
Quorum Consensus in Nested Transaction Systems . 581

(3) u.generation-number = current-grz(/3). Then part (a) is trivial.

So in all three cases, part (a) holds for ~.

We now show part (b). By the definition of current-gn, we know that if u‘ is

the data component of the state of a configuration replica SY in any global

state led to by /?’ then u‘ .generation-nurn ber < current-gn(/? r). Therefore,

any configuration replica that has, in any global state led to by /3, a

generation number equal to current-gn(~) (and so larger than current-gn(B‘))

must be written after ~‘. The writer of such a configuration replica must be a

descendent of Tf, and therefore must be a child of some write configuration-

coordinator T,,, ~ invoked by Tt. Since all such TU,~ have data(TU) = config(TI),

which by definition is logical-config(~), part (b) holds.

Condition (2) is straightforward. ❑

The lemma above immediately yields a relationship between F’ and .%. Let

Y= and :Z~ denote the transaction names and object names of .%’, respectively.

THEOREM 5.5.6. Let ~ be a finite schedule of P’. Then there exists a

schedule of y of @ such that the following two conditions hold;

(1) ylT = ~lT for each transaction name T G y; – (co,, U COZ,,C)and

(2) ylY = (31Y for each object name Y G :zj.

Now we can combine Theorems 5.3.11 and 5.5.6 to prove a relationship

between % and .<. Let ti~ and YA denote the transaction names and object

names of <w, respectively.

THEOREM 5.5,7. Let ~ be a finite schedule of %“. Then there exists a

schedule y of.& such that the following two conditions hold:

(1) y\T = BIT for each transaction name T ● y< – la and

(2) YIY = D 1~ for each object name Y = 2A.

6. CONCURRENT REPLICATED SYSTEMS

So far, this paper has dealt exclusively with serial systems. However, a useful

nested transaction system must allow concurrency and the possibility of

aborting a transaction after it has begun running. In order to simplify the

programming effort, it is best for a system not to permit arbitrary concur-

rency, but rather to make it seem (to the programs) as if the system were

serial. Because we have been discussing several different serial systems, we

extend the concept of serial correctness given earlier to mention explicitly

which serial system is considered to define correctness: if Y is a serial

system, we say that a sequence ~ of actions is serially correct with respect to

& for transaction name T, provided that there is some behavior y of= such

that ~lT = ylT.

Many concurrency control mechanisms are known that enable a concurrent
system to appear like a serial one. For example, in Fekete et al. [1990] a

generic system is defined as a system containing transaction automata (just

as in the serial system), generic objects that accept concurrent accesses and

ACM Transactions on Database Systems, Vol 19, No. 4, December 1994

582 . K. J, Goldman and N Lynch

also receive information about the commit or abort of transactions, and a

controller that passes information between them. In that paper several

algorithms are given for constructing the generic objects from the serial

objects of 5-, in ways that ensure that every execution of the generic system

is serially correct with respect to S for each nonorphan transaction.

We use J& and %’ to denote the systems defined in Section 5. A concurrent

system may be constructed by applying the methods discussed in Fekete et al.

[1990] to the system %’. This can be described as applying concurrency control

to each copy separately. Thus, for example, we consider a transaction-

processing system ~ that uses Moss’ read-update locking algorithm [Moss

1981] to give a generic object for each object of %. The results of Fekete et al.

show that all behaviors of ~ are serially correct with respect to %’, for all

nonorphan transaction names, in particular, for all nonorphan transaction

names in YZ — la. That is, 9 looks like a serial replicated system. However,

the goal of building a transaction-processing system is that both concurrency

and replication should be transparent. That is, one wants a system to have

behaviors that are serially correct with respect to .&, the serial unreplicated

system. This is in fact the case for g, a fact that follows from the above by

the results of this paper.

To be precise, we have the following general result:

COROLLARY 6.1. Let ~ be a sequence of actions that is serially correct with

respect to %, for transaction name T G Y< – la. Then /3 is also serially correct

with respect to .& for T.

PROOF. By Theorem 5.5.7. ❑

Corollary 6.1 implies that all behaviors of Q are serially correct with

respect to w for all nonorphan transaction names in Y; — la. This says that

system ~, which combines concurrency control techniques based on locking

with the replication strategies of this paper, looks the same as the serial,

unreplicated system .@, to the nonorphan transaction names in Y; — la (in

particular, to TO).

Corollary 6.1 also shows that if a concurrent, replicated transaction-

processing system is constructed by (1) using the reconfigurable quorum

consensus protocol to manage the copies and (2) applying any of the concur-

rency control algorithms verified in Fekete et al. [1990] to each copy individu-

ally, then the concurrent replicated system appears serial and unreplicated.

Similar conclusions can be drawn for a system using the multiversion
timestamp algorithms of Reed [1983] and Herlihy [1987], as modeled in

Aspnes et al. [1988]. Also, similar conclusions can be drawn when % is

replaced by system @’ of Section 5, or by @ of Section 4. In general, any

concurrency control algorithm that provides serial correctness at the level of

the replicas may be combined with any of our replication algorithms to

produce a correct system.

Finally, we note that our techniques allow combination of algorithms for

orphan management (as described in Herlihy et al. [1987]) with algorithms

for concurrency control and for replication. For example, consider the concur-

ACM TransactIons on Database Systems, Vol. 19, No 4, December 1994

Quorum Consensus m Nested Transaction Systems o 583

rent system ~ described just above, and let % be another system that is

constructed from ~ by adding one of the orphan management algorithms.

The results of Herlihy et al. [1987] imply that % is serially correct with

respect to $3, for all transaction names (including orphans), in particular, for

all transaction names in Y; – la. Then Corollary 6.1 implies that % is serially

correct with respect to .@ for all transaction names in 9A – la. Thus, system

%, which combines concurrency control techniques and orphan management

techniques with the replication strategies of this paper, looks like&to all the

transaction names in 7A – la, and in particular, to TO.

7. CONCLUSION

We have presented a precise description and rigorous correctness proof for

Gifford’s data replication algorithm in the context of nested transactions and

transaction failures. The algorithm was decomposed into simple modules that

were arranged naturally in a tree structure. This use of nesting as a modeling

tool enabled us to use standard assertional techniques to prove properties of

transactions based upon the properties of their children.

Each module was described in terms of an automaton that made extensive

use of nondeterminism. Although an actual implementation would not be

nondeterministic, the nondeterminism adds a degree of generality to our

proof. That is, the correctness proof holds for any implementation that

further restricts the nondeterministic choices.

The modularity of the proof strategy permitted us to separate the concerns

of replication from those of concurrency control and recovery. We could deal

exclusively with serial systems in order to simplify our reasoning. The proof

was accomplished hierarchically, showing that the fully replicated system

simulated an intermediate system and that the intermediate system simu-

lated an obviously correct unreplicated system. Then, to complete the proof,

we presented a theorem stating that the combination of any correct concur-

rency control algorithm with the replication algorithm yields a correct sys-

tem.

This work has identified a general framework for proving the correctness of

data replication algorithms in nested transaction systems. One begins by

constructing a formal description of the algorithm in terms of a nested

transaction system built from 1/0 automata. Then, one uses the appropriate

definitions to show that each logical read access returns the proper value.

Next, one constructs a corresponding serial system without replication, and

proves that the user transactions in that system have the same executions as

the user automata in the replicated system. Finally, one proves separately

the correctness of the concurrency control algorithm, and applies a result

analogous to Corollary 6.1 to show that the combined system is correct.

It may be possible to use this general technique to add transaction nesting

to other, more complicated, data replication schemes, and to prove the
resulting algorithms correct. Such algorithms include the “Virtual Partition”

approach of Abbadi and Toueg [1989], and Herlihy’s “General Quorum Con-

sensus” [1984]. An interesting question is whether the techniques presented

ACM Transactions on Database Systems, Vol 19, No 4. December 1994.

584 . K. J. Goldman and N. Lynch

here can be extended to accommodate these algorithms when transaction

nesting is added. Several of these algorithms do not provide atomicity as we

define it. Rather, they allow the serialization order to differ from the true

order, between transactions that run in separate partitions of the network.

Therefore, additional definitions and theory will be required before these

algorithms can be verified using our techniques.

ACKNOWLEDGMENTS

We thank Alan Fekete, Michael Merritt, William Weihl, and the anonymous

referees for their useful comments on this material and for their help in

improving its presentation.

REFERENCES

ASPNES, J., FEKETE, A , LYNCH, N , MERRITT, M., AND WEIHL, W. 1988. A theory of tlmestamp-

based concurrency control for nested transactions. In Proceedings of the 14th International

Conference on Very Large Data Bases VLDB Endowment, 43-444.

B~R&u?A, D , ANI) GARCIA-M• LINA, H. 1985, Mutual excluslon m partitioned distributed sys-

tems. Tech. Rep. TR-346, Dept. Computer Science, Princeton Umv., Princeton, N.J

BERNSTEIN, P., HAIMILAC(OS, V., AiiD GOODMAN, N. 1987 Concurrency Control and Recocery In

Dataha.w Systems Addison-Wesley, Reading, Mass.

EA~ER, D., AND SEvcIIi, K. 1983 Robustness in distributed database systems. ACM Trans.

Database S,yst 8, 3 (Sept.) 354-381.

EL ARADDI, A , TOUEG, S, 1989. Mamtammg avadabihty in partitioned replicated databases.

ACM Trans Database Syst. 14, 2 (June) 264-290.

EL ARB.4DI, A., SKREN, D., AND CRISTMN, F. 1985 An efficient fault-tolerant protocol for

replicated data management In proceedings of the 4th ACM Svmposium on Pn nclples of
Database Systems (Portland, Oregon, Mar.). ACM, New York, 215-229

FEKIZTE, A , L~NcH, N,, MERRITT, M., AND WEIHL, W. 1990 Commutativlty-based locking for

nested transactions. J Comput. Syst Scl. (Aug.) 65–156.

FEKETE, A., L~mcH, N,, MERRITT, M., AND WEIHL, W. 1987. Nested transactions and read/write

Iockmg. In Proceedings of the 6th ACM Synlposlum on Prlnclples of Database Systems (San

Diego, CA, Mm.). ACM. New York, 97– 111 Expanded version available as Tech. Memo

MIT/LCS/TM-324, Laboratory for Computer Science, MIT, Cambridge, Mass , April

GJWWRD, D 1979. Welghtcd voting for replicated data, In Proceedings of the 7th ACM

Symposusm on Operating’ System Prznczples. ACM, New York, 150-162.

HERLIHY, M. 1987. Extending multlversion time-stampmg protocols to exploit type informa-

tion IEEE Trans Comput C“-36, 4 (Apr.).

HERLIHY, M. 1984. Rephcat]on methods for abstract data types. Tech. Rep. MIT/LCS/TR-319,

MIT Laboratory for Computer Science, Cambridge, Mass , May,

HERLIHY, M., LYNCH, N,, MERRITT, M , ANII WEIHL, W, 1987. On the correctness of orphan

elimination algorithms In Proceedings of the 17th IEEE Svmposwm on Fault-Tolerant Com -
,Dutzng IEEE, New York, 8–12 Also, MIT/LCS,ZTM-329, MIT Laboratory- for Computer

Sc,ence, Cambridge, Mass., May. To appear in J. ACM.

JAJODIA, S., AND MUTCHLER, D. 1990 Dynamic voting algorithms for maintaining the consis-

tency of replicated databases ACM Trans. Database Syst. 15 (June), 230-280,

L~-NrH, N , AND MERRITT, M. 1986. Introduction to the theory of nested transactions. Theoret.

Conlput. Set. 62, 123-185. Also in International Conference on Database Theory (Rome, Italy,

Sept.) 27 S–305. Expanded version m MIT/LCS/TR-367 July.

LYNCH, N., AND TUTTLE, M, 1987. Hierarchical correctness proofs for distributed algorithms, In

Proceedings of 6th ACM Syrnposl urn on Prznczples of Dzstrzbuted Computation. ACM, New

York, 137–151 Expanded version avadable as Tech Rep, MIT/LCS/TR-387, Laboratory for

Computer Science, MIT Cambridge, Mass., Apr

ACM TransactIons on Database Systems, Vol 19, No. 4, December 1994.

Quorum Consensus in Nested Transaction Systems . 585

Moss, ,J. E. B. 1981. Nested transactions: An approach to reliable distributed computing.

Ph.D. thesis, MIT, Cambridge, Mass. Tech. Rep. MIT/LCS/TR-260, Laboratory for Computer

Science, MIT, Apr. Also, pubhshed by MIT Press, Mar. 1985.

REED, D. 1983. Implementing atomic actions on decentralized data. 1983. ACM !i!’rans.

Comput. Syst. 1, 1 (Feb.) 3-23.

THOMAS, R. 1979. A majority consensus approach to concurrency control for multiple COPY

databases. ACM Trans. Database Syst. 4, 2 (June) 180-209.

Received August 1992; revised March 1993 and September 1993; accepted February 1994

ACM Transactions on Database Systems, Vol. 19, No 4, December 1994

