Theoretical
Computer Science

AN J}

SEVIER Theoretical Computer Science 149 (1995) 151-178

Hybrid atomicity for nested transactions

Alan Fekete®!, Nancy Lynch®*?, William E. Weihl ®3

& University of Sydney, Sydney, Australia
b MIT Laboratory for Computer Science, 545 Technology Square Cambridge, MA 02139, USA

Abstract

This paper defines the notion of hybrid atomicity for nested transaction systems, and presents
and verifies an algorithm providing this property. Hybrid atomicity is a modular property; it
allows the correctness of a system to be deduced from the fact that each object is implemented to
have the property. It allows more concurrency than dynamic atomicity, by assigning timestamps
to transactions at commit. The Avalon system provides exactly this facility. The results in this
paper extend earlier work using the same model for locking and timestamp-based algorithms,
providing further evidence for the generality of the approach. However, there are some subtle
differences with the definitions used in earlier work, showing the difficulties of developing precise
general models for nested transaction systems.

1. Introduction

Two-phase locking [4] is probably the most widely used method of concurrency
control in transaction systems today. In recent years much research has focused on
extending concurrency control methods to take the semantics of the data into ac-
count, thus permitting more concurrency by allowing transactions executing commuting
operations to run concurrently (e.g., see [8, 13, 16, 15, 14]). Such “logical locking” can
be important to avoid concurrency bottlenecks that arise at frequently updated data
items (or “hot spots™). For some applications, however, the requirement that non-
commuting operations must conflict can hurt performance by restricting concurrency.
Recently, Herlihy and Weihl proposed a new technique, based on assigning timestamps

* Corresponding author,

I A preliminary version of this paper appeared in the Proceedings of the International Conference on Database
Theory, 1992.

% The second author was supported in part by the National Science Foundation under Grant CCR-86-11442,
in part by the Defence Advanced Research Projects Agency (DARPA) under Contract N00014-89-J-1988,
and in part by the Office of Naval Research under Contracts N00014-85-0168 and N00014-91-1046.

3 The third author was supported in part by the National Science Foundation under Grant CCR-8716884, and
in part by the Defence Advanced Research Projects Agency (DARPA) under Contract NO0O14-89-J-1988.
He was also supported in part by an equipment grant from Digital Equipment Corporation.

0304-3975/95/509.50 © 1995 —Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00029-1

152 A. Fekete et al | Theoretical Computer Science 149 (1995) 151-178

to transactions as they commit and propagating the timestamp information to objects,
that allows some of the conflicts imposed by commutativity to be eliminated [6, 7).
In this paper we extend their algorithm to accommodate nested transactions, using the
framework developed in [5]. Our results show the generality of the framework used
here, and also point out the subtleties involved both in defining algorithms for nested
transactions and in proving them correct.

Locking algorithms serialize transactions dynamically in the order in which they
commit. However, detailed information about the commit order is not usually avail-
able to the concurrency control algorithm, particularly in a distributed system; instead,
locking makes conservative assumptions about the commit order based on when locks
are acquired and released. Thus, commutativity-based algorithms require an operation
executed by a transaction to commute with all operations previously executed by other
transactions that are still active; this ensures that regardless of the order in which they
commit, their operations will be serializable in that order. As Herlihy and Weihl dis-
cuss, however, commutativity-based algorithms allow very little concurrency for some
applications. For example, the enqueue and dequeue operations on a FIFO queue do
not commute, so commutativity-based locking reduces to exclusive locking, preventing
one transaction from accessing the queue until the previous one has committed.

Herlihy and Weihl describe hybrid techniques that combine aspects of timestamp-
based and locking algorithms. Their algorithm relies on timestamps generated as trans-
actions commit to capture the commit order. Objects learn the exact commit order
by being told the timestamps for committed transactions. As discussed in more detail
below, this information can be used to relax the constraints imposed by commutativity-
based locking by basing the conflict relations on serial dependency relations, rather than
on commutativity. For example, the enqueue operations on a FIFO queue do not need
to depend on each other, so transactions executing enqueue operations can be allowed
to run concurrently. The apparent serialization order of the enqueues can be sorted out
based on the timestamps generated when transactions commit, so the order of items in
the queue can be determined for subsequent dequeues.

In this paper, we show how Herlihy and Weihl’s algorithm can be extended to
accommodate nested transactions. Nested transactions have been explored in a number
of projects (e.g., [12,11,9,3,1]) for building reliable distributed systems. In a nested
transaction system, a transaction can have subtransactions, each of which appears to
run atomically within the transaction. Thus, concurrent subtransactions are serializable -
they appear to run in some serial order—and recoverable —they appear to execute either
completely or not at all. In addition, if a subtransaction aborts, its parent is informed of
the abort and can choose to try some alternative action (e.g., in a replicated system).

We give a precise, formal description of the extended algorithm, together with a
rigorous correctness proof. We use the framework presented in [5] as a basis for
this work. This framework provides a rigorous foundation for nested transaction sys-
tems based on a formal operational model. Nested transactions introduce a number of
subtleties, concerning the precise handling of concurrent subtransactions and of aborts,
that require a careful rigorous treatment.

A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178 153

Our presentation parallels our earlier work on locking algorithms. We describe a
system consisting of transactions plus objects, together with a controller that mediates
communication between the transactions and the objects. We use the general definition
of correctness from our previous work, and define a local property of objects, called
hybrid atomicity, that is sufficient to guarantee global correctness.® (That is, if each
object in a system is hybrid atomic, the system as a whole is correct.) Hybrid atomicity
captures the property of an individual object that says that it serializes transactions in
the commit order provided to the object by the timestamps generated at commit. Then
we show how to extend Herlihy and Weihl’s algorithm to handle nested transactions,
and prove that it ensures hybrid atomicity.

Introducing a local property such as hybrid atomicity affords important modularity.
Each object can be implemented independently, and as long as each is hybrid atomic,
the entire system will be correct. Simple concurrency control techniques (e.g., exclusive
locking or read—write locking) can be used where the need for concurrency is small,
and more complex techniques (e.g., the algorithm described in this paper) can be
used in the (usually few) cases where more concurrency is needed. Hybrid atomicity
captures the properties of the interactions among objects that are essential for global
correctness, in particular, how they agree on a serialization order for transactions.

The Avalon system [3] (built on top of Camelot) has adopted hybrid atomicity for
nested transactions as the basis of its operation. The tid or transaction identifier gener-
ated by the system has a comparison operation that indicates which of two transactions
committed first. This information is just what is needed by our algorithm, and thus our
algorithm could be used in the Avalon system.

The remainder of this paper is organized as follows. First, in Section 2 we define
the model appropriate for a system assigning timestamps at commit time; we also
define hybrid atomicity. In Section 3 we present an algorithm that is hybrid atomic,
and we verify this. Finally, we conclude with a discussion and some suggestions for
further work. In an Appendix, we summarize the earlier work of ours that provides the
framework for this paper.

2. Hybrid atomicity

The development in this section closely parallels those in [5] and [2]. In our
presentation we concentrate on those aspects that are different from the previous papers.
2.1. Hybrid systems

This section defines the system decomposition appropriate for describing hybrid al-
gorithms. Such algorithms are formulated as instances of hybrid systems, which are
composed of transaction automata, hybrid object automata and a hybrid controller.
The transaction automata represent user-written code; they are just the same as in a

4 Weihl defined several local properties for single-level transaction systems [16, 15]; the local property defined
here generalizes one of those to nested transaction systems.

154 A. Fekete et al. [Theoretical Computer Science 149 (1995) 151-178

serial system. (See the appendix for a description of serial systems and the definition of
correctness based on them.) Each hybrid object automaton encapsulates both data and
concurrency control information that is maintained for one object; this might include
multiple versions, locks and/or log entries. One can think of this automaton as a re-
source manager. The hybrid controller represents the transaction processing monitor; it
acts as a communication medium, passing requests between the other components. As
well, the hybrid controller is responsible for making the decision to commit or abort
each transaction, and it generates the timestamps that are provided to the concurrency
control algorithms.

Throughout, we use a totally ordered set & of timestamps. In our development,
we will not actually need the set & to be totally ordered—it will be enough that the
timestamps assigned to sibling transactions be ordered with respect to each other. How-
ever, for simplicity we assume the total ordering. A natural choice for & is the set of
positive integers, or more realistically, the integers less than some (extremely large)
maximum.

2.1.1. Hybrid object automata

A hybrid object automaton Hy for an object name X is an automaton with the
following actions, which define its interface to its environment.
Input:

CREATE(T), for T an access to X

INFORM_COMMIT_AT(X)OK(T,p), for T # To, p € #

INFORM_ABORT _AT(X)OF(T), for T # T,

Output:

REQUEST_COMMIT(T,v), for T an access to X and v a value for T

In addition, Hy may have an arbitrary set of internal actions.

The interface of a hybrid object automaton Hy has input actions to model the re-
ceipt of a request® for data access (CREATE), and receipt of information about the
completion of transactions (INFORM_COMMIT and INFORM_ABORT). There are
output actions to model the resource sending a response for a requested data access
(REQUEST_COMMIT). The interface of a hybrid object automaton Hy is similar to
that of a generic object Gy, as defined in [S]. It differs in that explicit timestamp
information is included in all INFORM_COMMIT actions. It is also similar to that of
a pseudotime object (as defined in [2]) in that the object receives timestamp informa-
tion for some transactions. However, hybrid objects differ from pseudotime objects in
that the timestamp information is included in the INFORM_COMMIT actions rather
than in separate INFORM_TIME actions; thus, timestamp information arrives only for
transactions that have committed. Also, hybrid objects receive timestamp information
for arbitrary transactions, not just for accesses to X.

3 We assume that the transaction name encodes all relevant information about the access such as its position
in the transaction tree or any arguments that must be passed to the code (e.g. the new value for an update).

A. Fekete et al. [Theoretical Computer Science 149 (1995) 151-178 155

Definition (Hybrid object well-formedness). A hybrid object automaton Hy is required
to preserve hybrid object well-formedness, defined as follows. A sequence f of actions
of Hy is said to be hybrid object well-formed for X provided that the following
conditions hold.

(1) There is at most one CREATE(T) event in § for any access T.

(2) There is at most one REQUEST_COMMIT event in § for any access 7.

(3) If there is a REQUEST_COMMIT event for access 7 in f, then there is a
preceding CREATE(T) event in S.

(4) There is no transaction T for which there are two different timestamps, p and p/,
such that INFORM_COMMIT AT(X)OF(T,p) and INFORM_COMMIT_AT(X)OF
(T, p") both occur in f.

(5) There is no timestamp p for which there are two different transactions, T
and 7', such that T and 7’ are siblings and INFORM_COMMIT_AT(X)OF(T,p) and
INFORM_COMMIT_AT(X)OE(T’, p) both occur in B.

(6) There is no transaction 7' for which both an INFORM_COMMIT event and an
INFORM_ABORT event at X for T occur in .

(7) If an INFORM_COMMIT event occurs at X for 7 in f§ and T is an access to
X, then there is a preceding REQUEST_.COMMIT event for T in f.

This definition reflects some obvious properties one would expect for the activity of
a resource manager in a complete system. The definition includes all the constraints
cotresponding to those in the definition of generic object well-formedness in [S]. In
addition, there are restrictions on the timestamps supplied, similar to those in the
definition of pseudotime object well-formedness in [2]. However, notice that the same
timestamp may be assigned to different transactions, as long as they are not siblings.

2.1.2. Hybrid controller

There is a single hybrid controller for cach system type that acts as a communica-
tion medium. For example, it receives requests for subtransaction activity
(REQUEST_CREATE) from transaction automata, and later, the activity begins
(CREATE) at another transaction or at an object. The hybrid controller behaves much
the same as the generic controller defined in [5]. The main difference is that, when
it commits a transaction, it simultaneously assigns a timestamp to that transaction;
subsequently, it passes that timestamp to the hybrid objects in INFORM_COMMIT
actions. The only constraint on the assignment of timestamps is that they get assigned
to siblings in increasing order.

The assignment of timestamps is somewhat different from the assignment of pseudo-
times that occurs in the pseudotime controller of [2]. In a hybrid system, individual
timestamps are assigned to transactions, whereas in a distributed pseudotime system,
intervals of pseudotime are assigned. Also, in a hybrid system, the timestamp for a
transaction is chosen when the transaction commits, whereas in a distributed pseudotime
system, the pseudotime interval for a transaction is chosen before the transaction starts
executing.

156 A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178

The automaton given below is highly nondeterministic, in particular because each
timestamp can be chosen arbitrarily, subject to the constraint that it is greater than the
timestamps of all previously committed siblings. Actual implementations will restrict
the nondeterminism by choosing timestamps in a controlled way. One simple method in
a centralized system is to assign to each transaction the value of the clock at the instant
the transaction commits. In this case, each transaction’s timestamp is greater than that
of all previously committed transactions, instead of merely the committed siblings as
required. Another implementation can be obtained by assigning the timestamp i to a
transaction if it is the ith child of its parent that commits.

The hybrid controller has the following actions, which define its interface to the
transactions and hybrid objects.

Input:

REQUEST.CREATE(T), T # T,

REQUEST_.COMMIT(T,v), v a value for T
Output:

CREATE(T)

COMMIT(T), T # Ty

ABORT(T), T # Ty

REPORT_COMMIT(Tv), T # Ty

REPORT_ABORT(T), T # T,

INFORM_COMMIT _AT(XYOF(T,p), T £ Ty, p€ 2

INFORM_ABORT_AT(X)OF(T), T # Ty

Each state s of the hybrid controller consists of the following components:
s.create_requested, s.created, s.commit_requested, s.committed, s.aborted and
s.reported, and s.time. The set s.commit_requested is a set of operations ((transac-
tion, value) pairs), s.time is a partial function from 7 to 2, and the others are sets
of transactions. All are empty in the start state except for create_requested, which is
{To}. The first six components are the same as in the generic controller of [5]. As a
convenience, we write s.completed = s.committed U s.aborted. The transitions of the
hybrid controller are as follows.

REQUEST_CREATE(T) REPORT_-COMMIT(T ,v)
Effect: Precondition:
s.create_requested T € s'.committed
= ¢ .create_requested U {T} (T, v) € 5’ .commit_requested
T ¢ s’ .reported
REQUEST_.COMMIT(7 ,v) Effect:
Effect: s.reported = ' .reported U {T}

s.commit _requested
= s’ .commit _requested U {(T,v)} REPORT_ABORT(T)
Precondition:

CREATE(T) T € s’ .aborted
Precondition: T & s'.reported
T € s’ create_requested — s’ .created Effect:
Effect: s.reported = s’ .reported U {T}

s.created = s’ .created U {T}

A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178 157

COMMIT(T) INFORM_COMMIT_AT(X)OF(T, p)
Precondition: Precondition:
(T,v) € s'.commit_requested for some v T € s’ .committed
T & s’ .completed s’ time(T) =p

p > s'.time(T') A COORT
for every T’ € siblings(T) N 5" .committed INFORM. ‘B_ORT‘A (X)OF(T)
Effect: Precondition:

/
s.committed = s'.committed U {T} T € s'.aborted

s.time(T)=p
ABORT(T)
Precondition:
T € s’ .create_requested — s'.completed
Effect:

s.aborted = s' aborted U {T}

Notice that these are identical to those of the generic controller from [5] except that
the COMMIT(T) action chooses a timestamp p and records it as s.time(7T), and the
INFORM_COMMIT action includes the appropriate timestamp.

2.1.3. Hybrid systems

A hybrid system of a given system type is the composition of a strongly compatible
set of automata. For each nonaccess transaction name 7 there is a transaction automaton
A7 for T, the same automaton as in the serial system. For each object name X there is a
hybrid object automaton Hy for X. Finally, there is the hybrid controller automaton for
the system type. The external actions of a hybrid system are called hybrid actions, and
the executions, schedules and behaviors of a hybrid system are called hybrid executions,
hybrid schedules and hybrid behaviors, respectively. We have the following result: If f§
is a hybrid behavior, then for every transaction name 7, the projection §|T is transaction
well-formed for 7, and for every object name X, the projection S|Hy is hybrid object
well-formed for X. (This follows from the definition of the hybrid controlier.)

2.2. Hybrid atomicity

Now hybrid atomicity is defined. Informally, this is a property of an automaton that
says that no matter what hybrid system the automaton is placed in, the responses it gives
to accesses are appropriate for a serialization order that is the order in which siblings
complete. The definition is almost the same as the definition of dynamic atomicity in
[5] but it is based on hybrid systems instead of generic systems. It is also similar to
static atomicity defined in [2], but the order used is the completion order.

Let Hy be a hybrid object automaton for object name X. Say that Hy is hybrid
atomic for a given system type if for all hybrid systems & of the given type in which
Hy is used as the hybrid object automaton for object name X, the following is true. Let
B be a finite behavior of ¥, R = completion(f§) and T a transaction name that is not
an orphan® in B. Then view(serial(f), T, R, X) is a serial behavior of Sy.” Informally,

6 A transaction 7 is an orphan in f if ABORT(U) appears in § for some ancestor U of 7.
7 See the appendix for definitions of the symbols used here.

158 A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178

this says that Hy ensures that the operations done by the transactions visible to 7' is
consistent with serializing them in the order in which they commit, regardiess of the
system of which Hy is a part.

The following theorem is an direct consequence of Theorem A.l in the appendix; it
says that hybrid atomicity is a sufficient local condition to guarantee global correctness.

Theorem 2.1 (Hybrid Atomicity Theorem). Let & be a hybrid system in which all
hybrid objects are hybrid atomic. Let B be a finite behavior of ¥. Then [is serially
correct for every non-orphan transaction name.

2.3. Local hybrid atomicity

We now give a local version of hybrid atomicity. This is similar to the definition
above (and it will be shown to be a sufficient condition for hybrid atomicity), but it
deals only with well-formed behaviors of the automaton itself, rather than consider-
ing all possible systems in which the automaton can be placed. The development is
analogous to that for local dynamic atomicity in [5], but includes some significant
technical changes, needed to allow us to prove that the algorithm of Section 3 is
correct.

Definition (Local visibility). We need to have local forms of the concepts used to
define hybrid atomicity, such as orphan transactions, visibility, and the completion
order. In each case, we try to capture much of the original concept while referring
only to the behavior of Hy itself. We begin by defining local visibility and local-
completion exactly as in [5]. That is, if Hy is a hybrid object automaton for object
name X, and f is a sequence of external actions of Hy, then T is locally visible at
X to T’ in B if B contains an INFORM_COMMIT_AT(X)OF(U,p) event for every
U in ancestors(T) — ancestors(T"); local-completion(f) is the binary relation on ac-
cesses to X where (U,U’) € local-completion(f) if and only if U # U’, B contains
REQUEST_COMMIT events for both U and U’, and U is locally visible at X to U’ in
f’, where f’ is the longest prefix of f§ not containing the given REQUEST_.COMMIT
event for U’.

Definition (Local orphan). In this paper we will use a different notion of local orphans
from that in (5, 2]. The prior definition designated a transaction 7' as a local orphan
exactly if an INFORM_ABORT appears for an ancestor of 7. The new definition
includes additional conditions that imply that a transaction is an orphan. For example,
it can be deduced that an access 7’ to object X is an orphan provided that 77 is
created and that an INFORM_COMMIT event occurs for an ancestor of 7' without
any preceding REQUEST_COMMIT for T’. Moreover, if such an access 77 is locally
visible to any transaction 7, then it can also be deduced that T is an orphan.

More formally, if f is a sequence of external actions of Hy, then we define an
access T’ to object X to be excluded in B provided that B contains CREATE(7”) and
also contains an INFORM_COMMIT event for an ancestor of 7’ with no preceding

A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178 159

REQUEST_COMMIT event for 7’. Then we define a transaction name T to be a local
orphan in f provided that cither an INFORM_ABORT event occurs in f§ for some
ancestor of 7, or there is some excluded access to X that is locally visible to T.

The relationship between these local definitions (applied to a projection) and their
corresponding global versions is expressed in the following result.

Lemma 2.2. Let i be a behavior of a hybrid system that contains hybrid object
automaton Hx. If T is locally visible at X to T' in B|Hy then T is visible to T' in
B. Similarly, if T is a local orphan at X in B|Hy then T is an orphan in f.

The following lemma follows easily by considering the two cases of the definition
of a local orphan.

Lemma 2.3. Let Hy be a hybrid object automaton for X. Let § be a hybrid object
well-formed sequence of external actions of Hy. If T' is a local orphan in and T’
is locally visible to T in B, then T is a local orphan in .

Definition (Local-timestamp order). We define another binary relation, local-timestamp
(B), on accesses to X. Namely,(7,7") €local-timestamp(f) if and only if T and 7’
are distinct accesses to X, U and U’ are sibling transactions that are ancestors of T
and 7', respectively, f§ contains an INFORM_COMMIT_AT(X)OF(U, p) event, and 8
contains an INFORM_COMMIT_AT(X)OF(U’, p’) event, where p < p’. This is the
crucial aspect of this work, since the local-completion order only reflects facts about
the completion order that can be deduced from the order in which accesses occur. In
contrast, the local-timestamp order captures facts about the completion order that are
deducible from the timestamps assigned when a transaction commits, and passed to
Hy in the INFORM_COMMIT action. Notice the difference between this order and
the order local-pseudotime-order(f) defined in [2], where the order was based on the
timestamps of the accesses, rather than on the timestamps of the sibling ancestors of
the accesses. The correctness of these deductions is expressed in the following lemma.

Lemma 2.4. Let § be a behavior of a hybrid system in which hybrid object automaton
Hy is associated with X, and let R = completion(f). Let T and T' be accesses to X.
If (T, T") € local-completion(B|Hy) and T’ is not an orphan in B, then (T, T') € Ryuns.
If (T, T") € local-timestamp(B|Hy), then (I,T") € Ryans.

Before giving our definition of local hybrid atomicity, one additional technical notion
is needed. Namely, define a sequence ¢ of operations of X to be transaction-respecting
provided that for every transaction name 7, all the operations for descendants of T
appear consecutively in . Notice that if a sequence of operations is totally ordered by
Rirans for any sibling order R, then the sequence is transaction-respecting. In particular,
if B is a hybrid behavior, T is a transaction name that is not an orphan in f§, R =
completion(f3), and X is an object name, then view(f, T, R, X') is perform(L) where

160 A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178

is transaction-respecting, since it is totally ordered by Riwans. Thus by only considering
transaction-respecting orderings in the definition of local-views below, rather than all
orderings consistent with local information, as we did in [5], we ensure that the concept
of local hybrid atomicity is a closer approximation to the concept of hybrid atomicity.
Thus, a wider class of correct algorithms can be verified using the definitions of this
section than would have been the case if the definition of local-views did not include
the restriction to transaction-respecting orderings. In particular, the algorithm that we
present in Section 3 can be proved to be locally hybrid atomic using the definition as
given in this section.

Suppose that B is a finite hybrid object well-formed sequence of external actions of
Hy and T is a transaction name. Let local-views(f, T) be the set of sequences defined
as follows. Let Z be the set of operations occurring in § whose transactions are locally
visible at X to T in B. Then the elements of local-views(f, T) are the sequences of the
form perform(&), where ¢ is a transaction-respecting total ordering of Z in an order
consistent with both the partial orders local-completion(f) and local-timestamp(f8) on
the transaction components.

We say that hybrid object automaton Hy for object name X is locally hybrid atomic
if whenever f is a finite hybrid object well-formed behavior of Hy, and 7 is a transac-
tion name that is not a local orphan at X in f, then every sequence that is an element
of the set local-views(f, T) is a finite behavior of Sx.

The main result of this section, Theorem 2.5, says that local hybrid atomicity is a
sufficient condition for hybrid atomicity.

Theorem 2.5. If Hy is a hybrid object automaton for object name X that is locally
hybrid atomic then Hy is hybrid atomic.

Proof. Let .%¥ be a hybrid system in which Hy occurs. Let § be a finite behavior
of &, R = completion(f) and T a transaction name that is not an orphan in . The
proof must establish that view(serial(B), T,R,X) is a behavior of Sy. By definition,
view(serial(B), T, R, X) = perform(&), where ¢ is the sequence of operations occurring
in B whose transactions are visible to T in f, arranged in the order given by Ryqns on
the transaction components.

Let y be a finite sequence of actions consisting of exactly one INFORM_COMMIT.
AT(X)OF(U) for each COMMIT(U) that occurs in f. Then By is a behavior of
the system &, since each action in y is an enabled output action of the hybrid
controller. Then fy|Hy 1is a behavior of Hy, and it is hybrid object
well-formed.

Since INFORM_COMMIT_AT(X)OF(U) occurs in fy|Hy if and only if COMMIT
(U) occurs in B, an access T’ to X is visible to 7 in f if and only if it is locally visible
at X to T in By|Hyx. Therefore, the same operations occur in view(serial(f), T, R, X)
and in any sequence in local-views(fy|Hx,T). To show that view(serial(f),T,R,X) €
local — views(By|Hy, T), the proof must show that the order of operations in the first
sequence is among the orders considered in the latter set of sequences.

A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178 161

If 7" is any access that is locally visible at X to T in fy|Hy, then T’ is visible to
T in f, so T’ is not an orphan in f, and hence not an orphan in fiy. Also, note that
completion(fy) = completion(f) = R. Then Lemma 2.4 implies that if accesses that
are locally visible at X to T in fy|Hx are ordered by local-completion(fy|Hx) or by
local-timestamp(Py|Hy) then they are also ordered in the same way by Rins.

Thus, the sequence ¢ can be obtained by taking those operations (77,¢') such
that REQUEST_-COMMIT(T’,v') occurs in By|Hy and 77 is locally visible at X
to 7 in By|Hy, and arranging them in an order that is consistent with local-
completion(fy|Hy) and local-timestamp(fy|Hy) on the transaction component. The
fact that ¢ is transaction-respecting follows from the definition of view, which arranges
operations in an order induced by a sibling order. Thus, perform(&) is an element of
local-views(fy|Hy, T). Since Hy is locally hybrid atomic, perform(¢) is a behavior of
Sx, as required. O

3. Dependency-based hybrid locking

This section presents an algorithm that is a natural generalization to nested transac-
tion systems of that given in [7]. The essential idea of this algorithm is to maintain
information about each transaction’s intentions. These are the accesses that were car-
ried out by descendendants of the transaction such that every ancestor from the access
up to (but not including) the transaction itself has committed. A similar concept is
used in the commutativity-based locking algorithm Ly of [5]. The main difference is
that in this paper, the intentions of concurrent transactions are not applied to the base
state in the order in which INFORM_COMMIT events arrive, but rather in the order
given by timestamps. Thus when the object learns of the commit of a subtransaction,
the intentions will be transferred to the parent, but rather than being appended at the
end of the parent’s previous intentions, they may be inserted into the sequence in an
earlier place. To reflect this behavior in the automaton, we do not keep the intentions
list explicitly; instead, we keep a set of descendant accesses (in the state component
intset), and keep track of the timestamps provided by the system (in the component
time). The intentions sequence is then obtained as a derived variable whose value is
computed from these components. As in commutativity-based locking, the response to
an access is constrained so that the resulting operation can be performed by the serial
object from a state resulting from executing the intentions sequences of the access’s
ancestors.

The other change from Ly is in the condition under which an access is enabled. The
condition here is that there is no other access that is not locally visible to it and is
related to it by C (the conflict relation), whereas in Ly the enabling condition is that
no other access that is not locally visible to it doesn’t commute forward with it.

Definition (Serial dependency relation). The correctness of this algorithm depends on a
sensible choice of C. The precise condition used is expressed in terms of the concept

162 A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178

of a serial dependency relation. The intuition underlying this is that two operations
of a particular serial object should be related whenever the possibility of the second
occurring is influenced by the presence or absence of the first. However, there are
many subleties, and the precise definition that we give (taken from [2]) is chosen to
be what is needed in the algorithm (both in that earlier paper and this one). We need
a preliminary definition: if R is a binary relation on operations of serial object Sy, ¢
is a sequence of operations of Sy, and # is a subsequence of &, then say that y is
R-closed in & provided that whenever # contains an operation (7,v), it also contains
all preceding operations (7”,v") of & such that ((77,2"),(T,v)) € R. Now, we say that
R is a serial dependency relation for Sy provided that the following holds. Whenever
¢ is a finite sequence of operations of Sy (no two of which involve the same access)
such that for each (7, v) in ¢ there is an R-closed subsequence # of ¢ where # contains
(T,v) and perform(n) is a behavior of Sy, then perform(¢) is a behavior of Sy.

For correctness, we require C to be a symmetric serial dependency relation. Symme-
try is needed for the following reason: if an access 7 completes when another access 7’
has occurred but is not locally visible to T, then the object does not yet have sufficient
information to know whether 7 or 7’ will be ordered first by the completion order.
Since the return value of 7" is computed using only the intentions list of ancestors of
T, this return value is computed without using 7”; therefore, the object must be sure
that even if 7/ commits and is serialized before 7, the return value is appropriate.
That is, the operation of T should not be affected by 7’. Also, it is possible that T
will be serialized before 7', so the object must ensure that 7 does not make the pre-
viously given response to 7’ inappropriate. That is, 7’ should not be affected by T.
The definition of serial dependency relation expresses exactly this connection.

Since the set of operations that do not commute forms a symmetric serial depen-
dency relation, we see that any concurrency available using commutativity-based lock-
ing is also available with dependency-based locking. In Example 3.1, we show that
dependency-based locking can allow concurrency not available to commutativity-based
locking. However, this added concurrency is only obtained by requiring more of the
hybrid controller than of the generic controller used in [S]. Note that the hybrid con-
troller must determine the relative completion order between siblings, and pass this
information to the objects.

3.1. The objects Dx(C)

The algorithm is described as a hybrid object automaton in a hybrid system. For each
object name X and binary relation C between operations of X, we describe a hybrid
object automaton Dy(C) (a dependency object). A sufficient condition for Dx(C) to
be locally hybrid atomic is that C be a symmetric serial dependency relation.

The state components of Dy(C) are s.created, s.commit-requested s.intset, and
s.time. Here, s.created and s.commit-requested are sets of transactions, all initially
empty. Also s.intset is a total function from transactions to sets of operations, initially
mapping every transaction to the empty set (), and s.zime is a partial function from
transactions to timestamps, initially everywhere undefined.

A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178 163

Definition (foral). We would like to define the derived variable total(T'), which is a
sequence of operations of Sy which when performed gives the effective state produced
by a transaction 7. The cleanest presentation of this variable is by an expression
that is not meaningful in arbitrary states of Dy(C); however it is meaningful in any
state that is reachable by hybrid object well-formed executions of Dx(C). We identify
three properties of these states.® First, there is at most one operation for each access
transaction name in the union of all the intsets. Second, if (7/,2") € s.intset(T), then
T’ is a descendant of T, and s.time(T") is defined for all T” € s.ancestors(T")—
s.ancestors(T). Third, whenever U and U’ are siblings such that s.time(U) and s.time
(U") are both defined, then s.time(U) # s.time(U").

In any state s that satisfies the properties above, we can use the value of the variable
s.time to define a binary relation R on accesses to X, as follows. If 7 and T’ are
distinct accesses to X, then we define (7,T') € R exactly if s.time(U) and s.time
(U") are both defined and s.time(U) < s.time(U"), where U and U’ are the sibling
transactions that are ancestors of T and T, respectively. Note that if 8 is a hybrid
object well-formed schedule of Dx(C) that can lead to state s, then R coincides with
the relation local-timestamp(f).

The three properties above ensure that R is a partial order that totally orders the
operations in s.intsef(T), for any transaction name 7. Thus in a state s that satisfies
the properties, we define a derived variable s.intentions, which is a mapping from
transaction names to sequences of operations. Namely, if T is any transaction name,
then the operations in the sequence s.intentions(T) are exactly those in s.intset(T).
The order in which these operations occur is determined by the relation R defined from
s.time, as described just above.

Finally, we let s.total(T) be the sequence of operations defined recursively as
follows: s.total(Ty) = s.intentions(Ty), and s.total(T) = s.total (parent (T))s.intentions

(T) for T # To.
The transition relation of Dy(C) is as follows.

CREATE(T) REQUEST_.COMMIT(T,v), T an access to X
Effect: Precondition:
screated = 8 created U {T'} T € §'.created — s’ .commit_requested
INFORM_COMMIT_AT(X)OF(T, p) AU, T', and ¢’ such that
Effect: (T, (T 'HeC
sintset(T) = { (T',v") € s".intset(U), and
s.iniset(parent(T)) U & ancestors(T)
= s.intse(parent(T)) \J s .intset(T') perform(s’ .total(TYT,v))
s.intset(U) is a behavior of Sy
= s'.intsel(U) for U # T,pareni(T) Effect:
s.time(T) = p s.commit-requested = s'.commit-requested U {T}

sintset(T) = {(T,¢v)}
s.intset(U) = s".intser(U) forall U #£ T

#To be precise, and to avoid circular reasoning, one should define the transition relation so that
REQUEST_COMMIT is not enabled in states that do not satisfy the properties given here, while in states
that do satisfy these properties it is enabled if the precondition as listed below (which is then well-defined)
is true. One can then prove that each state reachable in a hybrid object well-formed execution satisfies these
properties, so that in these states the transition relation is just as listed.

164 A. Fekete et al | Theoretical Computer Science 149 (1995) 151-178

INFORM_ABORT_AT(X)OF(T)
Effect:
s.intset(U) = 0,
U € descendants(T)
sintset(U) = s .intset(V),
U ¢ descendants(T)

Example 3.1 (Dependency-based locking for a FIFO queue object). Consider a sys-
tem in which an object Sy represents a FIFO queue. Sy has an associated domain
of values, %, from which the entries are taken. Sy also has an associated function
kind : accesses(X) — {“insert”,“delete”}, and an associated function data : {T &
accesses(X) : kind(T) = “insert”} — 2. The set of possible return values for each
access T where kind(T) = “delete” is &, while an access T where kind(T) = “insert”
has return value “OK”. The state of Sy consists of four components: active (either
“nil”, or the name of an access to X), queue (an array of elements of & indexed by
the positive integers), front (a positive integer) and back (another positive integer).
The start state sq has sp.active = “nil”, so.back = 1, and so.front = 1 (sg.queue may
be arbitrary). The transition relation is as follows:

CREATE(T) REQUEST_.COMMIT(T,v),
Effect: for kind(T) = “delete”
s.active = T Precondition:

s'active =T

s back > s front

s’ .queuels’ front] = v
Effect:

s.active = “nil”

sfront =5’ front + 1

REQUEST_.COMMIT(Tv),
for kind(T) = “insert”
Precondition:
s'active =T
v =“OK”
Effect:
s.active = “nil”
s.queuels’ .back] = data(T)
s.back = 5" back + 1

Notice how the delete activity is blocked if the queue is empty (indicated by the
condition s’ front = s’ .back).

When we use the set of positive integers as timestamps, we can construct the hybrid
object automaton Dy (C) where C contains all pairs of operations ((7,v),(7’,v')) where
T # T’ and either kind(T) = “delete” or kind(T') = “delete” (or both). C is in fact
a symmetric, serial dependency relation, so (by the results of the following section)
Dx(C) 1s hybrid atomic.

Suppose 7y, Tp, T3 and Ty are accesses to X, with kind(T,;) = kind(T,) = insert,
kind(T3;) = kind(Ty) = delete, data(T;) = 6 and data(T,) = 3. The following
sequence f§ is a schedule of Dy(C).

CREATE(T})
CREATE(T>)
CREATE(T3)
CREATE(T})
REQUEST_COMMIT(7>,“0OK”)

A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178 165

REQUEST_.COMMIT(T|,“OK”)
INFORM_COMMIT_AT(X)OF(T},2)

Notice that this schedule involves concurrent insertions into the queue, since the res-
ponse to 7) occurs before the fate of 7, is known. Since insert operations do not
commute, f is not a schedule of the object Ly formed when the commutativity-based
locking algorithm of [5] is used. This shows that the algorithm presented here allows
concurrency not available to Ly.

The schedule f can leave Dx(C) in state s where s.created = {T,75, 15,74},
s.commit-requested={T,,T\}, s.intset(Ty) = {(T1,“OK”)}, s.intset(T2) = {(T2,
“OK™)}, and s.time(Ty) = 2. The derived variable s.total(T;) is just the sequence
of a single operation (77,“0K”).

In the state s there is no value v for which either action REQUEST_COMMIT(T3,v)
or REQUEST_-COMMIT(T4,v) is enabled, because of the operation (73,“OK™) in
s.intset(T2). In essence, a delete access can’t proceed at this point because the value
to be returned ought to be 3 if 7, has a timestamp after that for 7| or if 7, aborts,
but if T, commits before T,, then the delete should return the value 6.

3.2. Correctness proof

The correctness proof roughly follows the corresponding one in [5] for commutativity-
based locking. We define lock-visible and lock-completion exactly as in that paper. That
is, we say that T is lock-visible at X to T' in B if B contains a subsequence B’ con-
sisting of an INFORM_COMMIT_AT(X)OF(U, py) event for every U & ancestors(T)
— ancestors (T'), arranged in ascending order (so the INFORM_COMMIT for parent(U)
is preceded by that for U). Also we say that (U, U") € lock-completion(f) if and only
if U # U’,f contains REQUEST_COMMIT events for both U and U’, and U is lock-
visible to U’ at X in f', where ' is the longest prefix of § not containing the given
REQUEST.COMMIT event for U’.

We have a basic lemma relating lock-visibility and lock-completion to the corres-
ponding local properties.

Lemma 3.1. Let f be a sequence of actions of Dx(C) and T and T' transaction
names. If T is lock-visible at X to T’ in B then T is locally visible at X to T' in p.
Also lock-completion() is a subrelation of local-completion(f3).

The following lemmas relate the intsets to lock-visibility and lock-completion.

Lemma 3.2. Let § be a finite hybrid object well-formed behavior of Dx(C). Suppose
that B can leave Dy(C) in state s. If (T,v) € s.intset(T") then T is a descendant of
T', REQUEST_COMMIT(T, v) occurs in B, and T’ is the highest ancestor of T to
which T is lock-visible at X in f5.

Lemma 3.3. Let f be a finite hybrid object well-formed behavior of Dx(C), and
suppose that a REQUEST_COMMIT(T,v) event © occurs in f§, where T is not a

166 A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178

local orphan at X in . Let B’ be the prefix of B ending with ©, and let s be the
(unique) state in which ' can leave Dy(C).Then the following are true.

(1) The operations in s.total(T) are exactly (T,v) plus the operations (T',v") that
occur in B such that (T',T) € lock-completion(f).

(2) perform(s.total(T)) is a finite behavior of Sx.

The key lemma is next, which shows that certain sequences of actions, extracted
from a hybrid object well-formed behavior of Dx(C), are serial object well-formed
behaviors of Sy. This lemma is somewhat similar to Lemma 66 of [5], but the proof
is changed in significant ways. As in that lemma, we need an extra definition. Suppose
B is a hybrid object well-formed finite behavior of Dx(C). Then a set Z of operations
of X is said to be allowable for § provided that for each operation (7,v) that occurs
in Z, the following conditions hold.

(1) (T,v) occurs in f3.

(2) T is not a local orphan at X in f.

(3) If (77,v') is an operation that occurs in f such that (T’,7) € lock-completion
(B), then (T",0') € Z.

Notice that this definition uses the same words as the one in [5]; however, recall
that in this case the term local orphan has a new (extended) meaning.

Lemma 3.4. Suppose that C is a symmetric serial dependency relation. Let B be
a finite hybrid object well-formed behavior of Dx(C) and let Z be an allowable
set of operations for B. If & is a transaction-respecting total ordering of Z that is
consistent with both lock-completion(f) and local-timestamp(f) on the transaction
components, then perform(¢) is a finite behavior of Sy.

Proof. We use the definition of a serial dependency relation. Since no two operations
in Z have the same transaction name, & is a serial object well-formed sequence of
operations of Sy. Let (7,v) be any operation in . We will produce a C-closed subse-
quence # of ¢ containing (7, v) such that perform(n) is a behavior of Sy. Since C is
a serial dependency relation, it will follow that perform(¢) is a finite behavior of Sy,
as needed.

Let B be the prefix of f strictly preceding REQUEST_COMMIT(7,v) and let s,
be the state resulting from f; also let f; be BREQUEST_COMMIT(7Z,v) and let
sy be the state resulting from ;. Let n be the sequence s;.rotal(T), and let Z' be
the set of operations occurring in ». By Lemma 3.3, Z’ consists exactly of (7,v),
together with the set of operations (7’,v") occurring in § such that (77,T) € lock-
completion(f).

The precondition and effect of the REQUEST_-COMMIT(T,v) action immediately
imply that perform(n) is a finite behavior of Sy.

We show that # is a subsequence of ¢. First, we show that Z’ CZ. As noted above,
Z' consists exactly of (T,v), together with the set of operations (7’,v") occurring in
B such that (T’,T) € lock-completion(f). By assumption, (T,v) € Z. If (T',v') € Z’

A. Fekete et al | Theoretical Computer Science 149 (1995) 151-178 167

and (77, T) € lock-completion(f}), then since (T,v) € Z and Z is allowable, it follows
that (I”,v') € Z. Therefore, Z’' C Z.

Now we show that the order of operations in 7 is the same as that in &. Suppose
(T1,v1) and (7,,v,) are two distinct operations in #, where (77,v;) precedes (T3,12)
in 7. We show that (T},v,) precedes (T>,v2) in & There are two cases to consider.
(These are exhaustive.)

(1) (Ty,v) precedes (T>,v2) in s;p.intentions(U) for the same transaction U.

Then none of 7;, T, or U is equal to 7, since the effect of the REQUEST_.COMMIT
event is to place an operation of T alone in intset(T'). Since sa.intset(U) = s;.intset(U)
for U # T, we see that (T},v;) precedes (7>,v;) in s;.intentions(U), and Lemma 3.2
implies that 7} and 7, are both descendants of U and are lock-visible to U in f,.
Then both are locally visible to U in f;, by Lemma 3.1. Let U; and U, be the
children of lca(T;, T,) that are ancestors of T} and T, respectively. By definition of
local visibility, it must be that INFORM_COMMIT events occur in f8; for both U; and
U,. Since (T,v1) precedes (13,v4) in sy.intentions(U), it must be that s;.time(U;) <
sy.time(U,). Since time records the timestamps from the INFORM_COMMIT events
in B, it follows that (73,72) € local-timestamp(f). Since & is consistent with Jocal-
timestamp(p), it follows that (T),v,) precedes (T3,1v2) in ¢.

(2) (T, v1) € ss.intset(U) and (T, v7) € so.intset(V'), for some transactions U and
V, where U is a proper ancestor of V.

Then let U’ be the ancestor of ¥ that is a child of U. Then T and T, are both
descendants of ¥, and hence of U’. However, we claim that 7 is not a descendant
of U’. Suppose it is; then, there must be an INFORM_COMMIT event for U’ in s,
since (as T is lock-visible in f; to U by Lemma 3.2) there is an INFORM_COMMIT
event in f, for each ancestor of 7, that is a proper descendant of U. As i, = f,
REQUEST_COMMIT(T, v), we deduce that there is an INFORM_COMMIT event for
U’ in f,, where U’ is an ancestor of T. That is, 7 is an excluded access in f3,
which implies that 7 is a local orphan in §, by the new definition of this paper. This
contradicts the fact that Z is an allowable set. This contradiction establishes the claim
that 7} is not a descendant of U’.

Also, (T1, T) € lock-completion(f}), by the characterization of Z’' given above. (Note
that (71,v1) i1s not (T,v), because (T,v,) appears in sy.intset(U) and U 1is not an
access, as it has a proper descendant.) Since ¢ is consistent with lock-completion(f3),
it must be that (7,v;) precedes (7,v) in . Since ¢ is transaction-respecting, it must
also be that (7,v1) precedes (75,v;) in &

Thus, in either case, (T, v,) precedes (T3,v,) in &, which implies that # is a subse-
quence of ¢. Now we show that 5 is C-closed in &. Suppose that (7}, v,) appears in 7,
(T3,0p) precedes (Ty,vy) in &, and ((Th, v2),(Ty,vy)) € C. We must show that (72, v;)
appears in #. There are two cases.

(1) REQUEST_COMMIT(Ty,v1) precedes REQUEST_COMMIT(75,v;) in f: Then
let 3 be the prefix of f ending with REQUEST_COMMIT(75,,), and s3 the state after
f3. Then since ((T2,v2),(T1,vy)) € C, the definition of REQUEST_COMMIT(T3,v;)
implies that (71,v1) € s;.intset(U) for some ancestor U of 7. Therefore, by Lemma

168 A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178

3.3 and the fact that 7> is not a local orphan since Z is allowable, (T), T5) €
lock-completion(f). Since & is consistent with lock-completion(f), it follows that
(Ty,v1) precedes (73,v2) in £, This is a contradiction.

(2) REQUEST_COMMIT(T, v,) precedes REQUEST_.COMMIT(T},v1) in f3: Then
let 3 be the prefix of f§ ending with REQUEST_COMMIT(7,,v;), and s3 the state
after 5. Then since ((72,12),(T),v1)) € C and C is symmetric, the definition of
REQUEST_COMMIT(T),v,) implies that (73,vs) € s3.intset(U) for some ancestor U
of 7;. Then by Lemma 3.3 and the fact that 7 is not a local orphan, (73, 7) € lock-
completion(f).

Since (7y,v;) is in #, either (T, v)) = (T, v) or (T}, T) € lock-completion(3), by the
characterization of Z’. Then transitivity of lock-completion(f) implies that (75, T) €
lock-completion(f3). The characterization of Z’ then implies that (75, v;) appears in 7.

Thus, we have shown that (7%,1v;) appears in #, which implies that # is C-closed
in £, The definition of a serial dependency relation then implies that perform(&) is a
finite behavior of Sy, as needed to complete the proof of the lemma. [J

Using the previous lemma, the following result is proved just like Proposition 67 of

[5].

Proposition 3.5. If C is a symmetric serial dependency relation then Dy(C) is locally
hybrid atomic.

From this the correctness of the algorithm follows.

Theorem 3.6. If C is a symmetric serial dependency relation, then Dy(C) is hybrid
atomic.

An immediate consequence of 3.6 and 2.1 is that if . is a hybrid system in which
each hybrid object is of the form Dx(C), where C is a symmetric serial dependency
relation, then every finite behavior of & is serially correct for all non-orphan transaction
names.

4. Conclusion

We have defined an appropriate structure for nested transaction systems based on
hybrid atomicity, in which each transaction is given a timestamp that indicates the order
(relative to its siblings) of committing. We have defined hybrid atomicity and shown
that it was a local atomicity property, so that if each object is separately verified to be
hybrid atomic, the whole system’s correctness follows. We have defined local hybrid
atomicity and shown that it is a sufficient condition for hybrid atomicity, and finally
we presented and verified an algorithm that generalizes one of Herlihy and Weihl in
the unnested case.

A. Fekete et al | Theoretical Computer Science 149 (1995) 151-178 169

There are several directions in which this work can be extended. One is to find and
verify further algorithms that provide hybrid atomicity for particular datatypes. These
might keep information in more compact forms, rather than as sets of operations as used
in Dx(C). Another is to consider the possibility that timestamps do not give exactly
the order of completion, but rather another order consistent with Lamport causality
between siblings. Both the modular atomic property and the algorithm should carry
over to this situation.

Appendix A. Review of background

In this appendix, we summarize the main concepts from our earlier work that are
used in this paper. Complete details can be found in [5,2]. The reader who is already
familiar with our work, or who is not interested in the details of the proofs, may skip
or skim this section.

A.1. The inputloutput automaton model

The following is a brief introduction to the formal model that we use to describe
and reason about systems. This model is treated in detail in [10].

Definition (States, actions). All components in our systems, transactions, objects and
schedulers, will be modelled by /O automata. An [/O automaton A has a set of states,
some of which are designated as initial states. Usually a state is given as an assignment
of values to a collection of named typed variables. The automaton has actions, divided
into input actions, output actions and internal actions. We refer to both input and
output actions as external actions. An automaton has a transition relation, which is a
set of triples of the form (s',7,s), where s’ and s are states, and 7 is an action. This
triple means that in state s', the automaton can atomically do action = and change to
state 5. An element of the transition relation is called a step of the automaton.

The input actions model actions that are triggered by the environment of the
automaton, while the output actions model the actions that are triggered by the
automaton itself and are potentially observable by the environment, and internal actions
model changes of state that are not directly detected by the environment.

Given a state s’ and an action 7, we say that 7 is enabled in s’ if there is a state s for
which (s',7,s) is a step. We require that each input action 7 be enabled in each state
s’, i.e., that an /O automaton must be prepared to receive any input action at any time.

A finite execution of A is a finite alternating sequence som1s172 ... m,S, of states and
actions of A, ending with a state, such that sy is a start state and each triple (s',7,s)
that occurs as a consecutive subsequence is a step of A4.

Definition (behavior). From any finite execution, we can extract the behavior, which is
the subsequence consisting of the external actions of 4. This represents the information
that the environment can detect about the execution. Since the same action may occur

170 A. Fekete et al. [Theoretical Computer Science 149 (1995) 151-178

several times in an execution or behavior, we refer to a single occurrence of an action
as an event.

We say that a behavior f can leave A in state s if there is some execution with
behavior § and final state s.

We describe systems as consisting of interacting components, each of which is an /O
automaton. It is convenient and natural to view systems as [/O automata, also. Thus,
we define a composition operation for /O automata, to yield a new /O automaton. A
collection of I/O automata is said to be strongly compatible if any internal action of
any one automaton is not an action of any other automaton in the collection, any output
action of one is not an output action of any other, and no action is shared by infinitely
many automata in the collection. A collection of strongly compatible automata may be
composed to create a system &.

A state of the composed automaton is a tuple of states, one for each component
automaton, and the start states are tuples consisting of start states of the components.
An action of the composed automaton is an action of a subset of the component
automata. It is an output of the system if it is an output for any component. It is an
internal action of the system if it is an internal action of any component. During an
action 7 of %, each of the components that has action 7 carries out the action, while
the remainder stay in the same state. If § is a sequence of actions of a system with
component A4, then we denote by |4 the subsequence of f containing all the actions
of A. Clearly, if § is a finite behavior of the system then (|4 is a finite behavior of
A.

Let 4 and B be automata with the same external actions. Then A is said to implement
B if every finite behavior of A is a finite behavior of B. One way in which this notion
can be used is the following. Suppose we can show that an automaton 4 is “correct,”
in the sense that its finite behaviors all satisfy some specified property. Then if another
automaton B implements 4, B is also correct.

A.2. Serial systems and correctness

In this section of the paper we summarize the definitions for serial systems, which
consist of transaction automata and serial object automata communicating with a se-
rial scheduler automaton. Serial systems are used to characterize the correctness of a
transaction-processing system.

Transaction automata represent code written by application programmers in a suitable
programming language. Serial object automata serve as specifications for permissible
behavior of data objects in the absense of concurrency. They describe the responses the
objects should make to arbitrary sequences of operation invocations, assuming that later
invocations wait for responses to previous invocations. The serial scheduler handles the
communication among the transactions and serial objects, and thereby controls the order
in which the transactions can take steps. It ensures that no two sibling transactions
are active concurrently-that is, it runs each set of sibling transactions serially. The
serial scheduler is also responsible for deciding if a transaction commits or aborts.

A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178 171

The serial scheduler can permit a transaction to abort only if its parent has requested
its creation, but it has not actually been created. Thus, in a serial system, all sets of
sibling transactions are run serially, and in such a way that no aborted transaction ever
performs any steps.

A serial system would not be an interesting transaction-processing system to
implement. It allows no concurrency among sibling transactions, and has only a very
limited ability to cope with transaction failures. However, we are not proposing serial
systems as interesting implementations; rather, we use them exclusively as specifica-
tions for correct behavior of other, more interesting systems.

We represent the pattern of transaction nesting, a system type, by a set 7 of trans-
action names, organized into a tree by the mapping parent, with Ty as the root. In
referring to this tree, we use traditional terminology, such as child, leaf , ancestor, Ica
(that is, least common ancestor), and descendant. (A transaction is its own ancestor
and descendant.) The leaves of this tree are called accesses. The accesses are parti-
tioned so that each element of the partition contains the accesses to a particular object.
In addition, the system type specifies a set of return values for transactions (henceforth
simply called values). If T is a transaction name that is an access to the object name
X and v is a value, we say that the pair (7,v) is an operation of X.

The tree structure can be thought of as a predefined naming scheme for all possible
transactions that might ever be invoked. In any particular execution, however, only
some of these transactions will actually take steps. We imagine that the tree structure
is known in advance by all components of a system. The tree will, in general, be
infinite and have infinite branching.

The classical transactions of concurrency control theory (without nesting) appear in
our model as the children of a “mythical” transaction, 7, the root of the transac-
tion tree. Transaction 7, models the environment in which the rest of the transaction
system runs. It has actions that describe the invocation and return of the classical
transactions. It is often natural to reason about Tj in the same way as about all of the
other transactions. The only transactions that actually access data are the leaves of the
transaction tree, and thus they are distinguished as “accesses.” (Note that leaves may
exist at any level of the tree below the root.) The internal nodes of the tree model
transactions whose function is to create and manage subtransactions, but not to access
data directly.

A serial system of a given system type is the composition of a set of I/O automata.
This set contains a transaction automaton for each non-access node of the transaction
tree, a serial object automaton for each object name, and a serial scheduler. These
automata are described below.

A.2.1. Transactions

A non-access transaction 7' is modelled as a transaction automaton Ay, an VO
automaton with the following external actions. (In addition, A7 may have arbitrary
internal actions.)

172 A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178

Input:

CREATE(T)

REPORT_COMMIT(7’,v"), for every child T’ of T, and every return value v’ for 7’

REPORT_ABORT(T"), for every child 7/ of T
Output:

REQUEST_CREATE(T'), for every child 7”7 of T

REQUEST.COMMIT(T,v), for every return value v for 7.

The CREATE input action “wakes up” the transaction. The REQUEST_CREATE
output action is a request by T to create a particular child transaction. The REPORT-
COMMIT input action reports to 7" the successful completion of one of its children, and
returns a value recording the results of that child’s execution. The REPORT_ABORT
input action reports to 7 the unsuccessful completion of one of its children, without re-
turning any other information. The REQUEST_COMMIT action is an announcement by
T that it has finished its work, and includes a value recording the results of that work.

We leave the executions of particular transaction automata largely unconstrained;
the choice of which children to create and what value to return will depend on the
particular implementation. For the purposes of the systems studied here, the transactions
are “black boxes.” Nevertheless, it is convenient to assume that behaviors of transaction
automata obey certain syntactic constraints, for example that they do not request the
creation of children before they have been created themselves and that they do not
request to commit before receiving reports about all the children whose creation they
requested. We therefore require that all transaction automata preserve transaction well-
Sformedness, as defined formally in [5].

A.2.2. Serial objects

Recall that transaction automata are associated with non-access transactions only, and
that access transactions model abstract operations on shared data objects. We associate
a single [/O automaton with each object name. The external actions for each object are
just the CREATE and REQUEST_COMMIT actions for all the corresponding access
transactions. Although we give these actions the same kinds of names as the actions
of non-access transactions, it is helpful to think of the actions of access transactions
in other terms also: a CREATE corresponds to an invocation of an operation on the
object, while a REQUEST_.COMMIT corresponds to a response by the object to an
invocation. Thus, we model the serial specification of an object X (describing its
activity in the absence of concurrency and failures) by a serial object automaton
Sx with the following external actions. (In addition, Sy may have arbitrary internal
actions.)
Input:

CREATE(T), for every access T to X
Output:

REQUEST.COMMIT(T,v), for every access T to X and every return value v for 7

As with transactions, while specific objects are left largely unconstrained, it is conve-
nient to require that behaviors of serial objects satisfy certain syntactic conditions. Let

A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178 173

« be a sequence of external actions of Sx. We say that « is serial object well-formed
for X if it is a prefix of a sequence of the form

CREATE(T))REQUEST_COMMIT (7},v;) CREATE(7,)REQUEST_COMMIT (75,03} ..

where T; # T; when i # j. We require that every serial object automaton preserve
serial object well-formedness. ?

A.2.3. Serial sheduler

The third kind of component in a serial system is the serial scheduler. The transac-
tions and serial objects have been specified to be any I/0O automata whose actions and
behavior satisfy simple restrictions. The serial scheduler, however, is a fully specified
automaton, particular to each system type. It runs transactions according to a depth-first
traversal of the transaction tree. The serial scheduler can choose nondeterministically to
abort any transaction whose parent has requested its creation, as long as the transaction
has not actually been created. Each child of T whose creation is requested must be
either aborted or run to commitment with no siblings overlapping its execution, before
T can commit. The result of a transaction can be reported to its parent at any time
after the commit or abort has occurred.

The actions of the serial scheduler are as follows.
Input:

REQUEST_CREATE(T,v), T # Ty

REQUEST_COMMIT(T, v)
Output:

CREATE(T)

COMMIT(T), T # Ty

ABORT(T), T # Ty

REPORT_-COMMIT(T,v),T # Ty

REPORT_ABORT(T,2v), T # T

The REQUEST_-CREATE and REQUEST.COMMIT inputs are intended to be
identified with the corresponding outputs of transaction and serial object automata, and
correspondingly for the CREATE, REPORT_COMMIT and REPORT-ABORT output
actions. The COMMIT and ABORT output actions mark the point in time where the
decision on the fate of the transaction is irrevocable. The details of the states and
transition relation for the serial scheduler can be found in [5].

A.2.4. Serial systems and serial behaviors

A serial system is the composition of a strongly compatible set of automata con-
sisting of a transaction automaton A7 for each non-access transaction name 7', a serial
object automaton Sy for each object name X, and the serial scheduler automaton for
the given system type.

° This is formally defined in [S] and means that the object does not violate well-formedness unless its
environment has done so first.

174 A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178

The discussion in the remainder of this paper assumes an arbitrary but fixed system
type and serial system, with A7 as the non-access transaction automata, and Sy as the
serial object automata. We use the term serial behaviors for the system’s behaviors.
We give the name serial actions to the external actions of the serial system. The
COMMIT(T) and ABORT(T) actions are called completion actions for T.

We introduce some notation that will be useful later. Let 7 be any transaction name.
If = is one of the serial actions COMMIT(T), REQUEST CREATE(T’), REPORT_
COMMIT(T'v"), REPORT_ABORT(7"), or REQUEST_COMMIT(7,v), where T’ is a
child of 7, then we define transaction(n) to be T. If = is any serial action, then we
define hightransaction(n) to be transaction(n) if = is not a completion action, and to
be T, if m is a completion action for a child of 7. Also, if 7 is any serial action, we
define lowtransaction(n) to be transaction(n) if = is not a completion action, and to
be 7, if n is a completion action for 7. If x is a serial action of the form CREATE(T),
or REQUEST_COMMIT(T,v), where T is an access to X, then we define object(n) to
be X.

Definition (Projection, serial). If f is a sequence'® of actions, 7 a transaction name
and X an object name, we define |7 to be the subsequence of f consisting of those
serial actions m such that transaction(n) = T, and we define B|X to be the subsequence
of f consisting of those serial actions m such that object(n) = X. We define serial(f)
to be the subsequence of § consisting of serial actions.

If § is a sequence of actions and T is a transaction name, we say T is an orphan in
p if there is an ABORT(U) action in f§ for some ancestor U of 7. We say the T is
live in f if § contains a CREATE(T), event but does not contain a completion event
for T.

A.2.5. Serial Correctness

We use the serial system to specify the correctness condition that we expect other,
more efficient systems to satisfy. We say that a sequence f§ of actions is serially
correct for transaction name 7T provided that there is some serial behavior y such
that B|T = y|T. We will be interested primarily in showing, for particular systems of
automata, representing data objects that use different methods of concurrency control
and a controller that passes information between transactions and objects, that all finite
behaviors are serially correct for 7.

We believe serial correctness to be a natural notion of correctness that corresponds
precisely to the intuition of how nested transaction systems ought to behave. Serial
correctness for 7 is a condition that guarantees to implementors of 7 that their code
will encounter only situations that can arise in serial executions. Correctness for Tg
is a special case that guarantees that the external world will encounter only situations
that can arise in serial executions.

10 We make these definitions for arbitrary sequences of actions, because we will use them later for behaviors
of systems other than the serial system.

A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178 175

A.3. Simple systems and serial correctness

In this section we outline a method for proving that a concurrency control algorithm
guarantees serial correctness. This method is treated in more detail in [5], and is an
extension to nested transaction systems of ideas presented in [16, 15]. These ideas give
formal structure to the simple intuition that a behavior of the system will be serially
correct so long as there is a way to order the transactions so that when the operations
of each object are arranged in that order, the result is legal for the serial specification
of that object’s type. In this paper we use a particular choice of serialization order,
in which a transaction is serialized ahead of those of its siblings which complete after it
does.

In this paper a particular system architecture is used, but the method is quite general,
and so is presented in terms of a “simple system”, which embodies the common features
of most transaction-processing systems, independent of their concutrency control and
recovery algorithms, and even of their division into modules to handle different aspects
of transaction-processing.

A.3.1. Simple systems

Many complicated transaction-processing algorithms can be understood as
implementations of the simple system. For example, a system containing separate ob-
Jects that manage locks and a “controller” that passes information among transactions
and objects can be represented in this way.

We first define an automaton called the simple database. There is a single simple
database for each system type. The actions of the simple database are those of the
composition of the serial scheduler with the serial objects. The simple database em-
bodies those constraints that we would expect any reasonable transaction-processing
system to satisfy. It does not allow CREATE, ABORT or COMMIT events without an
appropriate preceding request, does not allow any transaction to have two creation or
completion events, and does not report completion events that never happened. Also,
it does not produce responses to accesses that were not invoked, nor does it produce
multiple responses to accesses. On the other hand, the simple database allows almost
any ordering of transactions, allows concurrent execution of sibling transactions, and
allows arbitrary responses to accesses. We do not claim that the simple database pro-
duces only serially correct behaviors; rather, we use the simple database to model
features common to more sophisticated systems that do ensure correctness.

A simple system is the composition of a strongly compatible set of automata
consisting of a transaction automaton A7 for each non-access transaction name 7,
and the simple database automaton for the given system type. When the particular
simple system is understood from context, we will use the term simple behaviors for
the system’s behaviors.

The Serializability Theorem is formulated in terms of simple behaviors; it provides
a sufficient condition for a simple behavior to be serially correct for a particular

176 A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178

transaction name 7. Since the simple system is so unrestrictive, results about it can be
transfered to realistic systems like the hybrid system of this paper.

A.3.2. Proving serial correctness

We must introduce some technical definitions.

The type of transaction ordering needed for our theorem is more complicated than
that used in the classical theory, because of the nesting involved here. Instead of just
arbitrary total orderings on transactions, we will use partial orderings that only relate
siblings in the transaction nesting tree. Formally, a sibling order R is an irreflexive par-
tial order on transaction names such that (7,7’) € R implies parent(T) = parent(T’).

A sibling order R can be extended in two natural ways. First, Ry is the binary
relation on transaction names containing (7,7’) exactly when there exist transaction
names U and U’ such that T and T’ are descendants of U and U’ respectively, and
(U,U’) € R. Second, if f is any sequence of actions, then Re.em(f8) is the binary
relation on events in f containing (¢, n) exactly when ¢ and = are distinct serial
events in § with low transactions 7 and T’ respectively, where (7,T’) € Ryans. It is
clear that Ry and Reven(f) are irreflexive partial orders.

Definition (Completion order). In systems using hybrid atomicity, the sibling order
used for serialization is the order in which sibling transactions complete. If f§ is a
sequence of actions, then define completion(f) to be the binary relation on transaction
names containing (7, 7”) if and only if 7 and T’ are siblings and one of the following
holds:

(1) There are completion events for both 7 and 7’ in f8, and a completion event
for T precedes a completion event for 7",

(2) There is a completion event for 7 in f, but there is no completion event for 7’

in 5.

Definition (visibility). Next, we define when one transaction is “visible” to another.
This captures a conservative approximation to the conditions under which the activity
of the first can influence the second. Let § be any sequence of actions. If 7 and 7’ are
transaction names, we say that T’ is visible to T in f if there is a COMMIT(U) action
in B for every U in ancestors(T") — ancestors(T). Thus, every ancestor of 7’ up to
(but not necessarily including) the least common ancestor of 7 and 7’ has committed
in B. If § is any sequence of actions and T is a transaction name, then visible(f5, T')
denotes the subsequence of S consisting of serial actions n with hightransaction(n)
visible to T in f.

Definition (perform). We introduce some terms for describing sequences of operations.
For any operation (7, v) of an object X, let perform(T,v) denote the sequence of actions
CREATE(T) REQUEST_COMMIT(T,v). This definition is extended to sequences of
operations: if & = &(T,v) then perform(&) = perform(&') perform(T,v). A sequence &
of operations of X is serial object well-formed if no two operations in ¢ have the same

A. Fekete et al. | Theoretical Computer Science 149 (1995) 151-178 177

transaction name. Thus if ¢ is a serial object well-formed sequence of operations of X,
then perform(¢&) is a serial object well-formed sequence of actions of X. We say that
an operation (7,v) occurs in a sequence f of actions if a REQUEST_COMMIT(T ,v)
action occurs in f. Thus, any serial object well-formed sequence f of external actions
of Sy is either perform(&) or perform(E)CREATE(T) for some access T, where & is
a sequence consisting of the operations that occur in f.

Definition (view). Finally we can define the “view” of a transaction at an object,
according to the completion order in a behavior. This is the fundamental sequence
of actions considered in the hypothesis of the Serializability theorem. Suppose f is a
finite simple behavior, T a transaction name, R = completion(f8) and X an object name.
Let ¢ be the sequence consisting of those operations occurring in § whose transaction
components are accesses to X and that are visible to 7 in f§, ordered according to Ryyys
on the transaction components. (It is a fact that this ordering is uniquely determined.)
Define view(f, T, R, X) to be perform(&).

The following result expresses the fundamental proof technique we use. It is proved
as Proposition 46 of {5].

Theorem A.1. Let B be a finite simple behavior, T a transaction name such that T
is not an orphan in f§, and let R = completion(f8). Suppose that for each object name
X, view(B, T, R, X) is a finite behavior of Sxy. Then B is serially correct for T.

Acknowledgement

We thank Michael Merritt for many useful comments on this material.

References

[1] J. Allchin, An architecture for reliable decentralized systems, Ph.D. Thesis, Georgia Institute of
Technology, September 1983. Available as Technical Report GIT-ICS-83/23.

[2] J. Aspnes, A. Fekete, N. Lynch, M. Merritt and W. Weihl, A theory of timestamp-based concurrency
control for nested transactions, in: Proc. [4th Internat. Conf. on Very Large Data Bases {1988)
431-444.

[3] J. Eppinger, L. Mummert and A. Spector, Camelot and Avalon: A Distributed Transaction Facility
(Morgan Kaufmann, Palo Alto, CA, 1991).

[4] K.P. Eswaran, J.N. Gray, R.A. Lorie and [.L. Traiger, The notions of consistency and predicate locks in
a database system, Commun. ACM 19(11) (1976) 624-633; also published as [BM RJ1487, December
1974.

[5] A. Fekete, N. Lynch, M. Merritt and W. Weihl. Commutativity-based locking for nested transactions,
J. Comput. System Sci. 41(1) (1990) 65-156.

[6] M.P. Herlihy and W.E. Weihl, Hybrid concurrency control for abstract data types. in: Proc. 7th ACM
Symp. on Principles of Database Systems (1988) 201-210.

[7] M.P. Herlihy and W.E. Weihl, Hybrid concurrency control for abstract data types, J. Comput. System
Sci. 43(1) (1991) 25-61.

[8] H. Korth, Locking primitives in a database system, J. ACM 30(1) (1983).

[9] B. Liskov, Distributed computing in Argus, Comm. ACM 31(3) (1988) 300-312.

178 A. Fekete et al | Theoretical Computer Science 149 (1995) 151-178

[10] N. Lynch and M. Tuttle, Hierarchical correctness proofs for distributed algorithms, in: Proc. 6th
ACM Symp. on Principles of Distributed Computration, (1987) 137-151; Expanded version available
as Technical Report MIT/LCS/TR-387, Laboratory for Computer Science, Massachusetts Institute
Technology, Cambridge, MA., April 1987.

[11] JE.B. Moss, Nested transactions: an approach to reliable distributed computing, Ph.D. Thesis,
Massachusetts Institute Technology, 1981. Technical Report MIT/LCS/TR-260, Labaratory for Computer
Science, Massachusetts Institute Technology, April 1981. Also, published by MIT Press, March 1985.

[12] D.P. Reed, Naming and synchronization in a decentralized computer system, Ph.D. Thesis, Massachusetts
Institute Technology, 1978. Technical Report MIT/LCS/TR-205, Laboratory for Computer Science,
Massachusetts Institute Technology, September 1978.

[13] P. Schwarz and A. Z. Spector, Synchronizing shared abstract types, ACM Trans. Comput. Systems
2(3) (1984).

[14] W.E. Weihl, Commutativity-based concurrency control for abstract data types, [EEE Trans. Comput.
37(12) (1988) 1488-1505.

[15] W.E. Weihl, Local atomicity properties: modular concurrency control for abstract data types, ACM
Trans. Programming Languages Systems 11(2) (1989) 249-282.

[16] W.E. Weihl, Specification and implementation of atomic data types, Ph.D. Thesis, Massachusetts
Institute Technology, 1984. Technical Report MIT/LCS/TR-314, Laboratory for Computer Science,
Massachusetts Institute Technology, Cambridge, MA, March 1984.

