
Ant-Inspired Dynamic Task Allocation via
Gossiping

Hsin-Hao Su1, Lili Su1, Anna Dornhaus2, and Nancy Lynch1

1 CSAIL, MIT
2 Department of Ecology and Evolutionary Biology, University of Arizona

Abstract. We study the distributed task allocation problem in multi-
agent systems, where each agent selects a task in such a way that,
collectively, they achieve a proper global task allocation. In this paper,
inspired by specialization on division of labor in ant colonies, we propose
several scalable and efficient algorithms to dynamically allocate the agents
as the task demands change. The algorithms have their own pros and
cons, with respect to (1) how fast they react to dynamic demands change,
(2) how many agents need to switch tasks, (3) whether extra agents are
needed, and (4) whether they are resilient to faults.

1 Introduction

In a multi-agent system, different tasks may need to be performed. The task
allocation problem is to find an allocation of agents such that there are enough
agents working on each task. This is often done in a distributed manner in many
applications. For instance, drone package delivery for one city may consist of
deliveries for several different regions [20]. The drones may learn the demands in
each region from a broadcasting ground control station. The demands may change
from time to time. The drones are required to coordinate among themselves
(upon receiving the same signal), without central control, to ensure that there
are enough individuals working in each region.

The problem of task allocation also occurs in the ant world. In ant colonies,
there are several different tasks (brood care, foraging, nest maintenance, defense
[29]) which require different numbers of ants. Ant colonies generally do a good job
of regulating the assignment of workers to tasks. In this work, we take inspiration
from specialization in ants to develop several algorithms that are efficient and
robust for the task allocation problem. Conversely, we hope our work can shed
some light on questions about collective insect behavior.

To model the task allocation without centralized controllers, we consider
randomized gossip protocols [6] (which are similar to population protocols [1]) as
the underlying method of communication among the agents. In short, randomized
gossip protocols consist of rounds. In each round, each agent chooses an agent
uniformly at random to contact, and then the pair exchanges messages. Gossip-
based protocols capture a common method of communication in biological systems.
For example, in ant colonies, two ants communicate by touching each other with

their antennae [15]. The gossip protocol also captures any methods of peer-to-
peer information exchange, including indirect communication such as one agent
leaving marks for another agent. Not only are gossip-based protocols natural
communication mechanisms in biological systems, the algorithms in such protocols
are usually simple, easily scalable, and resilient to failures.

1.1 The Model

We assume there are n agents and k tasks. Each agent a is associated with a
unique identifier, IDa ≤ poly(n), and a state Qa ∈ {1, 2, . . . , k}, which indicates
the task that it is working on. In ant colonies, the ID can be thought as an
encoding of features of an ant such as age, body size, genetic backgrounds, or
spatial fidelity zones [30]. Also, in such settings, k is usually a small constant
less than 20. The scenario proceeds in synchronized rounds. In the beginning of

round t, each agent receives the demand signals d(t) = (d
(t)
1 , d

(t)
2 , . . . , d

(t)
k) from

the tasks, where d
(t)
i indicates the demand of task i. 3 Note that the demands

should be thought as the work-rates required to keep the tasks satisfied. The
demands may change arbitrarily in every round. Each agent a chooses another
agent a′ uniformly at random and then they can exchange messages of O(k log n)
bits (which are just enough fit the size of the input signals, d(t)). Then, the agents
can change their states. Then they proceed to the next round.

Cornejo et al. [5] and Radeva et al. [28] defined models for the task allocation
problem in ant colonies. In their work, when the ants receive heterogeneous
feedback from the environment, there could be information flow from one ant
to another. In our model, the information flow happens only through gossiping.
Many models inspired by insect colonies have restrictive memory constraints on
each agent. However, since evidence shows that insects can remember and learn
things (such as a path) very well [8], we decide not to impose constraints on
memory, but on communication.

1.2 Problem Formulation

We formulate the task allocation problem similarly to [28] and [5] as follows.

Let A
(t)
i denote the set of agents working on task i for 1 ≤ i ≤ k. Let w(t) =

(w
(t)
1 , w

(t)
2 , . . . , w

(t)
k) denote the number of agents working on the k tasks (wi =

|Ai|). We say the allocation at round t is a proper allocation if w
(t)
i ≥ d

(t)
i for all

i ∈ {1, 2, . . . , k}. For convenience, assume that the total demand D =
∑k
i=1 di

is fixed. We can assume this without loss of generality, since we can let task k
denote the dummy task for idle agents. We often omit the superscripts (t) to
denote the quantities of the current round.

3 Although the assumption that every agent knows all the demands seems to be strong,
as long as each demand is known by some agent, all the demands can be propagated
to everyone in O(logn) rounds by gossiping (see broadcasting in Section 2).

Mv. and Fill Tkn. Pass I Tkn. Pass II Ranking I Ranking II
#Agents D (1 + ε)D (1 + ε)D (1 + ε)D (1 + ε)D

Preproc. Time O(kε logn) O(kε logn) O(1
ε log2 n) O(

(
k
ε

)2
logn)

Realloc. Time O(log2 n) O(1) O(1) O(1) O(1)

Switching Cost OPT (k − 1) ·OPT OPT O(n)
O(k logn) ·OPT
(or O(n))

Fault Tolerance
transient faults
after preproc.

transient faults
after preproc.

transient & (crash)
no global clock

Table 1: The time complexities are provided as the rounds needed for the algo-
rithms to succeed with high probability, that is, with probability 1− 1/ poly(n).

There are several objectives we consider for an algorithm. First, whenever
the demands change, we would like the allocation to recover to a proper one as
soon as possible. The reallocation time is defined to be the number of rounds
needed for the algorithm to find a proper allocation, after the demand stabilizes.
Algorithms are allowed to have a preprocessing phase, so that the reallocation
can be done faster after that. Second, when the demands change, we hope the
number of task switches is as small as possible, since task changing may incur
some overheads. We define the switching cost to be the number of agents who
switched tasks until a proper allocation is achieved. Suppose the number of
agents equals to the total demand. When the demands change from d to d′, it is

clear that the switching cost is at least OPT
def
= |d− d′|1/2. Third, we study the

number of agents needed for the algorithm. Clearly, all algorithms that behave
correctly need to have at least D agents. However, the question is whether extra
agents can help us in designing more efficient algorithms.

Finally, we consider two types of faults: transient faults and crash faults.
A transient fault means an agent temporary malfunctions but later recovers. For
example, an agent might not receive the most recent demands for some reason
(perhaps due to the propagation delay). We say an algorithm tolerates transient
faults if the agents adapt to a proper allocation after all the agents recover from
the faults. A crash fault is when an agent malfunctions permanently (and it will
no longer be contacted by other agents). We say an algorithm tolerates crash
faults if the agents adapt to a proper allocation after some of them have crashed,
as long as there are enough remaining agents.

1.3 Our Contribution

We explore different possibilities that can be achieved by a(ge)nts under the
gossip model where information exchanges are limited. We give several algorithms
for the task allocation problem. Some algorithms are inspired by ants, where
their intrinsic difference is used to facilitate symmetry breaking. The algorithms
are incomparable in the sense that no one dominates the other on all the ob-
jectives (see Table 1). Our first algorithm, the move-and-fill algorithm, is a
straightforward algorithm, where the excess ants working on over-satisfied tasks
leave the tasks and switch to the unsatisfied tasks. We show that this can be done

in O(log2 n) rounds in our model w.h.p.4 using the gossip-based counting and
selection algorithms developed in [19] . The main advantage of the move-and-fill
algorithm over the other two is that the number of agents needed is exactly
D. Moreover, the switching cost is optimal. The drawback of the algorithm is
that whenever the demands change, the re-allocation time is O(log2 n) rounds.
If the demands change more frequent than once every O(log2 n) rounds, the
allocation will not be able to catch up to the demands. In reality, the demands
may change very frequently due to both internal factors (consumable tasks where
the demands decrease when they are done) and external factors (sudden changes
in the environment).

The ant inspiration for the next two algorithms. Consider ant colonies,
where ants receive the demand signals from the tasks. In reality, the signals can be
the temperature or the production of chemicals. Biologists have conjectured that
different ants have different response thresholds to the signals [4]. The question
is whether such a design could help in task allocation. Consider the following
simple example, where n = k = 2. Suppose that the first ant a1 is more sensitive
to the signal of task 1 than a2. Then, when task 1 and task 2 have both 1 unit of
demand, it is possible that a1 goes to work on task 1 and a2 goes to work on task
2. The main inspiration here is that if the ants have different responses to the
signals, then they can take advantage of the difference to facilitate task allocation.
Each ant can decide where to go based on the demand signals, independent of
the other ants’ actions. Therefore, the reallocation can be done very quickly.

Both our token passing algorithm and ranking algorithm are based
on this idea. Both algorithms consist of a preprocessing phase, where each ant
a computes a value Xa. After Xa is computed, they will allocate themselves
according to Xa and the vector of demands, so that when the demands change,
each ant can reallocate itself instantaneously. The drawback compared to the first
algorithm is that they both need extra agents. After the Xa-values are computed,
the allocation is done in a very simple way. In a high level sense, we divide the
range of Xa-values into k disjoint intervals such that the length of i’th interval is
proportional to the demand of task i (with additional slacks, see Algorithm 2).
Every agent will go to the task whose interval contains its Xa-value. In general,
we hope that the Xa-values of the agents are well-spread so that an interval of
length proportional to di would contain di agents whose Xa-values lie in the
interval.

In the token passing algorithm, each agent is assigned a unique token Xa

from {1, 2, . . . , n + b εk · Dc} in the preprocessing phase, where 0 < ε < 1 is a
fixed parameter. This is done by using the loose renaming procedure developed
by Giakkoupis, Kermarrec, and Woelfel [14]. When there are (1 + ε) ·D agents,
the preprocessing phase takes O(kε log n) rounds. After that, each agent can
determine its role based on Xa and the demand vector in O(1) rounds. There are
two variants of the algorithms that reallocate in different ways when the demands

4 With high probability, which means with probability at least 1−1/ poly(n). Note that
if there are poly(n) events and each one holds w.h.p., then all of them simultaneously
hold w.h.p. by an union bound argument.

change. The first is that every agent keeps the Xa-value the same and then
reallocates according to that. In that algorithm, the switching cost is bounded
by (k − 1) ·OPT. In the second variant, the Xa-values are also reallocated. This
achieves the optimal switching cost and the reassignments of Xa-values can
be done instantaneously. However, unlike the first variant it does not tolerate
transient faults after the preprocessing phase.

We define the notion of stable algorithms which capture the type of algorithms
where each agent’s decision only depends on the current input signals. As long
as the agents run Algorithm 2 with fixed Xa-values (like the first variant), the
resulting algorithm is stable. The stable algorithms are resilient to transient
faults, because as long as each agent functions normally and receives the current
input signals, the allocation is proper. We show that for this type of algorithms,
the switching cost is at least 2 ·OPT when n = D. In comparison, our first variant
achieves a switching cost of (k − 1) ·OPT. We discuss the possibility to close the
gap in Section 5.

In the ranking algorithm, Xa is an estimate of the normalized rank (i.e.
rank(a)/n) of a, where rank(a) is the rank of a’s ID over all the agents. In fact,
the algorithm is similar to ants’ behavior. The ID of each agent can be thought
as some features of the agents. In ant colonies, ants allocate themselves to the
tasks based on their individual traits. For example, there are tendencies for older
ants to forage while younger ants work on tasks within or near the nests [31].
The ranking algorithms follow this general strategy by allocating every agent
based on the value of its trait (assuming the traits are comparable).

We propose two different ways for estimating the normalized ranks. The
first is a rounding-based algorithm that runs in O(1

ε log2 n) rounds while the

second is a lightweight sampling-based algorithm runs in O((kε)2 log n) rounds.
The advantage of the first one is that the estimate does not depend on the
execution of the algorithm and so that an agent always gets the same estimate.
The advantage of the second algorithm is that it can tolerate both transient and
crash faults. Moreover, each agent is allowed to keep its own clock–there is no
global clock. Also, it is a self-stabilizing algorithm, which always converges
to a proper allocation given arbitrary initial states of the agents. The drawback
is that the algorithms may have a fairly large switching cost (e.g., task switching
can happen even when the demands are stabilized). However, for the second
variant we may sacrifice the crash fault tolerance for a bounded switching cost of
O(k log n) · OPT by fixing the Xa-values after the agents get accurate enough
estimates.

1.4 Related Work

The task allocation problem in ant colonies has been studied extensively in
biology literature. Empirical works suggest that the task an ant chooses to work
on depends on various factors, including its age [29], body size [32], genetic
background [18], position in the nest [30], social interaction [17], and internal
response threshold [3]. There are also works that formulate the task allocation
problems using mathematical models [2, 3, 16, 25, 26].

Cornejo et al. [5] was the first to model the ant task allocation problem from
a distributed computing perspective. Then, [28] studied how extra agents can
speed up the task allocation process. In the ant-colony task allocation models of
[28] and [5], they assumed the signals the agents received from the tasks are the
deficit (i.e. di − wi) or whether the tasks need more work (i.e. sgn(wi − di)). It
is not clear what the signals the ants are actually receiving in reality, and they
may depend on the type of the tasks.

In computer science, task allocation problems have also been well-studied
under various contexts, including scheduling of multiprocessors [7, 22], robotics
[23, 12], and communication complexity [9]. The major difference between their
problems and ours is that we consider the case where the tasks are understood
as the task types, where each task (type) is accomplished by many agents
collaboratively. As a result, the number of tasks is usually much smaller than
the number of agents. While in their cases each task is a single instance that
will be handled by a single agent. Their goal is to study how the tasks should be
assigned to the agents such that some objectives are optimized (possibly under
some constraints).

Recently, there has been a rising number of work to model collective insect
behavior from a distributed computing perspective. This includes the studies
for the foraging problem [21, 10], the house-hunting problem [13], and density
estimation problem [24]. See [27] for a more comprehensive survey.

1.5 Organization

In Section 2, we present the move-and-fill algorithm. In Section 3, we present the
token-passing algorithm. In Section 4, we present the ranking algorithm. Finally,
in Section 5, we propose open problems inspired by this work.

2 The Move-and-Fill Algorithm

We first present an algorithm that does not require extra (more than D) agents
and achieves an optimal switching cost. Before describing the algorithm, we
review a few elementary subroutines that can be achieved by gossip protocols.

– Broadcasting. Suppose that a message m is initiated at a. Suppose that
in each round, each agent a that holds m forwards it to a′, the agent being
contacted by a. Frieze and Grimmett [11, Theorem 5.2] showed that in
O(log n) rounds, w.h.p. all the agents receive the message.

– Counting. For any 1 ≤ i ≤ k, the number of agents working on task i
can be counted in O(log n) rounds w.h.p. Suppose that each node (or agent,
in our case) is associated with an integer. The push-sum algorithm of [19,
Algorithm 1] approximates the summation up to a (1± ε) factor via gossiping
in O(log n+ log(1/ε) + log(1/δ)) rounds with probability at least 1− δ. Let
Ai denote the set of agents working on task i for 1 ≤ i ≤ k. To count the
number of agents in Ai, we let the agents in Ai initiate the values to 1 and

agents not in Ai set their values to 0. Then, by approximating the summation
using the algorithm with ε = 1/(2n+ 1) and δ = 1/ poly(n), we can count
the exact number of agents working on task i in O(log n) rounds w.h.p. Also,
since our bandwidth on the messages is O(k log n), we can run k executions
of the algorithms in parallel in O(log n) rounds to count the number of agents
working on every task.

– Selection and Rank Testing. Let A′ ⊆ A be a set of agents and let r
be an integer. Suppose that a ∈ A′, let rankA′(a) denote the rank of a in
the set A′ ordered by IDs, beginning with 0. We explain that in O(log2 n)
rounds, w.h.p. each agent a in A′ can determine whether rankA′(a) is at least
r or not. Kempe, Dobra, and Gehrke [19, Theorem 4.2] gave an algorithm
for computing the t’th smallest element in O(log2 n) rounds w.h.p. We can
set t = r + 1 and use their algorithm to find out the ID of the agent a
with rankA′(a) = r. Then, it will broadcast its ID to every agent in O(log n)
rounds. Therefore, all agents can compare their own IDs with the received ID
to determine whether its rank is at least r. Again, we can run k copies of the
algorithms simultaneously, since each copy uses only O(log n) message size.

Algorithm 1 The Move-and-Fill Algorithm

Obtain w1, . . . , wk by counting the number of agents working on each task.
For 1 ≤ i ≤ k, for each a ∈ Ai, include a in A′ if rankAi(a) ≥ di.
Let φi = max(di − wi, 0) be the deficit of task i for 1 ≤ i ≤ k.
For 1 ≤ i ≤ k, let Φi =

∑i
j=1 φi be the prefix sum of the deficit and let Φ0 = 0.

Let Ii = [Φi−1, Φi) be the half-open intervals for 1 ≤ i ≤ k.
For each a ∈ A′, go to task i(a), where Ii(a) is the interval that contains rankA′(a).

We assume n = D. The move-and-fill algorithm is described in Algorithm
1. The algorithm is similar to Radeva et al.’s algorithm [28], where the excess
agents at each task pop out and move to the unsatisfied tasks. We use A′ to
denote the set of excess agents. Agents in A′ will reassign themselves to the
unsatisfied tasks according to the deficits and their ranks in A′. To determine
whether a ∈ A′, a does so by testing whether rankAQa (a) ≥ dQa . Such a test
can be done for every agent by running k rank testing algorithms (one for each
task) in parallel w.h.p. For task i, max(0, wi − di) agents will be in A′. Since the
number of agents is equal to the total demand, the number of excess agents must
be equal to the total deficits of the tasks, Φk. We partition the interval of length
Φk into k intervals, each with length Φi−Φi−1 = φi, so that there will be exactly
φi agents whose rankA′(a) lie in the interval Ii. Thus, φi agents will go to task i.
This implies all the tasks become satisfied. Again, w.h.p. such a test can be done
for every agent by running k rank testing algorithm to test if rankA′(a) ≥ Φi for
each i.

Therefore, the number of rounds needed to get to a proper allocation is
O(log2 n) w.h.p. Suppose that the demands change from d to d′ and then do not

change for Ω(log2 n) rounds. It is clear that the algorithm achieves an optimal
switching cost of OPT = |d− d′|1/2, since the number of agents who switched

tasks is
∑k
i=1 max(0, d′i − wi) =

∑k
i=1 min(0, d′i − di) = |d′ − d|1/2.

3 The Token Passing Algorithm

While the move-and-fill algorithm achieves an optimal switching cost, it requires a
significant amount of re-computation whenever the demands change. In situations
where the demands change more frequent than O(log2 n), the algorithm may
fail. In this section, we present an algorithm that reallocates in O(1) rounds
whenever the demands change. However, the algorithm requires some extra agents
in addition to the total demand.

We assume that n = d(1 + ε)De − b εk ·Dc, which is slightly less than d(1 +
ε)De. In the preprocessing phase, we assign each agent a a token TKa from
{0, . . . , d(1 + ε)De − 1} such that each token is assigned to at most one agent.
Giakkoupis et al. [14] gave an algorithm for the renaming problem in the gossip
model that assigns a name from the name space {1, 2, . . . , (1 + ε′)n} to each node
in O(1

ε′ log n) rounds, where n is the number of nodes. This can be used to assign
the tokens for the agents in our case, where we have n ≤ (1+ε)D− ε

k ·D+2 agents

and at least (1+ε)D tokens and so ε′ ≥ (1+ε)D
n −1 = (1+ε)D

(1+ε)D− ε
k ·D+2−1 = Ω(ε/k),

provided D = Ω(k/ε). Therefore, in O(kε · log n) rounds, the agents will get a
token from {0, . . . , d(1 + ε)eD − 1}.

Once the agents are assigned tokens, each agent compares its token with
the demand vector to determine which task it is going to. Define the error
εi = i · bD · εk c for 0 ≤ i ≤ k. Define the interval Ij = [

Dj−1+εj−1

N ,
Dj+εj
N) for

1 ≤ j ≤ k, where Dj =
∑j
i=1 dj and N = D + εk is a normalization term (which

is actually not necessary for the token passing algorithm, but will be needed for
the ranking algorithm). These intervals form a disjoint partition of [0, 1). Let
TKa denote the token assigned to agent a. Let Xa = TKa /N . We show that if
each agent a executes allocate task(a, Xa) described in Algorithm 2, where a
goes to task j(a) such that Ij(a) contains Xa, then the allocation is proper.

Algorithm 2 allocate task(a, Xa)

Let Ij = [
Dj−1+εj−1

N
,
Dj+εj
N

), for 1 ≤ j ≤ k, where Dj =
∑j
i=1 dj ,εj = jb ε

k
·Dc, and

N = D + εk.
Let Ij(a) be the interval that contains Xa.
Go to task j(a).

Lemma 1. Suppose that n = d(1 + ε)De − b εk ·Dc and each agent is assigned
a unique token from {0, 1, . . . , d(1 + ε)eD − 1}. If each agent a goes to work on
task j(a), where the interval Ij(a) contains TKa, then the allocation is proper.

Proof. Since the length of the interval Ij is
dj+b εk ·Dc

N , Ij contains at least dj +
b εk ·Dc tokens. However, since at most d(1 + ε)De − n = b εk ·Dc tokens are not
taken by the agents, it contains at least dj + b εk ·Dc − b

ε
k ·Dc = dj tokens used

by the agents. Therefore, at least dj agents are working on task i.

When the demands change from d to d′, there are two variants of the
algorithms to deal with that. The first one is to continue to run allocate task(a,
Xa) with the same Xa. The second one is to update the token and Xa and then
run allocate task(a, Xa). We will show that the first one has a (k − 1)-optimal
switching cost, while the second one gives an optimal switching cost. However,
the second one requires all the agents receive the same demand vectors in a
consistent order. Therefore, unlike the first variant, it does not tolerate transient
faults, since when an agent temporarily malfunctions, it is not able to receive
input signals.

3.1 The First Variant

We will bound the switching cost when all the agents keep running Algorithm 2
without changing the values of Xa. The lemma is stated in a more general way
so that we can also apply it later in the next section. The proof is deferred to
the full version.

Lemma 2. Suppose that the demands change from d to d′ and the Xa-values
of all the agents are fixed. Let X = {Xa}a∈A be the multi-set that consists of
all the Xa-values of the agents. Let γ(X) = sup0≤i≤N−1|X ∩ [iN ,

i+1
N)| denote

the maximum number of agents whose Xa-value lie in the interval over all
intervals of length 1

N . The switching cost is bounded by γ · (k − 1) ·OPT, where
OPT = |d− d′|1/2.

Since Xa is defined to be the token value divided by N and the token values
are integers, we must have γ(X) = 1. Therefore, the switching cost is at most
(k − 1) ·OPT. Algorithm 2 is capped at this bound for the switching cost. An
interesting question is whether there exists another scheme for achieving a better
switching cost, perhaps by partitioning the [0, 1) interval in a better way. The
algorithms where the Xa-values do not change can be captured by the following
definition of stable algorithms. We will show that stable algorithms cannot achieve
the optimal switching cost when n = D. (Note that Algorithm 2 does not fit into
this case, because it uses more agents than D. See discussions in Section 5.)

Definition 1. A stable task allocation algorithm is where each agent a is associ-
ated with a function fa(d1, d2, . . . , dk) such that agent a goes to (d1, . . . , dk) when
the demand vector is (d1, d2, . . . , dk).

We show that the stable algorithms that achieve proper allocations must
incur a switching cost of at least 2 ·OPT when n = D.

Lemma 3. Suppose that n = D and an algorithm is stable. Then, there exist
demands d and d′ such that the algorithm uses at least |d′ − d|1 switching cost
when the demands change from d to d′.

Proof. Suppose there are 3 agents, a1, a2, a3. Suppose to the contrary that
fa1 , fa2 , fa3 are functions for a1, a2, and a3 that achieve the optimal move-
ments when there are 3 tasks with total demand 3. Suppose that the ini-
tial demand is d1 = (1, 1, 1). Without loss of generality, suppose that
(fa1(d1), fa2(d1), fa3(d1)) = (1, 2, 3). When the demands change to d2 = (1, 2, 0),
since we assume the strategy achieves the optimal movement, we must have
(fa1(d1), fa2(d1), fa3(d1)) = (1, 2, 2). If the demands again change to d3 =
(0, 2, 1), then we must have (fa1(d1), fa2(d1), fa3(d1)) = (3, 2, 2) by the same
reasoning. Finally, if the demands again change back to d1 = (1, 1, 1), then
by the same reasoning, we have either (fa1(d1), fa2(d1), fa3(d1)) = (3, 2, 1) or
(fa1(d1), fa2(d1), fa3(d1)) = (3, 1, 2), contradicting with the fact that fa1 , fa2 , fa3
are functions.

3.2 The Second Variant

If we do not require the algorithm to be stable, then it is still possible to achieve
an optimal switching cost. In the second variant, we will reassign TKa (and set
Xa = TKa /N) when the demands change. We will pretend there are dummy
agents such that all tokens are used up. The agents reassign the tokens according
to the following rules.

Suppose that a is working on a task j(a). If dj(a) > d′j(a) and a is an agent

holding one of the largest dj(a) − d′j(a) tokens among the agents working on

j(a), then a will switch tasks. Let A′ denote the set of all agents that belong
to this case. Each a ∈ A′ will use rankA′(a) and the deficits of the tasks to
update its token and switch to the corresponding task. Otherwise, if a does not
belong to the case described above, it will not switch tasks. However, it will
also reassign its token to avoid conflict. The details are postponed to the full
version, where we will also show that after updating the tokens, each token in
{0, 1, . . . , d(1 + ε)De − 1} is assigned to at most one agent.

All the tokens held by the agents (including dummy agents) are distinct after
updating. Now if we delete the dummy agents, all the tokens are still distinct. By
Lemma 1, we conclude that the allocation obtained is proper. Furthermore, for
task i, di−d′i agents switch tasks if di > d′i. The switching cost is

∑
i max(0, di−

d′i) = |d′ − d|1/2 = OPT.

4 The Ranking Algorithm

In this section, we assume that d(1 + ε) ·De ≤ n ≤ 2D for some 0 < ε < 1. Let
rank(a) denote the rank of IDa among all the ID of other agents. We assume
the rank begins with 0, i.e. the rank of the agent with the smallest ID is 0. Let
nrank(a) = rank(a)/n denote the normalized rank of a.

We give two variants of algorithms for approximating the normalized ranks of
the agents. By setting Xa to be the estimated normalized rank of a and running al-
locate task(a, Xa) described in Algorithm 2, we show that the allocation is proper
if the estimates are accurate enough. Recall that in Algorithm 2, we partition the

entire working space [0, 1) into half-open intervals Ij = [
Dj−1+εj−1

N ,
Dj+εj
N), for

1 ≤ j ≤ k, where Dj =
∑j
i=1 dj , εj = j · b εk ·Dc, and N = D + εk. If Xa lies in

the interval Ij(a), then it will go to task j(a). We show that if each agent has a
sufficiently good estimate of its own rank, then the allocation obtained is proper.

Lemma 4. Suppose that Xa ∈ [nrank(a)− ε/(6k),nrank(a) + ε/(6k)] for each
a, then for each task j, there are at least dj agents working on it. That is, the
allocation is proper.

Proof. Consider the interval Ij = [
Dj−1+εj−1

N ,
Dj+εj
N). The length of the interval

is (dj + b εk ·Dc)/N . Consider the half-open interval I ′j ⊆ Ij obtained by removing
the first ε/(6k) and the last ε/(6k) of Ij . The length of I ′j is at least

dj
N

+

⌊
εD

k

⌋
· 1

N
− ε

3k
≥ dj
N

+

(
εD

k
− 1

)
· 1

N
− ε

3k

≥ dj
N

+
ε

2k
− 1

N
− ε

3k
N ≤ 2D

≥ dj
N

+
ε

6k
− 1

N
≥ dj
N

+
1

N
D ≥ 12k

ε

Since the smallest normalized rank in I ′j must appear in the first 1/N segment
from the beginning of the interval, the number of agents whose normalized
rank lie in I ′j is at least n · (djN + 1

N) − 1 ≥ dj + 1 − 1 ≥ dj , since n ≥ N .
Moreover, if nrank(a) ∈ I ′j , then its estimate Xa must be in Ij , since Xa ∈
[nrank(a)− ε/(6k),nrank(a) + ε/(6k)]. Because there are at least dj agents whose
normalized rank lie in I ′j , there are at least dj agents whose Xa-values lie in Ij .
Therefore, the number of agents working on task j is at least dj .

4.1 The First Variant

In this section, we show how to approximate the normalized rank up to an
additive ±ε/(6k) factor in O((log2 n)/ε) rounds. Moreover, w.h.p. the estimated
rank for each agent is the same for different executions of the algorithm. The
resulting task allocation algorithm is therefore stable.

The algorithm works as follow: First, count the total number of agents, n,
in O(log n) rounds. Then, identify the O(k/ε) pivot agents whose ranks are
0, b εn6k c, 2 · b

εn
6k c, . . . , d

6k
ε e · b

εn
6k c. This can be done in O((log2 n)/ε) rounds by

running O(k) selection algorithms of [14] in parallel, using O(k log n) message
size. Then, the pivot agents broadcast their IDs and the normalized ranks
to everyone in O(log n) rounds. Each agent a sets its estimate Xa to be the
normalized rank of the pivot agent with the largest ID smaller than its own (that
is, rounding down).

Lemma 5. After running the algorithm described above, we have Xa ∈
[nrank(a)− ε/(6k),nrank(a)].

Proof. The normalized ranks between two consecutive pivot agents is b n6k c.
Therefore, we must have Xa ≥ nrank(a)− b εn6k c/n ≥ nrank(a)− ε

6k .

For the switching cost of this algorithm, it is not hard to see that γ(X) = b εn6k c
(where γ(X) is defined in Lemma 2). Therefore, by Lemma 2, the switching cost
is at most O(εn) ·OPT. This implies the switching cost can be pretty large in this
algorithm. Note that the algorithm is robust to transient fault after Xa-values
are computed. Because like the first variant of the token passing algorithm, once
the Xa-values are computed, as long as the agent gets the correct demand vector,
it can allocate itself to the right task without any communication.

4.2 The Second Variant

In this section, we present a fault-tolerant algorithm, based on a simple approach
to approximate the ranks. The algorithm can be implemented in an asynchronous
manner, where each agent maintains its own clock. In that setting, the t’th global
round is defined to be the earliest time when every agent completed its t’th
round.

Algorithm 3 Sampling-Based Rank Estimation

for each round t do
for each agent a do

Let a′ be the agent a met during round t.

Let Xt ←

{
1, if IDa′ < IDa .

0, otherwise.
.

Let T = Θ((k
ε
)2 logn).

Let Xa =
∑t
i=t−T+1Xi/T .

allocate task(a, Xa)
end for

end for

Lemma 6. Suppose that agent a finishes T = Θ((kε)2 log n) rounds after its last
transient fault. Then, w.h.p. Xa ∈ [nrank(a)− ε

6k ,nrank(a) + ε
6k].

Therefore, by Lemma 6 and Lemma 4, after every agent finishes its T ’th round,
the allocation is proper. However, since they keep updating their Xa-values after
T ’th round in order to cope with the crash faults (see the next subsection), the
switching cost can fairly large (Ω̃(n)) even if the demands do not change. In
the following, we show that if the agents stop updating the Xa-values after T ’th
round, then they can achieve a bounded switching cost of O(k log n) ·OPT. By
Lemma 2, it suffices to show γ(X) = O(log n).

Lemma 7. After Ω((kε)2 log n) rounds, w.h.p. γ(X) = O(log n) (Recall that
γ(X) = sup0≤x≤n−1

∑
Xa∈X |Xa ∩ [xN ,

x+1
N)|).

Proof. For any 0 ≤ x ≤ N − 1, consider the interval [xN ,
x+1
N) ⊆ [0, 1). For −D ≤

i ≤ D, let Ai be the set of agents whose normalized ranks lies in [x+iN , x+i+1
N)

(note that there are at most n/N such agents). Let Ya be the indicator random
variable denoting whether a lies in [xN ,

x+1
N). Let Y =

∑
−D≤i≤D Ya. For a ∈ Ai,

it is not hard to see that Pr(Ya = 1) ≤ 1/(i+ 1). Therefore,

E[Y] =
∑

−D≤i≤D

∑
a∈Ai

E[Ya] ≤ 2 ·
∑

0≤i≤D

n

N
· 1

(i+ 1)
= O (log n)

Since Y is a sum of independent variables, by Chernoff Bound, for some constant
K > 0, Pr(Y ≥ K · log n) ≤ 1/ poly(n). By taking an union bound the intervals
[xN ,

x+1
N) for x = 0, 1, . . . , N − 1, we conclude that w.h.p. γ(X) < 2K log n.

Fault Tolerance for Crash Faults We show that our algorithm is resilient to
crash failures. Now suppose there are at most f agents who died in the previous
T rounds. We will show that if f is sufficiently small, then the current allocation
is a proper allocation w.h.p. On the other hand, if f is large, then we give a
bound on the number of rounds needed to recover to a proper allocation. The
proofs of the following two lemmas are postponed to the full version.

Lemma 8. Let T = Θ((kε)2 log n). Let f denote the number of agents who
crashed during rounds t − T + 1, t − T + 2, . . . , t. Suppose that f = O(εn/k),
then w.h.p. Xa ∈ [nrank′(a)− ε

12k ,nrank′(a) + ε
12k], where nrank′(a) denote the

normalized rank of a at round t.

Lemma 9. Let T = Θ((k/ε)2 log n). Let f denote the number of agents who died
during the past T rounds. Suppose that f = Ω(εn/k), then the allocation becomes
proper after (1− εn

12fk) · T rounds, if no more failures happen.

5 Open Problems Motivated by This Work

– The role of extra agents. In our token passing algorithm and ranking
algorithm, extra agents are needed to achieve a logarithmic running time.
An interesting question is whether the extra agents are really necessary
to achieve that. Also, in stable algorithms, although we showed that the
switching cost is at least 2-optimal when n = D, the existence of extra agents
helps reducing the switching cost. For example, when there are kD agents, we
can achieve 0 switching cost by allocating D agents to every task. Studying
the trade-off between the number of agents and the switching cost seems to
be an interesting direction.

– The switching cost gap of stable algorithms. We showed that stable
algorithms cannot achieve the optimal switching cost (they must be at least
2-optimal). On the other hand, if all agents have their Xa-values properly
assigned, then Algorithm 2 can achieve a switching cost that is (k−1)-optimal.
There is still a large gap between a factor of (k − 1) and a factor 2. Closing
this gap is a very interesting open problem. Our bounds are tight when
the number of tasks is three. Our partition scheme shows that 2 · OPT is

achievable, while our lower bound shows that this is the best possible. In fact,
we have partial results showing that for D ≤ 6, we can achieve a switching
cost of 2 ·OPT. For D > 6, we could not generalize the pattern and therefore
it is yet to be investigated.

References

1. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in
networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–
253, 2006.

2. S. N. Beshers and J. H. Fewell. Models of division of labor in social insects. Annual
review of entomology, 46(1):413–440, 2001.

3. E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Quantitative study of the fixed
threshold model for the regulation of division of labour in insect societies. Proc. of
the Royal Society of London B: Biological Sciences, 263(1376):1565–1569, 1996.

4. E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Fixed response thresholds and
the regulation of division of labor in insect societies. Bulletins of Mathematical
Biology, 60:753–807, 1998.

5. A. Cornejo, A. R. Dornhaus, N. A. Lynch, and R. Nagpal. Task allocation in ant
colonies. In Proc. 28th Symposium on Distributed Computing (DISC), pages 46–60,
2014.

6. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database main-
tenance. In Proc. 6th ACM Symposium on Principles of Distributed Computing
(PODC), pages 1–12, 1987.

7. M. L. Dertouzos and A. K. Mok. Multiprocessor online scheduling of hard-real-time
tasks. IEEE Transactions on Software Engineering, 15(12):1497–1506, 1989.

8. A. Dornhaus and N. Franks. Individual and collective cognition in ants and other
insects (hymenoptera: Formicidae). Myrmecological News, 11:215–226.

9. A. Drucker, F. Kuhn, and R. Oshman. The communication complexity of dis-
tributed task allocation. In Proc. 31st ACM Symposium on Principles of Distributed
Computing (PODC), pages 67–76, 2012.

10. O. Feinerman and A. Korman. The ANTS problem. Distributed Computing. to
appear. Extended abstracts appeared in PODC 2012 (together with Z. Lotker and
J.S. Sereni) and in DISC 2012.

11. A. M. Frieze and G. R. Grimmett. The shortest-path problem for graphs with
random arc-lengths. Discrete Applied Mathematics, 10(1):57–77, 1985.

12. B. P. Gerkey and M. J. Matarić. A formal analysis and taxonomy of task allocation
in multi-robot systems. The International Journal of Robotics Research, 23(9):939–
954, 2004.

13. M. Ghaffari, C. Musco, T. Radeva, and N. A. Lynch. Distributed house-hunting in
ant colonies. In Proc. 34th ACM Symposium on Principles of Distributed Computing
(PODC), pages 57–66, 2015.

14. G. Giakkoupis, A. Kermarrec, and P. Woelfel. Gossip protocols for renaming and
sorting. In Proc. 27th Symposium on Distributed Computing (DISC), pages 194–208,
2013.

15. D. M. Gordon. The organization of work in social insect colonies. Complexity,
8(1):43–46, 2002.

16. D. M. Gordon, B. C. Goodwin, and L. Trainor. A parallel distributed model of the
behaviour of ant colonies. J. of Theo. Biology, 156(3):293–307, 1992.

17. M. J. Greene and D. M. Gordon. Interaction rate informs harvester ant task
decisions. Behavioral Ecology, 18(2):451–455, 2007.

18. W. O. Hughes, S. Sumner, S. V. Borm, and J. J. Boomsma. Worker caste poly-
morphism has a genetic basis in acromyrmex leafcutting ants. Proceedings of the
National Academy of Sciences, 100(16):9394–9397, 2003.

19. D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate
information. In IEEE 44th Symposium on Foundations of Computer Science
(FOCS), pages 482–491, 2003.

20. S. Kozub. Amazons new drone delivery plan includes package parachutes. The
Verge, 2017.

21. T. Langner, D. Stolz, J. Uitto, and R. Wattenhofer. Fault-Tolerant ANTS. In 28th
International Symposium on Distributed Computing (DISC), pages 31–45, 2014.

22. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20(1):46–61, 1973.

23. L. Liu and D. A. Shell. Large-scale multi-robot task allocation via dynamic
partitioning and distribution. Autonomous Robots, 33(3):291–307, 2012.

24. C. Musco, H. Su, and N. A. Lynch. Ant-inspired density estimation via random walks:
Extended abstract. In Proc. 35th ACM Symposium on Principles of Distributed
Computing (PODC), pages 469–478, 2016.

25. S. W. Pacala, D. M. Gordon, and H. C. J. Godfray. Effects of social group size
on information transfer and task allocation. Evolutionary Ecology, 10(2):127–165,
1996.

26. H. M. Pereira and D. M. Gordon. A trade-off in task allocation between sensitivity
to the environment and response time. J. of Theo. Bio., 208(2):165–184, 2001.

27. T. Radeva. A Symbiotic Perspective on Distributed Algorithms and Social Insects.
Dissertation, Massachusetts Institute of Technology, 2017.

28. T. Radeva, A. Dornhaus, N. Lynch, R. Nagpal, and H.-H. Su. Costs of task
allocation with local feedback: Effects of colony size and extra workers in social
insects and other multi-agent systems. submitted. Preliminary version appeared as
a brief announcement in Proc. 28th Symposium on Distributed Computing (DISC),
pages 657–658, 2014.

29. G. E. Robinson. Regulation of division of labor in insect societies. Annual Review
of Entomology, 37(1):637–665, 1992.

30. A. B. Sendova-Franks and N. R. Franks. Spatial relationships within nests of the
ant leptothorax unifasciatus (latr.) and their implications for the division of labour.
Animal Behaviour, 50(1):121–136, 1995.

31. F. Tripet and P. Nonacs. Foraging for work and age-based polyethism: The roles
of age and previous experience on task choice in ants. Ethology, 110(11):863–877,
2004.

32. E. O. Wilson. Caste and division of labor in leaf-cutter ants (hymenoptera: Formi-
cidae: Atta). Behavioral Ecology and Sociobiology, 7(2):157–165, 1980.

