eventually becomes
completed. Note also that there is no a priori bound on the
number of transactions that can be running simultaneously.

IV. CHECKPOINT TRANSACTIONS
Let C C T be a distinguished set of transactions called check-

points. Members of T - C are called ordinary transactions.
The execution of a checkpoint transaction and the result it
returns are valid if no other transaction is running while the
checkpoint is. While we make no restrictions on what a check-
point does, the intuition is that a checkpoint needs to look at
a globally consistent system state in order to work properly,
that is, ,a state of the system that occurs when no transactions
are in progress. For example, the checkpoint might be an
audit of the account balances in a simple banking system, or it
might be a consistency check in a file system. These two ex-
amples are pursued further in Section VI.
Our goal in this paper is, given a transaction system S with

checkpoints, to construct a new transaction system S' which
does the "same" thing as S for noncheckpoint transactions
and which returns a valid result for each checkpoint trans-
action. A straightforward implementation of S' would simply
suspend further processing of transactions when a checkpoint
is requested, wait for any transactions currently in progress to
complete, and then run the checkpoint. After the checkpoint
had been completed, normal processing of transactions could
be resumed.
In many practical situations, however, such a solution is

highly undesirable, for the entire system must wait while a
checkpoint is being performed. This is likely to take a con-
siderable length of time since checkpoints may require reading
the entire system state.
In Section V, we present a solution which permits check-

points to be run concurrently with the normal processing of
ordinary transactions. The price we pay is in having a slightly
less appealing correctness condition for the result of the check-

199

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 3, MAY 1982

point. Since normal transactions are not suspended, the sys-

tem may never reach a globally consistent state, so it is not
obvious how a meaningful result can be obtained at all. Our
approach is to run the checkpoint on a globally consistent
state obtained by the following steps.

Step 1: Disable the initiation of further transactions at each
of the ports.
Step 2: Run to completion any transactions in progress.

To do this and still not interfere with the processing of normal
transactions requires that we split the computation into two
parallel branches. One branch continues to simulate S on the
ordinary transactions; the other branch handles the execution
of the checkpoint as described above. When the checkpoint is
complete, the result is stored back in the appropriate transac-
tion status word and the branch discarded.
Consequences of this strategy are as follows.
1) The value returned by a checkpoint does not reflect what

actually happened in the history of execution; only what
might have happened if certain transactions initiated after the
start of the checkpoint had not occurred.

2) Any side effects of checkpoint transactions are discarded,
so other transactions continue to operate as if no checkpoints
had ever taken place.
With this motivation in mind, we now turn to the definitions

needed to state the formal correctness conditions for the sys-

tem S'.
Let X be a port and u, v be sets of transaction status words.

We call the variable action (u, X, v) a port action. Let PA be
the set of all port actions. A behavior sequence is a finite or

infinite sequence of port actions, i.e., a member of 9 = PA * U
PA 0.

Let h be a map which erases checkpoint status words from
port values, that is, if u is a set of transaction status words,
then

h(u) {(t, a,.s) (t, a, s) E u and tC T- C}.

Extend h to port actions by

h ((u, X, v)) = (h(u), X, h (v)).

Extend h further to by applying it componentwise.
Let e E B. Define two functions:

running(e) = {t E T e = e1 (u, X, v) e2 and
(t, a, 'RUNNING') E U for (t, a,

'RUNNING') some transaction
status word, e I PA*, (u, X, v)
CPA, and e2CE}B

completed(e) = {t E T Ie = el (u, X, v) e2 and
(t, b, COMPLETED') E U for (t, b,
'COMPLETED') some transaction
status word, e1 EPA*, (u, X, v)
CPA, and e2 EC}.

Thus, running(e) is the set of transactions which are running
at some time during e, and completed(e) is the set of trans-
actions which have completed in e.

Let e CE 9, t running(e), and i C N. t starts at step i of e if
i is the length of the longest prefix el of e for which t ¢ run-

ning(eI).

An abstract distributed transaction system S' is a faithful
implementation of a system S with checkpoint set C if the
following conditions hold.
1) Faithfulness: Let e E extbeh(S) such that h(e) = e (i.e.,

e contains no checkpoint transactions). Let a: C --N be a
partial function with domain dom(a). Then there exists e' C
extbeh(S') such that h(e') = e, running(e') = running(e) U
dom(a), and for all t C dom(a), t starts at step u(i) in e'.
2) Safety: Let e'E extbeh(S'). Then h(e')E extbeh(S).
3) Validity of Checkpoints: Let e'C extbeh(S'), cC C,

and suppose c runs to completion in e' and produces result b.
Let i be the step at which c starts in e', and let e' be the
prefix of e' of length i. Let e' be the shortest word such that
e1 e2 is a prefix of e' and c E completed(e' e'). Then there
exists e C extbeh(S) such that c runs to completion in e and
produces result b, and e satisfies the following. There exist
words e1, e2, f such that e1e2f is a prefix of e, and

a) h(e1e2)= e1e2;
b) h(ej)= es;
c) running(el e2) C running(e'e');
d) c C completed(ei e2f) and {c}

= running(e1 e2 f) - completed(el e2)

Conditions 1) and 2) insure that S' faithfully simulates S on
the noncheckpoint transactions and that the presence or ab-
sence of checkpoint transactions does not affect the processing
of other transactions by S'. Condition 3) insures that S' com-
putes acceptable results for the checkpoint transactions. In
particular, the result of each checkpoint must be a value ob-
tainable by some computation of S which i) runs no check-
points before the given checkpoint, ii) agrees with the compu-
tation of S' up to the point where the checkpoint began (again
ignoring other checkpoints), iii) only initiates transactions
thereafter which actually occurred in S', and iv) runs the
checkpoint after all the transactions in progress at the time of
the checkpoint request together with any transactions initiated
after the checkpoint have completed, thereby insuring a valid
result.

V. A FAITHFUL IMPLEMENTATION
Given an abstract distributed transaction system S with

checkpoint set C, we sketch how to construct a new system S'
which faithfully implements S.
S' operates by simulating a number of copies of S: a "base"

copy SO and a copy S, for each c C C. So processes all of the
noncheckpoint transaction requests received by S', and Sc
processes checkpoint transaction c.
So ignores checkpoints but otherwise acts just like S. Sc,

c C C, does exactly the same thing as So up until checkpoint c
is requested. At that time, the computation of S, begins to
diverge from that of SO. SC continues behaving like S, but it
starts ignoring certain new transactions that are being pro-
cessed by SO. Eventually, it ceases processing new transactions
entirely, and all the transactions currently in progress are run
to completion. At that time, Sc runs checkpoint transaction
c, and when it completes, Sc writes the result back into the
transaction status word at the initiating port. Sc has then
completed its task and can terminate.

200

FISCHER et al.: GLOBAL STATES OF A DISTRIBUTED SYSTEM

The structure of S' is similar to that of S. Each process and
variable of S has a corresponding process or variable in S'.
Process k of S' simulates process k in each of the Si, i E {0} U
C. Similarly, internal variable X of S' simulates internal vari-
able X in each of the Si. The states of processes in S' are
labeled sets of states of corresponding processes of S, and
values of variables in S' are labeled sets of values of corre-
sponding variables of S, where the labels are taken from {O} U
C. S and S' have identical ports and port values.
We now describe in some detail the operation of the processes

in SC. Each process does exactly the same thing as the corre-
sponding process of So until it learns that checkpoint c has
been requested. There are three ways that a process might
learn this. It might access its port and see the transaction
status word for c. In this case, that process is called the check-
point initiator. Secondly, it might receive a "message" from
the checkpoint initiator informing it of the start of the check-
point. Finally, it might read an internal variable and detect
that the computation of Sc has begun to diverge from that of
SO, enabling it to deduce that the checkpoint has started.
When the checkpoint initiator discovers the start of the

checkpoint, it broadcasts this fact to the other processes of
Sc. Each process of Sc upon learning of the initiation of the
checkpoint makes a private copy of its port and thereafter
refers to its private copy rather than the real port. In this
way, future transaction requests are ignored by Sc, and results
of transactions produced by Sc (which might differ from those
produced by SO) do not affect the real ports. When a process
of S. finally discovers that all of the transactions at its port
have completed, it sends back an acknowledgment to the
checkpoint initiator. When the initiator has received an ac-
knowledgment from each process (including itself), it begins
processing the checkpoint by placing the checkpoint request
in its own private copy of its port. All of the processes of Sc
continue operating and serve collectively to process the check-
point c. When c completes, the checkpoint initiator copies the
final transaction status word for c from the private copy of
its port back into the real port.
The correctness conditions of Section IV are quite strong

and do not permit S' to make any accesses to the ports other
than those made by SO. Therefore, the simulation of the Sc,
c E C, must be coordinated with that of SO so that all real port
accesses by Sc are "piggybacked" onto port access by SO. The
basic strategy is that SO runs freely, but a process of Sc wish-
ing to access the real port must wait until the corresponding
process of SO is ready to make its next port access. The two
(or more) accesses are then combined into one and performed
simultaneously. The accesses never conflict because each
process of Sc does the exact same thing as the corresponding
process of SO up until the point where it discovers the start
of the checkpoint. Thereafter, it only modifies the status
word for c, whereas processes of SO only modify status words
for ordinary transactions.
At any point in the computation, only a finite set D of

checkpoints have ever been initiated, so the computation of
every S,, c E C - D, is identical to the computation of SO and
need be represented only once. As soon as a process of S'
discovers that checkpoint c is in progress, either by being the
checkpoint initiator, receiving a message from the checkpoint
initiator, or by reading an internal variable in which the cth

component differs from the 0th, it splits the simulation of
SC from that of SO and from then on, the two simulations
continue independently, as described above. Hence, S' actually
simulates a finite but growing set of computations.
In order to carry out the above implementation, S' needs a

mechanism which permits the checkpoint initiator to com-
municate with every other process. In any particular applica-
tion, such a communication mechanism would probably already
exist in the underlying system S. However, if it is not already
there, then we require thatS'be augmented with such a facility.
Theorem: Let S be an abstract distributed transaction

system with checkpoint set C, and let S' be the system de-
scribed above. Then S is a faithful implementation of S.

Proof Sketch: We omit the tedious but straightforward
verification that S' satisfies the conditions for being a faithful
implementation of S. It remains to verify however that S' is
a correct abstract distributed transaction system, that is, that
every transaction which is requested will eventually run to
completion.
This property holds for noncheckpoint transactions by the

safety property and the fact that it holds for S. It holds for
checkpoint transactions because each of the phases in pro-
cessing a checkpoint terminates. Eventually a request for
checkpoint c gets noticed by the process of S, which owns
the port; otherwise, S, and hence S would fail to process
future transactions originating at that port. After the check-
point request is noticed, the checkpoint initiator notifies all
other processes of S,; hence, eventually all of the other pro-
cesses learn of the request. After each process becomes aware
of the checkpoint, it stops accepting requests for new trans-
actions; hence, eventually Sc stops processing new transactions.
Sc continues to simulate S on the transactions that it has ac-
cepted; they all eventually complete since they would in S.
Each process eventually acknowledges completion to the
initiator, so eventually the checkpoint transaction itself is
started. S. continues to simulate S, so eventually the check-
point transaction will complete and produce a valid result,
which is copied back into the port.
Hence, S' is an abstract distributed transaction system which

faithfully implements S, as required. E]

We remark that under certain naturally occurring conditions,
the efficiency of S' can be made to approach the efficiency of
S. Namely, assume that all checkpoint transactions originate
at the same port. Then it is an easy matter to modify the
checkpoint initiator so that only one checkpoint is handled at
a time. If several are requested simultaneously, the initiator
will pick one to process and wait until it completes before
handling another. Since only one checkpoint c is running at a
time, each process of S' need only simulate two processes: the
corresponding process of SO and the corresponding process of
S,. When a process becomes aware of the request of some
checkpoint Sd, d # c, then it knows that checkpoint c must
have completed; hence it terminates the simulation of S,.
Thus, the storage needed by S' for the internal variables and
process states is only double that of S. (In practice, one would
probably only keep duplicate copies of those objects for which
the two executions So, Sc really produce different values.)
Likewise, the time required by S', when appropriately mea-
sured, should be at worst double that of S on the particular
computations actually simulated.

201

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 3, MAY 1982

VI. APPLICATIONS OF GLOBAL CHECKPOINTS

Global checkpoints can play an important role in the design
of distributed systems for error detection, error recovery, or

both.
For error detection, their use is in identifying inconsistencies

in global system states that should be consistent. We have
already alluded to this use in the simple banking system ex-

ample in which the only allowable transactions are to transfer
funds from one account to another. The sum of the account
balances is the same in every globally consistent state. There-
fore, our algorithm can be used to obtain that sum by running
a global checkpoint transaction which simply reads each of the
account balances and adds them all up. An error is indicated
if this sum is not what was expected.
A similar situation occurs in the design of file systems. Often

a directory must be kept consistent with the actual contents
of a disk. A global checkpoint might read the items in the
directory and check that they correspond with what is really
on the disk. As long as no directory modification transactions
were in progress when the checking was done, then a discrep-
ancy would indicate a true file system error. Our global check-
point algorithm can be used to detect such inconsistencies.
For error recovery, global checkpoints can be used to save

the relevant part of the global state of the system so that in
the event of a crash, the system can later be restarted from
that point in the computation. For example, a global check-
point could be used to provide a restart capability in the mi-
grating transaction model of Rosenkrantz et al. [4] by having
it return the values of all of the entities in the database.
Another such application arises in the use of the Eden sys-

tem which is being developed at the University of Washington
[3]. That system is object-based and includes as a primitive
kernel operation a checkpoint operation that writes a single
object to stable storage. The object itself decides when it is
in a consistent state and hence when the checkpoint can be
performed. If the object later crashes, it is restored from the
version on stable storage. To extend this checkpoint facility
to groups of related and cooperating Eden objects requires
that the objects coordinate their checkpointing activities so

that the versions saved on stable storage are globally and not
just locally consistent. That is just the problem we have been
treating in this paper if we take "transaction" to mean the
portion of computation that an individual Eden object is in
an inconsistent state, and if we assume further that an object
only enters an inconsistent state in response to some external
stimulus (corresponding to a transaction request). Our global
checkpoint algorithm could then be applied to produce a

globally consistent system state on stable storage by running
the "global checkpoint" transaction which simply checkpoints
each of the objects in the group. Note that our algorithm
requires the independence of transactions. If one transaction
can initiate another and then wait for its completion, then
completion of the first depends on completion of the second,
and our algorithm, which might decide to exclude the second
from a checkpoint, would wait forever for the first transaction

to complete. Our formal definition of a transaction system
excludes the possibility of system-initiated transactions.

ACKNOWLEDGMENT

The authors would like to thank Mr. M. Merritt for many
helpful comments and suggestions.

REFERENCES

[1] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, "The
notions of consistency and predicate locks in a database system,"
Commun. Ass. Comput. Mach., vol. 19, pp. 624-633, Nov. 1976.

[21 N. A. Lynch and M. J. Fischer, "On describing the behavior and
implementation of distributed systems," Theor. Comput. Sci.,
vol. 13, pp. 17-43, 1981.

13] E. D. Lazowska, H. M. Levy, G. T. Almes, M. J. Fischer, R. J.
Fowler, and S. C. Vestal, "The architecture of the Eden system,"
in Proc. 8th Symp. Operating Syst. Principles, Dec. 1981, pp.
148-159, ACM Order 534810.

t41 D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II, "System
level concurrency control for distributed database systems," ACM
Trans. Database Syst., vol. 3, pp. 178-198, June 1978.

LMichael J. Fischer was born on April 20, 1942,
X X * in Ann Arbor, MI. He received the B.S. degree
X dl ! ,in mathematics from the University of Michigan,

Ann Arbor, in 1963, and the M.A. degree and
the Ph.D. degree in applied mathematics from
Harvard University, Cambridge, MA, in 1965
and 1968, respectively.
He is currently Professor of Computer Science

at Yale University, New Haven, CT, and has
previously taught at Carnegie-Mellon Univer-
sity, the Massachusetts Institute of Technology,

and the University of Washington. He is an Area Editor of the Journal
of the Association for Computing Machinery and is serving on the
Editorial Boards of several other journals. His current research interests
include theory of distributed systems, reliability, and computational
complexity.

Dr. Fischer is a member of the Association for Computing Machinery,
the American Mathematical Society, the Society for Industrial and
Applied Mathematics, Phi Beta Kappa, and Phi Kappa Phi.

Nancy D. Griffeth, photograph and biography not available at the time
of publication.

Nancy A. Lynch received the B.S. degree in
mathematics from Brooklyn College, Brooklyn,
NY, in 1968, and the Ph.D. degree in mathe-
matics from the Massachusetts Institute of
Technology, Cambridge, in 1972.
She is presently Associate Professor of Infor-

mation and Computer Science at Georgia Insti-
tute of Technology, Atlanta, and Visiting
Associate Professor of Computer Science at
M.I.T. She has also been on the mathematics
faculty at Tufts University and the University

of Southern California. Her general research interests are distributed
computation and theoretical computer science. More specific interests
include formal modeling and complexity analysis of distributed algo-
rithms, and design of algorithms for concurrency control and network
resource allocation.

202

