
Quorum Consensus in Nested Transaction
systems

KENNETH J. GOLDMAN

Washington University

and

NANCY LYNICH

Massachusetts Institute of Technology

Giffords Quorum Consensus algorithm for data replication is studied in the context of nested
transactions and transaction failures (aborts), and a fully developed reconfiguration strategy is
presented. A formal description of the algorithm is presented using the Input/Output automaton
model for nested transaction systems due to Lynch and Merritt. In this description, the
algorithm itself is described in terms of nested transactions. The formal description M used to
construct a complete proof of correctness that uses standard assertional techniques, is based on a
natural correctness condition, and takes advantage of modularity that arises from describing the
algorithm as nested transactions. The proof is accomplished hierarchically, showing that a fully
replicated reconfigurable system “simulates” an intermediate replicated system, and that the
intermediate system simulates an unreplicated system. The presentation and proof treat issues
of data replication entirely separately from issues of concurrency control and recovery.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—concurrency;
distributed systems

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Concurrency control, data replication, hierarchical proofs,
1/0 automata, nested transactions, quorum consensus

1. INTRODUCTION

In distributed database systems, data are often replicated in order to im-

prove availability, reliability, and performance. Whenever replication is used,

a replication algorithm is required to ensure that replication is transparent

K. J. Goldman was supported in part by the National Science Foundation under Grant CCR-91-
10029. A preliminary version of this paper appeared in Proceedings of the 6th ACM Symposium

on Principles of D~stributed Computing. N, Lynch was supported in part by the National Science
Foundation under Grant CCR-86-11442, in part by the Defense Advanced Research Projects
Agency (DARPA) under Contract NOOO14-89-J-1988,and in part by tbe Office of Naval Research
under Contract NOO014-85-0168.
Authors’ addresses: K. J. Goldman, Department of Computer Science, Washington University, St.
Louis, MO 63130; N. Lynch, Laboratory for Computer Science, MIT, Cambridge, MA 02139.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
01994 ACM 0362-5915/94/1200-0537 $03.50

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994, Pages 537-585

538 . K. J. Goldman and N. Lynch

to the user programs. In understanding replication algorithms, it is conve-

nient to think of each logical object as being implemented by a collection of

replicas and logical access programs. The replicas retain state information,

and the user programs invoke logical access programs in order to read or

write the logical object. The logical access programs complete these read or

write operations by accessing some subset of the replicas.

One of the best-known replication algorithms is the quorum consensus

algorithm of Gifford [1979]. Gifford’s work does not include transaction

nesting, but permits the user to access the logical objects using single-level

transactions. Based on the majority-voting algorithm of Thomas [1979], the

ideas of this method underlie many of the more recent and sophisticated

replication techniques (e.g., Eager and Sevcik [1983], Herlihy [1984], El

Abbadi et al. [1985], and El Abbadi and Toueg [1989]). The goal of a

replication algorithm is to ensure that each read operation sees enough

replicas to ensure that it will return the value written by the “preceding”

write operation. This can be guaranteed by a simple read-one/write-all

approach (where every replica is updated on each write, and reading a single

replica suffices), or by a read-majority /write-majority approach. The quorum

consensus algorithm generalizes these approaches as follows. Each replica is

assigned a number of votes, and retains in its state a data value with an

associated version number. Each logical object X has an associated configu-

ration consisting of two integers, called read-quorum and write-quorum. If k

is the total number of votes assigned to replicas of X, then the configuration

for X is constrained so that read-quorum + write-quorum > k. To read X, a

logical access program collects the version numbers from enough replicas so

that it has at least read-quorum votes; then it returns the value associated

with the highest version number. To write X, a logical access program

collects the version numbers from enough replicas so that it has at least

read-quorum votes; then it writes its value with a higher version number to a

collection of replicas with at least write-quorum votes.

In our discussion of quorum consensus algorithms for data replication, we

use a configuration strategy that is slightly more general than the one

described above. In this strategy, justified by Barbara and Garcia-Molina

[1985], a configuration consists of a set of read quorums and a set of write

quorums. Each quorum is a set of replica names; thus, the voting strategy

above corresponds to the special case where any set of replicas is a read

quorum if and only if the total votes among its members exceeds the

threshold read-quorum. To read a logical object, a logical access program
accesses all the replicas in some read quorum and chooses the value with the

highest version number. To write a logical object, a logical access program

first discovers the highest version number written so far by accessing all the

replicas in some read quorum; then the logical access increments that version

number by one and writes the new value and version number to all the

replicas in some write quorum. Every read quorum must have a nonempty

intersection with every write quorum. This ensures that each read of the

logical object reads at least one of the replicas written by the most recent

logical write.

ACM TransactIons on Database Systems, Vol. 19, No, 4, December 1994

Quorum Consensus in Nested Transaction Systems . 539

In this paper, Gifford’s quorum consensus algorithm is described and

proven correct in the context of nested transaction systems that permit users

to invoke accesses to logical objects using arbitrary nested transactions.

Transaction nesting turns out to be useful not only for describing user

programs, but also for describing and understanding the replication algo-

rithms themselves (even if the user transactions themselves are not nested).

This is because the logical access programs may be written as subtransac-

tions of the user transactions, and the different tasks performed by a logical

access may be written as subtransactions of the logical access transactions.

We show how Gifford’s algorithm can be structured in this way. Once this is

done, it is very natural to allow nesting of user transactions as well.

The quorum consensus algorithm is well suited to systems in which trans-

action failures (aborts) may occur, and is therefore a natural choice for nested

transaction systems in which one of the primary goals is to mask failures. For

example, if the replica accesses performed by a logical access program are

invoked as subtransactions of that program, then an operation to access a

logical data item can complete even if some of its associated replica accesses

abort. Our presentation includes a fully developed mechanism for changing

the read- and write-quorums dynamically. This mechanism, known as recon-

figuration, was outlined by Gifford, and has also been studied by Jajodia and

Mutchner [1990]. Reconfiguration is useful for coping with site or link

failures.

In this paper, we describe and prove the correctness of two algorithms for

data replication using a general framework that is suitable for a wide range

of distributed algorithms. Two principal algorithms are described in this

paper. The first uses a fixed configuration, whereas the second supports

reconfiguration. Both algorithms are presented in a nested transaction set-

ting where transaction failures are possible. An interesting aspect of the

reconfiguration algorithm is that the configuration information itself is repli-

cated and managed by the data replication algorithm.

Separating the concerns of data replication from concurrency control and

recovery has been an important goal in the formal treatment of replicated

data management algorithms (e.g., El Abbadi and Toueg [1989]). Our presen-

tation achieves this separation in the nested transaction setting. We present

the replication issues solely in the context of systems without concurrency.

We prove that a system that includes the new replication algorithm and that

is serial at the level of the individual data copies looks the same, to the user

transactions, as a system that is serial at the level of the logical objects. The

fact that both systems involved in this simulation are serial systems helps to

simplify the reasoning.

Of course, systems that are truly serial at the level of the data copies are of

little practical interest. However, previous work on nested transaction con-

currency control and recovery algorithms [Moss 198 1; Reed 1983; Lynch and

Merritt 1986; Fekete et al. 1987] has produced several interesting algorithms
that guarantee that a system appears to be serial, as far as the transactions

can tell. Combining any of these algorithms (at the replica level) with the

replication algorithm we present yields a combined algorithm that appears

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994.

540 . K. J, Goldman and N, Lynch

unreplicated and serial (at the logical data item level), as far as the user

transactions can tell. In fact, our results provide a careful proof of the fact

that the replication algorithm can be combined with any algorithm that

guarantees “serializability” at the copy level, to yield a system that is

serializable e at the logical data item level. Thus, our work formalizes, for the

case of nested transaction systems, an important claim from classical concur-

rency control theory:

quorum consensus works with any correct concurrency control algorlthm. As
long as the algorithm produces serializable executions, quorum consensus will
ensure that the effect is just like an execution on a single copy database
[Bernstein et al. 1987].

We are able to accomplish this clean separation in the case of nested

transactions because our correctness conditions are stated from the point of

view of the transactions, instead of from the point of view of the database

interacting with a particular scheduler. Furthermore, the classical serializ-

ability theory correctness conditions are stated in terms of executions of the

same system, while our correctness conditions are defined in terms of a

separate specification of the allowable executions.

‘I’here have been some previous attempts at rigorous presentation and

proof of replicated data algorithms. Most notable among these is the presen-

tation and proof given by Bernstein et al. [1987] of Gifford’s basic algorithm;

this work is based on classical serializability theory. Their approach, how-

ever, does not appear to generalize easily to the case where nesting and

failures are allowed. Also, Herlihy [1984] extends Gifford’s algorithm to

accommodate abstract data types and offers a correctness proof. Nested

transactions are not considered.

The remainder of the paper is organized as follows. In Section 2 we

summarize the system model we use for nested transaction systems, as

presented by Fekete et al. [1990]. In Section 3 we give a formal definition of

configurations. In Section 4 we describe the algorithm for a fixed configura-

tion, followed by the reconfigurable algorithm in Section 5. Finally, in Section

6, we show that the correctness of interesting concurrent replicated systems

follows directly from these results. Section 7 summarizes our results and

suggests possible directions for further work.

2. BACKGROUND

We adopt the model of nested transaction systems constructed by Lynch and

Merritt [1986] with the 1/0 automaton model of Lynch and Tuttle [1987] as a

foundation. We begin with a review of the 1/0 automaton model and then

describe its use in modeling nested transaction systems. Complete details

may be found in Fekete et al. [1990].

We note that whereas classical serializability theory is designed specifically

to deal with database concurrency and replica control, the 1/0 automaton

model is well suited for studying a wide range of distributed algorithms. The

model provides a foundation for precise problem specifications, detailed algo-

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994

Quorum Consensus in Nested TransactIon Systems . 541

rithm descriptions, and careful correctness proofs, as well as impossibility

results.

2,1 The Input / Output Automaton Model

An 1/0 automaton A has a set of states, some of which are designated as

initial states. Usually a state is given as an assignment of values to a

collection of named typed variables. The automaton has actions, divided into

input actions, output actions, and internal actions. We refer to both input and

output actions as external actions. An automaton has a transition relation,

which is a set of triples of the form (s’, T, s), where s‘ and s are states, and rr

is an action. This triple means that in state s‘, the automaton can atomically

perform action w and change to state s. An element of the transition relation

is called a step of the automaton.

The input actions model the actions that are triggered by the environment

of the automaton, the output actions model the actions that are triggered by

the automaton itself and are potentially observable by the environment, and

the internal actions model changes of state that are not directly detected by

the environment.

Given a state s r and an action T, we say that T is enabled in s‘ if there is

a state s for which (s’, w, s) is a step. We require that each input action m be

enabled in each state s‘, i.e., that an 1/0 automaton must be prepared to

receive any input action at any time.

Rather than listing triples, we describe transition relations by associating a

precondition and effect with each action. For a given automaton in state s‘, if

the precondition for action m is true in s‘, then the automaton may perform m

and go to state s, as defined by the effect. If T is enabled in all states, the

precondition is omitted.

An execution of A is an alternating sequence so nl Slrz “”” w.s. of states

and actions of A such that so is a start state and each triple (s’, v, s) that

occurs as a consecutive subsequence is a step of A. The schedule of an

execution is the sequence of actions that occur in that execution. The behav-

ior of an execution of A is the sequence of external actions of A in the

execution. A behavior represents the information that the environment can

detect about the execution. Since the same action may occur several times in

an execution, schedule, or behavior, we refer to a single occurrence of an

action as an euent.

We say that a schedule (behavior) P can leave A in state s if there is some

execution with schedule (behavior) a and final state s. If schedule (behavior)

@‘ of A is a prefix of schedule (behavior) B of A, we say that state s is

reachable from ~‘ in P iff s is the final state in an execution a of A with

schedule (behavior) ~ ‘y, where ~ ‘y is a prefix of /3.

We describe systems as consisting of interacting components, each of which

is an 1/0 automaton. It is also convenient and natural to view systems as

1/0 automata. Thus, we define a composition operation for 1/0 automata, to
yield a new 1/0 automaton. A collection of 1/0 automata is said to be

strongly compatible if (1) every internal action of every automaton is not an

action of any other automaton in the collection, (2) every output action of
.

ACM TransactIons on Database’ Systems, Vol. 19, No. 4, December 1994.

542 . K. J. Goldman and N. Lynch

each automaton is not an output action of any other, and (3) no action is

shared by infinitely many automata in the collection. A (possibly infinite)

collection of strongly compatible automata may be composed to create a

system 9. A state of the composed automaton is a tuple of states, one for

which component automaton, and the start states are tuples consisting of

start states of the components. An action of the composed automaton is an

action of a subset of the component automata. It is an output of the system if

it is an output of any component. It is an internal action of the system if it is

an internal action of any component. During an action n- of &’, each of the

components that has an action n- carries out the action, while the remainder

stay in the same state. If @ is a sequence of actions of a system with

component A, then we denote by /3 IA the subsequence of fl containing all the

actions of A. Clearly, if @ is a finite behavior of the system, then ~ IA is a

finite behavior of A. There is an important converse result.

LEMMA 2.1.1. Let {A,},. ~ be a strongly compatible collection of automata,

and let A be the composition of the collection. Suppose P is a finite sequence of

external actions of A, such that /3 IA, is a finite behavior of Al for every i.

Then ~ is a finite behavior of A.

Let A and 1? be automata with the same external actions. Then A is said

to implement B if every finite behavior of A is a finite behavior of B. One

way in which this notion can be used is the following: Suppose we can show

that an automaton A is “correct,” in the sense that its finite behaviors all

satisfy some specified property. Then if another automaton B implements A,

B is also correct.

2.2 Serial Systems and Correctness

Serial systems [Fekete et al. 1990] are used to characterize the correctness of

a transaction-processing system. Serial systems consist of transaction au-

tomata and serial object automata communicating with a serial scheduler

automaton.

Transaction automata represent code written by application programmers.

Serial object automata serve as specifications for permissible behavior of data

objects in the absence of concurrency. They describe the responses the objects

should make to arbitrary sequences of operation invocations, assuming that

later invocations wait for responses to previous invocations. The serial sched-

uler handles the communication among the transactions and serial objects,
and thereby controls the order in which the transactions can take steps. It

ensures that no two sibling transactions are active concurrently and decides

whether each transaction commits or aborts. The serial scheduler can permit

a transaction to abort only if its parent has requested its creation, but it has

not actually been created. Thus, in a serial system, all sets of sibling

transactions are run serially, and in such a way that no aborted transaction

ever performs any steps.

A serial system allows no concurrency among sibling transactions, and has

only a very limited ability to cope with transaction failures. However, serial

ACM TransactIons on Database Systems, Vol. 19, No, 4, December 1994

Quorum Consensus in Nested TransactIon Systems . 543

systems provide useful specifications for correct behavior of other, more

interesting systems, and as intermediate models for separating the concerns

of replication algorithms from those of concurrency control.

We represent the pattern of transaction nesting, a system type, by a set Y–

of transaction names, organized into a tree by the mapping parent, with TO

as the root. In referring to this tree, we use traditional terminology, such as

child, leaf, ancestor, and descendant. (A transaction is its own ancestor and

descendant.) The leaves of the transaction-naming tree are called accesses.

The accesses are partitioned so that each element of the partition contains

the accesses to a particular object. Additionally, the system type specifies a

set of return ualues for transactions (henceforth simply called ualues). If T is

a transaction name that is an access to the object name X and u is a value,

we say that the pair (T, v) is an operation of X.

The tree structure can be thought of as a predefine naming scheme for all

possible transactions that might ever be invoked. In any particular execution,

however, only some of these transactions will actually take steps. We imagine

that the tree structure is known in advance by all components of a system.

The tree will, in general, be infinite and have infinite branching.

The classical transactions of concurrency control theory (without nesting)

appear in this model as the children of a “mythical” transaction TO, the root

of the transaction tree. Transaction To models the environment in which the

rest of the transaction system runs. It has actions that describe the invoca-

tion and return of the classical transactions. Only leaf transactions access the

data, and so are distinguished as “accesses.” Accesses may exist at any level

below the root. The internal nodes of the tree model transactions whose

function is to create and manage subtransactions, but not to access data

directly. A serial system of a given system type is the composition of a

transaction automaton for each nonaccess node of the transaction tree, a

serial object automaton for each object name, and a serial scheduler. These

are described below.

2.2.1 Transactions. A nonaccess transaction T is modeled as a transaction

automaton AT, an 1/0 automaton with the following external actions. (In

addition to this, AT may have arbitrary internal actions.)

Input: CREATE(T)

REPORT_ COMMIT(7”, u ‘), for every child T‘ of T, and every return

value u‘ for T‘
REPORT _ABORT(T’), for every child T‘ of T

Output: REQUEST_ CREATE(T ‘), for every child T‘ of T

REQUEST_ COMMIT(T, v), for every return value u for T.

The CREATE input action (an output of the scheduler automaton we

describe later) “wakes up” the transaction. The REQUEST_ CREATE output

action is a request by T for the scheduler to create a particular child
transaction. The REPORT_ COMMIT input action reports to T the successful

completion of one of its children, and returns a value recording the results of

that child’s execution. The REPORT _ABORT input action reports to T the

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994.

544 . K. J. Goldman and N, Lynch

unsuccessful completion of one of its children, without returning any other

information. The REQUEST_ COMMIT action is an announcement by T that

it has finished its work, and includes a return value.

We leave the executions of particular transaction automata largely uncon-

strained; the choice of which children to create and what value to return will

depend on the particular implementation. For the purposes of the systems

studied here, the transactions are “black boxes. ” Nevertheless, it is conve-

nient to require that all transaction automata preservel certain syntactic

conditions, called transaction well- forrnedness, as follows. A sequence ~ of

external action of automaton A~’I is transaction well-formed for T, provided

the following conditions hold:

(1)

(2)

(3)

(4)

(5)

(6)

The first event in ~, if any, is a CREATE(T) event, and there are no other

CREATE events.

There is at most one REQUEST_ CREATE(T’) event in f? for each child

T’ of T.

Any report event for child T‘ of T is preceded by REQUEST_

CREATE(T’) in ~.

There is at most one report event in B for each child T‘ of T.

If a REQUEST_ COMMIT event for T occurs in ~, then it is preceded by

a report event for each child T‘ of T for which there is a

REQUEST_ CREATE(T’) in ~.

If a REQUEST_ COMMIT event for T occurs in ~, then it is the last

event in ~.

A transaction well-formed sequence is always a prefix of a sequence that

starts with CREATE(T), ends with REQUEST_ COMMIT(T, u), and in be-

tween has some interleaving of a collection of two-element sequences

REQUEST_ CREATE(T ‘) REPORT_ COMMIT(T‘, u‘), for various children T‘

of T.

2.2.2 Serial Objects. Recall that transaction automata are associated with
nonaccess transactions only, and that access transactions model abstract

operations on shared data objects. We associate a single 1/0 automaton with

each object name. The external actions for each object are just the CREATE

and REQUEST_ COMMIT actions for all the corresponding access transac-

tions. Although we give these actions the same kinds of names as the actions
of nonaccesa transactions, it is helpful to think of the actions of access

transactions in other terms also: a CREATE corresponds to an invocation of

an operation on the object, while a REQUEST_ COMMIT corresponds to a

response by the object to an invocation. Thus, we model the serial specifica-

tion of an object X (describing its activity in the absence of concurrency and

lThe concept of preserumg a property of behaviors is formally defined in Fekete et al. [1990] and

means that the automaton does not violate the property unless Its environment has done so first.

ACM TransactIons on Database Systems, Vol 19, No. 4, December 1994.

Quorum Consensus in Nested Transaction Systems . 545

failures) by a serial object aqtomaton Sx with the following external actions.

(In addition to this, S’x may have arbitrary internal actions.)

Input: CREATE(T), for every access T to X

Output: REQUEST_ COMMIT(l’, u), for every access T to X and every return

value v for T.

As with transactions, while specific objects are. left largely unconstrained, it

is convenient to require tb at behaviors of serial objects satisfy certain syntac-

tic conditions. Let a be a sequence of external actions of S’x. We say that a is

serial-object well-formed for X if it is a prefix of a sequence of the form

CREATE(TI) REQUEST_ COMMIT(T1 , u~) CREATE(T2) REQUEST_ COM-
MIT(T2, u2)...

where T* + Tj when i + j. We require that every serial object automaton

preserve serial-object well-formedness.

Read/Write Serial Objects. One especially important class of serial-object

automata are the reaci/write serial objects. Each read/write serial object Sx

has an associated domain of values, D, with a distinguished initial value do.

SAY also has an associated function kind : accesses(X) + {“read”, “write”},

and an associated function data : T G czccesses(X) : kind(T) = “write”+ D.

The set of possible return values for each access T where kind(T) = “read” is

D, while an access T where kind(T) = “write” has return value “OK”. The

state of S’x consists of two components: actiue (either “nil”, or the name of an

access to X), and data (an element of D). The start state so has so .actiue

= “nil”, and so ,data = do. The transition relation is as follows:

CREATE(T) REQUEST_ COMMIT(T, u),

Effect: s.actiue = T for kind(T) = “read”

s.actiue = T Precondition:

s’. actiue = T

REQUEST_ COMMIT(T, u), s’. data = u

for kind(T) = “write” Effect:

Precondition: s.active = “nil”

s’. actil~e = T
~ =~~o~~~

Effect:

s.actiue =“nil”

s.data = data(T)

2.2.3 Serial Scheduler. The third kind of component in a serial system is

the serial scheduler. The transactions and serial objects have been specified

to be any 1/0 automata whose actions and behavior satisfy simple restric-
tions. The serial scheduler, however, ia a fully ~pecified automaton, particular

to each system type. It runs transactions according to a depth-first traversal

of the transaction tree. The serial scheduler can choose nondeterministically

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994.

546 . K. J Goldman and N Lynch

to abort any transaction whose parent has requested its creation, as long as

the transaction has not actually been created. Each child of T whose creation

is requested must be either aborted or run to commitment with no siblings

overlapping its execution, before T can commit. The result of a transition can

be reported to its parent at any time after the commit or abort has occurred.

The actions of the serial scheduler are as follows:

Input: REQUEST_ CREATE(T), T # TO

REQUEST_ COMMIT(T, u)

Output: CREATE(T)

COMMIT(T), T # To

ABORT(T), T # To

REPORT_ COMMIT(T, u), T # TO

REPORT_ ABORT(T), T + TO

The REQUEST_ CREATE and REQUEST_ COMMIT inputs are intended

to be identified with the corresponding outputs of transaction and serial-

object automata, and correspondingly for the CREATE, REPORT_ COMMIT,

and REPORT_ ABORT output actions. The COMMIT and ABORT output

actions mark the point in time where the decision on the fate of the transac-

tion is irrevocable. Thus, for each transaction T‘ involved in an execution, we

have a REQUEST_ CREATE from the parent, followed by either (1) an

ABORT and REPORT_ ABORT from the scheduler or (2) a CREATE from the

scheduler, a REQUEST_ COMMIT from the transaction, and a COMMIT and

REPORT_ COMMIT from the scheduler.

Each state s of the serial scheduler consists of six sets, denoted via record

notation: s.create _requested, s.created, s.commit _requested, s.committed,
s.aborted, and s.reported. The set s.commit _requested is a set of operations.

The others are sets of transactions. There is exactly one start state, in which

the set create _requested is {TO}, and the other sets are empty. The notation

s.completed denotes s.committed u s.aborted. Thus, s.completed is not an

actual variable in the state, but rather a deriued variable whose value is

determined as a function of the actual state variables.

REQUEST_ CREATE(T) ABORT(T)

Effect: s.create _ requested Precondition:

= s’.create_requested u {T} T E s ‘.create_requested —

s’.completed

T @ s’.created

siblings(T) n s’.created c
s’.completed

Effect:

REQUEST_ COMMIT(T, u) s. aborted

Effect: s.commit_requested = s’.aborted u {T}

= s’.commit_requested U {(T, u)} REPORT _COMMIT(T, U)

Precondition:

T E s ‘committed

(T, U) E

s’. commit _requested

ACM TransactIons on Database Systems, Vol. 19, No 4, December 1994

Quorum Consensus in Nested Transaction Systems

CREATE(T) T @ s‘ reported

Precondition: Effect:

T G s ‘.create_requested — s ‘created s.reported

T E s ‘aborted = s‘. reported V

siblings(T) n s‘ created c s ‘completed REPORT_ ABORT(T)

Effect: Precondition:

s.created = s ‘created u {T} T = s‘ aborted

T @ s‘. reported

COMMIT(T) Effect

Precondition: s. reported

(T, u) E s ‘commit _requested for some v = s’. reported U

T @s ‘completed

Effect:

s.comrnitted = s ‘committed u {T)

. 547

(T}

[T}

2.2.4 Serial Systems and Serial Behaviors. A serial system is the compo-

sition of a strongly compatible set of automata consisting of a transaction

automaton AT for each nonaccess transaction name T, a serial-object au-

tomaton S’x for each object name X, and the serial-scheduler automaton for

the given system type.

The discussion in the remainder of this paper assumes an arbitrary, but

fixed, system type and serial system, with AT as the nonaccess transaction

automata, and S’x as the serial-object automata. We use the term serial

behauiors for the system’s behaviors. We give the name serial actions to the

external actions of the serial system. The COMMIT(T) and ABORT(T)

actions are called completion actions for T.

If T is a transaction name and m is one of the serial actions CREATE(T),

REQUEST _CREATE(T’), REPORT _COMMIT(T’, u’), REPORT_

ABORT(T ‘), or REQUEST_ COMMIT(T, u), where T‘ is a child of T, then we

define transaction(n) to be T. If w is a serial action of the form CREATE(T)

or REQUEST _COMMIT(T, u), where T is an access to X, then we define

object(w) to be X. If ~ is a sequence of actions, T a transaction name, and X

an object name, we define ~ IT to be the subsequence of ~ consisting of those

serial actions w such that transaction(w) = T, and we define B 1X to be the

subsequence of ~ consisting of those serial actions n such that object(m) = X.

We define serial(~) to be the subsequence of ~ consisting of serial actions.

If @ is a sequence of actions and T is a transaction name, we say T is an

orphan in ~ if there is an ABORT(U) action in @ for some ancestor U of T.

We say the T is liue in ~ if F contains a CREATE(T) event but does not

contain a completion event for T.

LEMMA 2.2.4.1. Let ~ be a serial behavior.

(1) If T is live in ~ and T’ is an ancestor of T, then T’ is live in fl.

(2) If T and T‘ are transaction names such that both T and T‘ are live in /3,
then either T is an ancestor of T‘ or T‘ is an ancestor of T.

2.2.5 Serial Correctness. The serial system is used to specify the correct-

ness condition that we expect other, more efficient systems to satisfy. We say

ACM TransactIons on Database Systems, Vol 19, No. 4, December 1994.

548 . K. J. Goldman and N. Lynch

that a sequence ~ of’ actions is serially correct for transaction name T

provided that there is some serial behavior y such that ~ IT = y IT. We are

interested in studying particular systems of automata representing replicated

data objects, where each replica uses a concurrency control method and

interacts with a controller that passes information between transactions and

objects. We will show that all finite behaviors of these systems are serially

correct for TO, the mythical root transaction representing the environment.

We believe serial correctness to be a natural notion of’ correctness that

corresponds precisely to the intuition of how nested transaction systems

ought to behave. Serial correctness for T is a condition that guarantees to

implementors of T that their code will encounter only situations that can

arise in serial executions. Correctness for To is a special case that guarantees

that the external world will encounter only situations that can arise in serial

executions.

3. CONFIGURATIONS

If S is an arbitrary set, we define a configuration c of S to be any pair,

(c. read, c.write), where each of c.read and c.write is a nonempty collection of

subsets of S, and where every element of c. read has a nonempty intersection

with every element of c.write. (We will sometimes refer to c.read and c.write

as the sets of read quorums and write quorums, respectively, of configuration

c.) We write corzfzgs(s) for the set of all configurations of S.

For example, if the set S consists of three elements x, y, and z, then one

configuration c has c.read = {{x}, {y}, {z}} and c.write = {{x, y, z}}. This con-

figuration corresponds to the read-one/write-all replication strategy. Another

configuration has c.read = {{x, y}, {.x, z}, {y, z}} and c.write == {{x, y}, {x, z},

{y, z}}, corresponding to a read-majority/write-majority strategy.

4, FIXED-CONFIGURATION QUORUM CONSENSUS

In this section, we present and prove the correctness of a fixed-configuration

quorum consensus algorithm. For simplicity, we carry out the formal develop-

ment in this paper for the replication of a single object, which we call X. The

same arguments apply to any finite number of objects.

First, Section 4.1 defines system M, a serial system that has X as one of its

object names. In system .@, the object automaton associated with X is a

read/write serial-object automaton Sx, representing the logical object to be
replicated. System .w’ is used in order to define system correctness. Then

Section 4.2 defines the replicated serial system @. System ,% is identical to

d, except that logical object Sx is implemented as a collection, SY, Y E ~, of

serial read/write objects that we call replica objects, and each logical read (or

write) of X is replicated as a subtransaction that performs multiple read and

write accesses to some subset of the replicas according to the quorum

consensus algorithm. Section 4.3 shows that the algorithm is correct by

demonstrating a relationship between W and .@; this proof is easy because

both systems are serial.

ACM TransactIons on Database Systems, Vol 19, No. 4, December 1994

Quorum Consensus in Nested Transaction Systems . 549

4.1 System .W The Unreplicated Serial System

We begin by defining unreplicated serial system W. System .@ is an arbitrary

serial system having a distinguished object name X, in which the object

automaton Sx associated with X is a read/write serial object with domain D

and initial value do.

We define la, and la,O to be sets containing the respective names of the

read and write accesses to X, in W, and define la = la, U la,,. (Here, la

stands for “logical access.”)

Since each transaction name T = la, is a read access to Sx, the definition

of a read/write serial object says that kind(T) = read for each such T. Also,

each transaction name T = la LOhas kind(T) = write, and also has an associ-

ated value, data(T) G D.

4.2 System Q?: The Fixed-Configuration Quorum Consensus Algorithm

Here we describe system .%, which represents the quorum consensus algo-

rithm with a fixed configuration. System A??is a serial system in which object

S’x is replicated; that is, it is implemented as several serial objects (replicas),

SY, Y = ~, rather than just one. The accesses to X are implemented as

subtransaction automata called logical access automata (LA’s). The LA’s use

the quorum consensus algorithm to manage the replicas. We allow arbitrary

quorums, as long as each read quorum has a nonempty intersection with

every write quorum. In order to read the logical object, a read-LA accesses all

the replicas in some read quorum, while in order to write the logical object, a

write-LA writes to all the replicas in some write quorum. The intersection

property guarantees that each read-LA receives at least one copy of the latest

logical data value.

Since reads of different replicas could return different data values, a

mechanism is needed to distinguish the most recent value from other possible

values. Thus, each replica in the quorum consensus algorithm maintains a

nonnegative integer version-number in addition to its data value. Successive

write-LA’s use successively larger version numbers, and a read-LA selects the

data value associated with the largest version number it receives. This

strategy requires each write-LA to learn what version number it is supposed

to write, which in turn requires it to learn the largest version number

previously used. In order to learn this number, each write-LA first does a

preliminary read of a read-quorum of the replicas.

Since both the read-LA and the write-LA programs must perform reads of a

read quorum of the replicas, it is helpful to have a subtransaction that

performs such a read. This subroutine can be invoked by a read-LA to

perform nearly all of its work, and can also be invoked by a write-LA to

perform its preliminary read. We can describe such a subroutine in the

nested transaction framework by introducing two extra levels of nesting.

Thus, read-LA and write-LA transactions will have children known as read-

coordinator transactions, which will be responsible for reading from a read

quorum of replicas. Write-LA transactions will also have children known as

write-coordinator transactions, which will be responsible for writing to a

ACM Transactions on Database Systems, Vol 19, No. 4, December 1994

550 . K. J. Goldman and N. Lynch

write quorum of replicas. Read-coordinators and write-coordinators will, in

turn, have children that are individual read and write accesses to the

replicas.

We begin by defining the type of 9, and then give the new automata that

appear in W but not in ~. The new automata are the replica objects, and the

coordinator and LA transaction automata. We define these automata “bottom

up,” starting with the replicas and the configuration automata.

4.2.1 System Type. The type of system .% is defined to be the same as

that of M, with the following modifications. First, the object name X is now

replaced by a new set of object names ~, representing the replicas. (The

replicas will store both a value and version number.) There are some new

transaction names, co, and COW representing read- and write-coordinators,

respectively, and ace, and acca,, which are the read and write accesses to the

replicas, respectively. We let co = co, U co,,, and ace = ace, U accu,.

The transaction names in la are accesses in w-, but in # they are not; each

transaction name in lar now has children that are in co,, while each

transaction name in la ~, now has children in C07 and children in col~,. Also,

each transaction name in co~ has children in acc~, and each transaction

name in co,” has children in accU,. These are the only changes to the system

type—for example, no transaction names other than those indicated are

parents of the new transaction names. The naming structure for logical

accesses and their descendants is shown in Figure 1.

In system .&, some information is associated with some of the transaction

names; for example, each T in la (that is, each access to X) has hind(T)

indicating whether the access reads or writes, and write accesses have

ciata(l”) indicating the value to be written. In Q?, we keep all such associated

information from .@ and add more information as follows. First, every trans-

action name T G COU has an associated value data(T) G D and an associated

version number uersion-number(T) G N. These denote, respectively, the value

for X and the associated version number to be written by the write-coordina-

tor in the quorum consensus algorithm. Second, we associate some informa-

tion with the accesses to the replicas. Namely, we assume that every transac-

tion name T E ace, has kind(T) = read, and that every transaction name

T E ace,,, has kind(T) = write and data(T) ● N X D, the version number

and value to be written.z

Throughout the rest of this section, we let c denote a fixed configuration

of y.

4.2.2 Replica Automata. A replica automaton is defined for each object

name Y ~ ~. Each replica is a read/write serial object that keeps a version

number and a value for X. More formally, the object automaton for each

Y = ~ in system Q? is a read/write serial object for Y with domain N x D

2The transaction names in czccWname accessesto read/write objects. Hence, to agree with the
definitions in Section 2.2.2, the version number and data values are combined into a single data

attribute.

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994

Quorum Consensus in Nested Transachon Systems . 551

i

la,

Cor

accr

CREATE(T)
Effect: s.awake = true

v.wake = true

Fig. 1. Logical accessesand their descendants.

REQUEST.CREATE(T’)

Precondition:
/awake = true
~ f? s’. rcquesfed

Effect:
s.requested = /.wque9tcd U {T’)

REPORT.COMMIT(T’,V)
Effect: s.reporfed = s’.reported U {~}

s.read = s’.read U {object(T’))

if u.uervion-number > s’. uersion-number then
9.uer9i0n-number = u.uersion-number
s.wdue = u,ualue

s.reported = 9’. reported U {T’)

s.read = s’. read U {object(T’))

if u.uersion-number > s’. uer9ion-number then
s version-number = u.uersion-number

I 1s.ua ue = v.ua ue

REPORT_ABORT(T’)
Effect: s.mparted = e’.mported U {T’)

s.reparted = s’. repartedu {2”)

REQUEST_COMMIT(T,v)
Precondition:

s’. ou,ake = true
s’. requested= a’. reported
(37? g c.read)(??s s’.read)
v = (9’. uersion-number, a’. value)

Effect:
a.awake = Jal$e

Fig. 2. Transition relation for Read-Coordinators

and initial value (O, do). For u = N x D, we use the record notation

u.uersion-nurnber and v.ualue to refer to the components of U.

4.2.3 Coordinators. In this section, we define the coordinator automata in

.27, the transaction automata that are invoked by the LA’s and access the

replicas. We first define read-coordinators. The purpose of a read-coordinator

is to determine the latest version number and value of X, on the basis of the

data returned by the read accesses it invokes. A read-coordinator for transac-

tion name T G co, has state components awake, value, version-number,

requested, reported, and read, where awake is a Boolean variable, initially

false; ualue G D, initially do; version-number EN, initially 0; requested and

reported are subsets of children(T), initially empty; and read is a subset of

~, initially empty. The set of return values VT is equal to IV x D.
The transition relation for read-coordinators is shown in Figare 2. Recall

that c is a fixed configuration. This is used to determine when the coordina-

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994.

552 . K. J. Goldman and N. Lynch

tor has collected enough information to be sure of having seen the most

recent value of X. A read-coordinator collects data from replicas for object

names in ~, and keeps track of the value from the replica with the highest

version number seen so far. Whenever the read-coordinator reaches a state in

which (1) some read quorum, according to c, is a subset of the replicas it has

seen (i.e., those in s‘. read) and (2) it has learned of the fates (i.e., commit or

abort) of all of its requested child transactions, then the read-coordinator may

request to commit and return its data.

We have written the read-coordinator with a high degree of nondetermin-

ism. It may request any number of accesses to replicas, at any time while it is

active. In practice, one would probably start at most one access to each

replica at a time, and then request another one only after the failure of an

earlier access to that replica. There is also a natural trade-off in practice

between two methods of choosing which replicas to access at first: one could

request initially only enough access to complete one read quorum, and then

request others if these fail to commit in reasonable time, or else one could

request accesses to all replicas concurrently. The first method minimizes

communication cost in the best case (when all accesses complete successfully),

and the second reduces latency in the bad case where some accesses fail.

Each of these possibilities, and many others, could be modeled as an imple-

mentation of the automaton given here, obtained by restricting nondetermin-

ism.

We next define write-coordinators. The purpose of a write-coordinator is to

write a given value to a write quorum of replicas for object names in $’. A

write-coordinator for transaction name T G CO,Ohas state components awake,

requested, reported, and written, where awake is a Boolean variable, initially

false; requested and reported are subsets of children(T), initially empty; and
~~ritten is a subset of ~, initially empty. The set of return values VT is equal

to {“OK”}.
The transition relation for a write-coordinator named T G co,,, is shown in

Figure 3. When created, a write-coordinator begins invoking write accesses to

replicas for object names in j’, overwriting the version numbers and values

at the replicas with its own (version-number(T) and data(T), respectively).

After writing to a write quorum, the write-coordinator may request to com-

mit.

4.2.4 Logxal Access Automata. Now we define logical access automata,

beginning with read-LAs. The purpose of a read-LA for a transaction name
T E la, ia to perform a logical read access to X. A reaci-LA has state

components awake, L~alue, requested, reported, and value-read, where awake

and ualue-read are Boolean variables, initially false; ualue E D I., {nil), ini-

tially nil; and requested and reported are subsets of children(T], initially

empty. The set of return values VT is equal to D.

The transition relation for read-LAs is shown in Figure 4. The read-LA

invokes any number of read-coordinators. After receiving a REPORT_ COM-

MIT from at least one of these coordinators, and receiving reports of the

completion of all that were invoked, the read-LA may request to commit,

ACM TransactIons on Database Systems, Vol 19. No 4, December 1994

Quorum Consensus in Nested Transaction Systems . 553

CREATE(T) REPORTABORT(~)
Effect: a.awake = true Effect: s.rwported = s’. reported U {T’)

9.awake= true .9.reported = s’. mporkd U {~}

REQUEST.CR.EATE(T’) REQUEST.COMMIT(T,,J)
Precondition: Precondition:

8’. arvake = true 9’. awak-e = true
T’ $ s’.reguested s’. reque.rted = St. reported
data(Z”) = (wersion-number(Z’), data(l”)) (3W e c.write)(W ~ s’.writtar)

Effect: v= “OK”
s. requested= s’. requested u {T’} Effect:

s.riwcike = fa/9e
REPORT. COMMIT(T’,W)

Effect: .9.reparted = s’, m-ported U {T’)

smitten = s’, written U {object(T’)}

s.reported = .s’. reportedu {T’}

s.written == s’. writfen U {object(T”))

Fig. 3. Transition relation for Write-Coordinators.

CREATE(T)

Effect: s.awake = b-we
s.awwke = true

REQUEST.CREATE(~)
Precondition:

s~.awake = tr-ue
F ~ s’. ~guested

Effed :
s.requested = s’. requested U {T’}

REPORT.COMMIT(V,V)
Effect: s.reparted = s’. mporfed U {~}

if s’. value-rwd = fake then
s. value = v.value
s.ualue-read = true

s.rqwrted = s’.reported U {T’}

if s’. value-read = false then
s.rralue = v. value
s.value-rmd = true

REPQRTABORT(~)

Effect: s.reportecf = s’.reported U {~}

s.mperted = s’. reported u {T’)

REQUEST’-COMMIT(T,V)
Precondition:

s’. awake = true

s’. r-eqaested = s’. reported

~’.value-reod = true
v = s’. volue

Effect:
s.arvake= false

Fug. 4. Transition relation for Read LA’s.

returning the value component of the data returned by the first read-coordi-

nator.

We next define write-LA’s. The purpose of a write-LA for a transaction

name in la ~ is to perform a logical write access to X on behalf of a user

transaction. A write-LA has state components awake, value-read, value-writ-

ten, version-num her, requested, and reported, where awake, value-read, and
value-written are Booleans, initially false; version-number e N u {nil}, ini-

tially nil; and requested and reported are subsets of children(T), initially

empty. The set of r-eturn values VT is equal to {“OK”}.

ACM Transactions on Database Systems,Vol 19,NO 4, December1994.

554 . K. J. Goldman and N. Lynch

CREATE(T)
Effect: 9.awake = true

a awake = true

REQUEST-CREATE(T’), T’ c CO.
Precondition:

g’. awake = true

T’ @ a’. requested

Effect:
s.requested = s’. reguestedu {T’}

REPORT_ COMMIT (Z’’, v), T’ G COr

Effect: s.reported = s’. reported u {T’]

if s’, ualue-read = jalse then
s.uer.sion-number = v.ucrs:on-number

s.wlue.rwd = true

s.reported = s’. reporfedu {T’)

if s’. ualue-read = false then

9.uer9i0n-number = u.ucr9ion-number

s.ualue-read = true

REQUEST-CREATE(T’), T’ c COW

Precondition:
s’, au, ake = true

s’. wdue-rmd = true
data(T’) = d.t.(T)

uersion. nurnbcr(T’) = ~’. uersion-nutnber + 1

T’ ~ s’. requested

Effect:
s.reguested = s’. mquestedu {T’}

R.EPORT_COMMIT(~,u), P G COW

Effect: s.mported = s’. rtported U {T’}

a’. vo!ue-written = true

s.reported = s’. reported U {T’}

.9’. value-written = true

REPORT.ABORT(T’)
Effect: s.reported = s’. reported u {~)

s.reported = s’. reported U {T’)

REQUEST.COMMIT(T,U)
Precondition:

a’. awake = true

a’. requested = s’. reported

s’. ualue- written = true

u = ‘OK”

Effect:
s.awake = ja/9e

Fig. 5. TransitIon relatlon for Write-LA’s,

The transition relation for write-LA’s is shown in Figure 5. A write-LA

invokes any number of read-coordinators. After receiving a REPORT_ COM-

MIT from one of the read-coordinators, the write-LA remembers the version

number returned. The write-LA then invokes any number of write-coordina-

tors, using a version number one greater than that returned with the first

REPORT_ COMMIT of a read-coordinator, along with its particular data

value. In order for the write-LA to request to commit, it must receive at least

one REPORT_ COMMIT of a write-coordinator.

4.3 Correctness Proof

In this section, we prove the correctness of the quorum consensus algorithm

given above as system 4?. That is, we show that @ is indistinguishable from

.w?;to the transactions and objects the two systems have in common. We begin

by stating some definitions that are useful for reasoning about the sequence

of logical accesses in an execution of W. In each definition, @ is a sequence of

actions of @.
First, the logical access sequence of ~, denoted logical-sequence(~), is

defined to be a subsequence of ~ containing the CREATE(T) and

REQUEST_ COMMIT(T, u) events, where T G la. That is, the logical access

ACM Transactions on Database Systems, Vol 19, No 4, December 1994

Quorum Consensus in Nested Transaction Systems . 555

sequence is the sequence of requests and responses for the logical accesses

to x.
Next, if D is finite, then logical-value(B) is defined to be either data(T) if

REQUEST_ COMMIT(T, u) is the last REQUEST_ COMMIT event for a

transaction name in laW that occurs in logical-sequence(/3), or do if no such

REQUEST_ COMMIT event occurs in logical-sequence(~). In other words,

the logical value is the value of the last logical write (or the initial value of

the logical object if no such write occurs).

Finally, if B is finite, then current-un(/3) is defined to be the highest

version-number among the states of all replica automata in the global state

led to by /3.

The next lemma is the key to the proof of Theorem 4.3.7, the main

correctness theorem. Condition (1) of the lemma, which enumerates some

properties on the state led to by particular schedules of Y, is only needed for

carrying out the inductive argument. These properties say that (a) there is a

write quorum in which every replica has the current version number and (b)

any replica with the current version number also has the logical value as its

data. The more important part of the lemma is condition (2), which says that

each read-LA returns the value associated with the previous logical write.

(That is, each read-LA returns the logical-value of the logical object.) The
schedules of J% which we consider are those in which no logical access to X is

active.3 The fact that .%’ is a serial system makes the reasoning simple

(though detailed).

LEMMA 4.3.1. Let /3 be a finite schedule of 9?’ such that no logical access to

X is active in P.

(1) The following properties hold in any global state led to by B:

(a) There exists a write quorum WrE c.write such that for any replica SY

with obJ”ect name Y E Y/, if v is the data component of SY, then

v.version-number = current-vn(B).

(b) For any replica SY, if v is the data component of SY and v.version-

number = current-vn(D) then v.value = logical-value(/3).

(2) If B ends in REQUEST_ COMMIT(T, v) with T E la,, then v = logical-
value(~).

PROOF. Since ~ is a serial system, Lemma 2.2.4.1 shows that logical-

sequence(B) consists of a sequence of pairs, each of the form CREATE(T)

REQUEST_ COMMIT(T, v), where T G la. We proceed by induction on the

number of such pairs. For the basis, suppose logical -sequence(~) contains no

such pairs. Then logical-value(B) = dO. Since @ contains no CREATE(T)

events for T ~ la, it contains no REQUEST_ COMMIT events for accesses in

acc; therefore, since all replicas initially have version-number = O and value

= dO, this is also the case in any global state led to by ~. It follows that

3Recall that a transaction name is active in a sequence if the sequence contains a CREATE
action but no REQUEST_ COMMIT action for that transaction.

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994.

556 . K. J. Goldman and N. Lynch

cw-rent-vn(/?) = O. This implies condition (1), and condition (2) holds vacu-

ously.

For the inductive step, suppose that logical-sequence(~) contains k >1

pairs, and assume that the lemma holds for sequences with k – 1 pairs. That

is, let /3 = /3’ y, where logical-seguence(y) begins with the last CREATE event

in logiccd-sequence(~), and assume that the lemma holds for ~‘. (Note that

Lemma 2.2.4.1 shows that no logical access to X is live in ~ ‘.) So, logical-

sequence(y) = CREATE(7’f)REQUEST _ COMMIT(T,,, ZJf) for some Tf G kz

and LIf of the appropriate type. The following observation enables us to argue

only in terms of the transaction subtree rooted at T~. ❑

Claim 4.3.2. Any access or coordinator for which a CREATE or

REQUEST _COMMIT action appears in y is a descendant of Tt.

PROOF. This follows since @ is a serial system. ❑

Now, since Tt has a REQUEST_ COMMIT in y, we know by the definition

of Tt that there is at least one REl?ORT _ COMMIT event for a transaction

name in co, in y. Let T‘ be the read-coordinator in co, with the first

REPORT_ COMMIT in y; by Claim 4.3.2, T’ G children(T~). Let y‘ be the

portion of y up to and including the REPORT_ COMMIT event for T‘. If T~

is in la,, then the system type shows that it invokes no write-coordinator,

while if T~ is in la U,, the code shows that Tt invokes no write-coordinator

before receiving a REPORT_ COMMIT for read-coordinator. Thus no actions

of any write-coordinator or its descendants appear in y‘. Therefore, there are

no REPORT_ COMMIT events in y‘ for descendants of Tt that are write

accesses. We now give two claims about the states of the automata for T~ and

T’.

Claim 4.3.3. Let s be the state of the transaction automaton associated

with T‘ in any global state reachable from ~‘ in /3 ‘y’. Then s.version -n umber

and s.value contain the highest version-number and associated ualue among

the states led to by ~‘ of the replicas whose names are in s. value-read.

PROOF, This claim holds because T‘ retains the maximum version-number

reported by a read access, together with its associated value upon each

REPORT_ COMMIT of a read access. Again, since no write accesses occur in

y‘, the version-number and value components of all replicas observed by T‘

must be the same during y‘ as in the state led to by ~‘. ❑

Claim 4.3.4. Let s be the state of the automaton associated with Tt in any
global state reachable from ~ ‘y’ in ~. Then s.uersion-number = current-

vn(/?’) and s.ualue = logical-value(~ ‘).

PROOF. Let s‘ be the state of T‘ just before it issues its REQUEST_ COM-

MIT event in y‘. By the definition of a read-coordinator, s‘. read must contain

a read quorum ~ = c.read. By l(a) of the inductive hypothesis, there is some

write quorum ZI” ● c.write such that the states of all replicas for object names

in W in any global state led to by ~‘ have version-number = current-vn(/3’).

Since c is a configuration, .9? and W“ have a nonempty intersection. So s‘. read

ACM TransactIons on Database Systems, Vol. 19. No, 4, December 1994

Quorum Consensus m Nested TransactIon Systems . 557

must contain at least one object name in %. So, by Claim 4.3.3, s‘ .uersiorz-

number = current-un(~ ‘). Therefore, by l(b) of the inductive hypothesis,

s‘ value = logical-value(/?’).

When T‘ reports its commit to T’f, the version-number and value compo-
nents Of T’ are set equal to s‘ version-number and s‘. value, respectively. BY

definition of T~, these components are never again modified. Therefore, Claim

4.3.4 is proved. ❑

We now return to the main proof of Lemma 4.3.1, and consider the two

possible cases for Tf.

(1) Tf G la,. Then logical-value(@) = logical-value(~‘) by definition. Also,

since Tf invokes only read-coordinators, which in turn invoke only read

accesses, the uersion-number and value components of the states of the

replicas in any global state led to by ~ are the same as in any global state led

to by ~‘, and so current-un(~) = current-vn(fl’). Therefore, condition (1)

holds for ~.

By definition, Tf cannot request to commit until at least one of its read-

coordinators commits. Since T‘ is the first read-coordinator child that reports

its commit, the REQUEST_ COMMIT for Tf must occur at some point after

D ‘Y’. When Tf requests to commit, it returns the value component of its
state. By Claim 4.3.4, this value is logical-value(~‘) = logical-value(B). Thus,

condition (2) holds for ~.

(2) Tf ● la,.. Then logical-value(/3) = data(Tt). We first give two claims

about the information associated with the descendants of Tt invoked dur-

ing y.

Claim 4.3.5. If T is a write-coordinator invoked by Tf, then version-

nuntber(T) = current-un(~‘) + 1 and data(T) = data(T~).

PROOF. Let s be the state of T+ just before the REQUEST_ CREATE(T)

event that occurs in y. By definition, version-number(T) = s.version-number

+ 1 and data(T) = data(T~). Also by definition, T~ cannot invoke a write-co-

ordinator until at least one of its read-coordinators reports its commit. So, all

REQUEST_ CREATE events for write-coordinators in y occur after ~ ‘y’. By

Claim 4.3.4, s.uersion-number = current-vn(~ ‘). Thus, Claim 4.3.5 holds. ❑

Claim 4.3.6. If T is a write access for an object in $Y invoked in y, then

data(T) = (current-vn(~‘) + 1,data(Tf)).

PROOF. The type of @ is constrained so that T is invoked by some

write-coordinator. The result follows from Claim 4.3.5 and the definition of a

write-coordinator. ❑

By definition, Tf cannot request to commit until it receives a

REPORT _CONIMIT from at least one of its write-coordinators. Let TU, be the

write-coordinator child of Tf that has the first COMMIT event in y, and let 5
be the portion of y up to and including COMMIT(T,O). By definition, TU,

cannot request to commit until it has received REPORT_ COMMIT events for

write accesses to a write quorum of replicas. Therefore, by Claim 4.3.6, it

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994

558 . K, J. Goldman and N. Lynch

follows that current-vn(f?’8) = current-un(,6’) + 1, so condition (1) holds in

any global state led to by ~‘ 8.

We now show that condition (1) still holds in any global state led to by /3.

By Claim 4.3.6, any write-coordinators that may execute in y after 8 merely

propagate the new value and version number. Any read-coordinators that

may execute in y after 8 cannot change the values at the replicas, since they

do not invoke write accesses. Therefore, condition (1) holds after ~.

Since T~ does not name a read-LA, condition (2) holds vacuously.

Thus in both cases, the lemma holds. (This ends our proof of Lemma 4.3.1.)

❑

Now we prove that @ is correct by showing that transactions cannot

distinguish between replicated serial system E? and unreplicated serial sys-

tem .@. Here, let 7A and %~ denote the transaction and object names of @,

respectively.

THEOREM 4.3.7. Let ~ be a finite schedule of H. Then there exists a

schedule y of& such that the following two conditions hold:

(1) ylT = PIT for each transaction name T e Y< – la, and

(2) YIY = P IY for each object name Y G .7A.

PROOF, We construct y by removing from ~ all REQUEST _CREATE(T),

CREATE(T), REQUEST_ COMMIT(7’, u), COMMIT(T), ABORT(T),

REPORT_ COMMIT(T, u), and REPORT _ABORT(T) events for all transac-

tion names T in co U ace. Clearly, the two conditions in the statement of the

theorem hold. It remains to show that y is a schedule of d. By Lemma 2.1.1,

it suffices to show that y projects to yield a schedule of each component of w“.

It is easy to see that, for each nonaccess transaction name T of M, y IT is a

schedule of the transaction automaton for T, and for each object name

Y E %~ – {X}, y IY is a schedule of the object automaton for Y. Since we

construct y by removing all the actions associated with a specific set of

transactions, and since none of these transactions have children with actions

in -y, the fact that ~ is a schedule of the serial scheduler implies that y is as

well.

It remains to consider the automaton for object name X: we must show

that y IX is a schedule of S’x, where Sx is the serial object associated with X

in x?. We proceed by induction on the length of P. The basis, where /3 is of

length O, is trivial. Suppose that ~ = ~ ‘m, where m is a single event and the
result is true for /3’. The only case that is not immediate is the case where m

is a REQUEST _COMMIT event for a transaction name in la. So suppose

that m = REQUEST_ COMMIT(T, u), where T G la. Let y = y ‘w; by the

inductive hypothesis, y‘ IX is a schedule of Sx. Let s‘ be the state of S’x led

to by y’lx.

One precondition for REQUEST_ COMMIT(T, U) as an output of Sx is that

T E s ‘created. By transaction well-formedness of ~, CREATE(T) occurs in

/3’. By the construction, CREATE(T) occurs in y‘, so that this precondition is

satisfied. We consider the two possible cases for T in order to show that the

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994.

Quorum Consensus in Nested Transaction Systems . 559

remaining clauses of the precondition for REQUEST_ COMMIT(T, u) are

satisfied.

(1) T ● laW. Then the definition of a write-LA implies that u = “OK”,

which satisfies the remaining precondition.

(2) T G la,. Then by the construction, y ‘IX= logical-sequence(/3 ‘). If

there is a REQUEST_ COMMIT for a write access to Sx in y‘, let T‘ be the

last such write access. Then s‘ data is equal to datcz(T ‘). By the construction,

we know that T‘ is also the name of the logical write access in U? having the

last REQUEST_ COMMIT in ~‘. Therefore, data(T’) = Jogical-value(~ ‘). So

the data component of the state of Sx led to by -y’ is logical-value(@‘).

On the other hand, if there is no REQUEST_ COMMIT for a write access to

Sx in y‘, then s ‘data is dO, which is logical-vahze(/3 ‘). Therefore, the data

component of the state of Sx led to by y‘ is again logical-value(/3 ‘).

Thus, in either case, logical-value(~‘) is the data component of the state of

Sx in any global state led to by y‘. By Lemma 4.3.1, we know that the return

value v = logical-value(~ ‘). Thus, v is the data component of the state, s‘, of

Sx led to by y’, which implies that the remaining precondition for

REQUEST_ COMMIT(T, v) in Sx is satisfied.

Therefore, y is a schedule of ~. ❑

5. RECONFIGURABLE QUORUM CONSENSUS

Now we present the algorithm with reconfiguration. For the concurrent

implementations that are our ultimate goal, the activity of changing the

configuration must interact correctly with reading the configuration during

processing of a logical access. Thus each reconfiguration needs to take its

place as a transaction in the transaction nesting structure, accessing a

configuration object that holds the current configuration. This might be done

with reconfiguration transactions as children of TO; however, the correctness

arguments work equally well no matter which existing transaction is taken

as parent of each reconfiguration transaction. Thus we allow each reconfigu-

ration to occur at an arbitrary location in the transaction tree.

The presentation and proof are carried out in stages. First, in Section 5.1,

we define system ~, a serial system that has X as one of its object names4

and that also has another special object name Z. As in Section 4, the object

automaton Sx associated with X is a read/write serial object automaton.

The object automaton Sz associated with Z is a special dummy object, which

simply receives requests from transactions to change the current con&ura-

tion and responds to them with a trivial acknowledgment. As before, system

M is used to define correctness.

Then in Section 5.2, we define replicated serial system ~. System $3’ is

identical to .@, except that logical object Sx is replicated as in system L?? of

Section 4, and also dummy object Sz is replaced by a configuration object

automaton Sx, which is a read/write object containing the current con figura-

~In this section, we redefine certain notation from Section 4, such as the system names d
and .@.

ACM Transactions on Database Systems, Vol. 19, No 4, December 1994

560 . K. J. Goldman and N, Lynch

tion of replicas of X. In ~, reconfiguration requests involve a single write of

object Say. In the course of performing each logical read or write access to X,

the configuration object S-y is read to determine the current configuration. In

Section 5.3, we show that the new algorithm is correct by demonstrating a

relationship between @ and .&. The proof is analogous to that in Section 4.3;

the changes involve the handling of the new configuration object.

Next, in Section 5.4, we define serial system ‘3’, which is the same as &?’

except that the configuration object is replicated. That is, the configuration

object SF from @ is replaced in % by a collection of serial read/write objects

that we call configuration replica objects, and each access to a configuration

object is implemented by a subtransaction that performs accesses to a subset

of the configuration replicas. The configuration replica management is based

in an interesting way on the data replica management scheme. Finally, in

Section 5.5, we prove a simulation relationship between %“ and 3, which in

turn implies a similar connection between & and x7.

5.1 System .c#: The Unreplicated Serial System with Dummy Reconfiguration

We begin by defining the unreplicated serial system .&. System ~“ is an

arbitrary serial system having two distinguished object names, X and Z, in

which the object automaton Sx associated with X is a read/write serial

object with domain II and initial value dO, and in which the object automa-

ton Sz associated with Z is a special dummy object automaton, defined

below.

As before, we define la, and la,,, to be the respective names of the read and

write accesses to X. Now we also define la,,, to be the set of names of

accesses to the dummy object Z. We define la = la, U la,,, U la,,,.5 As before,

each transaction name T E la, has kind(T) = read, and each transaction

name T = laW has kind(T) = write and also has an associated value, data(T’)
e D.

Recall that system .@ is used to define correctness, and that correctness is

defined at the transaction boundary. Thus, it is desirable that we use the

same transaction interfaces in ,cf as we do in the later systems, Q? and %.

Since those systems will permit arbitrary transaction automata to invoke

reconfiguration operations, we also allow them to do so in w’. However, since

X is not replicated in .v”, these operations will not do anything interesting in

.&”. We simply make them operations on the dummy object, which merely

responds “OK” in all cases.G

5Notc that this is different from the defimtion in Section 4, where la was just defined to be the

umon of la, and lau.

GIt may seem artificial to place the invocations of the reconfiguration transactions in the

transaction automaton interface in .W; an alternative approach would be to make these reconfigu-

ration invisible to users and apphcatlon programmers by not having them appear explicitly in

.w’. In this approach, .&” would be defined just as it is m Section 4. An auxiliary system .cY”’would

be defined, which would represent an augmentation of m with added reconfiguration operations,

where the augmentation is presumably made by programmers of the database system rather

than application programmers. We leave the details of this approach to interested readers, and

settle instead for the simpler alternative of including reconfiguration requests m C/

ACM Transactmns on Database Systems, Vol 19, No. 4, December 1994,

Quorum Consensus in Nested Transaction Systems . 561

CREATE(T) REQUEST.COMMIT(T,W)
Effect: s.actiue = T Precondition:

s.acfiue = T T = a’. actiue

v = “OK”

Effect:

s.actit, e = nil

Fig. 6, Dummy object automaton.

5.1.1 Dummy Object Automata. More precisely, we define a single dummy

object automaton Sz, which is a serial-object automaton having a single state

component, actiue G accesses(Z) U {nil}, initially nil. The set of return values

VT for accesses to Z is equal to {“OK”}. The (trivial) transition relation for Sz

is shown in Figure 6.

5.2 System .%: The Reconfigurable Quorum Consensus Algorithm

with a Centralized Configuration

In this section, we define replicated serial system ~. This is similar to

system .2? of Section 4 in that object Sx is implemented by replicas SY,
Y ~ ~, and the accesses to X are implemented as subtransaction automata

called read-LA’s and write-LA’s, using the same basic strategy as in the

fixed-configuration algorithm. Additionally, in the new M, the dummy object

Sz is implemented by a configuration object Sx, which is a read/write serial

object that maintains a configuration, and the accesses to Z are implemented

as subtransactions called reconfigure-LA’s that invoke accesses to S4Y. (In %’,

the configuration objects themselves will be replicated, and the reconfigure-

LA’s will invoke coordinator subtransactions to read and write them.)

We first define the type of K?, and then give the new automata that appear

in S but not in .ti. The new automata are the replica objects, the configura-

tion object, and the coordinator and LA transaction automata, We again

define these automata “bottom up.”

5.2.1 System Type. The type of system @ is defined to be the same as

that of .&, with the following modifications. As in Section 4, the object name

X is now replaced by a new set of object names ~, and there are new

transaction names, co, and COU,,representing read- and write-coordinators,

respectively, and ace, and accW, which are the read and write accesses to the

replicas, respectively. Additionally, object name Z is now replaced by a new

object name ~, and there are new transaction names CO,C and CO,U~, which

are the read and write accesses to object name ~, respectively. (We denote

the configuration accesses in this way, because in % they will be replaced by

coordinator automata.) We let co = co, u COW U corC U col~)~.

The transactions names in la are accesses in JYj but in @ they are not;

each transaction name in lar now has children that are in CO,Cand co,; each

transaction name in laU, now has children in COrC, Cor, and COU,; and each
transaction name in la,,, now has &il&n in CO,C, COW,, CO,, and cow,, &o,

as in Section 4, each transaction name in Cor has children in ace,, and each

transaction name in COU,has children in accu. These are the only changes to

ACM Transactions on Database Systems, Vol 19, No 4, December 1994

562 . K, J, Goldman and N. Lynch

3
la,

Com Cor

Occr
%

law

Core co r co)#

accr accw

Fig. 7. Logical accessesand their descendants.

the system type—for example, no transaction names other than those indi-

cated are parents of the new transaction names. The naming structure for

logical accesses and their descendants is shown in Figure 7.

In defining .@, we associated information with some of the transaction

names. In S, we keep all such information from .@ and add more information

as follows.

First, to denote the new configuration for each logical reconfigure access,

we associate with every transaction name T G la,,, a configuration config(T)

in conf’’gs(~), the set of all configurations of j?’.
Second, to denote the configuration that is used by each read-coordinator,

we assume that every transaction name T G co, has an associated config-ura-

tion config(T) E corzfigs(~). Similarly, every transaction name T G co. has

an associated value data(T) G D, an associated version number uersion-

numher(T) G N, and an associated configuration config(T) G corzfigs(~).

These denote the value for X written by the write-coordinator, the associated

version number in the quorum consensus algorithm, and the configuration to

be used for writing the new value and version number.

Third, we associate some information with the accesses to both the conju-

ration objects and the replicas. We assume that every transaction name

T G CO,Chas kind(T) = read, and that every transaction name T E CO,O.has

kind(T) = write and data(T) G configs(j2’), representing the new confiWra-

tion. Also, as before, we assume that every transaction name T G ace, has

kind(T) = read and that every transaction name T G accw has kind(T) =

write and data(T) ● N X D.

5.2.2 Replica and Configuration Automata. As in Section 4, we define a
replica automaton for each object name Y E ~. This is a read/write serial

object for Y with domain N X D and initial value (O, do). As before, for
v ● PJ x D, we write u.version-number and v.value to refer to the compo-

nents of v.

For the rest of this paper, let C = configs(~), and let co ~ C be a distin-

guished initial configuration. The configuration automaton is defined to be a

read/write serial object for ~, with domain C and initial value Co. (Recall

that its read accesses are the elements of corC, and its write accesses are the

elements of COWC.)

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994.

Quorum Consensus in Nested Transaction Systems . .563

CREATE(T)
Effect: s.awake = true

s.awake = true

REQUEST-CREATE(2”)
Precondition:

s’. au,ake = trwe
7“ @s’. requested

Effect:
s.reque$ted = s’. requested U {T’}

REPOR.T.COIVIMIT(T’,V)
Effect: 9 reported= s’. reported u {T’}

s.read = s’. mad U {object(Z”)}

if v.uersion-nurnber > s’. uersion-nu!nfmr- then
s.uersion-nomber .= u.ver9ion-number
s.ualue = u.urilue

s.r,-ported = s’. reported U {’l”]

s-.rcad = s’. read u {object(T’))

if v.uer.. !on-namber > s’. ucrsion-nt{?nbc-r then

s.ucr~ion-nornber = u ucraion-ftumber

s.ualue = u.ualue

REPORT_ABORT(T’)

Effect: s, reported= s’, reported U {T’)

s.mported = s’. reporfed u {T’)

RIXJUEST.COMMIT(T,U)

Precondition:
s’. au,oke = true

9’. wgue9ted = s’.rcported

(3?2 c conjig(T). rmd)(7? ~ s’. read)
v = (.qt. vcr.rion tlwnber, .qf.ualue)

Effect:
9.awOke = ja19e

Fig. 8. Transition relation for Read-Coordinators.

5.2.3 Coordinators. In this section, we define the coordinator automata in

3. These transaction automata are invoked by the LA’s and access the

replicas, We first define read-coordinators; these are the same as those in

Section 4, except that instead of using the fixed configuration, the new

read-coordinator uses its own associated configuration. A read-coordinator for

transaction name T ● co, has state components awake, value, version-num-

ber, requested, reported, and read, where awake is a Boolean variable,

initially false; value G D, initially do; version-number G N, initially O; re-

quested and reported are subsets of children(T), initially empty; and read is

a subset of ~, initially empty. The set of return values VT is equal to N X D.

The transition relation for read-coordinators is shown in Figure 8. This

code is identical to that in Figure 2, except that config(T) is used to

determine when the coordinator has collected enough information to be

assured of having seen the most recent value of X.

We next define write-coordinators. Again, these are the same as those in

Section 4, except that instead of using the fixed configuration, the new

write-coordinator uses its own associated configuration. A write-coordinator

for transaction name T G COW has state components awake, requested, re-

ported, and written, where awake is a Boolean variable, initially false;

requested and reported are subsets of children(T), initially empty; and

written is a subset of ~, initially empty. The set of return values VT is equal

to {“OK”}.
The transition relation for a write-coordinator named T G cow is shown in

Figure 9. This code is identical to that in Figure 3, except that config(T) is

used to determine when the coordinator has written to enough replicas.

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994.

.564 . K. J, Goldman and N. Lynch

CREATE(T)
Effect: s.awake = true

s.otwke = &rue

RXQUEST.CREATE(Z’)
Precondition:

s’. uwake = true

T’ $$s’. reque~ted

dafa(T’) = (uersion-number(T), data(T))

Eifect:

s,rcquested = s’, reguestedu {T’}

REPORT-COMMIT(T’,V)
Effect: s.reported = s’, reported U {T’}

9 wrvtten = s’. wr:tten U {object)

9.reported = s’. repot tedu {T’)

s.turvtten = s’, wr:tten U {object(T’)}

REPORT_ABORT(~)
Effect: s.reported = s’. rcportedu {T’]

s.reported = s’ repor~edu {~)

REQUEST_COMMIT(T,u)
Precondition:

9’. au,ake = true

s’. requested = s’ reported

(3W E cOnjig(T)tur:te)(W ~ 9’. wrifte”)

V=” OIY”
EtTect:

s awake = jalse

Fig 9. Transltmn relation for Write-Coordinators.

5.2.4 Logical Access Automata. Now we define logical access automata,

beginning with read-LA’s. These are the same as those in Section 4, except

that the new read-LA first invokes a read-con figuration-coordinator in order

to determine the current configuration. It then invokes only read-coordinators

whose associated configuration is the same as the determined current config-

uration.

A read-LA has state components awake, con fig, value, requested, reported,

value-read, and config-read, where awake, l}alue-read, and config-read are

Boolean variables, initially false; config G C U {nil}, initially nil; value G D

u {nil}, initially nil; and requested and reported are subsets of children(T),

initially empty. The set of return values VT is equal to D.

The transition relation for read-LA’s is shown in Figure 10. The changes to

the code in Figure 4 are as follows. First, there are additional

REQUEST_ CREATE and REPORT _COMMIT actions for invoking and ob-

taining responses from the configuration-coordinators. There are two addi-

tional state components: config, which keeps track of the configuration

returned, and config-read, a flag that records that a configuration has been

read. Also, there are extra clauses in the precondition for the

REQUEST_ CREATE events for read-coordinators, which ensure that only

read-coordinators with the current configuration are invoked.

We next define write-LAs. These are the same as those in Section 4, except
that the new write-LA first invokes a read-con figuration-coordinator in order

to determine the current configuration, and then invokes only read-coordina-

tors and write-coordinators having the proper associated configuration. A

write-LA has state components awake, config, config-read, value-read,

value-written, version-number, requested, and reported, where awake,

config-read, value-read, and value-written are Booleans, initially false; con fig

G C u {nil}, initially nil; version-number ● N U {nil}, initially nil; and re-

quested and reported are subsets of children(T), initially empty. The set of

return values VT is equal to {“OK”}.

ACM Transactions on Database Systems, Vol 19, No 4. December 1$394

Quorum Consensus in Nested Transaction Systems . 565

CREATE(T)

Effect: s.cmmke = trw
9.awake = frue

REQUEST_CREATE(~), T’ c COm

Precondition:
s’. awake = true

T’ @ s’. requested

Effect:

s.reguested = s’, reguestedu {T’]

REPORT..COMMIT(T’,V), T’ E cm,.
Effect: a.reported = .’. reported u {T’]

if s’. conjig-read = false then
s.conjig = v
s.conf7g-mad = true

s.reported = s’. reported U {T’}

if s’. config. read = false then

9.config = v

s.config-reacf = frue

REQUEST-CREATE(T), ~ G CO,
Precondition:

s’. awake = true

9’. c0nfig-read = true
config(’1”) = s’. config
T’ @s’. requested

Effect:
s.reqaested = 3’.reque3&edU {~]

REPORT.COMMIT(~, v), ~ E CO,
Effect: s. reported= s’.reportedu {’~)

if s’. uafue-rwad = jalne then

s.twlue = v.ualue
s.value-read = true

s. reported = s’. reporteti u {T’}

if s’. ua?ue.read = false then
.9.value = ti. ualue
s.ualue-read = true

REPORT_A130RT(Z”)
Eflect: s.reported = 9’. reported u {r}

s.reported = s’. reporfed U {T’)

REQUEST.COMMIT(T,U)
P~econdition:

s’, awake = true
sf. requested = s’. reported

s’. ualue-read = true
v = al,”al”e

Effect:

a.awake = fake

Fig. 10. Transition relation for Read LA’s,

The transition relation for write-LRs is shown in Figure 11. The changes to

the code in Figure 5 are as follows. First, there are additional

REQUEST_ CREATE and REPORT_ COMMIT actions for invoking and ob-

taining responses from the configuration-coordinators, and associated state

components for keeping track of the results. There are also extra clauses in

the precondition for the REQUEST_ CREATE events for read-coordinators

and write-coordinators, ensuring that only coordinators with the current

configuration are invoked.

Finally, we define recon@-ure-LA’s. The purpose of a reconfigure-LA is to

change the current configuration to a given target configuration. The main

thing it does in order to accomplish this change is to invoke a write access to

the configuration object. However, this alone is not enough; the recont3gure-LA

transaction must also maintain the crucial property that all the members of

some write quorum, according to the current configuration, must haue the

latest version number and data value. (The importance of this property can be

seen in the proof of Lemma 4.3.1.) An arbitrary configuration change might

cause this property to become violated.
Thus, extra activity is required on the part of the reconfigure-LA to ensure

that the latest data gets propagated to some write quorum of the new

configuration. In particular, the reconfigure-LA must first obtain this latest

ACM Transactions on Database Systems, Vol 19, No 4, December 1994

566 . K. J. Goldman and N. Lynch

CREATE(T)
Effect: 9.awake = true

$.awake = true

REQUEST.CREATE(T’) , ?“ c CO,c
Precondition:

a’. awake = true

T’ @ s’, requested

Effect:

s.requested = s’. requested u {T’}

REP C)RT. CO MMIT(T’,V), T’ 6 CO,,
Effect: s.reported = s’. reportedu {T’)

if 9’ conjig-reed = \a/se then
9 config = u
s.config-read = true

s.reported = s’.reportcd u {T’)

if s’. co~~jig-rmd = false then

9 c~njig = v

s.config-read = true

REQUEST_ CREATE (T’), T’ ~ CO.

Precondition:

s’. oumke = true

s’, config-read = true
conjig(T’) = s’, conjig

T’ $ s’.requcsted

Effect

s.r{quested = s’. reguc~tedu {T’}

REQUEST.-CREATE(T’), T’ c COUI
Precondition:

s’. awake = true

a’.ualue-rcad = true

conjig(~) = 9’. conjig

rfata(T’) = riata(T)

uernion-number(T’) = s’. uersion-number + 1
Y $?3’. requested

Effect:
s.mquested = s’. requestedu {T’}

REPORT.COMMIT(T’, U), T’ c COW

Effect: s.reperted = s’. reported u {T’}

s’. uolue-ruritten = true

s.reported = s’. re~rted u {T’}

s’, ualue-written = true

REPORT_4BORT(T’)
Effect: s.reported = s’ reported u {T’}

9 reported = s’. rt;,orted u {T’]

REQUEST_COMMIT(T,u)
Precondition:

a’. awoke = true

s’. requested = s’ reported

sf. ualue-rurilten = true

v= “OK”

Effect:
s ~wake = jalse

REPORT-COMMIT(7”, U)) T’ < CO,

Effect: s.repo,-ted = .s’. reportedu {T’)

if s’, ualue-mad = jalse then
.s.uersion-nurnber = v,uersion-number
s.ualoe-recrd = true

s,rcported = s’, reportcdu {T’]
if s’. ua)ue-read = jalse then

s.uers:on-number = v.uer9ton-number

s.ualue-read= true

Fig. 11. Transition relation for Write LA’s.

data, which requires that it first obtain the value of the old configuration

from a read-configuration-coordinator and then the latest data value from a
read-coordinator with the old configuration. Once it has the latest data, the

reconfigure-LA must cause this data to be written to some write quorum,

according to the new configuration. It accomplishes this by invoking write-co-

ordinators whose corresponding configuration is the new configuration. (Note

that the reconfigure-LA can invoke the write-coordinators and the write

accesses to the configuration object concurrently, even though in the serial

systems considered here, the subtransactions themselves will be run serially.
This concurrent invocation will be useful in the concurrent systems we study

later, where these activities can run in parallel to reduce latency.)

ACM TransactIons on Database Systems, Vol 19, No. 4, December 1994.

Quorum Consensus in Nested Transaction Systems . 567

A reconfigure-LA for transaction name T G la,,, has state components

awake, config, value, version-number, requested, reported, config-read,

value-read, value-written, and config-written, where awake, config-read,

value-read, value-written, and config-written are Boolean variables, initially

false; config is in c u {nil}, initially nil; value G D U {nil), initially nil;

version-number ~ N U {nil}, initially nil; and requested and reported are

subsets of children(T), initially empty. The set of return values VT is equal to

{“OK”}.

The transition relation for reconfigure LA’s is shown in Figure 12. Just as

for the read- and write-LA’s, a reconfigure-LA first determines the current

configuration with a read access to the configuration object. Then the recon-

figure-LA invokes read-coordinators using that configuration; when the first

read-coordinator reports its commit, the reconfigm-e-LA remembers the value

and version number returned. Then the reconfigure-LA may invoke any

number of write-coordinators, using its new configuration, along with the

value and version number returned by the read-coordinator. This propagates

the current value to every replica in a write quorum of the new configuration,

as needed. Concurrently, the LA invokes at least one write access to the

configuration object in order to record the new configuration. In order to

request to commit, the reconfigure-LA must receive REPORT_ COMMIT

responses for at least one write-coordinator and at least one write access

to x.

5.3 Correctness Proof

In this section, we prove the correctness of system ~. As in Section 4, we

begin with some definitions. In each definition, ~ is a sequence of actions of

%. First, the logical access sequence of ~, logical-sequence(~), is defined

exactly as in Section 4 to be the subsequence of D containing the CREATE(T)

and REQUEST_ COMMIT(~, v) events, where T E la. (But now this defini-

tion is based on the new definition of la, which includes the names in la,, C.)

Also, if ~ is finite, then logical-value(B) and current-un(/3) are defined as

before, to be the value of the last logical write (or the initial value of the

logical object if no such write occurs), and the highest version-number among

the local states of all replica automata in any global state led to by ~,

respectively.

We require one new definition, analogous to logical-value(~). Namely, if ~

is finite, then logical-config(/3) is defined to be either config(T) if

REQUEST_ COMMIT(T, v) is the last REQUEST_ COMMIT event for a

transaction name in la~,c that occurs in logical-sequence(@), or co if no such

REQUEST_ COMMIT event occurs. In other words, the logical configuration

is the value of the last logical reconfigure access (or the initial configuration if

no such reconfigure access occurs).

The next lemma is the key to the proof of Theorem 5.3.11, the main

correctness theorem. As in Lemma 4.3.1, condition (1) is only needed for the

inductive argument. Parts (a) and (b) of condition (1) are as before, and part

(c) says that the configuration object holds the logical configuration. As

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994.

568 s K, J. Goldman and N. Lynch

CREATE(T)
Effect: s’. awake = true

3’. awake = true

REQUEST. CREATE(T’), T’ ~ Core

Precondition:

st. awake = true

T’ $ s’. r-equeated

Effect:

s.requestea’ = s’. regue9ted U {T’)

REPORT-COMMIT (T’,rJ), T’ C COW

Effect: s.reported = s’. reportedu {T’]

if 9’ config-mad = /a/se then

3 conjig = u

s.conjig-read = true

s.reported = s’. rcportedu {T’]

if s’. conjlg-read = ~ahe then

9.cOflJig = v

9.conjig-read = true

REQUEST-CREATE(T’), T’ 6 co.
Precondition:

s’ atiuke = true

s’. conjig-r.md = true

config(l”) = 3’ conjig
T’ $ s’. wquested

Effect:

s.regue~ted = s’. requested U {T’)

REPORT. COMMIT(T’,V), T’ C co,
Effect: s.reparted = s’. reported U {T’]

if s’. ualue-mad = false then

ir. t,alue = v.mlue

s.uersion-number = v.uer9ion-number

s.tla!ue-rmd = true

s.reporfed = s’. reported U {T’)

if s’. uafue-wad = }rd.se then

s.ualue = v value

$.rmrsion-number = u.version-number

s.uatue-read = true

REQUEST..CREATE(T’), T’ 6 co.

Precondition:

~’. armrke = true
s’ wdue-mmd = true

data(T’) = .d. wdue

uersion-nu niber(T’) = s’ uersion-aumber

config(T’) = co.fig(T)

T’ $ ~’.requested

Effect:

s.reguested = s’. requestedu {T’}

REPORT-COMMIT (T’,rJ), T’ 6 COW

Effect: s.re~rted = s’. reported U {T’]

s’. uolue-written = true

s.mported = s’. reported U {T’}

9’. ualue-wrttten = true

REQUEST .CREATE(T’), T’ G COvJc

Precondition:

s’. awake = true

s’. t,olue-rcild = true

data(T’) == conjig(T)

T’ @ s’ requested

Effect:

s.requested = g’. reguesfedu {T’}

REPORT. COMMIT(T’,V), T’ ~ COwc

Effect: s reported = s’. reporftdu {T’]

s.config-written = true

s reported = s’. rvprfed U {T’)

s.config-written = true

REPORTABORT(T’)

Effect: s reported= s’. reperted u {T’)

s.reparfed = s’. reportedu {T’)

REQUEST.COMMIT(7’,V)

Precondition:

s’. au,ake = true

s’. reque~ted = s’. reported

s’. ualue- written = true

s(. conjlg-wrxtten = true

v=” OK”

EtTect:

s.awake = jolse

Fig, 12. Transition relation for Reconfigure LA’s.

before, the important pax-t of the lemma is condition (2), which tells us that

each read-LA returns the value associated with the previous logical write.

LEMMA 5.3.1. Let ~ be a finite schedule of U? such that no logical access to

X is active in ~.

(1) The following properties hold in any global state led to by P:

(a) There exists a write quorum YI ~ logical-config(/3).write such that for
any replica SY for an obJ”ect name Y E 7?;-, if v is the data component of

Sy, then v.version-number = current-vn(B).

ACM Transactions on Database Systems, Vol. 19, No 4, December 1994

Quorum Consensus m Nested TransactIon Systems . 569

(b) For any replica SY, if v is the data component of SY and v.version -
number = current-vn(~) then v.value = logical-value(P).

(c) The data component of the configuration object is logical-config(~).

(2) If ~ ends in REQUEST_ COMMIT(T, U) with T G la,, then v = logical-

value(P).

PROOF. As before, logical-sequence(~) consists of a sequence of pairs, each

of the form CREATE(7’) REQUEST_ COMMIT(T, v), where T ● la. We PrO-

ceed by induction on the number of such pairs. For the basis, suppose

logical-sequence(~) contains no such pairs. Then logical-config(~) = co. Parts

(a) and (b) follow as before, with logical-config(P) used in place of the fixed
configuration. For part (c), since ~ contains no CREATE(T) events for

T G la, it contains no REQUEST_ COMMIT events for accesses to the config-

uration object; therefore, since the data component of the configuration object

is initially co, this is also the case in any global state led to by /3. This yields

part (c), and condition (2) holds vacuously.

For the inductive step, let ~ = /3 ‘y, where logical-sequence(y) begins with

the last CREATE event in logical-sequence(~), and assume that the lemma

holds for f?’. So, logical-sequence(y) = CREATE(T’f) REQUEST_
COMMIT(Tf, Vf) for some T+ = la and Vf of the appropriate type. As before,

the fact that the system is serial shows that only descendants or ancestors of

T~ have actions in y; in particular:

Claim 5.3.2. If T is in ace, U ace,,, and if CREATE(T) or

REQUEST_ COMMIT(T, v) occurs in y, then T G descendants(Tt). Also, if T

is in co and if CREATE(T) or REQUEST_ COMMIT(T, v) occurs in y, then

T = children(T~).

There is at least one REPORT_ COMMIT event for a transaction name in

co, in y; let T‘ be the read-coordinator in co, with the first REPORT_ COM-

MIT in y. By claim 5,3.2, T’ ● children(Tf). Let y‘ be the portion of Y UP to

and including the REPORT_ COMMIT event for T‘. Then, because the code

shows that no LA requests the creation of any write-coordinator (for replicas

or configuration objects) until after a read-coordinator has returned a value,

we see that there are no REPORT_ COMMIT events in y‘ for descendants of

T~ that are write accesses.

Also, since -y must contain a REQUEST_ CREATE event for a transaction

name in co,, the definition of T~ implies that there is at least one

REPORT_ COMMIT event in y‘ for an access in CO,C;let T“ be the access in

CO,C with the first REPORT _COMMIT in y‘, and let y“ be the portion of y

up to and including this REPORT_ COMMIT event. We now give several

claims about the states of the automata for Tf and T‘.

Claim 5.3.3. Let s be the state of the transaction automaton associated

with Tf in any global state reachable from ~ ‘y” in ~. Then s .config =

logical-conjig(~ ‘).

PROOF. We have argued that there are no REPORT_ COMMIT events in

y‘ for write accesses that are descendants of Tf. So, by Claim 5.3.2, no write

ACM TransactIons on Database Systems, Vol 19, No. 4, December 1994

570 . K. J. Goldman and N Lynch

accesses occur in y‘. Therefore, by part (c) of the inductive hypothesis, T“
returns as its value logical-corz~ig(P ‘). By definition of Tf, s.config is perma-

nently set to the value returned by T“. Therefore, the claim holds. ❑

Claim 5.3.4. Let s be the state of the transaction automaton associated

with T‘ in any global state reachable from ~‘ in ~ ‘y’. Then s.version-nurnber

and s.value contain the highest version-number and associated value among

the states led to by P‘ of the replicas whose names are in s. value-read.

Claim 5.3.5. Let s be the state of the transaction automaton associated

with T~ in any global state reachable from ~ ‘y’ in ~. Then s.version-nurnber

= current-un(~‘) and s.value = logical-z] alue(~ ‘).

PROOF. Let s‘ be the state of T‘ just before it issues its REQUEST_ COM-

MIT event in y‘. By the definition of a read-coordinator, s‘. read must contain

a read quorum .%?G config(T ‘). read. Claim 5.3.3 and the defhition of Tf

imply that config(T’) = logical-con fig(~‘), so the read quorum Y is in

logical-config(~‘). read. By part (a) of the inductive hypothesis, there is some

write quorum 7Z-● logical-config(~‘).write such that the states of all replicas

for object names in Win any global state led to by P‘ have version-number =

current-vn(~‘). Since logical-config(~‘) is a configuration, M? and W- must

have a nonempty intersection. So s‘ ,read must contain at least one object

name in Z? So, by Claim 5.3.4, s ‘.uersion-number = czLrrent-un(~ ‘), There-

fore, by part (b) of the inductive hypothesis, s‘ .ualue = logical-ualue(~‘).

When T‘ reports its commit to T~, the version-number and value compo-

nents of Tf are set equal to s‘ version-n urn ber and s‘ value, respectively. By

definition of T~, these components are never again modified. Therefore, Claim

5.3.5 is proved. ❑

We now return to the main proof. We consider the three possible cases for

T~ .

(1) T~ G la,. The logical-value(/3) = logical -value(~ ‘). Since T~ invokes

only read-configuration-coordinators and read-coordinators, which in turn

invoke only read accesses, the version-number and value components of the

states of the replicas in any global state led to by ~ are the same as in any

global state led to by ~‘, so current-vn(~) = czu-rent-un(~ ‘). Likewise, we

have logical-config(~) = logical-config(P ‘), and the data component of the

configuration object is the same in any global state led to by ~ and ~‘.
Therefore, condition (1) holds for ~. The proof for condition (2) is as before,

this time based on Claim 5.3.5.

(2) T~ ● la,,,. Then logical-ualue(~) = data(T~) and logical-config(P) =

logical-conflg(~ ‘). We prove two claims about the information associated

with the descendants of T~ invoked in y.

Claim 5.3.6. If T is a write-coordinator invoked by T~ then version-num-

ber(T) = current-vn(~‘) + 1, data(T) = data(T~), and config(T) = logical-

config(~‘).

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994

Quorum Consensus in Nested Transaction Systems . 571

PROOF. Let s be the state of T~ just before the REQUEST_ CREATE(T)

event that occurs in y. By definition, uersion-number(T) = s.uersion-number

+ 1, data(T) = data(T~), and config(T) = s.config. Also, by definition, T~

cannot invoke a write-coordinator until at least one of its read-coordinators

reports its commit. So all REQUEST_ CREATE events for write-coordinators

in y occur after ~ ‘y’. Therefore, by Claim 5.3.3, s.config = logical-config(fl ‘),

and by Claim 5.3.5, s.uersion-number = current-vn(/3 ‘). Thus, Claim 5.3.6

holds. ❑

Claim 5.3.7. If T is a write access for an object in ~ invoked in y, then

data(T) = (current-un(/3’) + 1, data(T~)).

PROOF. By Claim 5.3.6, and the definition of a write-coordinator. ❑

As before, T~ cannot request to commit until it receives a REPORT_ COM-

MIT from at least one of its write-coordinators. Let T(O be the write-coordina-

tor child of T~ that has the first COMMIT events in y, and let ~ be the

portion of y up to and including COMMIT(TU,). TW cannot request to commit

until it has received REPORT_ COMMIT events for write accesses to a write

quorum of replicas, according to conflg(TU). By Claim 5.3.6, corzfig(TU,) =

logical-coizfig(~ ‘), so T,,, must receive REPORT_ COMMIT events for a write

quorum in logical-config(~ ‘). Therefore, by Claim 5.3.7, it follows that cur-

rent-un(P‘ 8) = eurren,t-vn(~‘) + 1, so condition (1) holds in any global state

led to by ~ ‘8. As before, but this time using Claim 5.3.7, condition (1) still

holds for ~. Condition (2) holds vacuously.

(3) T~ G lar,C. Then logical-value(~) = logical-ualue(~‘) and logical-con-

fig(P) = conflg(Tt). We first give three claims about the information associ-
ated with descendants of T~ invoked in y.

Claim 5.3.8. If T is a write-coordinator invoked by T~ then uersion-num-

ber(T) = current-un(fi ‘), data(T) = logical-ualue(@‘), and config(T) =

config(T~).

PROOF. Analogous to that of Claim 5.3.6. ❑

Claim 5.3.9. If T is a write access invoked by a write-coordinator in y,

then data(T) = (current-un(/3’), logical-ualue(P ‘)).

PROOF. By Claim 5.3.8 and the definition of a write-coordinator. ❑

Claim 5.3.10. If T is a write access in Cowc invoked by T~ in y, then

data(T) = config(T~).

PROOF. By the definition of T~. ❑

It follows from Claim 5.3.9 that current-un(~) = current-un(~ ‘). By defini-

tion, T~ cannot request to commit until a REPORT_ COMMIT for at least one

of its write-coordinators occurs. Let TW be any write-coordinator child of T~
that has a COMMIT event in y. By Claim 5.3.8, uersion-number(T,U) =

current-un(~ ‘); data(T,u) = logical-ualue(P ‘); and config(T,U) = config(T~). By

definition of a write-coordinator and Claim 5.3.9, just prior to the

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994,

572 . K J Goldman and N Lynch

REQUEST_ COMMIT for Tu in y, there must be a write quorum %7”●

config(T~[,).zurite such that all replicas for object names in 7?< have data .c’er-

sion-number = uersion-number(T~~,). By the equalities above, Yfl- is a write

quorum in logical-config(~), and all replicas for object names in %- have

data-uersio?z-number = current-vn(~). This shows part (a).

Claim 5.3.9 implies that all write accesses in -y have data = (currelz t-

Z.ln(@‘), Zogical-zjalue(~ ‘)), which is equal to (current-vn(~), logical-ualzte(~)).

Since part (b) holds for ~‘, it also holds for ~. Claim 5.3.10 and the definition

of a reconfigure-LA imply that the data component of the state of the

configuration object in any global state led to by ~ is equal to corzfig(T~), and

hence to logical-config(~). This shows part (c). Since T~ does not name a

read-LA, condition (2) holds vacuously.

Thus in all three cases, the lemma holds. The end of the proof for Lemma

5.3.1. ❑

Now we give the main correctness theorem for @. Again, let Y~l and -2Pi

denote the transaction names and object names of d, respectively.

THEOREM 5.3.11. Let (3 be a finite schedzde of d. Then there exists a

schedule y of d such that the followilzg two conditions hold:

(1) ylT = PIT for each transaction name T ● Y> – la and

(2) ylY = ~lYfor each object name Y •;2~.

PROOF. The proof is analogous to that for Theorem 4.3.7. We construct y

by removing from @ all REQUEST_ CREATE(T), CREATE(T),

REQUEST _COMNIIT(T, v), COMMIT(T), ABORT(T),

REPORT_ COMMIT(T, u), and REPORT _ABORT(T) events for all transac-

tion names T in co U ace, U ace,,,. Clearly, the two conditions hold. It re-

mains to show that y is a schedule of .W to do this, it suffices to show that y

projects to yield a schedule of each component of M. It is easy to see that, for

each nonaccess transaction name T of s?’, y IT is a schedule of the transaction

automaton for T, and for each object name Y = 7A – {X, Z}, y IY is a sched-

ule of the object automaton for Y. The sequence y IZ is exactly the sequence of

CREATE(T) and REQUEST _COMMIT(T, z)) actions in y for T = la,,,. Since

reconfigure-LA’s preserve transaction well-formedness and always return

value u = “OK”, y IZ is a schedule of the dummy object automaton. Also, as
before, y is a schedule of the serial scheduler,

It remains to show that y IX is a schedule of S’x. The proof is by induction

on the length of /3. The basis, when ~ is of length O, is trivial. Suppose that

6 = B ‘n, where m is a single event and the result true for @‘. The onlY case
that is not immediate is the case where n is a REQUEST_ COMMIT

event for a transaction name in la, U laU,, so suppose that n =

REQUEST_ COMMIT(T, u), where T G la, U /aW. The proof that the precon-

ditions of w in S4Y are satisfied as in Theorem 4.3.7, but this time using

Lemma 5.3.1 in place of Lemma 4.3.1. Therefore, y is a schedule of W. ❑

ACM TransactIons on Database Systems, Vol 19, No. 1, December 1994

Quorum Consensus in Nested Transaction Systems . 573

5.4 System ~’: The Reconfigurable Quorum Consensus Algorithm

with Replicated Configurations.

It is possible to manage configurations in a centralized fashion, directly

implementing the algorithm described by system ~ above. However, it is also

interesting to consider replicating the configuration information. This may

avoid the risk of the configuration storage becoming a bottleneck or a single

point of vulnerability in the system. One way of doing this is using the

fixed-configuration quorum consensus algorithm: define a fixed metaconfigu-

ration that describes read quorums and write quorums of replicas of the

configuration. A read-con figuration-coordinator reads a read quorum of

configuration replicas, and returns both the latest configuration and a gener-

ation number, which is analogous to a version number. A write-

configuration-coordinator writes the new configuration to a write quorum of

configuration replicas; it does this using the generation number obtained

from a read-configuration-coordinator. Except for the need to manage the

generation-number information, the LAs are the same in this algorithm as in

@. It is also possible to manage the configuration replicas using changing

metaconfigurations, i.e., to reconfigure the configuration replicas! But then

similar issues arise for the implementation of metaconfigurations.

All of this could continue for any number of steps. However, in order to

avoid an infinite regress, we must stop at some point and use an implementa-

tion that does not require further configuration. Such a stopping point might

be either a centralized implementation or a fixed-quorum algorithm. (Note

that a centralized implementation is just a special case of using fixed

quorums, where there is only one replica.)

There is another interesting alternative, however, in which there is a

one-to-one correspondence between the replicas at the last two stages, and

the same configurations are used for both stages. That is, at the last two

stages, the same configurations are used to manage the data replicas and the

copies of the configurations themselves. This means that the read-configura-

tion-coordinators will need to read a set of replicas of the configuration

objects that form a read-quorum, without first knowing what the current

read-quorum is! It turns out that they can simply start reading configuration

replicas and use the generation numbers and configurations stored in them to

determine when a read-quorum for the current configuration has been read.

In this subsection, we will describe this strategy. For simplicity, we con-

sider the special case of which there are only two kinds of replicas—of logical

objects and configurations—and both are managed using the same configura-

tions.

The system we define is called %“. We first define the type of %, and then

give the new automata that appear in K but not in .@. The new automata are

the configuration replica objects and the read-con figuration-coordinator and

write-configuration-coordinator transaction automata. Also, the LA’s are

slightly modified from those of W.

5.4.1 System Type. The type of system 8’ is defined to be the same as that

of .$?, with the following modifications: The object name ~ is now replaced by

ACM Transactions on Database Systems, Vol 19, No 4, December 1994.

574 . K. J. Goldman and N Lynch

Fig. 13. Reconfiguration coordinators and their children

a new set of object names, ~, representing the configuration replicas. We

assume that there is a bijection i, from the names in ~ to those in j?’. There

are new transaction names, ace,, and acc,,, C, which are the read and write

accesses to the configuration replicas, respectively. We let acc = ace, u accU,

U acc,C U accUC. The transaction names in CO,C and COW,Care accesses in J%’,

but in %“ they are not; each transaction name in CO,C now has children in

acc,C, and each transaction name in COU,C has children in acc,,)C. These are the

only changes to the system type—for example, no transaction names other

than those indicated are parents of the new transaction names. The naming

structure for the read and write configuration coordinators and their children

are shown in Figure 13.

In defining ~, we associated information with some of the transaction

names. In ~, we keep all such information from ~ and add more information

as follows. We now assume that every transaction name T ● COW~ has associ-

ated values old-con fig(T) G C and generation-number(T) G N, in addition to

data(T) as before. Also, we assume that every transaction name T = acc,C

has hind(T) = read, and that every transaction name T = accU,C has kind(T)

= write and also data(T) G N x C.7

5.4.2 Configuration Replica Automata. We define a configuration replica

automaton for each object name Y E ~. ‘I’his is a read/write serial object for

Y with domain N x C and initial value (O, co). For v ● N x C, we write

u .generation-number and v con fig to refer to the components of v.

5.4.3 Coordinators. In this section, we define the coordinator automata in

%’. The read- and write-coordinators are as in S, so we need only define the

read-con figuration-coordinators and write-con figuration-coordinators. We first

define read-configuration-coordinators. The purpose of a read-configuration-

coordinator is to determine the latest generation number and configuration,

on the basis of the data returned by the read accesses it invokes on con!@ura-
tion replica objects.

A read-configuration-coordinator for transaction name T G Co,c has state

components awake, config, generation-number, requested, reported, and read,
where awake is a Boolean variable, initially false; config ● C, initially CO;

generation number ● N, initially O; requested and reported are subsets of

7As with the transaction names in accu,, since the transaction names in acc W, name accesses to

read/write objects, agreement with that definition compels the combination of the generation

number and configuration into a single data attribute.

ACM TransactIons on Database Systems, Vol. 19, No 4, December 1994

Quorum Consensus in Nested Transaction Systems . 575

CREATE(T)
Effect: s. awake = true

g.awake = true

REQUEST.CREATE(T’)

Precondition:
sf. awake = true

T’ $ s’. requested

Effect:
s.requested = s’. requested U {T’)

REPORT. COMMIT(T’,U)
Eflect: s. reported= s’.reported U {T’}

s.read = s’. read U {objwt(T’)}

if v.gene-ntion-number

> a’. generation-number then

s.generation-number

= rr.generrrtion-number
s. config = v. config

s.reported = s’. reportedu {T’]

s.r-ead = s’. read u {object(T’)}

if v.generation-number

> a’. generation-number then
9.generation-number

= v.generrrtion- number
s.config = v.mnfig

REPORT.ABORT(T)
Effect: a.mported = s’.reportrd u {T’)

s.reported = s’.mported u {T’}

REQUEST.COMMIT(T,U)
Precondition:

s’. awake = true

s’. requested = .9’. reported

(3 R)(t(R) E s’.config.rcad

A?? ~ s’. read)
v = (s’. generation-number, s’. config)

Effect:

s.awake = jalse

Fig. 14. Transition relation for Read-Configuration-Coordinators.

children(T), initially empty; and read g ~, initially empty. The set of return

values VT is equal to N X C.

The transition relation for read-configuration-coordinators is shown in

Figure 14. A read-con figuration-coordinator invokes accesses to configuration

replicas. On receiving a REPORT_ COMMIT, the coordinator compares the

returned generation number with the generation-number component of its

own state. If the returned generation number is larger, the coordinator

updates its own generation-number and configuration components to the

returned values. The interesting part of a read-configuration-

coordinator is the set of preconditions for its REQUEST_ COMMIT. When

the coordinator reaches a state s‘ in which s‘ read contains a set of configu-

ration replica names that corresponds (using the correspondence i between ~

and ~) to a read quorum, according to s‘ .config, then it may request to

commit, returning the highest generation number it has seen, along with the

associated configuration. One should note the similarity of the read-config-

uration-coordinators and the read-coordinators in the way the most current

configuration and generation number are obtained, and also the seemingly

“circular” use of replicated configuration data in order keep track of the

current configuration of the configuration replicas themselves.

Of course, it remains to show that this method of determining the current
configuration is correct. The key intuition is that the write-configuration

coordinators, defined next and as in system g, write the new configuration

and generation number to a write-quorum of the old configuration, which of

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994.

576 . K J, Goldman and N. Lynch

CREATE(T)
Effect: s.awake = true

9 awake = true

REQUEST.CREATE(T’)
Precondition:

s’. awake = true

T’ @ g’. requested

dotu(T’) = (genemtion-nwnker(7’), data(l’))

Effect:

9.reque.9ted = s’. rquesfed U {T’}

REPORT-COMMIT(T’, ZJ)

Effect: s.r-eported = s’. reported U {T’}

s.written = s’. wrvtten U {object(T’)}

s.reported = 9’. repOrted U {T’)

s.wr:tten = s’. written U {object(T’)}

REPORT_ABORT(T”)
Effect: .s.reported = s’. report.d u {T’)

s reported = s’. repOrted U {~}

REQUEST_ COMMIT(T,W)

Precondition:

st. ou,ake = true

s’. requested = 9’. reported

(3 W)(1(W) G old-conjig(T). write

A~ ~ s’. written)

u = “OK”

Effect:

3, awoke = false

Fig. 15. Transition relatlon for Write-C’onfiguration-Coordinators.

course will intersect all read-quorums of the old configuration. Hence, if a

configuration replica’s generation number is the largest found in reading a

quorum according to that replica’s configuration, then no such write has

occurred and the given configuration is the current one.

As promised, we next define write-con figuration-coordinators. A write-con-

figuration-coordinator for transaction name T ● co.,, has state components

awake, requested, reported, and written, where awake is a Boolean variable,

initially false; requested and reported are subsets of children(T), initially

empty; and written is a subset of ~, initially empty. The set of return values

VT is equal to {“OK”}.

The transition relation for write-con figuration-coordinators is shown in

Figure 15. Recall that a write-configuration-coordinator T has an associated

old configuration, old-config(T), and a new configuration, data(T), as well as

a generation number, genera tion-number(T). The purpose of a write-config-

uration-coordinator is to write its generation number and new configuration

to a write quorum in its old configuration. It does this by invoking write

accesses to the configuration replicas, and can only request to commit after

receiving REPORT_ COMMIT actions for accesses to all configuration repli-

cas in some set corresponding to a write quorum, according to old-con fig(T).

5.4.4 Logical Access Automata. A read-LA in W is identical to a read-LA

in W, except for the REPORT_ COMMIT input action for children that are
read-configuration-co ordinators. The only difference is that the read-config-

uration-coordinator returns not only a configuration, but a pair consisting of

a generation number and a configuration. The read-LA simply ignores the

generation number. Formally, we have:

REPORT_ COMMIT(T ‘ , u), T ‘ E CO,,

Effect: s.reported = s‘ report u {T’}

if s‘ .config-read = false then

s.config = v.config

s.config-read = true

ACM TransactIons on Database Systems, Vol. 19, No 4, December 1994

Quorum Consensus in Nested Transaction Systems . 577

s.i-eported = s‘ reported U {T’}

if s‘ .config-read = false then

s.confi,g = u.config

s.config-read = true

A write-LA in %’ is identical to a write-LA in W, except for the same change

described above for read-LA’s.

Unlike the read- and write-LA’s, the reconfigure-LA’s of % make use of the

generation numbers returned by the read-configuration-coordinator, to man-

age the configuration replicas. Thus, the reconfigure-LA’s of % differ more

from those of 3 than do the read- and write-LA’s. Here, a read-

configuration-coordinator returns a pair consisting of a generation number

and a configuration, both of which are saved by the reconfigure-LA. These are

used to determine, for the write-con figuration-coordinators T‘ invoked by the

LA, the allowable values for old-con fig(T’) and generation-number(T’).

A reconfigure-LA for transaction name T G la,,, has the same state compon-

ents as it does in @, except for the addition of the component generation-

number, which takes on values in N U {nil} and has initial value nil. The

signature is the same, except that the type of the return values for read-con-

figuration-coordinators is now N x L’. The actions that change are:

REPORT– COMMIT(T ‘ , u), T ‘ G COrc

Effect: s. reported = s‘ reported U {T’}
if s‘. config-read = false then

s.config = u.con fig

s.generation -number

= v.generation-n umber

s.config-read = true

s. reported = s ‘reported U {T’1
ifs’ .conflg-read = false then

s.config = v.config.
s.generation -nwnber

REQUEST– CREATE(T ‘), T ‘ G COU,L

Precondition:
s’. awake = true
s’. value-read = true
data(T’) = config(T)
old-con fig(T’) = s‘ .confzg
genera tion-nuntber(T’)

—— s ‘generation-number + I
T‘ g s‘ requested

Effect:
s.requested = s ‘requested u {T’]

——Lj.generation-number
scon fig-read = true

5.5 Correctness Proof

In this section, we prove the correctness of system ~. Once again, we begin

with definitions, this time for a sequence /3 of actions of %’. Specifically, we

extend the definitions of logical-sequence(P) and logical-config(D) to apply

the sequences of actions of %’. We also require one new definition, analogous

to current-un(~). Namely, if ~ is finite, then current-gn(P) is defined to be

the highest generation-number among the states of all configuration replica

automata in any global state led to by ~.

We prove correctness of C by means of a correspondence between %’ and

,%. If ~ is a sequence of actions of %, then we define f(~) to be the sequence
of actions of .’@ that results from

(1) removing all REQUEST_ CREATE(T), CREATE(T), REQUEST_ COM-

MIT(T, u), COMMIT(T), ABORT(T), REPORT_ COMMIT(T, u), and RE-

ACM Transactions on Database Systems, VO1. 19. No. 4, December 1994.

578 . K, J. Goldman and N. Lynch

PORT _ABORT(T) events for all transaction names T = czcc,C u accWC,

and

(2) replacing all REQUEST_ COMMIT(T, u) and REPORT_ COMMIT(T, u)
where T G CO,C, with REQUEST _COMMIT(T, u.con~ig) and

REPORT_ COMMIT(T, u.config), respectively.

The following lemma is the key to the proof of Theorem 5.6, the main

correctness theorem for %. As in Lemma 5.3.1, condition (1) is only needed for

the inductive argument. Part (a) says that any configuration replica SF

either has the current generation number, or has a configuration such that

all configuration replicas in some write quorum of that configuration hold

generation numbers higher than the one held by S’y. Part (b) says that every

configuration replica holding the current generation number also holds the

logical configuration. Condition (2), the important part of the lemma, says

that our construction yields a schedule of Q?.

LEMMA 5.5.1. Let ~ be a finite schedule of I% such that no logical access is

active in ~.

(1) The following properties hold in any global state led to by B:

(a) For any configuration replica automaton SF, if v is the data compo-

nent of Sy and v.generation-nu mber < current-gn(~), then there ex-

ists a write quorum Y’ E v.config.write with the following property: for

any configuration replica SF for an object name ~ such that i(~) E %‘,

if v’ is the data component of SF then v‘ .generation-num ber >

u.generation-nu mber.

(b) For any configuration replica SF, if v is the data component of SF and

v.generation -number = current-gn(~) then v.config = logical-

config(B).

(2) The sequence f(~) is a schedule of W.

PROOF. We proceed by induction on the number of pairs of the form

CREATE(T) REQUEST_ COMMIT(T, v) in logical-sequence(/3). For the ba-

sis, suppose logical-sequence(~) contains no such pairs. Then logical-

config(/3) = co. Since all configuration replicas initially have generation-

number == O and config = co, the same is true in any global state led to by ~.

Thus, current-gn(~) = O. This implies that condition (l), and condition (2)
hold because the two systems behave identically if no LAs are invoked.

For the inductive step, let ~ = /3 ‘y, where logical-sequence(y) begins with

the last CREATE event in logical-sequence(~), and assume that the

lemma holds for P’. Then logical-sequence(y) = CREATE(Tf)

REQUEST_ COMMIT(Tf, Vf) for some T~ 6 la and Vf of the appropriate type.

As before, we can restrict attention to T~ and its descendants.

For any LA to issue a REQUEST_ COMMIT, it must first receive a

REPORT_ COMMIT for a read-configuration-coordinator and a read-coordi-
nator. Let T‘ be the read-coordinator in co, with the first REPORT_ COM-

ACM TransactIons on Database Systems, Vol. 19, No 4, December 1994

Quorum Consensus in Nested TransactIon Systems . 579

MIT in ~, and let y‘ be the portion of y up to and including the given

REPORT_ COMMIT event. Also, let T“ be the read-configuration-coordinator

in corC with the first REPORT_ COMMIT in y, and let y“ be the portion of y

up to and including this REPORT_ COMMIT event.

Claim 5.2.2. If REQUEST_ COMMIT(T”, v) occurs in y, then u =

(current-gn(B ‘), logiccd-config(B ‘)).

PROOF. Let s be the state of the automaton associated with T“ when that

automaton issues its REQUEST_ COMMIT event. Using an argument simi-

lar to the proof of Claim 4.3.3, we can show that s.generation-number and

s.config contain the highest generation-number and associated config among

the configuration replicas whose names are in s.read. Suppose (for contradic-

tion) that this highest generation-number is not equal to cument-gn(P ‘);

then part (a) of the inductive hypothesis implies that there is some set ‘7/”

with iCZ~) ● s.config. write such that all configuration replicas for object

names in 7?7-have generation-number > s.generation-number. By the defini-

tion of a read-configuration-coordinator, s.read must contain a set W with

i(%) ● s.config. read. Since s.config is a configuration, and i is one-to-one

and onto, i(~) and i(7Y”) have a nonempty intersection; therefore, some

configuration replica for an object name in ~, and hence in s.read, lies in 77

and hence has its generation-number component strictly greater than s.gen-

eration-number. This is a contradiction to the claim that s.generation-number

contains the highest generation number among the configuration replica

automata whose names are in s. read. It follows that s.generation-nz~ mber =

current-gn(P ‘). Then it follows by part (b) of the inductive hypothesis that

s.config = logical-config(B ‘).

Now w-e consider three cases.

(1) Tf G la,. It is easy to see that condition (1) is preserved, since no
descendants of Tf are write accesses to configuration replicas. Claim 5.5.2

implies that the value returned by T“ in y has as its configuration compo-

nent the value logical-config(/3’). By the definition of logica l-config, this is

the same value that would be returned by the configuration automaton in <Z.

ASO, the automaton associated with Tf in & behaves identically to that

associated with Tf in B except that, in %’, it receives and ignores the

generation-number component of the return value of T“, exactly as the

correspondence f requires. Since ~ is a schedule of %, it follows that f(/3) is

a schedule of &?, which shows condition (2).

(2) Tf G law. The argument is similar to the one for the previous case.

(3) Tf G la,,,. We first give several claims about the state of Tf and the

information associated with the descendants it invokes.

Claim 5.5.3. If s is a state of Tf in a global state reachable from D ‘Y” in

B, s.generation-number = current-gn(~‘) and s.config = logical-config(P ‘).

PROOF. By Claim 5.5.2, since y“ ends with the first REPORT_ COMMIT

of a read configuration coordinator. ❑

ACM Transactions on Database Systems, Vol 19, No 4, December 1994.

580 . K. J, Goldman and N, Lynch

Claim 5.5.4. If T is a write-con figuration-coordinator invoked by Tt in y

then data(T) = config(T~), generation-number(T) = current-gn((3’) + 1,and

old-con fig(T) = logical-config(P‘).

PROOF. By Claim 5.5.3 and the definition of T~. ❑

Claim 5.5.5. If T is a write access in acc&,C invoked by a write-configura-

tion-coordinator in y then data(T) = (current-gn(@‘) + 1,config(T+)).

PROOF. By Claim 5.5.4 and the definition of a write-configuration coordi-

nator. ❑

By definition, T~ cannot request to commit until at least one of its write-

configuration-coordinators has committed; let Tl,) be any write-configuration-

coordinator child of T~ that has a COMMIT event in y. Moreover, at least one

write access to a configuration replica must commit before a write-cont3gura-

tion-coordinator can request to commit. From Claim 5.5.5, we know that any

write-configuration access T that is a descendant of T~ has data(T) =

(current-gn(B‘) + 1,config(T~)). Therefore, current-gn(~) = cz~rrent-gn(~‘)

+ 1. Furthermore, by the definition of logical-config, co~zfig(Tt) = logLcal -

config(B). Therefore, we can conclude that all write accesses T in acct~,C

invoked by a write-con figuration-coordinator in y have data(T) = (current-

gn(~), logical-config(~)).

To show that part (a) of the inductive hypothesis holds for /3, we consider

three cases for each configuration replica ~ with data z), in any global state

led to by ~. (By the preceding arguments, these cases are exhaustive.)

(1) v.generation-number < current-gn(~ ‘). ~hen ~ is not updated by any
descendant of Tt in ~. That is, v is the data in Y in any global state led to by

~‘. Therefore, it follows immediately from part (a) of the inductive hypothesis

that there exists a set ~“ with i(7#’) G z).con fig. zurite such that for any

configuration replica S~, for an object name ~‘ E w“, if v‘ is the data

component of S’y, in any global state led to by ~‘, then u‘ .generation-nurnber
> u.generation-number. During y, either the genera tion-n urn ber in the data

held in ST, is unchanged, or else it is set to current-generation(9) (which is

greater than u.generation-n umber) by a descendant of T~. In either case, part

(a) holds for D.

(2) u.generation-num ber = current-gn(~ ‘). Then by part (b) of the induc-
tive hypothesis, we know that u.confzg = Zogical-config(/3 ‘). By definition of a
write-configuration-coordinator, just prior to the REQUEST_ COMMIT for

T,,, in y, there must be a set W“ with i(~”’) ● old-config(T,,,).zurite such that

write accesses to all configuration replicas for object names in w have

committed, so by our arguments above, all of these configuration replicas

have generation-number = current-gn(~) in any global state led to by ~. By

Claim 5.5.4, old-config(TU)) = logical-config(~‘). Therefore, 7’ satisfies i(~’)
E u.config.zorite, and all configuration replicas for object names in 77” have

generation-number = currenf-gn(~) > v.generation-number in any global

state led to by /3. Therefore, part (a) holds.

ACM TransactIons on Database Systems, Vol. 19, No 4, December 1994

Quorum Consensus in Nested Transaction Systems . 581

(3) u.generation-number = current-grz(/3). Then part (a) is trivial.

So in all three cases, part (a) holds for ~.

We now show part (b). By the definition of current-gn, we know that if u‘ is

the data component of the state of a configuration replica SY in any global

state led to by /?’ then u‘ .generation-nurn ber < current-gn(/? r). Therefore,

any configuration replica that has, in any global state led to by /3, a

generation number equal to current-gn(~) (and so larger than current-gn(B‘))

must be written after ~‘. The writer of such a configuration replica must be a

descendent of Tf, and therefore must be a child of some write configuration-

coordinator T,,, ~ invoked by Tt. Since all such TU,~ have data(TU) = config(TI),

which by definition is logical-config(~), part (b) holds.

Condition (2) is straightforward. ❑

The lemma above immediately yields a relationship between F’ and .%. Let

Y= and :Z~ denote the transaction names and object names of .%’, respectively.

THEOREM 5.5.6. Let ~ be a finite schedule of P’. Then there exists a

schedule of y of @ such that the following two conditions hold;

(1) ylT = ~lT for each transaction name T G y; – (co,, U COZ,,C)and

(2) ylY = (31Y for each object name Y G :zj.

Now we can combine Theorems 5.3.11 and 5.5.6 to prove a relationship

between % and .<. Let ti~ and YA denote the transaction names and object

names of <w, respectively.

THEOREM 5.5,7. Let ~ be a finite schedule of %“. Then there exists a

schedule y of.& such that the following two conditions hold:

(1) y\T = BIT for each transaction name T ● y< – la and

(2) YIY = D 1~ for each object name Y = 2A.

6. CONCURRENT REPLICATED SYSTEMS

So far, this paper has dealt exclusively with serial systems. However, a useful

nested transaction system must allow concurrency and the possibility of

aborting a transaction after it has begun running. In order to simplify the

programming effort, it is best for a system not to permit arbitrary concur-

rency, but rather to make it seem (to the programs) as if the system were

serial. Because we have been discussing several different serial systems, we

extend the concept of serial correctness given earlier to mention explicitly

which serial system is considered to define correctness: if Y is a serial

system, we say that a sequence ~ of actions is serially correct with respect to

& for transaction name T, provided that there is some behavior y of= such

that ~lT = ylT.

Many concurrency control mechanisms are known that enable a concurrent
system to appear like a serial one. For example, in Fekete et al. [1990] a

generic system is defined as a system containing transaction automata (just

as in the serial system), generic objects that accept concurrent accesses and

ACM Transactions on Database Systems, Vol 19, No. 4, December 1994

582 . K. J, Goldman and N Lynch

also receive information about the commit or abort of transactions, and a

controller that passes information between them. In that paper several

algorithms are given for constructing the generic objects from the serial

objects of 5-, in ways that ensure that every execution of the generic system

is serially correct with respect to S for each nonorphan transaction.

We use J& and %’ to denote the systems defined in Section 5. A concurrent

system may be constructed by applying the methods discussed in Fekete et al.

[1990] to the system %’. This can be described as applying concurrency control

to each copy separately. Thus, for example, we consider a transaction-

processing system ~ that uses Moss’ read-update locking algorithm [Moss

1981] to give a generic object for each object of %. The results of Fekete et al.

show that all behaviors of ~ are serially correct with respect to %’, for all

nonorphan transaction names, in particular, for all nonorphan transaction

names in YZ — la. That is, 9 looks like a serial replicated system. However,

the goal of building a transaction-processing system is that both concurrency

and replication should be transparent. That is, one wants a system to have

behaviors that are serially correct with respect to .&, the serial unreplicated

system. This is in fact the case for g, a fact that follows from the above by

the results of this paper.

To be precise, we have the following general result:

COROLLARY 6.1. Let ~ be a sequence of actions that is serially correct with

respect to %, for transaction name T G Y< – la. Then /3 is also serially correct

with respect to .& for T.

PROOF. By Theorem 5.5.7. ❑

Corollary 6.1 implies that all behaviors of Q are serially correct with

respect to w for all nonorphan transaction names in Y; — la. This says that

system ~, which combines concurrency control techniques based on locking

with the replication strategies of this paper, looks the same as the serial,

unreplicated system .@, to the nonorphan transaction names in Y; — la (in

particular, to TO).

Corollary 6.1 also shows that if a concurrent, replicated transaction-

processing system is constructed by (1) using the reconfigurable quorum

consensus protocol to manage the copies and (2) applying any of the concur-

rency control algorithms verified in Fekete et al. [1990] to each copy individu-

ally, then the concurrent replicated system appears serial and unreplicated.

Similar conclusions can be drawn for a system using the multiversion
timestamp algorithms of Reed [1983] and Herlihy [1987], as modeled in

Aspnes et al. [1988]. Also, similar conclusions can be drawn when % is

replaced by system @’ of Section 5, or by @ of Section 4. In general, any

concurrency control algorithm that provides serial correctness at the level of

the replicas may be combined with any of our replication algorithms to

produce a correct system.

Finally, we note that our techniques allow combination of algorithms for

orphan management (as described in Herlihy et al. [1987]) with algorithms

for concurrency control and for replication. For example, consider the concur-

ACM TransactIons on Database Systems, Vol. 19, No 4, December 1994

Quorum Consensus m Nested Transaction Systems o 583

rent system ~ described just above, and let % be another system that is

constructed from ~ by adding one of the orphan management algorithms.

The results of Herlihy et al. [1987] imply that % is serially correct with

respect to $3, for all transaction names (including orphans), in particular, for

all transaction names in Y; – la. Then Corollary 6.1 implies that % is serially

correct with respect to .@ for all transaction names in 9A – la. Thus, system

%, which combines concurrency control techniques and orphan management

techniques with the replication strategies of this paper, looks like&to all the

transaction names in 7A – la, and in particular, to TO.

7. CONCLUSION

We have presented a precise description and rigorous correctness proof for

Gifford’s data replication algorithm in the context of nested transactions and

transaction failures. The algorithm was decomposed into simple modules that

were arranged naturally in a tree structure. This use of nesting as a modeling

tool enabled us to use standard assertional techniques to prove properties of

transactions based upon the properties of their children.

Each module was described in terms of an automaton that made extensive

use of nondeterminism. Although an actual implementation would not be

nondeterministic, the nondeterminism adds a degree of generality to our

proof. That is, the correctness proof holds for any implementation that

further restricts the nondeterministic choices.

The modularity of the proof strategy permitted us to separate the concerns

of replication from those of concurrency control and recovery. We could deal

exclusively with serial systems in order to simplify our reasoning. The proof

was accomplished hierarchically, showing that the fully replicated system

simulated an intermediate system and that the intermediate system simu-

lated an obviously correct unreplicated system. Then, to complete the proof,

we presented a theorem stating that the combination of any correct concur-

rency control algorithm with the replication algorithm yields a correct sys-

tem.

This work has identified a general framework for proving the correctness of

data replication algorithms in nested transaction systems. One begins by

constructing a formal description of the algorithm in terms of a nested

transaction system built from 1/0 automata. Then, one uses the appropriate

definitions to show that each logical read access returns the proper value.

Next, one constructs a corresponding serial system without replication, and

proves that the user transactions in that system have the same executions as

the user automata in the replicated system. Finally, one proves separately

the correctness of the concurrency control algorithm, and applies a result

analogous to Corollary 6.1 to show that the combined system is correct.

It may be possible to use this general technique to add transaction nesting

to other, more complicated, data replication schemes, and to prove the
resulting algorithms correct. Such algorithms include the “Virtual Partition”

approach of Abbadi and Toueg [1989], and Herlihy’s “General Quorum Con-

sensus” [1984]. An interesting question is whether the techniques presented

ACM Transactions on Database Systems, Vol 19, No 4. December 1994.

584 . K. J. Goldman and N. Lynch

here can be extended to accommodate these algorithms when transaction

nesting is added. Several of these algorithms do not provide atomicity as we

define it. Rather, they allow the serialization order to differ from the true

order, between transactions that run in separate partitions of the network.

Therefore, additional definitions and theory will be required before these

algorithms can be verified using our techniques.

ACKNOWLEDGMENTS

We thank Alan Fekete, Michael Merritt, William Weihl, and the anonymous

referees for their useful comments on this material and for their help in

improving its presentation.

REFERENCES

ASPNES, J., FEKETE, A , LYNCH, N , MERRITT, M., AND WEIHL, W. 1988. A theory of tlmestamp-

based concurrency control for nested transactions. In Proceedings of the 14th International

Conference on Very Large Data Bases VLDB Endowment, 43-444.

B~R&u?A, D , ANI) GARCIA-M• LINA, H. 1985, Mutual excluslon m partitioned distributed sys-

tems. Tech. Rep. TR-346, Dept. Computer Science, Princeton Umv., Princeton, N.J

BERNSTEIN, P., HAIMILAC(OS, V., AiiD GOODMAN, N. 1987 Concurrency Control and Recocery In

Dataha.w Systems Addison-Wesley, Reading, Mass.

EA~ER, D., AND SEvcIIi, K. 1983 Robustness in distributed database systems. ACM Trans.

Database S,yst 8, 3 (Sept.) 354-381.

EL ARADDI, A , TOUEG, S, 1989. Mamtammg avadabihty in partitioned replicated databases.

ACM Trans Database Syst. 14, 2 (June) 264-290.

EL ARB.4DI, A., SKREN, D., AND CRISTMN, F. 1985 An efficient fault-tolerant protocol for

replicated data management In proceedings of the 4th ACM Svmposium on Pn nclples of
Database Systems (Portland, Oregon, Mar.). ACM, New York, 215-229

FEKIZTE, A , L~NcH, N,, MERRITT, M., AND WEIHL, W. 1990 Commutativlty-based locking for

nested transactions. J Comput. Syst Scl. (Aug.) 65–156.

FEKETE, A., L~mcH, N,, MERRITT, M., AND WEIHL, W. 1987. Nested transactions and read/write

Iockmg. In Proceedings of the 6th ACM Synlposlum on Prlnclples of Database Systems (San

Diego, CA, Mm.). ACM. New York, 97– 111 Expanded version available as Tech. Memo

MIT/LCS/TM-324, Laboratory for Computer Science, MIT, Cambridge, Mass , April

GJWWRD, D 1979. Welghtcd voting for replicated data, In Proceedings of the 7th ACM

Symposusm on Operating’ System Prznczples. ACM, New York, 150-162.

HERLIHY, M. 1987. Extending multlversion time-stampmg protocols to exploit type informa-

tion IEEE Trans Comput C“-36, 4 (Apr.).

HERLIHY, M. 1984. Rephcat]on methods for abstract data types. Tech. Rep. MIT/LCS/TR-319,

MIT Laboratory for Computer Science, Cambridge, Mass , May,

HERLIHY, M., LYNCH, N,, MERRITT, M , ANII WEIHL, W, 1987. On the correctness of orphan

elimination algorithms In Proceedings of the 17th IEEE Svmposwm on Fault-Tolerant Com -
,Dutzng IEEE, New York, 8–12 Also, MIT/LCS,ZTM-329, MIT Laboratory- for Computer

Sc,ence, Cambridge, Mass., May. To appear in J. ACM.

JAJODIA, S., AND MUTCHLER, D. 1990 Dynamic voting algorithms for maintaining the consis-

tency of replicated databases ACM Trans. Database Syst. 15 (June), 230-280,

L~-NrH, N , AND MERRITT, M. 1986. Introduction to the theory of nested transactions. Theoret.

Conlput. Set. 62, 123-185. Also in International Conference on Database Theory (Rome, Italy,

Sept.) 27 S–305. Expanded version m MIT/LCS/TR-367 July.

LYNCH, N., AND TUTTLE, M, 1987. Hierarchical correctness proofs for distributed algorithms, In

Proceedings of 6th ACM Syrnposl urn on Prznczples of Dzstrzbuted Computation. ACM, New

York, 137–151 Expanded version avadable as Tech Rep, MIT/LCS/TR-387, Laboratory for

Computer Science, MIT Cambridge, Mass., Apr

ACM TransactIons on Database Systems, Vol 19, No. 4, December 1994.

Quorum Consensus in Nested Transaction Systems . 585

Moss, ,J. E. B. 1981. Nested transactions: An approach to reliable distributed computing.

Ph.D. thesis, MIT, Cambridge, Mass. Tech. Rep. MIT/LCS/TR-260, Laboratory for Computer

Science, MIT, Apr. Also, pubhshed by MIT Press, Mar. 1985.

REED, D. 1983. Implementing atomic actions on decentralized data. 1983. ACM !i!’rans.

Comput. Syst. 1, 1 (Feb.) 3-23.

THOMAS, R. 1979. A majority consensus approach to concurrency control for multiple COPY

databases. ACM Trans. Database Syst. 4, 2 (June) 180-209.

Received August 1992; revised March 1993 and September 1993; accepted February 1994

ACM Transactions on Database Systems, Vol. 19, No 4, December 1994

