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Abstract. A simple, basic and general model for describing both the (input/output) behavior and 
the implementation of distributed systems is presented. An important feature is the separation of 
the machinery used to describe the implementation and the behavior. This feature makes the 
model potentially useful for design specification of systems and of subsystems. The model’s 
primitivity and generality make it a suitable basis for cost comparison of distributed system 
implementations. 

1. Introduction 

A distributed computing system consists of a number of distinct and logically 
separated communicating asynchronous sequential processes. In order to under- 
stand such systems, one would like simple mathematical models which .exhibit the 
essential features of these systems while abstracting away irrelevant details. Such 
models would allow problems to be stated precisely and make them amenable to 
mathematic.sl analysis. 

In this paper, we present a mathematical model of distributed systems and a 
mathematical model of their input/output behavior. Seth are set-theoretic models 
built from standard xathematical constructs such as sets, sequences, functions, and 
relations, rather than axiomatic models consisting of lists of desired properties cJf 

systems. 
In constructing a model, choices must by r??%dc regarding which features of actual 

systems to preserve and which to abstract away, and ho-w these choices are made 
depends on the intended applications of the model. Our interests are in analyzing and 
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MCS77-15628, MC6” W1689 and by U.S. Army Research 01%x Contract Number OAAG29-79-G 
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coniparing different implementations of desired system behavior, using objective 

corn glexity measures. 
Tile following five steps summarize a standard method of operation in complexity 

thecry as it is usually applied to sequential computation: 
step 1; ~~~~~~ a computing model. Deterministic and nondetermjinistic Turing 

machines, random-access machines, straight-line programs, finite automata and 

pushdown automata are all popular. 
Step 2: Choose a prablenz. Mathematical functions are typical exam 
class of examples is provided by data bases with various storage and retrieval 

properties. 
Step 3: Define what it means for an instance of the model to ‘solve’ the problem. 
Conventions for input and output, as well as for treatment of noncWerminism, are 
needed to determine whether a device computes a particular function or returns 
correct answers to data base queries. This determination has nothing ‘to do with the 
internal structure of the device, but depends only on the input/output behavior. 
Step 4: Choose complexity measures. The number of steps executed by a machine is 
usually taken to represent the time complexity. Space complexity is usually measured 
by the amount of work cape used, or by the largest number calculated during the 
computation. Other measures of interest describe the structure of the device-its 
number of states, program size, number of tapes, or alphabet size, for example. 
Step 5: Compare solutions and grooe upper and lower bounds. The measures are used 
to compare different sc&!tC_ms to the same prob’rcm. Upper bounds a;e generally 
proved by exhibiting and measuring a particuiar solution. Lower bounds are more 
difficult, since they involve a proof about all possibte soiutions (Athin the chosen 
model). 

In this paper, we follow the same sequence of Steps l-5 for systems of 
asynchronous parallel processes. The remaining sections are organized as 
follows. 

Section 2 deals with our choice of model. As we have stated, our model is 
set-theoretic; its style is automata-theoretic rather than (for example) fixpoint style 
as [ 1 I]. Its basic notions are ‘process’ and ‘shared variable’. 

No particular internal structure is assumed for the processes. Rather, each process 
is simply an automaton with a possibly infinite number of internal states and a set of 
possible transitions. We expect ahat~ often It will be ~+rl to impose additional 
structure in order tc, describe particular systems. However, use of the more general 
model strengthens lower bound and other negative results. 

Processes are permitted to exhibit infinitely-branching nondeterminism. This is 
because we want to treat systems of processes uniformly with single processes, using 
composition operations to construct larger systems from component processes and 
systems, and describing the behavior of the larger system in terms of the behavior of 
the componnts. Since a system of two deterministic processes can exhibit infinite 
nondeterminism, we include this capability for single processes as well, (Thus, this 
assumption is made not so much in order to model systems realistically, but rather for 
economy and elegance of the model.) 
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We assume that each process takes a step from time to time, but WC make no 
assumptions on how long it waits between steps except that the time is fi&e - the 
process does not wait forever. Thus, mechanisms that depend on timing con:;idera- 
tions for their correct operation are ruled out. Although we realize CLC~CS a,nd 
time-outs are important mechanisms in real distributed systems, many aopccts of 
distributed computation can nevertheless be modelled without reference to s:;zh 
concepts, and the resulting simplicity and tractability of the model appears to 
compensate for the limitations imposed on it. We make assumptions about time ir, 
Section 6 for the purpose of evaluating system running time complexity, but these 
assumptions are never used for determining system correctness. Eventualiy, of 
course, mechanisms tha.t depend on time for their correct operation should be 
studied via a suitable formal model. 

The shared variable is our basic (and only) communication mechanism. Thus, we 
do not assume any primitive synchronization mechanism such as is implicit in Petri 
nets [ 121 or in the communicating sequential processes of Hoare [9] and of Milne and 
Milner [ 111. Neither do we permit messages or queuing mechanisms as do Feldman 
[7] and Atkinson and Hewitt [l]. All of these mechanisms involve significant 
implementation cost and we arc: interested in examining these KZCS, None of these 
mechanisms seems to us to be ‘universal’ in the sense that the most efficient programs 
for arbitrary tasks would always be written using it. Moreover, the abstraction of 
automatic process synchronization serves to hide the asynchronism of the: basic 
model. Since we wish to understand asynchronous behavior, we prefer not to mask it 
at tte primitive levels of our theory. The shared variable seems to be universal, to 
reflect ciosely many aspects of physical reality, and to be sufficiently basic to allow 
problems of communication and synchronization to be studied. 

Because of the popularity of message-based distributed systems and a possible 
immediate reaction that 21. ‘central’ shared memory does not constitute true dis- 
tribution, some words about this choice are in order. At the most primitive level, 
something must be shared between two processors for them to be able to corn- 
municate at alll. This is usually a wire in which, at the very least, one process can inject 
a voltage which the other process can sense. We can think of the wire as a binary 
shared variable whose value alternates from time to time between 0 and 1. (We are 
not specifying the protocols to be used by the sending and receiving processes which 
enable communication to take place, since part of ou.r interest is in modelling, and 
studying such protocols. All we have postulated so far is that the sending process can 
control the value on the wire and the receiving process can sense it.) The setting and 
sensing correspond to writing and reading the shsrc variable, respectively. Thus, 

shared variables are at the heart of every distributed system. 
Because of our decision to l,aave time out of the model, it is clear that the only way 

for the receiving process to be sure of seeing a value written by the sending process is 
for the latter to leave the value there until it gets some sort of acknowledigement from 
the receiver. Thus, we cannot model the asynchronous serial cotnmunicntion that is 
commonly used to communicate between terjqinals and computers, for the success of 
that method relies on sender cad re+:eiver having nearly identical c!iircks. 
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We have argued so far that shart.d variables underlie any timing-independent 
system, but that certain kinds of communication which depend on time Cannot be 

mOdelled. Does introducing timing-dependent communication primitives into OUT 

Otherwise timing-independent system add any new power? Let US consider various 
possible message primitives. Per%ap:; the simplest is to assume each tJrocess .las a 
‘mailbox’ [Is] or ‘message tuffer’ into which another process can place a message. 
Now, what happens when “the sender wants to send a second message before the 
receiver has seen the first? If the second message simply overwrites the first, then the 
buffer behaves exactly li.ke a shared variable whose vaiues range over the set of 
possible messages. If the sender is forced to wait, then there is an implicit built-in 
synchronization mechanism as in [U, 111 which we have already rejected for our 
model. As a third possibility, the message might go into a queue of waitrng me=saages. 
If the queue is finite, the same problem reappears when the queue gets full. An 
infinite queue, on the other hand, seems very non-primitive and can be rejecteci for 
that reason alone. In any case, if the needed storage is available, the infinite message 
queue can be modelled in our system by a process tith two shared variables: an input 
buffer and an output buffer. The process repeatedly polls its two buffers, moving 
incoming messages to its internal queue, and moving messages from the queue to the 
output buffer whenever it becomes empty. Of course, the sender must wait until the 
input buffer becomes empty before writing another message, but it seems to be an 
essential property of any communication system that there will be a maximum rate at 
which messages can be sent, and the sender attempting to exceed th:.t rate must 
necessarily wait if information is not to be lost. 

From the above discussion, we see that various message systems can be modelled 
naturally using shared variables, provided the variables are not restricted to binary 
values. Also, there are situations in which it is natural for a variable to have more 
than one reader or writer. We incorporate such generalized variables in our model. 
Finally, we generalize our model in one more n:spect by permitting a variable to be 
read and updated in a single step. We call such an operation test-and-set. This 
simplifies the model since both reads and writes are special cases of test-and-sets. 
Moreover, there are situations in which the natural primitive operations are trot 
read and write but are other test-and-set operations such as Dijkstra’s p and V [61j. 
They all become just special cases of our general model. 

One might abject to the use of shared variables to model the long-distance 
communication needed in distributed systems: changes to a sharec; variable are 
instantaneous, while long-distar? .-ce communication has an inherent delay. However, 
communication with delay can be modelled simplv within our framework by a pair of 
shared variables, joined by a ‘channel process’ which copies values from one to the 
other. The arbitrary process delay assumed in our model then appears as an arbitrary 
communication delay. 

In general, the environme;lt of a process (or system of processes) can change a 
variable at any time; thus, 3 process (or system) will not necessarily see the same 
value ira a variable that it :;most recently wrote there. We require of the process (or 
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system) that it be complete in that ir exhibit at least one possible response for cvvry 
possible way the environment might beh&~P~:. 

Operations aze given for combining processes and systems into larger systems, 
Section 3 dea!s with our choice of pr’c4blem. Several fa.ctors contribute to making a 

satisfactory notion of ‘distributed problem’ considerably more complicated than the 
simple input/output function which i,5. oft en identified with the behavior of a 

sequential program: 
(1) there is generally more than one site producing inputs and receiving outputs; 
(2) infinite, non-terminating computations are the rule rather than the exceptioln; 
(3) the relative orders of reading inputs and producing outputs is significant as well 

as the actual values produced; 
(4) variations in timing make distributed systems inherently non.,deterministic, so 

one must allow in general for several different outputs to a given sequence of inputs, 
all of which must be considered ‘correct’. 

Therefore, we take as our notion of “problem’, an arbitrary set of finite and infinite 
sequences of ‘variable actions’, where a variab!e action is a triple (u, X, tl) cC&sGng 
of a variable x, the value u read from the variable and the value v written back into 
the variable. 

Section 4 deals with defining what it means for an instance of the model to solve a 
problem. We’ define the behavior of a distributed system to be a set of finite and 
infinite sequences of interleavings of possible variable actions at certain exterilal 
variables (which are assumed to be used for communication with the outside world). 
Each sequence in the set describes a possible sequence of variable actions by the 
system, assuming particular variable actions by the environment. 

We say that a particular system is a solution to a particular problem if the systems’s 
behavior is any subset of the problem. (Trivial cases such as the empty set are ruled 
out as system behaviors by our process and system definiti.ons.) The problem 
specification is the set of acceptable computations, while the solution behavior is the 
set actually realized. 

Our definition only requires the solution system to be correct; there is no 
stipulation that th_e maximum permitted degree of nondeterminism actually be 
exhibited. We regard the latter as a performance or complexity issue to be dealt with 
separately. We remark that the distltiuted computing paradigm leads one to a very 
different view of nondeterminism or concnrrency than for multiprocessing. Ii,: the 
lal.ter case, the system implementer is presumed to have control of the scheduler, so 

the greater the possible concurrency among the processes he is trying to schedule, the 
greater his freedom to do so efficiently. In a truly asynchronous environment, 
however, one has no direct ,zr,~1cil over the scheduling, $0 it is natural to be 

concerned with the v;orst case (which might aci-sally occur) rather than the best case. 
It is shown that operations for combining systems and operations for combining 

prohiems are related naturally. 
In Section 5, we digress frorn our sequence of steps to present basic charac- 

terization results for behaviors, Two theorems are given, as evidence that our process 
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and behavior definitions are neither too restrictive nor too general. Theorem 5.1 sllys 
that any behavior exhibited bv any system of processe: is &so exhibited by a sinigle 
process; thus our &fiLkrons are sufficiently general. Theorem 5.2, on the other hand, 
says that any behavior exhiblted by a process is also exhibited by a system of two 
deterministic processes; thus, if our definitions were to be restricted, we would be 
sacrificing either necessary generality or uniformity. 

Tn Section 6, we define several complexity measures appropriate for distributed 
systems. It is not obvious how best to define time measures for asynchronous 
systems; we use an interesting time measure first described in [ 131. Other important 
measures describe communication space (banti*width), local storage space and system 

structure. 
Finally, in Section 7, we give an example of a prototypical distributed problem (an 

arbiter) and several very different systems which solve it. The solutions Are compared 
uring our cost criteria. Equivalent implicit and explicit specifications are given for the 
arbiter problem. 

We do not address in this paper an important aspect of problem specification, 
namely, what is an appropriate formal language for describing the sets of sequences 
that comprise a problem specification? The arbiter example is aescribed informally 
in standard mathematical notation. We expect the work on path expressions [3], flow 
expressions [ 143, and other formal systems of expressions might be applicable here. 

This paper is part of a larger project on Theory of Asynchronous Parallel 
Processes. Other papers completed include [2], a study of communkation space 
complexity requirements for implementation of mutual exclusiou, [8], a study of 
space complexity requirements for resource allocation, allowing restricted types 
of process failure, and [lo], a stkhiy of a fast resource-allocation algorithm for 
distributed systems. 

2. A nMel for distributed systems 

2.1. Processes and shared variables 

The primitive notions in our model are those of ‘process’ and ‘variable’. The 
interaction among system components occurs at the process-variable interface. 

A variable x has an associated set (F. ..&e or infinite) of values, values(x), which the 
variable can assume. A variable action for x is a triple (tdl, x, U) with U, v e values(x); 
intuitively, it represents the action of changing the value of x from u (its old value) to 
v (its new value). u and v are not required to be distinct. Act(x) is the set of all 
variable actions for x. If X is a set of variables, we let values(X) g&X values(x) 
and act(X) glJxEx act(x), 

A process p has an associated set (finite or infinite) of states, states(p), which it can 
assume; start(p) is a nonempty set of startirig states, and final(p) a set of final or 
halting states. We let nonfinal = states(p) -final{ p). A process action for p is a 
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triple (s, p, t) with s c nonfinal( t E states(p); intuitively, it represents the articn of 
p going from its old state s to its new state t in a single step. (s and 5 are not required to 
be distinct.) Act(p) is the set of al: process actions for p. If P is a set of processec,, we let 

states(P) 1 UPcp states(p) and act(P) gU,%p act(p). 
Every process action occurs in conjunction with a variable action; the pair l’orms a 

complete execution step. If P is a set of processes and X a set of variables, we let 
steps(P, X) @ act(P) ’ r; act(X) be the set of execution steps. To specify which steps 

are permitted in a computation, a process has two other components in its descrip- 

tion. Variables(p) is a set of variables which the process p can access. If P is a set of 
processes, then variables(P) z!! L&, variables(p). Qksteps(p) is a subset of 

steps(p, variables(p)) describing the: permissible steps of p; oksteps( p) is subject to 
three restrictions: 

(a) for any s ~nonfinal(p), there exist t, u, x, o with ((s, p, t), (u, x, u)) E 
oksteps( Furthermore, if ((s, p, t), (w, x, 0)) and ((s, p, t’), (u’, x’, v’)) E oksteps( 
then x = x’; 

(b) read anything: if ((s, p, t), (u, x, v)) E oksteps and U’ E values(x), then there 
exist t’, v’ with ((s, p, t’), (u’, x, 0’)) E oksteps( 

(c) countable nondetermirrism: start(p) is countable, and also for any s E 
nonrlnal(p), x E variables(p) and u E values(x), there are only countably may pairs I, 
u H iih ((s, p, I), (u, x, u)) E oksteps( 

Some intuitive remarks are in order. Oksteps( p) represents the allowable steps of 
p. A particular step ((s, p, t), (u, x, v)) E oksteps is applicable in a given situation 
only if p is in state s and x has value u. (a) indicates that some step is applicable f:om 
every nonfinal state, and that the next variable accessed is determing: by the state. In 
general, more than one step mipht be applicable; Irence, we are considering 
nondeterministic process+ However, restriction (c) limits the number of applicable 
steps to being countable, a technical restriction we need later for some of our results. 
The effect of taking the step is to put p into state t and to write tl into x. A step is 
considered to be an atomic, indivisible action. With respect ‘to ‘.he variable x, a step 
involves a read followed by a w&e -the read to verify that the ?:ansition is applicable 
and the write to update its va&. We term such an action a ‘test-and-set’. This is a 
generalization of the familiar Booleen semaphores or test-a&-set instructions found 

on many computers. 
Rcstri:,tion (b) formalizes an important assumption that a process “De able to 

respond in some way to anything that might be givcl, .- am )a it as input. In other I-<yards, if it 

is possible for a process in state s to access variable x, then there must be a transition 
from s accessing x for every u E values(x). 

A process is not required to be finite-state, nor fo have a finite number of 
transitions from any state. In Section 5, we show that countable nondeterminism 

arises from application of natural combination operations to deterministic processes. 
Since we wish to treat single processes and groups of processes uniformly, we allow 
the greater generality from the beginning. 
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‘Ne would like next to describe the execution of a process, by describing how the 
steps are to be combined. Intuitively, it is clear that successive steps of a process 
should be consistent in their state components - the new state at arry step should 

coincide with the old state at the next step. However, the corresponding consistency 
condition.for variables is more complicated and involves interaction between several 
processes. Therefore, we defer discussion of process execution until after we have 
described systems of processes. 

2.2. Systems ofprocesses 

The way in which proceeses communicate with O.&her processes and with their 

environment is by means of tlieir variables. A value placed in a variable is available to 
anybody who happens to read that variable until it is replaced by a new value. Unlike 
message-based communication mechanisms, there is no guarantee that anyone will 
ever read the value, nor is there any primitive mechanism to inform t 
the value has been read. (Thus, for meaningful communication to take place, both 
parties must adhere to previously-agreed-upon protocols, though we place no 
restrictions on what kinds of protocols are allowed.) 

We consider variables accessed by a process or system of processes to be either 
internal or external. Internal variables are to be used only by the given process or 
system; thus, consistency of the values of those variables must be hypothesized, and 
an initial value must be provided. External variables wiil not have consistency 
requirements. That is, a process or system of processes is to be able to respond to 
values or^ these variables other than the ones it most recently left there. Intuitively, 
the external variables may be accessible to other processes (or other external agents) 
which could cnar?ge the values between steps of the given process or system. 

More formally, if X is a set of variables (resp. processes), a partialassignment for X 
is any partial function f : X + values(X) (resp. states(X)) with f(x) E values(x) (resp. 
states(x)) whenever f(x) is defined. If ” is defined for all x 2 X, it is called a total 
assignment for X A system of processes S has four components: proc(S) is a 
countable set of processes, ext(S) is a set of external variables, int(S) is a set of internal 
variables, and init(Sj is a total assignment for in@). S is subject to certain 
restrictions: 

(a) ext(S) n int(S) = 0; 

(bj for eacli p i+ pmc(S), variables(p) c ext(S) u int(S). 
If P is a set Qf processes and X a set of variables, we let 

Y(P, Yj Tz{S: S is a system of processes with proc(S) c P and ext(S) u int(S) E X}. 

2.3. Execwic ‘ squences 

The exe+ an of a system of processes is described by a set of execution sequences. 
Each sequence ;s - a Zs? of steps which the system could perform when interleaved with 
appropriate actions b;r the external agent. 
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Let N denote the set of natural numbers, including zero. 
If A is any set, A* (A “) denotes the set of finite (infinite) sequences of A-elements. 
A count denotes .A* u A”, the set of finite or infinite sequences of elements of A. 
iength : A ‘Ount * N u {a~} denotes the number of elements in a given sequence. 

Let P be a set of processes and X a set of variables. 8(P, Xj g steps(P, XjcoupJt is 
the domain of sequences used to describe executions crf processes and sets of 
processes over P and X. 

To define the allowable execution sequences of a system, we first define the 
execution sequences for processes and sets of ;processes. 

Let p be a process. An execution sequence for p is a sequence 

e E (oksteps( p))“““’ c 8’( p, variables(p)) 

for which four conditions hold! Let e = ((si, p, r,j, (u,-, xi, ~ij)Fif~“‘~‘: 
(a) if length(e) = 0, then start(p) n final( p) # 0; 
(bj Ef length(e j # 0, then s1 E start(p); 
(cj if e is finite, then flength(e) E final(p); 
(d) fj = Sj+l for 1 s i c length(e). 

Let exec( p) denote the set of execution sequences for p. (Note, for example, that this 
set is nonempty.) Thus, an execution sequence for a process exhibits consistency for 
state changes, but not necessarily for variable value changes. 

Next, we describe the execution of a set of processes. We wish the execution to be 
fair in the sense that each process either reaches a final state or ccmtiumes to execute 
infinitely often; it cannot be ‘locked out’ forever by other processes when it is able TV 
execute. In other words, processes are completely asynchronous and thus cannot 
influt?nce each other’s ability to execute a step. Since no consistency of values of 
variables has yet been assumed, a simple ‘shuffle’ operation will suffice. 

Let A be any set, K any countable set, and b = (bkjkeK be an indexed set of 
elements of A”“““‘. Shuffle(b) is the set of sequences obtained by taking all of the 
sequences in b and ‘merging’ them together in all possible ways to form new 
sequences, Formally, if n E N, then define [n] = { 1, . . . , n). If n = 00, then [n] = N. 

A sequence c E A’“““’ is in shuffle(b) itf there is a bijective partial map 7r : K X N + 

[length(c)] such that (a)-(c) hold: 
(a) 7r is defined for (k, n) iff n E [length(bk)]; 
(bj 71‘ is monotone increasing in its second argument; 
(cj if ar(k, ij = i, then, ci = the ith element in the sequlence bk. 

The shuffte operator is easily extended to an indexed set of subsets; of A’““!“, viz. if 
B = (&)ke~, where Bk c AcoUnt, then 

shuffle(B) 2 u(shuffle(bj: b = (bkjkcK ar!d b,, E &, k E K). 

If P is a countable set of processes, define exec(P) g ?hufl?e((exec( p)),,p). 
We now extend our notions of execution sequences to systems of processes. In 

doing so, we want to insist on consistency for internal variabble values, but not 

necessarily for external variable values. 
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If X is a set of variables, let B(X) g (act(X))“““‘. (W stands for ‘behavior’.) Let 
b E B?(X), x E AC> and f be a partial assignment for X Latest (6, x, f) is the value left in 

x after performing the actions in b, assuming x had initial value f(x). We define 
‘latest’ recu,sively on the length of 6. If length(b) = 0, then 

NOW assume length(b) z 1, and b = b’(u, y, v) for some (u, y, U) E act(X). Then 

latcst(b, x, f) = 

i 

V if x = y, 

latest(b’, x, f), if x # y and latest (b’, x, f) Is defined, 

undefined, otherwise. 

Let X, Y be sets of variables, b E 9 (X), an,d f a total assignment for Y. We say b is 
(Y, f)-consistent if for every prefix b’(u, y, v) of b with y E Y, it is the case that 

u = latest(b’, yI ,f). For B E B(X), define 

consisty,/(B) 2 {b E B: b is (Y, f)-consistent.) 

Let P be a set of processes, X a set of variables. Then erase : steps(P, X) + act(X) 
maps each pair (a, a’) to its second componerl; a’. Erase is extended to Y homomor- 
phism mapping 8(P, X) to a(X). (Similar extensions of notation are used later in the 

paper.) For E E 8(P, X), define 

consisty,f(E) f {e E E: e is (Y, fl-consistent}. 

Now let S be a system of processes. 

Exec(S) 2 consist i,tls,,i,itcs)(exec(PrOC(S))) 

c S(proc(S), ext(S) cj int(S)). 

Thus, exec(S) consists of those execution sequences of the system’s processes ii. 
which the internal variables are consistent throughout the sequence. Note that 
II-irec(S) # 0. 

2.4. Operations on systems and on sets of sequences 

One goal of our formalism is to permit complex systems to be understood in terms 
of simpler ones. For this, we need operations for building larger systems from smaller 
ones. Corresponding to these operations wili be operations on related sets of 
sequences. This approach is similar to that of Milne and Milner [ll J. 

The first operation joins a ctiuntable collection of systems into a single one. Let 
(Si)iEI be a countable indexed family of systems such that 

(a) i f j implies proc(S,) A prOC(Sj) = 0; 
(b) i # j implies int(S) n (ext(§j) u int(§j)) = 
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Then @(S&l is the system S such that 

proc(S) = i.J proc(SJ, ext(S) = U ext(&), 
iel id 

int(S) = U int(SJ, init = U init( 
id iEi 

Let P be a set of processes, X a set of variables. Then 0 is defined on countable 
indexed families of subsets of Gs(P, X) or a(X) to be simply the shufIle operation. 

T5e second operation on systems is the one of turning selected external variables 
into internal ones. Let S be a system, Y a set of variables such that Y A int(S) = fl, and 
f a total assignment for Y We define consisty,#) to be the system S’ such that 
proc(S’) = proc(S), ext(S’) = ext(S) - Y, int(S’) = int(S) u Y, and init = init ufi 
ConsistY,f has already been defined for subsets of %(P, X) and of B(X). 

In Section 4, we will be interested in restricting attention to a subset of a system’s 
variables rather than all of its variables. Thus, if X and Y are sets-of variables, 
6 E 9?(X), then restry(6) (resp. elimy( is the subsequence of b consisting of the 
actions involving (resp. not involving) variables in Y. (elim y(b) might be finite even if 
6 is infinite.) 

That these definitions interact properly is shown by the following theorem. (9, 
denotes the power set operator.) 

Theorem 2.1. Let P be a set of processes, X, Y and 2 sets of variables with Y A Z == 8, f 
a tow! assignment for Y. Let 9, 8?, 93 and .W dmote 9(P, X), 8(P, X), .9(X) and 
9&T?) respectively. Then the following diagram commutes: 

Pmof, Straightforward. 

2,5. Modules 

The two operations 0 and consisty,, c are sufficient to build any system from 
one-process systems in a simple way. 
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Let S, S’ be systems. S’ is a module of S if proc(S’) Eproc(S), ext(S’) c 
ext(S) u in@), int(S’j c int(S), and init(S’j = init 1 int(S’) (the restriction of the 
function init to domain int(S’)). Thus, a module is a subsystem whose interna! 
variables are private to it and whose external variables form the interface between 
the module and both the remaining system and the external world. 

A system S is partitioned into modules (Si)ipI 1 ‘f Si is a module of S for each i E I, 
(proc(S,)jiEr is a partition of proc(S), and for all i, 1 E I, if i # j, then int(SJ n 
(eXt(Sj) U int($)) = 0. 

A system is atomic 11’ it consists of a single process with no internal variable, i.e. if 
Iproc(S)I = 1 and int(S) = init = 0. 

The folio;ving is immediate from the definitions. 

Theorem 2.2. (a) Every system can be partitioned into a countable set of atomic 
modules. 

(bj Every system can be obtained from an arbitrary partition into modules by one 
application of 0 foliowed by one application of consisty,f for appropriate Y, f. 

2.6. &marks on indivisibility of variable access 

Our process and execution sequence definitions assume possible indivisibility of a 
fairly powerful form of variable access. In particular, processes that can both read 
and change variables in one indivisible step (such as the ‘test-and-set’ processes of 
Cremers-Hibbard [3] and Burns et al. [2] are included in the general definitions. 
Some readers may consider this general access mechanism t3 be unreasonably 
powerful, 2:guing that a process model based on indivisibility of ‘reads’ and ‘writes’ 
only is hiore re,alistic. Such a process model can be defined by certain restrictions on 
our general model (as we describe belovt). Thus, our development not only speci- 
alizes to include consideration of a read-write model, but also allows comparison of 
the power of the read-write model witti that of the .bnore general access model. The 
specialization can be carried out a? follows. 

A process p is called a read-write process provided for each s E states(p), :he set 

A = oksteps( p) n { ((s, p, t), (u, x, v)): t E states(p), u, v E values(x)} 

has (at least) one of the following properties: 
(a) (A describe* a ‘read operation’) for all ((s, p, t), (u, x, v)) in A, it is the case that 

u -= v ; 
(b9 (A describes a ‘write operation’) if {(s, p, t), (u, x, vi) and ((s, p, t’), (u’, x, v’)) arc 

two arbitrary elements of A, then t = t’ and v = v’, 
Two simpit: t xamples follow. 

Ie 2.1. Lr:t states( p j = start(p) = (s}, final(p) = 8, variables(p) = {x}, 
values(x) = (0, I), ad cksteps(p) = {((s, p, s), CO, x, I)), ((s, p, s), (1, X, 0))). Process p 
simply examines x repeatedly, changing its value at each access. The change is 
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clearly an activity that involves both reading and writing, so that, i:ntuitively, p is not ip 
read-write process. Formally, it is obvious that neither (a) nor (ID) holds. 

xampIe 2.2. Let states(p) = start(p) = {s), final(p) = @, variables(p) = {+:i_, 
values(x) = (0,l) and oksteps = {((s, p, s), (0, x, l)), ((s, p, s), (1, x, 1))). Process p 

simply examines x repeatedly, writing ‘1’ every tin.e. It is eas!y to see that p is a 

read-write process. 

2.7. Communication delay 

So far, our model describes asynchronous processes communicating by shared 
variables, a situation which suggests that the processes are ohysically located 
sufficiently near to each other to share memory without delay. We also wish to model 
more general ‘distributed’ systems of asynchronous processes, in which corn- 
munication is done by means of a channel with significant transmiission delay. No niew 
primiitives are required in order to extend lthe present model to handle such 
communication. A one-way channel is simply modelled by a special ‘channel process 
p, as detailed below. 

Let V be any set, states(p) = ({write) x VI ! I [read}, start(p) = {read}, final(p) =: (3, 
variables(p) =(x, y}, values(x) = values(y) = V, and oksteps = {((read, p9 (write, 
t))), (u, x, 0)): u, v E V}u((((write, u), p, read), (u, y, u)): 3, u E V}. Process p is 
thought of as sharing a variable with each of two other processes. It alternately 
reads from one of the variables and writes the value read in the other variable. (p is 
obviously a read-write process.) 

When p is combined with two processes in the manner already described in this 
section, the consistent execution sequences exactly describe the effect of an arbi- 
trary-delay one-way channel used for communication between the two original 
processes. DifIerent types of communication channels similarly can be modelled, 
using corresponding types of channel processes. 

3. Distributed problems 

In the introduction, we listed four factors making a satisfactory notion of ‘dis- 

tributed problem’ more complicated than just a function. We now give a definition 
that accommodates those factors. 

Let X be a set of variables. A distributed problem over X is any subset B of B(X). 
The explicit mention of d&rent variables models the multiplicity cf input/output 

sites. The inclusion of finite and infinite sequences in W(X) modlels terminating and 
nonterminating computations. The use of totally ordered sequences of actions 
preserves the relative ordering of remote events. And finally, the use of subsets 
(rather than single sequences) recognizes the inherent nondeterminism of distributed 
systems. 
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Typical distributed problems consist of sequences restricted by conditions of 

exclusion, synchronization and fairness. 

* Sol&km rCo distributed problems 

4.1, System behavior 

Exec(S) gives complete information on how a svstetn S of processes might execute 
in any given environment. Often, however, one is not interested in how the processes 
execute but only in their effect on the environmprlt, that is, the way they change the 
variables. We obtain this information from the execution sequences by extracting the 
variable actions. 

If S is a system of processes, we define the behavior of S, 

beh(S) g erase(exec(S)) c @(ext(S) d in t(S)). 

Similarly, wti define the behavior for a process p and a countable set of processes P: 

Beh(pj 2 erase(exec(p))(= B(variables(p)), 

Beh(P) 2 erase(exec(P)) c W(variables(P)). 

Often one is interested only in those actions involving the external -, ariables. We 

define the external behavior of S, extbeh(S) d=‘elimi,&beh(S)). 
The following two results relates extbeh to 0 and c0nsisty.f. 

Theorem 4.1. Let P be a set of processes, X a set of variables. Let Yand 58 denote 
9’(P, X) and 9 (X) respectively. The following diagram commutes: 

Y m”“t 
cxtbrh 

- Iw”““’ 

@’ extbeh , /@ 
Y 98 

roof. Let (Si)ief E 9C,,,1. Then 

extbeh(@iSiLl) = elimi,,tocs,),,,)(beh(O(Si)i,r)) 

= ~(elimi,,(~(s,,,,,,(beh(Sijj)~~~ ‘by Theorem 2.1 

E @(elimi,t~s,,(beh~ Si)))iEI by domain considerations 

= O(extbeh(Sj))ieI. 
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Theorem 4.2. Let S be a system of processes, Y a set of variables for which 
Y n int(Sj = 8, f a total assignment for Y. Then 

extbeh(consist y,/ (Sj) = elim Y (consist V,f (extbeh(S))). 

Proof. 
extbeh(consist y,f( S)) = elimint(b)u Y (beh(consist yBf(Sj)) by definition 

= elimy (elimi&beh(consist y,f(S)))) 

= elimy (elirrki,t&consist y,r(beh(S))),\ by ‘Theorem 2.1 

= elimy (consist k,f(elimint(s) (beh(S)))) by Theorem 2.1 

= elimy (consistyJextbeh(Sj)). 

4.2. Realization and solution 

Let S be a system of processes, B c; B(ext(S)). Then S realizes B provided 
extbeh(S) = B. This definition might at first appear to capture the conditions under 
which system S solves the distributed problem B. However, we think ihat a weaker 
definition is more appropriate; we say S solves B provided extbeh(S) c: 8. 

Thus, S is not required to exhibit the same degree of nondeterminism as B. 
Intuitively, I? is the set of acceptable input/output sequences; S’s, input;output 
sequences must be included among those in B, but they need not encompass all of B. 
Trivial cases such as extbeh(S) = 0 are ruled out by the definitions :for ~s@ems and 
their executions; for instance, recall that exec(S) cannot be empty. 

4.3. Equivalence and substitution 

Let Si, S2 be systems of processes. Then Si = Sz (SJ is equivalent to Szj provided 
extbeh(Si) = extbeh(&). This definition might at first nppear to capture the condi- 
tions under which Si might be allowed to replace S2 as a modulle in a larger system. 
Illdeed, this style of definition is used for such a purpose in [l 11. However, we think, 
as before, that a weaker definition is appropriate: we say S1 r S2 (S1 is substitutable 
for &j provided extbeh(&) E extbeh(&). 

Thus, Si is not required to exhibit the same degree of nonde;crminism as St. In 
contrast with the usual assumptions about nondeterminism, in :he case of asynch- 
ronous systems al! possible nondeterminirtic choices should be correct. Thus, a 
system Si exhibiting any subs& of tltc Gxecution sequences of Sz should be 
acceptable. 

Appropriate interactions between our operations and relations are shown in the 
fol! ‘wing theorem. 
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Thearem 4.3. LA. I .P be a set of processes, Xand Ysets of variables, f a total assignment 
for 1; unc’ let 9 an d W denote 9g(F, X) and Se(X) respectively. Then the following 
hold : 

(a) G?, consist Y,E, restry and elimy as operations on P(B) preservr s , 
(b) @ anb consistKf as operations on 9 preserve E , 
(c) @ and consist y,f as operations on 9 preserve 5 * 

Proof. (a) is obvious. For (b), the case of @ follows from Theorem 4.1, while the case 
of consis;Y,f follows from Theorem 4.2. (c) is immediate from (b). 

Theorem *4.3 implies the following. Assume Sr is substitutable for Sz, and S2 is a 
module of system T. Let TI be the system obtained by replacing Sa by SI in TI. Then 
TI is substitutable for 7’,. Similariy, if Sr is equivalent to SZ, then Tl is equivalent to 
TZ. Thus, our extr~rn~l be : savior definitions provide a way of describing the behavior 
of a system in terms of the behavior of its components. 

5. Countable nondeterminism 

The results of this section justify the ‘countably nondeterministic’ generality of our 
process definition. 1 heorem 5.1 says that the countable nondeterminism of a system 
(caused by arbitrary interleaving of process steps as well as the nondef.erminism of 
the individual processesj can be simulated by the countable nondeterminism of a 
single process. More precisely, any external behavior realized 5y a system is i;lso 
realized by an atomic system. Thus, our definition is general enough to permit 
uniform treatment of single processes and groups of processes. On the other hand, 
Theorem 5.2 says that the countable nondeterminism of a process can be simulated 
by the countable nondeterminism of the interleaving of steps in a system of two 
deterministic processes. More specifically, any external behavior realized by an 
atomic system is also realized by a system of two deterministic processes; thus, our 
definition could not reasonak!y be made more restrictive. These results are closely 
related to some of those of Ch dndra [3 3. (However, our sequences have considerably 
more structure than his, so that we do not obtain the type of explicit characterization 
of the class of process behaviors that he does.) 

We first show hew to reduce the number of processes to one. 

ma 5.1. For any system S, there is a system S’ with the same external and internal 
variables such that Iproc(S'>l = I and beh(S’) = beh(S). 

roof. We describe a process p which simulates the fair execution of all of the 
processes in proc(Sj. The most obvious idea is to allow p repeatedly to use countable 
nondeterminism to select which process q E proc(S) to simulate next, and at the same 
time use its countable nondeterminism to select among the countably many possible 
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alternatives of 4. The only problem is that nothing insures that p will actually 
simulate infinitely many steps of each 4; p mrght always chcose to simulate one 
particular process, thereby violating the fairness of the shuflle operation IIowever, 
the countable nondeterminism of p can also be used to enforce fairness, as follows. 
Let 7~ : N -{0} + proc(S) be a fixed total function. such that each 4 E proc(S) appears 
infinitely many times in the range of v0 Process p keeps a partial function 
schedule : N - (0) + proc(Sj in its state, representing the process which has been or is 
to be simulated at each step of p. At any moment during p’s computation, schedule is 
a finite function. Also, p keeps config, a partial assignment to proc(S), representing 
the current states of each process which has had a step) simulated by p. Config is also 
finite at any particular moment. The other principal datum in p’s state is currentstate, 
the current state of the next process to be simulated. Each start state of p contains an 
initialization of schedule as {(1,4)}, for some 4 E proc(S), an initializat:ion of cur- 
rentstate as s, for some s E start(q), and an initialization of config as 6. At each step n 
of p, p does the following: (Let 4 denote the value of schedule(n) and Y the value of 
currentstate at the beginning of step n of p. Let x denote the unique variable to be 
accessed from state s, ti the value of variable x at the beginning of step n. The 
CHOOSE command represents a use of p’s countable nondeterminism; the remain- 
ing syntax should be self-explanatory.) 

CHOOSE (t, U) such that ((s, 4, t), (u, x, u)) E oksteps(4); 
x:= v; 
config(q t ; 
IF schedule(n + 1) is undefined THEN 

[CHOOSE 4’ E proc(S); schedule(n + l):= 4’1 
IF config(schedule(n + 1)) is defined THEN 

currentstate:= config(schedule(n + 1)) 
ELSE [CHOOSE s’ E start (schedule(n + 1)); currentstate:= s’]; 

CHOOSE k such that schedule(k) is undefined; 
schedule(k):= v(n) 

That is, p uses its countable nondeterminism to select from among the moves of the 
simulated processes, to select the next pr;i;ess to simulate <if necessary), to select 
start states for the simulated processes, and to select specific steps (of p) when each 
process in proc(S) will be guaranteed of being simulated. 

We leave to the reader the task of translating the code into a process in our formal 
model, (All of the countably nrndeterministic choices must be done at once in the 
translated version. If schedule(n + 1) i.s undefined, then 4’ is chosen, and if config(q’j 
is then undefined, the code contains a second choice for a start state of 4’. It might 
appear at first that these two choices must be done sequentially; however, it is easy so 
make a single choice of (4’, s’), where s’ E start@).) 

Let S’ be the system with proc(S’) = {p}, ext(S’) = ext(Sj, int(S’) = int(S) and 
init = init( That beh(S’j = beh(S) follows from the fact that ,p simulates exactiy 
all of the fair interleavings of steps :,f the processes in proc(S). 
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Next, we prove a technical lemma producing a standard form for processes. 
A process p is called treelike provided (a) and (b) hold: 
(a) for all t0 E states(p), j{((s, p, t), (u, x, 0)) E oksteps( t = to)1 s 1, 

(b) for all to E start(p), I{((s, p, t), (u, x, u)) E oksteps( t = to}1 = O& 

Lemma 5.2. If p is a process, then there is a treelike process q with beh(p) = beh(q). 

roof sketch. Process p can be ‘opened up into a tree’ by replicating states; process q 
has states corresponding to finite paths in p. 

It remains to remove internal variables. 

Theorena !Ll. kvOr any system S3 ?here is an atomic system S’ such that S’ = S. 

Proof sketch. By Lemma 5.1, we can assume proc(S) = {p}. By Lemma 5.2, we can 
assume p is treelike. A process transformation is carried out in two steps (the 
Intermediate result of which need not be a process). First, p1 is csnstructed from p by 
‘prurG;g’ p’s iree so that only (int(S), init(S))-consistent paths remain. since p is 
treelike, there is no ambiguity involved in deciding when to prune. Now p2 is 
constructed from p1 by condensing paths involving variables in int(S). This con- 
struction Es not carried out in stages because of the possible condensatib:n of infinite 
paths to “Inite paths. The possibilibr that p1 could continue forever on branches 
involving only variables in int(S) involves transition to a final state of ~2. Finally, S’ is 
the atomic system such that proc(S’) = (~2) and ext(S’) = ext(S). 

We argue that our countably nondetermlnistic process model is not too general. 
Restriction of processes to finitely many states would surely be unnatural, ruling 

our processes which resemble natural sequential computation models such as Turing 
machines. But the usual sequential computation models, though allowing infinitely 
many states, are restricted to finite nondeterminism. This restriction does not seem 
overly strong in the sequential setting, since it is preserved by natural sequential 
combination operations, But for the asynchronous parallel case, finite nondeter- 
minism would n*? t be preserved by fair combination opers!ions such as our 0. The 
next result says that the external behavior of any syster.1 can be realized as the 
external behavior of a pair of communicating deterministic (and therefore finitely 
nondeterministic) processes. However, Example 5.1 below shows that the set of 
external behaviors realizable by atomic systems of finitely nondeterministic proces- 
ses is a proper subset of the set of external behaviors realizable by arbitrary systems. 

More precisely, a process p is finite branching (resp. deterministic) provided 
start(p) is finite, (resp. of cardinality l), and also for any s ~nonfinahp), x E 
variables(p), u E values(x), there are only finitely many (resp. at most 1) pairs (t, U) 
with ((s, p, t), (u, X, u)) E oksteps(p).A system S is finite branching (resp. deter- 
ministic) if every process in pro@) is finite branching (resp, deterministic). 
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In the following theorem, let p denote the process of Example 2.2. Process p is 
deterministic and finite state. Assume variables(p) = {x}, and f(x) = 0. Let T be the 
atomic system with proc( T) = {p}, ext( T) = {x}, and int(T) = init( ?-) = 8. 

Theorem 5.2. Lek- S be a system of processes. Then there? is a deterministic atomic 
system §I such that S = consist(,#1@ T). 

Proof sketch. By Theorem 5.1, we can assume that S is atomic Let proc(S) = (4). 
For each s E states(q), y E variables(q), u E: values(y), there are o.nly countably many 
pairs (f, U) such that ((s, 4, t), (u, y, 0)) E oksteps(4). Fix an ordering for each set of 
pairs. Also fix an ordering for the elements of start(q). Process 4 l simulates a step of 
process 4 as follows. Process 4r alternatively tests x and increments a counter until it 
sees that x ha!; been set to 1, It then simulaites a step of 4, using the counter value to 
select one of the possible alternative moves’, and then resets the crjunter and variable 
x to 0 for the next step of simulation. Si is the system with proc(S1) ~(411, 
ext(Sl) = ext(S) u(x), int(&) = init = 0. 

We conclud,e this section with an example of a set of sequences which can be 
realized as the li:xternal behavior of an atomic system, but not of any finite-branching 
atomic system. 

Lemma 5.3. L(et p be a finite-branching pwcess, x E variables(p), b E (act(x))“. If 
beh(p) contains infinitely many prefixes of b, then b E beh( p). 

Pro’of sketch. By Konig’s L,emma. 

Example 5.1. Consider the problem of writing a. specific value any finite number of 
times. 

More specifically, let x be a variable, u E values(x), A = {(u, x, u): u E values(x)}. 
A* is the set of all finite sequences of actions, each of which ‘writes 0’ into x. A* can 
easily be obtained as beh(p) for a process p which uses countable nondeterminism, to 
choose an element of N for a counter initialization. Process p alternatively decre- 
ments the counter and writes o, halting when the counter is 0. Therefore, A* can be 
realized as the external behavior of an atomic system. 

On the other hand, Lemma 5.3 implies that A* is not beh(p) for any finite- 
branching process p, since b = (u, x, u)” has all of its finite prefixes in A*. Therefore, 
A* cannot be realized as the external behavior of any finite-branching atomic 
system. 

Separatilln of behavior and implementation opens the way for comparison of 
different implementations of the same behavior, a fundamental subject of study for 
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any theory of computation. Intuitively* comparisons might be made on the basis 
of process configuration, local process space requirements, communication 
space requirements, number of process steps executed, number of changes 
made to variables, and possible ‘amount .of concurrency’. Trade~!E wculd be 
expected. 

Configuration and space measures seem easy to formalize; one caEt simply count 
numbers of processes and variables, numbers of states and variable values. Time and 
concurrency measures are not so straightforward. We use a version of a measure 
&scribed in [13]. Intrritively, fixed upper bounds are assumed for the intervals 
between the occurrence of certain events. (For instance, each process might be 
assumed to take a step within cl units of time. Also, when the system makes certain 
changes to an external variable, the environment might be assumed to+respond in a 
specific way within c2 units of time.) With such assumptions, an uppe.- bound can be 
proved for the running time of a finite execution sequence. Then an upper bound for 
the time required for a particular event to occur is just the maximum of the upper 
bounds on the running times of all ljossible execution sequences, up to the point 
when that event occurs. No lower bounds are assumed for the intervals between the 
occurrence of events. Thus, all fair interleavings of steps are still possible, even with 
the time assumptions. These assumptions are therefore of no use in proving logical 
correctness of systems. Their only use is for bounding running time. 

7. Example: an arbiter 

7.1 I Behavior specification method 

In this section, we specify behavior for a typical distributed system-an arbiter. We 
do not here espouse any particular formal specification language, but rather express 
behavior restrictions in general mathematical terminology. 

We also describe three particular and diverse implcment:ations within our model 
that exhibit (i.e. solve) this behavior. Finally, we compare these implementations 
using our complexity measures. 

The specification follows a pattern which has more general applicability, so we first 
describe that pattern. A finite set X of variables is accessed by a ‘user’ and by a 
‘system’. The use; is required to follow a simple eind restrictive behavior pattern; 
forinally, a set U c W(X) of ‘correct user sequences’ is defined. The system is to be 
designed so that when it is combined with a user exhibiting correct behavior, with 
correct initialization of variables, certain conditions (on the values of variables) hold. 
Formally, a set M E ({user, system) x act(X))“““’ is defined in order to describe the 
desired conditions. A total assignment f for X is defined in order to describe correct 
initialization o!F variables. 

In a sense, U, M and f may together be regarded as a specification for the behavior 
of the desired :!iystem: any b E a(X) can be considered ‘acceptable’ if whenever it is 
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combined consistently with a sequence in U, the resulting combination is in M’. A 
system of processes is a correct implementation if all of its external behavior 
sequences are acceptable. 

More formally, if A is any set, t E A”““‘, L any set, x any element of L, then 6” 
denotes that element of ({x} x Ajcount whose ith element is (x, hi), where bi is t:he ith 
element of b. (That is, the entire sequence is labelled by x.) This superscri@-is 
extended to subsets of A”“““’ in the obvious way. 

For X3 Y sets of variables, L any set, b E (L x act(X))count, f a total assignment for 
Y, we say that b is (I’, f)-consistent provided the sequence of second components of b 
is (Y, fi-consistent. 

In the present examples, L is taken to be {user, system}, a set of identifying labels 
for the modules of interest. 

A sequence b E S(X) is called ( U, M, f)-acceptable provided (c E 
shuffle(IJUser, bsystem j: c is (X, f)- consistent} E A4 Then a system of processes S is a 
correct implementation provided S “solves’ {b : b is (U, M, B-acceptable} (that is, 
provided every sequence in extbeh(S) is (U, M, f)-acceptable). 

This type of description may be somewhat difficult for a system designer to use 
as a specification, so that it may be helpful to define explicitly a set B of (U, M, f )-. 
acceptable sequences. Any system of processes S that solves B is then considered 
correct. B should be as large as possible so as not to constrairn the system designer 
unnecessarily. In the following example, we arle able to obtain B exactly equal 
to the set of (V, M, f)-acceptable sequences, thus providing an explicit correct- 
ness characterization. We do not yet have a general equivalence theorem i’vi 

specifications however. 

7.2. Arbiter specification 

Let values(x) = {E, A, G} for each x’ EX. lntuit&ely, E indicates ‘empty’, .4 
indicates ‘ask’ and G indicates ‘grant’ of a resource The user is restricted to initiating 
requests and returning granted resources. More precisely, U E S(X) is defined as 
follows: <Let a E shuffle((a, : x E X)), where each a, E 93(X).) 

a E U SW for each x EX, (a)-(c) hold (Let a, = (tii, x, Vi)Ff’fth(ax)-) 
(a) Correct rrrrrssitions: For all i, 1 SG i c lengt&r,), if Ui = E, then Ui = E or A, and 

if ui = A, then t.+ = A. (The user cannot grant a request, and once he has initiated a 
request he cannot retract it.) 

(b) $topping: If ax is finite and nonempty, then 2)length(a,j = E. (The user cannot 
leave the system when a request is pending or granted.) 

(c) Return of resuurce : For all i, if ui = G, then there exists j 2 i with vi = E or A. (If 
the user sees that his request has been granted, he must eventually return the 
resource.) 

Thus, user correctness is defined locally at each v,ariable. In particular, the user can 
consist of separate processes, one for each variable,. with no communication between 
them. It is easy to design a set of processes with behavior a subset of U. 
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Correct operation for our arbiter system will require that all requests eventually be 
granted, and that no two requests be granted simultaneously. 

Let f = hx[Ej, L = {user, system}. M E (L x act(X))“U”’ is defined 3s follows: 
c EM iff c is (X, f)-consistent and both (a) and (bl) hold: 
(a) Local conditions: (Let c E shutL?e((c,: x E X)), each c, E (L x act(x))“““L.) For 

each x EX, both (al) and (a2) hold: (Let c, = (li,(Ui, x, rrJ)~J~h’er’.) 
(al ) Correct trumitions: For all i, 1 s i ~!ength(c,), either ui =z vi or else one of 

(aI. I j-&13) holds: 
(all) li == user, ui = B and Q = A; 
(a12) Ii == user and ui = G; 
(a13) ii = system, ui = A, and vi = G. 

(The allowed transitions are depicted below.) 

(a2) Progress : For all i, if tri # E, then there exists j 3 i with vi f Oi. (An.v value 
other than E is eventually changed.) 
(b) Global ChditiOns : (Let c = (Ii,(~i, xg Vi))pJfth(‘), d = (Ur, Xi, Vi)FZrh”‘a) 

(bll) Mutual ,exciusion : For no xl, x2 E X, x1 # x2 and no prefix e of J is it the 
case that latest@, xl, fl = latest(e, x2, f) = G. 
Next, we define B, thereby providing an explicit characterization 

correct sequences,, 
of the set of 

b E B iff either (,a) or (b) holds: 
(a) Initializatio~~r or user obseqed to be incorrect: (Let b e shufIle({b, : x E X)) as 

before.) For some x 2 X, one of (al)-(a3) holds: (Let bx = (ui, x, v~)~z?~‘~~‘.) 
(al) u*=G: 
(a2) For sorn’e i, it is the case that vi = E and uI+~ = G, or else vi = A and ui+r = E 

or G; 
(a3) length (b,) = 00, and ui = G for all sufficiently large i. (Thus, we have not 

required any particular error detection behavior; we permit arbitrary system 
behavior if incorrect action by the user or incorrect variable initialization occurs. 
Note that it woilrld be easy to program a system to check for errors such as those 
represented in (al) and (a2), but (a3) errors cannot be detected at any finite point 
during the computation.) 
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(6) Correctness conditions: Both (bl) and (b2) hold: 
(bl) Local conditions: (Let 6 E shufle({h, : x E X},r as before.) For each x E X, 

(bl l)-(b13) all hold. (b, = (ui, X, ZJ~)FZF~~(~~).) 
(bll) C’orrect transitions: For all i, if Ui - E or G, then Vi = Eli, and if Ui = A, 

then ui,=A or 6; 
(bl2) Infinite examination : 6, is infinite; 
(b13) Response: For all i, if Ui = A, then for come j” i it is the case that 

vi#A; 
(b2) Global conditions: (Eet b = (ui, xi, vi)f$fthcb).) 

(b21) Mutual exclusion : For no x1, x2 E X, x1 # x2, and no prefix d of b it is the 
case that latest(d, x1, f> = latest(d, x2, fl = G. 

The following theorem shows that our explicit characterization for system 
behavior is as general as possible. 

Theorem 7.1. B = (6: b is (U, h4, f)-acceptable}. 

Proof. E : Let 6 E 8, u E U, c E shuf?le(nuSer, bSySL”m), c (X, f)-consistent. We must 
show c E h4. 

Since a E U and c is (X,fi-consistent, it follows that b fails to satisfy (a) of (the 
definition of) B. Thus, b satisfies (b) of B. 

We check that c satisfies each condition of A4 c satisfies, (al) of M because of (a) of 
U and (bll) of B. To verify (a2) of M, write c E shuffle((c, : x E X}), and for fixed x, 
write c, = (&(Ui, X, Vi))~Z$h(cx). If (Zi,(ui, x, A)) is an element of c, then (b12) and (b13) 
of B to:;ether imply that vi # A for some j > i. If (fi,(Ui, x, 0)) is an element of C, then 
let j bc: the largest number 6i with ii = user. By (bll) of B, j exists and vi = A or G. 
Theri by (b) of U, there exists k > i with 1k = user. If uk # G we are done. Qtherwise, 
(c) o.T U implies that v,,, # G for some m * k. 

(bl) of A4 follows easily from (b21) of B and (a) of U. 
=, : Let 6& B, We must produce a E U, c E shuffle(a”‘“‘, bsystem ), c (X, fi- 

consistent, and c E A4 Clearly, 6 fails to satisfy (a) of B. In addition, b will fail to 
satisfy at least one of (bll), (bl?), (b13) and (b21) of B. 

.V’e consider four cases, 
(bll) fails: Any a E U, c E shuffle(a”““‘, bsystem) which is (X, f)-consistent will 

fail to satisfy (al) of M. One such c can be constructed by immediately preceding 
each element (system, (u, x, v)) of c which is derived from an action of 6 by an 

df:ment (user, (Y, x, ~1). T?e value of y is uniquely determined by the consis- 
tcl>cY requirements on c; since b fails to satisfy (a) of S, this determination produces 
a E U 

(b1.2) fails: Consider x such that actions (u, x, v) only appear finitely often in b. 
Construct ,‘L E U, c E shufffe(a”““‘, bsystem), c (X, fi -consistent, with the following 
property, In c, following all elements of the form (system, (u, x, v)) (for any EE, u), 
there is an element of the form (user, (u, x, A)) (for some u), and fo!lowin% that 
element there are infinitely many elements of the form (user, (A, x, A)!. Such zri c can 
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be constructed by a slight addition to the construction for the preceding case. The 
resulting c fails to satisfy (a2) of M 

(b13) fails: IConsi&r x such that (A, x, A) occurs in b and moreover for all 
following actions in b of the form (u, x, u), we have v = A. 

Then any a E U, c E shuffle@ uscr. tsystem) which is (X,fl-consistent will fail to 
satisfy (a2) of AL Such a, c can be constructed as before. 

(b21) fairs: :Let b = (ui, xi, v,)?Z’?~“‘“‘, where (z+, xj, C) and (ok, xk, 6) are actions 
witnessing the con:radiction to (b2 1) of B. We can assume that j < k? q # xk and for 
no m, j 8: m < k is it the ease that x,,, = xi. 

Consider a E US c E shuffle(a”“‘, bsrstem), c (X, f) -consistent, with the following 
property. III c, the elements derived from b’s actions (z.+, xi, G) and (Mu, x&, G) have 
uo intervening elements of the form (user, (u, xi, v)) for any u, v. Sl.ach a, c fail to 
satisfy (bf) of M 

Such a, c can be constructed as before. 

The given description of B seems sufficiently manageable to be used to specify 
system behavior. 

7.3. Three solutions and their comparison 

The arbiter problem as stated above admits many different implemerrtations-i.e. 
systems of processes with external behavior a subset of B but with diEtrent internal 
structure and execution behavior. Out!ines of three such implementations follow. 
Complexity bounds are estimated for all of the implementations. 

Let n = 1x1, the number of external variables. Assume cl to be an upper bound on 
the time between steps of each process of the implementation system. Also, assume 
c2 to be an upper bound on the time between the granting of a resource and the return 
of that resourc:e by the user. We calculate upper bounds on the time between 
the initiation and granting of a request. We calculate similar bounds with the 
additional restriction that at most k other requests overlap the given request 
in tine. 
ImplemePrtution I. The simplest implementation is an atomic system S consisting of P 
single process p which polls each variable in circular sequence. When A is read, I’ 
changes it to G iand then repeatedly reads that variable until its value reverts either to 

E or A. ‘When this occurs, p resumes polling with the next variable. 
It is obvious that extbeh(S) c B (but note that equality does not hold). The single 

paocess p has 2n states and no internal variables. 
The worst case time for a request occurs when a user makes a request just as ‘tre 

returns the resource; he must wait for p to examine all of the other variables, possibly 
gr %nting the resiource to each other user in turn. The upper bound is c2(n - 1) + 2cgz. 
lr’ there are at znost k other requests active at the same time as the given request, the 
upper bound is; C& +2crn. (Thus, if there are no other active requests, the time to 
grant the request is bounded by 2cln.) 
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Implement&on 2. Assume for simplicity that n = 2”, m z 1. The idea of Imp1 :men- 
tation 1 can 5e extended to allow ‘more concurrency’ using a binary tree off yol.ling 
processes, with the leaves accessing the interface variables x: E X. 

Each non-root process p alternately polls its left and right son variables. When A is 
seen, p changes its own father variable to A and waits. When the father variable 
changes to G, p grants its pending son’s request by changing the appropriate A to G. 
p then waits for that son variable to revert to either E or A. When this occurs, p 
changes its father variable to E and then resumes polling its sons with the other son 
being polled next. 

The root process acts just like p of Implemetitation 1 for n = 2. 
All internal (i.e. father) variables are initialized at E. The alternating strategy 

guarantees eventual granting of all requests. All other properties in the definition of 
B are easy to check, so that extbeh(S) c B for this system S. (Once again, equa%y 
does not hold.) 

The system consists of n - 2 non-root processes, each with.1 2 slates, and one root 
process with four states. There EP, n -2 internal variables, each with three values. 

If at most k other requests arc active at the same time as a given request, the time 
for granting the given request can be bounded by czk +O(cl(k + 1) log n). (Thus, if 
there are no other active requests, the time to grant the request is O(log n). If there is 
no bound assumed on the number of concurrently active requests, then the time can 
be bounded by cdn - ;) + O(cln log n), as we show using a system of recurrence 
equations: 

Classify the variables of S into levels, with the root process’s two variables at level 
1, the external variables of S at level m, and intermediate levels in the tree numbered 
consecutively. Let T(i), 1 g i s m, denote the longest time between the initiation and 
granting ti P. request ar ievel i. Let R(i), 1~ i G m, denote the longest time between 
the granting and return of a resource at level i. Then 

R(m) =cz, R(i)=4cl+R(i+1), laism-1, 

T(1) =4c, +X(l), T(i)= 12c! +R(i)+2T(i-l), 2sisrn. 

The first two equations are straightforward. The third equation is a special case of an 
equation in Implementation 1. The fourth equation arises when a process (or user) 
makes a request just as it returns the resource. The father passes the return up, ther? 
polls its other son for a request. If that son has a request, that request is passed up, 
and must be granted (giving rise to one T(i - 1) term), Then the father iFants the 
resource to its other son, and awaits the return (giving rise to the R(i) term). Next, the 
father passes the return up, returns to poll the original son and finally detects its 
request. The father passes this request up, waits for it to be granted (giving rise to the 
second T(i - 1) term) and grants the resource. 

It is easy to see that 

R(i)=cz+4cl(m-i), lGiSmm. 
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Thus, 

T(1) = c2 +4clnt and T(i)==12cI+cz+8cl(m-i)=2’l”(i-I), 2~iitn. 

This latter expression is in turn equal to 

t2’-’ -.lj(~2~~+c~+4~~~)+(2’~*)(~~+4c~m)-(2’+2’~~--1-i\(4c~j, 

so that the needed bound, T(m), is at most 

Pn+2 = 2 c1m+2mc~-8cl-~2 = 4Cl (n log n - 2) + c&z - lj, 

as needed. 
Implementation 3. The third implementation is based on the state-mcdel algorithms 
used in [2,5]. The implemer,tation system S consists Iof identical processes px5 each of 
w;iich has access to exactly one interface variable x E X. In addition, there is a 
common variable y to which all the processes px have access. Algorithm A of [2] is 
used, for definiteness. This algorithm enables asynchronous processes requiring 
mutual exclusion synchronization to communicate using y to achieve the needed 
synchronization, with a small bound on the number of times any single process might 
be bypassed by any other (and with a very small number of values for y). The 
processes themselves must be willing, however, to execute a complicated protocol. In 
this paper, we have defined a very simple arbiter protocol and do not req bdre a user to 
know the more complicated protocol of Algorithm A. We can still use the earlier 
ideas, however, by isolating the earlier protocol in the system procesas and allowing 
a user to communicate with one of those processes. 

In outline, (and referring to some ideas from Algorithm A), px examines x until 
value A is detected. Then px enters the trying protocol of Algorithm A using y as the 
shared variable. When px is allowed (in Algorithm ,4) to enter its critical region, it 
passes the perm.ission on by changing the value of x to G. px then examines x until it 
reverts to E or J\, and then px enters the exit protocol of Algorithm A using y. When 
px has completed its exit protocol, it is ready to begin once again, examining x for 
further requests. 

Correctness of the resulting system of communicating processes is based on the 
correctness of Algorithm A. OnLt again, extbeh(S) 5; B. 

The system consists of n processes, each with O(rr2j states. There is one internal 
variable with n -t 5 values. Time can be bounded by c2(2n - 3) + O(n*) in the worst 
case. 0”he first term represents the possibility that the requestor is forced to wait for 
2n -3 distinct returns of the resource. For the second term, note that each time the 
resource is granted in Algorithm A, an O@z)-sized count is transmitted in unary via 
the shared variable. It would be easy to modify Algorithm A to transmit counts in 
binary, thereby reducing the second term to O(n log n) at the cost of a small increase 
in number of variable values.) If there are at most Kr concurrent requests, then the 
bound is CL& +C)((k + lj*j. (Thus, if there are no other active requests, the time to 
grant the request is bounded by a constant.) 
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Thus, in the three implementations above, the systems vary both in process 
configuration and in execution. There is no realistic sense in which the internal states 
and transitions (i.e. the execution sequences) of the different implementations could 
be thought to simulate each other. And yet, the systems are all solutions to the arbiter 
problem. 

Note that the time complexity in the general case is smallest for Implementation 31, 
whereas Implementations 2 and 3 perform faster if requests are relatively infrequent. 
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