Theoretical Computer Science 1 (1975) 103-123. © North-Holland Pablishing Ccmpany

A COMPARISON OF POLYNOMIAL TIME REDUCIBILIIIES

R. E. LADNER!
University of Washington, Seatile, Wash., US/

N. A. LYNCH
University of Southerr. California, Los Angeles, Calif., US4

and

A. 1. SELMAN
Florida State University, Tallahassee, Fla., US4

Communicated by A. Meyer
Received 15 September 1974

ALstract. Various forms of polynomial time reducibility are compared. Among the forms ex-
amined are many-one, bounded truth table, truth table and Turing reducibility. The effect of
introducing nordeterminism into reducticn procedurss is also examined.

1. Introduction

Computation bounded reducibilities play a role in the theory of coraputational
complexity which is analogous to, and perhaps as important as, the role of the various
kinds of effective reducibilities used in recursive function theory. Most fruitful thus
far have been the polynomial time bounded reducibilities of Cook [2] and Karp [5],
respectively corresponding to Turing and many-one reducibilities in recursive
function theory. Other computation bounded reducibilities have been defined as
well by Meyer-Stockmeyer [10], Jones [4], Ladner [6], Zynch [7], but these differ
only in the bound on time or space allowed for the reduction, rather than in the
form of the reduction procedure. The form of a reduction procedure rzfers to the
kinds of reduction procedures found in Rogers [12] such as Turing, one-one, many-
one, truth table, bounded truth table, positive, conjunctive and disjunctive reduci-
bilities. Each such form of reduction procedure has a polynomial tirae bounded
version. Qur aim here is to compare these different forms of polvnon:ial time re-
ducibility.

Intuitively speaXking, a set A4 is polynomial time reducible to a se. B it’ there is an

1 Ressarch supported by NSF Grant Number GJ-34745X.

104 R. E. LADNER, N. A. LYNCH, A. L. SELMAN

algoritam for computing whether or not a word x is in A that runs in time bounded
by a polynomial in |x! (the length of x) and with the added power of asking indi-
vidual membership quesiions of B (at a cost of 1 move per question). This algorithm
used for computing A4 is called a reduction procedure while the set B is sometimes
called the oracle of the reduction procedure. What makes polynomial time reduci-
bility an important tool in the study of computationai ~omplexity is the fact that
if A is polv:--miJl time reducible to B and A is not computable in polynomial time then
neither is B.

The most commonly applied form of polynomial time reducibility is the poly-
nomial time bounded many-one reducibility introduced by Karp [5]. A set 4 is
many-one reducible to B in polynomial time (A sf{:B) if there is a function f compu-
table in polynomial time such that x € A4 if and only if f(x) € B. Hence a many-one
reduction procedure entails exactly one membership question of the oracle. More-
over, the procedure is “positive” in the sense that the answer to the membership
gyuestion of the set A is affirmative if the answer to the membership question of B
is affirmative. As we shall show (in Section 2), this positiveness is not common to
all polynornial time reducibilities, for any set is polynomial time reducible to its
complement, yet there are infinite, coinfinite computable sets that are not many-one
reducible to their complements in polynomial time.

Probably the most general form of polynomial tiine reducibility that can be de-
vised. is Turing reducibility in polynomial time introduced by Cook [2]. A set 4 is
Turing reducible to a set B in polynomial time (A s%B) if there is an oracle Turing
machine M and a polynomial function p such that x e 4 iff M accepts x with B
as its oracle within p (1) steps. (An oracle Turing machine is a multitape Turing
machine with a special oracle tape and special states Q, YES, NO. Should the ma-
chine enter state Q then the next state is YES or NO depending on whether or not
the string currently written on tke oracle tape is in the oracle set.) If one can believe
2 modified version of Church’s Thesis, then we can remove the word “probably”
as the first word of this paragraph. We refer to an oracle Turing machine M with
the property that thereis a polynomial p such that for every oracle, M halts within p (1)
moves on each input of length » as a polynomial time bounded Turing reduction pro-
cedure or sometimes simply as a polynomial time bounded reduction procedure. The
omission of “Turing” reflects our faith in an appropriate modification of Church’s
Thesis.

One interesting feature of Turing reduction procedures is that a question of the
oracle may depend on the answers to previous questions. Hence even if & reduction
procedure is polynomial time bounded there may be 2" or more potential questions
of the oracle asked. The particular questions asked on an input depend on the oracle
that is used. For example, imagine an oracle Turing machine implementing the
aigorithm shown in Fig. 1.

Such an oracle Turing machine can be constructed that runs in time bounded dy
cn? for some constant ¢ no matter what the set X is. Furthermore, given any input x

POLYNOMIAL TIME REDUCIBILITIES 105

begin
read x € {0, 1}*;
Z 4= X
while |z| < 2 |x| do
if ze X then z + z1 else z « z0;

" ''i if ze X then ACCEPT else REJECT;
end

Fig-: . Algorithm with 2" poteniial questions. (Note: ACCEPT and REJECT are HALT
statements.)

€ {0, 1}* and any string y e {0, 1}* with length < |x| there is an oracle ¥ such that
thke procedure asks the membership question “xy e Y?”. This amounts to > 2"
p-tential questions of the oracle. This anomaly prompts one to ask about polynomial
time bounded reduction procedures that have the property that questions asked
of the oracle are independent of each other. This leads to a study of polynomial
time bounded iruth table reducibility. In Section 3 we give several equivalent JJefi-
ritions of polynomial time bounded truth table reducibility and show that the re-
lation is strictly stronger than polynomial time bounded Turing reducibility. Also
in Section 3 we survey a variety of strengthened forms of polynomial time bounded
truth table reducibility as to their relative strength.

In Section 4 we examine nondeterministic versions of polynomial time bounded
reducibilities. In general, nondeterministic reducibilities are not transitivs, so that
some interesting features are lost. In contrast to poly;;omial time bovnded algo-
rithms without oracles it can be proven that nondetermiistic polynomiat time bound-
¢d reduction procedures are more powerful than their deterministic counterparts.
Indeed, a result of baker, Gill and Solovay [1] implies that Turing reducibility in
polynomial time is properly stronger than Turing reducibility in nonceterministic
polynomial time.

When we speak of sets we refer to computable sets of words in a finite alnhabet.
Since words in any alphabet can be encoded into and decoded from the two letter
alphabet {0, 1} in polynomiai time, it does not hurt to assume we are working with
the fixed alphabet 10, 1}.

In general, our rcducibility relations are written as “‘sip” where the superscript
represents the set of allowable :ime bounds and subscripts represent the form of
the reduction procedures defining the reducibility relation. I we allow nondeter-
minism, ther. we write “<,c.n%”. In most instances the set of allowable time bougds
is the polynomials. If < ,7@ is a reducibility then we write 4 <?€ B just in case 4 < ,RB
and B {:RA,, A :—:,C.BB justincase 4 < ?QJB and B < :RA, and A;?QB justin case A z-i;:'ye B
and B {:RA. If <?€ is reflexive and transitive, then ;‘5??' is an equivalence relation.
We sometimes say 4 and B are < :R -incomparab'e if Alj.’eB. Wesaythat < :R is stronger

: . . S e
(weaker) than s;.fs if for all computable 4 and B, 4 's?g B implies 4 s.fB (A <;B

106 R. E. LADNER, N. A, LYNCH, A. L. SELMAN

implies 4 < :RE). One reducibility is properly stronger (properly weaker) than another
if the first is stronger (wealer) than the second, but not vice versa. Two reducibilities
are incompurabie if neither is stronger than the other. We say that < ?e stratifies s? if

there exist computable sets 4 and B such that 4 = :S B and Al,?eB. It is impossible
for the weaker of two comparable reducibilities to stratify the stronger, but not
impossible for two incomparable reducibilities to stratify each other. If one reduci-
bility is stronger than and stratifies another, then it is properly stronger.

Our comparison of polynomia! time bounded reducibilities mainly deals with
the classifigation of the forms of polynomial time bounded reducibility as to their
relative sirength and stratification. The basic tools we use are encoding and diago-

(-
nalizing. For instance, to show s,)e is not strong.r than s,d one simultaneously
defines computsble sets 4 and B in such a way that (i) . is encoded effectively into B

so that 4 can be reduced to Bvia an ‘¥ time bounded r-reduction procedure (this
ensures A :’:.C.RB) and (ii) we diagonalize over all & time bounded s-reduction pro-
cedures to yield A4 {fSB.

A function f is computabie in time ¢ (n) if there is a muititape Turing machine with
a distinguished output tape such that if x is any input of length » then the Turing
machine halts on inpzt x within 7 (7) moves with f(x) writien on the output tape.
Turing machines that compute functions are often called Turing machine sransducers.
A set 4 is computable in (nondeterministic) time t (n) if there is a (nondeterministic)
maltitape Turing machine that recognizes 4 and on each input of length » the
machine halts within 7 (n) moves (on each computation sequence). A set has time
complexity t (n) if it is computable in time ¢ (n). We define P to be the class of all
subsets of {0, 1}* computable in tirne bounded by a polynomial and NP to be
the class of ail subsets of {0, 1}* computable in nondeterministic time bounded
by a 1‘»olynon3§al, We say a set 4 is polynomial r-complete if A e NP and for all
BeNp, B < A

For m, ne N define {m, n) = % [(m+n) tn+r+1)]+m and inductively (my, ...,
Myry) = My, ooy M), My . Given my, ..., my, {my, ...,m;> can be determined
in polynomial time as a function of the sum of the lengths of m,, ..., m, written in
binary. For a fixed & there is a polynomial time bounded algorithm (as a function
of the length of m written in binary) for determining my, ..., m, such that m =
(g, .oy, If A is a set we define C, 0 be the characteristic function of A;

Culx) = 1if xe.4 and C,(x) == 0if x¢ 4. We let A denote the complement of 4
in {0, 1}*.

2. The reducibilitics of Ccok and Karp
°g o0, 0 ? 3 - e ° o g oge
The reducibilities <7 and s,?ﬁ {polynomial time bounded Turing reducibility and

poiynomial time bounded many-one reducibility) are those defined by Cook [2]
and Karp [5] respectively. (Karp used the notation “oc” rather than “S,S:”.)

POLYNOMIAL TIME REDUCIRILITIES 107

Below we list important yet easily proved properties of these reducibility notions.

Preposition 2.1,

() s?: and é? are reflexive and transitive relations.
(i) 4 <oB = 4 <7B.
(i) 4 < \:;,f:B» A *;ZE
@iv) 4 STB A s TB A STB ard 4 < TB are equivalent.

) If4 sTB ard B is computable in t (n) time then A is computable in p (n)--p (n)
max {t (m): m < p (n)} time for some polynomial p.

(i If 4 \,,.B and B is computable (nondeterministically) in t (n) time then A is

computable (nondeterministically) in p (n)+max {t (m): m < p(n}} time for some
polynamial p.

The proof of Proposition 2.1 is routine.
The following preposition is an immediate consequence of the above.

Proposition 2.2
) @ 4 sTB and Be P implies A eP.
v (i) 4 \mB and Be NP impiies A€ NP

(iiiy WP is closed under complement if and only if some polynomial m-complete
set has its complement in N P.

If Aand Barein Pthn 4 =2B. It is pathological that this is not true for =2
because @ and {0, 1}* zre sZ incomparable. However, we do have A4 = B for
all 4, Be?-{@, {0, 1}*}.

It is quite trivial to r:duce a set to its complement in polynomial time. Indeed
the reduction procedure rzquire~ only one question of the oracle, namely the question
whether or not the input itself is in the oracle set. Even though many-one recuction
procedures require only onc question of the oracle the “positive” requirement of
these reduction proczdurss does not in genicral allow sets to be m-reducible to their
complements in polynoraial time.

Theorem 2.3. There <xists an infinite, coinfinite set A such that A <,9,,)Z and A is com-
putable in 2" time.

Proof. The idea is to diagonalize over all polynomial time bounded many-one
reduction procedures. To eliminate M as a Turing machine transducer that many-onc
reduces 4 to A in polynomial time choose an as vet undacided input x and run M
on input x. Should M halt with output y within 21>/ moves then put both x and y
into A if y is not already decided. If y is decided put x into 4 if and only if y € 4.

3
r
!
.
€
2z
3=
r‘
140]
i
rl
=
e
p

i08 R. E. LADNER, N.
As the diagonalization proceeds, keep returning to M every so often, so that if M
is running in polynomial time then M is caught running in 2" moves. Also assign
infinitely many words into each of 4 and A as the diagonalization goes on. In order
to program this algorithm on a 2" time bounded Turing machine, we employ the
function 4 (defined below) to “spread out” the diagonalization. The idea of “spread-
ing out” the diagonalization was inspired by a technique of M. Machtey.
Without loss of generality we assume that our Turing machine transducers are
three tape Turing machines. Each has a read only input tape, a right moving only

write only ouiput tape, and a storage tape. The input and output tapes have
1, B}. If the encoding is

<
h
»
|
{

that 0 11 Wa hava a ninivarcal Thrino ma A e 1%
OCL (U, 1¢. VWL dlaVe a GliVeiSdr 2 Wiy NGty O WAl Lail luiailv 6 © y & §

te crzmde a wxrazr thnt dhara 1o 0 nAanctant o writh tha arsananty that if tha manhina da
in such a way that there is a constant ¢y willh ti¢ property taat il tnc macaine ac-

scribed by d runs in time T (n) then U may simulate the machine in time cy|d| T (n).
Let dy = A,d, =0, d, =1, d3 =00, .. be the natural ordering of the words
in {0, 1}*.

Define A: N—- N by 2(0) = 1 and h(n+1) = 2v®, There is a polynomial time
bounded Turing machine H that on input x writes 7 in binary where m is the greatest
nuraber such that 4 (m) < |x| and determines if 4 (m) = |x]. We leave the construction
of H to the reader.

We now give a recursive definition of 4. To begin with 4 is in 4. Let xe {0, 1}*
with |x] =n > 0.

(1) If x¢0* or n # h(m) for some m then x ¢ A.

(2) If x = Oxm> then let {i,j> = m. For 2"m moves of U simulate d, on the in-
put x. Ii the machine doesn’t halt then x ¢ 4. If it does halt and outputs y then:

(3) If |y] > h(m—1) then x ¢ A. if |y] < h (m~ i) then x € 4 if and only if y € 4.
[recursive call]

To show A <A, we suppose not by presuming that 4 <24 via a polynomial
time bounded Turing machine transducer D with description d. Suppose d = d;
and D is time bounded by kn* .Choose j such that if m = (i,j) and n = h(m)
then 2" > cy|d;| kn*. On input 0" the algorithm for 4 must proceed to step 3. Let y
be the output of D on input 0". Since d; was simulated for only 2*—1 raoves of U
then |y| < 2" = h(m+1). If h(m—1) < |y| then 0" is not in 4 by definition. With
h(m—1) < |yl < h(m+1) then y could be in A4 if and only if y is actually 0"
If |yl < 7#(m—1) then 0"€ 4 if and only if y € 4. In any case D cannot many-one
reduce 4 to A.

Since A€ A and 0° ¢ 4 then A is neither empty nor {0, 1}*, We conclude that 4
is infinite and coinfinite for otherwise A = 4.

We now show that 4 can be computed in 27 time. Imagine the algorithm for 4
being exscuted on a Turing machine. Let x be an input of length ». Using the poly-
nomial time bounded Turing machine H, step 1 and the determination of 4, in
step 2 can be done in polynomial time. The simulation of d, by U is time bounded

POLYNOMIAL TIME REDUCIBILITIES 109

by ¢2" for some constant c. Assuming 4 (m) = n the test in step 3 can be accomplished
in polynomial time by first comparing |x| and |y|. If |y} > |x| then certainly |y| >
h(m~1). If |y| < |x| then uting H we can find the greatest p such that 4 (p) < |y|.
If p = m—1 then |y| > h(m-1) and if p < m—1 then |y| < h (m—1). Finally we
mus: count the cost of the recursive call, onaninput of length < & (m—1) = log & ().
On wmput of length not in the set {# (m):m > 0} the algorithm for 4 russ in poly-
nomial time (since no-simulation or recursive call occurs). Summarizing, on an
irput of length n, 4 can be computed in time T (n) where:

¢)) T(n) < T(logn)+p ()+c2*

for some polynomial p and constant ¢. The inequality (1) implies 7' (n) < a2" for
some constant a. By appealing to universal linear speed-up for Turing machines
{cf. Hopcroft and Ullinan [3, page 138]) 4 can be computed in 2" time. []

Since A4 {ZZ tl.en by Proposition 2.1(iii) 4 {,,?;A. Considering Proposition 2.1
(iv), 4 %24. Hence we have:

Corollary 2.4. sfﬁ stratifies <-f.

Proof above.

The kind of diagonalization used in Theorem 2.3 can be applied to show that
given any time bound # (n) there is a computable set 4 such that A4 is not many-one
reducible to 4 in time ¢ (7). We conclude that many-one reducibility with any re-
cursive time bound ailways stratifies polynomial time bounded Turing reducibility.

3. Truth table reducibilities

The notion of trut table reducibility was originally defined by Post [11]. A set
A is truth table reducible to B (A <., B) if, given x, one can effectively compute a finite
set of words, say jy, ..., s, and a Boolean function & such that x e 4 if and only
if o (Cp(yy), ...» C(y)) = 1. As Post presented the notion, & was represented by
its table which in many cases would be an extremely inefficient way of presenting
a Boolean function. Another alternative is to allow the Boolean function to be pre-
sented as a Boolean formula with atoms of the form y e X (where y is a word in
the alphabet {0, 1} and X is a set variable). We could define 4 <,, B if and only
if, given x, one can effectively compute such a formula @ with the propeity that x e 4
if and only if @ is satisfied with B substituted for X. A problem that arises with
this approzach is that given a fixed space bound, seemingly more Boolean functions
can be presented using the Boolean connactives A, v, =1, and = than can be presented
using just 2, v, and 1. Rather than tie ourselves down to a particular representation
of Boolean functions, we adopt an abstract approach.

110 R. E. LADNER, N. A. LYNCH, A. L. SELMAN

Let 4 be a fixed finite alphabet for encoding Boolean functions and let ¢ ¢
4vu{0,1}.

Definition. A tt-condition is a member of Ad*c(c {0, 1}*)*,

A tt-condition generator is a recursive mapping of {0, 1}* into the set of tt-con-
ditions.

A tt-condition evaluator is a recursive mapping of A*c {0, 1}* into {0, 1}.

Let e be a tt-condition evaluator. A ti-condition accy, ¢y, ¢ ... ¢y, is e-satisfied
by B < {0,1}* if and only if e(acCs(y,) ... Cs(yp)) = 1. (x€4* and y,, ..)
€ {0,1}*)

A sz if and only if there exist a polynomial time computable generator g
and polynomial time computable evaluator e such that x € 4 iff g (x) is e-satisfied
by B. If 4 sE:B we say that A is polynomial time truth table reducible to B or A is
truth table reducible to B in polynomial time.

It is not immediately apparent that this definition captures the most general notion
of truth table reducibility in polynomial time. At the end of this section, we argue
that it does.

- To obtain various strengthenings of po'ynomial time bounded truth table redu-
cibility, we place appropriate restrictions on the tt-generator and tt-evaluator in
the definition.

4 QZ;;B (A is polynomial time k-question truth table reducible to B) providced
4 s?f B via a generator g and evaluator e, where g has range A*c (¢ {0, 1}*)*.

" A <R (4 is polynomial time bounded truth table reducible to B) if A <puB
for some k.

A< ;’:’B {4 is polynomial time positive reducible to B) i the evaluator e has the
property that il e (xco, ...0;) =land 6, = 1 mmplies 7, = 1for 1 < i < k then
€ {act; ... 7)) = L.

A s'?B (4 is polynomial time conjuctive reducible to B) if the evaluator e has the
property tha. e{aco, ...o)=1iff 6, =1 for 1 <i k.

A S?B (A is polynomial time disjunctive reducible te B) if e (acoy ..0p) =0
iff o;=0"fr 1 <ic<gk.

It is possible to define bunded question versions of p, ¢, and d reducibility, by
combining some of the restrictions above. For instance, 4 s,ch if 4 SZnB via
a generater g and evaluator ¢ with e having the property described in the clause
for Q?.

The fupdamental relationships between these reducibilities are outlined below,

Proposition 3.1.

(i} For any k > 1 we have the following:

i <oB= A<IB > A <oiuB=>A<hB= A< B 4 <38,

POLYNOMIAL TIME RYDUCIBILITIES 111

A<:B
PR TN P P
“m P p P p

(i} <5, S by S c y € 4o <‘,, and <, ‘are all reflexive and transitive relatic»<

(iv) 4 «ggB‘ 4 < \..B A \“B A \"F are eqmvalem (also for bti and k-tt),
(V} A \pB@A \pB

vi) 4<7B4<7B
(vi) A <7B ond BeN P = 4 eNP.

The proof is straightforward.
Ths next theorem shows that each implication in (i) and (ii) of Proposition 3.1

is proper (sff properly stronger that < ? is shown in Theorem 3.3).
Theorem 35.2.

{i) sZ stratifies sf&.,
(ii) for any k, si’; stratifies both &7?4- 1c and S% 1-ds
(iii) s? stratifies s;’; aid s? straiifies QZa,
(iv) <? and ~<.? both stratify S:f.p via the same pair of sets,
v) s? stratifies {i?.,,
(vi) s'z:g stratifies both sff and s?.
In cach case the verifyirg sets can be found with time complexity 2".

Proof. (i) actually directly follows from Theorem 2.3. In all the other cases we construct
sets A and B with time complexity 2" satisfying the appropriate stratification prop-
erty. For (ii) we may just construct 4 and B satisfying 4 = ;ﬁ.,.cB with AlgnB.
We then conclude that A =7 ,¢Bwith A[7uB to get the other result. In (iii) we
construct sets 4 and B satisfying 4 z‘;’:_B and Ald?B obtaining the other result
through their complements, and in (vi) we construct sets A and B satisfying 4 = ?B
and AlmB obtaining the other resuit through their complements.

In each case we need to encode each set into the other in a way tc get equivalence,
and aiso diagonalize to obtain incomparability. We list below for each case condi:ions

which exhibit the encodings. (Below we only mention strings that can possib'y be
in A or B. Those strings not specifically mentioned ars not in the appropriate set.}

(ii) A =y+,..B. For all strings z:
zlle A < 2110/ € B for all j such that 1 <j < k+1,
201 € B <> 2010’ € 4 for all j such that 1 <j < k+1,
1100 e A« z1100e B for 1 <j < k+1,
20100ed2010/eB for 1 <j<k+1

112 R. E. LADNER, N. A. LYNCH, A. L. SELMAN

(iii) 4 EZB. For all strings z:
zlle A<>z110e B and z1100 € B,
20l e B<> 2010 A and z0100 € A,
2110 s A« z110/eBfor 1 €j < 2,
2010°'e A< 2010eB for 1 <j< 2.

(iv) 4 Eng. For all strings z:
zlle A< (2110 € B and z110? € B) or (z110° ¢ B and z110* € B),
201 € B<> (2010 € 4 and z010? € 4) or (z010° € 4 and 2010* € 4;,
zZ1l e A< z1100eB for 1 <j <4,
20100 4 20100eBforl1 <j< 4.

| (V) A =1.B because B = 4.

(vi) 4 E?B. For all strings z and numbers k > 0:
z10F11 € 4 <> z10%110’ € B for some j where 1 < < k+1,
21001 € B < z10"010/ € A for some j where 1 <j < k+1,
2101107 e A < z10¥110/ ¢ B for 1 < j < k+1,
z10%010’ € A <> z10°010’ ¢ B for 1 < j < k+1.

Rather than give five separate dlagonalxzatwns we shall give the details of just
(vi), the A and B satisfying 4 ._“B but Aib « B. The others follow similar lines.

Let & be defined as in Theorem 2.3 (2(0) = 1 and A (n+1) = 2™) and let H
be the polynomial time bounded Turing machine that on input x determines the
least m such that |x| > / (m). We construct 4 and B in stages. At stage m we de-
termine for each x with 4 (m) < |x| < & (m+1) whether or not x is in 4 and whether
or not x is in B.

Let merabers of {0, 1}* represent descriptions of tt-condition generators and
tt-condition evaluators. As in Theorem 2.3, we can assume that our generators and
evaluators take the form of three tape Turing machines. {(For convenience, we
let g4. g1, ... denote generators and e, ey, ... denote evaluators.) We have universal
machines G and E which can simulate tt-condition generators and tt-condition
evaluators. There are simulation constants ¢g and ¢y for G and E with the same
properties as the constant ¢y, in the universal machine U of Theorem 2.3.

We now define .{ and B. To begin with, we have A¢ 4 and 1¢ B.

Stage m: We have m = 2i,j, k,I>+0 for some i,j,k, /e N and ¢ == 0 or 1,
If h(m+1) < h(m)+2k+4 go to the next stage. Otherwise set n = h (m).

1. Simulate g; on input 0"10%¢1 for 2"—1 moves of G. If g, doesn’t halt or
halts with an output of the form accy, ¢ ... ¢y, with p > k then go to the next stage.
Suppose then that g, outputs accy, ¢ ... ¢y, with yy, ..., ,€ {0, 1}*,a e 4* and p < k.

2.6 =20 ‘the.n set w == Cy(y1) ... Co(yp) and if 0 = 1 set w = Cg(y,) ... Cp(3,)-
We assume that if |3, > n then C,y(y,) = Cp(y,) = 0 so that this step is a recur-
sive call.

POLYNOMIAL TIME REDUCIBILITIES 113

3. Simulate e, on input acw for 2"—1 moves of E. If e; doesn’t halt or outputs 1,
g0 io the next stage. If e; outputs 0 and ¢ = 0 put 0"10‘01 into B and 0"10/010°
into both 4 and B where r is ilie least number > 0 such that §"10°0107 ¢ {y,, ..., y).
If ¢, cutputs 0 and ¢ = 1 put 0"10*11 into 4 and 010110 into both 4 and B where r
is the least number > O such that 0"10°110" ¢.{y,, ..., y,}.

End of stage m.

It is not difficult to verify that the conmucn guaranteeing 4 = 7B is forced by

* the construction. We now argue that A si;mB The argumei‘ that B {buA is sym-
metric.

Suppose 4 sbuB Let g and e be a generator and cvaluator, respectively, that
wntness this reduction and suppose k is a bound on the number of questions of g
(i.e. Range g € 4*cc {0, 1}*)*). Let g be time bounded by rn" and e time bounded
by sn®. Let g, be a description of g and e, a description of e. Choose / such that
it m=2d,j,k,1,+1 then h(m+1) > h(m)+2k+4 and 2"™ > ¢ lg,! r (h (m)+
k+3) +cgle)| s[r(h (i) +k+3)]°. At stage m the algorithm proceeds through
step 3. It can be easily checked that 0*™10*11 € 4 if and only if g (0"™]0*11) is
not e-satisfied by B. The main thing to notice is that if g (0"™10*11) = accy, c ... ¢y,
with e € 4* and y,, ..., y,€1{0, 1}* then no member in the set {y,, ..., y,} enters B
at a stage > m so that the value e (2cCz(y,) .. CB(y,,)) determined at stage m cannot
change at a later time

We now show that 4 and B can be computed in 2" time. Let x be given with n = [x].
To determine the membership of x in 4 and B we need only conipute the above
algorithm through stage m where m is the greatest number such that A () < n
Using H, m can be determined in polynomial time 25 a function of n. Let T (m) = the
time to compute stage m. By an analysis similar to that of Theorem 2.3,

T(m) < T(m—1)+c2¥™

m
for some constant ¢. Hence T'(m) < ¢ > 2/ which is < a2"™ for some constant a.
=0
Since h (m) < n and by universal linear speed up 4 and B can be computed in
time 2".]

Again the kind of diagonalization used in Theorem 3.2 can be applied to general
time bounded reducivilities. Fo~ instance, given any time bound ¢ (1) one can find
sets A and B (no longer of time complexity 2" such: that 4 is truth table reducible
to B in polynomial time, but n>t bounded truth table reducible to B in time ¢ (n).
This kind of generalization is not true of the following result.

Theorem 3.3, There exist sets A z:nd B of time complexity 2% wiih A _‘:_-Z)B and Al?: B.

In contrast to our egrlier results, this result does n.c: generalize to time bounds
other than polynomial. To be specific, it is not harcl to show that if 4 <% B then
A is truth table redcible to B in time 2™ for some polynomial p.

114 R. E. LADNER, N. A. LYNCH, A. L. SELMAN

Proof of Theorem 3.3. We let &, H, {g:}1ens {€1}ien» G and E be as in Theorem 3.2,
We construct 4 and 5 in such & way that the following conditions assuring A = &
zre satisfied.

(a) # contains only sirings of the form 0”11x or 0°10y where 0 < |x| < n and
1 < |y} < ». B contains only strings of the form 0*10x or 0”11y where 0 < |x| < n
and 1 <yl <n

(b) For each n there are strings y and z, both of length n, such that if 0°10x € 4
then x is a nonempty prefix of y and if 0"1ix € B then x is @ nonempty prefix of z.

(c) The string 0711 is in A if and only if there is a string y of length »n such that
0*11x € B for all nonempty prefixes x of y. Likewise, 0"10 € B if and only if there
is a string z of length n such that 0"10x € A for all nonempty prefixes x of z.

(d) If 1 < |y| < n then 9710y € 4 if and only if 010y e B and 0’11y e 4 if and
only if 011y e B.

The procedure of Fig. 2 reduces 4 to B in polynomial time.

begin
rexd x;
if x of form 0?11 then
begin
Zex;
while |z| < 2|x|—2 do
if 20€ B ther z « 20 else
if z1eB then z « 21 else

REJECT;
ACCEPT;

end;
if x of form 0°10y or 0°11y where 1 < |y] < n thea
if x€B then ACCEPT else REJECT;
REJECT,;
end

Fig. 2. Procedure rcducing 4 to B in polynomial time.

A similar algorithm reduces B to 4 in polynomial time.

As in Theorem 3.2 we construct 4 and B in stages. At stage m we determine the
membership of x in 4 or B where & (m1) < |x|] < h(m+1). Initially A is in neither 4
nor B

Stage m: We have m = 2 (i, j, k> +o for some i,j,keNance =~ O or 1. If
h(m+1) < Zh(m)+2 go to the next stage. Ctherwise set n = A (m).

1. Simulatz g, on input 0"lo for 2”1 moves of G. If g, doesn’t halt, go to the
next stage. Suppose g; halts with output accy,c ... 2y, where e e 4* and y,, ..., ¥,
e {0, 1}*.

POLYNOMIAL TIME REDUCIBILITIES 115

2. Find a y of length » such that ("lay ¢ {y,, ..., ¥p}. (Such a y exists because there
are 2" strings of length n and p < 2" since ¢, was simultated for < 2°—1 moves.)

3. Put 0"lox into both 4 and B for all proper prefixes x of y.(xis a proper prefix
of y if x is a prefix of y and x # 4 and x # y.)

4. i 0 =0 set w= C,((}’g) oo CA(yp) and if 6 =1 set w= Cg(yl) s Cg(yp).

5. Sin ilate e; on input acw for 2"—1 moves of E. If e; doesn’t halt or outputs i
g3 t> the next stage. If e, outputs O then put 6”10 into B and 0°10y into 4 and B
if ¢ = 0 or put 0"11 into 4 and 0"11y into 4 and Bif ¢ = 1.

Exd of stage m.

The diagonalization succeeds because, if say, 011 enters A4 in step S then 0%11y
enters B without changing the value of Cg(y,) ... Cp(3})-

An analysis of the algorithm tc show 4 and B have time complexity 2" is similar
to .hat of Theorems 2.3 aud 3.2. [

As we promised at the beginning of the section, we now argue that our definition
of truth table reduciility in polynomial time is one that models the intuitive idea
of a polynomial time reducibility where the questions asked of the oracle are “in-
dependent” of each other. We do this by presenting two alternative definitions.

Proposition 3.4. For all sets .1 ad B, A <? B if and oniy if there is an oracle Turing
machine M and a polynomial time computable function f: {0, 1}* — (c {0, 1}*)* such
that M reduces A to B in polynomial time and on each input x, M only asks questions
of B from the list f(x).

{What we mean by M oaly asking questions >f B from the list f'(x) on input x
is that on input x and with oracle B if M enters state Q then the string currently
written on the oracle tape is in the set {yi,...,yx} where f(x) = cyicp,c...cp
and yy, ..., € {0, 1}*))

Proof. Suppose 4 <, B via tt-generator g and tt-cvaluator e. Cefine f(x) =
¢y C ... ¢y, Where g (x) = xccy, ¢ ... ¢y, Define M by the following algorithm.

On input x compute g (x) = cccy, €... ¢y, where yy, ..,y €{0, 1}*
Evaluate w = Cp(yy) ... Cs(3). Compute ¢ = e (acw). If ¢ =0, reject
aad if o = 1, accept.

Such a computa.ion can be carr.ed out by an oracle Turing machine in polynomial
time.

Assume 4, .., M and f are given satisfying the property of the proposition. De-
fiae 4 = {0, 1} and define g (x) = x¢f (x). Define ¢ by the following algorithm.

Let xcze{0,1}*¢{0,1}* be an input. Compute f(x) = ¢y, c...chn
where yy, ... Vi € {0, 1}*. If k ¢ jz| set e(xcz) = 0. Otherwise let z =
¢y 65 ... 0, where o,¢{0,1} for 1 <i< k. Simulate M on input x
with the modification that should M enter state Q with y on the oracle

116 R. E. LADNER, N. A. LYNCH, A. L. SEI.LMAN

- tape, then (1) if y ¢ {yy, ..., »x} then sei e {xcz) = 0 and (2) if y = y; for
1 < i < k then go to state YES if o; = 1 and go to state NO if g, = 0
Should M accept, set e (xcz) 1 and should M reject, set e (xcz) =

The reader can venfy that 4 suB via g and e. [

The followmg equivalent deﬁmtlon was suggested by Albert R. Meyer [8]. Let 4
be an alphabet for encoding combinational circuits with just AND and NOT as
operations. For a precisc definition of combinational circuits, see Savage [13].

Proposition 3.5. For all scts A and B, A snBif and only if thereis a polynomial time
computable function f:{0, 1}* — A*c (c {0, 1}*¥)* such that if f(x) = accy, c...cy;
with yy, ..., i € {0, 1}* and a.€ A%, then x € A just in case « (Cp(yy), ..., Cs()) = 1.

Proof. There is an efficient method for constructing combinational circuits which
simulate Turing machines, which has been noticed by several researchers and was
commumcated to us by A. R. Meyer.

Let p be a polynomial and let M be a Turing machine acceptor that runs in p (n)
time. There is an algorithm (Turing machine) that runs in approximately p (n)®
time which given any input of length n produces the encoding in the alphabet 4 of
a combinational circuit a with the property that for all gy, ..., 6, € {0, 1}, 5, ... 3,
is accepted by M if and only if a(o,, ..., 0,) = 1. Roughly speaking, the circuit «
kas p (n) levels each of length approximately p (n). The t-th level corresponds to
the state, tape contents and head position of M at time ¢. The circuitry connecting
the #th and (#+41)-st level simulates the action of M.

Let 4 szﬂ"via a tt-generator g and tt-evaluator ¢. For each x € {0, 1}* consider
the Boolean fusiction « defined by:

Domain (a,) = {0, 1}"whereg (x) = acey, ¢ ... ¢y and yy, ..., i € {0, 1}*.
0{0y, ..., 0;) = 1 if and only if e (aco, ... 6,) = 1.

Using a method somewhat like that above, there is a polyncmial time bounded
aigorithm for producing o, given x as an mput Hence 4 and B satisfy the property
of the proposition.

Assuming 4 and B satisfy the property of the proposition, it is easy to see that

A < i B. We are assuming, of course, that we have a nice encoding of the combi-
national circuits so that given ar encoded circuit « and o4, ..., 6, € {0, 1}, % (64, ..., G,)
can be evaluated in polynomial time as a functior of lal. O

Proposition 3.4 suggests a close connection between polynomial time Turing
reducibility and polynomial time truth table reducibility. Polynomial time truth
table reducibility is just polynomial time Turing reducibility where the questions
of the cracle can be computed in polynomial time ahead of time. The equivalent

definition of Proposition 3.5 is remnmsc‘.nt of Rogors’ [12] definition of truth table
reducibility.

POLYNOMIAL TIME REDUCIBILITIES 117

4. Nondeterministic reducibilities

A natural way to generalize the defintions of Sectious 2 and 3 is %o allow nondeter-
minisr: n the reducibility procedurss. Such notions e<ist in the literature; Baker,
Gill andi olovay [1] and Meyer and Stockmeyer [9] have used a notion of nondeter-
m nislic polynomial time Turing reducibility. Define 24 (A P4) to be the family
of seis (nondeterministic) polynomial time Turing reducible to 4. Baker, Gill and
Solovay [1] have discovered recursive sets 4 and B such that

1)) PA = N PA,
® PE % N PE.

Sinc: many standard diagonalization and simulation arguments relativize to oracle
machines, their theorera supports the contention that no standard diagonalization
or simulation method can ke used to demonstrate that @ = WP or P # PP

Meyer and Stockmeyer [9] construct a potential hierarchy (paralleling the arith-
metical hierarchy) using the rotion of nondeterministic polynomial time reducibility.

A nondeterministic (oracle) Turing machine runs in polynomial time or is polynomial
time bounded if there is a polynom:2! p such that for every n and every input x of
length n (and oracle A4) all possible courses of compuiation beginning in the initial
configuration halt in < p () moves:. An cracle Turing machine M accepts x with
oracle A if there is some accepting computation by v on input x with oracle 4.
The set accepted by M vith oracle A is the set of all x € {0, 1}* such that M accepts x
with oracle A. A nondeterrainistic Turing machine transducer M computes y on
input x if on input x, for some computation, M halts with y written on the output
tape.

A S;)Z?B (A is nondeterministic polyromial time Turing reducible to B) if and only
if there is a noundeterniinistic oracle Turing machine M that runs in polynomial
time and A4 is accepted by M with oracle B.

A sZZ?B (A is nond'sterministic polynomial time many-one reducible to B) if and
only if there is a nondeterministic Turing machine transducer M that rurs in poly-
nomial time such thai x e A4 just in case there is a y computed by M on input x
with ye B.

A SZZ?B (A is nondeterministic polynomial time truth table reducible to B} if and
only if there is a nondeterministic Turing machine transducer M that runs in poly-
nomial time and a polynomial time computable evaluator e suck that xe 4 just
in case on inpui x, M computes a tt-condition y which is e-satisfied by B.

Note: The definition of < 2@ introduces nondeterminism into the gensrator but
not the evaluator. Allowing noadeterminism in the evaiuator as well yields the same
reducibility notion.

We may make appropriate modifications in the last definition to obtain defi-
nitions for SZ&?, \<.2-zt?, S;)@, < ;}@, SZ@.

i, The following theorem indica:2s an interesting collapse that is very different from

11§ R. E. LADNER, N. A, LYNCH, A. L. SELMAN

the deterministic reducibilities. In part, this difference comes from nondeterminism
replacing the power of disjunctions.

‘Theorem 4.1. For ali sets A and B,
0 4<7 TB<s A <2CB,

(i) 4 < \,, XPBes A < \.c ?B
(iii) 4 s B@A € B.

Proof. Let 4 = {0,1, A, 11 }. A tt-condition has the form &, x; A 6, X3 A ... A Op X CCX5€
. €X; Where x;, ..., %, € {0, 1}* and '6,, ..., 0, € {4, m}. Define f by

f@) =0,

1 if for all i, 5, = 1 coincicss with 1, =0,
f(d'x Ky A eeo N O X5 €Tq oo Tg)

0 otherwise,

for oy, ..,0,€ {11}, X4, € {0,1}* and 7,,..,7,€{0,1}, and f evaluated
at other irputs is 0. Clearly, f is computable in polynomial time.

The first equivalence is obtained by showing that if A s *B then 4 < 'mB
Let M be a nondeterministic oracle Turing machine that reduces 4 to B in pely-
nomial time. Consider the nondeterministic transducer g defined by the following
algorithm:

Let xe{0,1}* be an input. Nondeterministically simulate M with the
following modifications. Maintain sets ¥ and N which are initiai'y empty.
Should M enter state Q then let y be the current string on the oracle tape.
If y¢ YU N then nondeterministically put y into one of the two sets.
If y e Y then go to state YES and if y ¢ N go to state NO. Should M halt
and zccept, then output yy A ...A YA ™1 ZA oA T1Z;CCY1 € oo €Y1 €24 €
cz, where Y = {z;, .., z;} and N == {z,, ..., z;}. (cc is outputted if
YUN = g or if M halts and rejects.)

It is not difficult to check that x € 4 if and orly if g computes a tt-condition that
is f-satisfied by B.

For the second equivalence, assume A SE:KC‘DB via a nondeterministic Turing
machine transducer g and a tt-condition evaluator e (with the condition guaranteeing
positivity). Define £ by f(yy A ..A prcl®) = 1forall k£ > 0 and yy, ...,y € {0, 1}*
and fis O at all other arguments.

Consider the nondeterministic transducer & defined by the following algorithm:

Let x e {0, i}* be an input. Nondeterministically simulate g to obtain an
output accy, ¢ ... ¢y, Nondeterministically select 7y, ..., 7, € {0, 1}. Com-
pute ¢ = e(acz, ':,,) If o == 0 output Occ (garbage) and if ¢ = 1 out-
put yi, A . Ay ccpic ... ey, where {i) < ... < i} = {ii7 = 1}

POLYNOMI~AL TIME REDUCIBILITIES 119

The reader may verify that x < 4 if and only if A computes a tt-condition that is
J-satistied by B, and that the reduction procedure is conjunctive.

'We leave the verification of the third equivalence to the reader. There is a small
patho! gy in (iii), namely that depending on the precise definitions of s:}” and < ngo

(ii}} may fail if 4 or B equals g or {0, 1}*.

As we mentioned in the Introduction, nondeterministic reducibilities are not in
general transitive, with nomtiransitivity seeming to accompany the sllowance of
ncgations.

Theorem 4. 2.

@ < ? and < %? are transitive,

(ii) si,m’, <2f?, and s?ﬁ? are not transitive.

Proof. (i) is proved by straightforward simulation, and (ii) is a consequence of the
following lemma. [

Lemma 4 3 I?xere exist compitable sets A, R and C with A < 1.u "B, B S?Cg? C,

but A{g‘

Proof. We construct 4, B and C satisfying tlie properties
xeAd< @[yl = |x| and ye B] and
xeB< @) [yl = |<] and yeC].

These conditions g-arantee that A4 ~<.?.zn@ B and B s?sz C.

In diagonalizing to assure 4 {3@ C we look at a typical nondeterministic tt-con-
dition generator g and typical tt-condition evaluator e. Let n be large enough so
that strings of length > n entering C do not ruin earlier diagonalizatious. Find
all tt-conditions that can be outputted by g on input 0" in < 2" moves. For each
tt-condition accy,c ... ¢y, outputted by g, try to compute e (xcCc(yy) ... Cc())
for 2" moves where C(y,) is determined by the current C. Should this testing yield
a tt-condition accy,c ... ¢y, that is e-satisfied by C then a diagonalization is accom-
plished by leaving all sirings of length n out of 4, putting all sirings of length =
into B and putting a string y ¢ {y, ..., »i} With |y| = n into C. if no tt-condition is
satisfied, then put all strings o length 2 into 4 and no strings of length # into either B
or C. [

In this lemma we did rot :nake an attempt to get 4, B, and C to have time com-
plexity 2°. We do not know i it is possible to do so. As part of the diagonalization,
we seem to nead to calcuiate all possible computaiions of < 2" moves on an inpat
of length » on a nondetermiuictic Turing machine. This leads to .. 2*" time bounded
algorithm. This can be improved somewhat by using a iime bound that dominates
all polynomials and is smaller than 2, but this improvement does not Yyield a simple
exponential (2%) time bound.

120 R. E. LADNER, N. A. LYNCH, A. L. SELMAN

The relation <W has several interesting propertles other than being transitive.
It may be easily shovm that 4 <?B and Be 9P implies 4 € W P. It seems that
™2 i the polynomial time bevnded analogue of c¢aumeration reducibility (<)
(cf Rogers [12, page 145]). The following eqmvalemf definition of <%9 parallels
quite closely Rogers’ [12, page 146] definition of <, :

A <:’(5°B if and only if there is a polynomial p and a member W of NP (in the
alphabet {0, 1, ¢}) with the property that x € 4 just in case there 1s a string « with
le] < p(x]), xcxe W, and{y,, ..., i} S B where a = ¢y ¢p; ... ¢y With yy, ..., P
€ {0, 1}*.

For nondeterministic reducibilities whose definitions do not collapse, our strati-
fication results of Theorem 3.2 are strengthened by allowing diagonalization over
nondeterministic reducibilities. However, we seem to lose the nice 2" time bound
as a ccnsequence of the more powerful diagonalization.

Theorera 4.4.
i <, <P stratifies \?",

(i) for any k, é,?z‘? stratifies < \k 1 (the corresponding statement for <f’+l d
is false by Theorem 4.1(iii)),

(iii) s‘d’@ stratifies Sz?ic (the correspording statement with ¢ and d interchanged
is false), '

(iv) s;"? siratifies < ?_u ,

W) <2§9’ stratifies s? and S?-

In each case the verifying sets can be found with time complexity roughly 22"

Proof, In general, the proof follows the lines of the proof of Theorem 3.2 with

strengthened diagonalization over nondeterministic reduction procedures instead
of just deterministic ones. []

Fig. 3 illustrates the relative strengths of the most important transitive redu-
cibilities that we have studied.

The deterministic portion of Fig. 3 follows from Proposition 3.1 and Theorems 3.2
and 3.3. The nondeterministic portion of Fig. 3 follows from Theorem 4.4 (iii).
The two implications connecting the deterministic portion to the nondeterministic
portion follow from Theorem 4.1. The incomparabilities between the deterministic
and nondeterministic porticas can be demonstrated first by Theorem 4.4 (iii) and (iv),
which imply respeciively:

(1) there are 4 and B with 4 < \st A <}B and Asi;%?B and

(2) there are 4 and B with 4 <?’ B and 4 <%

Finally, the method of Baker, GIH and Solovay [1] mentloned earlier actually
yields sets 4 and B with 4 < *? B and 4 <7 B.

POLYNOMIAL TIME REDUCIBILITIES 121

sP P
. [Sd
e |
btt
\ \
SIL'P
[
P
\

~

SIJI i
[

in

=]

1A

Fig. 3. Reiative strengths of polynomial tiie reducibility notions.

§. Conclusion

We know that our deterministic polynomial time recucibilities differ on the sets
computable in 2" time. With a little more effort, we can siaow that these reducibilitics
differ on the sets computable in #(n) time whenever ¢ (») is time countabie and
eventually domunates ezch polynomial. (A function ¢ (n) is time countable if there is
a Turing machine T such that for each » if x is a string of’ length » then T halts in
exactly 7 (n) moves on input x.) We would like to show hat they differ on 9P (for

example, that there exist 4, Be)P such that 4 < B but 4« 1’ for 4, B¢
{0, {0, 1}*}). This, of course, would imply ? # N P. On the other hand, we con-
jecture but have not yet proved that ? # 9P implies <2 and < differ on U P.
Perhaps a stronger result is possible; nauely, P 3¢ YP implies there ave polynomial
T-complete sets that are not polynomial m-complete. Sinilur questions can be asked
of other deterministic reducibilities.

122 R. E. LADNER, N. A, LYNCH, A. L. SELMAN

If one reducibility is properly stronger than another, then it is usually not too
difficuit to show that the stronger stratifies the weaker. Other notions of distinciness
beiween reducibilities are possible; for instance, is it true that for all 4 ¢ P there
is B such that 4 s-sl,?B and A{,C:TB?

It may be interesting to compar: notions of log space reducibility (Meyer and
Stockmeyer [10] and Jones [4]) with polynomial time reducibilities. It is not too
difficult to show that log space Turing reducibility is stronger than polynomial time
truth table reducibility. Does the converse hold? It is 4l an open question as to
whether or not log space many-one reducibility and polynomial time many-one
reducibility are the same notion. Definitions of reducibilities are meaningful not
only when time and space bounds are placed on the computation, but when the
questions asked are of bounded length (for example, the log-lin reducibility of
Meyer and Stockmeyer [10]). These can be cornpared also.

The case of s:}t@ as a reducibility notior: is quite interesting. It is analogous to
enumeration reduocibility from recursive function theory. It is a transitiw relation,

bu’ is incomparable with sr The set WP is tae zero degree of the s -degrees

in particular, for all A€ P and forall B, 4 < X B, It would be nice to find applica-
tions of this noticn to classifying the complexity of concrete problems. It is interesting

to note that the third author has recently shown that < qzsa is a maximal transitive
subrelation of <7t .

Finally, degree-theoretic questions about all these reducibilities remain, as well
as questions about complete sets at various complexity levels.

Acknowlcilgments

We would like to thank Albert Meyer and Michasl Machtey for some very valuable
suggestions on this work.

References

{1] T. Baker, J. Gill and R. Solovay, Relativizations of the ? = ? QP question, SIAM
J. Comput., to appear,

[2] S. A. Cook, The complexity of theorem-proving procedures, Third annual ACM Symposium
on Theory of Computing (1971).

[31 J. E. Hopcroft and J. D. Ullman, Formal Languages and Their Relation to Automata
(Addison-Wesley, Reading, Mass., 1969).

/4] N. D. Jones, Reducibility among combinatorial problems in log n space, Proc. of Seventh
Annual Princston Confereace on Information Sciences and Systems (1973).

fs]1 R. M, Karp, Reducibility among combinatorial problems, in: Miiler and Thatcher (eds.),
Complexity of Computer Computations (Plenum Press, New York, 1973).

{6] R. E. Laduer, On the structure of polynomial time reducibility, J. ACM 22 (1975).

{7} N. A. Lyn:ch, Relativization of the theory of computatic nal complexity, Ph. D. Thesis,
M. L T, (1972).

POLYMOMIAL TIME REDUCIBILITIES 123

{81 A. R. Meyer, Private commuaication.
{31 A. R. Meyer and L. J. Stockmeyer, The equivalence problem for regular expressions with
squaring requires exponential space, i3th Annual IEEE Symposium of Switching and Au-
tomata Theory (1972).
(10] A. R. Meyer and L. J. Stockmeyer, Word problems requiring exponential time, Fifth
Annual Symposium on Theory of Computing (1973).

ii1] E. L, Post, Recursively enumerable sets of positive integers and their decision problems,
: Bull. AMS 50 (1944).

{127 i i Rogers, Theory of Recursive Functions and Effective Computability (McGraw-Hill,
New York, 1967). '

{13] J. BE. Savage, Computational work and time on finite machines, J. ACM 9 (4) (1972).

