
TheoreticaD Computer Science 62 (1988) 123-185
North-Holland

123

1. Introduction

ODUCTION TO THE THEORY OF NESTED
TRANSACTIONS

Nancy LYNCH*
Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

Michael MERRITT
AT&T Bet1 Laboratories, Murray Hill, NJ 07974, U.S.A.

Abstract. A new formal model is presented for studying concurrency and resiliency properties
for nested transactions. The model is used to state and prove correctness of a well-known locking
algorithm.

This paper develops the foundation for a general theory of nested transactions.
We present a simple formal model for studying concurrency and resiliency in a
nested environment. This model has distinct advantages over the many alternatives,
the greatest of which is the unification of a subject replete with formalisms, correct-
ness conditions and proof techniques. The authors are presently engaged in an
ambitious project to recast the substantial amount of work in nested transactions
within this single intuitive framework. These pages contain the preliminary results
of that project-a description of the model, and its use in stating and proving
correctness conditions for two variations of a well-known algorithm of Moss [22].

The model is based on I/ 0 automata, a simple formalization of communicating
automata. It is not complex-it is easily presented in a few pages, and easy to
understand, given a minimal background in automata theory. Each nested transac-
tion and data object is modelled by a separate I/O automaton. These automata, the
system primitives, issue requests to and receive replies from some scheduler, which
is simply another I/O automaton. Simphe syntactic constraints on the interactions
of these automata ensure, for example, that no transaction requests the creation of
the same child more than once. One scheduler, in this case the “serial scheduler”,
interacts with the transactions and objects in a particularly constrained way. The

* The work of this author was supported by the National Science Foundation under Grants DCR-8%
02391 and CCR-8611442, by the Defense Advanced Research Projects Agency (DARPA) under Contract
N00014-83-K-0125, by the Office of Naval Research under Contract N00014-85-K-0168, by the Ofice
of Army Research under Contract DAAG29-84-K-0058. and by AT&T Be!1 Laboratories, Murray Hilt,
NJ 07974.

0304-3975/88/$3.50 @ 1988, Elsevier Science Publishers B.V. (North-Holland)

124 N. Lynch, M. Me,=ritt

“serial schedules” of the primitives and the serial scheduler are the basis of our
correctness conditions. Specifically, alternative schedulers a* 2 required to ensure
that nested transaction automata individually have local schedules which they could
have in a serial schedule. In essence, each scheduler must “fool” the transactions
into believing that the system is executing in conjunction with the serial scheduler.

In the past ten years, an important and substantial body of work has appeared
on the design and analysis of algorithms for implementing concurrency control and
resiliency in database transaction systems [5,6,10,14,15,25, etc.]. Among this has
been a number of results dealing with nested transactions [2, 3, 4, 16, 18, 22, 23,
24, etc.]. The present work does not replace these other contributions, but augments
them by providing a unifying and mathematically tractable framework for posi,ig
and exploring a variety of questions. This previous work uses behavioral
specifications of nested transactions, focusing on what nested transactions do, rather
than what they are. By answering the question “What is a nested transaction?‘, I/Q
automata provide a powerful tool for understanding and reasoning about them.

Some unification is vitally important to further development in this field. The
plethora and complexity of existing formalizations is a challenge to the most seasoned
researcher. More critically, it belies the argument that nested transactions provide
a clean and intuitive tool for organizing distributed databases and more general
distributed applications. It is particularly important to provide an intuitive and
precise description of nested transactions themselves as, in typical systems, these
are the components which the application programmer must implement!

The remainder of this paper is organized as follows. The I/O automaton model
is described in Section 2. The rest of the paper contains an extended example, which
establishes correctness properties for two related lock-based concurrent schedulers.

Section 3 contains simple definitions for naming nested transactions and objects,
and for specifying the operations (interactions) of these components. Simple syntac-
tic restrictions on the orders of these operations are presented, and then a particular
system of I/O automata is presented, describing the interactions of nested transac-
tions and objects with a serial scheduler. The interface between the serial scheduler
and the transactions provides a basis for the specification of correctness conditions
for alternative schedulers. These schedulers would presumably be more efficient
than the serial scheduler. The strongest correctness condition, “serial correctness,”
requires that all non-access transactions see serial behavior at their interface with
the system. The second condition, “correctness for T,,” only requires that this serial
interface be maintained at the interface of the system and the external world. These
interfaces also provide simple descriptions of the environment in which nested
transactions can be assumed to execute. A particular contribution is the clear and
concise semantics of ABORT operations which arises naturally from this for-
malization. The section closes with a collection of lemmas describing useful
properties of serial systems.

Next, a lock-based concurrent system is presented. Section 4 contains a description
of a special type of object, called a “resilient object,” which is used in the concurrent

Introduction to the theory of nested transactions 125

system. Section 5 describes the remainder of the concurrent system, the “concurrent
scheduler.” This concurrent scheduler includes “lock manag+ modules for all the
objects; lock managers coorainate concurrent accesses.

Section 6 defines a system which is closely related to the concurrent system, the

“weak concurrent system.” This system preserves serial correctness for those transac-
tions whose ancestors do not abort (i.e., those that are not “orphans”). Since the
root of the transaction tree, T,, has no ancestor, weak concurrent systems are correct
for To. Section 7 contains complete proofs of correctness of the concurrent and
weak concurrent systems; concurrent systems are serially correct, and weak concur-
rent systems are correct for To. The stronger conditio? is obtained for zoncurrent
systems as a corollary to a result about weak concurrent systems.

It is interesting that the concurrent system algorithms are described in complete
detail (essentially, in “pseudocode”), yet significant formal claims about their
behavior can be stated clearly and easily. Although the full presentation involves a
large number of lemmas, the ideas described by the lemmas are quite simple and
intuitive. ‘Ne think it is remarkable that these interesting properties of concurrent
systems can be proved with complete rigor, in full detail, in so short a development.
Despite the detailed level of presentation, the underlying model is general enough
that the results apply to a wide range of implementations.

The style of the correctness proof is also noteworthy. It is a constructive proof,
in that for each execution of the weak concurrent system and each non-orphan
transaction, an execution of the serial system is explicitly constructed. The transac-
tion’s local “view” in the constructed execution is identical to that in the original
weak concurrent execution, establishing the correctness of the weak concurrent
system. One may think of the weak concurrent system as maintaining consistent,
parallel “world views” within which concurrent siblings execute. As siblings return
to their parent, these parallel worlds are “merged” to form a single consistent view.
The locking policy prevents collisions between different views at the shared data.
This intuition is strongly supported and clarified by the correctness proof, which
constructs the parallel views as diff erznt serial schedules consistent with each sibling’?
local history. Lemmas illustrate how these serial schedules can be merged as siblings
return or abort to their parent.

Section 8 contains a discussion of the relationship of this work to previous results,
;and Section 9 contains sn indication of the work that lies ahead.

2. Basic model

In this section, we present the basic I/O automaton model, which is used to
describe all components of our systems. This model consists of rather standard,
possibly infinite-state, nondeterministic automata that have operation names associ-
ated with their state transitions. Communication among automata is described by
dentifying their operations. This model is very similar to models used by Milner,

126 N. Lynch, M. Merritt

Hoare [l3, 211 and others. There are a few differences: first, we find it important
to classify operations of any automaton or system of automata as either “input” or
“‘output” operations, of that automaton or system, and we treat these two cases
differently. Also, we allow identification of arbitrary numbers of operations from
different automata, rather than just pairwise identification as considered in [21].

This paper is not intended to develop the basic model. For the general theory of
I/O automata, including a unified treatment of finite and infinite behavior, we refer
the reader to [20]. In the present treatment of concurrent transaction systems, we
only prove properties of finite behavior, so we only require a simple special case
of the general model.

2.6. X/O automata

All components in our systems, transactions, objects and schedulers, will be
modelled by 110 automata. An I/O automaton & has components states(&),
start(d), out(d), in(&), and steps(&). Here, states(&) is a set of states, of which
a subset start(&) is designated as the set of start states. The next two components
are disjoint sets: out(&) is the set of output operations, and in(&) is the set of input
operations. The union of these two sets is the set of operations of the automaton.
Finally, steps(&) is the transition relation of J& which is a set of triples of the form
(s’, ?r, s), where s’ and s are states, and 7r is an operation. This triple means that
in state s’, the automaton can atomically do operation v and change to state s. An
element of the transition relation is called a step of &.

The output operations are intended to model the actions that are triggered by the
automaton itself, while the input operations model the actions that are triggered by
the environment of the automaton. Our partitioning of operations into input and
output indicates that each operation is only triggered in one place. We require the
following condition.

Input Condition. For each input operation T and each state s’, there exist a state s
and a step (s’, V, s).

This condition says that an I/O automaton must be prepared to receive any input
operation at any time. This condition makes intuitive sense if we think of the input
operations as being triggered externally. (In this paper, this condition serves mainly
as a technical convenience, but in [ZO], where infinite behavior is considered, it is
critical.)

An exmution of & is a finite alternating sequence so, ml, sl, r2, . . . , sk of states
and operations of ~4, ending with a state. Furthermore, so is in start(&), and each
triple (s’, n, s) which occurs as a consecutive subsequence is a step of ti. From any
execution, we can extract the schedule, which is the subsequence of the execution
consisting of operations only. Because transitions to different states may have the
same operation, different executions may have the same schedule.

Introduction to the theory of nested transactions 127

Lemma 1. If cy is a schedule of I/ 0 automaton &, then every prefix of cy is a schedule
Ofd.

If S is any set of schedules (or property of schedules), then & is said to preserve
S provided that the following holds. If cy = cy”x is any schedule of SQ, where w ie
an output operation of JUZ, and LY’ is in S, then a! is in S. That is, the automaton is
not the first to violate the property described by S.

2.2. Composition of automata

We describe systems as consisting of interacting components, each of which is
an I/O automaton. It is convenient and natural to view systems as I/O automata
also. Thus, we define a composition operation for I/O automata to yield a new I/O
automaton.

A set of I/O automata may be composed to create a system 9 if all of th@ sets
of output operations of the component automata are disjoint. [Thus, every output
operation in 9’ will be triggered by exactly one component.) The system 9’ is itself
an I/O automaton. A state of the composed automaton is a tuple of states, one for
each component, and the start states are tuples consisting of start states of the
components. The set of operations of 9, ops(sP), is exactly the union of the sets of
operations of the component automata. The set of output operations of 9, out(sP),
is likewise the union of the sets of output operations of the component automata.
Finally, the set of input operations of 9, in(Y), is ops(9)-out(Y), the set of
operations of 3’ that are not output operations of 9’. The output operations of a
system are intended to be exactly those that are triggered by components of the
system, while the input operations of a system are those that are triggered by the
system’s environment.

The triple (s’, ?r, s) is in the transition relation of L if and only if, for each
component automaton J& one of the following two conditions holds. Either a is
an operation of Sa, and the projection of the step onto ~4 is a step of & or else q
is not an operation of .aP, and the states corresponding to J@ in the two tuples s’
and s are identical. Thus, each operation of the composed automaton is an operation
of a subset of the component automata. During an operation 7~ of 9, each of the
components which has operation w carries out the operation, while the remainder
stay in the same state. Again, the operation g is an output operation of the
composition if it is the output operation of a component-otherwise, w is an input
operation of the composition.’

’ Note that our model has chosen a particular convention for identifying operations of different
components in a system: we simply identify those with the same name. This convention is simple, and
sufficient for what we do in this paper. However, when this work is extended to more complicated
systems, it may be expedient to generalize the convention for identifying operations, to permit reuse of
the same operation name internally to differe:.. components. This will require introducing a renaming
operator for operations, or else defining composition with respect to a designated equivalence relation
on operations. We leave this for later work.

128 N. Lynch, M. Merritt

IPemma 2. The composition of 110 automata is an I/O automaton.

The next lemma allows us to compose automata in any order.

I.,emrPla 3. Up to isomorphism, composition of I/ 0 automata is associative and commu-
ta tive.

An execution of a system is defined to be an execution of the automaton composed
of the individual automata of the system. If cu is a schedule of a system with
component .s& then we denote by aI& the subsequence of ac containing all the
operations of J& Clearly, cyI& is a schedule of So.

The next lemma expresses a “locality” property of I/O automata systems that
greatly simplifies reasoning about such systems. Since only the component automaton
.PZ for which an operation v is an output can prevent the occurrence of that operation
in a schedule of the system, it suffices to show that the operation is permitted by
the local state of & in order to conclude that it is permitted by the global state of
the system.

Lemma 4. Let (Y’ be a schedule of a system 9, and let Q! = CY’V, where T is an output
operation of component J& If ar(sI is a schedule of d, then (Y is a schedule of 9.

Proof. Since (YI& is a schedule of J& there is an execution /3 of & with schedule
(YI& Let p’ be the execution of & consisting of all but the last step of p. Similarly,
since (Y ’ is a schedule of 9, there is an execution 7 of 9 with schedule (Y ‘. It is
possible that & has ar: execution in y which is different from p’ since different
executions may have the same schedule. But it is easy to show, by induction on the
length of ‘y, that there is another execution y’ of 9 in which component J@ has
execution $‘, and which is otherwise identical to ‘y. The schedule of y’ is cy’. Since
T is not an output operation of any other component, w is defined from the state
reached at the end of y’ so that a! = a’~ is a schedule of 9’. Cl

3. Serial systems

In this paper, we define three kinds of systems: “serial systems” and two types
of “concurrent systems.” Serial systems describe serial execution of transactions.
Serial systems are defined for the purpose of providing a correctness condition for
other systems: that the schedules of the other systems should “look like” schedules
of the serial system to the transactions. As with serial schedules of single-level
transaction systems, our serial schedules are too inefficient to use in practice. Thus,
we define systems which allow concurrency, and which permit the abort of transac-
tions after they have performed some work. We then prove that the schedules
permitted by concurrent systems are correct.

Introduction to the theory of nested transactions 129

In this section, we define “serial systems.” Serial systems consist of “transactions”
and “basic objects” communicating with a “serial scheduler.” Transactions and
basic objects describe user programs and data respectively. The serial scheduler
controls communication between the other components, and thereby defines the
allowable orders in which the transactions may take steps. All three types of system

components are modelled as I/O automata.
We begin by defining a structure which describes the nesting of transactions.

Namely, a system type is a four-tuple (9, parent, 0, V), where 9, the set of transaction
names, is organized into a tree by the mapping parent: T+ 9, with To as the root.
In referring to this tree, we use traditional terminology, such as child, leaf, least
common ancestor (lea), ancestor and descendant. (A transaction is its own ancestor
and descendant.) The leaves of this tree are called uccesses. The set 0 denotes the
set of objects; formally, 0 is a partition of the set of accesses, where each element
of the partition contains the accesses to a particular object. The set V is a set of
vulues, to be used as return values of transactions.

The tree structure can be thought of as a predefined naming scheme for all possible
transactions that might ever be invoked. In any particular execution, however, only
some of these transactions will actually take steps. We imagine that the tree structure
is known in advance by all components of a system. ‘me tree will, in general, be
an infinite structure.

The classical transactions of concurrency control theory (without nesting) appear
in our model as the children of a “mythical” transaction, To, the root of the
transaction tree. (In work on nested transactions, such as ARGUS [16,181, the
children of To are often called “top-level” transactions.) It is very convenient to
introduce the new root transaction to model the environment in which the rest of
the transaction system runs. Transaction To has operations that describe the invoca-
tion and return of the classical transactions. It is natural to reason about To in much
the same way as about all of the other transactions, although it is distinguished
from the other transactions by having no parent transaction. Since committing and
aborting are operations which take place at the parent of each transaction (see
below), To can neither commit nor abort. Thus, a commit or abort of a top-level
transaction is an irreversible step.

The internal nodes of the tree model transactions whose function is to create and
manage subtransactions, but not to access data directly. The only transactions which
actually access data are the leaves of the ransaction tree, and thus they are
distinguished as “accesses.” The partition 0 simply identifies those transactions
which access the same object.

A sctrial system of a given system type is the composition of a set of I/O automata.
This set contains a transaction for each internal (i.e., non-leaf, non-access) node of
the transaction tree, a basic object for each element of 0, and a serial scheduler.
These automata are described below. (If X is a basic object associated with an
element 8!! of the partition 6’, and T is an access in %, we write T E accesses(X)
and say that “T is an access to X.“)

130 N. Lynch, M. Merritt

3.1. Transactions

This paper differs from earlier work such as [9,19,27] in that we model the
trabtsactions explicitly, as I/O automata. In modelling transactions, we consider it
very important not to constrain them unnecessarily; thus, we do not want to require
cdnat they be expressible as programs in any particular high-level programming
language. Modelling the transactions as I/O automata allows us to state exactly the
properties that are needed, without introducing unnecessary restrictions or compli-
cated semantics.

A non-access transaction T is modelled as am I/O automaton, with the following
operations:
Input operations :

CREATE(T),

COMMIT(T’, 0) for T’E children{ T) and v E V,
ABORT(T’) for T’ E childrent T).

Output operations:

REQUEST-CREATE(r) for T’ E children(T),
REQUEST-COMMIT(T, V) for VE v.

The CREATE input operation “wakes up” the transaction. The REQUEST-CREATE
output operation is a request by T to create a particular child transaction.2 The
COMMIT input operation reports to T the successful completion of one of its children,
and returns a value recording the results of that child’s execution. The ABORT input
operation reports to T the unsuccessful completion of one of its children, without
returning any other information. We call COMMIT(T’, v), for any v, and ABORT(T’)
return operations for transaction T’. The REQUEST-COMMIT operation is an
announcement by T that is has finished its work, and includes a value recording
the results of that work.

It is convenient to use two separate operations, REQUEST-CREATE and CREATE,
to describe what takes place when a subtransaction is activated. The REQUEST-
CREATE is an operation of the transaction’s parent, while the actual CREATE takes
place at the subtransaction itself. In actual systems such as ARGUS, this separation
does occur, and the distinction will be imps ant in our results and proofs. Similar
remarks hold for the REQUEST-COMMIT and COMMIT operations.3 We leave the

* Note that there is no provision for T to pass information to its child in this request. In a programming
language, T might be permitted to pass parameter values to a subtransaction. Although this may be a
convenient descriptive aid, it is not necessary to include in it the underlying formal model. Instead, we
consider transactions that have different input parameters to be different transactions.

3 Note that we do not include a REQUEST-ABORT operation for a transaction: we do not model the
situation in which a transaction decides that its own existence is a mistake. Rather, we assign decisions
to abort transactions to another component of the system, the scheduler. In practice, the scheduler must
have some power to decide to abort transactions, as when it detects deadlocks or failures. In ARGUS,
transactions are permitted to request to abort; we reg-rd this request simply as a “hint” to the scheduler,
to restrict its allowable executions in a particular way. This operation could be made explicit, constraining
the scheduler to abort the requesting transaction, without substantively changing the model or results.

Introduction to the theory of nested transactions 131

executions of particular transaction automata largely unspecified; the choice of
which children to create, and what value to return, will depend on the particular
implementation. For the purposes of the schedulers studied here, the transactions
(and in large part, the objects) are “black boxes.” Nevertheless, it is convenient to
assure that schedules of transaction automata obey certain syntactic constraints.
Thus, transaction automata are required to preserve well-formedness, as defined
below.

We recursively define well-fomedness for finite sequences of operations of transac-
tion T. Namely, the empty scheBu1 is well-formed. Also, if ar = cy’v is a sequence

of operations of T, where ?I is a single operation, then Q! is well-formed provided
that CY’ is well-formed, and the following hold:

If v is CREATE(T), then
(i) there is no CREATE(T) in (Y’.
If 7r is COMMIT(T’, u) or ABORT(T’) for a child T’ of T, then
(i) REQUEST_CREATE(T’) appears in (Y’, and

(ii) there is no return operation for T’ in cy ‘.
If 7~ is REQUEST_CREATE(T’) for a child T’ of T, then

(i) there is no REQUEST_CREATE(T') in cy’
(ii) there is no REQUEST-COMMIT for T in Q’, and
(iii) cuEATE(T) appears in ~2’.
If?ris a REQUEST-COMMIT for T,then
(i) there is no REQUEST-COMMIT for T in CX’, and

(ii) cREATE(T) appears in LY’.

These restrictions are very basic; they simply say that a transaction does not get
created more than once, does not receive repeated notification of the fates of its
children, does not receive conflicting information about the fates of its children,
and does not receive information about the fate of any child whose creation it has
not requested; also, a transaction does not perform any output operations before
it has been created or after it has requested to commit, and does not request the
creation of the same child more than once. Except for these minimal conditions,
there are no restrictions on allowable transaction behavior. For example, the model
allows a transaction to request to commit without discovering the fate of all
subtransactions whose creation it has requested. Also, a transaction can request
creation of new subtransactions at any time, without regard to its state of knowledge
about subtransactions whose creation it has previously requested. PaCcular pro-
grarnming languages may choose to impose additional restrictions on transaction
behavior. (An example is ARGUS, which suspends activity in transactions until
subtransactions complete.) However, our results do not require such restrictions.

The following easy lemma summarizes the properties of well-formed sequences
of transaction operations.

132 lV. Lynch, M. Merritt

Lemma 5. Let a be a well-formed sequence of operations of transaction T Then the
following conditions hold:

(1) The fkst operation of a is a CREATE(T) operation, and there are no other
CREATE operations.

(2) If a REQUEST-COMMIT operation occurs in a, then there are no later output
operations in tx.

(3) There is at most one REQUEST_CREATE(T’) operation for each child T’ of T in

(4) &et-y return operation in ct’ has a preceding REQUEST-CREATE operatiohr in a
for the same child transaction.

3.2. Basic objects

Recall that I/O automata are associated with non-access transactions only. Since
access transactions model abstract operations on shared data objects, we associate
a single I/O automaton with each object, rather than one for each access. The
operations for each object are just the CREATE and REQUEST-COMMIT operations
for all the corresponding access transactions. Although we give these operations
the same names as the operations of non-access transactions, it is helpful to think
of the operations of access transactions in other terms also: a CREATE corresponds
to an invocation of an operation on the object, while a REQUEST-COMMIT corre-
sponds to a response by the object to an invocation. Actually, these CREATE and
REQUEST-COMMIT operations generalize the usual invocations and responses in that
our operations carry with them a designation of the position of the access in the
transaction tree. We depart from the traditional notational distinction between
creation of subtransactions and invocations on objects since the common ter-
minology for access and non-access transactions is of great benefit in unifying the
statements and proofs of our results. Thus, a basic object X is modelled as an
automaton, with the following operations.
Input operations :

CREATE(T) for T in accesses(X).

Output operations :

REQUEST_COMMIT(T, 0) for T in aCCeSSeS(_'o.

The CREATE operation is an invocation of an access to the object, while the
REQUEST-COMMIT is a return of a value in response to such an invocation.

As with transactions, while specific objects are left largely unspecified, it is
convenient to require that schedules of basic objects satisfy certain syntactic condi-
tions. Thus, each basic object is required to preserve well-formedness, defined below.

Let a! be a sequence of operations of basic object X. Then an access T to X is
said to be pending in a! provided that there is a CREATE(T), but no REQUEST-COMMIT
for K in IY. We define well-formedness for finite sequences of operations of basic
objects recursively. Namely, the empty schedule is well-formed. Also, if ac = a’n is
a sequence of operations of basic object X, where v is a single operation, then Q!

Introduction to the theory of nested transactions 133

is well-formed provided that cy’ is well-formed, and the following hold:
If %’ is CREATE(T), then
(i) there is no CREATE(7') in (Y’, and

(ii) there are no pending accesses in cy ‘.
0 Ifrris REQUEST-COMMIT for T,then

(i) there is no REQUEST-COMMIT for T in LY’, and
(ii) CREATE(T) appears in cy’.
These restrictions simply say that the same access does not get created more than

once, nor does a creation of a new access occur at a basic object before the previous
access has completed (i.e., requested to commit); also, a basic object does not
respond more than once to any access, and only responds to accesses that have
previously been created. _

The following easy lemma summarizes the properties of well-formed sequences
of basic object operations.

Lemma 6. Let a! be a well-formed sequence of operations of basic object X. Then a
consists of alternating CREATE and REQUEST-COMMIT operktions, starting with a
CREATE, and with each consecutive (CREATE, REQUEST-COMMIT) pair having a
common transaction.

3.3. Serial scheduler

The third kind of component in a serial system is the serial scheduler. The serial
scheduler is also modelled as an automaton. The transactions and basic objects
have been specified to be any I/O automata whose operations and behavior satisfy
simple syntactic restrictions. The serial scheduler, however, is a fully specified
automaton, particular to each system type. It runs t .ansactions according to a
depth-first traversal of the transaction tree. The serial scheduler can choose nondeter-
ministically to abort any transaction after its parent has requested its creation, as
long as the transaction has not actually been created. In the context of this scheduler,
the “semantics” of an ABORT(T) operation are that transaction T was never created.
The operations of the serial scheduler are as follows.

Input operations :

REQUEST_CREATE(T), REQUEST_COMMIT(T, V).

Output operations:

CREATE(T), COMMIT(T, v), ABORT(T).

The REQUEST-CREATE and REQUEST-COMMIT inputs are intended to be identified
with the corresponding outputs of transaction and object automata, and correspond-
ingly for the CREATE, COMMIT and ABORT output operations. Each state s of the
serial scheduler consists of five sets: create_requested(s), created(s), commit-
requested(s), committed(s) and aborted(s). The set commit_requested(s) is a set
of (transaction, value) pairs. The others are sets of transactions. We write returned(s)
as an abbreviation for committed(s) u aborted(s). There is exactly one initial state,
in whicrn the set create-requested is {To}, and the other sets are empty.

124 N. Lynch, M. Me&t

The transition relation consists of exactly those triples (s’, n; s) satisfying the pre-
and postconditions below, where w is the indicated operation. For brevity, we
include in the postconditions only those conditions on the state s which may change
with the operation. If a component of s is not mentioned in the postcondition (such
as committed(s) in the postcondition for REQUEST_CRBATE(T)), it is implicit that
the set is the same in s’ and s (that committed(s) = committed(in this example).
Note that here, as elsewhere, we have tried to specify the component as nondeter-
ministically as possible, in order to achieve the greatest possible generality for our
results.

REQUEST-CREATE(T)

Postcondition :

create_requested(s) = create_requested(s’) u { T}.

REQUEST_COMMIT(T,v)
Postcondition :

commit_requested(s) = commit_requested(s’) u ((T, 0)).

CREATE(T)

Preconditim :

T E create_requesteci{s’) - created(s’) - aborted(s’),

siblings(T) n created(s’) c retumed(s’);

Postcondition :

created(s) = created(s’) u { T}.

COMMI~(T, 0)
Precondition :

(T, u) E commit_requested(s’), T E retumed(s’),

children(T) n create_requested(s’) 5 returned(s’);

Postcondition :

committed(s) = committed(s’) u { T}.

ABORT(T)

Precondition :

T E create_requested(s’) - created(s’) - aborted(s’),

sibkrgs(T) n created(s’) E retumed(s’);

Postcondition :

aborted(s) = aborted(s’) u { T}.

The input operations, REQUEST-CREATE and REQUEST-COMMIT, simply result in
the request being recorded. A CREATE operation can only occur if a corresponding

Introduction to the theory of nested transactions 135

REQUEST-CREATE has occurred and neither the CREATE nor a corresponding ABORT

has already occurred. The second precondition on the CREATE operation says that
the serial scheduler does not create a transaction until all its previously created
sibling transactions have returned. That is, siblings are run sequentially. The precon-
dition on the COMMIT operation says that the scheduler does not allow a transaction
to commit to its parent until its children have returned. The precondition on the
ABORT operation says that the scheduler does not abort a transaction while there is
activity going on on behalf of any of its siblings. That is, aborted transactions are
run sequentially with respect to their siblings. The next lemma relates a schedule
of the serial scheduler to the state which results from applying that schedule.

Lemma 7. Let QI! be a schedule of the serial scheduler, and let s be a state which can
result from applying a to the initial state. Then the following conditions are true.

(1)

(2)
(3)

(4
(9
(6)

T is in create-requested(s) exactly if T = TO or Q! contains a REQUEST_

CREATE(T) OpWatiOn.

T is in created(s) exactly if a contains a CREATE(T) operation.
(T, v) is in commit-requested(s) exactly if a! contains a REQUEST-COM-

MIT(T, v) operation.
T is in committed(s) exactly if a! contains a COMMIT operation for T
T is in aborted(s) exactly if cu contains an ABORT(T) operation.
T is in returned(s) exactly if a, contains a return operation for T.

3.4. Serial systems and serial schedules

In this subsection, we define serial systems precisely and provide some useful
terminology for talking about them.

The composition of transactions with basic objects and the serial scheduler for
a given system type is called a serial system. Define the serial operations to be those
operations which occur in the serial system: REQUEST-CREATES, REQUEST-COMMITS,

CREATES, COMMITS and ABORTS. The schedules of a serial system are called serial
schedules. The non-access transactions and basic objects are called the system
primitives. (Recall that each basic object is an automaton corresponding to a set of
access transactions. Thus, individual access transactions are not considered to be
primitives.)

Recall that the operations of the basic objects have the same syntax as transaction
operations. It is convenient to refer to CREATE(T) and REQUEST_COMMIT(T), when
T is an access to basic object X, both as operations of transaction T and of object
X To avoid confusion, it is important to remember that there is no transaction
automaton associated with any access operation.

For any serial operation err, we define transaction(~) to be the transaction at which
the operation occurs. (For CREATE(T) operations ctnd REQUEST-COMMIT operations
for T, the transaction is T, while for REQUEST_CREATE(T) operations, and COMMIT
and ABORT operations for T, the transaction is parent(T).) For a sequence a of
serial operations, transaction(a) is the set of transactions of the operations in a.

136 N. Lynch, M. Merritt

Two sequences of serial operations, ac and (Y’, are said to be equivalent provided
that they consist of the same operations, and @ = LY’IP for each primitive R
Obviously, this yields an equivalence relation on sequences of serial operations.

We let CY 1 T denote the subsequence of cy consisting of operations whose transaction
is T, even if T is an access. (This is an extension of the previous definition of cuI T,

as accesses are not component automata of the serial system.)
Let CY be a sequence of serial operations. We say that a transaction T is live in

(Y provided that a CREATE(T), but no COMMIT(T, v) or ABORT(T), occurs in cy. We
say that transaction T’ is visible to T in a! provided that for each ancestor T” of T’
which is a proper descendant of lca(T, T’), some COMMIT(T”, v) occurs in Q). (In
particular, any ancestor of T is visible to T in a.) For sequence Q! and transaction
T, let visible(cy, T) be the subsequence of cu consisting of operations whose transac-
tions are visible to T in cy. (These include access transactions T’.) We say that
transaction T sees everything in Q! provided that visible(cu, T) = a.

This is the same definition of visibility as appears, in a different model, in [191.
Visibility captures an intuitive notion suggested by the name: the transactions visible
to a transaction T in (Y are those whose effects T is permitted to “see” in (Y.

If cy is a sequence of operations, not necessarily all serial’, then define serial(a)
to be the subsequence of Q! consisting of the serial operations. We say that T is live
in Q provided that it is live in serial(a). We say that T’ is visible to T in Q! if T’ is
visible to T in serial@), and define visible@, T) to be visible(serial(a!), T). Also,
T sees everything in a! provided that T sees everything in serial(a). Similarly, define
transaction(Ly) = transaction(serial(a)).

A finite sequence a! of serial operations is said to be well-formed if its projection
at every primitive is well-formed.

3.5. Correctness condition

We use serial schedules as the basis of our correctness definitions. Namely, we
say that a finite sequence of operations is serially correct for a primitive P provided
that its projection on P is identical to the projection on P of some serial schedule.
We say that any finite sequence of operations is serially correct if it is serially correct
for every non-access transaction. That is, a! “looks like” a serial schedule to every
non-access transaction.

In the remainder of this paper, we define two systems: concurrent systems and
weak concurrent systems. We show that schedules of concurrent systems are serially
correct, and that schedules of weak concurrent systems are serially correct for TO.

Thus, we use the serial scheduler as a way of describing desirable behavior, just
as serial schedules describe desirable behavior in more classical concurrency control
settings (those without nesting). Then serial correctness plays the role in our theory
that serializability plays in classical settings.

4 We will introduce other kinds of operations later in the paper.

Introduction to the theory of nested transactions 137

Motivation for our USE of serial schedules to define correctness derives from the
simple behavior of the serial scheduler, which determines the sequence of interac-
tions between the primitives. Each transaction T is created only after parent{ T)
requests it, no siblings of T are created until T has returned, T is not committed
until each of its requested children has itself returned, and T is not aborted until

each of its created siblings has returned. The result is a depth-first traversal of the
transaction tree, with requests flowing down and responses flowing up -Wq believe
this depth-first traversal to be a natural notion of correctness which corresponds
precisely to the intuition of how nested transaction systems ought to behave.
Furthermore, it is a natural generalization of serializability, the correctness condition
generally chosen for classical transaction systems.

Serial correctness is a condition which guarantees to implementors of transac-
tions that their code will encounter only situations which can arise in serial execu-
tions. Correctness for To is a natural alternative, which guarantees only that the
external world will encounter situations which can arise in serial executions. This
condition permits less constrained implementations, in that schedulers in such
systems need not ensure that other transactions see consistent data. In particular,
the weak concurrent scheduler presented below does not ensure correctness for
transactions which have aborted ancestors (orphans). On the other hand, in such
systems the authors of transactions must ensure that their programs behave well
even if they see inconsistencies. (For example, transactions that see inconsistent
data should not consume too many system resources, garb e data beyond repair,
dispense drugs or initiate military hostilities.) We hope this work will provide a tool
for exploring the inherent costs of different correctness conditions such as these.

Note that our correctness conditions are defined at the transaction interface only,
and do not constrain the object interface. We believe that this makes the conditions
more meaningful to users, and more likely to sc5ice for a large variety of algorithms,
which may use a variety of back-out, locking or version schemes to implement
objects [S]. Previous work has focused on correctness conditions at the object
interface [6, etc.]. While we believe that object interface conditions are important,
their proper role in the theory is not to serve as the basic correctness condition.
Rather, they are useful as intermediate conditions for proving correctness of par-
ticular implementations: such conditions can be shown to be sufficient, in combina-
tion with an appropriate scheduler, to ensure our correctness condition at the
transaction interface. This observation is an important unifying contribution of our
work. Our current research is focusing on demonstrating the usefulness of this
approach, for a variety of object interface correctness2 conditions.

The serial correctness condition says that a schedule a! must look like a serial
schedule to each non-access transaction; this allows for the possibility that Q! might

$c ,tk like different serial schedules to different non-access transactions. This condition
may at first seem to be too weak. It may seem that we should require that. a$$

transactions see a projection of the same serial schedule. But this stronger condition
is not satisfied by most of the known concurrency control algorithms.

138 IV. Lynch, M. Merritt

stronger conditions than ours can sometimes be proved, but such conditions are
more complicated to state, and it is not yet clear which such conditions are most
interesting.

The serial correctness condition is really not as weak as it may seem at first
because T,, the root transaction, is included among the transactions to which Q!
must appear serial. As discussed above, transactions To can be thought of as
modelling the environment in which the rest of the transaction system runs. Its
REQUEST-CREATE operations correspond to the invocation of top-level transactions,
while its COMMIT and ABORT operations correspond to return values and external
effects of those transactions. Since at’s projection on TO must be serial, the environ-
ment of the transaction system will see only results that could arise in a serial
execution. Indeed, this is the justification of the correctness condition for the weak
concurrent system, whose schedules are shown to be correct for TO, but not
necessarily for any other transaction.

It is possible to use a different serial scheduler as a basis for correctness conditions.
For example, the scheduler might delay creating one sibling until another requests
to return, rather than until it actually returns to the parent [28]. Such a scheduler
would provide less information to the parent about the actual order in which its
children are executed, and consequently, provide more freedom for concurrent
schedulers to schedule various events. Timestamp-based systems such as [23,24]
may support this weaker correctness condition, rather than the one described above,
but this remains to be studied.

Our approach is really a general technique for studying operating system
algorithms. A simple, intuitive and inefficient algorithm (automaton) is used to
specify a “contract” between the users and implementor of an operating system.
The user is guaranteed that applications (transactions, in our work) which are correct
when run with the simple algorithm will also be correct when run with the actual
operating system, which presumably will be more efficient. On the other hand, the
implementor also ha; a formal and intuitive specification of the user interface.

3.6. Properties of serial systems

In this subsection, we prove a number of lemmas about the behavior of serial
systems. They are collected here for reference later in this paper and in future work.
Most of the lemmas describe properties that are quite easy to understand and believe,
and the corresponding proofs are very straightforward. In the last paragraph of this
subsection, there are some specialized lemmas that are somewhat more difficult.
These are used in the proof of the main theorem in Section 7.

3.6.1. Fundamental properties of visibility
The first few lemmas give fundamental properties of visibility in sequences of

serial operations. In this paragraph, we do not even require that the sequences be
schedules of serial systems, but only that they be sequences of serial operations.
The proofs of these lemmas are straightforward from the definitions.

Introduction to the theory of nested tramactions 139

Lemma 8. Let cr be ajnite sequence of serial operations, and T, T’ and T” transactions.
(1) If T’ is a descendant of T, then T is visible to T’ in CY.
(2) T’ is visible to T in Q! if and only if T’ is visible to lca(T, T’) in CY.
(3) If T” is visible to T’ in CII and T’ is visible to Tin cy, then T” is visible to Tin CY.
(4) If T’ is a descendant of T and T” is visible to T in cy, then T” is visible to T’

in cy.
(5) If T’ is a descendant of T and T’ is visible to T” in (Y, then T is visible to T”

in cy.
(6) IJ T’ is a proper descendant of T, T” is visible to T’ in cy, but T” is not visible

to T in cy, then T” is a descendant of the child of T which is an ancestor of T’.

Lemma 9. Let cy and p be sequences of serial operations, with /3 a subsequence of cy.
(1) If transaction T is visible to transaction T’ in p, then it is visible to transaction

T’ in cy.
(2) If operation w is in visible@, T), then it is in visible(a, T).

Lemma 10. Zet LY, (Y’, p and j3’ be sequences of serial operations, and let T and T’ be
transactions.

(1)
(2)
(3
(4)
(5)
(6)
(7)

(8)

If (u is equivalent to cy’, and T’ is visible to T in ~1, then T’ is visible to T in a’.
If ac is equivalent-to LY’, then visible(cy, T) is equivalent to visible(tu’, T).
If p is equivalent to p’, then a! - p = cy -/Y.
If a is equivalent to (Y’, and p is equivalent top’, then ar - p is equivalent to (Y’ - F’.
If /3 = visible(Ly, T), then T sees everything in p.
If /3 is equivalent to visible(ar, T), then T sees everything in p.
If p = visible(q T) and T’ is visible to T in 11c, then visible@, T’) =
visible(cy, T’).
If p is equivalent to visible(cu, T), /3’ is equivalent to visible(cy, T’), and T’ is
visible to T in cy, then p’ is equivalent to visible@, T’).

Lemma H, Let cw be a sequence ++jserial operations, and let T and T’ be transactions.
Then visible(cy, T)(T’ is equal’ CG (~1 T’ if T’ is visible to T in a, and is equal to the
empty string stherwise.

Lemma 12. Let CYS be a sequence of serial operations, where r is a single operation.
Let T be a transaction and assume that transaction(r) is visible to T in (YW. Assume
that w is not a COMMIT operation. Then visible(aq T) = visible(a, T)n.

3.62. Operations in serial schedules
The lemmas in this paragraph describe the kinds and orders of operations that

can occur in well-formed serial schedules. n the next paragraph, we show that all
serial schedules are well-formed, so that all these properties actually follow just
from the fact that the schedules are serial.

Proof. Assume the contrary. Then Lemma 14 implies that a CREATE(T) operation
occurs in a. But Lemma 15 yields a contradiction. El

Lemma 17. Let a be a well-formed serial schedule, and let T z To be a transaction.
(1)

(2)
(3)

If a contains a REQUEST-CREATE(T), but does not contain a return operation
for T, then parent(T) is live in a.
If T is live in cy, then parent(T) is live in CY.
If a contains a REQUEST_CREATE(T) but dots not contain a CREATE(T) or an
ABORT(T), then parent(T) is live in a.

140 N. Lynch, M. Merritt

Lemma 13. Let a be a well-formed serial schedule, and let T # TO be a transaction.
(1) If Q! contains any operation with transaction T, then a contains a

REQUEST_CREATE(T).
(2) If a contains a COMMIT for T, then a contains a REQUEST-COMMIT for T, a

CREATE(T) anda REQUEST_CREATE(T).
(3) If o contains an ABORT(T), then a contains a REQUEST_CREATE(T).

Woof. Straightforward from well-formedness and the scheduler preconditions. Cl

Lemma 14. Let (II be a well-formed serial schedule, and T a transaction. Assume that
some descendant of T is in transaction(a). Then the following hold.

(1) CREATE(T) OCCUI’S in a.
(2) If T # TO, then REQUEST_CREATE(T) occurs in cy.

Proof. (I): By induction on the length of o. The basis is easy. Let (Y = ark, where
?Z is a single operation, and assume that the result holds for a’. Let T’=
transaction(7r), and let T be any ancestor of T’. We must show that CREATE(T)
occurs in a.

Because Q! is well-formed, CREATE(T') occurs in a. If T = T’, we are done.
Otherwise, Lemma I3 implies that REQUEST_CREATE(T’) occws in a. This occurs
at parent(T’), which is a descendant of T The inductive hypothesis then implies
that Q! contains a CREATE(T).

(2): By part (1) and Lemma 13. q

Lemma 15. Let cy be a serial schedule, and let T be a transaction. l7te.r a cannot
contain both a CREATE(T) and an ABORT(T) operation.

Proof. By the scheduler preconditions. Cl

Lemma 16. Let o be a well-formed serial schedule, and let T be a transaction. If
ABORT(T) occurs in a, then a! contains no operations whose transactions are descendants
of T

Introduction to the theory of nested transactions 141

Proof. (1): Well-formedness implies that the REQUEST,CREATE(T) is preceded in

a! by a cREA’rE(parent(T)). Suppose that parent(T) is not live in (Y. Then a return
operation for parent(T) occurs in cy. By Lemma 15, ABoR-r(parent(T)) cannot appear
in cy. Thus, a COMMIT Operation for parent(T) must appear in CY. This COMMIT

operation for parent(T) must be preceded by a REQUEST-COMMIT for parent(T),
by the scheduler preconditions. By well-formedness, the REQUEST_COMMIT for
parent(T) must follow the REQUEST_CREATE(T) operation, so that the COMMIT for
parent(T) follows the REQUEST_CREATE(T) operation. Then by the scheduler pre-
conditions for the COMMIT operation, there must be a return operaGo!. %r T in CR,
a contradiction.

(2): Since T is live in CR, CREATE(T) occurs in Q! and so Lemma 13 implies that
REQUEST_CREATE(T) occurs in cy. The result then follows from part (1).

(3): Since there is no CREATE(T) in cy, there can be no REQUEST-COMMIT for T,

by well-formedness. Then there can be no COMMIT for T, by the scheduler precondi-
tions. The result follows from part (1). 0

Lemma 18. Let LY be a well-formed serial schedule, and let T be a transaction.

(1)

(2)
(3)

If Q contains a REQUEST_CREATE(T) but does not contain a return operation
for T, then any proper ancestor of T is live in cy.

If T is live in Q, then any ancestor of T is live in CU.
If a! contains a REQUEST-CREATE(T) but does not contain a CREATE(T) or an
ABORT(T), then any proper ancestor of T is live in cy.

Proof. By repeated use of Lemma 17. Cl

Lemma 19. Let (Y be a well-formed serial schedule, and let
with T’ a descendant of T. Assume that there is a COMMIT

(1) If a REQUEST_CREATE(T’) occurs in cy, then there is
in a.

T and T’ be transections
operation for T in (Y.
a return operation for T’

(2) If T’ is iti transaction(a), then there is a COMMIT operation for T’ in LY.

Proof. (1): By Lemma 18.
(2): Lemma 13 implies that REQUEST_CREATE(T’) occurs in cy. Part (1) then

implies that there is a return operation for T’ in cy. Since Tt is in transaction(a),
Lemma 16 iinplies that there cannot be an ABORT(T’) in cy. Thus, there is a COMMIT

for T’ in a. Cl

Lemma 20. Let Q! be a well-formed serial schedule. If a return operation for T is in /Y,

then it follows all operations in a! whose transaction is T.

roof. Lemma 16 implies the result if an ABORT(T) occurs in cy. So assume that a
COMMIT for T OCCURS in LY. This must be preceded by a REQUEST-COMMIT for T,

by scheduler preconditions. Well-formedness implies that the REQUEST-COMMIT is

142 N. Lynch, M. Merritt

preceded by a CREATE(T), and is not followed by any output operations of T. Thus,
the only operations of T that could follow the REQUEST-COMMIT are return
operations for children of T. Let T’ be a child of T for which a return operation
occurs in cy. Bv scheduler preconditions, there is only one return operation for T’
in a~. By Lemma 13, QI! also contains a REQUEST-CREATE(T’). Since this is an output
operation of T, it precedes the REQUEST-COMMIT fo, T, and hence prc Aes the
COMMIT for T. Then the scheduler preconditions imply that the retuh Dperation
for T’ precedes the COMMIT for T c!

Lemma 21. Let cr be a well-formed *;a% t’ scheddem If a return operation for T is in a,
then it follows all operations in a who::: :Pansactions are descendants of T.

Proof. Since a return operation Itor T occurs in ar, we have T Z TO. Let T’ be a
descendant of T, and assume for the sake of obtaining a contradiction that an
operation ?I with transaction(~) = T’ occurs after the return for T in LY. Let cy’ be
the prefix of a preceding W.

Lemma 16 implies the result if an ABORT(T) occurs in cy. So assume that a COMMIT
for T occurs in cy. By Lemma 13, cy’ contains a REQUEST_CREATE(T’) operation.
Then Lemma 19 implies that cy’ contains a return operation for T’. But then the
well-formed schedule cy’lt contains a return for T’ followed by an operation of T’,
which contradicts Lemma 20. Cl

Lemma 22. Let a be a well-formed serial schedule. If T is a pending access in CUIX,
then T is live in a.

Proof. If T is a pending access in cy IX, then a CREATE(T) occurs in cu, but no
REQUEST-COMMIT for T occurs in LY. Thus, by the scheduler preconditions, no
COMMIT for T can occur in cy. El

Lemma 23. Let a be a well-formed s&al schedule, and let T and T’ be distinct
transactions live in cy. Then the following are true.

(1) T and T’ are not siblings.
(2) Either T is an ancestor of T’ or vice versa.

Proof. (1): Assume the contrary. Assume without loss of generality that CREATE(T)
precedes CREATE(T’) in CY. Then the scheduler preconditions for the CREATE(T')

operation imply that a return operation for T occurs in (Y. This contradicts the
assumption that T is live in (Y.

(2): By part (1) and Lemma lg. Cl

3.63. Well-formedness
Now we show that all serial schedules are well-formed. It follows that all the

properties proved in the previous paragraph for well-formed serial schedules are

Introduction to the theory of nested transactions 143

actually true for all serial schedules. Subsequently, we will use these properties
without explicitly mentioning well-formedness.

Lemma 24. Let CY be a serial schedule. I%en a! is well-fern

Proof. By induction on the length of schedules. The base, length=O, is trivial.
Suppose that (YW is a serial SC” .edule, and assume that ac is well-formed. If w is an

output of a primitive P, then crrr)P is well-formed because P preserves well-
formedness, and so cyrr is well-formed. So assume that g is an ‘nput to a primitive
P. It suffices to show that alr(P is well-formed. There are four cases.

(1) 7r is CREATE(T) and T is a non-access transaction. The scheduler precondi-
tions insure that CREATE(T) does not appear in cy.

(2) 7r is COMMIT(T, v) for some transaction T and value v. Then 7~ is an input
to transaction parent(T) = T’. The scheduler preconditions imply that (Y contains a
REQUEST_COMMIT(T, v), and so Lemma 13 implies that a! contains a
REQUEST_CREATE(T). Also, the scheduler preconditions imply that no return
operation for T occurs in cy.

(3) w is ABORT(T) for some transaction T Then m is an input to transaction
parent(T) = T’. The scheduler preconditions imply that a! contains a REQUEST_
CREATE(T), but no return operation for T.

(4) w is CREATE(T) and T is an access to basic object X. By the scheduler
preconditions, no CREATE(T) or ABORT(T) appears in cy, but a REQUEST_CREATE(T)

appears in ~1. Assume for the sake of deriving a contradiction that T’ is a pending
access in (YIX men Lemma 22 implies that T’ is live in cy. Also, Lemma 17 implies
that parent(T) is live in LY. ‘Then Lemma 23 implies that one of T’ or parent(T) is
an ancestor of the other; since T and T“ are both leaves of the transaction tree, the
only possibility is that parent(T) is a proper ancestor of T’. Let T” be the sibling
of T which is an ancestor of T’. Then T” is live in QI, by Lemma 18. That is, there
is a CREATE(T”), but no COMMIT for T” in cy. But this contradicts the scheduler
preconditions for 7r. Therefore, there is no pending access in c#. 0

3.64. Visibility and serial schedules
In this paragraph, we prove interesting lemmas about visibility in serial schedules.

Lemma 25. Let ar be a serial schedule, and r an operation in CY. Then transaction(rr)
is visible in CY to some transaction which is live in 1~.

Proof. Let T = transaction(m). Since a! is not empty, TO is live in cy. Let T’ be the
least ancestor of T which is live in cy. The proof is by induction on the distance
from T’ to T. If T = T’, the result is trivial. So assume that T # T’. Then COMMIT(T)
is in cy, and so T is visible to parent(T) in cy. Lemma 13 implies that Q! r;ontains a
REQUEST-CREATE{ T) Operation, WhiCh OCCUrS at pareIlt(T). en the idlctive

144 N. Lynch, M. Merritt

hypothesis implies that parent(T) is visible to T’. Then T is visible to T’ by
Lemma 8. Cl

Lemma 26. (1) Let a be a serial schedule, T a transaction and X an object. TIaen
visible@, T)lX is a pre$x of oy(X.

(2) Let a be a serial schedule, T a transaction and Pa primitive. men visible(a, T)I P
is a preJix of ar 1 P.

Proof. (1): Let rr and 4 be operations in (YIX, with w preceding 4, and 4 an
operation irt visible(ar, T). Let ~1’ be the prefix of Q! preceding 4. Let T’ =
transaction@) and T” = transaction(v). Since 4 is either a CREATE or a
REQuEsr_cor+dhm for T’, well-formedness of a! implies that T’ is live in (~‘4. Thus,
by Lemma 23, the only live transactions in CU’~ are ancestors of T’. By Lemma 25,
T” is visible to an ancestor of T’ in CT’~, and hence in cy. By Lemma 8, T” is visible
to T’ in cy. But T’ is visible to T in QI, by assumption. Lemma 8 then implies that
T’ is visible to T in cy, which gives the result.

(2): Immediate from Lemma 11 and part (1). Cl

Lemma 27. Let a- be a nonempty serial schedule. Let ?T be the last operation in a! which
is an output r idre skal scheduler. l%en transaction(rr) sees everything in a.

Proof. Let T = transaction(m). We first show that T is live in cy. Either rr is a
CREATE(T) or else it is a return operation for a child T’ oQ T. In the latter case,
Lemma I4 implies that CRE ATE(T) also occurs in LY. Thus, in either case, CREATE(T)

occurs in CY. Now, if a return operation for T occurs in cy, Lemma 21 implies that
it follows n; which is impossible. Thus, no return operation for T occurs in cy. It
follows that T is live in (Y.

Then Lemma 23 implies that the only other transactions that are live in Q! must
be ancestors or descendants of T. We claim that no proper descendants of T are
live in cy. So assume for the sake of obtaining a contradiction that U is a proper
descendant of T which is live in Q’. Then ?J is a descendant of a child V of T, and
V is live in cy, by Lemma lg. Let ey ’ be the prefix of Q! preceding 7~ There are three
cases.

(1) m is CREATE(7'). Then Lemma 14 yields a contradiction.
(2) rr is a COMMIT operation for T’, a child of T. Then T’# V since T’ is not

live in cy. But T’ and V are both live in cy’, which contradicts Lemma 23.
(3) 72 is an ABORT(T’), for child T’ of T. Then T’+ V since T’ is not live in (Y.

But V is live in cy’. But then the scheduler preconditions for n are not satisfied, a
contra&ction.

Thus, no descendants are live in ac, so the only transactions that are live in a! are
ancestors of T. Now let 4 be any operation in a. Lemma 25 implies that transac-
tion(4) is visible in LY to some ancestor of T, and hence to T Cl

Introduction to the theory of nested transactions 145

Lemma 28. Let Q! be a serial schedule, and T a transaction. l%en visible(cu, T) is a

serial schedule.

Proof. We proceed by induction on the length of cy. The basis, length = 0, is trivial.
Let Q! = a%, where w is a single operation. Fix transaction T, and let T’ =
transaction(m). If T’ is not visible to T in QC, then visible(cy, T) = visible(Q’, T), and
the result is true by inductive hypothesis. So assume that T’ is visible to T in cy.

If rr is an output operation of a primitive P, then visible(0, T)IP is a prefix of
@‘, by Lemma 26, and thus is a schedule of !? By the inductive hypothesis,
visible(cy’, T) is a serial schedule. Also, visible@, T) = visible(a’, T)w by Lemma
12. Then Lemma 4 shows that visible(a, T) is a serial schedule.

On the other hand, if 7~ is an output operation of the scheduler, then Lemma 27
implies that T’ sees everything in cy. But since T’ is visible to T in cy, it follows that
T sees everything in LY. Thus, visible(cu, T) = cy, a serial schedule. q

3~5.5. Reordering and combining serial schedules

In this paragraph, we describe ways in which serial schedules can be modified
and combined to yield other serial schedules. These lemmas are used in the proof
of the main theorem, in Section 7.

Lemma 29. Let Q and cy’
operations such that a$
equivalent to op.

be two equivalent serial schedules. If p is a sequence of serial
is a serial schedule, then a’P is a serial schedule, and is

Proof. Equivalence is trivial. The fact that cy’/3 is a serial schedule follows because
the preconditions of the serial scheduler depend only upon the presence of previous
operations, not their order. Cl

The next lemma says that any serial schedule can be transformed by moving all
the operations visible to any particular transaction to the beginning of the schedule,
and the result is another serial schedule. This lemma can be thought of as describing
a kind of “canonical form” for a serial schedule, with respect to a particular
transaction.

Lemma 30. Let a be a serial sche -.lule, and T any transaction. Let p = visible(cy, T).
Then p (a! - p) is equivalent to a and is serial.

roof. Let cw ’ = $(a - p). If P is any primitive, then Lemma 26 implies that PIP is
a prefix of (YIP. Thus, a’ is equivalent to cy.

To show that cy’ is serial, we proceed by induction on its prefixes. By Lemma 28,
p is serial, so we can use p as the basis. Let yrr be a prefix of cy’, where 72 is a
serial operation in cy - /3 and y is a serial schedule. If 7r is an output operation of
a primitive P, then y~1P is a prefix of cy’l equaling a I P by equivalence, which is

N. Lynch, M. Merritt

a schedule of I? Then Lemma 4 shows that HIT is a serial schedule. So assume that
r is an output operation of the serial scheduler.

Let s be the state of the serial scheduler after y8 Let 7% be the prefix of (Y ending
in g, and let s’ be the state of the serial scheduler after y’. Then w is enabled in s’.
We must show that 41 is enabled in s. This suffices, by Lemma 4.

Since every operation in y’ is also in ‘y, it follows that each component set of s’
is a subset of the corresponding set of s. There are three cases.

) w is CREATE(T) for some transaction T’. Then transab:tion(p) = T’, and T’
is not visible to T in (Y. Then T’ E create_reques:dd(s’) c create_requested(s). Ako,
it is easy to show that T’e created(s) and T’e aborted(s). Now let U be in sib-
Sings(T’) n created(s). If U E created(s’), then U E retumed(s’) since 7~ is enabled
in s’, a subset of returned(s), as needed. So suppose that U e created(s’). Then
CREATE(U) occurs in & so U is visible to T in (Y.

Since ac contains both CREATE(T’) and CREATE(U), Lemma 23 kmplies that at
must contain a COMMIT for at least one of T’ or u Lf CY contains a COMMIT for u,
a;tren it occurs in p, so U f returned(s). On the other hand, if at contains a COMMIT
for T’, then T’ is visible to U in cy, so Lemma 8 implies that T’ is visible to T in
CY, a contradiction.

(2) w is CIBMMIT(T’, v) for some transaction T’ and value 2). Then transaction(p)
is parent(T’), which is not visible to T in (Y. Then (T’, v) is in commit_requested(s’) G
commit_requested(s). Also, it is easy to show that T’ is not in returned(s). Now let
U be in children(T’) n create-requested(s). Then there is a REQUEST_CREATE(U)

in y. This REQUEST_CREATE(U) occurs at T’, which cannot be visible to T in Q!
since parent(T’) is not visible to T in ~1. Thus, the REQUEST_CREATE(U) does not
occur in pI so it occurs in y’. Since w is enabled in s’, we have U E retumed(s’) c
retumed(s).

(3) II is ABoRr(T’) for some transaction T’. Then traasaction(w) = parent(T’),
and parent(T’) is not visible to T in cy. Then T” E create_requested(s’) G
create-requested(s). Also, it is easy to show that T’B created(s) and T% aborted(s).
NOW let U E siblings(T’) n created(s). Then CREATE(U) occurs in ‘y. But CREATE(U)
occws at U, and U cannot be visible to T in ca! since parent(U) = parent(T’) is not
visible to T in cy. Therefore, CREATE(U') does not occur in pI so it occurs in y’.
Then U is in siblings(T’) n created(s’) c: returned(s’) G retumed(s). 0

‘The following lemma is an easy consequence of the preceding one.

Lemma 31. Let (Y be a jkzitc sequence of serial operations, and let T and T’ be two
transactions with T’ visible to T in a. Let /3 and p’ be serial schedules, such that p is
equivalent to visible@, T) and 8’ is equivalefit to visible(a, T’). Then p”= J3’(#3 +I’)
is equivalent to /3 and serial.

f. Let p, = visible@, T’). Then y is serial by Lemma 28. Lemma 30 implies that
r(P - y) is equivalent to p an serial. Lemma 10 implies that /3’ is equivalent to y,

Introduction :o the theory of nested transactions 147

and thus that fl- y = P - p’. Then Lemma 29 implies that /Y’ is equivalent to y(p - 7)
and serial. Thus, p” is equivalent to fl and serial. 0

The next two lemmas are used in the proof of Theorem 68. Each describes a way
of “cutting and pasting” two serial schedules to yield a new serial schedule.

Lemma 32. Let OY&COMMIT(T’, u) and a/32 be two serial schedules, and T, T’ and
T” three transactions such that the following conditions hold:

(1) T’ is a child of T” and T is a descendant of T” but not of T’,
(2) T’ sees everything in Crp, ,
(3) T sees everything in (ypz,

(4 a = visible(cr& , T”) = visible(clr&, T”) and
(5) no basic object has operations in both fl, and p2.

Then CY&COMMIT(T’, u)& is a serial schedule.

Proof. Note first that if T = T’, then p2 is empty and the result is trivial. So assume
that T # T’. Then T is a descendant of a child U of T’, and U # T’.

Any operation in a& whose transaction is not a descendant of T’, must be in
visible(cVpl, T”) by Lemma 8. Similarly, any operation in a/3* whose trazaction is
not a descendant of U must be in visible(arpz, T’). Thus, p, and p2 contain only
operations at descendants of T’ and U respectively. Since T’ and U are distinct
siblings, and by assumption no objecis have operations in both p, and &, it follows
that no primitive has an operation occurring in both PI and &

We proceed by induction on prefixes of C&COMMIT(T’, u)& Let a’4 be a prefix
of @,COMMIT(T’, u)p2, with cy’ a serial schedule and 4 a serial c_seration. We use
a’4 = (Y&COMMIT(T’, u) as the basis since &COMMIT(T’, u) is a serial schedule
by assumption. So assume that (Y’= ~U&COMMIT(T’, u)p’ for some sequence p’.
There US tv+o cases, depending on whether 4 is an output of a primitive or of the
serial scheduler.

Suppose that 4 is an output operation of a primitive I? Then ~~~~~~~~~~~~ 0)

contains no operations at R Thus, &#II P = a@‘41 P, which is a prefix of a#321 P, which
is a schedule of P since cyPl is a serial schedule. Thus, a’41 P is a schedule of P.
The result follows by Lemma 4.

So suppose 4 is an output of the serial scheduler. Then transaction(#) = V for
some descendant V of U. Let s be the state of the serial scheduler after a’, and let
s’ be the state of the serial scheduler after ap’. Then the following relationships
hold between s and s’.

0)

(2)

(3)

V E create_requested(s’) - created(s’) - aborted(s’)
iff V E create_requested(s) - created(s) - aborted(s).
children(V) n ereate_requested(s’) c returned(s’)
iff children(V) n create_requested(s) c returned(s).

mit_requested(s’) iff (V, v) E commit-requested(s).

148 N. Lynch, M. Merritt

(4) V 15 retumed(s’) iff V e retumed(s).
(5) siblings(V) n created(s’) G retumed(s’)

iff siblings(V) n created(s) G retumed(s)
Since the operations in /3, are all at descendants of T’, and those of pz are all at

descendants of U, the first four biconditionals are immediate from Lemma 7. If V
is a proper descendant of U, the last biconditional also follows. It remains to show
that siblings(U) n created(s’) C_ retumed(s’) iff siblings(V) n created(s) c_
returned(s). But any sibling of U created in a/3’ is created in a’, and the only sibling
of U created in a’ and not a@’ is T’, and T’E returned(s). Thus, the claims are true.

Since d) is enabled in s’, the claims above imply that 4 is also enabled in s. The
result follows. Cl

Lemma 33. Let ~ABORT(T’) and a/3 be two serial schedules, and let T, T’ and T” be
transactions such that the following conditions. hold :

(1) T’ is a child of T” and T is a descendant of T” but not of T’,
(2) T sees everything in u/3, and
(3) a = visible(a, T’) = visible(a/?, T”).

7hen CXABORT(T’)/3 is a serial schedule.

Proof. Similar to, but somewhat simpler than, the proof of Lemma 32. 0

Having stated our correctness conditions, we are now ready to begin describing
implementations and proving that they meet the requirements. This section and the
next are devoted to the description of a concurrent system which permits the abort
of transactions that have performed steps. An important component of a concurrent
system is a new kind of object called a “resilient object”. A resilient object is similar
to a basic object? but it has the additional capability to undo operations of transac-
tions that it discovers have aborted. Resilient objects have no capabilities for
managing concurrency: rather, they assume that concurrency control is handled
externally (by lock manager components of the scheduler). This section defines
resilient objects and presents some of their properties. It also digresses slightly from
the main development by describing and proving correct a particular implementation
of resilient objects, which are constructed by keeping multiple copies of correspond-
ing basic objects. The resilient object manages these copies as versions of the data
object. Upon learning of an abort, the appropriate stored version is used in place
of the current version.

4. I. Defirr itions

esilient object R(X) mimics the behavior of basic object X’, but has two
additional input operations, INFORM_COMMIT_AT(X)OF(T) and INFORM-

)oF(T) for every transaction Upon receivin n INFORM,

Introduction to the theory of nested transactions 149

ABORT-AT(X)• F(T), R(X) erases any effects of accesses which are descendants of
T. This property is made formal as the “Resiliency Condition” below.

R(X) has the following operations, which we call R(X)-operations.
Input operations:

CREATE(T), T an access to X,
INFORM,COMMIT,AT(X)OF(T), INFORM,ABORLAT(X)OF(?-).

Output operations:

REQUEST_COMMIT(T,o), Tan access to X.

In order to describe well-formedness for resilient objects, we require a technical
definition for the set of transactions which are octiue after a finite sequence of
R(X)-operations. Roughly speaking, the transactions which are active are those on
whose behalf the object has carried out some activity, but whose fate the object
does not know.

The definition is recursive on the length of the sequence of R(X) operations.
Namely, only To is active after the empty sequence. Let a = @w, where ?r is a single
operation, and let A and B denote the sets of active transactions after a and /3,
respectively. Then

i
BU{T) if 7T iS CREATE(T),

I

B if ?z iS 8 REQUEST-COMMIT for T,
A (B -{ T)) CJ {parent(T)} if 7~ is INFORM_COMMIT_AT(X)OF(T) and T is in B, =

B if nis :NFORM_COMMIT_AT(X)OF(T)~~~ Tb not

in B,

B - descendants(T) ifniS lNFORM_ABORT,AT(X)OF(T).

Now we define ~&+nn&ness for finite sequences of R(X) operations. Again,
the definition is recursive. Namely, the empty schedule is well-formed. Also, if
a = a'* is a sequence of R(X)-operations, then a is well-formed provided that a’
is well-formed, and the following hold.

If I is CREATE(T), then
(i) there is no CREATE(T) in a’,
(ii) all ahe transactions which are active after a’ are ancestors of T.
If Irrisa REQUEST-COMMIT for T, then
(i) there is no REQUEST-COMMIT for T in a’, and

(ii) T is a&e after a’.
If?r is INFORM_COMMIT_AT(X)OF(T),~~~~
(i) there is no INFORM_ABORT_AT(X)OF(T) in a’,

(ii) if T is an access to X, then a REQUEST-COMMIT for T occurs in a'.
IfW iS INFORM,ABORT,AT(
(i) there is no INFORM-CO

150 N. Lynch, M. Merritt

An immediate consequence of these definitions is that the transactions active after

any well-formed sequence of R(X)-operations a! are a subset of the ancestors of

a single active transaction, which we denote least@).

Now we define an “undo” operator, which, when applied to a finite sequence of

R(X)-operations, “undoes” the actions of transactions which are known to have

aborted. Namely, for Q! a finite sequence of R(X)-operations, define undo(a)
recursively as follows. Define undo(A) = A, where h is the empty sequence. Let

a! = Pv, where rr is a single operation. If 7r is a serial operation (a CREATE or a

REQUEST-COMMIT), then undo(a) =undo(p)?r. If rr is INFORM-COM-

MIT_AT(X)OF(T), then undo(a) = undo(P). If v is INFORM_ABORT_AT(X)OF(T),

then undo(a) is the result of eliminating, from undo(P), all operations whose

transactions are descendants of T. Note that undo(cu) contains only serial operations.

Let a! be any finite sequence of R(X)-operations, and let r be an operation in

a! of the form INFORM-ABORT_AT(X)OF(T). Then the scope of 7~ in a! is the
subsequence y of a! consisting of operations eliminated by 7~. That is, if pm is a
prefix of cy, then the scope of 7~ in cw is the subsequence of undo(P) consisting of

operations whose transactions are descendants of T.

Resiliency Condition. Resilient object R(X) satisjes the resiliency condition if, for
every well-formed schedule CY of R(X), undo@ is a schedule of basic object X

We require that resilient object R(X) preserve well-formedness and satisfy the

resiliency condition.

The resiliency condition is the correctness condition required by the concurrent

schedulers at the object interface. The well-formedness requirement is a syntactic

restriction, and the condition that undo((u) be a schedule of basic object X expresses

the required semantic relationship between the resilient object and the basic object

it incorporates. The important property which must be preserved is that the correct-

ness condition at the resilient objects, together with the behavior of the concurrent

scheduler, assures correctness at the transaction boundaries.

4.2. Properties of resilient objects

This subsection contains a collection of simple lemmas about the properties of

well-formed sequences of R(X) operations.

mma 34. Let (YV be a well-formed sequence of R(X) operations, with v a single
operation. The following are true:

(1) If v is a serial operation, then transaction(w) is active after CY’IT.
(2) If T is an access active after a prefix of a! but not after a, then T is not active

after CY~/T.
(3) If w is a REQUEST-COMMIT for T, then CREATE(T) is the last serial operation

in QC.

Introduction to the theory of nested transactions 151

Proof. (1): Immediate from the definition of active and well-formedness.
(2): Because T has no descendants, it can only become active when a CREATE(T)

operation occurs, which can only happen once in a well-formed schedule.
(3): Suppose the last serial operation in Q! is 4, with 4 Z CREATE(T). Let transac-

tion(&) = T’. By well-formedness, T f T’. Also by well-formedness, T is active in
CY, so that CREATE(T) must occur in QI, and so precedes 4. By part (l), T is active
following CREATE(T) and after V, and T’ is active following #. But T cannot be
active when 4 occurs, by well-formedness, contradicting part (2) of this lemma. Cl

Lemma 35. Let a be a well-formed sequence of R(X) operations. Let T and T’ be
accesses to X with T f T’, and let w and 4 be serial operations with transactions T
and T’ respectively. If w precedes 4 in cy, then, between w and 4, there is either an
INFORM-ABORT-AT(X) for some ancestor of T, or else there are INFORM_COM-

MIT_AT(~)OF(U) operations for all ancestors U of T which are not ancestors of T’,
occurring in order from lowest to highest in the transaction tree ordering.

Proof. By part (3) of Lemma 34 and well-formedness, we may assume that 4 =
CREATE(T’). Lemma 34 implies that T is active immediately after 7~. By well-
formedness, before CREATE(T’) can occur, it must be that all transactions that are
active are ancestors of T’. ‘lhere are only two ways in which this can happen. One
possibility is that R(X) first receives INFORM-COMMITS for all ancestors of T up
to lca(T, T’) in order from lowest to highest in the transaction tree ordering. The
other possibility is that R(X) first receives an INFORM-ABORT for an ancestor of

T.0

Lemma 36. Let (YW be a well-formed sequence of R(X) operations, with v =
INFORM_ABORT_AT(X)OF(T). Then undo(arr) is a prejfx of undo(a).

Proof. Suppose not. Then there is a subsequence #@ of two operations in undo@),
such that # is in undo(curr) and $5 is not. Clearly, 4 and $ are serial operations,
transaction(4) is a descendant of T and transaction($) is not. Since 4 is not in the
SCOpe Of an INFORM-ABORT in cy, by Lemma 35, there is an INFORM_COMMIT between

4 and # for every proper descendant of Ica(transaction(&), transaction(#)) that is

an ancestor of transaction(#), including T. This contradicts the well-formedness of

CY’TT. cl

Lemma 37. Let a! be a well-formed sequence of R(X) operations, and let T be any
transaction active in cy, other than TO. Then undo(a) contains an operation 4 at a
descendant T’ of T, which is followed in Q! by an INFoRM_coMMIT for every ancestor
of T’ which is a proper descendant of T.

roof. The proof is by induction on cy, with a trivial basis. Let QI = CY’V such that

the lemma is true for 4x’ and that ?T is a single operation. Let T be a transaction

active after cy. There are four cases.

152 IV. Lynch, M. Merritt

(1) Suppose IT is CREATE(T’). Then undo(a) = undo(Q’)?r. If T # T’, the result
is immediate by the induction hypothesis since T is active after cy’. If T = T”, then
the lemma follows with 7r = 4.

(2) If v is a REQUEST-COMMIT for a transaction T’, then undo(a) = undo(a’)p
and the same transactions are active in a! and cy’. The result is immediate.

(3) Suppose 7r is an INFORM-COMMIT for a transaction T’. Then undo(a) =
undo(a’)m. If T is active after CII’, the result is immediate. If T is not active after
cy’, it follows that T = parent(T’). The result is immediate from the induction
hypothesis.

(4) Suppose 9r is an INFORM-ABORT for a transaction U. Since T is active after
QI, it was active after cy’ and U is not an ancestor of T. Let C$ be the transaction of
transaction T’ which follows from the inductive hypothesis applied to T and cy’.
Since a! is well-formed and cy’ contains INFORM-COMMITS for every ancestor of T’
up to T, U is not an ancestor of T’. It follows that 4 is in undo(a) and the result
holds. Cl

Lemma 38. Let a be a well-formed sequence of R(X) operations, and let least(ar) = T.
If undo(a) is nonempty, then it ends in an operation of a descendant of T.

Proof. If T = TO, the result is trivial, so assume otherwise. By the previous lemma,
undo(a) contains an operation 4 at a descendant of T. Without loss of generality,
assume that 4 is the last operation in undo(a) at a descendant of T. If any other
operation 7r followed 4 in undo(a), by Lemma 35, Q! would contain INFORM-COM-
MITS for every ancestor of transaction(4) up to lca(transaction(&, transaction(9r)),
which includes T. Then T is not active in cy, a contradiction. Cl

Lemma 39. Let cyrr be a well-formed sequence of R(X) operations, with w =
INFORM-ABORT-AT(X)• F(T). If T is not an ancestor of least(a), then undo(a?r) =
undo(a).

Proof. Suppose that T is not an ancestor of least(a) and that undo(a?r) f undo(a).
Then undo(a) contains a serial operation 4 at a descendant T’ of T. By Lemma
38,+ is followed in undo(a) by an operation at a descendent of least@). By Lemma
35, Q! contains an INF~RM_~~MMIT for every ancestor least@) up to
lca(least(ar), T’), which includes T, contradicting the well-formedness of CY?I: c!

We are now able to show that the undo operator preserves well-formedness.

Lemma 40, If CY is a well-formed sequence of R(X)-operations, then undo(a) is a
well-formed sequence of X-operations.

The proof is by induction on the length of (Y. The basis is trivial. Assume
- ._ __-L= cy = auk, where 7r is a siiig$e ~pxdq and undo(d) is a well-formed sequence of

Introduction to the theory of nested transactions 153

X-operations. If w is an INFORM-AB~K~ or IIuF~RM-C~MMIT, undo(a) is a prefix
of undo(cu’), by Lemma 36, and the result is immediate.

If w is CREATE(T), then undo(cu) = undo(cy ‘)v. By the well-formedness of CY,
CREATE(T) does not appear in LY’, and so not in undo(cu’). Hence, (i) is satisfied.
To see (ii), assume that CREATE(T’) occurs in undo(ou’), for access T’. Then Lemma
35 implies that INFORM_COMMIT,AT(X)OF(T’) occurs after CREATE(T’) in cy. Then
well-formedness (the precondition for INFORM_COMMIT_AT(X)OF(T’)) implies that
a REQUEST-COMMIT for T’ occurs in LY’, and well-formedness also implies that the
REQUEST-COMMIT for T’ follows the CREATE(T’). Therefore, the REQUEST-COMMIT
occurs in undo(ar’), and so T’ is not pending in undo(cu’). Thus, (ii) is satisfied.

If rr is a REQUEST-COMMIT for T, then again undo(a) = undo(cu’)lr, and by the
well-formedness of cy,

(i) no REQUEST-COMMIT for T appears in cy’, and so not in undo(a!‘), and
(ii) T is active after a’, and it follows that CREATE(T’) occurs in undo(a’). Cl

4.3. Construction of a resilient object

In this subsection, we describe a construction of a resilient object R(X) from a
basic object X.

Recall that a resilient object X is distinguished from a basic object in that it has
INFORM-ABORT and INFORM-COMMIT operations, a different definition of well-
formednese, and satisfies the resiliency condition. The resilient object R(X) is
constructed from the stases, transition function and operation labels of the basic
object X. The resilient object R(X) ma’ ntains a collection of “copies of X” (i.e.,
remembers states of X), one for each active transaction, with a particular current
copy (corresponding to the least active transaction) to which CREATE operations
are sent. When R(X) receives an INFORM-ABORT, the appropriate stored copy
becomes the current copy, thereby erasing the effects of the operations in the scope
of the INFORM-ABORT.

The state of R(X) consists of a pair (act, map), where act is a set of “active”
transactions, and map is a function from act to states of basic object X. In the
well-formed executions of R(X) (defined below), act will always be a subset of the
set of ancestors of one particular transaction in act, called least(act). (In case act
has no least member (which, again, will not arise in executions with well-formed
schedules), define least(act) arbitrarily.) The copy for least(act) is considered to be
current. The initial states of R(X) are those in which act = { TO} and map(To) is an
initial state of the basic object X. In the following specification of the operations
of R(X), let (act’, map’) be the state of R(X) prior to the operation, and (act, map)
be the state of R(X) after the operation.

CREATE(T), T an access to X
Postcondition :

act = act’ v { T},
map(U)=map’(U) for all Lkact-{T},

154 N. Lynch, M. Merritt

map(T) = s, where (map’(least(act’)), CREATE(T), s) is in the transition
relation of X

INFORKABORT-AT(X)OF(T)
Postcondition :

act = act’ - descendants(T), map(U) = map’(U) for all U E act.

INFORM-COMMIT-AT(X)OF(T)
Postcondition :

if T E act’ then
begin

act = (act’ - { T}) u (parent(T)}
map(U) = map’(U) for U E act - {parent(T)}
map(parent(T)) = map’(T)

end
if T ti act’ then act = act’ and map = map’.

REQUEST_COMMIT(T, V)

Precondition :

least(act’) = T,
(map’(T), REQUEST_COMMXT(T, v), s) is in the transition relation of X;

Postcondition:

act = act’,
map(U) = map’(U) for all U E act - {T},
map(T) = s.

Now we prove that this implementation is a correct resilient object.

Lemma 41. Let a be a well-formed schedule of R(X) which can leave R(X) in state
(act, map). Then act coincides witht he set of transactions which are active after CU.

Proof. The proof is by induction on tbe length of QC. The basis is trivial. Let Q! = a%,
where = is a single operation. There are four cases, depending on the type of
operation rr. Each is immediate from the definition of active and the implementation
of R(Xj. cl

and

Let a! be a well-formed schedule of R(X) which can leave R(X) in state
Then the following conditions hold.
is a schedule of basic object X which can leave X in state map(least(act)),

Introduction to the theory of nested transactions 155

if T’ is any transaction other than TO, and QINFORM-ABORT_AT(X)OF(T’)) is
well-formed, then undo(tiJNFoRM_ABoRT_AT(X)oF(T’)) is a schedule of basic
object X which can leave X in state map(U), where U is the least element of act
which is not a descendant of T’.

roof. First, observe that if T’ is not an ancestor of least(act), and (YIN_
FORM_ABORT_AT(X)OF(T’) is well-formed, then Lemmas 41 and 39 imply that

UndO(WNFORM_ABORT_AT(X)OF(T’)) = undo(a), so the second condition follows
from the first.

The proof is by induction on the length of (Y. In each case, we prove the first
condition, then the second condition assuming that T’ is an ancestor of least(act).
By the observation above, this is sufficient.

The basis is trivial. Let a! = or%, where n is a single operation. Let (act’, map’)

be a state of R(X) after (Y’, such that ((act’, map’), ?r, (act, map)) is a transition for
R(X). There are four cases.

(1) 7p = CREATE(T). Then undo(a) = undo(cy’)v. By the inductive assumption,
undo(cu’) is a schedule of X which can leave X in state map’(least(act’)). By the
implementation of R(X), (map’(least(act’)), W, map(T)) is a transition of X, and
T = least(act). Thus the first condition of the lemma is satisfied.

To see that the second condition holds, note that all active transactions after Q!
are ancestors of T and, by well-formedness, are exactly the transactions active after
(Y’, together with T. Let 4 be INFORM_ABORT_AT(X)OF(T’), where T’ is an ancestor
of T other than TO, and ac4 is well-formed. If T’ is a proper descendant of least(act’),
by Lemma 39, undo(@) = undo@‘), which is a schedule of basic object X which
can leave X in state map(least(act’)), by the inductive hypothesis. If T’ is an ancestor
of least(act’), undo(&) = undo(a’&, the least element of act which is not a
descendant of T’ is also the least element of act’ which is not a descendant of T’,
and the result follows by the inductive hypothesis.

(2) w = REQUEST_COMMIT(T, v). Then undo(a) = undo(cu’)rr. By the inductive
assumption, undo(cu’) is a schedule of X which can leave X in state map’(least(act’)).
By the implementation of R(X), (map’(least(act’)), 7r, map(T)) is a transition of X,
and T = least(act). Thus the first condition of the lemma is satisfied.

To see that the second condition holds, note that the active transactions after Q!
are all ancestors of T and, by well-formedness, are exactly the transactions active
after cy’. Let 4 be INFORM_ABORT_AT(X)OF(T’), where T’ is an ancestor of T other
than TO, and C+ is well-formed. Then undo(cu4) = undo(a?+), which is a schedule
of basic object X which can leave X in state map(least(act’)), by the inductive
hypothesis. Furthermore, the least element of act which is not a descendant of T’
is also the least element of act’ which is not a descendant of T’, and the result
follows by the inductive hypothesis.

(3) ?T= INFORM,COMMIT_AT(X)OF(T). Then undo((u) = undo(cu’). Also,
map(least(act) j = map(least(act’)), by defirhitioir--‘of (X). The first condition
follows.

156 N. Lynch, M. Merritt

By t.he definition of R(X), least(act) is an ancestor of least(act’). Let 4 be
INFQR~M_ABORT_AT(X)OF(T'), where T’ is an ancestor of least(act) other than To,
and at$ is well-formed. Then a’# is well-formed, and undo(cud) = undo(cu ‘4). Also,
since CY~ is well-ftirmed, T’ # T. Let U and U’ be the least elements of act and act’
;esp;c;ively, which are not descendants of T’.

If T e act’, or if U # parent(T), then U = U’ and map(U) = map’(U’), and the
second condition follows from the inductive hypothesis. So assume that T E act’
and I’= parent(T). Then since T’ # T, it follows that U’ = T. Then map’(U’) =
map([I), and the second condition again follows from the inductive hypothesis.

(4) ~TTT= INFORM_ABORT_AT(X)OF(T). If T is IlOt an allCeStOr Of k'aSt(aCt'),

thea undo(a) = undo(ar’), by Lemma 39. Furthermore, the state of R(X) is not
changed, aINFORM_ABORT_AT(X)OF(T’) iS well-formed only if
(Y’I WO~=M_ABORT_AT(X)OF(T’) is, and the active transactions after Q! are exactly
those active after cy ‘. The result follows.

Suppose that T is an ancestor of least(act’). The first condition is immediate from
the inductive hypothesis. Let 4 be INFORM_ABORT_AT(X)OF(T’), where T’ is an
ancestor of least(act) other than To, and a4 is well-formed. Since act =
act’- descendants(T), least(act), and hence T’, is an ancestor of T, undo(@) =
undo(a?@) = undo(ar’4), and the second condition follows as well. Cl

Thmrem 43. R(X) is a IVSilkiii object.

Proof. We must show that R(X) preserves well-formedness and satisfies the
resiliency condition. That R(X) satisfies the resiliency condition follows immediately
from Lemma 42.

Assume that a! is a well-formed schedule of R(X) and rr is an output operation
of R(X) enabled after an execution with schedule (Y. We must show that CYV is a
well-formed sequence of R (X)-operations.

Since 7~ is an output, it has the form REQUEST_COMMIT(T, 11) for some access T
and value P. Let (act, r:nap) be a state of R(X) after a! such that m is enabled in
(act, map). Clearly, 71’ is an output of basic object X enabled from state
map(least(act)) By Lemma 42, undo(a) is a schedule of basic object X which can
leave X in state map(least(aet& so undo(+ = undo(culr) is a schedule of basic
object X

Since X preserves well-formednesr; for basic objects and, by Lemma 40, undo(a)
is a well-formed sequence of X-operations, undo(a) ends with the operation
4 = CREATE(T) anld contains no other operations with transaction T. Let @# be the
prefix of cy encrling in 4. Suppose first that a REQUEST-COMMIT for T occurs in Q[.
Since Q! is well-formed, 4 is the only CREATE(T) operation in cy and, by Lemma
34, the second REQUEST-CREATE fol: T follows 4 and, by the definition of undo,
is in undo(u) if 4 is a contgnadiction.

It remains to show that T is active after cy. By Lemma 34, T is active after p4.
No INFORM-COMMIT for T can occur after C$ in a! since, by well-formedness, there

Introduction to the theory of nested transactions 157

is no REQUEST-COMMIT for T in cu. Also, SinCe 4 is in undo(a), no INFORM_~BORT
for an ancestor of T can occur after 4 in (Y. Thus, T is still active after a. Cl

5. Concurrent systems

As with serial schedules in classical settings, our serial schedules contain no
concurrency or resiliency and thus are too inefficient to use in practice. Their
importance is solely for defining correctness for transaction systems. In this section,
we define a new kind of system called a concurrent system. The new system consists
of the same transactions as in a serial system, a resilient object R(X) for every
basic objeL;t X of the serial system, and a concurrent scheduler.

Concurrent systems describe computations in which transactions run concurrently
and can be aborted after they have performed some work. The concurrent scheduler
has the joint responsibility of controlling concurrency and of seeing that the effects
of aborted transactions (and their descendants) become undone. Concurrent systems
make use of the roll-back capabilities of resilient objects to make sure that ABORT
operations in concurrent systems have the same semantics (so far as the transactions
can tell) as they do in serial systems.

Concurrent systems are defined in this section. In the next section, the more
permissive “weak concurrent systems” are defined. In Section 7, we prove that the
schedules of concurrent systems are serially correct, as a corollary of a weaker
correctness property for the weak concurrent system.

5.1. Lock managers

The scheduler we define is called the concurrent scheduler. It is composed of
several automata: a lock manager for every object X, and a single concurrent controller.
The job of the lock managers is to ensure that the associated object receives no
CREATES until the Jock manager has received abort or commit information for all
necessary preceding transactions. This lock manager models an exclusive locking
protocol derived from Moss’ algorithm [22]. The lock manager has the following
operations:
Input operations :

INTERNAL_CREATE(T), where T is an access to X,
INFORM_COMMIT_AT(X)OF(T) fbr T any tTaIISaCtiOII,
ItiFORM_ABORT_AT(x)OF(T) for Tany traIlSaCtiOIL

Output operdons :

CREATE(T), Where T is an access t0 X.

Theinputoperations INTERNAL_CREATE,INFORM_COMMIT~~~ INFORM-ABORT

will compose with corresponding output operations of the concurrent scheduler

which we will construct in this subsection.The output~~E~~~ operati

158 N. Lynch, M. Merritt

with the CREATE input operation of the resilient object R(X). The lock manager
receives and manages requests to access object X, using a hierarchical locking
scheme. It uses information about the commit and abort of transactions to decide
when to release locks.

Each state s of the lock manager consists of the following three sets of transactions:
lock_holders(s), create_requested(s), and created(s). Initially, lock_holders = { To},
and the other sets are empty. The operations work as follows.

INTERNAL-CREATE(T)

Postcondition :

create_requested(s) = create_requested(s’) u { T}.

INFORMXOMMIT-AT(X

Postcondition :

if T E lock_holders(s’)
then lock_holders(s) = (lock-holders(s’) - { T}) u {parent(T)}.

INFORM-ABORT,AT(X)OF(T)

Postcondition :

lock_holders(s) = lock_holders(s’) - descendants(T).

CREATE(T)

Precondition :

T E create-requested(s’) - created(s’),
lock-holders(s’) c ancestors(T);

Pcstcondition :

lock_holders(s) = lock_holders(s’) u { T),
created{ s) = created(s’) u { T}.

Note that resilient object R(X) and the lock manager for X share the
INFORM-ABORT and INFORM-COMMIT input operations. These compose with the
output from the concurrent controller defined below.

Thus, the lock manager only sends a CREATE(T) operation on to the object in
case all the current lock_holders are ancestors of T. When the lock manager learns
about the commit of a transaction T for which it holds a lock, it releases the lock
to T’s parent. When the lock manager learns about the abort of a transaction T for
which it holds a lock, it simply releases all locks held by that transaction and its
descendants. Our model provides an exceptionally simple and clear way of describing
this important algorithm.

A key property of lock managers is described by the following lemma.

.

of T which is not an ancestor of
and T’ be accesses to X. Let U be an ancestor

et cy be a schedule of the lock manager fov

Introduction to the theory of nested transactions 159

CREATE(T) precedes CREATE(T’) in cy, then between the two CREATE operations, there
is either an rNFoRM_coMMIT_AT(X)oF(U) operation, or eke an INFORM_AB~RT_

AT(X) for some ancestor of T.

Proof. At the time the CREATE(T) occurs, the lock manager puts T into the set of

lock-holders. Before the lock manager can send in CREATE(T’), it must be that all

the transactions in lock-holders are ancestors of T’. There are only two ways in

which this can happen. One possibility is that the lock manager first receives

INFORM-COMMITS for all ancestors of T up to lca(T, T’), including INFORM-COM-

MIT_AT(X)OF(U). The other possibility is that the lock manager first receives an

INFORM-ABORT for an ancestor of T. cl

5.2. The concurrent con troller

The concurrent controller is similar to the serial scheduler, but it allows siblings

to proceed concurrently. In order to manage this properly, it interacts with “concur-

rent objects” (lock managers and resilient objects) instead of just basic objects. The

operations are as follows.

Input operations :

REQIJEST_CREATE(T), REQUEST_COMMIT(T, Z?).

Output operations:

CREATE(T), T a non-access transaction,

INTERNAL_CREATE(T), T an access transaction,

COMMIT(T, V), ABORT(T),

INFORM,COMMIT_AT(X)OF(T),

INFORM,ABORT_AT(X)OE(T).

Each state s of the concurrent controller consists of five sets: create-requested(s),

created(s), commit_requested(s), committed(s), and aborted(s). The set commit-re-

quested(s) is a set of (transaction, value) pairs, and the others are sets of transactions.

(As before, we will occasionally write T E commit_requested(s) for (T, u) E

commit-requested(s) for some v.) All sets are initially empty except for create-re-

quested, which is { To}. Define returned(s) = committed(s) u aborted(s). The

operations are as follows.

REQUEST_CREATE(T)
Postcondition :

create_requested(s) = create_requested(s’) u { T}.

REQUEST_COMMIT(T, V)

Postcondition :

commit_requested(s) = co

160 N. Lynch, M. Merritt

CREATE(T), T a non-access transaction

Precondition :

T E create_requested(s’) - created(s’) - aborted(s’);

Postcondition :

created(s) = created(s’) v { T}.

INTERNAL_CREATE(T), T all aCCeSS transaction

Precondition :

T E create_requested(s’) - created(s’) - aborted(s’);

Postcondition:

created(s) = created(s’) u { T}.

COMMIT(T, ?J)

Precondition :

(T, tr) E commit-requested(s’), T ti returned(s’),

children(T) n create-requested(s’) c returned(s’);

Postcondition :

committed(s) = committed(s’) u (T}.

ABQRT(T)
Precondition :

T E (create-requested(s’) - created(s’) - aborted(s’))

u (commit-requested(s’) - returned(s’)),

children(T) n create-requested(s’) c returned(s’);

Postcondition :

aborted(s) = aborted(s’) v { T}.

INFORMXOMMIT_AT(x)OF(%):

Precondition :

T E committed(s’).

INFORM-ABORT-AT(X)OF(T):
Precondition :

T E aborted(s’).

The concurrent controller is closely related to the serial scheduler. In place of

the serial scheduler’s CREATE operations, the concurrent controller has two kinds

of operations, CREATE operations and INTERNAL-CREATE operations. The former

is used for interaction with non-access transactions, while the latter is used for

interaction with access transactions. From the concurrent controller’s viewpoint,

Introduction to the theory of nested transactions 161

the two operations are the same; however, our naming convention for operations

requires us to assign them different names since the INTERNAL-CREATE operations
are intended to be identified with INTERNAL-CREATE operations of the lock managers

(which also have CREATE operations for interaction with the resilient objects). The
precondition on the serial scheduler’s CREATE operation, which ensures serial
processing of sibling transactions, does not appear in the concurrent controller.
Thus, the concurrent controller may run any number of sibling transactions concur-
rently, provided their parent has requested their creation.

The concurrent controller’s COMMIT operation is the same as the serial scheduler’s
COMMIT operation. The concurrent controller’s ABORT operation is dEerent,
however; in addition to aborting a transaction in the way that the serial scheduler
does, the concurrent controller has the additional capability to abort a transaction
that has actually been created and has carried out some steps. In this particular
formulation, aborts occur if the transaction was not created (as with the serial
scheduler), or if the transaction has previously requested to commit, and its children
have returned. Together ,with the requirement% 99 the COMMIT operation, this
condition ensures that all transaction completion occurs bottom-up. In the weak
concurrent system to be considered in Section 6, a different, “weak,” concurrent
controller will be used; it differs from the concurrent controller of this section
precisely in not requiring ABORT operations to wait for their transactions (and
subtransactions) to complete.

The concurrent controller also has two additional operations not present in the
serial scheduler. These operations allow the concurrent controller to forward
necessary abort and commit information to the lock managers and resilient objects.

Lemma 45. Let 9 be a schedule of the concurrent scheduler, and let s be a state which
can result from Applying Q! to the initial state. Then the following conditions are true.

(1) T is in create-requested(s) exactly if T = TO or CY contains a
REQUEST_CREATE(T) OpWdltiOtl.

(2) If T is a non-access transaction, then T is in created(s) exactly if a contains a
CREATE(T) OperatiOn.

(3) If T is an access transaction, then T is in created(s) exactly if LY contains an
INTERNAL_CREATE(T) OptWtiOfl.

(4) (T, v) is in commit_requested(s) exactly if a contar i a COfVIMIT-RE-
QUEST(T, V) OperatiOn.

(5) (T, v) is in committed(s) exactly if a contains a COMMIT(T, v) operation.
(6) T is in aborted(s) exactly if Q! contains an ABORT(T) operatior’.

5.3. Concurrent systems

The composition of transactions, resilient objects and the concurrent scheduler
(lock managers and concurrent controller) is the concurrent system. A schedule of
the concurrent system is a concurrent schedule, and the operations of a concurrent
system are concurrent operations.

162 iV. Lynch, M. Merritt

A finite sequence cy of concurrent operation is well-formed if, for every primitive
P, (YIP is well-formed (using the appropriate deZ+ion of well-formedness).

The main result of this paper is that every concunr=nt schedule is serially correct.
This will be proved as a corollary to a stronger result in Section 7.

5.4. Properties of concurrent systems

As we did for serial schedules, we now prove some useful basic properties for
concurrent schedules. These lemmas describe the possible kinds and orders of
operations that can occur in well-formed concurrent schedules. Later, we will see
that all concurrent schedules are well-formed, so these properties actually follow
just from the fact that these schedules are concurrent. All results and proofs in this
subsection are straightforward.

Lemma 46. Let a be a well-formed concurrent schedule, and let T # TO be a transaction.
(1) If Q! contains any operation with transaction T, then Q! contains a CREATE(T)

and a REQUEST_CREATE(T).
(2) If cy contains a COMMIT for T, then Q! contains a REQUEST-COMMIT for T, a

CREATE(T) and a REQUEST_CREATE(T).
(3) If a! contains an ABORT(T), then a contains a REQUEST_CREATE(T).

Lemma 47. Let (Y be a well-formed concurrent schedule, and T a transaction. Assume
that some descendant of T is in transaction(a). Then the following hold.

(1) CREATE(T) Occurs in Q[.
(2) If T# TO, then REQUEST-CREATE(T) occurs in (Y.

Lemma 48. Let a be a well-formed concurrent schedule, and let T # TO be a transaction.
(1) If a contains a REQUEST_CREATE(T), but does not contain a return operation

for T, then parent(T) is live in a.
(2) If T is live in cy, then parent(T) is live in a.
(3) If ar contains a REQUEST_CREATE(T) but does not contain a CREATE(T) or

ABORT(T), then parent(T) is live in cy.

Proof. (1): Well-formedness implies that the REQUEST-CREATE(T) is preceded by
a cREA-rE(parent(T)). Suppose that parent(T) is not live in cy. Then a return
operation for parent(T) occurs in cy. In case the return operation for parenP(T) is
an ABoRT(parent(T)), scheduler preconditions imply that the cREATE(parent(T))
must precede the ABoRT(parent(T)). Then the scheduler preconditions for the return
operation imply that the return for parent(T) must be preceded by a REQUEST-COM-

MIT for parent(T). By well-formedness, the REQUEST-COMMIT for parent(T) must

follow the REQUEST-CREATE(T), so that the return for parent(T) must follow the

REQUEST_CREATE(T). Then the scheduler preconditions for the return operation

imply that there must be a return operation for T in cy, a contradiction.

(2) and (3) are as in Lemma 17. 0

Introduction to the theory of nested transactions 163

Lemma 49. Let ar be a well-formed concurrent schedule, and let T be a transaction.
(1) If QI contains a REQUEST_CREATE(T), but does not contain a return operation

for T, then all proper ancestors of T are live in (Y.
(2) If T is live in ar, then all ancestors of T are live in cy.
(3) If a! contains a REQUEST-CREATE(T) but does not contain a CREATE(T) or

ABORT(T), then all proper ancestors of T are live in cy.

Lemma 50. Let Q! be a well-formed concurrent schedule, and let Tand T’ be transactions
with T’ a descendant of T. Assume that there is a return operation for T in (r.

(1) rf there is a REQUEST_CREATE(T’) in a, then there is a return operation for T’
in cu.

(2) If T’ is in tran 3cCe cion(a,), then there is a return operation for T’ in a.

Proof. (1): By Lemma 49.
(2): By Lemma 46 and part (1). I3

Lemma 51. Let Q! be a well-formed concurrent schedule. If a return operation for T is
in cu, then it follows all operations in cy whose transaction is T.

Proof. First consider the case where T is not an access. If no CREATE{ T) occurs
in cy, the result is immediate, so assume that CREATE(T) occurs in CY. In case an
ABORT(T) occurs in cy, scheduler preconditions imply that the CREATE(T) must
precede the ABORT(T). Then the return operation for T must be preceded by a
REQUEST-COMMIT for T, by scheduler preconditions. Well-formedness implies that
the REQUEST-COMMIT is preceded by CREATE(T), and is not followed by any output
operations of T Thus, the only serial operations of T that could follow the
REQUEST-COMMIT are return operations of children of T

Let T’ be a child of T for which a return operation occurs in cy. By scheduler
preconditions, there is only one return operation for T’ in (Y. By Lemma 46, a! also
contains REQUEST_CREATE(T’). Since this is an output operation of T, it precedes
the REQUEST-COMMIT for T, and hence precedes the return operation for T Then
the scheduler preconditions imply that the return operation for T’ precedes the
return for T

Next, consider the case where T is an acceslc. If no INTERNAL-CREATE(T)

occurs in a, the result is immediate, so assume that INTERNAL_CREATE(T) occurs
in (Y. In case an ABORT(T) occurs in cy, scheduler preconditions imply that the
INTERNAL_CREATE(T) must precede the ABORT(T). Then the return operation for
T must be preceded by a REQUEST_COMMIT for T, and well-formedness implies
that this is in turn preceded by CREATE(T). Thus, no serial operations of T can
follow the return operation for T 0

Let a! be a well-formed concurrent schedule. If a return operation for T is
in a, then it follows all operations in ac whose transactions are descendarbts of

164 N. Lynch, M. Merritt

proof. Since a return operation for T occurs in cy, we have T # To. Let T’ be a
descendant of T, and assume for the sake of obtaining a contradiction that a serial
operation 7r with transaction(~) = 7” occurs af?(cer the return for T in 2. Let cy ’ be
the prefix of Q! preceding rr.

By Lemma 46, cy’ contains a REQUEST-CREATE(T'). Then Lemma 50 implies that
cy’ must contain a return operation for T’. But then the well-formed schedule &r
contains a return operation for T’ followed by an operation of T’, which contradicts
Lemma 51. Cl

Weak concurrent systems are defined in the following section, and many of their
properties are stated and proved. Weak concurrent systems are obtained by replacing
the concurrent scheduler with a more permissive scheduler, the weak concurrent :
scheduler. Results in Section 7 prove th.at every execution of the concurrent system
is also an execution of the weak concurrent system. Thus, additicnal interesting
properties of concurrent system behavior follow immediately from the corresponding
properties of weak concurrent system behavior, proved in that section.

6. Weak concurrent systems

In this section, we define “weak concurrent systems”, which are exactly the same
as concurrent systems, except that they have a more permissive controller, the “weak
concurrent controller”. The weak concurrent controller reports aborts to a transac-
tion’s parent while there is still activity going on in the aborted transaction’s subtree.
In this paper, weak concurrent systems are used primarily to provide an intermediate
step in proving the correctness of concurrent systems: proving a weaker condition
for weak concurrent systems allows us to infer the stronger correctness condition
for concurrent systems. However, weak concurrent systems are also of interest in
themselves. In a distributed implementation of a nested transaction system, perform-
ance considerations may make it important for the system to allow a transaction to
abort without waiting for activity in the transaction’s subtree to subside. In this
case, a weak concurrent system might be an appropriate choice, even though the
correctness conditions which they satisfy are weaker. Weak concurrent systems also
appear to have further technical use, for example in providing simple explanations
of the ideas used in “orphan detection” algorithms [ll].

6.1. The weak concurrent controller

In this subsection, we define the weak concurrent controller. As we have already
said, it is identical to the concurrent controller except that it has a more permissive
ABORT operation. For convenience, we describe the controller here in its entirety.
It has the same operations as the concurrent controller:

Introduction to the theory of nested transactions 165

Input operations :

REQUEST-CREATE(T), REQUEST.XOMMIT(T, U).

Output operations:

CREATE(T), T a non-access transac’iion,

INTERNALXREATE(T), T an access transaction,

COMMIT(T, v), ABORT(T),

INFORM-COMMIT-AT(x)OF(T), INFORM-ABORT-AT(X)OF(T).

Each state s of the concurrent controller consists of five sets: create-requested(s),
created(s), commit-requested(s), commited(s), and aborted(s). The set commit_re-
quested(s) is a set of (transaction, value) pairs, and the others are sets of transactions.
(As before, we will occasionally write T E commit-requested(s) for (T, v) E
commit_requested(s) for some v.) All are empty initially except for create-requested,
which is { TO). Define returned(s) = cornmitted(s) u aborted(s). The operations are
as follows.
@ REQUEST_CREATE(T)

Postcondition :

create-requested(s) = create-requested(s’) u (T}.

0 REQUEST_COMMIT(T, V)

Postcondition :

commit-requested(s) = commit_requested(s’) u ((T, v)}.

CREATE(T), T a non-access transaction
Precondition:

T E create-requested{ s’) - created(s’);

Postcondition :

created(s) = created(s’) v { T}.

INTERNAL_CREATE(T), T an ilCCeSS tranSaCtiOIl

Precondition :

T E create_requested(s’) - created(s’);

Postcondition :

created(s) = created(s’) v (T}.

CQMMIT(T, v)

Precondition :

(T, v) E commit_requested(s’), T E! retume

children(7’) n create_requeste

166 N. Lynch, M. Merritt

Postcondition :

committed(s) = committed(s’) u { T}.

ABORT(T)

Precondition :

T E create-requested(s’) - retumed(s’);

Postcondition:

aborted(s) = aborted v {T}.

INFORM,COMMIT_AT(X)OF(T):
Precondition :

T E committed(s’).

INFORM,ABORT_AT(X)OF(T):

Precondition :

T E aborted(s’).

Thus, the weak concurrent controller is permitted to abort any transaction that

Lemma 53. Let QI be a schedule of the concurrent scheduler, and let s be a state which
can result from applying Q! to the initial state. Then the following conditions are true.

(1)

(2)

(3)

(4)

(5)
(6)

T is in create-requested(s) exactly if T = TO or a! contains a
REQUEST_CREATE(T) OJ.XWltiO?l.

If T is a non-access transaction, then T is in created(s) exactly if a! contains a
CREATE(T)) Operation.

If T is an access transaction, then T is in created(s) exactly if a! contains an
INTERNAL_CREATE(T) OJM?ratiOPl.

(T, v) is in commit_requested(s) exactly if a! contains a COMMIT,RE-

QUEST(T, v) operation.
(T, v) is in committed(s) exactly if a! contains a COMMIT(T, v) operation.
T is in aborted(s) exactly if (x contains an ABORT(T) operation.

has had its creation requested, and which has not yet returned.

6.2. Weak concurrent systems

The composition of transactions, resilient objects and the weak concurrent
scheduler (lock managers and weak concurrent controller) is the weak concurrent
system. A schedule of the weak concurrent system is a weak concurrent schedule.

Weak concurrent systems exhibit nice behavior to transactions except possibly to
those which are descendants of aborted transactions. Thus, we say that a transaction
T is an orphan in any sequence ar of optrations provided that an ancestor of T is
aborted in cy. In many of the properties we prove for weak concurrent systems, we
will have to specify that the transactions involved are not orphans.

Introduction to the theory of nested transactions 167

6.3. Properties of weak concurrent systems

As we did for serial and concurrent schedules, we here prove a number of useful
basic properties for weak concurrent schedules. As before, most of these properties
are simple to state and prove.

6.3.1. Operations in weak concurrent schedules
As before, we include a collection of lemmas describing the possible kinds and

orders of operations that can occur in well-formed weak concurrent schedules. These
lemmas are analogous to some in Section 5, and have similar proofs; the main
difference is that we imust take proper care with orphans. As before, we go on to
show that all weak concurrent schedules are well-formed, so these properties actually
follow just from the fact that these schedules are weak concurrent.

Lemma 54. Let (Y be a well-formed weak concurrent schedule, and let T # TO be a
transaction.

(1) If a! contains any operation with transaction T, then Q! contains a CREATE(T),
@Ed a REQUEST_CREATE(T).

(2) If Q! contains a COMMIT for T then &y contains a REQUEST_COMMIT for T a
CREATE(T) and a REQUEST-CREATE(T).

(3) If ar contains an ABORT(T), then cy contains a REQUEST-CREATE(T).

Lemma 55, Let LY be a well-formed weak concurrent schedule, and T a transaction.
Assume that some descendant of T is in transaction(a). Then the following hold.

(1) CREATE(T) OCCUrS in cy.
(2) If T # TO, then REQUEST-CREATE(T) occurs in cy.

Lemma 56. Let CY be a well-formed weak concurrent schedule, and let T # TO.
(1) If o contains a REQUEST_CREATE(T), but does not contain a return operation

for T, then parent(T) is not committed in C-Y.
(2) If T is live in cy, then parent(T) is not committed in CY.
(3) If cy contains a REQUEST-CREATE(T) but does not contain a CREATE(T), or

ABORT(T), then parent(T) is not committed in cy.

Proof. (1): Suppose a COMMIT operation for parent(T) occurs in cy. Then the weak
concurrent controller preconditions for the COMMIT operation imply that the COMMIT

for parent(T) must be preceded by a REQUEST_COMMIT for parent(T). By well-

formedness, the REQUEST-COMMIT for parent(T) must follow the

REQUEST-CREATE(T), so that the COMMIT for parent(T) must follow the

REQUEST_CREATE(T). Then the weak concurrent controller preconditions for the

COMMIT operation imply that there must be a COMMIT operation for T in LY, a

contradiction.

(2) and (3) are as in paragraph 3.6.2. q

168 N. Lynch, M. Merritt

Lemma 57. Let a! be well-formed weak concurrent schedule, and let T be a transaction
which is not an orphan in a.

(I) If a contains a REQUEST_CREATE(T), but does not contain a COMMIT operation
for T, then all proper ancestors of T are live in a.

(2) If T is live in a, then all proper ancestors of T are live in a.
(3) If a! contains a REQUEST_CREATE(T) but does not contain a CREATE(T), then

all proper ancestors of T are live in a.

Proof. By repeated use of the previous lemma, well-formedness and the weak
concurrent controller preconditions. Cl

Lemma 58. Let cy be a well-formed weak concurrent schedule, and let T and T’ be
transactions with T’ a descendant of T. Assume that T’ is not an orphan in a and that
there is a COMMIT operation for T in a.

(1) If there is a REQUEST_CREATE(T’) in a, then there is a COMMIT operation for
T’ in cy.

(2) If T’ is in transaction(a), then there is a COMMIT operation for T’ in a.

Proof. (1): By Lemma 57.
(2): By Lemma 54 and part (1). Cl

6.3.2. Objects and locking
In this paragraph, we give two simple lemmas about the behavior of the locking

strategy.

Lemma 59. Let a! be a weak concurrent schedule. Let X be an object, and let T and
T’ be accesses to X. Let U be an ancestor of T which is not an ancestor of T’. Assume
that CREATE(T) precedes CREATE(T’) in a.

(1) There is either an INFORM-COMMIT-AT(X) Or else an

INFORM_ABORT_AT(X) for some ancestor of T, occurring between CREATE(T) and
CREATE(T’) in a.

(2) Either CREATE(T’) is preceded by a CC)MMIT operation for U, and by a
REQUEST-COMMIT operation for U, or else CREATE(T’) is preceded by an ABORT
operation for some ancestov of T.

of. (1): By Lemma 4%
(2): By part (1) and the preconditions of the weak concurrent controller. n

Let CY be a well-formed weak concurrent schedule, and X a basic object.
Then the s’et of active transactions after aIR(X) is exactly the set of lockholders in
the lock manager for after a.

u&on on the length of QT. Cl

Introduction to Ae theory of nested transactions 169

6.3.3. Well-formedness
Here, we show that every weak concurrent schedule is well-formed. It follows

that all the properties proved earlier in this section are actually true for all weak
concurrent schedules. From now on, we will use these properties without explicitly
mentioning well-formedness.

Lemma 61. Let Q! be a weak concurrent schedule. 7hen cu is well-formed.

Proof. By induction on the length of schedules. The base, length = 0, is trivial.
Suppose that (YT is a weak concurrent schedule, where r is a single operation, and
assume that cu is well-formed. If w is an output of a primitive P, then the result is
immediate since each primitive preserves well-formedness. No INTERNAL-CREATE
operation can cause a violation. So assume that rr is an input to a primitive P. It
suffices to show ahat currIP is well-formed. There are six cases.

(1) 7r is CREATE(T) and T is a non-access transaction. The controller precondi-
tions ensure that CREATE(T) does not appear in (Y.

(2) m is CREATE(T) and T is an access to resilient object R(X). By the lock
manager preconditions, no CREATE(T) appears in cy. The lock manager preconditions
and Lemma 60 imply that all the transactions which are active after a! are ancestors
of T.

(3) 9r is coMMIT(T, v). Then 7r is an input to 1fa-n iilJ&ion parentj T). I%‘&
concurrent controller preconditions imply that Q! contains REQUEST_COMMIT(T, v),
and so Lemma 54 implies that Q! contains REQUEST-CREATE(T). Also, weak con-
current controller preconditions ensure that Q! does not contain a return operation
for T.

(4) m is ABORT(T). Then 7r is an input to transaction parent(T). Weak concurrent
controller preconditions imply that a! contains a REQUEST-CREATE(T). Weak con-
current controller preconditions ensure that (Y does not contain a return operation
for T.

(5) 7~ is INFORM_COMMIT_AT(X)OF(T) at resilient object R(X). By the pre-
conditions of the weak controller, cy contains a COMMIT for T. If
INFORM_ABORT_AT(X)OF(T) occurs in cy, then Q! also contains an ABORT for T,
which contradicts weak concurrent controller preconditions. Thus, no
INFORM_ABORT_AT(X)OF(T) occursin CY. Since ac0~~1Tfor Toccursin a,weak
concurrent controller preconditions imply that a REQUEST-COMMIT for T also occurs
in (Y.

(6) v is INFORM_ABORT_AT(X)OF(T) at resilient object y the precondi-
tions of the weak concurrent con&oller, a! contains ABORT(T). If INFORM-CM-
MIT_AT(X)OF(T) occurs in cy, then a! contains a COMMIT for T, which contradicts
weak concurrent controller preconditions. Thus, no INFORMXOMMITA~
occurs in cy. Cl

170 N. Lynch, M. Merritt

6.3*4. Visibility and weak concurrent schedules
This paragraph states and proves important probe invoking visibility in weak

concurrent schedules. In particular, the most irnpoeaot result of this paragraph is
Lemma 66, which relates the portion of a weak CO~Q pent schedule which is visible
to a particular transaction, to schedules of transaction5 aad basic objects. The first
lemma shows how visibility propagates among the ttansactions during a weak
concurrent execution.

Lemma 62. Let a~ be a weak concurrent schedule, ele If is Q sirrgle opercrtion.
(1) If 7~ is CREATE(T), then visible(arr, T) = vkibjeb, pafent(T))lr.
(2) If w is COMMIT(T, v), then visible(a?r, pa 7’)) s (visible(cu, T)n.
(3) If ?I is ABORT(T), then visible(acre, paren F Wble(a, parent(T)) W.
(4) If w is COMMIT(T, v), and T’ is a descenhbr of parent(T) but not T, then

visible(an; T’) - visible(air, parent(T)) = Vi@& q T’) z visible(a, T).

Proof. (1): By Lemma 55, ?z is the first serial ope&On in clrr whose transaction
is a descendant of T, and T is not visible to pareflR(r). Thus, any transaction other
than T visible to T in a7r is visible to parent(T) ib IWP. metl parent(T) is visible
to T in an, and by Lemma 8, visible(arr, parent(T)& e visibIe(alr, T).

By the definition of visibilty, any transaction visible tO parent(7’) in CYQ is visible
to parent(T) in a, and visible(a, parent(T)) = vi5 hla(otn, parent(T)). Substituting
into the equality above, we have the result.

(2): By the definition of visibility, any transactiion visible to parent(T) in av is
either visible to parent(T) in a, or is visible to 7’ ib IY. But any transaction visible
to parent(T) in a is visible to T in a, so we habe that any transaction visible to
parent(T) in aq is visible to T in a, and visiblet a arent(7)) is a subsequence
of visible(a, T)llr. It follows immediately from the fihition of visibility that any
transaction visible to T in a is visible to parent(?) in arl~, SO that visible(a, T) is
a subsequence of visible(av, parent(T)). The resQlt

(3): Immediate from the definition of visibility.
(4): Clearly, visible(a, T’) is a subsequence of lQ(are, al). Any operation in

visible(air, T’) - visible(a, T’) has a transaction is a descendant of T, and so
is either w or is visible to T in a, and thus is in e& T)w, Thus we have

visible(alrr, T’) - visible(a, T) w = visiblei cy, T) -visible(Iy, T) m.

As 7r is not in visible(a, T’), this equals visible&, r’) -visible(a, T). By part (2),
visible(an; parent(T)) = visible(a, T) W, and the retshplt f~llsws by substitution in the
first identity. Cl

Now we prove two lemmas involving visibility a&d t$e behat& of resilient objects
in weak concurrent systems.

3. Let a be a weak concurrent schedule.) be Q resilient object, and
let T and T’ be accesses to R(X). If T’ is live and rtot an in Q! and CREATE(T)

Introduction ta the theory of nested transactions 171

occurs in cy, then either T is visible to T’ in a, or else CREATE(T) is in the scope of
UPl INFORM-ABORT-AT(X in+(x).

Proof. There are two cases.
(1) CREATE(T) precedes CREATE(T’) in (Y. Assume T is not visible to T’ in CY.

Then Lemma 59 implies that there is an INFORM_ABORT,AT(X) operation for some
ancestor of T, occurring after CREATE(T) in cy.

(2) CREATE(T’) precedes CREA'~E(T) in cy. Then Lemma 59 implies that there is
either a COMMIT or an ABORT for some ancestor of T’, in cy. Since T’ is not an
orphan in cy, there is a COMMIT for aa ancestor of T’ in cy. Then Lemma 58 implies
that T’ is returned in QC, a contradiction. Cl

Lemma 64. Let Q! be a weak concurrent schedule. Let R(X) be a resilient object, let
T and T’ be accesses to R(X), and let T” be any transaction. Assume that T’ is not
an orphan in a. If an operation w of T precedes an operation ?r’ of T’ in cy, w is not
in the scope of an INFORM.,_ABORT and T’ is visible to T” in a, then T is visible to T”
in a.

Proof. By well-fonsedntss, CREATE(T) and CREATE(T') are operations in (Y, in that
order. Let cy’ be the prefix of ar ending with CREATE(T’). Then T’ is live and not
an orphan in (Y’. By Lemma 63, T is visible to T’ in (Y’, and so in cy. Lemma 8
implies that T is visible to T’ in LY. Cl

The following lemma is straightforward.

Lemma 65. Let Q! be a weak concurrent schedule, and let T be a transaction which is
not an orphan in a. Anv transaction T’ visible to T in cy is not an orphan in a.

Proof. If T’ is an ancestor of T, the result is immediate. Otherwise, COMMIT

operations appear in ar for every proper descendant of lca(T, T’) that is an ancestor
of T’. By well-formedness, none of these transactions has aborted. Since the remain-
ing ancestors of T’ are also ancestors of T, the result follows. Cl

We are now ready to prove the key lemma of this paragraph.

Lemma 66. Let a! be a weak concurrent schedule, let T not be an orphan in a, and let
P be a resilient primitive.

(1) If P is a transaction T’, then visible(q T)I T’ is a pre@ of a 1 T’ and a schedule
of T’.

(2) If P is a resilient object R(X), then visible(a, T)IR(X) is a preJix of
undo(ar 1 R(X)) and a schedule of basic object X.

172 N. Lynch, M. Merritt

proof. (1): Immediate from Lemmas 11 and 1.
(2): First, we show that any operation in visible(a, T)IR(X) also occurs in

undo(ac]R (X)). If rr is in visible(a, T)IR(X), it means that all ancestors of transac-
tion(w) up to lca(transaction(rr), T) have committed. By assumption, T is not an
orphan in ac, so Lemma 65 implies that transaction(w) is not an orphan in a. Thus,
by the preconditions of the weak concurrent controller there is no INFORM-ABORT
for any ancestor of transaction(?r) in a. Therefore, ?T is in undo(a IR(X)).

Now we consider any two operations n and 7~’ of undo(alR(X)), where 7r
precedes 7r’. Assume that 7~’ is in visible&, T)IR(X). Let T” = transaction(?r) and
T’ = transaction(tr’). Then T’ is visible to T in a, and T’ is not an orphan in GY by
Lemma 65. Since 7r is in undo(@(X)), no INFORM-ABORT occurs at R(X) for
any ancestor of T” in cy, with 7r in its scope. Then Lemma 64 implies that T” is
visible to T in a. Thus, 7r is in visible@, T)IR(X). It follows that visible(ar, T)IR(X)
is a prefix of undo(culR(X)).

By Lemma 61, ar IR(X) is a well-formed schedule of resilient object R(X). Then
the resiliency condition implies that undo(aIR(X)) is a schedule of basic object X.
So by Lemma 1, visible(q T@(X) is a schedule of basic object X. Cl

Finally, we prove that, in a weak concurrent schedule, concurrently executing
transactions access disjoint sets of resilient objects.

Lemma 67. Let ar be a weak concurrent schedule, and let T and T’ be transactions
which are not orphans in QC. Let T”= lca(T, T’). Let p = visible(Qc, T) - visible(cy, T’)
andp’= visible(a, T’) - visible(a, T”). 73en no resilient object has operations in both
@ and p’.

Proof. The result is trivial if T is an ancestor of T’ or vice versa, so assume the
contrary. Then T’ is neither T nor T’.

Let R(X) be a resilient object such that both p and p’ contain operations of
(X). Thus, there are two accesses to X, U and V, such that operation n of U

and operation 4 of V occur in p and p’ respectively. Then U is visible to T, V is
visible to T’, but neither U nor V is visible to T”, in a. It follows that U is not
visible ?o T’ and V is not visible to T in cy. In particular, U f V.

By well-formedness, we can assume without loss of generalit) lat w = CREATE(U)
REATE(V). We can also assume without loss of generality that n precedes
nce T and T’ are not orphans in LY, Lemma 65 implies that U and V are

not orphans in cy. Then ma 59 implies that U is visible to V in (Y. But then U
is visible to T’ in a, a contradiction. 0

current systems

In this section, we prove the main results of this paper: that concurrent schedules
are seria,lly correct, and that weak concurrent schedules are correct at TO.

Introduction to the theory of nested transactions 173

results follow from an interesting theorem about weak concurrent schedules, which
says that the portion of any weak concurrent schedule which is visible to a live
non-orphan transaction is equivalent to (i.e., looks the same at all primitives as) a
serial schedule.

The proof of this theorem is quite interesting, as it provides considerable insight
into the scheduling algorithm. The proof shows not only that a transaction’s view
of a weak concurrent schedule is equivalent to sonte serial schedule, but by a
recursive construction, it actually produces such a schedule. It is interesting and
instructive to observe how the views that different transactions have the system
execution get passed up and down the transaction tree, as CREATES, COMMITS and
ABORTS OCCUT.

Theorem 68. Let cy be a weak concurrent schedule, and T any transaction which is live
and not an orphan in (Y. 7Ren there is a serial schedule /3 which is equivalent to
visible(a, T).

Proof. We proceed by induction on the length of ol’- The basis, length = 0, is trivial.
Fix a! of length at least 1, and assume that the claim is true for al! shorter weak
concurrent schedules. Let ?r be the last operation of cy, and let LY = CY’?I. Fix T which
is live and not an orphan in cy. We must show that there is a serial schedule /3 which
is equivalent to visible(a, T).

If ?r is not a serial operation, then

visible(Ly’, T) = visible(serial(a’), T) = visible(serial(ar), T)

= visible(a[, T),

and the result is immediate by induction. So we can assume that 7ir is a serial
operation. Also, if transaction(r) is not visible to T in cy, then visible& T) =
visible(cu’, T), and the results is again immediate by induction. Thus, we can assume
that transaction(r) is visible to T in cy. Also, T is not an orphan in cy’. There are
four cases.

(1) ?T is an output operation of a transaction or resilient object. Then the inductive
hypothesis implies the existence of a serial schedule p’ which is equivalent to
visible(a’, T). Let p = /3’~. We must show that p is equivalent to visible(ir,, T) and
serial.

Let P be any primitive. Then

pl P = p’lrl P = visible(cy ‘, T) ~1 P by inductive hypothesis

= visible(a, T)I P by Lemma 12.

Therefore, p is equivalent to visible(a, T).
Let 7~ be an output of primitive R Then PIP = visible(cy, T)I P by equivalence,

which is a schedule of P by Lemma 66. Lemma 4 implies that J3 is serial.
(2) 7~ is a CREATE(T’) operation. Then transaction(n) = T’, and so T’ is visible

to T in CY. Then Lemma 55 implies that P is the first operation whose transaction

N. Lynch, M. Mewit1

is a descendant of T’. Then, by the definition of visibility, it must be that T’ = T.
By Lemma 57, parent(T) is live in cy ‘. Since parent(T) is not an orphan, the inductive
hypothesis implies the existence of a serial schedule P’ which is equivalent to
visible(ar’, parent(T)). Let /3 = p ‘rr. We must show that /3 is equivalent to vis-

ible(cu, T) and serial.
Let P l3 any primitive. Then

p ,P = p’?r)P = visible(a’, parent(T))?rlP by inductive hypothesis

= visible(cy, T)\ P by Lemma 62.

Thus, p is equivalent to visible(a, T).
Consider any execution of the serial system having /3’ as its operation sequence,

and let s’ be the state of the serial scheduler after p’. We show that v is enabled
in s’. That is, we show that T E create_requested(s’), that T ti created@‘), that
T E aborted(s’), and that siblings(T) n created(s’) G returned(s’).

Consider any execution of the weak concurrent system having Q! as its operation
sequence, and let s Be the state of the weak concurrent scheduler after Q’. State s
contains a component s, for the weak concurrent controller and a component sx
for the lock manager for each object X.

If T = To, then T E create_requested(s’) by the initial conditions. If T # To, then
T E create_requested(s,) by the preconditions of the concurrent scheduler, so a
REQuEsxcRmtrE(T) operation occurs in cy’. The REQuEST_~REATE(T) operation
has transaction parent(T), and so is in visible(a’, parent(T)), and thus is in p’.
Therefore, T E create_requested(s’).

If T E created(s’), then there is a CREATE(T) operation in p’, and hence in cy’.
Then Q! would have two such operations, which is impossible, so T e created(s’).

If T E aborted(there is an ABORT(T) operation in p’, and hence in (Y’. Then
Q! would have an ABORT(T) followed by a CREATE(T). This is impossible, so
T e aborted(s’).

Assume U E siblings(T) n created(s’). Then there is a CREATE(U) operation in
p’, and so in visible(Ly ‘, parent(T)). Since CREATE(U) occurs at U, U is visible to
parenti T) = parent(U) in a’; thus, COMMIT(U, u) occurs in o’, for some u. Since
COMMIT(U, u) occurs at parent(T), COMMIT(U, u) is in visible(ar’, parent(T)), and
so in p’. Thus, U E returned(

(3) v is a COMMIT(T’, u) operation. Then T” = parent(T’) = transaction(7r) is
visible to T and not an orphan in cy. Also, T’ is not an orphan in (Y’, by Lemma
65. Then, since Q! is well-formed, T’ is live in Q’ and so, by Lemma 57, T” is live
in a’ and so in cy. Since T” is live and visible to T in cy, T” is an ancestor of T.
Since T is live in cy, Lemma 58 implies that T is not a descendant of T’. The
inductive hypothesis yields two ser& schedules, p’ and p”, which are equivalent
to visible(cu’, T’) and visible(a’, T) respectively. Let y = visible@‘, T’). Let p, =
P’ - Y and /32 = P”- y. We show that /3 = 7pI 7~3~ is equivalent to visible(a, T) and
serial.

Lemma 28 implies that y is a serial schedule.

Introduction to the theory of nested transactions 175

Since T’ is visible to T’ in LY’, Lemma 10 implies that

visible(Ly ‘, T”) = visible(visible(Ly ‘, T’), T”),

which is equivalent to visible@‘, T’) = y; thus y is equivalent to visible(ar’, T’).
&SO, since T” is visible to T in (Y’, Lemma 10 implies that

visible(a’, T”) = visible(visible(Ly ‘, T), T”),

which is equivalent to visible(P”, T”). Thus, y is also equivalent to visible@‘, T”).
Then, by Lemma 31 (applied with serial(&) as the schedule a! hypothesized in

the lemma), ~$3~ and y/32 are serial schedules which are equivalent to p’ and p”,
respectively.

We have that visible(a, T”) = visible(cy ‘, T’)rr by Lemma 62, which is equivalent
to p’n; which is in turn equivalent to y&r. That is, visible@, T”) is equivalent to

M1 w*
Since p” is equivalent to visible(a’, T) and y is equivalent to visible(Cy ‘, T’), by

Lemma 10, p2 = /V’- y is equivalent to

visible(a’, T) - visible(a’, T’) = visible(a, T) - visible(cy, T’)

by Lemma 62.
Thus, p is equivalent to visible(cy, T”)(visible(cy, T) - visible(cy, T’)). Since T” is

visible to T in cy, by Lemma 8, it is easy to see that the same operations appear in
this schedule as in visible(cu, T). Let P be any primitive. Then visible(cy, T”)IP is a
prefix of visible(iy, T)(P, by Lemma 66. It follows that PIP = visible(Ly, T)I P, so that
p is equivalent to visible(cu, T).

It remains to show that p is serial. This follows from Lemma 32, provided we
can show that:

(3a) y& 7r is a serial schedule,
(3b) T’ sees everything in rpl,
(3~) T sees everything in yP2,
(36) y = visible(y&, T’) = visible(yP2, T’) and
(3e) no basic object has operations in both p, and &.
(3a): Consider any execution of the serial system having @ as its operation

sequence, and let s’ be a state of the serial scheduler after #, . We show that n is
enabled in state s’. That is, we show that (T’, v) E commit_requested(s’), that
T’ti returned(and that children(T’) n create_requested(s’) c ;eturned(s’).

Consider any execution of the weak concurrent system having cy as its operation
sequence, and let s be the state of the weak concurrent scheduler after cu’ w
components s, (the weak controller state) and sx for every object X (the lo
managers).

Since the weak concurrent scheduler is able to perform COMMIT(T', v) in state
s, it must be that (T’, v) is in commit_requested(s,), and so it must be that T’ issues
a REQUEST_COMMIT(T’, v) in a?. Since T’ is visible to itself, and /3’ is e

176 N. Lynch, M. Merritt

to visible(a’, T’), it follows that this REQUEST_COMMIT(T’, u) operation also occurs
in T&. Therefore, (T’, u) is in commit_requested(s’).

Since 4~ is well-formed, at most one return operation for T’ appears in ar; thus,
T’ is not in retumed(s’).

Fix U e children(T’) n create_requested(s’). Then REQUEST_CREATE(U) is per-
formed at T’ in y&, and hence in (Y’, so U E create-requested&). Since the weak
concurrent scheduler is able to perform COMMIT(T’, o) in state s, it must be that
U E retumed$J Therefore, a return operation for U is performed at T’ in cy ‘. Since
T’ is visible to itself and @I is equivalent to visible(ar’, T’), this implies that the
return for U also occurs at T’ in ~$8,. Therefore, U is in retumed(s’).

(3b): Immediate from Lemma 10.
(3~): Immediate from Lemma 10.
(36): We have that y is equivalent to both visible@‘, T”) and visible(p”, T”),

and hat y/ill and ypz are equivalent to /3’ and p” respectively. By Lemma 10, y is
equivalent to both visible(#, , T”) and visible(yP2, T”). Equality follows.

(3e): Immediate from Lemma 67.
(4) ‘ir is an ABORT(T’) operation. Then T” = parent(T’) = transaction(m) is visible

to ‘1” in ar, and so is not an orphan in QC, by Lemma 65. Tken T’ is live in Q’ and,
by Lemma 57, T” is live in cy ’ and so in QI. Since T’ is live and visible to T in (Y, T
is a descendant of T’. Since T is not an orphan in cy, T is not a descendant of T’.
Ri.3 inductive hypothesis yields two serial schedules, /Y and p”, which are equivalent
co visible(a’, T’) and visible(Ly ‘, T) respectively. Let /3* = fl”- p”. We show that
p = p’& is equivalent to visible(a, T) and serial.

By Lemma 3 1, p’& is a serial schedule which is equivalent to p”.
Let P be a primitive other than T’. Then

pIP=p’p,IP=p’IP = visible(cy ‘, T)I P = visible(cy, T)I P

by Lemma 62. Also, since T” is visible to T in (Y,

visible(cy, T) 1 T” = visible(cy, T”) 1 T” = visible(a ‘, T”) WI T’ by Lemma 62

=P’nlT’=flIT”.

Thus p is equivalent to visible(a, T).
It remains to show that p is serial. This follows from Lemma 33, provided we

can show that
(4a) /3’w is a serial schedule,
(4b) T sees everything in p’p, , and
(4~) p’ = visible@‘, T”) = visible@‘&, T”).
(4a): Consider any execution of the serial system having fi’ as its operation

sequence, and let s’ be a state of the serial scheduler after p’. We show that 7r is
enabled in state s’. That is, we show that T’ E create_requested(s’), that
T’ ti created(s’), T’ ti aborted(and that siblings(T’) n created(8’) z retumed(s’).

Consider any execution of the weak concurrent system having a as its operation
sequence, and let s be the state of the weak concurrent scheduler after cy’ with

Introduction to the theory of nested transactions 177

components s, (the weak controller state), and sx for every object X (the lo&
managers).

Since the weak concurrent scheduler is able to perform ABORT(T') in state S, it
must be that T’ is in create_requested(s,), and so it must be that T” issues a
REQUEST_CREATE(T’) in cy’. Since T’ is visible to itself, and ~3’ is equivalent to
visible(cy ‘, T’), it follows that this REQUEST_CREATE(T’) operation also occurs in
fl’. Therefore, T’ is in create_requested(s’).

Since a! cannot contain two ABORT(T’) operations, there cannot be an ABOF.T(T’)
operation in (Y’, and so there cannot be one in /3’. AsslIme that there is a CREATE(T’)
in p’. Then T’ is visible to T’ in (Y’, so COMMIT(T', occurs in cy’. ut then a
COMMIT(T’) and ABORT(T’) both occur in cy, which cannot occur. Therefore, there
is neither an ABORT(T’) nor a CREATE(T’) in p’, and so T’ ;q .& neither in abortad
not in created(s’).

Fix U E siblings(T’) n created(s’). Then there is a CREATE(U) in /3’. But then U
is visible to T” in LY’, so that a COMMIT for U occurs in (Y’, ?aA ~VMX (because
parent(U) is visible to T” in a’) a COMMIT for U I jicurs in p’. Therefore, U E
retumed(s’).

(4b): Immediate from Lemma IQ.
(4~): The first equality follows from Lemma 10. Clearly, p’= visible(p’, T”) is a

prefix of visible(#‘P, , T”). Equality follows because any operation in p1 visible to
T” in B’& wou’ad also be visible to T’ in (Y’, and so would be in p’ and not &. El

CoroIIary 69. Every weak concurrent schedule is serially correct for every non-orphan
non-access tr msaction.

Proof. Let Q be a weak concurrent schedule. Let T be a non-access transaction that
is not an orphan in LY. We must show that IYI T is a serial schedule. Note that T is
not an orphan in any prefix of (Y. There are three cases:

(1) al T is empty. Then the result is trivial.
(2) T 3s live in cy. Then Theorem 68 yields a serial schedule p that is equivalent

to visible(cy, T). Thus, CY 1 T = visible(tz, T)I T = PI T, which suffices.
(3) T is a transaction which is live in some proper prefix of cy, but is not live in

cy. Since cr is well-formed, a! has a prefix ar’w, where 7~ is a COMMIT operation for
T, u’lT=aIT and T is liV s in a?. Then Theorem 68 yields a serial schedule p that
is equivalent to visible(cy ‘, T)I T Thus,

which suffices. Cl

Now, since TO cannot become an orphan (having no ancestors to abort), our first
major correctness result is immediate.

178 N. Lynch, M. Merritt

Corollary 70. Every weak concurrent schedule is seriaZly correct for TO.

Having proved correctness properties for weak concurrent schedules, we are now
ready to prove the correctness of concurrent schedules.

Lemma 71. Every concurrent execution is a weak concurrent execution.

Proof. The proof is bW induction on execution length, with a trivial basis. Let
y = y’, s’, W, s be a concurrent execution with (s’, or, s) a single step of the concurrent
system, and assume the lemma holds for y’. Let sl: and s, denote the states of the
concurrent controller in system states s’ and s.

If w is any operation other than an ABORT, the result is immediate since the
postconditions for all other operations are identical in the concurrent and weak
concurrent systems, and the preconditions are either identical or are stronger in the
concurrent system than in the weak concurrent system. Assume that 7r is an
ABORT(T). We must show that T E create_requested(ss) - retumed(si).

Since 7r is enabled in state sf in the concurrent controller,

T E (create_requested(s;) - created(s:) - aborted(s’))
u (commit_requested(ss) - retumed(s[)).

If T is in create_requested(ss) - created(ss) - aborted(s[), Lemma 45 implies that
y’ contains no CREATE(T) or ABORT(T) operation. By well-formedness, y’ also
contains no COMMIT operation for T, and the result follows from Lemma 45. On
the other hand, if T is in commit_requested(sL) -returned($), Lemma 45 implies
that a REQUEST-COMMIT operation for T occurs in y’. By well-formedness, this is
preceded by a CREATE(T) operation and, by the concurrent controller precondition,
this is preceded by a REQUEST-CREATE for T. Finally, again by Lemma 45, the result
follows. El

Now we can prove the second major result of the paper.

Corollary 72. Every concurrent schedule is seriully correct.

Proof. Let ar be a concurrent schedule. Then a! is also a weak concurrent schedule,
by Lemma 71, and is well-formed, by Lemma 61. We must show that QI is serially
correct for every transaction T There are three cases.

(1) (~1 T is empty. Then the result is trivial.
(2) T is live in a. By Lemma 50, all of T’s ancestors are live in ~1, so that T is

not an orphan in (Y. Then Corollary 69 yields the result.
(3) T is a transaction which is live in some proper prefix of cy, but is not live in

y Lemma 51, cy has a prefix at%, where v is a return operation for 7; a’1 T = cy 1 T

Introduction to the theory OJ nested transactions 179

and T is live in cy’. By Lemma 50, all of T’s ancestors are live in (Y’, so T is not an
orphan in cy’. Then Corollary 69 implies that (Y’ is serially correct for T, so rnat CY
is serially correct for T Cl

For completeness, we include an analogue of Theorem 68 for concurrent schedules.

Theorem 73. Let cy be a concurrent schedule, and T any transaction which is live in
QI. 7hen there is a serial schedule p which is equivalent to visible(cr, T).

Proof. Lemma 71 implies that ar is a weak concurrent schedule. Since T is live in
a, Lemma 50 implies that T is not an orphan in cy. Then Theorem 68 yields the
result. Cl

8. Discussion

In this paper, we have presented a formal model for describing nested transaction
systems and their properties. The model has many features that we believe make it
a major contribution to the understanding of transaction systems, and we highlight
some of these below.

First, the entire model is based on a very general and very simple underlying
model for c ~n~~rrcnt computation, the I/O automaton model. The general
definitions and properties of this underlying model provide the necessary underpin-
nings for our entire transaction modelling effort. This modelling is very easy to learn
and use, and its usefulness extends much beyond transaction systems. Thus, it seems
to us to be a very satisfactory foundation for our work.

Our transaction system model permits simple, yet completely rigorous description
of concurrency control algorithms in ways which correspond very closely to the
usual informal ways of understanding the algorithms. The important components
of transaction systems, the transactions, data and schedulers, are described explicitly,
which greatly facilitates reasoning about them.

There is a substantial amount of work in this area which does not represent all
of these components explicitly, but only implicitly, by properties of their behavior
[3,9,39, for example]. There are problems with this approach. A key ingredient
that is usually absent from such implicit models is a clear notion of “causality”,
describing how particular actions (operations) are triggered by other actions or
states. In contrast, our explicit representation of all system components as I/O
automata makes it easy to understand exactly what causes all operations f 3 occur.
When causality is important in reasoning about algorithms, as in [9], implicit models
can be extraordinarily difficult to use. Even in cases where implicit models can be
used, we see the present work as providing a formal and intuitive basis for that work.

180 N. Lynch, M. Merritt

Our model represents transactions as essentially arbitrary automata, sLpbject only
to simple syntactic constrairts. This approach is much more general than representing
them as programs in some particular, overly-constrained language.

me I/O automata model permits description of algorithms in an abstract form
which is not tied to a particular programming language or system, and which allows
maximum nondeterminism. An implementation of an algorithm for a particular
system will generally restrict the nondeterminism allowed in our presentation,
because of the need to tailor the implementation to the requirements of a particular
environment. However, since the implementation is just a restriction of the abstract
algorithm, correctness properties of the algorithm within our model will hold
a fortiori for the implementation.

Formulating nested transaction systems as I/O automata permits precise formula-
tion of the correctness conditions to be satisfied by concurrency control algorithms;
those correctness conditions can be stated at the transaction interface, an interface
which does not contain explicit information about object representation. Because
of this choice of interface, the correctness conditions can be stated in a robust way:
the same conditions can be useful for describing the properties of many different
kinds of algorithms, some of which manipulate the data in very different ways. Also,
the correctness conditions can be described in a way that is meaningful to a user
of the system.

The particular correctness conditions that we describe in this paper involve serial
correctness at transaction interfaces. We believe that these particular correctness
definitions are very interesting, and will be useful for describing the correctness of
most of the usual algorithms studied in the concurrency control area. That is, the
same conditions appear to be the right ones to use to describe correctness of many
different kinds of algorithms, including these that use locking, timestamps, multiple
versions, and replicated data.

The model permits rigorous correctness proofs to be carried out for concurrency
control algorithms in ways that follow intuitive understanding of the algorithms.
For example, in this paper, we have used the model to describe and show the
correctness of a very important nested transaction concurrency control algorithm.
Our correctness proofs are constructive and provide considerable intuition about
the workings of the algorithm. In contrast to most correctness proofs for concurrent
algorithms, our proofs are not voluminous low-level case-analyses; rather, they
consist of a large number of clear and natural lemmas about the behavior of the
algorithm. These lemmas can be understood individually, and build upon each other
in the manner of good mathematics. Many of the lemmas should be reusable in
extens’ I s of this work as well.

A successful model of nested transactions should contain the classical theory as
a special case, in a way which is natural and sheds some light on that case. We

at our model has contributed much to the classical theory. For example,
automaton model provides a general underlying model, a missing component

general modelling of the transactions

Introduction to the theory of nested transactions 181

unifies the earlier collection of somewhat arbitrary approaches. Our use of the
transaction interface for stating correctness conditions is also an improvement.

Another contribution to the classical theory is in motivating serializability as a
correctness condition. Serializability consists of two criteria: individually, each
transaction must see a consistent state, and together, they must appear to run in a
serial order. (A schedule in which each transaction reads and writes the initial state
of the database provides a consistent state to each transaction, but is not serializable.)
Why is this second ordering property a part of the generally accepted correctness
condition of the classical theory? Clearly, because of implicit nesting in the context
of the transaction system. In practice, transactions perform tasks on behalf of some
external entity or entities, which may expect one transaction to see the results of
the next. In the natural formulation of classical systems within the present model,
the classical transactions are children of T,, with data accesses as their only children.
The root is an explicit representation of the external environment in which the
system runs. Thus, the ordering property of serializability is a natural consequence
of the requirement that all transactions see serial schedules, including TO. It does
not have to be introduced as an independent requirement in need of separate
justification.

By now, there has been a large amount of systems design and algodthms work
that uses or implements nested transactions. It seems lik+r that these ideas will
form the basis of future programming languages for distributed computing. IIowever,
there is currently a problem with the presentation of this work. Some of these
algorithms are presented in the context of specific systems and programming
languages. Very useful and general ideas are too intimately connected with details
of the systems to be fully appreciated, particularly for readers with on!-~ a passing
understanding of those systems. This level of detail also makes carefui reasoning
about the algorithms very difficult.

We believe that our model has provided the necessary framework and some of
the necessary vocabulary for describing this work in a clear and unambiguous way.
We are currently studying much of this work on systems design and algorithms

using our mc?el, and our preliminary results indicate that it works very well.
Throughout the paper, we have described connections with other people’s work

as appropriate. Here, we mention some of the particular modelling work that relates
most closely to ours, and describe the connections in more detail.

First, the pioneering work of Bernstein and Goodman [S, etc.] has had a strong
influence on this work. Quite early, they recognized the need for a model for
single-level transaction systems, that would have many of the characteristics which
we have sought for nested transaction systems. They have carried out extensive
research on precise understanding of single-level transaction concurrency control
algsurithms. They have presented formal statements of correctness conditions, in
terms of serializability of the accesses to data objects by different transactions. They
have described some concurrency control algorithms with precision, and ha
correctness of some algorith characterizes semi

182 N. Lynch, M. Merritt

by absence of cycles in a certain depen ency relation. Their work has gone a long
way toward providing precise understanding of the work in this area.

However, the particular models used by Bernstein and Goodman have some
problems which limit their applicability. For instance, the basic correctness condition
is stated in terms of the interface between the data objects and the algorithm. There
are many algorithms which handle objects in very different ways, e.g., using multiple
versions, or making multiple copies in order to permit “backing out” of operations.
Since these algorithms do not preserve the specified object interface, they would
not be considered correct under the same correctness condition. Thus, the correctness
condition must be modified. Another limitation is that the proof technique, which
involves proving absence of cycles, is a proof by contradiction; it does not give
much insight into the operation of the algorithms. For many reasons, it is not at all
clear how to extend these frameworks to handle nesting of transactions.

Earlier attempts in [4,9,19] to model nested transactions have made significant
contributions. For example, [191 contains a language-independent model, which is
used to give precise correctness conditions and a proof for a locking algorithm.
Many of the ideas in that work have been useful in providing a vocabulary for
talking about nested transactions. However, attempts to extend the model of [19]
to handle correctness of orphans, as [9] demonstrates, are not sufficiently expressive.
Certain aspects of the model lead to technical difficulties; for example, it fails to
model the transactions explicitly, using instead a specification of their behavior.
Our new model builds on the strengths of the earlier work, while managing (we
believe) to avoid its weaknesses.

Finally, the very recent work in [3] proposes another general model for nested
transactions. While on the surface the models appear quite different, they are actually
“compatible”, in that the concepts described in [3] seem to be easily definable
within our model. The style of the model in [33 is different from ours: their work
models transactions and the scheduler implicitly, for instance. However, we believe
that their important axiomatic statements of properties can be described as assump-
tions and lemmas about behaviors of components in our model. Also, the partial
orders which they use to model executions can actually be defined simply and
directly in terms of our linearly-ordered executions. There are many points of
agreement: the use of the transaction interface for stating correctness conditions,
and the use of the virtual root transaction T,, to mention two.

On the other hand, the emphasis in [3] is on a different example from the one
studied in this paper. They consider multiple levels of abstraction for the data, and
regard transactions at any level of the transaction tree as accesses to data at a
corresponding !evel of abstraction. This view meshes quite well with our model,
where, for example, we use the same CREATE notation for creation of a transaction
and invocation of an operation on data. Their paper clarifies the concurrency control
requirements for data at different levels, when the correctness condition is serial
correctness at To. We hope and expect that it will be easy to restate their results as
claims about our model.

Introduction to the theory of nested transactions 183

We note that the work in [3] only treats concurrency control, but does not address
the very critical and difficult issues of resiliency.

9. Further work

This paper is an embarkation on a major project to formulate a unified presentation
of the most important algorithms for concurrency control and resiliency, especia$$y

those for nested transactions. In this paper, we have defined a genera$ framework

meeting the requirements outlined above. We have demonstrated the power of this

framework by using it to specify two correctness conditions for nested transactions,
to present two locking algorithms for implementing nested transactions, and to
prove that the algorithms satisfy their respective requirements.

It is possible that additional work might yield shorter and more elegant correctness
proofs for the algorithms of this paper. One idea which might be helpful is suggested
by the close relationship between each resilient object and its corresponding lock
manager. Instead of treating the two components separately, it might be useful to
combine the resilient object and lock manager into a single object which handles
both concurrency control and resiliency. By removing the need to reason about the
interface between the resilient object and the lock manager, this strategy might
permit simpler proofs. This remains to be seen, however.

We are currently using the same framework to study many other algorithms. For
example, in [7], we consider a variant of the weak concurrent system of this paper,
in which the only operations on objects are reads and writes, and in which read
and write lo&s are maintained. The resulting algorithm is essentially that of Moss
1221. We *I ,e a description and complete correctness proof. We are currently
generalizing the work of the present paper and that of [7], to a “generalized locking
algorithm” for nested transactions; this algorithm will take advantage of special
properties of the objects to permit flexible patterns of lock sharing. We are also
considering timestamp and multiversion algorithms [l], and algorithms which use
replicated data objects 181.

We are particularly interested in studying algorithms which give rise to live
orphans, i.e., live transactions whose ancestors have aborted [9,12,17,26]. Our
serial correctness condition provides a formal definition of orphan correctness-that
all transactions (including orphans) “see consistent data” 19). In [111, we describe
and prove correctness of several of the recently-developed algorithms for orphan
management. This work is simplified by building on the foundation provided by
the present paper.

Another direction of interest is the explicit representation of distribution within
the model. It is fairly natural to model each transaction and object as located at
different sites, each with a local automaton representing the resident portion of the
(distributed) scheduler. These automata would communicate with each other in
order to implement the (centralized) schedular studie here. The natural next step

184 N. Lynch, M. Merritt

would be to model failure resilience, as various components lose information or
fail altogether.

The reader might have noted that our correctness conditions do not guarantee
anything about the system making progress, but only about “safety” properties.
Further work is needed to incorporate guaranatees of progress. This work is likely
to be difficult, however. Only recently, in [20], have we achieved what we consider
to be a satisfactory understanding of the eventuality and fairness issues for the basic
I/O automaton model, so that we can even formulate the conditions we want to
satisfy. But even with the ability to state such conditions, the algorithmic issues still
seem difficult.

10. Acknowledgment

We thank Bill Weihl for many, many comments and questions, and much
encouragement, during the course of this project. We also thank all the other
members of the ARGUS design and implementation group at MIT, for providing
a concrete model for us to try to abstract and generalize. Also, we thank Yehuda
Afek, Alan Fekete, Ken Goldman aild Sharon Per1 for their comments on earlier
drafts of the paper.

References

PI

r4

[31

PI

C61

[71

PI

PI

J. Aspnes, A. Fekete, N. Lynch, M. Merritt and W. Weihl, A theory of timestamp-based concurrency
control for nested transactions, in: hoc. 14th Internat. ConJ on Very Large Data Buses, Los Angeles,
CA (1988).
J.E. Allchin and M.S. McKendry, Synchronizaticn and recovery of actions, in: froc. 2nd ACM
§IGACT-SIGOPS Symp. on plirrciples of Distributed Computing, Montreal, Quebec, Canada (1982)
31-44.
C. Beeri, P.A. Bernstein and N. Goodman, A model for concurrency in nested transaction systems,
Tech. Rept. TR CS-86-1, Department of Computer Science, The Hebrew University, Jerusalem,
Israel.
C. Beeri, P.A. Bernstein, N. Goodman, M.Y. Lai and D.E. Shasa, A concurrency control theory
for nested transactions, in: fioc. 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed
Compfing, Montreal, Quebec, Canada (1982) 45-62.
P.A. Bernstein and N. Goodman, Concurrency control in distributed database systems, ACM
Compuf. Surveys 13(2) (1981) 185-221.
K.P. Eswaren, J.N. Gray, B.A. Lorie and I.L. Traiger, The notions of consistency and predicate
locks in a data base systems, Comm. ACM 19(11) (1976) 624-633.
A. Fekete, N. Lynch, M. Merritt and W. Weihl, Nested transactions and read-write locking, in:
Proc. 6th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, San Diego,
CA (1987) 97-111.
K. Coldwn and N. Lynch, Quorum consensus in nested transaction systems, in: Proc. 6th ACM
SIGACT-SIGOPS Symp. on Principles of Distributed Computing, Vancouver, B.C., Canada (1987)
27-41.
J.A. Goree Jr., Internal consistency of a distributed transaction system with orphan detection, M.Sc.
Thesis, Technical Rept. MIT/LCS/TR-286, MIT Laboratory for Computer Science, Cambridge,
MA, 1983.

Introduction to the theory of nested transactions 185

[IO] J. Gray, Notes on database operating systems, in: R. Bayer, R. Graham and G. Seegmulter, e&.,
Operating Systems: an Advanced Course, Lecture Notes in Computer Science 60 (Springer, Berlin,
1978) 393-481.

[1 l] M. Herlihy, N. Lynch, M. Merritt and W. Weihl, On the correctness of orphan elimination algorithms,
in: hoc. 17th Internat. Symp. on Fault-Tolerant Computing, Pittsburgh, PA (1987); also: J. ACM,
to appear.

[12] M. Herlihy and M. McKendry, Time-driven orphan elimination, in: Proc. 5th Symp. on Reliability
in Distributed Software and Database Systems, Los Angeles, CA (1986) 42-48.

[131 C.A.R. Hoare, Communicating Sequential Processs (Prentice-Hall, Englewood Cliffs, NJ, 1985).
1141 Z. Kedem and A. Silberschatz, A characterization of database graphs admitting a simple locking

protocol, Actu Inform. 16 (1981) I-13.
[15) B.W. Lampson and H.E. Sturgis, Crash recovery in a distributed data storage system, Tech. Rept.,

Computer Science Lab., Xerox Palo Alto Research Center, Palo Alto, CA, 1979.
[161 B. Liskov, M. Herlihy, P. Johnson, G. Leavens, R. Scheifler and W. Weihl, Argus Reference Manual,

Programming Methodology Group Memo 54, 1987.
[17] B. Liskov and R. Ladin, Highly-available distributed services and fault-tolerant distributed garbage

collection, in: Proc. 5th ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing,
Calgary, Alberta, Canada (1986) 29-39.

[18] B. Liskov and R. Scheifler, Guardians and actions: linguistic support for robust, distributed
programs, ACM Trans. on Programming Languages and Systems 5(3) (1983) 381-404.

[19] N.A. Lynch, Concurrency control for resilient nested transactions, Adu. Comput. Res. 3 (1986)
335-373.

1201 N. Lynch and M. Tuttle, Hierarchical correctness proofs for distributed algorithms, in: fioc. 6th
ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, Vancouver, B.C., Canada
(1987) 137-151.

[21] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science 92 (Springer,
Berlin, 1980).

[22] J.E.B. Moss, Nested transactions: an approach to reliable distributed computing Ph.D. Thesis,
Technical Rept. MIT/LCS/TR-260, MIT Laboratory for Computer Science, Cambridge, MA, 1981;
also, published by MIT Press, 1985.

[23] D.P. Reed, Naming and synchronization in a decentralized computer system, Ph.D. Thesis, Technical
Rept. MIT/LCS/TR-205, MIT Laboratory for Computer Science , Cambridge, MA, 1978.

[24] D.P. Reed, Implementing atomic actions on decentralized data, ACM Trans. Comput. Systems l(1)
(1983) 3-23.

1251 D.J. Rosenkrantz, P.M. Lewis and R.E. Stearns, System level concurrency control for distributed
database systems, ACM Trans. Database Systems 3(2) (1978) 178-198.

[26] E.F. Walker, Orphan detection in the Argus system, M.Sc. Thesis, Technical Rept. MIT/LCS/TR-
326, MIT Laboratory for Computer Science, Cambridge, MA, 1984.

[27] W.E. Weihl, Specification and implementation of atomic data types, Ph.D. Thesis, Technical Rept.
MIT/LCS/TR314, MIT Laboratory for Computer Science, Cambridge, MA, 1984.

[28] W.E. Weihl, Personal communication, 1986.

