Theoretical Computer Science 13 (1981) 17-43
© North-Holland Publishing Company

ON DESCRIBING THE BEHAVIOR AND
IMPLEMENTATION OF DISTRIBUTED SYSTEMS*

Nancy A. LYNCH
Georgia Institute of Technology, Atanta, GA 30332, US.A.

Michael I. FISCHER
University of Washingion, Seattle, WA 98195, U.S.A.

Abstract. A simple, basic and general model for describing both the (input/output) behavior and
the implementation of distributed systems is presented. An important feature is the separation of
the machinery used to describe the implementation and the behavior. This feature makes the
model potentially useful for design specification of systems and of subsystems, The model’s
primitivity and generality make it a suitable basis for cost comparison of distributed system
implementations.

1. Introduction

A distributed computing sysiem consists of a number of distinct and logically
separated communicating asynchronous sequential processes. In order to under-
stand such systems, one would like simple mathematical models which exhibit the
essential features of these systems while abstracting away irrelevant details, Such
models would allow problems to be stated precisely and make them amenable to
mathematicai analysis.

In this paper, we present a mathematical model of distributed systems and a
mathematical model of their input/output behavior. Both are set-theoretic models
built from standard ‘nathematical constructs such as sets, sequences, functions, and
relations, rather thzn axiomatic models consisting of lists of desired properties of
systems.

In constructing a model, choices must be made regarding vvhich features of actual
systems to preserve and which to abstract away, and how these choices are made
depencis on the intended applications of the model. Our interests are in analyzing and

* This research was supported in part by the National Science Forndation under grasts MCS77-02474,
MCS77-15628, MCS" 3-01689 and by U.S. Army Research Office Contract Number DAAG29-79-C-
0155.

17

18 N.A. Lynch, M_J. Fischer

contparing different implementations of desired system behavior, using objective
com plexity measures.

The following five steps summarize a standard method of operation in complexity
thecry as it is usually applied to sequential computation:

Step 1: Choose a computing model. Deterministic and nondeterministic Turing
machines, random-access machines, straight-line programs, finite automata and
pushdown automata are all popular.

Step 2: Choose a problem. Mathematical functions are typical examples. Another
class of examples is provided by data bases with various storage and retrieval
properties. |
Step 3: Define what it means for an instance of the model to ‘solve’ the problem.
Conventions for input and output, as well as for treatment of nonceterminism, are
needed to determine whether a device computes a particular funciion or returns
correct answers to data base querics. This determination has nothing to do with the
internal structure of the device, but depends only on the input/output behavior.
Step 4: Choose coinplexity measures. The number of steps executed by a machine is
usually taken to represent the time complexity. Space complexity is usuaily measured
by the amount of work tape used, or by the largest number calculated during the
computation. Other measures of interest describe the structure of the device—its
number of states, program size, number of tapes, or alphabet size, for example.
Step 5: Compare solutions and prove upper and lower bounds. The measures are used
to compare differcnt solntions to the same probiem. Upper bounds a:¢ generally
proved by exhibiting and measuring a particuiar solution. Lower bounds are more
difficult, since they involve a proof about all pussible soiutions (within the chosen
modet).

In this paper, we follow the same sequence of Steps 1-5 for systems of
asynchronous parallel processes. The remaining sections are organized as
follows.

Section 2 deals with our choice of model. As we have stated, our model is
set-theoretic; its style is automata-theoretic rather than (for example) fixpoint style
as [11]. Its basic notions are ‘process’ and ‘shared variable’.

No particular internal structure is assumed for the processes. Rather, each process
is simply an automaton with a possibly infinite number of internal states and a set of
possible transiticns. We expect that often it will be ns=ful to impose additional
structuie in order tc describe particular systems. However, use of the more general
model strengthiens lower bound and other negative results.

Processes are perniitted to exhibit infinitely-branching nondeterminism, This is
because we want to treat systems of processes uniformly with single processes, using
composition operations to construct larger systems from component processes and
systems, and describing the behavior of the larger system in terms of the behavior of
the compon:.nts. Since a systern of two deterministic processes can exhibit infinite
nondeterminism, we include this capability for single processes as well. (Thus, this
assumption is made not so much in order to model systems realistically, but rather for
economy and elegance of the model.)

Behavior and implementation of distributed systems 19

We assume that each process takes a step from time to time, but we make no
assumptions on how long it waits between steps except that the time is fizite - the
process does not wait forever. Thus, mechanisms that depend on timing considera-
tions for their correct operation are ruled out. Althcugh we realize cic~ks and
time-outs are important mechanisms in real distributed systems, many aspects of
distributed computation can nevertheless be modelled without reference to suzh
concepts, and the resulting simplicity and tractability of the model appears to
compensate for the limitations imposed on it. We make assumptions about time i,
Section 6 for the purpose of evaluating system running time complexity, but these
assumptions are never used for determining system correctness. Eventualiy, of
course, mechanisms that depend on time for their correct operation should be
studied via a suitable formal model.

The shared variable is our basic (and only) communication mechanism. Thus, we
do not assume any primitive synchronization mechanism such as is implicit in Petri
nets [12] or in the communicating sequential processes of Hoare [9] and of Milne and
Milner [11]. Neither do we permit messages or queuing mechanisms as do Feldman
[7] and Atkinson and Hewitt [1]. All of these mechanisms involve significant
implementation cost and we are interested in examining these ccsts. None of these
mechanisms seems to us to be ‘universal’ in the sense that the most efficient progran:s
for arbitrary tasks would always be written using it. Moreover, the abstraction of
automatic process synchronization serves to hide the asynchronism of the basic
model. Since we wish to understand asynchronous hehavior, we prefer not to mask it
at tke primitive levels of our theory. The shared variable seems to be universal, to
reflecc ciosely many aspects of physical reality, and to be suff:iciently basic to allow
problems of communication and synchronization to be studied.

Because of the popularity of message-based distributed svstems and a possible
immediate reaction that & ‘central’ shared memory does not constitute true dis-
tribution, some words about this choice are in order. At the most primitive level,
something must be shared between two processors for them to be able to comi-
municate at all. This is usually a wire in which, at the very least, one process can inject
a voltage which the other process can sense. We can think of thie wire as a binary
shared variable whose value alternates from time to time between 0 and 1. (We are
not specifying the protocols to be used by the sending and receiving processes which
enable communication to take place, since part of our interest is in modelling and
studying such protocols. All we have postulated so far is that the sending process can
control the value on the wire and the receiving process can sense it.) The setting and
sensing correspond to writing and reading the shars variable, respectively. Thus,
shared variables are at the heart of every distributed system.

Because of our decision to 12ave time out of the model, it is clear that the only way
for the receiving process to te sure of seeing a value written by the sending process is
for the latter to leave the value there until it gets some sort of acknowledgement from
the receiver. Thus, we cannot model the asynchronous serial commmunication that is
commonly used to communicate between teiminals and computers, for the success of
that method relies on sender @nd re.eiver having nearly identical clocks.

20 N.A. I ynch, M_J. Fischer

We have argued so far that sharcd variables underlie any timing-independent
system, but that certain kinds of communication which depend on time cannot be
modelled. Does introducing timing-dependent communication primitives into our
otherwise timing-independent system add any new power? Let us consider various
possible message primitives. Perkaps the simplest is to assume each process .1as a
‘mailbox’ [15] or ‘message “wuffer’ into which another process can place a message.
Now, what happens when the sender wants to send a second message before the
receiver has seen the first? If the second message simply overwrites the first, then the
buffer behaves exactly like a shared variable whose vaiues range over the set of
possible messages. If the sender is forced to wait, then there is an implicit built-in
synchronization mechanism as in [$, 11] which we have already rejected for our
model. As a third possibility, the message might go into a queue of waiting messages.
If the queue is finite, the same problem reappears when the queue gets full. An
infinite queue, on the other hand, seems very non-primitive and can be rejected for
that reason alone. In any case, if the needed storage is available, the infinite message
queue can be modelled in our system by a process with two shared variables: an input
buffer and an output buffer. The process repeatedly polls its two buffers, moving
inicoming messages to its internal queue, and moving messages from the queue to the
output buffer whenever it becomes empty. Of course, the sender must wait until the
input buffer becomes empty before writing another message, but it seems to be an
assential property of any communication system that there will be a maximum rate at
which messages can be seat, and the sender attempting to exceed th:* rate must
necessarily wait if information is not to be lost.

From the above discussion, we see that various message systems can be modelled
naturally using shared variables, provided the variables are not restiicted to binary
values. Also, there are situations in which it is natural for a variable to have more
than one reader or writer. We incorporate such generalized variables in our model.
Finally, we generalize our model in one more r::spect by permitting a variable to be
read and updated in a single step. We call such an operation test-and-set. This
simplifies the model since both reads and writes are special cases of test-and-sets,
Moreover, there are situations in which the natural primitive operations are not
read and write but are other test-and-set operations such as Ciijkstra’s P and V [6].
They all become just special cases of our general model.

One might object to the use of shared variables to mode! the long-distance
communication needed in distributed systems: changes to a sharec variable are
instantaneous, while long-distance communicaiion has an inherent delay. However,
commuiiication with delay can be modelled simpiy within our framework by a pair of
shared variables, joined by a ‘channel process’ which copies values from one to the
other. The arbitrary process delay assumed in ocur model then appears as an arbitrary
communication delay.

In general, the environment of a process (or system of processes) can change a
variable at any time; thus, a process (or system) will not riecessarily see the same
value in a variable that it raost recently wrote there. We require of the process (or

Behavior and implementation of distributed systems

e

(3]

system) that it be complete in that it exiibit at least one possible response for every
possible way the environment might beha-:.

Operations are given for combining processes and systems into larger systems.

Section 3 deals with our choice of preblem. Several factors contribute to meking s
satisfactory notion of ‘distributed problem’ considerably more complicated than the
simple input/output function which is often identified with the behavior of a
sequential program:

(1) there is generally more than one site producing inputs and receiving outputs;

(2) infinite, non-terminating computations are the rule rather than the exception;

(3) therelative orders of reading ix1puts and producing outputs is significant as well
as the actual values produced;

(4) variations in timing make distributed systems inherently non- deterministic, so
one must allow in general for several different outputs to a given sequence of inputs,
all of which must be considered ‘correct’.

Therefore, we take as our notion of ‘problem’, an arbitrary set of finite and infinite
sequences of ‘variabie actions’, v here a variable action is a triple (u, x, v) coisisting
of a variable x, the value u read from thke variable and the value v written back into
the variable.

Section 4 deals with defining what it means for an instance of the model to solve a
problem. We define the behavior of a distributed system to be a set of finite and
infinite sequences of interleavings of possible variable actions at certain exter:ial
variables (which are assumed to be used for communication with the outside world).
Each sequence in the set describes a possible sequence of variable actions by the
system, assuming particular variable acticns by the environment.

We say that a particular system is a solution to a particular problem if the systems’s
behavior is any subset of the problem. (Trivial cases such as the empty set are ruled
out as system behaviors by our process and system definitions.) The problem
specificaticn is the set of acceptable computations, while the solution behavior is the
set actually realized.

Our definition only requires the solution system to be correct; there is no
stipulation that the maximum permitted degree of nondeterminism actually be
exhibited. We regard the latter as a performance or complexity issue to be dealt with
separately. We remark that the distributed computing paradigm leads one to a very
different view of nondeterminism or concurrency than for multiprocessing. I the
laiter case, the system implementer is presumed to have control of the scheduler, so
the greater the possible concurrency among the processes he is trying to schedule. the
greater his freedom to do so efficiently. In a truly asynchronous environment,
however, one has no direst conirol over the scheduling, so it is natural to be
concerned with the vorst case (which might aciaally occur) rather than the best case.

It is shown that operations for combining systems and operations for combining
probiems are related naturally.

In Section 5, we digress from our sequence of steps to present basic charac-
terization reselts for behaviors. Two theorems are given, as evidence that our process

22 N.A. Lynch, M.J. Fischer

and behavior definitions are neither too restrictive nor too general. Theorem 5.1 says

d esns st merle ed bv any ame Af nracacce: i aien svhihitod hy a cinanla
dl aniy UU!IdVlUI CXil U ted OV cliy ayBlUul Ul pruLe S5€1 15 &S0 CXnlOTG OY a SIRg:C

tidl
process; thus our d=fiiuons are sufficiently general. Theorem 5.2, onthe other hand,
says that any behavior exhibited by a process is also exhibited by a system of two
deterministic processes; thus, if our definitions were to be restricted, we would be
sacrificing either necessary generality or uniformity.

In Section 6, we define several complexity measures appropriate for distributed
systems. It is not obvious how best to define time measures for asynchronous

.o 2 1ee nn intaracting tima mancnra firet dacorihad in 1121 Other imnartant
ayul.cula, wE USC an nidrésu HE LINC measure st Gescrioed in LA~ Jo VFrilvi LIV LG

measures describe communication space (bar:. width), local storage space and system
structure.

Finally, in Section 7, we give an example of a prototypical distributed problem (an
arbiter) and several very different systems which solve it. The solutions ire compared
using our cost criteria. Equivalent impiicit and explicit specifications are given for the
arbiter prcblem.

(1]
-
3
3

s
LA VER S LV LV LR L ull 3 d

namely, what is an appropriate formal language for describing the sets of sequences
ihat comprise a probiem specification? The arbiter exampie is aescribed informaily
in standard mathematical notation. We expect the work on path expressions [3], flow
expressions [14], and other formal systems of expressions might be applicable here.

This paper is part of a larger project on Theory of Asynchronous Parallel

Processes. Other papers completed include [2], a study of communiration space
complexity requirements for implementation of mutual exclusion, [8), a a study of

252 22220 22288 AL

space comple:my requxrements for resource allocatmn, allown g stncted types

of Process laumc, and LLU_], a 'u"l'y O
distributed systems.

l
r-h

2. A mrdel for distributed systems

LI\ £ bemamnnnn P | avinlls? Tha
i pIULCBB ana le.ld.U“; 11C

interaction among system compcnents occurs at the process-variable interface.

A variable x has an associated set (€ ...e or infinite) of values, values(x), which the
variable can assum<. A variable action for x is a triple (u, x, v) with ¥, v € values(x);
intuitively, it represents the action of changing the value of x from u (its old value) to
v (its new value). u and v are not required to be distinct. Act(x) is the set of all

variablc actions for x. If X is a set of variables, we let values(X) d Uyex values(x)
and act(¥) €1), . actx)

Q2388 G\« XeX Swi\A 2,

A process p has an associated set (finite or infinite) of states, states(p), which it can

Anmezamm s md e aad

assume; start(P Jis a a nonempty set of starti.g states, and nnal(p) a set of jmal or
halting states. We let nonfinal(p) = states(p) — final(p). A process action for p is a

Behavior and implementation of distributed systems 23

triple (s, p, t) with s € nonfinal(p), ¢ € states(p); intuitively, it represents the a~ticn of
p going from its old state s to its new state ¢ in a single step. (s and ¢ are not required to
be distinct.) Act(p)isthesetof ali process actions for p. If P is a sct of processes, we let
states(P) £, r states(p) and act(P) L ,p act(p).

Every process action occurs in conjunction with a variable action; the pair forms a
complete execution stzp. If P is a set of processes and X a set of variables, we let
steps(P, X) & act(P) x act(X) be the set of execution steps. To specify which steps
are permitted in a computation, a process has two other components in its descrip-
tion. Variables(p) is a set of variables which the process p can access. If P is a set of
processes, then variables(P)% Upe p variables(p). Oksteps(p) is a subset of
steps(p, variables(p)) describing the permissible steps of p; oksteps(p) is subject to
three restrictions:

(a) for any senonfinal(p), there exist ¢, u, x, v with ((s,p, 1), (4, x,0)) €
oksteps(p). Furtharmore, if ((s, p, 1), (i, x, v)) and ((s, p, t'), (u', x', V")) € oksteps(p),
then x =x';

(b) read anything: if ((s, p, t), (u, x, v)) € oksteps(p) and u' € values(x), then there
exist ', v’ with ((s, p, 1), (4’, x, v)) € oksteps(p).

(¢) countable nondeterminism: start(p) is countable, and also for any se
non‘inal{z), x € variables(p) and u € values(x), there are only countably may pairs ¢,
v with ((s, p, 1), (u, x, v)) = oksteps(p).

Some intuitive remarks are in order. Oksteps(p) represents the allowable steps of
p. A particular step ((s, p, 1), (i, x, v)) € oksteps(p) is applicable in a given situation
only if p is in state s and x has value w. (a) indicates that some step is applicable f-om
every nonfinal state, and thai the next variable accessed is determined by the state. In
general, more than ore step might be applicable; i:ence, we are considering
nondeterministic processes. However, restriction (c) limits the number of applicable
steps to being countable, a technical restriction we need later for some of our results.
The effect of taking the step is to put p into state ¢ and to write v into x. A step is
considered to be an atomic, indivisiole action. With respect to the variable x, a step
involves a rzad followed by a write — the read to verify that the t.ansition is applicable
and the write to update its valize. We term such an action a 't«est and-set’. This is a
generalization of the familiar Booleé 2n semaphores or test-an4-set instructions found
on many computers.

Restri- tion (b) formalizes an important assumption that a process e able to
respond in some way to anything that might be given to it as input. In other vrords, if it
is possible for a process in state s to access variable x, then there must be a transition
from s accessing x for every u € values(x).

A process is not required to be finite-state, nor to have a finite number of
transitions from any state. In Section 5, we show that countable nondeterminism
arises from application of natural combination operations to deterministic processes.
Since we wish to treat single processes and groups of processes uniformly, we allow
the greater generality from the beginning.

24 M.A. Lynch, M.J. Fischer

‘Ne would like next to describe the execution of a process, by describing how the
steps are to be combined. Intuitively, it is clear that successive steps of a process
should be consistent in their state components — the new state at any step should
coincide with the old state at the next step. However, the correspondinig consistency
condition for variables is more complicated and involves interaction between several
processes. Therefore, we defer discussion of process execution until after we have
described systems of processes.

2.2. Systems of processes

The way in which processes communicate with other processes and with their
environment is by means of ti.eir variables. A value placed in a variable is available to
anybody who happens to read that variable until it is replaced by a new value. Unlite
message-based communication mechanisms, there is no guarantcc that anyone will
ever read the value, nor is there any primitive mechanism to inform the writer that
the value has been read. (Thus, for meaningful communication to take place, both
parties must adhere to previously-agreed-upon protocols, though we place no
restrictions on what kinds of protocols are allowed.)

We consider variables accessed by a process or system of processes to be either
internal or external. Internal variables are to be used only by the given process or
system; thus, consistency of the values of those variables must be hypothesized, and
an initial value must be provided. External variables wiil not have consistency
requirements, That is, a process or system of processes is to be able to respond to
values oi these variables other than the ones it most recently left there. Intuitively,
the external variables may be accessible to other processes (or other external agents)
which could cfiange the values between steps of the given process or system.

More formally, if X is a set of variables (resp. processes), a partial assignment for X
is any partial function f: X - values(X) (resp. states(X)) with f(x) € values(x) (resp.
states(x)) whenever f(x) is defined. If / is defined for all x < X, it is called a toral
assignment for X. A system of processes S has four components: proc(S) is a
countable set of processes, ext(S) is a set of external variables, int(S) is a set of internal

variables, and init(5) is a total assignment for int(S). S is subject to certain
restrictions:

(a) ext(S)nint(S)=¢;
(b) for each p :: proc(S), variables(p) < ext(S) uint(S).
If P is a set of processes and X a set of variables, we let

P, X) f-f-f-{S': S is a system of processes with proc(S) < P and ext(S) uint(S)c X }.

2.3. Executic . svquences

The exeu*'»n of a system of processes is described by a set of execution sequences.
Eachsequence s a list of steps which the system could perform when interleaved with
appropriate actions by the external agent.

Behavior and implementation of distributed systems 25

Let N denote the set of natural numbers, including zero.

If A is any set, A* (A“) denotes the set of finite (infinite) sequences of A-elements.
A" denotes A* U A, the set of finite or infinite sequences of elements of A.
length: A°°"™ - N U {c0} denotes the number of elements in a given sequence.

Let P be a set of processes and X a set of variables. €(P, X) ¥ steps(P, X)*"™ is
the domain of sequences used to describe executions ¢f processes and sets of
processes over P and X.

To define the aliowable execution sequences of a system, we first define the
execution sequences for processes and sets of processes.

Let p be a process. An execution sequence for p is a sequence

) count

e € (oksteps(p) < &(p, variables(p))

for which four conditions hold. Let e = ((s;, p, #), (s xi, v))iTF™<":

(a) if length(e) =0, then start(p) ~final(p) # 0;

(b) if length(e) # 0, then s, € start(p);

(¢c) if e is finite, then fiengm(e) € final(p);

(d) ¢ =sj+1 for 1 <j<length(e).

Let exec(p) denote the set of execution sequences for p. (Note, for example, that this
set is nonempty.) Thus, an execution sequence for a process exhibits consistency for
state changes, but not necessarily for variable value changes.

Nexi, we describe the execution of a set of processes. We wish the execution to be
fair in the sense that each process either reaches a final state or continues to execute
infinitely often; it cannot be ‘locked out’ forever by other processes when it is able i
execute. In other words, processes are completely asynchronous and thus cannot
influence each other’s ability to execute a step. Since no consistency of values of
variabies has yet been assumed, a simple ‘shuffle’ operation will suffice.

Let A be any set, K any countable set, and b = (b)rcx be an indexed set of
elements of A°°"™, Shuffle(b) is the set of sequences obtained by taking all of the
sequences in b and ‘merging’ them together in all possible ways to form new
sequences. Formally, if n € N, then define [n]={1,..., n}. If n =00, then [n]=N.
A sequence ¢ € A" is in shuffle(d) iff there is a bijective partial map 7w : K XN >
{length(c)] such that (a)-(c) hold:

(a) = is defined for (k, n) iff r € [length(b:)];

(b) 7 is monotone increasing in its second argument;

(c) if w(k, i)=j, then, c; = the ith element in the sequence by.

The shuffle operator is easily extended to an indexed set of subsets of A™"™, viz. if
B = (Bk)keK, where Bk c Acoum, then

shuffle(B) = U {shuffie(h): b = (bo)ex and b, € By, ke K.

If P is a countable set of processes, define exec(P) 2 shuffie((exec(p))pep).

We now extend our notions of execution sequences to systerns of processes. In
doing so, we want to insist on consistency for internal variable values, but not
necessarily for external variable values.

26 N.A. Lynch, M.J. Fischer

If X is a set of variables, let B(X) Z (act(X))°°"™. (B stands for ‘behavior’.) Let
be B(X), x € X, and f be a partial assignment for X, Latest (b, x, f) is the value left in
x after performing the actions in b, assuming x had initial value f(x). We define
‘latest’ recu.sively on the length of b. If length(b) =0, then

fx), if f(x) is defined,

latest(b, ., =[.
atest(f) undefined, otherwise.

Now assune length(b)=1, and b = b'(u, y, v) for some (u, y, v) € act{X). Then

v ifx=y,
latest(b, x, f) =<latest(b’, x, f), if x #y and latest (&', x, f) is defined,
undefined, otherwise.

Let X, Y be sets of variables, b € 8 (X), and f a total assignment for Y. We say b is
(Y, f)-consistent if for every prefix b'(u, y, v) of b with ye Y, it is the case that
u =latest(b', v,). For B < B(X), define

consisty (B) - {be B:bis (Y, f)-consistent.}

Let P be a set of processes, X a set of variables. Then erase : steps(P, X) - act(X)
maps each pair (a, a’) to its second componeii a'. Erase is extended to a homomor-
phism mapping € (P, X) to B(X). (Similar extensions of notation are used later in the
paper.) For E c (P, X), define

df
consisty(E) ={e € E: e is (Y, f)-consistent}.

Now let § be a system of processes.

Exec(S) = consistings mivs,(€xec(proc(s)))
< &(proc(S), ext(S) uint(S)).

Thus, exec(S) consists of those execution sequences of the system’s processes i.

which the internal variables are consistent throughout the sequence. Note that
exec(§) # 0.

2.4. Operations on systems and on se:s of sequences

One goal of our formalism is to permit complex systems to be understood in terms
of simpler ones. For this, we need operations for building larger systems from smaller
ones. Corresponding to these operations will be operations on related sets of
sequences. This approach is similar to that of Milne and Milner [11].

The first operation joins a cuantable collection of systems into a single one. Let
(Si)iez be a countable indexed family of systems such that

(a) i#] implies proc(S,) N proc(S;) =0;

(b) i#j implies int(S:) N (ext(S;) Uint(S;)) = 0.

Behavior and implementation of distributed systems 27

Then @(S))ic: is the system § such that

ext(S) = ext(S;),

iel

init($) = J init(S;).

iel

~ proc(§) = L,Il proc(S;),

int(S) = int(S;),
iel

Let P be a set of processes, X a set of variables. Then @ is defined on countable
indexed families of subsets of Z(P, X) or B(X) to be simply the shuffle oseration.

Tle second operation on systems is the one of turning selected external variables
into internal ones. Let § be asystem, Y aset of variables such that Y nint($) =0, and
f a total assignment for Y. We define consisty,(S) to be the system §' such that
proc(S'; = proc(8), ext(S"} = ext(§) — Y, int(§') = int(S) U Y, and init(S’) = init(S) U f.
Consisty, has already heen defined for subsets of (P, X) and of R(X).

In Section 4, we will be inierested in resiricting attention to a subsct of a system’s
variables rather than all of its variables. Thus, if X and Y are sets.of variables,
b € B(X), then restry(b) (resp. elimy (b)) is the subsequence of # consisting of the
actions involving (resp. not involving) variables in Y. {elimy (5) might be finite even if
b is infinite.)

That these definitions interact properly is shown by the following theorem. (?
denotes the power set operator.)

Theorem 2.1. Let P be a set of processes, X, Y and Z sets of variableswith Y nZ =0, f
a towul assignment for Y. Let &, €, B and B’ derote (P, X), €(P, X), B(X) and
B{Z) respectively. Then the following diagram commutes:

lim

ycounl exec (9(8))0(“"\(> (Q(Q))eoum € z > (9(9;:}:5”161
o] ® ®

v exec v erase .l elimz ¥

¥ - P(E) ——————> P(B) ———> P(B)

consisty, , consisty,, consisty, consisty, ;
v exec v erase v clim ¥
F e P(®) ——p P(B) ———ere————3 P(B")

Proof, Straightforwarc.

2.5. Modules

. The two operations @ and consisty,; are sufficient to build any system from
one-process systems in a simple way.

28 N.A. Lynch, M.I. Fischer

Let S, S’ be systems. §' is a module of S if proc(S’') =proc(S), ext(S)<
ext(S) vint(S), int(5') = int(S), and init(S"’) =init(S)|int(S’) (the resiriction of the
function init(S) to domain int(8')). Thus, a module is a subsystem whose interns!
variables are private to it and whose external variables form the interface between
the modu‘e and both the remaining system and the external world.

A system S is partitioned into modules (S;)ics if S; is a module of & for each i€],
(proc(S.)):; is a partition of proc(S), and for all i, jel, if i#j, then int(S:)n
(ext(S;) wint(S;)) = 0.

A system is atomic i it consists of a single process with no internal variable, i.e. if
Iproc(S) =1 and int(S) = init(S) = .

The foliowing is immediate from the definitions.

Theorem 2.2. (a) Every system can be partitioned into a countable set of atomic
modules.

(b) Every system can be obtained from an arbitrary partition into modules by one
application of @ followed by one application of consisty. for appropriate Y, f.

2.6. Remarks on indivisibility of variable access

Our process and execution sequence definitions assume possible indivisibility of a
fairly powerful form of variable access. In particular, processes that can both read
and change variables in one indivisible step (such as the ‘test-and-set’ processes of
Cremers-Hibbard [3] and Burns et al. [2] are included in the general definitions.
Sonse readers may consider this general access mechanism t> be unreasonably
powerful, 2: guing that a process model based on indivisibility of ‘reads’ and ‘writes’
only is c.ore realistic. Such a process model can be defined by certain restrictions on
our general model (as we describe belov-:. Thus, our development not only speci-
alizes to include consideration of a read-write model, but also allows comparison of
the power of the read-write model wita that of the more general access model. The
specialization can be carried out ar foliows.

A process p is called a read-write process provided for each s e states(p), the set

A =oksteps(p) ~{((s, p,), (u, x, v)): t € states(p), u, v € values(x)}

has (at least) one of the following properties:

(@) (A describes a ‘read operation’) for all ((s, p, 1), (i, x, v)) in 4, it is the case that
u-=v;

(b) (A describes a ‘write operation’) if {(s, p, t), (4, x, v)) and ((s, p, t'), (u’, x, v')) ar¢
two aibitrary elements of A, thent=¢and v =v’,

Two simpie ¢ xamples follow.

Example 2.1. Let states(p) =start(p) ={s}, final(p)=0, variables(p)={x},
values(x) = {0, 1}, ead cksteps(p) ={((s, p, 5), (0, x, 1)), ((s, p, 5), (1, x, 0))}. Process p
simply examines x repeatedly, changing its value at each access. The change is

Behavior and implementation of distributed systems PR

clearly an activity that involves both reading and writing, so that, intuitively, p is not a
read~write process. Formally, it is obvious that neither (a) nor (b) holds.

Example 2.2. Let states(p)=start(p)={s}, final(p)=@, variables(p)={-},
values(x) = {0, 1} and oksteps(p) ={((s, p, 5), (0, x, 1)), (s, p, 5), (1, x, 1))}. Process p
simply examines x repeatedly, writing ‘1’ every tin.e. It is easy to see that p is a
read-write process.

2.7. Communication delay

So far, our model describes asynchronous processes communicating by shared
variables, a situation which suggests that the processes are physically located
sufficiently near to each other to share memory without delay. We also wish to mode}
more general ‘distributed’ systems of asynchronous processes, in which com-
munication is done by means of a channel with significant transmission delay. No new
primitives are required in order to extend the present model to handie such
communication. A one-way channel is simply modelled by a special ‘channel process’
p, as detailed below.

Let V be any set, states(p) = ({write} X V), {read}, start(p) = {read}, final(p) =0,
variables(p) = {x, y}, values(x) = values(y) = V, and oksteps(p) ={((read, p, (write,
v)), (v, x, v)): 4, ve V}Iu{(((write, u}, p, read), (v, y, u)): 4, ve V}. Process p is
thought of as sharing a variable with each of two other processes. It alternately
reads from one of the variables and writes the value read in the other variable. (p is
obviously a read-write process.)

When p is combined with two processes in the manner already described in this
section, the consistent execution sequences exactly describe the effect of an arbi-
trary-delay onc-way channel vsed for communication between the two original
processes. Difterent types of commmunication channels similarly can be modelied,
using corresponding types of channel processes.

3. Distrlbuted problems

In the introduction, we listed four factors making a satisfactory notion of ‘dis-
tributed problem’ more complicated than just a function. We now give a definition
that accommodates those factors.

Let X be a set of variables. A distributed problem over X is any subset B of B(X).

The explicit mention of different variables models the multiplicity ¢ input/output
sites. The inclusion of finite and infinite sequences in B(X) models terminating and
nonterminating computations. The use of totally ordered sequences of actions
preserves the relative ordering of remote events. And finally, the use of subsets
(rather than single sequences) recognizes the inherent nondeterminism of distributed
systems.

30 N.A. Lynch, M.J. Fischer

Typical distributed problems consist of sequences restricted by conditions of
exclusion, synchronization and fairness.

4. Solutions to distributed problems

4.1. System behavior

Exec(S) gives complete information on how a svstem $ of processes might execute
in any given environment. Often, however, one is not interested in how the processes
execuie but only in their effect on the environm~nt, that is, the way they change the
variables. We obtain this information from the execution sequences by extracting the
variable actions.

If S is a system of processes, we define the behavior of S,

f
beh(S) = erase(exec(S)) < B(ext(S) U ini(S)).
Similarly, we define the behavior for a process p and a countable set of processes P:

df
Beh(p) = erase(exec(p)) = B(variables(p)),
Beh(P) z erase(exec(P)) < B(variables(P)).
Often one is interested only in those actions involving the exiernal - ariables. We

define the external behavior of S, extbeh(S) < elim;ns)(beh(S)).
The following two results r:lates extbeh to @ and consisty,y.

Theorem 4.1. Let P be a set of processes, X a set of variables, Let ¥ and B denote
F(P, X) and B(X) respectively. The following diagram commutes:

gpoount extbeh » @oount

P extbeh > B

Proof. Let (S)icr € Feoun- Then
etheh(@ (Si)iel) = elimint(@(&){el)(beh(® (Si)iel))
= @ (eliMin@csyi)(eh(8)))icr by Theorem 2.1

= @ (elim;nys,(behtS;))):c; by domain considerations
= @(extbeh(s,-)),ve,.

Behavior and implementation of distributed systems 31

Theorem 4.2. Let S be a system of processes, Y a set of variables for which
Y nint(S) =0, f a total assignment for Y. Then

extbeh(consisty, (§)) =elimy (consisty; (extbeh(S))).

Proof.
extbeh{consisty,¢(¥)) = elimnys)u v (beh(consisty ((S))) by definition

=elim Y (elimm(s)(beh(consist y,f(S))s) ‘
= elimy (elim qys)(consisty (beh(S)))) by Theore:n 2.1
=elimy (consisty s(elimqs)(beh(S)))) by Theorem 2.1

= elimy (consisty,s(extbeh(S))).

4.2. Realization and solution

Let S be a system of processes, B < B(ext(S)). Then § realizes B provided
extbeh(S) = B. This definition might at first appear to capture the conditions under
which system § solves the distributed problem B. However, we think that a weaker
definition is more appropriate; we say § solves B provided extbeh(S) < B.

Thus, § is not required to exhibit the same degree of norideterminism as B.
Intuitively, B is the set of acceptable input/output sequences; §'s input; output
sequences must be included among those in B, but they need not encompass all of B.
Trivial cases such as extbeh(S) =@ are ruled out by the definitions for svstems and
their executions; for instance, recall that exec(S) cannot be empty.

4.3. Equivalence and substitution

Let S, S2 be systems of processes. Thun §, =9, (8, is equivalent to §;) provided
extbeh(S,;) = extbeh(S;). This definition might at firs: ippear to capture the condi-
tions under which §, might be allowed to replace S, as a module in a larger system.
Indeed, this style of definition is used for such a purpose in [11]. However, we think,
as before, that a weaker definition is appropriate: we say S1 = 8> (S, is substitutable
for S,) provided extbeh(S:) = extbeh(S>).

Thus, S, is not required to exhibit the same degree of nondeicrminism as S,. In
contrast with the usual assumptions about nondeterminism, in the case of asynch-
ronous systems al! possible nondeterministic choices should be correct. Thus, a
sysiem '§; exhibiting any subsct of the cxecution sequences of $» should be
acceptable. ‘

Appropriate interactions between our operations and relations are shown in the
foll »wing theorem.

32 N.A. Lynch, M.J. Fischer

Theorem 4.3. L.t Pbe a set of processes, X and Y sets of variables, f a total assignment
é @ and B denote F(P. X) and RIX) respectivelv. Then the following

“uc IlUlC VL gL) WA UU\FR) TOOPpTRIIVLA e ETobib sieie Jlrssv vy

(a) @, consistyy, restry and elimy as operations on P(B) preserve <,
(b) @ and consisty as operations on & preserve =,
(c) ® and consisty; as operations on & preserve =,

or (b), the case of @ follows from Theorem 4.1, while the case

heorem 47 (Mgt ediate from (h)

ANl Fedws \Ww) 2 immeagiate from A~/

-

=]

(-]
add
o~~~

)
5 e
- " a-
>

s

]

ﬂ

3 g

Theorem 4.3 implies the following. Assume S is substitutable for $,, and Sz is a
module of system T. Let T be the system obtained by replacing 5S> by §; in T;. Then
T, is substitutable for T . Similariy, if S, is equivalent to S>, then T} is equivalent to
T>. Thus, our extrrnal be havior definitions provide a way of describing the behavior
of a system in terms of the behavior of its components.

5. Couniabie nondeier
The results of this section justify the ‘countably nondeterministic’ generality of our
process definition. Theorem 5.1 says that the counitable nondeterminisra of a system

(caused by arbitrary interleaving of process steps as well as the nondeserminism of
the individual processes) can be simulated by the countable nondeterminism of a

single process. More precisely, any external behavior realized by a system is also

ranlimad atmenion cerota TLha: meew Anfeattime wnl evonenanle nrm

1cailsceud Uy d dlUllllb ayau;lu. llluB, Uul UG LI inl S Eglleldl C uusu lU PV
uniform treatment of single processes and groups of processes. On the other hand,
Theorem 5.2 says that the countabie nondeterminism of a process can be simuiated
by the countable nondeterminism of the interleaving of steps in a system of two
deterministic processes. More specifically, any external behavior realized by an
atomic system is also realized by a system of two deterministic processes; thus, our
definition could not reasonai'y be made more restrictive. These results are closely

rnla At‘ ta coma nfthnca Af R snvdrn I"21 Awavar e camanaac ha vn onnatda nl-dn
wluuv'-u S OMIREW R LIAVOW UK Wl auunu L) \l. ANV W YV irk g WU OW \lu‘f AW uav UUIIDIUU‘ avi

more structure than his, so that we do not obtain the type of explicit haractenzatlon
of the class of process behaviors that he does.}
We first show how to reduce the number of processes to one.

F’

Lemma 5.1. For any system S, there is a system S' with the same external and internal
variables such that \proc(S')| =1 and beh(S') =beh(S).

Proof. We describe a proczss p which simulates the fair execution of all of the
processes in proc(S). The most obvious idea is to allow p repeatedly to use countabie
nondeterminism to seleci which process g € proc(S) to simulate next, and at the same

time use its countable nondeterminism to szlect among the countably many possible

Behavior and implementation of distributed systems 33

alternatives of q. The only problem is that nothing insures that p will actually
simulate infinitely many sieps of each ¢; p might always chcose to simulate one
particular process, thereby violating the fairness of the shuffle operation i{owever,
the countable nondeterminism of p can also be used to enforce fairness, as follows.
Let 77 : N —{0} > proc(S) be a fixed total function such that each g € proc(S) appears
irfinitely many times in the range of #. Process p keeps a partial function
schedule : W — {0} = proc(S) in its state, representing the process which has been or is
to be simulated at each step of p. At any moment during p’s computation, scaedule is
a finite function. Also, p keeps config, a partial assignment to proc(S), representing
the current states of each process which has had a step simulated by p. Config is also
finite at any particular moment. The other principal datum in p’s state is currentstate,
the current state of the next process to be simulated. Each start state of p contains an
initialization of schedule as {(1, q)}, for some q € proc(S), an initialization of cur-
rentstate as s, for some s € start(q), and an initialization of config as . At eachstep n
of p, p does the following: (Let q denote the value of schedule(#) and s the value of
currentstate at the beginning of step n of p. Let x denote the unique variable to be
accessed from state s, u the value of variable x at the beginning of step n. The
CHOOSE command represents a use of p’s ccuntable nondeterminism; the remain-
ing syntax should be self-explanatory.)

CHOOSE (¢, v) such that ((s, g, t), (4, x, v)) € oksteps(q);
X:= U,
config(q):=t;
IF schedule(n + 1) is undefined THEN
[CHOOSE ¢’ € proc(S); schedule(n + 1):= q']
IF config(schedule(n + 1)) is defined THEN
currentstate:= config(schedule(n + 1))
ELSE [CHOOSE s’ e start (schedule(n + 1)); currentstate:= s'];
CHOOSE k such that schedule(k) is undefined;
schedule(k):= 7 (n)

That is, p uses its countable nondeterminism to select from among the moves of the
simulated processes, to select the next process to simulate (if necessary), to select
start states for the simulated processes, and to select specific steps (of p} when each
process in proc(S) will be guaranteed of being simulated.

We leave to the reader the task of translating the code into a process in our formal
model. (All of the countably ncndeterministic choices must be done at once in the
translated version. If schedule(n + 1) is undefined, then q' is chosen, and if config(q')
is then undefined, the code contains a second choice for a start state of q'. It might
appear at first that these two choices must be done sequentially; however, it is easy ¢
make a single choice of (¢', s'), where s' e start(q’).)

Let S’ be the svstem with proc(S')={p}, ext(§’) =ext(S), int(S') =int($) and
init($") = init(S). That beh(S’) = beh(S) follows from the fact that p simulates exactiy
all of the fair interleavings of steps >f the processes in proc(S).

34 N.A. Lynch, M.J, Fischer

Next, we prove a technical lemma producing a standard form for processes.
A process p is called treelike provided (a) and (b) hold:

(a) for all 1o e states(p), {((s, p, 1), (u, x, v)) € oksteps(p): t =t} <1,

(b) for all to € start(p), [{((s, p, 1), (u, x, v)) € oksteps(p); t = to}| = 0.

Lemma 5.2. If p is a process, then there is a treelike process q with beh(p) = beh(g).

Proof sketch. Process p can be ‘opened up into a tree’ by replicating states; process g
has states corresponding to finite paths in p.

It remains to remove internal variables.
Theorem £.1. For any system S, there is an atomic system S' such that §'=§.

Proof sketch. By Lemma 5.1, we can assume proc(S) ={p}. By Lemma 5.2, we can
assume p is treelike. A process transformation is carried out in two steps (the
intermediate result of which need not be a process). First, p, is cunstructed from p by
‘prur:zg’ p’s iree so that only (int(S), init(S))-consistent paths remain. Since p is
treelike, there is no ambiguity involved in deciding when to prune. Now p; is
constructed from p; by condensing paths involving variables in int(S). This con-
struction is not carried out in stages because of the possible condensati. n of infinite
paths to finite paths. The possibility that p; could continue forever on branches
involving only variables in int(S) involves transition to a final state of p,. Finally, ' is
the atomic system such that proc(S’) = {p,} and ext(S') = ext(S).

We argue that our countably nondeterministic process model is not too general.

Restriction of processes to finitely many states would surely be unnatural, ruling
our processes which resemble natural sequential computation models such as Turing
machines. But the usual sequential computation models, though allowing infinitely
many states, are restricted to finite nondeterminism. This restriction does not seem
overly strong in the sequential setting, since it is preserved by natural sequential
combination operations, But for the asynchronous parallel case, finite nondeter-
minism would n=t be preserved by fair combination operations such as our @. The
next result says that the external behavior of any systera can be realized as the
external behavior of a pair of communicating deterministic (and therefore finitely
nondeterministic) processes. However, Example 5.1 below shows that the set of
external behaviors realizable by atomic systems of finitely nondeterministic proces-
ses is a proper subset of the set of external behaviors realizable by arbitrary systems.

More precisely, a process p is finite branching (resp. deterministic) provided
start(p) is finite, (resp. of cardinality 1), and also for any senonfinal(p), x e
variables(p), u € values(x), there are only finitely many (resp. at most 1) pairs (¢, v)
with ((s, p, #), (&, x, v)) € oksteps(p).A system S is finite branching (resp. deter-
ministic) if every process in proc(S) is finite branching (resp. deterministic).

Pehavior and implementation of distributed systews 35

In the following theorem, let p denote the process of Example 2.2. Piocess p is
deterministic and finite state. Assume variables(p) ={x}, and f(x)=0. Let T be the
atomic system with proc(T) ={p}, ext(T) = {x}, and int(T) = nit(7") = @.

Theorem 5.2, Let § be a system of processes. Then there is a deterministic atomic
system S, such that § = consist(,, (S1DT).

Proof sketch. By Theorem 5.1, we can assume that S is atomic. Let proc(S) ={g}.
For each s € states(q), y € variables(q), u € values(y), there are only countably many
pairs (¢, v) such that ((s, q, 1), (&, y, v)) € oksteps(q). Fix an ordering for each set of
pairs. Also fix an crdering for the elements of start(q). Process 4, simulates a step of
procass g as follows. Process q, alternatively tests x and increments a counter until it
sees that x has been set to 1. It then simulates a step of g, using the counter value to
select one of the possible alternative moves, and then resets the chunter and variable
x to 0 for the next step of simulation. §; is the system with proc(S:)={q:},
ext(51) = ext(&) u{x}, int(S;) = init(S;) = .

We conclude this section with an example of a set of sequences which can be
realized as the =xternal behavior cof an atomic system, but not of any finite-branching
atomic system.

Lemma 5.3. Let p be a finite-branching process, x € variables(p), b € (act(x))”. If
beh(p) contains infinitely many prefixes of b, then b € beh(p).

Proof sketch. By Konig’s L.emma.

Example 5.1. Consider the problem of writing & specific value any finite number of
times.

More specifically, let x be a variable, v € values(x), A ={(u, x, v): u € values(x)}.
A* is the set of all finite sequences of actions, each of which ‘writes v’ into x. A* can
easily be obtained as beh(p) for a process p which uses countable nondeternlinism to
choose an element of N for a counter initialization. Process p alternatively decre-
ments the counter and writes v, halting when the counter is 0. Therefore, A* can be
realized as the external behavior of an atomic system.

On the other hand, Lemma 5.3 implies that A* is not beh(p) for any finite-
branching process p, since b = (v, x, v)* has all of its finite prefixes in A*. Therefore,
A* cannot be realized as the external behavior of any finite-branching atomic
system.

6. Complexity mzasures

Separation of behuvior and implementation opens the way for comparison of
different implementations of the same behavior, a fundamental subject of study for

36 N.A. Lynch, M.J. Fischer

any theory of computation. Intuitively, comparisons might be mads on the basis
of process configuration, local process space requirements, communication
space requirements, number of process steps executed, number of changes
made to variables, and possible ‘amount of concurrency’. Trade:ffs wculd be
expected.

Configuration and space measures seem easy to formalize; one caa simply count
numbers of processes and variables, numbers of statcs and variable values. Time and
concurrency measures are not so straightforward. We use a version of a measure
duscribed in [13]. Intuitively, fixed upper bounds are assumed for the intervals
between the occurrence of certain events. (For instance, each process might be
assumed to take a step within ¢, units of time. Also, when the system makes certain
changes to an external variabie, the environment might be assumed to.respond in a
specific way within ¢, units of time.) With such assumptions, an uppe- bound can be
proved for the running time of a finite execution sequence. Then an uppei tound for
the time required for a particular event to occur is just the maximuin of the upper
bounds on the running times of all possible execution sequences, up to the point
when that event occurs. No lower bounds are assumed for the intervals between the
occurrence of events. Thus, all fair interleavings of steps are stiil possible, even with
the time assumptions. These assumptions are therefore of no use in proving logical
correctness of systems. Their only use is for bounding running time.

7. Example: an arbiier

7.1. Behavior specification method

In this section, we specify behavior for a typical distributed system-—an arbiter. We
do not here espouse any particular formal specification language, but rather express
behavior restrictions in general mathematical terminology.

We also describe three particular and diverse implementations within our model
that exhibit (i.e. solve) this behavior. Finally, we compare these implementations
using our complexity measures.

The specification follows a pattern which has more general applicability, so we firs
describe that pattern. A finite set X of variables is accessed by a ‘user’ and by 2
‘system’. The use: is required to follow a simple and restrictive behavior pattern;
founally, a set U < B(X) of ‘correct user sequences’ is defined. The system is to be
designed so that when it is combined with a user exhibiting correct behavior, with
correct initialization of variables, certain conditions (on the values of variables) hold.
Formally, a set M < ({user, system} X act(X))*™ is defined in order to describe the
desired conditions. A total assignment f for X is defined in order to describe correct
initialization of variables.

In asense, U, M and f may together be regarded as a specification for the behavior
of the desired system: any b € B(X) can be considered ‘acceptable’ if whenever it is

Behavior and implementation of distributed systems 37

combined consistently with a sequence in U, the resuliing combination is in M. A
system of processes is a correct implementation if all of ity external behavior
sequences are acceptable.

More formally, if A is any set, t€ A°"™, L any set, x any element of L, then b*
denotes that element of ({x}x A)*“™ whose ith element is (x, &;), where b; is the ith
element of b. (That is, the entire sequence is labelled by x.) Tiis superscriji~is -
extended to subsets of A°°"™ in the obvious way.

For X, Y sets of variables, L any set, b € (L X act(X))*"™, f a total assignment for
Y, we say that b is (Y, /)-consistent provided the sequence of second components of 5
is (Y, f)-consistent.

In the present examples, L is taken to be {user, system}, a set of identifying labels
for the modules of interest.

A sequence be®B(X) is called (U, M, f)-acceptakle provided {ce
chuffle(U™%, 5¥*°™): ¢ is (X, f)-consistent} = M. Then a system of processes S is a
correct implementation provided §S ‘solves’ {b: b is (U, M, f)-acceptable} (that is,
provided every sequence in extbeh(S) is (U, M, f)-acceptable). '

This type of description may te somewhat difficult for a system designer to use
as a specification, so that it may be helpful to define explicitly a set B of (U, M, f)-
acceptable sequences. Any system of processes S that solves B is then considered
correct. B should be as large as possible so as not to constrair: the system designer
unnecessarily. In the following example, we are able to cbtain B exactly equal
to the set of (U, M, f)-acceptable sequences, thus providing an explicit correct-
ness characterization. We do not yet have a general equivalence theorem for
specifications however.

7.2. Arbiter specification

Let values(x)={E, A, G} for each x € X. intuitively, E indicates ‘empty’, A
indicates ‘ask’ and G indicates ‘grant’ of a resource. The user is restricted to initiating
requests and returning granted resources. More precisely, U € #(X) is defined as
follows: {Let a € shuffle({a,: x € X}), where each a, € B(X).)

a € U iff for each x € X, (a)~(c) hold (Let a, = (1, x, v;)Fofh(as))

(a) Correct transitions: For 21l i, 1 < i «:lengta(a,), if u; = E, then v; = E or A, and
if u; = A, then v; = A. (The user cannot grant a request, and once he has initiated a
request he cannot retract it.)

(b) Stopping: If a, is finite and nonempty, then Viengnia,; = E. (The user cannot
leave the system when a request is pending or granted.)

{c) Return of resource: For all i, if u; = G, then there exists j = i withv; = Eor A. (If
the user sees that his request has been granted, he must eventually return the
resource.)

Thus, user correciness is defined locally at each variable. In particular, the user can
consist of separate processes, one for each variable, with no communication between
them. It is easy to design a set of processes with behavior a subset of U.

38 N.A. Lynch:, M.J. Fischer

Correct operation for our arbiter system will require that all requests eventually be
granted, and that no two requests be granted simultaneously.
Let f = Ax[E], L ={usecr, system}. M < (L X act(X))*“™ is defined as follows:
c e M iff ¢ is (X, f)-consistent and both (a) and (b) hold:
(a) Local conditions: (Let ¢ € shuifle({c,: x € X}), each c, € (L xact(x))*"™.) For
each x € X, both (a) and (a2) hold: (Let ¢, = (I;(u;, x, v;)) =5)
(al) Correct transitions: For all i, 1 < i <lengthic,), either u; = v; or else one of
{a1l)-al3) holds:
(@all) Li=user, y;=E and v; = A;
(a12) [=user and u; = G;
(al3) [=system, u;= A, and v;=G.

(The allowed transitions are depicted below.)

>
=

system

(a2) Progress: For all i, if v; # E, then there exists j =/ with v; # v;. (Any value
other than E is eventually changed.)

(b) Global Conditions: (Let ¢ = (I;(us, x;, 9:))8M9, d = (uy, x;, v:)1 ™)

(bl) Mutual exciusion: For no xy, x2€ X, x; # x, and ne prefix e of J is it the
case that latest(e, x,, f) = latest(e, x;, f) = G.

Next, we define B, thereby providing an explicit characterization of the set of
correct sequences,

b € B iff either (a) or (b) holds:

(@) Initialization or user observed to be incorrect: (Let b e shuffle({b,: x € X}) as
before.) For somie x < X, one of (al)—(a3) holds: (Let &, = (u;, x, v;) =052)

(al) u; =G

(a2) Forsome i, itisthecasethatv; = E and u;.; = G,orelsev;=Aandu;,1 =E
or G,

(a3) length (b,) =cc, and u; = G for all sufficiently large i. (Thus, we have not
required any particular error detection behavior; we permit arbitrary system
behavior if incorrect action by the user or incorrect variable initialization occurs.
Note that it would be easy to program a system to check for errors such as those

represented in (al) and (a2), but (a3) errors cannot be detected at any finite pomt
during the computation.)

Behavior and implemenczation of distributed systems 30

(b} Correctness conditions: Both (bl) and (b2) hold:
{b1) Local conditions: (Let b e sbuffle({b,: x € X}) as before.) For each x € X,
(b11)-(b13) all hold. (b, = (u;, x, v;)i=s®>,)
(b11) Correct transitions: For all i, if u; = E or G, then v;=u;, and if 4; = A,
then v; = A or G;
(b12) Infinite examination: b, is infinite;
(b13) Response: For all i, if u; = A, then for come j= i it is the case that
v; # A;
(b2) Global conditions: (Let b = (u;, x;, v;)<"F"®)
(b21) Mutual exclusion: For no x1, x2 € X, x1 # x5, and no prefix d of b itisthe
case that latest(d, x,, f) = latest(d, x5, /) = G.
The following theorem shows that our explicit characterization for system
behavior is as general as possible.

Theorem 7.1. B ={b: b is (U, M, f)-acceptable}.

Proof. c:Let be B, ac U, c eshuffle(a™™, 8*°™), ¢ (X, f)-consistent. We must
show ce M.

Since a € U and c is (X, f)-consistent, it follows that b fails to satisfy (a) of (the
definition of) B. Thus, b satisfies (b) of B.

We check that ¢ satisfies each condition of M. ¢ satisfies (al) of M because of (a) ot
U and (b11) of B. To verify (a2) of M, write ¢ e shuffie({c,: x € X}), and for fixed x,
write ¢, = (!, (u x,) 25" If (I,(u;, x, A)) is an element of ¢, then (b12) and (b13)
of B together imply that v; # A for some j > i. If (I,(u;, x, G)) is an element of ¢, then
let j te the largest number <i with /; = user. By (b11) of B, j existsand v; = A or G.
Then by (b of U, there exists k > i with [; = user. If u, # G we are done. Otherwise,
(¢) af U implies that v,, # G for some m =k.

(b1) of M follows easily from (b21) of B and (a) of U.

2: Let b2 B. We must produce ac U, ceshuffie(a™, b™""), ¢ (X, -
consistent, and ¢ € M. Clearly, b fails to satisfy (a) of B. In addition, & wili fail to
satisfy at least one of (b11), (b12), (b13) and (b21) of B.

‘e consider four cases.

(b11) fails: Any ae€ U, ceshuffle(a™, b**°™) which is (X, f)-consistent will
fail to satisfy (al) of M. One such ¢ can be constructed by immediately preceding
cach element (system, (u, x, v)) of ¢ which is derived from an action of & by an
element (user, (y, x, u)). The value of y is uniquely determined by the consis-
tency requirements on c; sinie b fails to satisfy (a) of B, this determination produces
aclU,

(b12) fails: Consider x such that actions (u, x, v) only appear finitely often in 5.
Construct 2 € U, ¢ eshuffle(a"*, 5*™™), ¢ (X, f)-consistent, with the following
property, In ¢, following all elements of the form (system, (i, x, v}) (for any #, v),
there is an element of the form (user, (u, x, A)) (for some u), and fol'lowing that
element there are infinitely many elements of the form (user, (A, x, A)}. Suck 2, c can

40 N.A. Lynch, M.J. Fischer

be constructed by a slight addition to the construction for the preceding case. The
resulting c fails to satisf{y (a2) of M.

(b13) fails: Consider x such that (A, x, A) occurs in & and moreover for all
following actions in b of the form (i, x, v), we have v == A.

Then any a & U, c eshuffle(a***", #**'*™) which is (X, f)-consistent will fail to
satisfy (a2) of M. Such g, ¢ can be constructed as before.

(b21) fails: Let b= (us, x;, v:) 5™, where (u;, x;, G) and (us, xi, G) are actions
witnessing the con:radiction to (b21) of B. We can assume that j <k, x; # x; and for
no m, j <m <k is it the case that x,, = x;.

Consider a € U, ¢ € shuffle(a™, 5*"°™), ¢ (X, f)-consistent, with the following
property. I ¢, the elements derived from b’s actions (u;, x;, G) and (u, xi, G) have
ne intervening elements of the form (user, (u, x;, v)) for any u, v. Such a, ¢ fail to
satisfy (b1) of M. _

Such a, ¢ can be constructed as before.

The given description of B seems sufficiently manageable to be used to specify
system behavior.

7.3. Three solutions and their comparison

The arbiter problem as stated above admits many different implementations—i.e.
systems of processes with external behavior a subset of B but with dificrent internal
structure and execution behavior. Outlines of three such implementations follow.
Complexity bounds are estimated for all of the implementations.

Let n =|x|, the number of external variables. Assume c; to be an upper bound on

the time between steps of each process of the implementation system. Also, assume
¢z to be an upper bound on the time between the granting of a resource and the return
of that resource by the user. We calculate upper bounds on the time between
the initiation and granting of a request. We calculate similar bounds with the
additional restriction that at most k other requests overlap the given request
in time. '
Implementation 1. The simplest implementation is an atomic system § consisting of »
single process p which polls each variable in circular sequence. When A is read,
changes it to G and then repeatedly reads that variable until its value reverts either to
E or A. When this occurs, p resumes polling with the next variable.

It is obvious that extbeh(S) < B (but note that equality does not hold). The single
process p has 2n states and no internal variables.

The worst case time for a request occurs when a user makes a request just as he
returns the resource; he must wait for p to examine all of the other variables, possibly
franting the resource to each other user in turn. The upper bound is c;(n — 1)+ 2¢4n.
1i there are at most k other requests active at the same time as the given request, the
upper bound is ¢2k +2c;n. (Thus, if there are no other active requests, the time to
grant the request is bounded by 2¢;n.)

Behavior and implementation of distributed systems 41

Implementcition 2. Assume for simplicity that n = 2™, m = 1. The idea of Impl :men-
tation 1 can be extended to allow ‘more concurrency’ using a binary iree of polling
processes, with the leaves accessing the interface variables x € X,

Each non-root process p alternately polls its left and right son variables. When A is
seen, p changes its own father variabie to A and waits. When the father variable
changes to G, p grants its pending son’s request by changing the appropriate A to G.
p then waits for that son variable to revert to either E or A. When this occurs, p
changes its father variable to £ and then resumes polling its sons with the other son
being polled next.

The root process acts just like p of Implementation 1 for n =2.

All internal (i.e. father) variables are initialized at E. The alternating strategy
guarantees eventual granting of all requests. Ail other properties in the definition of
B are easy to check, so that extbeh(S) < B for this system S. (Once again, equaiity
does not hold.)

The system consists of n — 2 non-root processes, each with.12 siates, and one root
process with four states. There are n —2 internal variables, each with three values.

If at most k other requests arc active at the same time as a given request, the time
for granting the given request can be bounded by ¢k +O(ci(k + 1) log n). (Thus, if
there are no other active requests, the time to grant the request is O(log n). If there is
no bound assumed on the number of concurrently active requests, then the time can
be bounded by c2(n — i)+ O{cin log n), as we show using a system of recurrence
equations:

Classify the variabies of S into levels, with the root process’s two variables at levei
1, the external variables of S at level m, and intermediate levels in the tres numbered
consecutively. Let T'(i), 1 </ < m, denote the longest time between the initiation and
granting o; 2 request ai ievel i. Let R(i), 1 <</ <m, denote the longest time between
the grantirg and return of a resource at level i. Then

R(m)=c,, R(iy=4c,+R(i+1), 1=sism-1,
T(1)=4c;+R(1), T(i)=12¢,+R()+2T(-1), 2<ism.

The first two equations are straightforward. The third equation is a special case of an
equation in Implementation 1, The fourth equation: arises when a process (or user)
makes a request just as it returns the resource. The father passes the return up, ther
polls its other son for a request. If that son has a requect, that request is passed up,
and must be granted (giving rise to one T(i —1) term). Then the father grants the
resource to its other son, and awaits the return (giving rise to the R (/) term). Next, the
father passes the return up, returns to poll the original son and finally detects its
request. The father passes this request up, waits for it to be granted (giving rise to the
second T(— 1) term) and grants the resource.
It is easy to see that

R{)=cy+dciim~i), 1sism.

4?2 N.A. Lynch, M.I. Fischer

Thus,
T()=c,+4cym and T(i)=12¢c1+c,+4ci(m—i)=2T(i-1), 2=<i=m.
This latter expression is in turn equal to
21 =1) (12¢cy + o +4deym) + (277 (e +deym) — (2 +27 - 1= (4c1),
so that the needed bound, T'(m), is at most

C™ 1 =1) (12¢1 +ea +deim)+ 277 (c2+4eim) = (27 +277 = 1—m) (4¢y)

= 2""'*'2 cm +2mc2—8C1 ~C€2 =4C1 (n 10}; n _2)+C2(n - 1)v

as needed.

Implementation 3. The third implementation is based on the state-mcdel algorithms
used in [2, 5]. The implemertation system S consists of identical processss p,, each of
wiiich has access to exactly one interface variable x € X. In addition, there is a
common variable y to which all the processes p, have access. Algorithm A of [2] is
used, for definiteness. This algorithm enables asynchronous processes requiring
mutual exclusion synchronization to communicate using y to achieve the needed
synchronization, with a smail bound on the number of times any single process might
be bypassed by any other (and with a very small number of values for y). The
processes themselves must be willing, however, to execute a complicated protocol. In
this paper, we have defined a very simple arbiter protocol and do not req::ire a user to
know the more complicated protocol of Algorithm A. We can still use the earlier
ideas, however, by isolating the earlier protoccl in the system processes and allowing
a user to communicate with one of those processes.

In outline, (and referring to some ideas from Algorithm A), p, examines x unti
value A is detected. Then p, enters the trying protocol of Algorithm A using y as the
shared variable. When p, is allowed (in Algorithm .A) to enter its critical region, it
passes the permission on by changing the value of x to G. p, then examines x until it
reverts to E or A, and then p, enters the exit protocol of Algorithm A using y. When
px has completed its exit protocol, it is ready to begin once again, examining x for
further requests.

Correctness of the resulting system of communicating processes is based on the
correctness of Algorithm A. Oncc again, extbeh(S) ¢ B.

The system consists of n processes, each with O(n?) states. There is one internal
variable with n + 5 values. Time can be bounded by ¢,(2# —3) + O(n?) in the worst
case. (The first term represents the possibility that the requestor is forced to wait for
2n —3 distinct returns of the resource. For tie second term, note that each time the
resource is granted in Algorithm A, an O(n)-sized count is transmitted in unary via
the shared variable. It would be easy to modify Algorithm A to transmit counts in
binary, thereby reducing the second term to O(n log #) at the cost of a small increase
in number of variable values.) If there are at most k concurrent requests, then the
bound is ¢,k +O((k +1)?). (Thus, if there are no other active requests, the time to
grant the request is bounded by a constant.)

Behavior and implementation of distributed systems 43

Thus, in the three implementations above, the systems vary both in process
configuration and in execution. There is no realistic serse in which the internal states
and transitions (i.c. the execution sequences) of the different implementations could
be thought to simulate each other. And yet, the systems are all solutions to the arbiter
problem.

Note that the time complexity in the general case is smallest for Implementation 1,
whereas Implementations 2 and 3 perform faster if requests are relatively infrequent.

References

[1] R. Atkinson and C. Hewitt, Specification and proof techniques for % ializers, Al 3 =n.0 438,
Massachusetts Institute of Technology (1977).

[2] J.E. Burns, M.J. Fischer, P. Jackson, N.A. Lynch and G.L. Peterson, Shared data requirements for
implementation of mutual exciusion using a test-and-set primitive, Proc 1978 Intcinational Con-
ference on Parallel Processing, Bellaire, MI (1978); see also, Data requirements for implementation
of N-process mutual exclusion using a single shared variable, GIT-ICS-79/02, to appear in JACM.

{3] R. Campbell and A. Habermann, The specification of process synchronization using path expres-
sions, Lecture Notes in Computer Science 16 (Springer, Berlin, 1974).

[4] AK. Chandra, Computable nondeterministic functions, Proc. 19th Anrual Symposium on
Foundations of Computer Science (1978).

{5] A. Cremers and T.N. Hibbard, Mutual exclusion of N processes using O(N)-valu:d message
variable, USC Department of Computer Science, manuscript (1975).

{6] E.W. Dijkstra, Co-operating sequential processes, in: Programming Languages NATA Advanced
Study Institute {(Academic Fress, Now York, 1968).

[7] J. Feldman, Synchronizing distant cooperating processes, TR 26, M¢partment of Computer
Sciences, University of Rochester (1977).

[8] M. Fischer, N. Lynch, J. Burns and A. Borod:n, Resource allocatipn with immunity to limited
process failure, Proc. 20th Annual Sympcsium on Foundatic 1s of Computer Science, Puerto Rico
(1979); see also GIT-1CS-79/10.

[9] C.A.R. Hoare, Communicating sequential proczsses, Technical Report, Dr partmem of Computer
Science, the Queen’s University, Belfast, Northern Ireland (1976).

[10] N. Lynch, Fast atlocation of nearby resources in a distributed system, Proc. 1980 Symposium on
Theory of Comiputing, Los Angeles (1980) 70-81.

[11] G. Milne and R. Milner, Concurrent processes and their syntax, JACM (April 1979) 302-321.

[12] C.A. Petri, Kommunikation mit Automaten, Schriften des Rheinisch Westfalischen Institut
Instrumentelle Mathematik, Bonn. 1962.

[13] G. Peterson ang M. Fischer, Economical solutions to the critical section problem in a distributed
system, Proc. 9th Annual ACM Symposium on Theory of Computing (1977).

[14] A.C. Shaw, Software descriptions with flow expressions, IEEE Trans. Software Engrg. 4 (3) (1978).

{15] VAX11 software handbook, Digital Equipment Corporation (1978).

