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Abstract

Counting networks are concurrent data structures that serve as building blocks in the design
of highly scalable concurrent data structures in a way that eliminates sequential bottlenecks
and contention. Linearizable counting networks assure that the order of the values returned
by the network reflects the real-time order in which they were requested. Linearizability is
an important consistency condition for concurrent data structures, as it simplifies proofs and
enhances compositionality.

Though most counting networks are not linearizable, this paper presents a precise characteriza-
tion of the timing conditions under which uniform non-linearizable networks exhibit linearizable
behavior. Uniformity is a common structuring property of almost all published counting net-
works: a uniform network is made of “balancers” and “wires” so that each balancer lies on
some path from inputs to outputs, and all paths from inputs to outputs have equal lengths. Our
results include the following simple condition: if the time it takes a slow token to traverse a
“wire” or “balancer” is no more than twice that of a fast token, the network is linearizable. Sur-
prisingly, the timing measure in this condition is Jocal to the individual “wires” and “balancers”
of the network, that is, it is independent of network depth.

We use our timing measure to mathematically explain our empirical findings: that in a variety
of highly concurrent execution scenarios tested on a simulated shared memory multiprocessor,
the Bitonic counting networks of Aspnes, Herlihy, and Shavit exhibit completely linearizable
behavior, and when linearizability is violated, the percentage of violations is relatively small.

Herlihy, Shavit, and Waarts have shown that counting networks that achieve linearizability
under all circumstances must pay the penalty of linear time latency. Our results suggest that for
systems in which timing anomalies occur infrequently, such linear delays may be an unnecessary
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burden on applications that are willing to incur occasional non-linearizability. © 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Counting networks [4] are a class of highly scalable structures used for concurrent
counting. Such networks allow the design of concurrent data structures in a way that
eliminates sequential bottlenecks and contention. Unlike queue-locks [21] and com-
bining trees [13] which are based on a single counter location handing out indices,
counting networks hand out indices from a collection of counter locations. To guaran-
tee that indices handed out by the separate counters are not erroneously “duplicated”
or “omitted,” one adds a special network coordination structure to be traversed by
processes before accessing the counters.

Counting networks [4] are constructed from simple computing elements called bal-
ancers (see Fig. 1). Tokens arrive on the balancer’s input wires and are output on its
output wires. Intuitively one may think of a balancer as a toggle mechanism that, given
a stream of input tokens, repeatedly sends one token to the left output wire and one
to the right, effectively balancing the number of tokens that have been output. In order
to form a counting network, balancers are connected to one another by wires in an
acyclic fashion, in the same way comparators are connected to form a sorting network
[11]. However, unlike in sorting networks, counting networks are asynchronous in na-
ture, that is, tokens arrive at the network’s input wires at arbitrary times, and traverse
the network with differing pace. Nevertheless, if the balancers are connected correctly,
a network having w consecutively numbered output wires will move input tokens to
output wires in increasing order modulo w. Networks of balancers having this property
can easily be adapted to count the total number of tokens that pass through them.
Counting is done by adding a “local counter” to each output wire i, so that tokens
coming out of that wire are assigned numbers i,i + w,i + 2w, and so on.

On a shared memory multiprocessor, counting networks are implemented as data
structures in which balancers are represented as records and wires as pointers among
them. Tokens are “shepherded” by processors that traverse this pointer-based data struc-
ture from input pointers to output wires, finally incrementing the counter on the appro-
priate output wire. This implies that tokens may overtake one another on a wire and
that balancer and network traversal times are dependent on individual processor speeds
and variations in speeds.

A Bitonic counting network [4] has a layout isomorphic to Batcher’s Bitonic sorting
network [7]. Bitonic counting networks for n processors have width w < n and depth
O(log® w) (all logarithms in this paper are to the base 2). Unlike combining trees,
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Fig. 1. A balancer and its input—output properties.

counting networks support complete independence among requests and are thus highly
fault tolerant. At peak performance their throughput is w, as w indices are returned
per time step by the independent counters. Unfortunately, counting networks suffer a
performance drop-off due to contention as concurrency increases, and the latency in
traversing them is a high ©(log® w). There is a wide body of research on counting net-
works [2-4,9, 10, 12, 15,17, 18]. A recently developed form of counting network called
a Diffracting Tree [24] is based on a new type of distributed balancer implementation.
It has been shown to scale especially well, exhibiting low latency since its depth is
logarithmic in w.

Linearizability is a consistency condition for concurrent systems formulated by Her-
lihy and Wing [16]. It requires that the values returned by access requests to a con-
current shared object reflect the order in which they were issued. The use of lin-
earizable data abstractions simplifies both the specification and the proofs of multiple
instruction/multiple data shared memory algorithms. As Herlihy and Wing explain, lin-
earizability generalizes and unifies a number of ad hoc correctness conditions in the
literature, and is related to (but not identical with) correctness criteria such as sequential
consistency [19] and strict serializability [22].

Herlihy et al. [15] defined the class of linearizable counting networks, networks that
assure that the order of the values returned by the network reflects the real-time order
in which they were requested. Linearizable counting lies at the heart of concurrent
timestamp generation, as well as concurrent implementations of shared counters, FIFO
buffers, priority queues and similar data structures. Unfortunately, for both the Bitonic
networks of Aspnes et al. [4] and the Diffracting Trees of Shavit and Zemach [24],
there exist worst case asynchronous schedules in which linearizability is violated. In
[15] linear depth linearizable counting network constructions were presented and shown
to be optimal, that is, any low contention counting network that is linearizable in all
executions must have linear depth.

1.1. Timing and linearizability

This paper provides a characterization of the timing conditions under which low
depth non-linearizable counting networks become linearizable. It applies to semi-
synchronous and real-time systems [6] where upper and lower time bounds that limit
the extent to which one process can be slower or faster than others are known. As we
show, our characterization also extends beyond such systems and has implications in
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the analysis of counting network linearizability in general asynchronous multiprocessor

systems. We believe that the linear time cost of designing counting networks achieving

linearizability under all circumstances may be an unnecessary burden on applications
that are willing to trade-off occasional non-linearizability for speed and parallelism.

In such systems an intelligent trade-off decision can be made with the help of clear

characterization of the parameters governing linearizability.

Our main result is a simple timing condition that is Jocal to the individual wires and
balancers of the network. It quantifies the extent to which a network can suffer from
timing anomalies and still remain linearizable.

This result is interesting, since even a counting network of depth one exhibits non-
linearizable behavior. Consider the following scenario for a counting network consisting
of the balancer B and two atomic counters 4o and A4; with initial values 0 and 1, and
that count by 2: Token T, enters the balancer via xo, exits via yo, and then is delayed.
Token 7) enters via xo and exits via y; and obtains the value 1 from the counter A4;.
Token T, enters via xo and exits via yp and obtains the value 0 from the counter Ao.
Finally, Ty obtains the value 2 from Ay.

The behavior is not linearizable because the traversal of the network by 7 completely
precedes T», yet T, returns a lower counter value.

We use a c1/c; timing model in the style of Attiya et al. [5]. Let ¢; be the minimum
time that it takes for a token to traverse a wire from balancer to balancer, let ¢, be the
maximum such time, and assume that balancer transitions are instantaneous. This timing
model is general enough to capture standard message passing and shared memory
balancer implementations [4,24]. Alternately, one could attribute the c;/c; latency to
the balancer traversal and make wire traversal instantaneous. The two models can be
shown to be equivalent, and we choose to attribute delays exclusively to the wires as
this simplifies our modeling and presentation.

Our model is also similar to that of semi-synchronous systems (cf. Archimedean
distributed systems of Vitanyi [25]). One can view our setting as one in which each
token traverses a wire and a balancer on the local clock tick, where the local clocks
can tick not faster than every ¢, and not slower than every c, time units according to
some global clock.

A common structuring property of almost all published counting networks [2—4,9
12,15,18,17,23,24] is uniformity: each balancer of the network lies on some path
from inputs to outputs, and all paths from inputs to outputs have equal lengths.

We prove, in Section 3, the following properties for any uniform counting network
(explicitly constructible or not):

— If <2 ¢, then the network is linearizable. This is so regardless of the network
depth.

— If ¢3 > 2-¢; then the network is linearizable if for any two tokens traversing the
network their traversals either overlap or they are separated by time ¢ > h-(c;—2-¢y),
where 4 is the depth of the network.

— If a constant £ > 2 is known a priori, such that ¢; = & - ¢, then given a counting
network of depth # we can extend this network by prefixing each of its inputs with
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h(k — 2) l-input l-output balancers so that the resulting network is a linearizable

network of depth O(A).

In Section 4 we show that counting (Diffracting) trees and Bitonic counting networks
are not linearizable for ¢; > 2-¢;, and that one can create executions with large numbers
of non-linearizable operations.

Finally, in Section 5 we provide empirical measurements of the extent to which
timing can affect linearizability in Bitonic networks and Diffracting trees. These results
were collected on a simulated Alewife [1] shared-memory multiprocessor using the
Proteus [8] simulator.

We use our ¢;/c; measure to mathematically support our experimental results: that
in a variety of “normal” situations, the Bitonic counting networks of Aspnes et al.
[4] exhibit linearizable behavior. In fact, for high concurrency levels, our results show
that even if one skews system timings by introducing large timing variations among
processes, the network rarely exhibits violations of linearizability. At low concurrency
levels we observed a significantly higher number of violations.

2. Models and definitions

We consider networks consisting of acyclically wired routing elements called bal-
ancers. We refer the reader to [4] for a more detailed presentation of the model and its
implications. For the sake of generality, our balancers are defined as multi-balancers
in the style of Aharonson and Attiya [2] and Felten et al. {12] (Fig. 1), having e input
wires xg,X1,...,X.—1 and d output wires yy, y1,-.., ya—1. Slightly abusing notation, we
let x; (respectively y;) also serve as a state variable that stands for the number of
tokens that have entered (exited) via that wire.

A balancer passes tokens from input wire to output wire, maintaining a step property
on its output wires: in any state of the balancer, its output wires satisfy 0< y; — y; <1
for any i < j. This requirement is stronger than the standard one [4], since it implies
that token traversal through a balancer is atomic. However, we note that it is consistent
with the standard message passing and shared memory based balancer implementations
[4] and with Diffracting balancer implementations [24], as they all meet the specification
of a balancer with atomic transitions.

We further require that a balancer not create tokens spontaneously, that is, Zf;ol X =
Z?:_ol ¥;. A state in which Zf;ol X = Z;-l:_ol y; is called a quiescent state.

To perform an increment operation on the network, a process routes a token from
input wire to output wire, traversing a sequence of balancers on the way. We define
a quiescent state of a balancing network with v input ports Xp, Xi,...,X,—; and w
output ports Yy, ¥1,...,Y,—1 as a state in which all tokens that have ever entered it
have already exited. A counting network with w outputs is a network of balancers that
satisfies the following step property:

In any quiescent state, 0<qY; — Y;<ql for any i < j.



72 N. Lynch et al. | Theoretical Computer Science 220 (1999) 67-91

The step property of counting networks is the cornerstone of the claims and proofs
we will present.

We now add timing to our model. The state transition of a balancer, i.e., the passing
of a token from the balancer’s input port to its output port, will be modeled as an
instantaneous event. While balancer transitions are instantaneous, transitions along a
wire connecting an output port of one balancer to an input port of another are not.
However, we assume that there is some ¢; > O that is the Jower bound on time it
takes for a token to traverse a wire between two balancers. Similarly there exists a
¢; that is the upper bound on such time, where 0 < c¢; <c,. Wires with the same
delay bounds are also used to connect the output wires of the network to a set of
counters added to it. Each output wire Y; of the network leads from a balancer whose
output wire is also a network output, to an atomic counter at its end. We identify this
counter with the output wire Y;. The input wires of a network are the input wires of
the balancers they connect to. Such balancers are called input balancers. We use the
term node to refer to a component of a network that may be either a balancer or a
counter.

We refer to w as the output width of the network. The tokens exiting from output
wire Y; are consecutively assigned the numbers i,i+w,i+2w, etc. The number assigned
to a token by a counter is called the token’s returned value.

Definition 2.1. A counting network is uniform if each balancer of the network lies
on some path from inputs to outputs, and all paths from inputs to outputs have equal
lengths.

We define the depth of a uniform counting network as the number of wires on the
path between any input balancer and output counter. The time ¢ it takes for a token
to traverse a uniform network of depth 4 is bounded by: %-¢; <t<h-c,. It is easy to
see, from the above definition, that for each balancer B, the lengths of all paths from
the input balancers to B are equal and the lengths of all paths from B to the output
balancers are equal, see Fig. 2. Note that there and in the remaining figures, we do
not show the counters attached to the outputs. For 1<g<(h+ 1) we also define the
g-th layer of a network to be the collection of nodes (balancers or counters) whose
distance from the inputs is g — 1.

In the proofs, without loss of generality, we sequentially number the tokens traversing
the network according to the time of their entry (ties are broken arbitrarily).

An execution or execution sequence of a network is a sequence £ = ej,es,... of
instantaneous transition events e; = (7,B) corresponding to a token 7 traversing a
balancer or counter B. We associate history variables with tokens and balancers to
capture their implicit knowledge about the execution. The history variables are sets
of token ids. A history variable Hr is associated with each token 7, and Hp with
each balancer B. For every execution £ the values of these variables are computed
inductively as follows, where Hj and H} denote the values of Hp and Hr after the
event e;:
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Fig. 2. Equal length paths lead to any balancer in a uniform network.

— At the beginning of the execution, we define Hy = @ and HY = {T}. In other words,
at the beginning of the execution the knowledge of every balancer is an empty set
and the knowledge of every token consists of the token’s own identifier.

— The inductive step is as follows: If ¢; = (T,B), then Hj = Hi = Hy ' UHy .
Intuitively, the token 7 and the balancer B combine their knowledge as the result
of €;.

For every other token 7’ # T and balancer B’ # B, we define Hi, = H}Tl and
Hi, = Hi "

Definition 2.2. A timing schedule S for an execution of a uniform network of depth 4
and input width v is a triple (K, L, Q). K is the set of token ids produced by sequentially
numbering the tokens starting with 1 and based on their arrival times. L : K — {X; :
0<i < v} is a function such that for a token T, L(T) is the input balancer on which
the token enters the network. Q : K x [1.(A+ 1)] — R (where R is the reals) is the
function such that Q(7,g) is the real time instant when the token T passes through a
node in layer g of the network.

Adapting the definition of Herlihy and Wing [16] to counting networks:

Definition 2.3. An execution of a counting network is linearizable if for any two tokens
that traverse the network one completely after another (non-overlapping in time), the
earlier token obtains a smaller value than the later one.

Definition 2.4. A counting network is linearizable if every execution of the network
is linearizable.

We now introduce the notion of non-linearizable operations. Consider an execution in
which the network traversal operation « completely precedes another traversal operation
B, but a returns a higher value than B. Clearly such an execution is not linearizable. In
the definition below we ascribe the non-linearizablilty of the execution to the operation

B:

Definition 2.5. Given an execution of a counting network, we say that a traversal
operation f and its associated token are non-linearizable, if there exists some other
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traversal operation o completely preceding S in time, whose associated token has a
higher returned value than .

We choose to define § as the non-linearizable operation and not « since this al-
lows us to determine whether or not an operation is non-linearizable as soon as it
completes. Furthermore, if instead « were defined to be the non-linearizable traver-
sal operation, this would lead to non-intuitive situations where a single operation can
cause all preceding operations to become non-linearizable if it returns a sufficiently
low value.

It is easy to see that for any execution sequence, if we remove all non-linearizable
traversal operations the remaining sequence of operations will contain no violations of
linearizability. 2 However, such sequence of operations might not correspond to a valid
execution of a counting network, since it could contain gaps.

The following definition quantifies non-linearizability of finite executions:

Definition 2.6. The fraction of non-linearizable operations in a finite execution is de-
fined to be the number of non-linearizable operations divided by the number of com-
pleted operations in the execution.

It follows from the definitions above that this fraction is an upper bound on the
fraction of operations whose removal yields a linearizable execution trace.

3. A characterization of linearizability for counting networks

In this section and the next, we show that the ratio ¢;/c; plays a key role in deter-
mining whether a uniform counting network is linearizable.

We begin by proving several lemmas that will be used to derive our main result,
that uniform networks are linearizable for ¢; <2¢;. The first lemma shows that in
any counting network, when a token completed traversing the network, it has implicit
knowledge about the “existence” of a certain minimum number of other tokens.

Lemma 3.1. Let N be a counting network with w output ports Yo,...,Yw—1. If the
token T is the ath token to exit on Y;, then |Hr|=2w(a — 1)+ i+ 1 following its
transition onto Y;.

Proof. The proof is by contradiction. We start by defining the notion of events influ-
encing other events. For a pair of events e and €' in an execution E, we say that e

2In general it may be possible to remove fewer operations (whether linearizable or not) to eliminate
all instances of non-linearizability. For example, consider an execution consisting of three time-disjoint
operations 2, f§ and 7 that return the values 3, 1 and 2, in that order. According to our definition, § and
y are non-linearizable. Removing both of them yields a sequence consisting of « alone, thus removing all
instances of non-linearizability. However, if we remove « instead, then § and y become linearizable.
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influences €' if there is sequence of events § = ey, es,...,e, such that (1) S is a subse-
quence of E, (2) e=e; and e, = ¢’ and (3) for every k = 1,...,n— 1 if e = (T}, By)
and ez = (Tk+|,Bk+1>, then either T = T,y or By = Byy1.

We now assume that there exists an execution E, in which T is the a” token to
exit on Y;, but |Hy| < w(a — 1)+ i+ 1. We fix E and construct a new execution
E' in the following way: Let E’ be the projection of E consisting consisting of all
events involving 7, and all the events that influence these events. From the definition
of implicit knowledge, it is clear that E’ contains events involving only the tokens
found in Hr during the execution.

We claim that E’ is a possible execution of the counting network in which the
participating tokens and nodes cannot distinguish between E’ and E.

We show this by induction on all the prefixes of E’. The base case for the empty
prefix is trivial. For the inductive step we assume that the length of E is positive and
that the prefix of E’ of length #n — 1, for n>1, is a possible execution of the network.
We now consider the prefix e}, €} ... e, of E', where e, = (S,D).

Now consider the sequence ei,e;,...,e, such that it is the prefix of E that ends
with e, = e/. By the definition of E’, we know that all the events involving either
S or D in ej,es,...e,— are contained in ef,e},...,e,_,. By the induction hypothesis,
el,é,...,e,_, is a possible execution of the counting network in which the participating
tokens and nodes cannot distinguish between this prefix and the prefix ej,es,...e; of
E, where the event e; is e}_;.

Note that by the definition of E’ the subsequence e;1,...,e,_; of E, does not include
any events involving S or D. Therefore, neither S nor D can distinguish between
the execution e}, e,...,e,_, and the execution ej,ey,..., e,—1. Because (S,D) is next
event after e,—; in E, the sequence ef,e},..., €,_,,(S,D) is a possible execution of
the counting network.

In E’, T is still the ath token to exit on ¥;. Since only the tokens of Hy participate in
E’, any completion of £’ in which no new token enters the network leads to a quiescent
state with the step property violated. This is so because if a tokens exit on Y;, then it
is impossible to establish the needed step property with fewer than w(a — 1)+ i+ 1
tokens. O

The next lemma shows that the implicit knowledge in the history variables can only
reflect information propagation at the maximum pace of 1 wire per ¢ time units.

Lemma 3.2. Let N be a uniform counting network of depth h. For any execution
E =ey,ey,..., if e, = (T,B) occurs at time t, where B is a node in layer (g + 1), for
0<g<h then HE contains only tokens that enter the network by time t — g - cy.

Proof. By induction on g. The base case for g = 0 is trivial. Assume the lemma holds
for g — 1. We now show it holds for g.

Assume there is an execution sequence E = ey, ey,...,¢€,..., containing a transition
event ¢ = (I,B) that occurs at time . Assume also that [{e; : 1<j < kAe =
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(T,B;)}| = g, which means that token T traverses g balancers and wires en route to
B. From the definition of historical knowledge, Hf = Hi ' U HE™.

Consider the tokens in H’T‘_l. This set reflects 7’s knowledge after traversing g — 1
wires. By the induction hypothesis and because it takes at least ¢; time to traverse a
wire, all tokens in H;f_‘ enter the network by time (t —c¢;))—(g— )y =t —g-c;.

Now consider the tokens in Hx~'. This set consists of the accumulated knowledge
of the tokens that traversed B. Because the network is uniform, each token in HE~!
traverses g wires before reaching B. Since each such token reaches B by time ¢, it
reaches the previous balancer (there is such a balancer because g > 0) by time 7 — ¢;
and by the induction hypothesis it enters the network by time (t —c;) — (g — L)) =
t—g-c. O

The next result combines the lemmas above:

Lemma 3.3. Let N be a uniform counting network of depth h with w outputs. If at
time t, token T exits on output Y;, and it is the ath token to exit through this output
wire, then at least w(a — 1)+ i + 1 tokens enter the network by time t — h - c,.

Proof. Let ¢; = (I, 1) (_recall that we identify the counter at output Y; with Y;).
Lemma 3.1 establishes |H}|>w(a—1)+i+ 1. Lemma 3.2 establishes that the tokens
in Hy = Hy, enter the network by time ¢ —%-¢;. O

In the next lemma we show that if the tokens in a set K; enter a network N by
time ¢ and proceed according to time schedule Q;, and the tokens in the set X, enter
after ¢, then any tokens that enter after ¢ can only increase the number of tokens that
exit on any output of any balancer B as the result of Q;.

Lemma 3.4. Let t be a time instant, and S; = (K{,L1,Q;) and S; = (Ky UK3, Ly, 02)
be two timing schedules for a uniform counting network N, such that Ky N K; = 0,
LiCL, O gQ2 and Q2(T1,1)$t < Qz(Tz,l)fO?’ all tokens T\ € K, T, € K». IfB is
a balancer within layer g+ 1 of N, where 0<g<h, then by time t+g-c, the number
of tokens that traverse any of B’s outputs in S, is no smaller than the number of
tokens that traverse the same output of B in §.

Proof. By induction on g. For g = 0 the lemma follows trivially from the fact that
in S) and S, by time ¢ only the tokens in K; enter and they enter through the same
input balancers.

Assuming the lemma holds for g, we show it holds for g + 1. Consider a node B
within the layer g + 2. Since N is uniform, all of B’s inputs are connected to the
outputs of some balancers within the layer g+ 1. By the induction hypothesis, by time
t + gc, the number of tokens that exit on any of these outputs in S, is no smaller
than the number that exit on the same outputs in S;. Since it takes at most ¢, time
to traverse a wire from one layer to the next, by time ¢ + (g + 1)c; the number of
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tokens that enter any of the inputs of B in S, is no smaller than the number of tokens
entering the same inputs in Sj.

In any execution, the number of tokens exiting any of the outputs of a balancer is
deterministically established from the sum of the number of tokens that enter the inputs
of the balancer. Since Q) C (0, for any balancer, between time ¢+gc; and ¢+ (g+1)c;
there are at least as many tokens transitioning from its inputs to each of its outputs in
S>asin Sy, O

For the next two proofs, given a counting network of width w, we define g7 to be
the number of tokens that exit on each of the network outputs ¥; (0<i < w) once m
tokens enter and exit the network. We use the property of counting networks that g

w

is uniquely defined by the formulas Z[:_Ol g =m and 0<q" — g7 <1 for i < j [4].

Lemma 3.5. Let N be a uniform counting network of depth h and width w. If m
tokens enter N by time t, then by time t + h - ¢, the number of tokens that exit on
each output Y; is at least q'.

Proof. Let S; = (Ki,L;,0;) be a timing schedule with |Ki| = m and Q(7,1)<t for
T € K;. It takes at most /- c; time for a token to traverse the network. Therefore,
any of the m tokens that enter the network by time ¢ must exit the network by time
t' =t + h-cy. Since by the definition of S; no other tokens entered the network, it is
in a quiescent state and the number of tokens exiting on each output Y; is exactly ¢7.

Suppose additional tokens enter the network after time ¢. Let S, be the timing sched-
ule that describes an execution with additional tokens entering after time ¢. By Lemma
3.4 with g = A, for each output Y;, the new number of tokens that exit in S; is no
smaller than the number that exit in S, and is therefore at least ¢gf*. [

The following is our main theorem on the linearizability of uniform counting net-
works.

Theorem 3.6. If tokens T, and T, traverse a uniform counting network of depth
h during periods [ty,t1] and [t;,t3], respectively, in an execution in which t, + h -
(c2 —2c1) < tp, then Ty has a higher returned value than T.

Proof. Suppose a; is the number of tokens that exit by time ¢ on output ¥; for
0<i < w. We define r as follows:

r=max{i: 0<i < wAa; =max{q;: 0<j < w}},

i.e., r is the largest output index such that a, is the largest number of tokens that exit
on any output.

By Lemma 3.3, there are at least m = w(a, —1)+r+1 tokens that enter the network
no later than time ¢t = #; — k- ¢; (see Fig. 3), and 73 is among these tokens. Let K be
the set of these tokens.
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w(ar — 1) 4+ r -+ 1 tokens enter by ¢ and exit by ¢’

Token T} [ Token T, time
to t=ti—h-c t t2 ty—h-cth-co=t 13
t—t=co-h

Fig. 3. Illustration for Theorem 3.6.

By Lemma 3.5, by time ¢ =¢+h-c; =t —h-c1 +h-c; the tokens in K exit, and
for each output ¥; (0<i < w) the number of tokens that exit is at least g7".

From the fact that it takes at least /- c; to traverse the network and because f; + A -
cy—2-h-c; < tp, token T exits at time 526+ h-cy > t1j+h-c2—2-h-ci+h-c1 =
ti+h-c;—h-cy =1, This means that all tokens that enter by time ¢t = ¢ — k- c; exit
before time #;3. Thus, all of the tokens in K exit prior to the exit of token 7. Since
by time #; the number of tokens that exit each of the outputs ¥; exceeds the number
of tokens q7* needed to establish the step property using m tokens, token T returns a
higher number than any of the tokens in K and therefore higher than 73. [

The next result follows from the Definitions 2.3 and 2.4 of linearizability and
Theorem 3.6.

Corollary 3.7. Uniform counting networks are linearizable for timing schedules where
c; > 2-¢; if for any two tokens traversing the network their traversals either overlap
or they are separated by time t > h-(c; —2c1), where h is the depth of the network.

From the finish-start token time relationship in Theorem 3.6 we can establish the
following result about the start—start time relationship:

Corollary 3.8. If tokens Ty and T, traverse a uniform counting network of depth h
during periods [to, 1] and [, 13], respectively in an execution where ty+2h-(c2—c1) <
t,, then T, has a higher returned value than T).

Proof. From the definition of ¢; we conclude that #; <# + A - ¢;. By adding this
inequality and the inequality # + 24 - (c; — ¢1) < t, in the hypothesis, we obtain the
inequality #; + 4 - (c; — 2¢1) < ;. This is exactly the relationship between # and £,
which is required by Theorem 3.6 to ensure that 7> returns a higher value than 77. O

The next corollary also follows from Theorem 3.6:
Corollary 3.9. If tokens Ty and T, traverse a uniform counting network during dis-

joint successive time periods [ty,t1] and [t,,13], respectively (i.e., t; <), and ¢, <2¢
then T, returns a larger number than T.
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Proof. If c; <2c¢;, then k-(c;—2¢;)<0. By adding this inequality and the the inequality
t; < t, we again obtain the relationship between ¢; and ¢, that allows us to use Theorem
3.6 to ensure that 7, returns a higher value than 77. O

Together with the definition of linearizability, this leads to our main local lineariz-
ability criteria for uniform networks:

Corollary 3.10. Uniform counting networks are linearizable for any timing schedule
where ¢, <2 - cy.

This implies that Bitonic counting networks [4], Periodic counting networks [4], the
networks of [9, 18] are all linearizable for ¢; <2 - ¢;. It also implies that counting
and Diffracting trees [24] and the uniform trees of Busch and Mavronicolas [10] are
linearizable for ¢; <2 - ¢;.

We now consider a modification allowing to turn any uniform depth counting net-
work into a linearizable network given that ¢; <k - ¢, for some k£ >2.

Corollary 3.11. Given a uniform counting network of depth h, another uniform count-
ing network of depth [h-(k —1)| can be constructed so that it is linearizable for any
k>2 such that c; <k - cy.

Proof. Given the original network, we attach in front of each of its inputs a path of
length [A - (k — 2)| of l-input l-output “balancers” wired one after the other. The
tokens traversing such balancers simply proceed from one to the next. For any two
tokens that traverse the new network in a time-disjoint fashion, their traversals of the
original (sub)network are such that the second token enters it at least [A(k — 2)]c; =
h(cz/cy — 2)cy = h- ¢y — 2h - ¢) time after the first token exits. By Theorem 3.6, the
second token returns a higher value.[]

4. Limits on linearizability of trees and bitonic counters

We now show some limitations on the linearizability of Diffracting trees [24] and
Bitonic counting networks [4] by constructing execution scenarios under which they
exhibit non-linearizable behavior.

Theorem 4.1. Counting and Diffracting trees are not linearizable if ¢; > 2 - c).

Proof. Let s be the depth of the tree and let ¢ > 0 be such that ¢c; = (2 +¢):c¢;. We
consider an execution in which the first two tokens, 7y and Ti, enter the tree at the
same time ¢, (we visualize the tree on its side with its root to the left and the leaves on
the right). Without loss of generality, let Ty go up (corresponding to the root balancer
transition from 0 to 1) and 77 go down (the balancer transition from 1 back to 0), i.e.,
Ty precedes 7). After traversing the root, T proceeds at the slowest possible pace of
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one wire per ¢; time, while 7} proceeds at the fastest possible pace of one wire per
¢, time. Ty reaches the topmost leaf of the bottom subtree at time ¢, = ¢ + 4 - ¢, and
returns the value 1 (by the definition of the counting tree and c;).

Immediately after T)’s exit, a wave of 2% — 1 tokens enters the tree, say at time
h =18+ 6 > t;. We choose J to be such that 0 < é < & These tokens proceed at
the fastest possible pace of 1 wire per ¢; time. Of these tokens, 2*~! tokens go to the
upper subtree and the remaining 2! — 1 tokens go to the lower subtree.

Since the token T is slow, it reaches a leaf at time #4 = fo + % - ¢>. The second
wave of fast tokens reaches the leaves at time 3 = h +h-ci = tH1+ 6+ h - =
to+2h-ci+8=t+h-(ca—cre)+6=1ty+h-c; —crhe + 6. Since we chose § such
that 0 < & < &, the inequality can be further simplified to #3 < tg + % - c2 = t4. Thus
3 < t4 and these fast tokens reach the leaves ahead of 7j. Since we have 2%~ tokens
in addition to Tp traversing the top subtree, at least one token reaches the topmost leaf
of the tree and returns the value 0. This token traverses the counting tree completely
after 7 exits, but returns a smaller value. [

We now consider Bitonic networks.

Lemma 4.2. Let Ty be the first token to enter a Bitonic counting network. Suppose Ty
enters through input Xy and completely traverses the network alone. If subsequently
tokens Ty and T, enter the network in this order through Xy, then: (a) the balancer
that is attached to Xy is the only balancer that both T\ and T, pass through, (b) Tp
exits through output wire Yy, T\ through output wire Y| and T, through output wire
Y> (mod w).

Proof. By induction on the width w of the network: The base case is trivial for w = 2
with a single balancer and two counters (we only need to note that outputs y; and y,
are the same for this network).

Assuming the lemma holds for some width w>2, we prove that it holds for networks
of width 2w. The inductive step is depicted in Fig. 4, and the balancer and exit
labels below refer to that figure. We use the inductive construction of Bitonic counting
networks as in [4]. Bitonic[2w] is made of two Bitonic[w] networks, two Merger[w]

o u1,0 V1,0 - Yo
1 Bo u1,1 % v1,1 b Y1
u

Bitonic [w] 1.’2 D Merger; [w] : zz

V2,0

V2,1

Bitonica[w] Merger;[w]
T2w—} : Bitonic[2w

Fig. 4. Inductive step for Lemma 4.2.
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merging networks and an additional w balancers. Even-numbered outputs of Bitonic,[w]
are connected to the first w/2 inputs of Merger;[w] and odd-numbered outputs of
Bitonic,[w] are connected to the last w/2 inputs of Merger;[w]. The rest of the outputs
are similarly connected to Merger;[w]. The outputs of the two mergers are then shuffled
into a row of w balancers whose outputs are the outputs of Bitonic[2w].

By the inductive hypothesis for Bitonic,[w], token T, exits via output u;o, T via
w1 and 75 via u;, (note that for w = 2 the output u;p is the same as u#;,). By the
construction of Bitonic[2w], 7y and 7, enter Merger;[w] via its first balancer. Since
these are the only two tokens to enter Merger;{w] and since they traverse the merger
one after the other, 7p must exit via v19 and 7, via vy, else Bitonic[2w] will not
reach a quiescent state in the execution where 7j is the only token. Similarly, 7 exits
via v29 of Mergerz[w]. In the final row of balancers, Ty and T; traverse Bj, and T
traverses Bj.

To show (a) we observe that 71 and 7, may only traverse the same balancer inside
Bitonic;[w], and by the inductive hypothesis, By is the only such balancer.

To show (b), we observe that T, traverses the network alone and it reaches B first
and exits via Yy, and so T necessarily exits via Y. The only remaining token 7> exits
via ¥,. O

Theorem 4.3. Bitonic counting networks are not linearizable if ¢; > 2 - ¢y.

Proof. In the example in Section 1 we established that a network of width 2 consisting
of a single balancer and two counters is not linearizable, and it is easy to see that this
is so for any ¢, and ¢, such that ¢; > 2-¢;. Below we consider networks with w > 2.
We choose &,01,0, > 0 such that 6; + 5, < ¢, and we let ¢; =2 -¢| + &

Using the framework of Lemma 4.2, we deploy the three tokens 7y, 77, and 7,
according to the following scenario. Starting in the initial state, we let 7; enter via the
input Xy and completely traverse the network and exit via the output ¥, thus returning
the value 0. Following this, at some time ¢, token 7 also enters via Xy, and T enters
via Xo immediately behind 7 at time ¢ +0, for some ¢; > 0. We let 7| proceed at the
slowest possible pace of 1 wire per c; time, while 7> proceeds at the fastest possible
pace of 1 wire per ¢ time. This means that T exits at time ¢} = #; +2h-c; + he, and
T, exits at time #) =t; + & + h - cy.

By Lemma 4.2, the paths that 77 and T, traverse have no balancers in common,
with the exception of the first balancer in their paths. Thus, in the execution fragment
that follows and does not include these tokens’ traversal of the first balancer, 7} is not
influenced by T, and still proceeds to the exit Y;.

As soon as T, exits via Y, and obtains the counter value 2, w fast tokens enter the
network at time #; = ¢, + &, for some J; > 0. Regardless of these tokens’ paths, they
exit the network at time #; = #3 + k- ¢;. Since d; + d2 < &, these tokens exit before
the slow token 7,.

During this execution, the network is traversed by w + 3 tokens. If no other tokens
enter the network, then each of outputs Yo, Y1, and Y> has each two tokens that exit
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Bitonic; [w/2] Merger; [w/2)

in . out

Bitonica[w/2] - Merger2[w/2]
B]

Fig. 5. Inductive construction of Bitonic[w] for Theorem 4.4 (wires are omitted).

through it, and outputs ¥3,...,Y¥,_; each have one. Thus one of the fast tokens exits
via Y7 and because it is faster than T, it obtains the counter value 1, while 7 obtains
the value 1 + w. As a result the fast token obtains a lower value than 75. O

As we will see in the experimental results Section 5, when the ratio c,/c; increases
beyond 2, the percentage of non-linearizable operations also increases. Below we show
that for Bitonic networks there can be a large fraction of tokens that exhibit non-
linearizable behavior for certain ratios of c;/ci:

Theorem 4.4. Bitonic counting networks are not linearizable if c; > 1(3+logw)-ci,
where w is the width of the network. Moreover, for such c, and c, there exists an
execution scenario with 3w/2 tokens such that w/2 tokens result in non-linearizable
operations.

Proof. The Bitonic counting network [4] of width w, Bitonic[w], has depth A =
%[logw - (logw + 1)]. The network consists of two stages (see Fig. 5). The first stage
includes two Bitonic[w/2] networks of depth A = & — logw connected in parallel to
the second stage that is the merging network of depth 4, = logw, Merger[w).

Merger[w] consists of a row of balancers connected to two Merger[w/2] mergers
(for details see [11]). Note that this inductive construction of the merger is different
from, but isomorphic to the construction in Fig. 4. The construction we use here yields
a clearer proof.

A non-linearizable schedule is constructed as follows: The first wave of w/2 tokens
enters Bitonic;[w/2] network at the same time and proceeds in lock step at some pace
to the exits of the first stage. The second wave of w/2 tokens enters the same network
immediately behind the first wave after a small delay é > 0.

As soon as the first wave enters Merger[w], it slows down to the slowest possible
pace of one wire per c; time. This wave proceeds to the Merger;[w/2] sub-component
of the merger after passing through the first row of balancers of Merger[w].

Similarly, the second wave of w/2 tokens proceeds to Merger,[w/2], except that it
proceeds at the fastest possible pace of one wire per ¢; time. As soon as the second
wave exits, a third wave enters Bitonic[w] as the first two waves.

The third wave of w/2 tokens proceeds in lock step at the fastest pace of one wire
per c; time to the exits. Therefore this wave exits through the first w/2 exits.
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It takes the first wave t; > hy - c; = ¢; - logw time to reach the exits. It takes the
second wave £, = hy - ¢] = ¢; - logw time to exit. It takes the third wave t3 = h-c; =
cr- %[logw-(log w+1)] time to traverse the entire network. Since ¢; > %(3 +logw)-cy,
we have that #; > f,+#;. Thus the third wave passes the first wave on the final wire out
and returns counter values that are all lower than those obtained by the second wave.
There are three waves of w/2 tokens out of which w/2 tokens are non-linearizable. [

We have shown specific scenarios in which the violations of local timing conditions
lead to non-linearizable executions in important classes of uniform counting networks.
The work of Mavronicolas et al. [20] shows how violations of timing conditions lead
to non-linearizability in general counting networks (see Section 6).

5. Empirical evaluation of linearizability

We evaluated the linearizability of counting networks on a simulated distributed-
shared-memory machine similar to the MIT Alewife of Agarwal et al. [1]. Alewife is a
large-scale multiprocessor that supports cache-coherent distributed shared memory and
user-level message-passing. The nodes communicate via messages on a two-dimensional
mesh network. A Communication and Memory Management Unit on each node holds
the cache tags and implements the memory coherence protocol by synthesizing mes-
sages to other nodes. Our experiments make use of the shared memory interface only.
To simulate the Alewife we used Proteus,> a multiprocessor simulator developed
by Brewer et al. [8]. Proteus simulates parallel code by multiplexing several parallel
threads on a single CPU. Each thread runs on its own virtual CPU with accompanying
local memory, cache and communications hardware, keeping track of how much time
is spent using each component. In order to facilitate fast simulations, Proteus does not
do complete hardware simulations. Instead, operations which are local (do not interact
with the parallel environment) are run uninterrupted on the simulating machine’s CPU
and memory. The amount of time used for local calculations is added to the time spent
performing (simulated) globally visible operations to derive each thread’s notion of the
current time. Proteus makes sure a thread can only see global events within the scope
of its local time.

5.1. Implementation and experimentation methodology

For our benchmarks, we implemented the Diffracting tree [24] and the Bitonic count-
ing network [4] in shared memory. Both types of data structures gave each simulated
processor with one of the two possible timing characteristics. The first kind allowed
the processors to traverse the network unimpeded. The second kind introduced a time
delay following the traversal of a balancer. This delay models the network delays or

3 Version 3.00, dated February 18, 1993.
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00 Reset(SharedCounter);
01 Array Totallncrements[l..n] init {0:1..n};

02 GreatestNumber := -1;

03 for all processors id = 1 ... n cobegin

04 while TotalIncrements[id] <= MaxIncrements do

05 old := GreatestNumber;

06 new := FetchklIncrement(SharedCounter);

07 TotalIncrements[id] := Totallncrement[id] + 1;
08 if new < old

09 then Nonlin := Nonlin + {i;

10 else GreatestNumber := max(new, GreatestNumber);
11 end if

12 end while

14 coend.

Fig. 6. Counter simulation main loop.

additional work that a processor may need to perform. We randomly designated a
fraction of the processors, all of whom were be subjected to such delays. We performed
two sets of experiments. In one set of experiments, the fraction F was 25%, in the
other F was 50%. For each set of experiments, the time delay is defined via a workload
variable W equal to 100,1000,10000, and 100000 wait cycles.

We ran the scenarios varying the number of processors from 4, 16, 64, 128, 256,
and up to 440 (this upper limit is due to the specifics of the hardware configuration
we used). The execution of each simulation proceeded until each processor performed
200 operations. This number was chosen because of the long simulation times for
large number of processors. (We also performed this test using 5,000 total operations).
The graphs plot the non-linearizability ratio, i.e. the percentage of non-linearizable
operations (see Definition 2.6) among all the operations during the execution.

Every balancer was implemented as a critical section protected by a Mellor-Crummey
and Scott (MCS) queue-lock [21] and, in the Diffracting tree, using a multi-prism
implementation [23]. This was done to reduce contention on the balancers which would
have attenuated the influence of the W-waiting periods on the c¢;/c; relation.

The pseudocode for the main component of the simulation, the operation of obtaining
the “next” counter value is given in Fig. 6. This code was executed by each simulated
process. SharedCounter is the concurrent counter implementation. In our simulations it
was either the Bitonic counting network or the Diffracting tree counter implementation.
The array TotalIncrements ensured that each processor performed MaxIncrements
operations. The private variable, old and new, were used to respectively remember
the previous value of the counter value obtained within the process, and to store the
new value. All other variables are the global simulator variables. That means that
all the processes could access them atomically at no cost. Nonlin is the number of
non-linearizable operations we observed.

A typical implementation of a shared-memory counter is shown in Fig. 7.
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type balancer is
begin
state: regular or Diffracting balancer state
next: array [0..d-1] of ptr to balancer
end

constants

width: global integer

input : global ptr to some input wire of a Bitonic network or binary tree
of balancers

1 function fetch&incr(): integer

2 begin

3 b:= input

4 while not leaf(b)

5 b := traverse-balancer(b)

6 endwhile

7 i := increment_counter_at_leaf(b)

8 return i * width + number_of_leaf (b)
9 end

Fig. 7. A Shared-Memory tree-based counter implementation

We present the empirical data by charting the non-linearizability ratio as the function
of the number of processors. In each of our experiments, we compute the average time
it takes for a processor to traverse a balancer and a wire when the workload W = 0. We
use this average as the approximation of ¢; in the presentation. Note that using such
average is conservative — e.g., using the minimum value for such traversal would cause
an increase in c¢;/c; ratio and thus “excuse” or “explain” more of the non-linearizable
operations observed in some scenarios. Using this definition of ¢;, we compute ¢, as
(Average-c, + Workload)/ Average-c; = | + Workload/Average-c,.

The absolute values of the average c¢; vary between the Bitonic network and the
Diffracting tree due to the difference in the processing time associated with the prism
in the Diffracting tree implementation. For ease of presentation, all data is normalized
with respect to the average c| in the execution. To illustrate the ratio c;/c; (c; divided
by ¢;) we present the normalized c¢; and also the normalized standard deviation for ¢;
in the form Standard-deviation/ Average-c,.

5.2. Presentation and assessment of empirical data

The main results are presented in Fig. 8 for the Diffracting tree and Fig. 9 for the
Bitonic network. The charts show the non-linearizability ratio as the function of the
number of processors P. Each figure contains two charts, one showing the results with
25% delayed processors and the other with 50% delayed processors.
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Fig. 8. Non-linearizability ratios for the Diffracting tree.

In Tables 1 and 2 we give the normalized ¢, for the Diffracting tree and the Bitonic
network respectively. In Tables 3 and 4 we give the respective normalized standard
deviations for c;.

Using the theoretical results and empirical data we now discuss the effects of timing,
network depth, concurrency, and asynchrony and randomization on the linearizability
of the simulated execution scenarios.

The effects of timing As can be seen, for the lower delay workloads (W = 100
and W = 1000), the normalized ¢, is less then or close to 2, and no linearizability
violations occur for 16 or more processors. For these workloads some non-linearizability
is observed for small number of processors, i.e., four. Note that for the Bitonic network,
the violations occur for these values of W when the normalized ¢, is above 5. Even
so, the non-linearizability ratio here is less than 1%.

For higher delay workloads (W = 10000 and W = 100000), the normalized c; is
well above 2 and for the Bitonic network it reaches several hundreds (see Tables 1
and 2). As expected, we observe significant increase in the ratio of non-linearizable
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Fig. 9. Non-linearizability ratios for the Bitonic network.

Table 1
Normalized ¢ in the simulations of Diffracting trees

P: 440 256 128 64 16 4 440 256 128 64 16 4
w 25% of processes delayed 50% of processes delayed
100 1.10  1.10 1.09 1.08 1.08 1.08 1.10 1.10 1.09 1.08 1.08 1.08
1000 202 201 1.88 1.77 1.77 1.73 2.04 200 1.86 1.75 1.76 1.72

10000 1128 1078 943 843 876 835 1116 10.16 881 809 849 846
100000 105.54 9872 8448 7461 7830 7434 10351 90.12 7644 70.14 7638 8l1.14

operations. For the Diffracting tree the ratios peak at about 26% for 16 processors 50%
of which incur delays of W = 100000. For the Bitonic network the peak ratio is about
12% for the same parameters. Substantially lower peak non-linearizable ratios, of 10%
and 5% respectively, are observed for F = 25% and 16 processors.
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Table 2
Normalized ¢; in the simulations of Bitonic networks.
p: 440 256 128 64 16 4 440 256 128 64 16 4
w 25% of processes delayed 50% of processes delayed
100 1.10 1.14 1.18 1.22 1.34 1.40 1.10 1.14 1.19 1.22 1.34 1.40

1000 202 238 283 319 444 502 208 243 289 331 451 5.13
10000 1237 1629 1970 2299 3531 4142 1390 1753 20.69 24.16 36.15 4349
100000 120.78 159.63 191.96 224.29 345.52 40526 148.00 179.39 205.60 240.85 357.78 431.28

;‘::ﬁza::d deviation normalized for average c1 for the simulations of Diffracting trees

P: 440 256 128 64 16 4 440 256 128 64 16 4
W 25% of processes delayed 50% of processes delayed
100 065 055 060 063 069 070 073 056 061 063 069 071

1000 059 056 061 064 070 072 058 057 062 065 070 072
10000 059 057 061 064 069 071 058 060 062 064 070 071
100000 056 057 061 064 069 072 057 059 062 064 070 0.69

E:llga‘:d deviation normalized for average c; for the simulations of Bitonic networks

P: 440 256 128 64 16 4 440 256 128 64 16 4
W 25% of processes delayed 50% of processes delayed
100 186 048 047 047 033 033 043 048 046 046 032 033
1000 193 051 049 046 030 034 048 052 049 044 027 033

10000 200 031 047 046 030 035 065 056 048 044 028 034
100000 229 049 047 045 029 034 058 051 046 043 027 034

It is surprising is that despite the high ¢, the non-linearizable token ratio falls sharply
as the number of processors is increased. We examine some of the reasons for this
phenomena.

The effects of network depth The Bitonic networks have substantially greater depth
than Diffracting trees of the same width. This results in many more operations over-
lapping in the Bitonic networks given identical token arrival schedules. With this dif-
ferentiating factor, we expect and indeed observe substantially fewer linearizability
violations in the Bitonic network simulations as compared to the Diffracting tree simu-
lations. This padding effect is also suggested by Theorem 3.6 that enables, for a known
cafcr > 2, the construction of a linearizable networks by extending the depth of any
known counting network.

The effects of concurrency There are simple scenarios that, using as few processors
as 2, produce high levels of non-linearizability. Recall our example in Section 1, in
which three tokens caused one non-linearizable operation. Let processor Py be the
owner of the token 7; and processor P; be the owner of tokens 77 and T>. If the
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token Tj is very slow, so that it does not exit the network for a long time, then any
sequence of tokens 7; generated by P, will have each of its even-numbered tokens
T,; return lower counter values than its odd-numbered tokens 7,;_; for j > 0. This is
because the even- and odd-numbered tokens traverse the network sequentially. If there
were three processors, such that T5; is concurrent with 75;_1, then the there would be
no nonlinearizable operations.

Although far from a complete characterization, the above observation of linearizabil-
ity versus concurrency provides intuition for why there is a dramatic reduction, at high
concurrency, in the number of non-linearizable operations for both the Diffracting tree
and the Bitonic network.

Of course the counting network approach is optimized for high concurrency, so it
is not surprising that deploying counting networks in low-concurrency setting has its
drawbacks. For few processors, there are more efficient and linearizable solutions [14].

The effects of asynchrony and randomization We also tested the linearizability of
our implementation when either all or no tokens were delayed, i.e., the cases of ' = 0%
and F = 100%, and/or when the additional delays were eliminated, i.e., % = 0. In none
of these simulation were there any non-linearizable operations. Although not surprising
— these scenarios create timing schedules close to those of an implementation that is
synchronous — we performed these simulations for completeness.

In another simulation scenario we forced every token to wait a random number
of cycles between 0 and W. Again, the simulation was observed to be completely
linearizable. Randomization apparently has attenuating effect that prevents consistent
accumulation of timing discrepancies by faster or slower tokens.

6. Conclusions and discussion

Our paper studies the effects of timing on the linearizability of uniform counting
networks. Our results were recently extended and generalized by Mavronicolas et al.
[20], to include non-uniform networks. For a given network G, let d be the maximum
path length from inputs to outputs, and s be the shortest such path. They show that a
counting network is linearizable if ¢»/c; <2s/d (for uniform networks s = d, and the
linearizability requirement reduces to the c,/cy <2 shown in Section 3). Furthermore,
they introduce the powerful notion of an influence radius of a graph G, iradg, as the
length of the maximum common subpath of any two maximal paths from an internal
balancer to any two outputs, and show that a network is not linearizable if c;/c; >
dfiradg + 1 (for uniform networks iradg = d, and linearizability is violated when
cy/cy > 2 as we show here).

We have considered local timing characteristics at balancers. The linearizablility
question can also be posed in terms of global timing characteristics, i.e., in terms of the
minimum and maximum time it takes a token to traverse the entire network and without
the restriction on the time to traverse each individual balancer. Our examination of
Counting trees and Bitonic networks shows that violations of required local conditions
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lead to non-linearizable executions (this is also shown for general networks in [20]).
In these executions we use tokens that traverse a network at the fastest and the slowest
possible paces. The fast tokens “bypass” the slow tokens only at the exits. Therefore
even if the required conditions are global, our scenarios still yield non-linearizable
executions.

There are many other variations of the timing model which one may investigate.
However, we feel the most interesting direction to follow at this time is the character-
ization of applications that do not have an absolute requirement for linearizability, that
is, ones requiring that only a given fraction of the operations be linearizable.
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