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&tract. Various forms of polynomial time reducibilig:y zwe compared. Among the forms ex- 
amined we many-one, bounded truth table, truth 1:able and Turing reducibi!&y. The effect of 
introducing nondeterminism into red”,ztiGn procedures is also examined. 

Computation bounded reducibilities play a role in t theory of' ssralputationa~ 

complexity which is analogous to, and perhaps as important as, the role sf’the various 
dls of effective reducibilities used in recursive: function theory. 
have been the polynomial time bounded reducibilities of Cook 

respectively cxxresponding to Turing and :m.any-one reducibillities in recursive 
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afgoti‘hm for computing whe&r or not a word. x is in A that runs in time bounded 
by a @ynomial in 1;~: (,tthe lea@ of x) and with the added power of asking indi- 
edual me&erstip qtrce~~!,ions of l3 (at a cost of i mow per question). This algorithm 
used fo:r computing ,A[ is called a reduction procedure ~h.iie the set B is sometimes 
called the O~G& of the i:eductisn procedure. What rn~.k~s polynomial time rediuci- 
billty akl imjjortant tso3 in the study of comp&ation.aI pomplexity is the: fact that 
#‘A is po[v; ;m$~l time rlr?ducible to .B and A is not computable in polymmaiaE time then 
neither is B. 

The mmt commorll2y (applied form of polynomial time redu&ility is the poly- 
nomiai time bounded z:tany-one reducibility introduced by Karp [S]. A set .A is 
n-my-one reducibZe to _8 ir~ ~olynnmial time (A 6 z B) if there is a function f compu- 
table in polynomial time such that x E A if and only iff(x) rz B. Hence a many-one 
reduction procedure entrails exactly one membership question of the oracle. More- 
over, the procedure is ‘“positive” in the sense that the answer to the mlembership 
question. of’ the set A. is affirmative if the answer to the membership 
Es affirmative. A,s we shlaSl show (in Section 2), this positiveness is n 
all polynomial time re ucibilities, for any set is polynomial time reducible to its 
corn! Gement, yet there re ifinite, coinfinite computable sets that are not many-one 
reducible to their complements in polynomial time. 

Probabiy the most general form of polynomial t&e reducibility that can be de- 
vised is ‘Turing redudbiIity in polynomial time introduced by Cook [2]. 14 set A is 
Turi~zg relducible to a sets B in polynomial time (A < Tl?) if there is an oracle Turing 
kadkine M and a polynomial function p such that x e A iff M accepts x with B 
m its oracle within ,p (PI) steps. (An oracle Turing machine is a multitape Turing 
~mackine with a special xacle tape and special states Q, YES, NO. Should the ma- 
chine enter state Q t.hl2n the next state is YES or NO depending on whether or not 
*the string currenGy lbvritlten on the oracle tape is in the oracle set.) If one can believe 
-8 modified versian Iof Church’s Thesis, then we can remove the word c”probably’” 
as the fist word of thi ragrxph. 
the property that theroe is 

We refer to an oracle -i’uring machine AM with 

olyncmialg such thalt for every oracle, M halts within p (rt) 
moves 6x1 each inpwt of length $2 as a polynomial time bounded Turirsg reduction pro- 
cedure or swmtimesl simply as a polynomial time bounded reduction procedure. The 
omission of “Turing” refkts our faith in an appr6plri e modification of (&v,rcws 

ne interesting feature of Turing reduction procedures is that a question of the 

e partic&ar questiorzs ask 



POLWWMIAL TIME REDUCIE~ILITIES 

begin 

read x E (Oj a)*; 

z +- x; 

while ItI c 2 1x1 do 

if zEX then zc-zl else z+zO; 

’ ’ ; if z E X then ACCEPT else REJECT; 

end 

Fig:>“: _ Algoriithm with 2” potential. questions. (Note: ACCEPT and REJECT are HALT 
statements.) 

E (0, 1)* and any string y E (0, 1) * with length < 1x1 there is an oracle Y such tlpat 
the procedure asks the -membership question “xy E: Y?“. This amounts to > 2” 
p?ltential questions of the oracle. This anomaly prompts one to ask about pcrlynonrd 
time bounded reduction procedures that have the property that questions asA;ed 
of the oracle (are independent of each other. This leads to a study of piAynomia2 
time bounded truth table reducibility. In Section 3 we give several equivalent Sefi- 
&ions of polynomial time bounded truth table reducibility and show th;at the re- 
lation is strictly stronger than polynomial time bounded Turing reducibility. Also 
ilry Section 3 we survey a variety of strengthened forms of polynomial tim.e bounded 
truth table reducibility as to their relative strength. 

In Section 4 we examine nondeterministic versions of polynomial time bounded 
reducibilities. In general, nondeterministic reducibilities are not transiti W, so that 
some interesting features are lost. In contrast to polynomial time bounded a%go- 
rithms without oracles it can be prouen that nondeterministic polynomial rime bound- 
ed reduction procedures are more powerful than their deterministic countcrpzrts. 
Indeed, a result of Laker, Gill and Solovay [l] implies that Turing reducibility in 
polynomial time is roperly stronger than Turing reducibilitly in non? etermin istic 
polynomial time. 

When we speak of we refer to co le sets of words in a finite qlqhabet. ._ 
Since words in any a bet can be enco nto and decoded from the two letter 

, 1) in pf?,l;ynomial time, it does not hurt to assume we are wo-king with 
the fixed alphabet $01, 1). 

%, n general, our r:ducibility relations are written as .“ <r where the su;~erscript 
represents thle set of allolwable ;ime bounds and subscripts represent the rorm of 
the reduction 1 procedures defining the reducibility relation. If we allow nondeter- 

en we write . In most instances i:he set of allowOable ,tirne bcunds 



106 E. I,AIYl4ER, N. A. ILl?NCM, A. E. SELMAN 

92 iq&s A g r B). One reducibility is properrb xtropzger (properly w 

first is stronger (w&:er) than the second, but not vim versa. 

ther .is stronger than the other. 

e sets: A and B’ such that A 
the weaker of two comparable reducjbilities t 

impossible for two incomparalble reJucibilities to stratify each oth.er. If one reduci- 
is stronger than and stratifies another, then it is properly stronger. 

ur comparison of polynomial time bounded reducibilities mainly deals with 
the classifiqation of the forms of poQnomial time bounded reducibility as to their 
relltative mength and stratification. The basic tools we use are twdhg and &qo- 

g. For isstance, ,to show < :‘” is not strongkz than <p one simultaneously 
and B in such a way that (i) 2 is encoded effectively into B 

be reduced to B via an 92 time bounded r-reduction procedure (this 

we diagonalize over all J time bounded s-reduction pro- 

rPe in time t (n) if there is a muXtape Turing machine with 
shed output tape such that if x is any input of length n then the Turing 

x within t (a) moves withf(x) written on the output tape. 
mpute fknctions are often called Turing machine MM&uc~~~. 

is computabIe in (n.mzde~ermi~i.~tic) the t (n) if there is a (nondeterministic) 
multitape Turing .ratachine that recognizes A and on each input of length a the 
machine halts within t (0) moves (on each computation sequence). A set has time 
cmpl’exity t hi) if it is computable in time I (n). s define 9 to be the class of all 
subsets of (0, I}* computable in time bounded. a polynomial and 329 to be 
the CUSS of di.1 subsets of (0, l}* computable in nondeterministic time bounded 

say a set A is polymmial’ r-complete if A E 32’9 and for all 

For m, it E: (X define <m, n> = + [(m+n) (m+~+ l)] -ME and inductively (FQ? e.., 
%+i> = UP,, l -*9 mk>, &+I). Given ml, . . . . mk, cm,, . ..$ mk> can be determined 

mial time as a function the sum of the lengths of JVQ, . . . . mk written in 
or a tied k there is a p aomial time bounded algorithm (as a function 

I written in binary_‘) for 
is a set we define CA 

determining mB, . . . . WEI( su 
to be the characteristic function of A; 
‘7-Q let 2 denote the complement of A 
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elow we list important yet easily 

” 
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proved. properties, of thiese: re ucibility noCons. 

‘9 
@) SE and G T are reflexive and t,rarrsitive relations. 

‘9 

(v) If A < TB atlid B is computable in t (n) time then A is cIomput&le in p (n]i +p (n) 
max (5; (m): m < p ~[n)} time for some polynomial p. 

(vi) If A &3 aw B is computable (nondeterministically) ijg t (n) time th’en A is 
&He (nonde~~esaninisticullyj in p (n) + max {t (m j : m < p (rt)) time f;w soYrYe 

polynomial p. 

The proiPf of PropoGtion 2.1 is routine. 
The following proposition is an immediate consequence of the above. 

‘9 (i) A < TB and B E 13 imp&es A E 9. 

F’ (ii) A <zB and B E CKsP implies A E 0. 

(iii] 929 is closed unt;9er omplement zjT and only if some polynomial m-conqlete 
set has its complement i/a ‘%I 9. 

If A and B are in ‘9 thf%n 4 is pathological that this is not true for =z, 

because 0 and (0, l)* are G z incomparable. However, we do have A I;’ z % for 

all A, BE c5?-{0, (0, l}4’). 
It is q.uite trivial to reduce a set to its complement in polynomial time’. Indeed 

the reduction procedure xquirey only one question of the oracle, namely the questi(on 
whether or not t.he input itself is in the oracle zlet, Even though many-one rsducti~on 
procedures require oni y me question of the oracle the: “‘positive’” requirement of 
these reduction procxdures does not in gellL,k_ -*A allow sets to be m-reducible to their 
complements in polynoi-Ai time. 

There ‘9xi,rCs un infinite, coinfinite set 
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As the diagonalization proceeds, keep returning to every so often, so that if MC 
is mnning in polynomial time then M is caught running in 2” moves. Also assign 
infinitely many words into each of A and 2 as the diagonahzation goes on. 
to program this algorithm on a 2 time bounded TU 

function h (defined below) to “spread out” the diagon ion The idea of “spread- 
ing out” the diagonalization was inspired by a technique of M. 

ithout loss of generality we assume that our Turing machine transducers are 
tape Turing machines. Each has a read only input tape, a right moving only 

write only output tape, and a storage tape. The input and output tapes have 
alphabet {OJ) while the storage tape has alphabet {0,1, B}. If the encoding is 
suitably chosen, there is an encoding of these machines into words in the alpha- 
bet (0, 1). We have a universal Turing machine U that can simulate d 6 {0,1> * 
in such a way that there is a constant cu with the property that if the machine de- 
scribed by d runs in time T(n) then U may simulate the machine in time c&l T(n). 
Let &J = A, & = 0, ol, = 1, & = 00, . . . be the natural ordering of the words 
in (0, I)“. 

Define h : iV + N by h (0) = I and h (n-t- 1) = 2h(n). There is a polynomial time 
bounded Turing machine H that on input x writes m in binary where m is the greatest 
nurtber such that h (pn) G 1x1 and determines if h (m) = 1x1. We leave the construction 
of H to the reader. 

We now give a recursive definition of A. To begin with il is in A. Let x e (0, I}* 
with 1x1 = n > 0. 

(1) If x$0* or n # h(m) for some pyz then x&4. 

(2) If x = Oh(m) then Bet (i, j) = m. For 2h(m) moves of simulate d# on the in- 
put x. Ir” the machine doesn’t halt then x $‘A. halt and outputs y then: 

(3) If lyl > h (m- 1) then x 65: A. If lyl \< h (n~--~ I) t xeAifandonlyifyeA. 
trecursive call] 

To show A &$& we suppose not by presuming t A <:A via a poQnomiaf 
time bounded Turing machine transducer D with ption d. Suppose d = 4& 
and D is time bounde by knR .Choose j such that if m = (i, j) and = k(m) 

A > culdil knk. On input 0”’ the algorithm for A must proc 

cannot man~one 



by ~2” for some constant C. = p2 the test in step 3 can be accomplished 
lynomial time by firs g 1x1 and lyl. f ly[ > 1x1 then certainly 1~~1 > 

2). If iyl < 1x1 the n find the greatest p such that h (p) 
m-l then lyl > h < m-l then lyl < h (m-1). Fina 

ma! SC count the cost of the ninput of length 6 h (m- 1) = Iog h (m). 
ut of length not in the set (h (m):nt >, 6) the al rithm for A runs in p~9y- 

time (since no simulation or recursive call 0 rs). Summarizing on an 

ut of length 12, A can be computed in time T(n) where: 

T(n) G T(log n>+p (il)sc2n 

for some polynomial p and constant c. The inequality (1) implies T(n) \< a2” for 
some constant QI. By appealing to universal linear speed-up for Turing machines 
(cf. Hopcroft and UG-r~n [3, page 1383) A can be corn uted in ZZn time. 0 

Since A &:A t .en by Proposition 2. @ii) 1 &:A. Considering Proposition 2. I 

(iv), A $fj. Hence we have: 

Proof above. 
The kind of diagonalkation used in Theorem 2.3 can be applied to show that 

given any time bound t (n) there is a computable set A such that A is not many-one 
reducible to 2 in time t (n). e conclude that many-one reducibility with any re- 
cursive time bound always stratties polynomial time bounded Turing red 

set of words, say yl, . . . . 
a was represented by 
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Let A be a fixed finite alphabet for encoding Boolean functions and let c # 
d u (0, 1). 

A tt-condition is a member of A 
~o~ditLon generator is a recursive mapping of { into the set of tt-co 

ditiogfs. 
&condition evaluator is a mursive mapping of A% (0, I} 

:t e be a t&condition evaluator. A tt-condition accyL cy2 c . . . 
by B S (0, I:\* if and only if e (acCJy,) . . . Ca(yk)) = 1. (a E A 

E (R q”.) 

A <z,B if and only if there exist a polynomial time c 
and polynomial time computable evaIuator e such that x E 

by B. If A <zB we say that A is polynomial time truth table reducible to B or A is 
truth table reducible to B in polynomial time. 

It is not imAmediately apparent that this definition captures the most general notion 
of truth table reducibility in polynomilal time. At the end of this section, we argue 
that it does. 

m To obtain various strengthenings of polynomial time bounded truth table redu- 
c:ibility, we place approprkte restrictions on the tt-generator and tt-evaluator in 
t-he definition. 

2 . ttt is polynom%t the k-question truth table redueibte to B) provided 

A < :I3 via a generator g a.ad evaluator e, where g has r‘ange A% (c {O, l}*)! 

A &.B (A is po?ynomial time bounded truth table rettucible to B) if A <fttB 
for Some k. 

A :$B [A is poIylzomial the positive reducible to B) if the evaluator e has the 
prope:r$j thzrt if e (CLCC~ . . . Q) = 1 and q = 1 mplies z1 = 1 for 1 < i < k then 
4? [GCti l .* z,) = I. 

A <?I3 (nl is polynomial dime conjuctive rehcibte to 23) if the evaluator e has the 
property thax e (amp . . . Sk) = 1 iff crf = 1 for 1 f i < k. 

A G TB (‘4 is poJ’ynom_h! time disjunctive reducible to B) if e (aca, . . . CTJ = 0 

sf = 0 fm 1 < i < k. 
t is pxk?,le to define bmnded question versions of p, 

some of the re i;trictions above, or instance, 
evaluatc~r e with e having the property described 

al rzktiomhips 



next theorem sho at each implication (i) and (ii) of Pro 
3,. that < T 1s sho 
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(iii) A EBB, For all strings 2: 
zllaA+&llO~B and zllrDQ~B, 

59 ZolO E A and ~0100 E A, 
A+zllDhB for k <j < 2, 

~OW’~AGWON~B for 1 f j < 2. ._ 

(iv) A _=$!#. For all strings z: 
zllczA~(zllO~B and z1102~B) or (zllO%B and zl104~B), 
~01 E De (~010 E A and ~010~ E A) or (~010~ E A and ~010~ E A), 
zll~eA~xl10’~B for 1 <j < 4, 
z0lQ’aA~dH~~B for 1 <j < 4. 

(v) A zsf4,B because J3 = z. 

(vi) A GOB. Folr all strings z anit numbers k > 0: 
zlokll E .A e zlcm w E for some j where 1 <J: < k+l, 
zlO%I E B @C+ zl@Ol@ E for some j where 1 <j< k-f-1, 
zlOkl10j~A~zIOkll0’~~ for 1 <j < k+l, 

lOGA-zlO%10f~B~for 1 <j < k+l. 

her than give five separate diagonalizations, we shah give the details of just 

(vi), the A and B satis!@ing A =’ 
‘9 

-ttB but Albzt B. The others follow similar 

Let h be d.ehed as irr Theorem 2.3 (k (0) = 1 and h (n + 1) = 2h9 and let 
be the polynomial time bounded Turing machine that on input x determines the 

1x1 2 A (m). We construct A and B in stages. At stage m we de- 
with h r(m) < 1x1 < h (m+ 1) whether or not x is in A and whether 

* represent descriptions of tt-condition generators and 
t&condition evaluators. in Theorem 2.3, we can assume that our generators and 
evaluators talce the form of three tape Turing machines. (Fo 
let go3 gd, l .* denote generators and eo3 ei, . . . denote evaluators.) 
machines G and E which can simulate tt-condition ge 

ors,;. There are simulation constants e, and cg 
ies as the constant cU in the universal machine 

2 (i, j, k, 1) + a for some i 

I o Simulate gs on inpul: 
Its output of tb.; 



3. Simulate e., on input acw 1 moves of E. If eJ doesn’t halt or outputs 
go 43 the next stage. I into B and pl 
into both A and B where P is ihe 1~~~ -4 number OnlOkNop $?! {y1, . 

f c 3 outputs O and G =r 1 put OWFll into A andOW%W into both A and B where r 
is tti”e least number > O such t OWN lop #.{y,, l **, y#J. . 

End of s;i?ge m. 
It is not difficult to verify that the condition. guaranteeing A = tt 

i9 . 
‘Iif is forced by 

!P e now argue that A &J!3. The argument that B &,ttA is sym- 

Suppose A &I?. Let g and e be a generator and evaluator, respectively, that 
witness this reduction and suppose k is a bound on the number of questions of 9 
(i.e. Range g G d *ti 1,~ (0, 1) *)k). Let g be’time bounded by rnr and e time bounded 
by &. Let gt be a descripti g and eJ a description of e. Shoose I such that 
if m = 2 c;li, j, k, 1; + 1 then 1) > h @z)+2k/4 and 2h(m) > c&I r (h (m>+ 
k- + 3)‘+ cElerl s [r (h (E) 4-k + 3)“1”. At stage m the algorithm proceeds through 
step 3. It can be easily checked that O~(*)lOkll E A if only if g @h(m)lOkl 1) is 
not e-satisfied by B. The main thing to notice is that if g ‘WI 1) = ofccy, c ..* cyp 
with a E A!* and yl, . ..) yP E {O, 1)” then no member in the set {yl, . . . . yJ enters 8 
at a stage 2 m so that the value e (ad&J . . . C&J) determined a? st_ngc EB cannot 
change at a later time 

We now show that A and l3 can be computed in 2h time. Let x be giv.:n with n = 1x1. 
determine the nxmbership of x in A and B we need only compute the above 

gorithm through stage PK+ where pn is the greatest number such that h (5~) :< n. 
Using H, ,W can be determined in polynomial time 2s a function of n. Let T(m) = the 
time to compute St m. By an analysis similar to that of Theorem 2.3, 

T(m) < T (m - 1) + c2h’:“) 

for some constant c. Hence T(m) 6 c 2h(i) which is < a2h(m) for some constant a. 

Since h (~32) < n ztd by unives4 lin B can be computed in 
time 2Y m 

Again the kind of diagonalizstion used in Theorem 3.2 can be applied to general 
time boundeci seduc?Wities. ce, given any ti 
sets A and B (no longer of t c complexity 2”) such. that is truth table r 

olynomiaf time, but n st boun 
This kind of gene ization is vtot true of the following result. 
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if and only if there is a string )p of lengl 

Ox E A for all nonempty p 
if and only if OWN E A!? a 

in polynomial time. 

white lzl < 2 1x1-2 do 

if zOtd? thm z+ 20 else 

if zl 6 B then 2 + zl else 

REJECT; 

ACCEPT; 

if x o,f form VlOy or 

if x EB then ACC 

Fig. 2. Procedure reducing A to ia polynomial time, 



sed at the beginuing of t 
duciSility in pol 

omial time reducibilit 
Gent” of each other. 

only if’ there is a18 oracle Turiflg 
e ~computable jbtction f : ( 

omial time and m each input x, only asks questions 
of B from the list f (xl 

at we mean by from the list s(x) on input x 
is that on input x aud with 0 
w&ten on the omcle tape i efe f(x) = cy&,# . . . cy& 

tt-evaluator e. ITefine f(x) = 
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tape, then (1) if y 3 {yi, . .., y&j then set e C~CZ) = 0 and (2) if y = yLp for 
1 < j,<k.tPzengo’ 0 .state YES if ai = P an to state NQ if q = 0. 
Should accept, set e (XCZ) = reject, set e (~2) = 0. 

e reader can verify that A s$fB via g and e. 0 a. 

. 

fohow&g equivalent definition \rlas suggested by’ Albert R. 
be an al&abet for encoding combinational circuits with just A 
operations. For a precise definition of combinationail circuits, 

For all sets A and B, A < ZB if and (anly if there is a polynomial time 
com&ta& function f: (0, I} dr + A% (c (0,l) +)* sucjciz that if f (x) = accyr c . . . cyR 
with yl, .e.g y,~{OJ)*andcx~A *, then x E A jtist in case a (GB(yI), . . . . G&J) = 1. 

There is an efficient method fo:t constructmg combinational circuits whit 
simulate Turing machines, which has been noticed by several researchers and was 
communicated to us by A. R. Meyer. 

I& p be a polynomial and iet M be a Turing machine acceptor that runs in p (n) 
Cme. There is an algorithm (Turing machine) that runs in approximatelly p (n)’ 
time which given any input of length n produces the encoding in the alphabet A of 
tl combinational circuit dc with, the property that for all q, . . . . a, E (0, I ), lb1 . . . a, 

is .accepted by M if and only if a (q, . . ., q,) = 1. Roughly speaking, the circuit a 
p (n) levels each of length approximately p (n) The t-th level corresponds to 
state, tape contents and head position of at time t. The circuitry connecting 

the t-th and (t + 1).st level simulates the action of M. 

t A &Yvia a t&generator 9 and tt-evaluator $e?. For each x E (0, 1}* consider 
‘the Boolean .furiction cx, detied by: 

Domain (a,) = {0, 1)"whereg (x) = acccy, G . . . cyk and yl, . . . . yk E (0, l}** 
&I, *-•9 Q) = 1 if and only if e(acoI . . . akj = 1. I 

Using 8 method somewh’ar like that above, there is a polync;mial time bounded 
algorithm for producing a, given x as an input. ence A! and I3 satisfy the property 

satisfy the property of the proposition, it is easy 

2 - tt are assuming, of course, that we have:. a nice encoding of 
ationaJ circuits so t at given ar, encoded circuit a and q!, . . . . on E (0, l}, 

can be evaluated in polynomial time as a functior of [or!. 0 

a close cbnncction between. polynomial time 



A natural way to generalize the def%tions 

A < F’B (A is Irxondeterministic po!ynomial time tru+ table reducible to 
nondeterministic Turing machine transducer M that rus.s iin poly- 
a polynomial time computable evaluator e such that x E A just 

in case on inpu: x, M computes a tt-condition y which is @-satisfied by B. 

Note: The definition of 5;:” ’ Introduces nondeterminislm into the gent=rator but 
not the evaluator. 

ucibiiit y notion. 
ilt&tions in the lzrst efinitiion to obtain 

323 %P CMP 
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of Sections 2 and 3 is 21 allow nondeter- 
minisrt:; ri the reducibility procedures. Such notions e&t in the literature; 
GifE art8 Polovay [l] and Meyer and Stockmeyer [9] hafre used a notion of nondeter- 
m‘&-+* &~.LK polynomial time Turing reducibility. Define P (c)Z P) to be the family 
of se:s (nondeterministic) polynomial time Turing reducible to dq.. Baker, Gill and 
Solavay [l] have discovered recursive sets A and B such that 

(1) PA= ‘BkP, 

(2) PB # WY 

Since many stanclard diaponalization and simulation arguments relativize to oracle 
ma&ines, their theorem supports the contention that no standard diagonalization 
or simulation method can be used to demonstrate that ‘9 = ‘?z Sp or 5Q + 929. 

Meyer and Stockmeyer [9j construct a potential hierarchy (paralleling the arith- 
me&l hierarchy) using the notion (of nondeterministic polynomial time reducibility. 

A nondeterministic (oracle) Turing machine runs in po ZynomiaZ time or is polynomial 

time bounded if there is a polynoma! p such that for every n and every input x of 
length n (and oracle A) all possible. courses of computation beginning in the initial 
configuration halt in < JI (n;) moves. An cracle Turing machine M ctccegts x with 
oracle A if there is some accepting computation by ;*I on input x with oracle A. 
The set accepted by M *with oracle A is the set of all x E (0, f ) * such that M accepts x 
with oracle A. A nondeterministic Turing machine transducer M computes y on 
inpitAt x if on input x, for some computation, M halts with y written on the output 
tape. 

929 ~tl < r B (A is nondeterministic golyEomial time ?krhg reducible to El) if and only 
if there is a nondeterministic ora.cle Turing machine M that runs in polynomial 
time and A is accepted by M with oracle B. 

A < T?B (A is mmkterministk polynomiul time many-one reducible to B) if and 
conly if there is a nondeterministic Turing machine transducer M t 
nomial time such that x E A just m case there is a y computed by 
with y E B. 

k The following theorem indiszzs an interesting collapse that is very -&rent from 
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the: cktemkistic reducibifities. comes from 
the: power of disjurxtrons. 

b!!td = {o~l,~,i}.Att~~di~io~ha.sthe!~orm61 xl ii 62 X21\ . ..A 6kxkCCxlC 

..* cxk where xl, . . . . xk E (4 I}* and ‘d19 . . . . ok e {A, 1). bfhe f by 

1 if for all i, 4q = 7 coin&%-s tith q = 0, 
0 otherwise, 

for 61, . ..r Gk 6 {ii3 11, x1, . ..$ %& e {@ I)* and ‘r&r ...B rk e (0, I}, and f evduatd 
at other irq2uts is 0. Clearly, f is computable in polynomial time. 

equivalence is tained by showing that if A &?I3 then A <T9Bm 
a aamietermiti oracle Turing machine that reduces A to B in pcly- 

noti time. Consider the n.ondetetinistic transducer e defined by the following 
gorithm: 

x E (0, I}* be an input. Nondeterministically simulate with t’.he 
air&& sets r and which are initi&!y empty. 

lelt y be the cu t string on the oracIe tape. 
rministicaIJy put y into one of the two sets. 

.pf y E Y then go to state YES and if y E go to state N0. halt 
-I zn . . . A -I ZJ CC)‘, C . . . CJ+ tZl C . . . 

== ;z;l, . . . . z,}. (cc is outputted if 
halts and rejec&J 

nondeterministic 
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r may verify that x E 

As we in the Introduction, nondeterministic reducibilities are not in 
era1 transitive, with nontra s%ivity seeming to accompany t allowance of 

negations. 

(i) is proved by strai forward simulation, a d (ii) is a consequence of the 
following lemma. 0 

mma 4.3, There exist comp&zbZe sets A, R and c’ with A <F*y B9 .%P c 

Q 1.tt 9 

oof. We constr A, B and C satisfying the properties 
[I yl = 1x1 and y E @] and 

x E B- (a,) [lyl = 1x1 and y E CJ. 

These conditions gxrantee tht A s$!,$: B and 

In diagonalizing to assure A S&Z’ at a typical nondeterministic tt-con- 
dition generator 9 and typical tt-condition evaluator e, t n be large enough so 

diagoaalizatious. Find 
2” moves. For eiieh 
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The relation SF ats several interesting .broperties other than. being transitive. 

It may be easily shown that A 6, ‘x% and B iz 9W implies A E 3;2 9. It seems that. 

< Tp is the polynomial1 time bcl!qdeti analogue of ~.numeratio*n reducibility (< t) 

(cf. Rogers [ 12, page L45]). The following equivalent definitiorz of G F9‘parallels 
quite closely Rogers’ [CZ, page 11461 definition of 4 d t 

i * 

A < :np 3 if and only if there is a polynomial p and a w of %9 (in the 

alphabet (O,lz c}) with the property that :c E A just in Js a string 04 with 

I4 G P (txl), ma E W, and{yl, . . . . ykj ,C 21 where a = cy, cy2 ..,* cy& with yi, . . . . yk 
E (0, l}‘Y 

For nondeterministic reducibilities whose definitions do not oollapse, our strati- 
fication results of Theorem 3.2 are strenahened by allowing diagonalization over 
nondeterministic reducibilities. However, we seem to lose the nice 2” time bound 
8s a ccnsequence of the more powerful diagonalization. 

(i) m 9 @9 stridfies < l_tt, 

(ii) for any k, <Ft? stratifies < r+ld (the corresponding strr*,tement for < r+l d m 
is false by Theorem 4. I(iii)), 

. . . 
e ) 111 G y strat$ks <E (the correspomding statement with c ~mc! d interchanged , 

is fdse]~, 

f 1 iV !? < w2 str@fies < 1 t t , 
P m 

0 V <r s&ztij?c‘ <r and <T 

IBI each case the verfying sets can be found with time complexity roughly 22”. 

Ex3 general, the proof follows the lines of the proof of Theorem 3.2 with 
strenihened diagonalkation over nondelterministic reduction procedures instead 
of just deterministic ones. DJ 

Fig. 3 illustrates the relative strengths of the most important transitive redu- 
cibilities that we have studied. 

The dleterministic p&on of Fig. 3 follows from Proposition 3.1 and Theorems 3.2 
and 3.3. The nondeterministic portion of Fig. 3 follows from Theorem 4.4 (iii). 

e two .impkations connecting the determinktic portion to the nondeterministic 
portion follow from Theorem 4.1. The incomparabilities between the deterministic 
and nond.eterministle po:rticx can be demonstrated first by Theore 
which imply respectively: 
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, -btt 

Fig 3. Relative strengths of polynomial the reducibility notions. 

121 

We funow that our detlzrministiic polynomial time retiocibilities dialer on the sets 
computable in 2” time. With a little more effort, we can s;low that these reilucibilitks 
differ on the sets computable in t (n) whenever s (n) is time countable an 
eventually dom&tes e; .ch poly ction I (n) is time cozmtable if there IS 
a ring machine ‘I’ such that for each n if x is a string CC length ft then halts in 
exactly r” (n) moves on iuput x.) 



transitive relation, 
uf: iS incompwabk with 

ey for some ve 
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