
Distributed FIFO Allocation of Identical
Resources Using Small Shared Space

MICHAEL J. FISCHER
Yale University
NANCY A. LYNCH
Massachusetts Institute of Technology
JAMES E. BURNS
Georgia Institute of Technology
and
ALLAN BORODIN
University of Toronto

We present a simple and efficient algorithm for the FIFO allocation of k identical resources among
asynchronous processes that communicate via shared memory. The algorithm simulates a shared
queue but uses exponentially fewer shared memory values, resulting in practical savings of time and
space as well as program complexity. The algorithm is robust against process failure through
unannounced stopping, making it attractive also for use in an environment of processes of widely
differing speeds. In addition to its practical advantages, we show that for fixed k, the shared space
complexity of the algorithm as a function of the number N of processes is optimal to within a constant
factor.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network
Protocols-protocol architecture; C.2.4 [Computer-Communication Networks]: Distributed
Systems-distributed applications, network operating systems; C.4 [Computer Systems Organiza-
tion]: Performance of Systems-reliability, auailability, and seruicability; D.4.1 [Operating Sys-
tems]: Process Management-concurrency, mutwl exchion, synchronization; D.4.5 [Operating
Systems]: Reliability-fault-tolerance; F.1.2 [Computation by Abstract Devices]: Modes of Com-
putation-parallelism

General Terms: Algorithms, Performance, Reliability, Theory

Additional Key Words and Phrases: Asynchronous system, distributed computing,’ FIFO, lower
bound, queue, resource allocation, shared memory, space complexity

This work was supported in part by the Office of Naval Research under contract N00014-82-K-
0154; by the U.S. Army Research Office under contract DAAG29-79-C-0155; and by the National
Science Foundation under grants MCS77-02474, MCS77-15628, MCS78-01689, MCS-8116678, and
DCR-8405478. N. A. Lynch’s work was supported by NSF grant CCR-8611442, DARPA N00014-83-
K-0125, and ONR N00014-85-K-0168.
Authors’ current addresses: M. J. Fischer, Department of Computer Science, Yale University, 10
Hillhouse Avenue, P.O. Box 2158, Yale Station, New Haven, CT 06520-2158; N. A. Lynch, Depart-
ment of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, J. E. Burns,
School of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA 30332-
0280; A. Borodin, Department of Computer Science, Sanford Fleming Building, 10 Kings College
Circle, Room 2303B, Toronto, Ontario M5S lA4.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 0730-0301/89/0100-0090 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989, Pages 90-114.

Distributed FIFO Allocation of Identical Resources l 91

1. INTRODUCTION

1 .l Critical Section Problem

The critical section problem has been widely studied for its illustrative value in
problems of synchronization as well as for its practical application to real
concurrent systems [l-15, B-221. The problem is to devise protocols for each of
several communicating asynchronous parallel processes to control access to a
designated section of code called the critical section. Such code might manipulate
a common resource, in which case access to the critical section corresponds to
allocation of the resource. In the simple case of a single nonsharable, reusable
resource (such as a line printer or a tape drive), the two basic properties desired
of the access policy are mutual exclusion and impossibility of deadlock. Mutual
exclusion means that two processes can never simultaneously be executing their
critical sections. Deadlock is a situation in which one or more processes are
attempting to enter or leave their critical sections, but none of them ever succeeds.
Finding appropriate protocols to insure these two properties is the critical section
problem.

Two protocols comprise a solution. The trying protocol is the section of code
that a process executes before being admitted to its critical section, and the exit
protocol is the code to be run when the process leaves its critical section and
returns to the remainder of its code, called the remainder section. Equivalently,
the trying protocol allocates the resource corresponding to the critical section
and the exit protocol returns it to the system.

1.2 Multiple Resources

In this paper, we generalize the critical section problem to the case where some
number k I 1 of processes (but not more) are permitted to be simultaneously in
their critical sections. Regarded as a resource-allocation problem, we consider k
identical copies of a nonsharable reusable resource, where each process can
request at most one copy of that resource. Again entry to the critical section
corresponds to allocation of a resource copy, but we ignore questions of just how
the individual copies of the resource are managed.

The exclusion property of the k-critical section problem, that at most k
processes are ever simultaneously in their critical sections, we call k-exclusion.
To avoid degenerate solutions, we must also formalize the notion that “it should
be possible for as many as k processes to be simultaneously in their critical
sections.” We interpret this to mean, roughly, that if fewer than k processes are
in their critical sections, then it is possible for another process to enter its critical
section, even though no process leaves its critical section in the meantime. We
call this property “avoiding k-deadlock.” Precise definitions of these properties
are deferred until Section 3, after the algorithms have been presented.

1.3 Naive Solutions

We first consider two obvious solutions for handling multiple resources and
examine their shortcomings.

1.3.1 Generalized Semaphore. A trivial generalization of a binary semaphore
yields a system exhibiting k-exclusion and no k-deadlock. Assume a shared

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

92 ’ M. J. Fischer et al.

variable, COUNT, which at any time contains the correct count of the number
of processes currently in their critical sections. A process wanting to enter its
critical section performs an atomic action on COUNT which, in one indivisible
step, reads the value of COUNT, increments it if it was less than k, and stores
back the result. The process then proceeds to its critical section if it saw COUNT
less than k, and it loops back and repeats the test otherwise (busy-waiting).
A process leaving its critical section simply decrements COUNT.

This algorithm imposes no fairness criteria on the order in which processes
enter their critical sections, and in fact it is possible that an individual process
will always find the critical section “full” (i.e., COUNT = k) whenever it happens
to examine COUNT and therefore will be “locked out” of its critical section
forever. It would be much more interesting to have algorithms that exhibited fair
behavior, guaranteeing, for example, that no process is locked out or that access
to the critical section is FIFO with respect to the time when processes first begin
their trying protocols.

1.3.2 Bank Algorithm. Rather than devise new algorithms for the k-critical
section problem with stronger fairness conditions, an obvious approach is to try
to reduce the k-critical section problem to the l-critical section problem and then
apply known solutions to the latter problem, e.g., [2-51, and [ll]. Such a hybrid
solution is commonly used in banks for scheduling people waiting for a teller.
People entering the bank line up in a single queue. When one or more tellers
become available, the person at the head of the queue goes to any free teller.

To see the reduction that is illustrated by this simple example, think of the
position at the head of the queue as a “resource.” Only one person has this
resource at a time, and the queue itself serves to allocate that resource in first-
in-first-out (FIFO) order. Only the person holding the head-of-queue resource is
permitted to go to a teller, so the order of service by a teller is “essentially” FIFO,
modulo possible delay between leaving the head of the queue and arriving at a
teller.’ Such a reduction is possible given any l-critical section solution, and the
number of values of shared memory increases by only a factor of (k + 1).

The bank algorithm has a rather subtle defect that becomes apparent when
several tellers become simultaneously free. If k 2 2 tellers are free, one would
like the first k people in line to all move “simultaneously” to a teller, yet the
algorithm requires them to file past the head of the queue one at a time. If the
person at the front of the line is slow, the k - 1 people behind him are forced to
wait unnecessarily. In fact, if the person at the front of the line “fails,” then the
people behind him wait forever and the system stops functioning. In this case,
one failure can tie up all of the system’s resources!

1.4 Additional Robustness and Fairness Requirements

The previous section leads us to impose additional requirements to control the
degradation of processing in the event that a limited number of processes fail
during the execution of their protocols and to provide for fairness of access to
the critical section.

’ By running, a person might actually arrive at a teller before another who was ahead of him in the
queue. Nevertheless we consider this to be a reasonable approximation of what people mean by FIFO
since once one arrives at the front of the queue, one no longer has to wait for others.

ACM Transactions on Programming Langvages and Systems, Vol. 11, No. 1, January 1989.

Distributed FIFO Allocation of Identical Resources l 93

Our notion of “failure” is quite different from the “shutdown” considered in
[21] and [22]. Unlike a process that shuts down, a failed process does not
announce to the world that it has failed. Rather, we say a process fails if there is
a time after which it executes no more steps of its program. To distinguish a
failed process from a correct one that is merely running very slowly, one must
look infinitely far into the future and determine that it never takes another step.
Thus, other processes have no way of distinguishing a failed process from a
correct one in a finite amount of time. (In particular, timeouts won’t work since
we make no assumptions about the relative speeds of processes.)

Our interest in this kind of failure stems partly from the practical problems of
building fault-tolerant distributed systems and partly from the desire to under-
stand the dependencies among processes competing for entry to their critical
sections. Each instance of one process waiting for another indicates a lack of
concurrency in the whole solution. Taken together, these dependencies tend to
cause the whole system to run at the speed of the slowest process. Algorithms
that continue to operate correctly even when a limited number of processes fail
cannot exhibit such simple dependencies. For example, if process A waits for
process B to take some action and process B were to fail, then process A would
wait forever and make no further progress toward its goal. Hence B’s failure
would cause the whole system to fail by locking out A. Insisting that algorithms
be robust in the face of a certain amount of failure gives us a formal way of
studying degrees of concurrency, which in turn have implications for the running
time of the system.

At first sight, the concepts of robustness and fairness, say FIFO ordering,
appear to be contradictory. Robustness says, for example, that if one process
fails in its trying protocol, the system must continue to function. In particular,
other processes that enter their trying protocols after the failed one will neces-
sarily enter their critical sections ahead of it. Since the apparently failed process
might actually be correct but slow, robustness implies a violation of the usual
definition of FIFO ordering.

The problem is circumvented by defining the fairness conditions not in terms
of the order in which processes enter their critical sections but rather by the
order in which they become “enabled” to enter their critical sections. By enabled,
we mean that a process no longer needs to wait for action by any other process
before it can go into its critical section, nor can the actions or inactions of other
processes prevent it from doing so. Intuitively, when a process becomes enabled,
a copy of the resource is reserved for it, and actions of other processes are no
longer needed in order for the given process to complete its trying protocol. The
key distinction between enabling and actual entry to the critical section is that
a process might become enabled passively by the action of some other process
changing shared memory, whereas entry to the critical section can take place
only by a positive action of the given process.

1.5 Colored Ticket Algorithm

In this paper, we describe an algorithm, the Colored Ticket Algorithm, for solving
the k-critical section problem. It is robust, enables processes in FIFO order, and
uses O(W) values of shared memory for fixed k. The algorithm can be thought
of as a distributed implementation of a queue, for it simulates the behavior that

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

94 l M. J. Fischer et al.

would be achieved by explicitly storing the entire queue of waiting processes in
shared memory, but it uses far less shared space and is fast and simple to
implement. We also show for fixed k that our algorithm is essentially optimal in
terms of the amount of shared memory used by giving an Q (N2) lower bound on
the number of distinct shared memory values for any robust algorithm that so
simulates a queue.

If one weakens the robustness conditions to permit lockout to occur in case
more than a prespecified number of processes fail, then more space-economical
solutions are possible [9]. However these solutions lack the elegance and sim-
plicity of the Colored Ticket Algorithm as well as its time efficiency. If one
ignores robustness altogether, then O(N) values suffice [17].

1.6 Synopsis

The main technical content of the paper is contained in the next four sections.
The Colored Ticket Algorithm is presented in Section 2 by a series of refinements,
starting with a straightforward queue algorithm (Figure 1) and ending with the
full algorithm (Figure 7). The correctness of the resulting algorithm follows from
the correctness of each of the refinement steps.

The remainder of the paper develops the formal machinery needed to substan-
tiate our space complexity claims for the Colored Ticket Algorithm. Section 3
presents a formal model of computation and precise definitions of properties that
characterize the k-critical section problem. Section 4 describes how to translate
the Colored Ticket Algorithm to a process in the formal model and sketches how
to prove that it solves the k-critical section problem in small shared space.
Section 5 contains the lower bound proof that shows when k is fixed, the Colored
Ticket Algorithm is space-optimal (to within a constant factor depending expo-
nentially on k) among all algorithms that solve the strong form of the k-critical
section problem given in this paper.

2. k-CRITICAL SECTION ALGORITHMS

In this section, we present the Colored Ticket Algorithm, using a process of
successive refinement. Specifically, we present four algorithms, each a refinement
of the preceding, the last of which is the Colored Ticket Algorithm. The algo-
rithms run in an environment consisting of Nprocesses, each with its own private
memory, and a common shared memory through which the processes communi-
cate. Access to the shared memory is via atomic actions that allow a process, in
one indivisible step, to read the entire contents of shared memory and modify it
in an arbitrary way, depending in general on the data just read.

We specify our algorithms in a Pascal-like language augmented with two new
statements for specifying atomic actions, start and finish. Statements executed
dynamically after start and before the next finish comprise a single atomic
action. While it is possible in this language to write atomic actions of unbounded
size (for example, by executing a loop between start and finish), the atomic
actions we actually use are all bounded, a fact that is important for the imple-
mentation which we give in Section 3.
ACM Transactions on Progmmuning Languages and Systems, Vol. 11, No. 1, January 1989.

Distributed FIFO Allocation of Identical Resources l 95

repeat forever
start;
ENQUEUE(
wait until i is in one of the first k positions of QUEUE;
finish;

(Critical Section }

start;
REMOVE(i);
finish;

(Remainder Section)

end repeat.

Fig. 1. Queue algorithm (code for process i).

In order for our algorithms to have the desired correctness and robustness
properties, we make two assumptions about the implementation of atomic actions:

(1) A process crash in the middle of an atomic action does not cause the system
to hang and leaves the shared memory as it was before beginning the action.

(2) The system never aborts atomic actions. (Alternatively, an atomic action
that is retried repeatedly will eventually succeed.)

While these assumptions are difficult to implement exactly, they can be approx-
imated in real systems, so we believe our algorithms will be useful in practice.

As a convenience, we use the construct “wait until C” as an abbreviation for
“while not C do [finish; start]“. Thus every execution of the wait loop ends
one atomic action and begins another.

2.1 The Queue Algorithm

We first describe a simple but inefficient solution to the k-critical section problem.
This basic algorithm, the Queue Algorithm, stores the entire queue of waiting
and critical processes in the shared variable. A process in any of the first k
positions of the queue is permitted to enter its critical section. This algorithm
requires no communication among processes other than that provided by the
queue itself, and, in fact, each process need only change shared memory at the
moments of entry to the trying protocol and remainder section.

In the code given in Figure 1, the shared memory contains a single queue which
admits two operations. ENQUEUE places an element at the rear of the queue,
and REMOVE deletes a particular element from the queue, regardless of where
it occurs. Initially the queue is empty.

Note that many atomic actions might be executed before the process reaches
its critical section since each execution of the wait loop ends one atomic action

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

96 l M. J. Fischer et al.

and begins another. However, only the first of these actually updates shared
memory; the others are all “read-only.”

In this very simple algorithm, a process Pi becomes enabled to enter its critical
section when i first appears in one of the first k positions of the queue. Enabling
can occur either when i enters the queue, if fewer than k process numbers are in
the queue at that time, or when REMOVE(j) is executed for some j that is ahead
of i in the queue. Once enabled, Pi remains so until REMOVE(i) is executed, for
any new process numbers enter the queue behind i.

It should be clear that this algorithm achieves the robustness and fairness
conditions described in the introduction. Processes become enabled in the same
order as they entered the queue; and once enabled, a process remains enabled
until it finishes its critical section. Processes cannot be locked out of their critical
sections unless all of the first k positions of the queue are filled with failed
processes.

2.2 Ticket Systems

While the Queue Algorithm satisfies all the correctness properties we want,
keeping the queue in shared memory requires too much space to make the
algorithm very interesting. Our goal is to find an algorithm equivalent to the
Queue Algorithm that keeps a lot less information in the shared variable. In
other words, we wish to devise a space-efficient “distributed simulation” of the
Queue Algorithm.

All of our remaining algorithms are ticket systems, modeled after the ticket
systems often used in bakeries. A process wishing to enter its critical section
takes the next available ticket from an ordered sequence of tickets and then waits
until its ticket becomes ualid, at which point it is enabled to enter its critical
section and proceeds to do so on its next step. When it leaves its critical section,
it discards its ticket and validates the next invalid ticket in order, thereby allowing
the next process in line to proceed. (In case no process is currently waiting, the
next ticket is nevertheless validated, and when a process eventually takes that
validated ticket, it will proceed directly to its critical section.) Once a ticket
becomes valid, it remains valid until discarded. Tickets are validated in the same
order as they are issued, and at any time, exactly k (nondiscarded) tickets are
valid, some of which may not have yet been issued.

Since every process in its critical section holds a valid ticket, k-exclusion is
satisfied. Since tickets are validated in the order in which they are issued,
processes are enabled in FIFO order, so the algorithm satisfies our fairness
condition. Robustness follows since a process does not modify shared memory
from the time it enters its trying protocol until the time it returns to its remainder
section; hence, whether or not it is alive in the meantime has no effect on the
rest of the system.

Any such ticket algorithm simulates the Queue Algorithm in the sense that if
the natural correspondence is made between atomic actions of the two algorithms
and those actions are run in the same order, then processes enter and leave
their critical and remainder sections in exactly the same order in both. Indeed,
the simulated queue of the Queue Algorithm can be obtained by arranging the
processes holding tickets in increasing order of their tickets. Issuing a ticket
corresponds to adding a process to the end of the queue, and discarding a ticket
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Distributed FIFO Allocation of Identical Resources l 97

local variable TICKET;

repeat forever

start;
TICKET := TAKE-NEXT-TICKET;
wait until IS-VALID(TICKET);
finish;

{ Critical Section }

start;
VALIDATE-NEXT-TICKET(TICKET);
finish;

{ Remainder Section };

end repeat.

Fig. 2. Basic ticket algorithm (code for process i).

together with validating the next (invalid) ticket corresponds to removing a
process from the queue. The k valid tickets always correspond to the first k
positions of the queue.

Code to implement this basic paradigm is shown in Figure 2.
Function TAKE-NEXT-TICKET issues the next available ticket and returns

it to the calling program. Function IS-VALID(T) returns a Boolean value
telling whether or not the ticket T is valid. Procedure VALIDATE-NEXT-
TICKET(T) discards the ticket T and updates shared memory so as to cause the
next invalid ticket in sequence to become valid. In order to fully specify a ticket
algorithm, one must specify these three subroutines. (Initial conditions must
guarantee that TAKE-NEXT-TICKET will be ready to issue exactly k valid
tickets.)

2.3 The Numbered Ticket Algorithm

The first ticket system we present, the Numbered Ticket Algorithm, uses an
infinite number of values and hence requires an unbounded amount of shared
memory for its implementation. The Colored Ticket algorithm, which uses only
finite shared memory, is then described as two further modifications of this
algorithm.

In the Numbered Ticket Algorithm, tickets are natural numbers in their usual
order. The algorithm maintains two variables in shared memory. ISSUE holds
the most recently issued ticket, and VALID holds the most recently validated
ticket. Initially ISSUE = 0 and VALID = 12. An entering process takes a ticket
by incrementing ISSUE and using the variable’s new value as its ticket number.
Ticket number t is valid whenever VALID 2 t; hence, any process can determine
by looking in shared memory whether or not its ticket is valid. A process return-
ing to its remainder section discards its ticket and increments VALID.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

98 - M. J. Fischer et al.

global variable ISSUE = 0, VALID = L;

function TAKE-NEXT-TICKET: ticket;
begin

ISSUE := ISSUE + 1;
return ISSUE;

end;

function IS-VALID(T): Boolean
begin

return (T 5 VALID)
end;

procedure VALIDATE-NEXT-TICKET(T);
begin

VALID := VALID + 1;
end;

Fig. 3. Numbered ticket algorithm.

The code for the Numbered Ticket Algorithm is shown in Figures 2 and 3. The
initial value of the local variable TICKET (Figure 2) does not matter to the
operation of the algorithm.

The drawback to the Numbered Ticket Algorithm is, of course, that ISSUE
and VALID grow without bound.

2.4 Colored Ticket Algorithms

We now give two variations of the Numbered Ticket Algorithm based on the idea
of colored tickets, the second of which is the final Colored Ticket Algorithm.

In the previous algorithm, either ISSUE or VALID could be larger than the
other, and we say the larger one leads the smaller. (In case of equality, each ieads
the other.) However, they could never be too far apart. If VALID leads ISSUE,
then there are VALID-ISSUE valid but not-issued tickets; hence,

VALID - ISSUE 5 k.

If ISSUE leads VALID, then all k valid tickets are held by processes, and there
are ISSUE - VALID invalid tickets held by processes waiting in their trying
protocols. Since there are only N processes in all, k of which hold valid tickets,
we conclude that

ISSUE - VALID I N - k.

Let M > 1 + max(k, N - 12). Then we can determine which variable leads the
other given only the information:

. B = (LVALID/MJ = LISSUE/MJ)
l V = VALID mod M
l I = ISSUE mod M.
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Distributed FIFO Allocation of Identical Resources 99

Namely, if B = true, then VALID leads ISSUE iff V L 1, and if B = false, then
VALID leads ISSUE iff V < 1.’ Thus, we divide the tickets into blocks of size M.
B is true iff VALID and ISSUE are in the same block; V and I are the relative
positions of VALID and ISSUE within their respective blocks. It is easy to see
that if VALID and ISSUE are not, in the same block, then they must be in
consecutive blocks, and the condition on M insures that which block leads which
can be determined by comparing V and I.

The colored ticket algorithms replace numbered tickets by colored tic&zets that
consist of ordered pairs T = (t, c), where t, the value of T, is a number between
0 and M - 1 indicating the position of the ticket within the block, and c, the
color of T, is a non-negative integer indicating the block that contains the ticket.
We write T.VALUE and T.COLOR to denote the two components of T. There
is a natural one-to-one correspondence $ between numbered ticket i and colored
ticket (i mod M, Li/MJ). Using this correspondence, a process can determine for
colored tickets whether VALID leads ISSUE without using the ordering on colors
by computing:

9 B := (VALID.COLOR = ISSUE.COLOR)
l V := VALID.VALUE
l I := ISSUE.VALUE

and then applying the above remarks. It also follows from the above remarks
that 1 VALID.COLOR - ISSUE.COLOR 1 5 1.

Now, a process can easily determine whether or not a ticket T that it holds is
valid. T is always valid if its color differs from both VALID.COLOR and
ISSUE.COLOR, for then its color must be less than both. If T’s color is the same
as VALID.COLOR, then T is valid iff T.VALUE 5 VALID.VALUE. Finally, if
T’s color is the same as ISSUE.COLOR but different from VALID.COLOR, then
T is valid iff VALID leads ISSUE. Using these ideas, the function IS-VALID
can be defined as in Figure 4.

Unbounded Colored Ticket Algorithm. We complete the Unbounded Colored
Ticket Algorithm by exhibiting in Figure 5 the definitions for the ticket issuing
and validating functions. Initially, ISSUE = (0, 0) and VALID = (k, 0).

The Unbounded Colored Ticket Algorithm simulates the Numbered Ticket
Algorithm using the correspondence # between numbered tickets and colored
tickets given above. Thus, we have bounded the set, of ticket “values” at the cost
of introducing an unbounded set of “colors.” It, may appear that no progress has
been made, but the algorithm paves the way for the final modification which
yields the space-efficient Colored Ticket Algorithm.

Colored Ticket Algorithm. We now present the main contribution of the paper,
the Colored Ticket Algorithm. Like the previous algorithms, it simulates the
Queue Algorithm, but it is very space efficient, requiring only O(N2) values of
shared memory. It is obtained by modifying the Unbounded Colored Ticket
Algorithm so that only k + 1 different colors are used. This requires that tickets
(and colors) be reused.

’ In case k # N - k, we can actually take A4 = max(k, N - k) and adjust the conditions appropriately.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

100 l M. J. Fischer et al.

function LEADS(A,B): Boolean; { Tests if A leads B }
begin

if A.COLOR = B.COLOR then
return (A.VALUE 1 B.VALUE)

else

end;
return (A.VALUE < B.VALUE);

function IS-VALID(T): Boolean;
begin

if T.COLOR = VALID.COLOR then
return (T.VALUE 5 VALID.VALUE)

else if T.COLOR = ISSUE.COLOR then
return LEADS(VALID, ISSUE)

else
return true;

end;

Fig. 4. Validity testing functions for colored tickets.

The change from the unbounded version of the algorithm comes when
ISSUE.COLOR or VALID.COLOR is to be incremented. The new algorithm
instead considers two cases. If the leading pointer (ISSUE or VALID) is being
incremented, then a new color is chosen that is different from the color of any
currently issued or validated ticket and different from the color of the other
pointer. This insures that no two processes ever simultaneously hold the same
ticket. If the trailing pointer is being incremented, then it is set equal to the color
of the leading pointer. That this is correct. follows from the fact that the pointers
(in the Numbered Ticket Algorithm) never differ by more than M.

To see that it is always possible to select a new color when needed, we show
(for the Unbounded algorithm) that every color in use at the time a new color is
neeclecE is the same as the color of some valid ticket; hence, at most k colors are
then in use. A color is in use if it. is the color of a valid or issued ticket that has
not been discarded, or if it, is equal to VALID.COLOR or ISSUE.COLOR. Note
that in the exit protocol, a new ticket is validated immediately before the old one
is discarded, so except for the brief moment. between validating the new ticket
and discarding the old one, exactly k tickets are valid, the most recently validated
ticket T is still valid, and VALID.COLOR = T.COLOR. Hence, VALID.COLOR
is always the color of one of the k valid tickets, so it suffices to show that when
a new color is needed, both ISSUE.COLOR and the colors of all issued but not
yet validated tickets are the same as VALID.COLOR.

There are two cases. If a new color is needed because VALID is about to be
incremented, then VALID.VALUE = M - 1, VALID leads ISSUE, and a process
is in its exit, protocol attempting to validate a new ticket. Then ISSUE.COLOR
= VALID.COLOR since rC/-l(VALID) - rC/-‘(ISSUE) I k I M - 1. Since there
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Distributed FIFO Allocation of Identical Resources l 101

constant M = 1 + masc(lc, N - Ic);

global variable ISSUE = (O,O), VALID = (Ic, 0)

function TAKE-NEXT-TICKET: ticket;
begin

if ISSUE.VALUE < M - 1 then
ISSUE.VALUE := ISSUE.VALUE + 1

else begin
ISSUE.VALUE := 0;
ISSUE.COLOR := ISSUE.COLOR + 1;
end;

return ISSUE;
end:

procedure VALIDATE-NEXT-TICKET(T);
begin

if VALID.VALUE < M - 1 then
VALID.VALUE := VALID.VALUE $1

else begin
VALID.VALUE := 0;
VALID.COLOR := VALID.COLOR + 1;
end;

end;

Fig. 5. Unbounded colored ticket algorithm.

are no issued but not validated tickets, the only colors in use are those belonging
to the k valid tickets.

On the other hand, if a new color is needed because ISSUE is about to be
incremented, then ISSUE.VALUE = M - 1, ISSUE leads VALID, and a ticket
is about to be issued to an entering process. Again, ISSUE.COLOR =
VALID.COLOR, for $-YISSUE) - $-‘(VALID) 5 N - k 5 M - 1.3 Moreover,
any outstanding invalid tickets lie between VALID and ISSUE, so they also have
color VALID.COLOR. Again the only colors in use are those belonging to the k
valid tickets.

We conclude that with k + 1 colors altogether, there is always a free color
whenever a new one is needed.

To permit a process to determine which color is free, we introduce an array
QUANT of length k + 1 into the shared variable, where QUANT(c) E (0, 1, . . . ,
kJ gives the number of valid tickets of color c. There are exactly k valid tickets,
so the total number of different values for the QUANT array is the number of
(k + 1)-tuples of non-negative integers that sum to k. This in turn is the number

3 Actually, #-‘(ISSUE) - $-‘(VALID) 5 N - k - 1 since the entering process does not yet hold a
ticket, but we do not make use of this fact.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

102 l M. J. Fischer et al.

function NEW-COLOR: integer; (Returns unused color }
local variable C;
begin

.- c 0;
while QUANT(C) > 0 do C := c + 1;
return C

end;

Fig. 6. Find unused color function (used by colored ticket algorithm).

of partitions of k identical elements into k. + 1 sets, or (“,“). While this number is
exponential in k, it is independent of N. QUANT is updated whenever a ticket
is discarded and a new one is validated.

The code for finding a new color is shown in Figure 6. It simply scans for a
color with QUANT = 0. Although NEW-COLOR appears to involve a loop
which takes time O(k), only constant time is required in our model of computa-
tion. We could make this explicit at the cost of a factor kk additional values in
shared memory. The idea is to keep a stack of indices of QUANT elements that
have value zero. NEW-COLOR then simply pops an index from the stack.
VALIDATE-NEXT-TICKET checks to see if QUANT(T.COLOR) is zero and,
if so, pushes it onto the stack.

The final algorithm is contained in Figures 2, 4, 6, and 7. Initially, ISSUE =
(0,O) and VALID = (k, 0).

This algorithm simulates the Unbounded Colored Ticket Algorithm. To prove
this, one shows that any two issued or validated (and not discarded) tickets T
and T’ have the same color in this algorithm iff they have the same color in the
Unbounded algorithm; hence, the two algorithms always make the same decisions.
We leave the details to the reader.

The total number of shared memory values needed by the Colored Ticket
Algorithm is the product of the number of values assumed by QUANT, ISSUE,
and VALID. This works out to

0 “k” ((k + 1)M)’ = O(N’)

as desired, since M = O(N).

3. A FORMAL MODEL FOR SYSTEMS OF PROCESSES

We now present a formal model of computation and state the conditions that
define the k-critical section problem. The model is derived from that of [2]. It
can also be regarded as a special case of the general model of [16].

3.1 Processes and Systems

A process is a quadruple P = (V, X, 6, A?), where

l V is a set of values for a shared variable,
l X is a (not necessarily finite) set of process states,
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Distributed FIFO Allocation of Identical Resources l 103

constant M = l+max(L,N-Ic);

global variable ISSUE = (O,O), VALID = (/q 0), QUANT[O], . . . , QUANT[lc] = 0;

function TAKE-NEXT-TICKET: ticket;
begin

if ISSUE.VALUE < M - 1 then
ISSUE.VALUE := ISSUE.VALUE + 1

else begin
if LEADS(ISSUE, VALID) then

ISSUE.COLOR := NEW-COLOR
else

ISSUE.COLOR := VALID.COLOR,
ISSUE.VALUE := 0
end;

return ISSUE;
end;

procedure VALIDATE-NEXT-TICKET(T);
begin

if VALID.VALUE < M - 1 then
VALID.VALUE := VALID.VALUE + 1

else begin
if LEADS(VALID, ISSUE) then

VALID.COLOR := NEW-COLOR
else

VALID.COLOR := ISSUE.COLOR;
VALID.VALUE := 0
end;

{ Update quantity information. }

QUANT(VALID.COLOR) := QUANT(VALID.COLOR) + 1;
QUANT(?‘.COLOR) := QUANT(T.COLOR) - 1;

end;

Fig. 7. Colored ticket algorithm.

l 6 is a total function from V X X to V X X, the transition function, and
l 9 is a total function from X to (R, T, C, E), the region function.

Assume process P is in state x and the shared memory has value u. A step of P
changes the state to x’ and the shared memory to u’, where (u’, x’) = 6(u, x).

For a state x E X, 9(x) gives the region of x, where R denotes the remainder
region, T the trying region, C the critical region, and E the exit region. We assume

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

104 l M. J. Fischer et al.

Fig. 8. Possible region changes.

that 6 respects 9 as follows. For every (u, x) E V x X:

(1) 9’(x) E (R, T) implies 9’(6(u, x)) E (Z’, C), and
(2) 9(x) E (C, E) implies 9(fJ(u, x)) E (E, I?).

The allowed transitions are indicated in Figure 8. The transitions out of R and
T comprise the trying protocol, and the transitions out of C and E comprise the
exit protocoL4 We “abstract away” the steps comprising the critical and remainder
sections treating only the protocols explicitly; hence the absence of self-loops
on R and C. Thus the next step of a process in R takes it out of R, and similarly
for C.

For a natural number N, let [IV] denote (1, . . . , N). A system S of Nprocesses
is a collection of processes Pi = (V, X;, 6i, LZi), i E [N], all having the same shared
variable V.

An instantaneous description (i.d.) q of S is a snapshot of the configuration
of S and completely determines S’s possible future behaviors. Formally q is an
(IV + 1)tuple (u, x1, . . . , xN), where u E V is the contents of the shared variable
and Xi E Xi, 1 5 i I N, are the states of the N processes. We denote u by V(q)
andxibyXi(q),lIisiV.

The functions 6i and Bi of the individual processes are naturally extended to
functions on the set of i.d.‘s of S by defining

where (u’, x’) = &(u, xi), and

2?i(U, Xl, a e s 3 XN) = Si((xi)-

* Our formal model imposes a slight restriction on the form of protocols in that all transitions leaving
a state of the trying region must belong to the trying protocol (and similarly for the exit region and
protocol). Thus a process, once permitted to begin its critical section, must first take a step to leave
the trying region before it begins executing steps of its critical section, and the step which takes it
out of the trying region is considered to be a part of the trying protocol. This restriction is for
technical convenience only and does not weaken the results, for any protocol can be easily put into
this form by adding dummy steps to the ends of the trying and exit protocols.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Distributed FIFO Allocation of Identical Resources l 105

A schedule h for S is any finite or infinite sequence of elements of [N].5
A schedule describes the interleaving of process steps in a particular “run” of the
system. Since the processes are deterministic, the entire run is determined by
the starting i.d. Q of the system and a schedule h. Formally the run determined
byqandh=hl,h2,... is the finite or infinite sequence of i.d.‘s Q(q, h) = qo, ql,
q2, . - * such thatz

(1) If h is infinite then Q(q, h) is infinite, and if h is finite then 1 Q(q, h) 1 =
lhl +l.

(2) qo = 4.

(3) If qiel, qi are successive elements of Q(q, h), then qi = &,(qi.-,).

If Q(q, h) is finite, then the last i.d., qs, is the result of Q(q, h), and we denote q5.
by 6(q, h), extending 6 once again. 1.d. q’ is reachable from q via h provided 6(q,
h) = q’, and q’ is reachable from q if q’ is reachable from q via some finite
schedule h.

3.2 Equivalence of Systems
Let S and S’ be systems of N processes, with q and q’ i.d.‘s of S and S’
respectively. We say that (S, q) and (S’, q’) are equivalent if for every finite
schedule h, all processes are in the same regions in 6(q, h) and 6 ‘(q ‘, h); that is,
for every i E [N], %(6(q, h)) = 9((6’(q’, h)).

3.3 Dependencies Among Processes
We have noted that processes are always free to leave their remainder or critical
regions on their own, but the same is not true for the trying and exit regions. We
next give some important definitions that describe possible dependencies among
processes progressing through their regions.

Let 2 denote any region. A process Pi in a system of processes is Z-enabled in
i.d. q if for every schedule 5 in which i occurs infinitely often, there is a finite
prefix h of 5 such that 9i(S(q, h)) = 2. Thus the Z-enabled i.d.‘s are those in
which a process is either already in 2 or will eventually enter 2 (if it tries long
enough), no matter what the other processes do. Note that a process Pi can
become Z-enabled because of its own actions or because of actions of other
processes. Thus Pi might not be Z-enabled in q and yet be Z-enabled in 6(q, h),
even if h does not contain i. In this case we say that Pi has been passively enabled
from q by h and can be thought of as passively belonging to region 2.

We say that Pi is T-waiting in q if it is in T but is not C-enabled in q. Similarly,
we say that Pi is E-waiting in q if it is in E but is not R-enabled in q.

3.4 Properties of Systems
We now state the properties that define the k-critical section problem. Through-
out this section, S denotes a system of N processes, q an i.d. of S, k < N a natural
number, and #Y the cardinality of the set Y.

6 Note that h is not required to be “fair.” Processes that take only finitely many steps in h are
considered to have failed.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

106 l M. J. Fischer et al.

Our first condition is the basic k-exclusion condition.

l k-Exclusion. 1.d. q satisfies k-exclusion if #(i E [N] 1 gi(q) = C) 5 k.
S satisfies k-exclusion from q if every i.d. reachable from q in S satisfies
k-exclusion.

Note that any set of processes that are C-enabled but not in C can, by taking
steps on their own, reach an i.d. in which all are simultaneously in C. Thus, if S
satisfies k-exclusion from q, the number of C-enabled processes in any i.d.
reachable from q is at most k.

Our second condition describes our robustness requirements. We say that i.d.
q is k-full if #(i E [N] 1 Pi is C-enabled in q) L k. We say that a process Pi makes
progress in a run if, for some pair of i.d.‘s q ’ and q” in the run, either

(1) %(q’) Z SW), or
(2) Pi is T-waiting in q’ but not in q”, or
(3) Pi is E-waiting in q’ but not in 4”.

l Avoidance of k-Deadlock. An infinite schedule h exhibits k-deadlock from q
if no process makes progress in the run Q(q, h), and either

(1) some process is T-waiting in q and q is not k-full, or
(2) some process is E-waiting in q.6

S avoids k-deadlock from q if no infinite schedule exhibits k-deadlock from any
i.d. reachable from q.

Our third and final condition describes the fairness property, FIFO enabling.
Intuitively, violation of FIFO enabling occurs if a process remains T-waiting
while another process, beginning in its remainder region, becomes C-enabled.
Similarly, a violation occurs if a process remains E-waiting while another process,
beginning in its critical region, becomes R-enabled. Formally let q be an i.d. and
h a finite schedule. We say Pj overtakes Pi in Q(q, h) if Pi is T-waiting in all i.d.‘s
of Q(q, h), 9$(q) = R, and Pj is C-enabled in 6(q, h), or if Pi is E-waiting in all
i.d.‘s of Q(q, h), 9j(q) = C, and Pj is R-enabled in 6(q, h).

l FIFO Enabling. S achieves FIFO enabling from q if for all q’ reachable from
q, all finite schedules h, and all i, j E [NJ, Pj does not overtake Pi in Q(q’, h).

The Problem. Let q be an i.d. with every process in its remainder region.
A system S solves the k-critical section problem starting from q if it satisfies
k-exclusion, avoids k-deadlock, and achieves FIFO enabling from q.

6 Intuitively a schedule exhibits k-deadlock if some process “wants” to make progress and progress is
possible, but no process actually does make progress. At first sight, it might seem necessary to exclude
failed processes from consideration in the formal definition, for we do not consider that progress is
possible for failed processes. However it is unnecessary to distinguish between failed and nonfailed
processes because our convention of no self-loops on R and C implies that every nonfailed process
“wants” to make progress (since it cannot continue taking steps and remain in R or C), and at least
one process is nonfailed in every infinite schedule.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Distributed FIFO Allocation of Identical Resources 107

4. UPPER BOUND

The Colored Ticket Algorithm, when translated into the formalism of our model,
shows that the k-critical section problem can be solved by a system S that uses
only O(N’) values of shared memory.

The translation requires a few comments. The atomic actions used in the
algorithm make several accesses to the shared global variables, change internal
variables, and branch to one of several possible exits depending on the values in
shared and private memory at the start of the action. In our formal model, each
atomic action becomes a single process step. The program counter and all internal
storage of a process is represented by the state LX, and the entire contents of the
global variables is represented by the value u of the shared variable. To construct
the value (u’, x’) of the transition function 6 (v, x), if the program counter in x
points to a start instruction, then run the algorithm until it encounters a finish
statement, and move the program counter past the finish. 3~’ is the state and u’
the shared memory contents that result. If a finish is never reached, or if the
program counter in x does not point to a start instruction, then 6 (u, x) is-defined
arbitrarily. This translation is not fully general, but it is adequate for algorithms
such as ours in which every atomic action terminates, and the next instruction
to be executed after a finish is always a start.

THEOREM 4.1. The Colored Ticket Algorithm, when translated into the formal
model as described above, solves the k-critical section problem and uses

0 y ((k + l)(l + max(k, N - k)))’ = O(N’)

values of shared memory.

A formal proof can be constructed following the development given in Section
2. Namely, one first proves that the Queue Algorithm solves the k-critical section
problem. Next one shows that each of the three successively presented algorithms
is equivalent to the preceding in the sense formally defined in Section 3.2. Finally
one applies the following lemma, whose proof is straightforward.

LEMMA 4.2. Assume (S, q) is equivalent to (S’, 4’). If S satisfies the k-critical
section problem from q, then S ’ satisfies the k-critical section problem from q’.

5. LOWER BOUND

In this section we establish a lower bound on the size of the shared variable of
any system of processes that solves the k-critical section problem. We assume
throughout that k and N are natural numbers with N L k + 2, S is a system of
N processes, and o. is an i.d. with every process in its remainder region such that
S solves the k-critical section problem from qo.

Our method of proof is to construct a collection of runs and show that each
leaves the shared variable in a distinct state. In order to carry out the construc-
tion, we need several “liveness” lemmas that show certain kinds of progress are
always possible.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

108 l M. J. Fischer et al.

C-enabled T-waiting EUR

Fig. 9. The relation <.

5.1 Progress Lemmas

We begin with some basic properties that follow from the fact that S solves
the k-critical section problem. FIFO enabling places rather severe constraints
on the order in which processes can become C-enabled, which are expressed
by the relation X~ that we next define.

Consider any i.d. q and processes Pi and Pi. We define i i, j to hold precisely
if one of the following conditions holds at q:

(1) Pi is C-enabled and Pj is in E U R;
(2) Pi is C-enabled and Pj is T-waiting;
(3) Pi is T-waiting and Pj is in E U R;
(4) Pi and Pj are both T-waiting, and in some run leading from go to q, Pi last

entered T before Pj did.

We also define aheadj(q) = (i E [N]] i <4 j). The ordering $ is illustrated in
Figure 9.7

The first lemma says that the order in which processes become C-enabled from
q respects <9.

LEMMA 5.1. Let q be reachable from go, and let i <4 j. Let h be a finite schedule
such that Pj is C-enabled in 6(q, h). Then Pi i-s C-enabled in some i.d. in Q(q, h).

PROOF. Assume the conditions of the lemma. Since i + j, Pi is either C-
enabled or T-waiting in q. If Pi is C-enabled, then we simply choose h’ = A, the
null schedule, and we are done. Hence, assume Pi is T-waiting in q.

Again, since i <s j, Pj is either in E U R or is T-waiting in q. In either case,
there exists an i.d. q1 (possibly equal to q) and schedules h+, hl such that q1 is
reachable from go via ho, q is reachable from q1 via hl , Pj is in E U R in ql, and
Pi is T-waiting in every q’ E Q(ql, hl). Pi is not T-waiting in every q’ E Q(q, h),

’ One can show that if q is reachable from qO, then % is a strict partial order which totally orders the
T-waiting processes in q, as illustrated, but we do not need this fact.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Distributed FIFO Allocation of Identical Resources l 109

for if it were, then Pj overtakes Pi in Q(ql, h1 . h), violating FIFO enabling.
Hence, Pi is C-enabled in some i.d. in Q(q, h). 0

The next lemma implies that among the T-waiting processes there is one that
is “ahead” of all the others.

LEMMA 5.2. Let q be reachable from qo, ana’ assume that at least one process is
T-waiting in q. Then there is a T-waiting process Pi in q such that i +4 j for all
j # i such that Pj is T-waiting in q.

PROOF. Let q be reachable from q. via h, and consider the run Q(qo, h). Order
the T-waiting processes in q according to the times of their most recent entry to
Tin Q(qo, h), and let Pi be the first such process. By definition, i <<4 j holds for
all j # i such that Pj is T-waiting in q. 0

LEMMA 5.3. Let q be reachable from qo.

(1) If q is not k-full, then no process is T-waiting in q.
(2) No process is E-waiting in q.

PROOF. (1) Assume that q is not k-full but some process is T-waiting in q. We
proceed to derive a contradiction.

By Lemma 5.2, there is a T-waiting process Pi in q such that i i, j for all j # i
such that Pi is T-waiting in q. Since Pi is T-waiting in q, there is a schedule h in
which Pi takes infinitely many steps but it remains in T in every i.d. of Q(q, h);
hence Pi is T-waiting in every i.d. of Q(q, h).

Suppose a process Pj becomes C-enabled during Q(q, h). That is, suppose one
can write h = hl . hz - h3 such that Pj is not C-enabled in q1 = 6(q, hl), but Pj is
C-enabled in S(ql, hz). Then i -$,1 j holds by definition, so by Lemma 5.1, Pi is C-
enabled at some i.d. in Q(ql, hz), a contradiction. Hence, no process becomes
C-enabled during Q(q, h), so none of the i.d.‘s in Q(q, h) are k-full.

Now, for some suffix Q(q), h’) of the run Q(q, h), no process makes progress
since each process can change region or become R-enabled only a finite number
of times without becoming C-enabled. Thus, h’ exhibits k-deadlock from q’,
contradicting the avoidance of k-deadlock condition.

(2) The proof is similar (and simpler). Assume that Pi is E-waiting in q. Then
there is a schedule h in which Pi takes infinitely many steps but it remains in E
in every i.d. of Q(q, h). It follows that Pi is E-waiting in every i.d. of Q(q, h).

Only processes Pj already in E in q can become R-enabled during Q(q, h), and
that can happen at most once per process, for otherwise Pj would overtake Pi,
violating the FIFO enabling condition. Hence, in some suffix Q(q’, h’) of the
run Q(q, h) no process makes progress since each process can change region or
become C-enabled only a finite number of times without becoming R-enabled.
Then h’ exhibits k-deadlock from q ‘, contradicting the avoidance of k-deadlock
condition. 0

The following lemma says that a process can only be C-enabled while it is in
its trying or critical region.

LEMMA 5.4. Let q be reachable from qo. If process Pi is C-enabled in q, then Pi
is in T U C in q.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

110 l M. J. Fischer et al.

PROOF. Assume the contrary, that Pi is C-enabled in q, and Pi is in E U R in
q. For each j E [N], j # i, run F’j for zero or more steps until an i.d. is reached
in which it is in T U C. This procedure must terminate after a finite number of
steps, for otherwise Pj remains forever in E U R. But that is impossible by
Lemma 5.3 and the absence of self-loops on region R. Call the resulting i.d. q’.

In q’, every process other than Pi is either T-waiting or is C-enabled. At most
K processes can be C-enabled (by the remark following the definition of k-
exclusion). Thus, since we assume N > k + 2, some process P/ is T-waiting in
q’. Pi is still C-enabled in q’ (by definition of enabling), so it enters C in the run
Q(q'> i”) for some m. By Lemma 5.3, q’ is k-full, so P/ remains T-waiting
throughout Q(q’, i”). But then Pi overtakes P/ in Q(q’, i”), violating FIFO
enabling. 0

The next lemma says that, no matter what the other processes do, any process
in its trying region that takes infinitely many steps eventually reaches its critical
region, provided that there are not too many processes ahead of it.

LEMMA 5.5. Let q be reachable from qo, and let Pi be in Tin q. Then #aheadi
< k iff Pi is C-enabled in q.

PROOF. Assume the conditions of the lemma.

(+) Suppose #aheadi < k but Pi is not C-enabled in q. Then Pi must be
T-waiting in q, so by Lemma 5.3, q is k-full. But then all the processes that are
C-enabled in q are in aheadi(so that #aheadi 2 k. This is a contradiction.

(c”) If Pi is C-enabled in q, then Pi is in T U C by Lemma 5.4. But then ahead;(g)
=0. Cl

The next lemma says that it is always possible for all the processes to run so
as to end up simultaneously in their remainder regions.

LEMMA 5.6. Let q be reachable from qo. Then there exists q’ reachable from q
such that every process is in its remainder region in q ‘. Moreover, q ’ can be
reached from q via a schedule in which no process already in its remainder region
in q takes any steps.

PROOF. It suffices to show that if not all processes are in their remainder
regions, then there is some Pi not in R that is C- or R-enabled. Assuming we
have shown that such a Pi exists, we run Pi until it changes regions. We then
repeat this construction on each resulting i.d. until an id. is reached in which all
processes are in R. This procedure must eventually terminate since each process
can change regions only finitely many times before entering its remainder region.

Now suppose that every process not in R is neither C- nor R-enabled in q.
Then q is not k-full, since no process is C-enabled, by assumption and Lemma
5.4. By Lemma 5.3, no process is T- or E-waiting in q; therefore, no process is in
T U E in q. But also no process is in C in q since no process is C-enabled. Hence
every process is in R. It follows that if not all processes are in R, then some such
process is C- or R-enabled, as desired. Cl
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Distributed FIFO Allocation of Identical Resources l 111

S P2..*Pk pk+l*eePj Pj+l...Pi Pi+l...PN I.D.
- - k-+-/ -

y* 70 Tll io To
To 10 T* I* To q’
R C T R T q(i,j)

Fig. 10. The lower bound construction.

5.2 The Schedule h(i, j)

Now choose any q reachable from q. in which all processes are in their remainder
regions. q exists by Lemma 5.6. Fix i and j, with k 5 j < i 5 iV - 1. Construct a
schedule, h(i, j), as follows.

(1) Starting at q, each of PI, . . . , Pk takes steps on its own, just until it enters
its critical region. This is possible by Lemma 5.5. Then each of PA+*, , . . , PN
takes one step, going to its trying region. Let PN’s state after its entry be
denoted by x-for future reference. (Note that x does not depend on i or j.)

(2) PI takes steps on its own, just until it returns to its remainder region, leaving
one empty critical slot. This is possible by Lemma 5.3. Call the resulting i.d.
q’ for later reference. (Note that q ’ does not depend on i or j.)

(3) Each of Pk+l, . . . , Pi in turn takes steps on its own, just until it returns to
its remainder region. This is possible by Lemmas 5.3 and 5.5.

(4) Each of Pk+l, . . . , Pj takes one step, thereby entering its trying region once
again. The resulting i.d. is denoted q(i, j).

This construction is diagrammed in Figure 10. Arrows are labeled by ‘O’, ‘l’, or
‘*’ to indicate that the corresponding process takes 0, 1, or an unspecified number
of steps.

5.3 Distinctness of Shared Values
We now relate the construction to the size of shared memory.

LEMMA 5.7. The shared variable has a distinct value in each q(i, j).

PROOF. Assume to the contrary that V(q(i, j)) = V(q(i’, j’)) for (i, j) #
(i’, j’). Without loss of generality, it suffices to consider two cases.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

112 l M. J. Fischer et al.

Case 1. i < i’. Among all T-waiting processes in q(i’,j’), Pi,+l was the first to
enter its trying region, so #aheadi,+l(q(i’, j’)) = iz - 1. Then Pi,+, is C-enabled
in q(i’, j’) by Lemma 5.5. Also, Pi,+1 is in the same state in both q(i, j) and
q(i’,j’). Since also the shared variable has the same value in both i.d.‘s, it follows
that Pi*+l, starting from q (i, j) can take some number m of steps and enter its
critical region. We claim that the schedule E = h(i, j) . (i’ + 1)” violates FIFO
enabling from q. This is because P. r’+l goes from its remainder to its critical
region during R while Pi+l, which entered its trying region first, remains T-
waiting. (Pi+1 does not become C-enabled during E, for if it did, then k-exclusion
would be violated in the schedule 5 . (i + l)“.)

Case 2. i = i’ andj < j’. Consider schedule h constructed as follows. Starting
from q(i, j), Pi,+, takes one step, thereby entering the trying region. Then each
Of Pi+12 - * * 9 PN~ pk+ls * * . , Pj, in turn, takes sufficiently many steps to return to
its remainder region, possible by Lemmas 5.3 and 5.5. Call the resulting i.d. ql.
Then aheadj*+,(q,) = {2, . . . , k), SO Pj,+, is C-enabled in q1 by Lemma 5.5.

Now consider the application of h to q(i, j’) and let qi be the resulting i.d.
Pi,+, is in the same state in both q1 and q{ , and also the shared variable has the
same value in both i.d.‘s; thus Pj,+l, starting from qi, can take some number m
of steps and enter its critical region. Hence, Pj,+, enters its critical region in the
run Q(q(i, j’), h’), where h’ = h . (j’ + 1)“. The schedule h’ violates FIFO
enabling from q(i, j’), for Pjt+l overtakes Pj+l in Q(q(i, j’), h’). 0

5.4 Lower Bound Theorem

Finally we prove the main lower bound result.

THEOREM 5.8. Let N L k + 2, and let S be a system of N processes with value
set V for its shared variable, and let q. be an i.d. such that S solves the k-critical
section problem from qo. Then,

PROOF. The proof proceeds by induction on k.

Base. k = 1. By Lemma 5.7, there are at least (%-l) = 1 . (N;2) + N - 2
distinct values.

Inductive step. k > 1. By Lemma 5.7, there are (N-i-‘) distinct values of the
variable for the i.d.‘s q(i, j) for i, j satisfying k 5 j < i 5 N - 2. Each such q(i, j)
is k-full since P2, . . . , Pk and Pi+l are C-enabled in q(i, j). Hence, by k-exclusion,
if v(i, j) is the value of the shared variable in q(i, j), then no finite number of
applications of PN’s transition function 6N to the pair (v(i, j), r) can put PN in
its critical region. (Recall that Plv is in the same state x in each q(i, j).)

Now reconsider the construction of Section 5.2. Starting at q’, let each of
P2, . . . , Pk take steps until they return to their remainder regions, possible since
all are R-enabled by Lemma 5.5. Now let each of Pk+l, . . . , P,-, in turn enter
their critical regions and then return to their remainder regions, again possible
by Lemmas 5.3 and 5.5. Call the resulting i.d. q “.
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Distributed FIFO Allocation of Identical Resources l 113

Pl, **., PN-~ are in their remainder regions and PN is in its trying region in
q”, so Pry is C-enabled in q N by Lemma 5.5. From q”, consider PI, . . . , PNml as
comprising a system, S’, of N - 1 processes. Since S solves the &critical section
problem from q, it can be shown that S’ solves the (k - l&critical section
problem from (the appropriate restriction of) q”. Thus, by induction, the number
of values that can be taken on by S”s shared variable is at least

(N - ‘) - (Iz - ‘) - ’
2

+ (N - 1) - (]z - 1) _ 1

=(k-l)(N-;-l)+N-k-l.

Since PN is C-enabled in q”, each value v that can be taken on by the shared
variable in i.d.‘s reachable from q” using only PI, . . . , PNF1 has the property that
some finite number of applications of & to the pair (v, X) will put PN in its
critical region. Thus these shared variable values are disjoint from the values
v (i, j) considered above.

We conclude that

,V,+-;-l)+(k-l)(‘V-;-l)+N-k-l

=+-;-l)+N-k-l,

as desired. Cl

6. SUMMARY AND OPEN QUESTIONS

In this paper, we have described the k-critical section problem in general terms
and have defined an extremely robust version of the problem: equivalence with a
particular simple, but space-inefficient, algorithm, the Queue Algorithm.

As our main result,, we have presented an interesting new algorithm, the
Colored Ticket Algorithm, which solves the given version of the problem and
uses only O(N’) values of the shared variable. Our lower bound proof shows that,,
for fixed k, this algorithm is optimal to within a constant factor in terms of
number of values of shared memory.

There is still a large gap between the constants in the upper and lower bounds.
Both depend on k, but the constant in the upper bound is exponential in k, while
the constant in the lower bound is linear in 12. It remains to close this gap.

Our results assume that k is fixed. If we allow k to be a function of N our
algorithms are not tight. For example, if k = log N, then our algorithm uses
O(N4(log N)3’2) values of shared memory, but our lower bound is only Q(N210g
N). If k = O(N), then the gap is exponential. These cases deserve investigation.

ACKNOWLEDGMENTS

We are grateful to Brian Coan for helpful comments on an early draft of this
paper. We are also grateful to the referees for many helpful suggestions for
improving the presentation.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

114 l M. J. Fischer et al.

REFERENCES
1. BURNS, J. E. Complexity of communication among asynchronous parallel processes. Ph.D.

dissertation, School of Information and Computer Science, Georgia Institute of Technology,
1981.

2. BURNS, J. E., JACKSON, P., LYNCH, N. A., FISCHER, M. J., AND PETERSON, G. L. Data
requirements for implementation of N-process mutual exclusion using a single shared variable.
J. ACM 29, 1 (1982), 183-205.

3. CREMERS, A. B., AND HIBBARD, T. N. An algebraic approach to concurrent programming
control and related complexity problems. Tech. Rep., University of Southern California, Nov.
1975. (Presented at Symposium on Algorithms and Complexity, Pittsburgh, Pa., April 1976.)

4. CREMERS, A. B., AND HIBBARD, T. N. Mutual exclusion of N processors using an O(N)-valued
message variable. In Proceedings of5thZCALP (Udine, Italy). Lecture Notes in Computer Science,
vol. 62. Springer Verlag, New York, pp. 165-176.

5. CREMERS, A. B., AND HIBBARD, T. N. Arbitration and queueing under limited shared storage
requirements. Tech. Rep. 83, Dept. of Informatics, University of Dortmund, Mar. 1979.

6. DEBRUIJN, N. G. Additional comments on a problem in concurrent control. Commun. ACM 10,
3 (Mar. 1967), 137-138.

7. DIJKSTRA, E. W. Solution of a problem in concurrent programming control. Commun. ACM 8,
9 (1965), 569.

8. EISENBERG, M. A., AND MCGUIRE, M. R. Further comments on Dijkstra’s concurrent program-
ming control problem. Commun. ACM 15, 11 (Nov. 1972), 999.

9. FISCHER, M. J., LYNCH, N. A., BURNS, J. E., AND BORODIN, A. Resource allocation with
immunity to limited process failure. In Proceedings of 20th Annual IEEE Symposium on
Foundations of Computer Science (San Juan, P.R., Oct. 1979), IEEE, New York, pp. 234-254.

10. KNUTH, D. E. Additional comments on a problem in concurrent programming control. Commun.
ACM 9,5 (1966), 321-322.

11. LAMPORT, L. A new solution of Dijkstra’s concurrent program problem. Commun. ACM 17, 8
(1974), 453-455.

12. LAMPORT, L. The synchronization of independent processes. Actu Znf. 7 (1976), 15-34.
13. LAMPORT, L. A bug in the bakery algorithm. Tech. Rep. CA-7704-0611, Massachusetts Com-

puter Associates, Inc., Apr. 1977.
14. LAMPORT, L. The mutual exclusion problem: Part I-A theory of interprocess communication.

J. ACM 33, 2 (1986), 313-326.
15. LAMPORT, L. The mutual exclusion problem: Part II-Statement and solutions. J. ACM 33, 2

(1986), 327-348.
16. LYNCH, N. A., AND FISCHER, M. J. On describing the behavior and implementation of distrib-

uted systems. Theor. Comput. Sci. 13 (1981), 17-43.
17. LYNCH, N. A., AND FISCHER, M. J. A technique for decomposing algorithms which use a single

shared variable. J. Comput. Syst. Sci. 27,3 (1983), 350-377.
18. MORRIS, J. M. A starvation-free solution to the mutual exclusion problem. Znf. Process. L&t. 8,

2 (Feb. 1979), 76-80.
19. PETERSON, G. L. New bounds on mutual exclusion problems. Tech. Rep. TR 68, University of

Rochester, Rochester, N.Y., Feb. 1980.
20. PETERSON, G. L. Myths about the mutual exclusion problem. Znf. Process. Lett. 12, 3 (June

1981),. 115-116.
21. PETERSON, G. L., AND FISCHER, M. J. Economical solutions for the critical section problem in

a distributed system. In Proceedings of Ninth ACM Symposium on Theory of Computing (May
1977), ACM, New York, pp. 91-97.

22. RIVEST, R. L., AND PRATT, V. R. The mutual exclusion problem for unreliable processes:
Preliminary report. In Proceedings of 17th Annual IEEE Symposium on Foundations of Computer
Science (1976), IEEE, New York, 1976, l-8.

Received July 1985; revised March 1987; accepted September 1988

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

