
THE DISTRIBUTED FIRING SQUAD PROBLEM
(Preliminary Version)

Brian A. Coan*

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

Cynthia Dworkz

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

1. INTRODUCTION

Many fault-tolerant distributed algorithms assume a syn-

chronous system, in which processing is divided into synchro-

nous unison “steps” separated by rounds of message ex-

change (see, e.g., [DS, LSP]). A message sent at step s from

a correct processor p to a correct processor q is received by q

at step s+l. This assumption is justified by the impossibility

results of [FLP] and [DDS], which show that if the system is

asynchronous then there is no protocol for distributed agree-

ment tolerant to even one benign processor failure. Another

common assumption is that all processors begin the algorithm

simultaneously, i.e., at the same step. In an actual distributed

system in which different transactions and algorithms may be

executed periodically, this may be unrealistic. Typically an

algorithm is executed in response to a request from some
specific processor, which may in turn be responding to some

external request. If the given processor is correct then all

correct processors learn of the request simultaneously, so they

can indeed begin the algorithm in unison. However, if the

processor is faulty then the correct processors may learn of

the request at different steps. In this paper we justify the

design assumption of simultaneous starts. Specifically, we

provide algorithms to solve the associated synchronization

Permission to copy without fee all or parl of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage. the ACM copyright notice and the title of the
publication and i& date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise. or to republish, requires a fee and,‘or specific permission.

@ 1985 ACM 0-89791-15t-2/85/005/0335 $00.75

Danny Dolev+

Computer Science Department

Hebrew University

Jerusalem, Israel

Larry Stockmeyer

Computer Science Department

IBM Research Laboratory

San Jose, CA 95193

problem, which we call the distributed firing squad problem

(abbreviated DFS). A distributed algorithm for the DFS

problem has two properties:

(1) if any correct processor receives a message to start a

DFS synchronization, then at some future time all cor-

rect processors will “fire” (formally, enter a special

state), and

(2) the correct processors all fire at exactly the same step.

The two complexity measures we study are fuult tolerunce, the

maximum number of faulty processors which can be tolerated,

and time, the maximum number of rounds of message ex-

change taken by the algorithm starting with the step at which

some correct processor receives a message to start a DFS

synchronization and ending with the step at which all correct

processors fire. We are also interested in the communication
complexity of an algorithm, that is, the total number of mes-

sage bits exchanged, but only to the extent of distiguishing

polynomial from exponential communication complexity.

Below, n denotes the number of processors in the system; t
denotes the maximum number of faults that can be tolerated

by a particular algorithm, and any such algorithm is said to be

t-resilient.

In the case of fail-stop faults (the most benign type of

fault usually studied, in which a faulty processor follows its

‘Work supported by the NSF under Grant #DCR-8302391 and
by the U. S. Army Research Office under Contracts
#DAAG29-79-C-0155 and #DAAG29-84-K-0058. and by
the Advanced Research Projects Agency of the Department
of Defense under Contract #N00014-83-K-0125.

+Batsheva de Rothschild Fellow. Work performed in part while
visiting IBM, San Jose.

*Bantrell Postdoctoral Fellow. Work performed in part while
visiting IBM, San Jose.

algorithm correctly but simply stops at isome point), it is easy

to find a t-resilient DFS algorithm for any number t < n of

faults which halts in t+l rounds. This was observed inde-

pendently by James Burns and Nancy Lynch. By reducing

the Weak Byzantine Agreement (WBA) problem to the DFS

problem, we can use a lower bound of Lamport and Fischer

[LF] on the time complexity of the WBA problem to show

that any t-resilient algorithm for the DFS problem requires

t+l rounds for fail-stop faults, and therefore also for more

serious types of faults. Thus, the situation for fail-stop faults

is well understood. Burns and Lynch [BL] give a DFS algor-

ithm for the case of Byzantine faults without authentication

(the most serious type of fault usually studied, where faulty

processors can exhibit arbitrary behavior); we say more about

this case below. The main results in this paper concern By-

zantine faults with authentication. Byzantine processors can

exhibit arbitrary behavior, but we assume that every proc-

essor can sign messages in such a way that the signature of a

correct processor cannot be forged by a faulty processor (see,

e.g., WI).

in trying to determine the maximum fault tolerance of the

DFS problem in the authenticated Byzantine case, we found

it necessary to distinguish between several types of faulty

behavior. In rushing a Byzantine faulty jprocessor can receive,

process and re-send messages “between” the synchronous

steps of other processors. Figure l(a) shows a normal com-

munication round involving three correct processors A, B and

C, with A sending messages to B and C. Figure l(b) shows a

similar round in which processor C is faulty, takes a step

between the steps of the correct A and B, computes its re-

sponse to the message it received from A, and then “rushes”

this response to B in the same round. A. special case of rush-

ing is the riming fault model where fa,ulty processors never

fail and always follow their algorithms correctly, but may take

steps at irregular times and may experilence slight delays or

accelerations in communicating with the other processors.

Rushing and timing faults are realistic types of faults whenev-

er there is sufficient uncertainty in message transmission time.

The length of a communication round must be chosen as large

as the maximum possible transmission time between correct

processors, but if a message happens to be delivered to a

faulty processor in time fess than this maximum, the faulty

processor has the opportunity to rush.

We must also distinguish the case where faulty processors

can sign messages using the encryption functions of other

faulty processors, which we call collusion, and the case where

a faulty processor has only its own encryption function. Col-

lusion is unlikely to occur as a result of a random failure, but

it could occur if the faulty processors were controlled by a

malevolent intelligence which allowed faulty processors to

share encryption keys.

A I3 C
0 Time s .i 0

\ \
Time s+l l l

*
,.

(a) J

Time s+l l

b)

Figure 1. (a) A communication round with three correct
processors. For simplicity, only the messages sent by A are
shown.

(b) The processor C rushes.

Table 1 summarizes our results and the results of [BL] for

the different fault models. Each entry gives nmin, the small-

est number n (n >- 2) of processors for which there exists a

t-resilient distributed firing squad algorithm (t 2 1). Unless

otherwise indicated, all algorithms require at most t+c rounds

where c < 5 is a constant independent of n and t, and the

total number of bits of communication is polynomial in n. In

proving lower bounds on the minimum n. we make the usual

assumption that the receiver of a message knows the identity

of the sender; however, this assumption is not needed by our

algorithms (upper bounds on nmin).

There are several interesting things to note about these

results. First we should emphasize that the lower bound

n 1 3t+l holds for the timing fault model in which all proc-

essors follow Ihe algorithm correctly. The only way faulty proc-

essors can affect the system is by taking steps at irregular

times and unknowingly delaying and speeding up certain

messages by small amounts. Secondly, even though our

bounds on the minimum n in the case of collusion but no

rushing are presently not tight, the bounds are sufficient to

show that cohusion does decrease fault tolerance when com-

pared to the case of no collusion and no rushing, and rushing

alone admits less fault tolerance than collusion alone. The

336

Fault
Minimum n for

t-resiliency Remarks

fail-stop

Byzantine with authentication

no rushing, no collusion

collusion, no rushing

rushing, no collusion

rushing and collusion

timing faults

Byzantine without
authentication

t Rue indep. to Burns and Lynch.

t Due indep. to Burns and Lynch.

5t/3 < nmin Lower bound valid only for t 2 3.

tImin 5 2t+ 1 Algorithm takes 2t + 1 rounds.

3t+ 1

3t+ 1

3t+ 1

3t+ 1 Algorithm due to Burns and Lynch [BL].
Algorithm uses exponential communication

or more than t + O(1) rounds.

Table 1

distinction thus shown between these three fault models is (to

us) one of the unexpected results of this work.

Burns and Lynch [BL] solve the DFS problem in the

nonauthenticated Byzantine case essentially by adapting an
agreement protocol. Since all known nonauthenticated agree-

ment protocols either use exponential communication, use

more than t+O(l) rounds. or require n > t* [DFFLS, DRS,

LSP]. their DFS solution has the same property. By using

signatures, we are able to achieve polynomial communication,

t+O(l) time, and the maximum resiliency 1 (n - I)/3 J simul-

taneously. Our lower bounds n > 3t (n > 5t/3) for rushing

(collusion) suggest that the approach of directly adapting

agreement protocols to the DFS problem will not work in the

authenticated case, since there are authenticated agreement

protocols tolerant to any number of failures IDS]. For the

same reason, the DFS problem seems to be different than the

clock synchronization problem studied in]HSSD. LM, LL]

where the object is to bring the clocks of correct processors

“close” together. In the authenticated Byzantine case, there

is a clock synchronization algorithm tolerant to any number

of failures [HSSDJ. Our problem is also significantly differ-

ent than the version of the firing squad problem which was

proposed in the late 1950’s [MO]. That version of the prob-

lem was interesting since the processors were finite state

machines which were connected in a linear array so each

processor could only count to some fixed constant independ-

ent of n; however, faults were not considered. In our version

of the problem, the difficulty arises not from limitations on

the processors or communication network (since we assume a

completely connected system of powerful processors) but

rather from the possibility of Byzantine faulty processors and

timing faults.

Apart from the motivation discussed at the beginning of

this section, firing squad synchronization seems to be a basic

problem in distributed computing. Much of the theoretical

work on fault-tolerant distributed computing has concentrated

on the agreement problem. More recently, attention has

shifted in part to other basic problems such as clock syn-

chronization [DHS, HSSD, LM, LL] and distributed coin

flipping [BD]. Through this paper, we hope to add firing

squad synchronization to the list of basic problems in distrib-

uted computing which are amenable to theoretical under-

standing.

In Section 2 we give definitions. Section 3 contains re-

sults (DFS algorithm and lower bound) for the case of no

collusion and no rushing, Section 4 gives results for rushing

and timing faults, and Section 5 considers the case of collu-

sion but no rushing. In Section 6 we mention some related

results, such as the application of DFS ideas to the problem

of Byzantine Agreement in the case that the processors do

not all start at the same round.

337

2. DEFlNlTlOlYS

For simplicity we give definitions for a single occurrence

of a firing squad synchronization. Any algorithm which

solves a single occurrence can be easily modified to solve

several occurrences in sequence or even concurrently. Let p,,

P*, p,, denote the processors in the system. For technical

reasons we introduce another “processor” w whose only

purpose is to Start a DFS synchronizalion; w does not receive

messages from the pi’s, In reality w might he another process

running within one of the pi. Formally a DFS algorithm is

specified by an infinite set of messages M and for each proc-

essor pi an infinite set of slates Qi, a slate transition function

oi, and a sending function &, where

oi: Qi x M”+’ -. Qi

pi: Qi x M”+’ + M”.

The inputs to oi and pi are the current state and an (n+l)-

tuple of received messages, one from each processor pI,

pn, w. ai gives the new slate and pi gives an n-tuple of mes-

sages (m,,..., m,) such that mj is sent to pi for each j. There

are special messages 6, the null mess.age, and “Awake”, the

awake message. For each i there are states qO,qf in Qi, the

quiescenr stole and the firing smote, respectively. In addition,

We assume that processors take steps aC times specified

by nonnegative real numbers. A run is specified by giving,

for each processor p,. p,, w, a l,ist of nonnegative real

numbers which specifies the times at which the processor

takes steps. A message sent from a processor p IO a proc-

essor q at time s is received by q at time s’ where s’ is the

smallest s’ > s such that q takes a step at s’. (If q receives

more than one message from some p at some step. then the

message sent at the latest time is used by the transition func-

tions; since this occurs only if either p or q is faulty, this

convention is not critical.) Whenever w takes a step it sends

the awake message 10 some (possibly empty) subsel of the

pi’s and it sends the null message to the rest. The concept of

global time is introduced just as an expositional convenience.

The individual processors have no knowledge of global time.

Definition. A processor pi is correci in a run R if

(I) pi takes its first step at time 0 in etate q, receiving mes-

sages (e, *, +), and thereafter takes steps at succes-

sive integer times I, 2, 3, and

(2) pi executes its algorithm (transition functions) correctly.

A run R is ocfiw if some correct processor receives a non-null

message at some step; define awake(R) to be (he earliest such

rime (necessarily integral). If a correcl pi receives a non-null

message for the first time at time s, we say that pi awakens at

time s. Define firei to be the time of the first step in R

during which pi makes a transition into state qf (undefined if

pi does not enter qr).

Definition. A DFS algorithm is f-resilienr with respect to a

given type of faulty behavior if for any active run R in which

at most t of the processors p,, p, are faulty and in which

the faulty processors conform to the given type of faulty

behavior, there is a (necessarily integral) time fire(R) 2

awake(R) such that firei = fire(R) for all i such that pi is

correct in R. The rime complexity of the DFS algorithm is the

maximum of fire(R) -awake(R) over all such runs R. (Note

that w is not counted among the t faulty processors no matter

how it behaves.)

We now define various types of faulty behavior. A faulty

processor pi is fail-sfop if it operates as a correct processor up

to some step s, at step s some (possibly empty) subset of the

messages pi is supposed to send are replaced by null mes-

sages, and for all subsequent steps pi sends only null mes-

sages. The definitions of authenticated and nonauthenticated

Byzantine faultiness are well known in the literature IDS,

LSP], the definitions are reviewed in the Introduction, and

they are not repeated here. A faulty processor rushes in a run

R if it takes some step at a non-integer time in R. In this

model of failure, messages to and from faulty processors may

take less than one round to be delivered. A faulty processor

colludes in a run R if it signs a message using the signature

function of another processor which is also faulty in R.

E, denotes the signature function of processor p.

Finally we define the Gming fault model. Runs in this

model have the following properties:

(1) all processors execute the algorithm correctly,

(2) correct processors take steps at times 0, 1. 2,

(3) faulty processors take steps at times l/2, 3/2, S/2.

(4) messages between two correct processors or between

two faulty processors take time 1 to be delivered,

(5) messages between a correct and a faulty processor take

either time I/2 or time 3/2 to be delivered.

It is not hard to see that the timing fault model is a special

case of authenticated Byzantine faultiness with rushing (but

no collusion). The model with rushing can simulate a deliv-

ery time of 3/2 simply by having a Byzantine processor either

delay sending or delay receiving the message. For example, if

in the timing fault model the faulty processor p sends a mes-

sage m at time 3/2 which the correct q should receive at time

3. then in the model with rushing the (now Byzantine) p

simply holds m and sends it to q at time S/2. Therefore,

giving a DFS algorithm for the model with rushing yields a

result for both models, as does proving a lower bound on n

for the timing fault model.

338

3. NO RUSHING AND NO COLLUSION

We begin with a simple algorithm which tolerates any

number of fail-stop or authenticated Byzantine faults. ft does

not tolerate rushing, timing faults, or collusion. This algor-

ithm was discovered independently by Burns and Lynch. The

basic idea is that since any processor, faulty or otherwise, can

add at most one signature per round, we can use the number

of signatures on a message as a clock, giving a lower bound

on the time elapsed since the protocol was initiated. A cor-

rect processor fires as soon as it knows that at least t+l

rounds have elapsed. The details of the algorithm and its

proof of’ correctness are similar to the Dolev-Strong algorithm

for authenticated Byzantine agreement [DS]. Details wilf be

given in the final version of the paper.

Theorem 3. I. In the model with authenticated Byzantine

failures (but no rushing or collusion) there is a t-resilient DFS

algorithm for any number n 2 t of processors. The algorithm

has time complexity of t+l rounds and it uses an amount of

communication polynomial in n.

Obviously, the algorithm of Theorem 3.1 works also for

fail-stop faults. We now show that the time complexity of

this algorithm is optimal by reducing the Weak Byzantine

Agreement problem (WBA) [L] to the distributed firing squad

problem. Optimality follows from the fact that WBA requires

at least t+l rounds [LF].

In the WBA problem, all processors start the algorithm at

the same global time (say, time 0) and each processor has a

binary initial value. In particular, by maintaining a counter

all correct processors have a common notion of global time.

A protocol solves WBA if (I) every correct processor eventu-

ally reaches a decision, (2) no two correct processors reach

different decisions, and (3) if all initial values are the same,

say v, and there are no failures, then v is the value decided.

The following result is due to Nancy Lynch and is a slight

modification of a reduction which we found.

Theorem 3.2. Let A be an algorithm for DFS which is t-

resilient to fail-stop faults (resp., unauthenticated Byzantine

faults) and which requires k rounds between awakening and

firing in the execution in which all the processors awaken

simultaneously and no failure occurs (note that k is unique

since the system is completely deterministic in this case).

Then there exists an algorithm for WBA which is t-resilient to

fail-stop faults (resp., unauthenticated Byzantine faults) and

which always halts in k rounds.

Proof. Consider an instance of WBA in which processor pi

has initial value vi. If vi = 0 then pi begins simulating A at

time 0. That is, pi acts as if it received the awake message

from w and null messages from the rest. If vi = 1, then pi

begins simulating A at time 1. That is, pi sends null messages

during the first round and acts as though it received the

awake message from w at time 1 (pi could receive non-null

messages from other processors at time 1 in this case if other

processors had initial value 0). if the simulation of A causes

pi to fire at time k or earlier, then pi decides 0 at time k;

otherwise pi decides 1 at time k.

Correctness of A immediately implies that all correct

processors decide on the same value, since either all correct

processors simulate a firing at a time < k or none do. If all

processors begin with value 0 and there are no failures, then

by choice of k each processor will simulate a firing at time k,

so the decision will be 0. However, if all begin with 1 and

there are no failures, then all processors will simulate a firing

at time k+l, so the decision will be 1. fJ

Corollary 3.3.

(1) Any protocol for DFS resilient to t fail-stop faults

requires at least t+l rounds. Moreover, this is true even if

the order in which processors are sent to in a broadcast is

fixed (I priori. It is also true even in some execution in which

all processors are correct.

(2) Any protocol for DFS resilient to t unauthenticated

Byzantine failures requires at least 3t+ 1 processors.

Proof. The proof is immediate from the preceding theorem

and the corresponding bounds for WBA (L, LF. FLM, Me].

0

In the next section the lower bound of Corollary 3.3(2) is

strengthened to the model with authentication and rushing.

4. RUSHING AND TIMING FAULTS

This section contains tight bounds for the two new mod-

els: timing faults and Byzantine failures with rushing. The

following result gives the principal algorithm of the paper.

Theorem 4.1. In the model with Byzantine failures and au-

thentication, in which faulty processors can both rush and

collude, there is a t-resilient distributed firing squad protocol

requiring t+5 rounds, n 1 3t+l processors, and communica-

tion polynomial in n.

We begin with an informal discussion of the principal

ideas of the algorithm. Our protocol is composed of a set of

indentical subprotocols executed independently and in paral-

lel. A processor initiates a subprotocol by broadcasting its

signature. Let p be an arbitrary (possibly faulty) initiator,

and consider a set of processors all receiving p’s signature at

the same step. In some sense these processors are synchron-

ized, in that they share a common idea of when they first

heard from p, although no processor in the set knows which

other processors are in the set. If the set of synchronized

processors is sufficiently large, then because they are

synchronized these processors can run an agreement protocol

similar to the Dotev and Strong protocol [DS] which assumes

339

synchronous start. The processors are essentially agreeing on

the members of the set. If the agreed upon set is sufficiently

large, then correct processors will order a firing. In particu-

lar, a correct processor in the set only orders a firing if there

are at least n-t 2 2tt 1 processors in the agreed upon set.
Of these, at least t+l are correct, synchronized processors.

Thus a correct processor only orders a firing if at least t+l

correct processors do so simultaneously. Now, consider a

processor q receiving at least t+ 1 commands to fire. Since q
knows at least one of these messages is from a correct proc-

essor it knows at least t+l are. Thus q knows that every
processor receives at least t+l commands to fire, and there-

fore that every processor knows every processor has received

these commands and so on. In short, it becomes common
knowledge that every processor has received t+ 1 commands to
fire, so it is safe to fire.

Proof of Theorem 4.1. As stated above, the protocol is com-

posed of a set of identical subprotocols executed independ-

ently and in parallel. Specifically, as each correct processor

awakens it initiates a core prorocol.. If the core protocol is
successfully completed then the correct processors fire upon

completion. A core protocol initiated by a correct processor

will complete successfully unless a firing occurs earlier due to

the completion of a different execution of the core protocol.
A core protocol initiated by a faulty processor may not cause

a firing, but if it does then all correct processors fire simulta-

neously. (Thus, it would be sufficient to have any t+l proc-

essors initiate the core protocol.) In the following, if a correct
processor receives the same message at different times, all

receptions but the first are ignored; this prevents a faulty
processor from doing any damage by taking a message which
was broadcast by a correct processor and resending it at a

later time.

A processor p initiates a core protocol by broadcasting its

signature, E,,(p). Each processor (including p itself) which
receives ED(p) signs it and broadcasts it. Each processor q
then attempts to form a core /or p. which is a list of the form

<EiI(Ep(P)), .m.* Eik(Ep(P))>

where k 2 n-t and each of the k copies of Ep(p) is signed by

a distinct processor. The signatures E,,, Eik belong to the
core, and the core conloins these signatures. Intuitively, a

core is a set of processors which claim to have received E,(p)

at the same step. For technical reasons, we found it neces-

sary to notarize the core.

A no/arized core for p is a list

where k 2 n-t and the C’s are (po:rsibly different) cores for

p, each signed by a distinct processor.

A processor q which receives E,(p) at time s tries to form

a core for p at time s+ 1. This is the only time at which q

tries to form a core for p, and q only includes in the core
messages received at time s+l. If q forms a core then q

includes in the core all messages oi the form signature(Ep(p))

received at time s+ 1. If a core is formed, q signs it and

broadcasts it. Processor q also tries to form a notarized core
for p at time sc2. A notarized core, if formed, contains all
messages of the form signature(core for p) received at time

s+2. If a notarized core N is formed by q at this step, then
N is considered to have been “received” at this step. Starting

with the second step after E,,(p) was received, each processor
q does the following (this is done regardless of whether or
not q formed a core for p or a notarized core for p).

If q receives message m, q checks if m is occeprable in the
following sense:

(1) m = Ejl(Ejz(...(Ej,(N))...)) where N is a notarized core
for p and each of the k signatures (k 2 0) are distinct (m

is said to have length k, denoted 1 m I),

(2) q’s signature belongs to at least n - 2t of the cores in N
(we say that q supports N), and

(3) q first received Ep(p) kt2 steps ago (this condition

implies that at any given step of q. messages of only one

particular length are acceptable).

An acceptable message m as in (1) is new to q if none of the
signatures E j,* Ej2v **.v Ejk are by q. If q finds one or more
messages of length k which are new and acceptable, q choos-
es one such message m arbitrarily and broadcasts E,,(m),
ignoring the rest. Finally, if q receives an acceptable message
m of length t+l, then q signs and broadcasts “fire,,“. A

correct processor fires at step f if and only if at step f it
receives at least tt 1 commands “firep” signed by different

processors.

Lemmas 4.1 .l-4.1.4 show that the core protocol causes a

firing if the initiator is correct. For these lemmas, let p be a
correct processor initiating a core protocol at time r.

Lemma 4.1. I. At time rt2 all correct processors can form a
core for p containing the signature of every correct processor,

and at time rt3 all correct processors can form a notarized
core for p.

Proof. Since p is correct all correct processors receive Ep(p)

at time r+f. All correct processors q broadcast Eg(E,(p)) at
time r+ 1, and these messages are received at time r-+2. Since

there are at least n-t correct processors every processor
receives at least n-t messages of the form Eg(E,(p)) signed

by distinct processors. Thus all correct processors can form a
core at time rt2. Further, since a correct processor puts all

messages Ei(E,,(p)) received into the core, for every correct

processor q the message Eg(E,(p)) appears in the cores
formed by the correct processors.

A similar argument shows that every correct processor

can form a notarized core at time r+3. lJ

340

Lemma 4.1.2. Let N be any notarized core for p. Then

every correct processor q supports N.

Proof. A notarized core contains at lcast n-t cores. each

signed by distinct processors, so at least n - 2t of the cores

contained in N were formed by correct processors. By Lcm-

ma 4.1.1 all these n - 2t cores contnin the signature of every

correct processor. 0

Lemma 4.1.3. For all i, 0 5 i 5 1, at time r+3+i at least one

correct processor receives a new acceptable message (of

length i).

Proof. The proof is by induction on i.

Basis i = 0. By the prcviaus two lemmas every correct

processor forms a notarized core which it supports at time

r+3. By convention, this notarized core is a new acceptable

message “received” at time r+3.

Assume the lemma true inductively for i - I (i >_ I). Thus

at time r+3+(i - I) = r+i+2 some correct processor receives

a new acceptable message of length i - I. It signs this mcs-

sage and broadcasts the resulting mcssagc m of length i with

notarized core N. The message m is reccivcd at time r+i+3

by all correct processors. Since there are n - t 2 2t+ I correct

processors, at most t of which have signed m, and since by

Lemma 4. I .2 every correct processor supports N, m is accept-

able to some correct processor that has not yet signed it, so

the induction holds. 0

Lemma 4.1.4. If a correct processor p initiates a core prolo-

col at time r then the core protocol runs to completion and

the correct processors fire at time r+t+S.

Proof. By Lemma 4.1.3, at time r+3+t a1 lcast one correct

processor receives a new acceptable message m. Thus by

time r+4+t every correct processor receives an acceptable

message m of length t+ I, so all correct processors broadcast

the command to fire. Since there are at least n-t > t+ I

correct processors, every processor receives at least t+ I

commands to fire at time r+5+t, so a firing will indeed take

place at time r+5+t. q

We now show that for an arbitrary initiator p. the core

protocol never causes two correct processors to fire at differ-

ent times. Let p be a possibly faulty processor initiating a

core protocol. If S is a set of processors. we say that S iortns

(I core for p if any processor in S forms a core for p. A gfo~p

is a maximal set of correct processors receiving Ep(p) at the

same time. Let G he a group and let s be the time when G

receives E,(p).

Let H be the set of correct processors not in Ci.

Lemma 4.1.5. If G forms a core for p than II does not form

a core for p.

Proof. First we observe that if G forms a core then the core

contains no signatures of processors in H. Similarly, no sig-

nature of a processor in G is contained in a core formed by

any processor in Cl.

If G forms a core for p then there exists some g in G that

rcccived at least n - t messages of the form Eq(E,(p)) at time

s+l. Since none of those messages were sent by processors

in FI we have (H 1 5 1. Thus even if the processors in H

form a group and t faulty processors cooperate in helping H

to form a core, the total number of cooperating processors is

2t < n-t, so H cannot form a core. 0

Lemma 4.1.6. If G forms a core for p and if any processor

forms a notarized core N for p, then every processor in G

supports N.

Proof. Every notarized core N contains at least n-t cores,

at least n - 2t of which were formed by correct processors.

Since no processor in H forms a core at least n -21 of the

cores in N were formed by processors in G and therefore

contain atl the signatures of all the processors in G. 0

Lemma 4. t .7. Let N be a notarized core for p. if some g in

G supports N then:

(I) all processors in G support N, and

(2) no processor in H supports N.

Proof. We will show that if g belongs to n-21 of the cores

in N then G forms a core for p. It follows by Lemma 4.1.6

that every processor in G supports N. This will give us (1).

Further, *by Lemma 4. I .5 if G forms a core then H does not.

Since ncithcr processors in G nor in H form cores containing

signatures of processors in H, the only cores which contain

processors in H arc formed by faulty processors. Thus, there

can hc at most t < n - 2t of them, so we have (2).

It remains to show that if g belongs to at least n - 21 > t

of the cores in N then G forms a core. This is immediate

from the fact that no processor in H forms a core containing

elements of G. Thus if g appears in more than t cores, at

least one of these was formed by some processor in G. 0

Lemma 4.1.X. If any processor in G ever finds a message

acceptable then G contains at least n - 2t processors.

Proof. Let m be acceptable to some g in G and let N be the

notarized core of m. Of the n - 2t 2 t+ 1 cores in N contain-

ing g at Icast one is signed by a correct processor. Let q be

such a correct processor and let C be the core in N signed by

q; i.c.. E,,(C) has the form

E,(C) = E,(< E,(E,,(p)), . . >).

Of the n - t processors whose signatures belong to C, at least

n - 2t arc correct. These n - 2t correct processors (one of

which is g) all wrote IO q a~ the same time indicating that

they received EP(p) at that time. Since no processor in H

341

received E,,(p) at the same time as g, no processor in H be-

longs to C. Since the correct processors are in either G or H,
it follows that G contains at least n - 2t processors. 0

Lemma 4.1.9. Let m be a message which is new and accepta-

ble to processor g in group G at time z. Then E&m) is ac-

ceptable to all processors in G at time z+ 1.

Proof. Let N be the notarized core of m. One of the condi-

tions of acceptability is that g supports N. By Lemma 4. I .7,

every processor in G supports N. B:y condition (3) of accept-

ability, g first received Ep(p) at time z - 1 m 1 - 2. as did all

other processors in G (by definition of a group), so every

processor in G first received E,(p) at time

(z+ 1) - 1 Es(m) 1 - 2. ‘Thus every processor in G finds

E%(m) acceptable at time z+ 1. 0

Lemma 4.1.10. Let f be the earliest time at which some

correct processor q fires (as a re.sult of the core protocol

initiated by p). Then all correct processors fire at time f.

Proof. Since q fires only if it simuk3neously receives at least

t+ 1 messages “fire,“, some correct processor g sent “firep”

at time f - 1. Therefore, g received an acceptable message m

of length t+l at time f - 1. Let G be the group of g. With-

out loss of generality let

m = E,+t(E,(...(E,(N))...)).

Let c = pi be a correct processor arnong the t+l processors

that signed N. Let

m’ = Ej-,(...(E,(N))...).

Since c finds m’ acceptable, c supports N. Since g finds m

acceptable, g supports N. It follows from Lemma 4.1.7(2)

that c belongs to G. Let z be the time when c receives m’.

By Lemma 4.1.9, all processors in G find E,(m’) acceptable

at time z+l. Further, by Lemma 4.1.8, G contains at least

n- 2t > t+l processors, so there will be some processor in G

which has not yet signed N, provided 1 E,(m’) 1 $ t. By

repeated application of Lemmas 4.1.9 and 4.1.8. all proc-

essors in G receive an acceptable message of length t+l at
time f - 1, so they all broadcast firep at time f - 1. Recall

that G contains at least t+l processors. It foltows from the

definition of the core protocol that all correct processors fire

at time f. 0

The proof of Theorem 4.1 follows directly from Lemmas

4.1.4 and 4.1.10. It is clear from the definition of the proto-

col that the number of bits of communication is polynomial in

n.

We next give a matching lower bound, n 2 3t+l, for the

timing fault model. As noted in Section 2, the lower bound

of Theorem 4.2 holds also for the fault model of Theorem 4.1

(even without collusion).

Theorem 4.2. In the timing fault model there is a t-resilient

DFS algorithm only if n >- 3t+l.

Proof. Consider first the proof that there is no DFS algor-

ithm for t = 1 and n = 3. We consider four scenarios with

three processors, A, B and C, in each. Processor C’is faulty

in Scenarios 1 and 4. B is faulty in Scenario 2. and A is faulty

in Scenario 3. It is possible to fix the wake-up times and the
message transmission times (see Figure 2) so that the foilow-

ing facts hold.

112

l/Z c cl Z@l

312 1

00

1
l/2

0 A

2
Scenario 1

I@j@2

312 312

00

112 l/2

El
5/2

Scenario 3

312

I2

L

Scenario 2

J

Scenario 4

Figure 2. The Scenarios used to prove Theorem 4.2. The
number on the edge directed from processor X to processor Y
is the message transmission time from X to Y. The number
written next to processor X is the time when processor X
wakes up. Correct (faulty) processors are drawn as circles
(squares).

Lemma 4.2.1. If A fires at time z in Scenario 1 then A fires

at time z+ 1 in Scenario 4.

Proof. This follows since Scenarios 1 and 4 are identical

except that all processors wake up exactly one time unit later

in Scenario 4. q

For the next lemma it is convenient to introduce the

“local step number” of a processor. A processor executes its
first local step at the time it wakes up, and the local step

number is incremented by one at each subsequent step. For

342

example, in Scenario 1 in Figure 2, A is executing its first
step at global time 2, whereas B is executing its second step
at global time 2. Letting p denote a processor, two scenarios
are p-equivalent if the message history of p, i.e., messages
received and messages sent at each local step of p, are the
same in the two scenarios. Two scenarios are strongly
p-equivalent if they are p-equivalent and p wakes up at the

same global time in both scenarios.

Lemma 4.2.2. For i - 1,2,3, Scenarios i and i+l are strongly
p-equivalent where p is the processor that is correct in both
scenarios.

Proof. By inspection of the scenarios in Figure 2, one can

easily verify that the following two facts hold for all four
scenarios and for all integers s 1 1:

(1) for all messages sent from A to B, from B to C, or from

A to C, the message sent at local step s of the sender is

received at local step s+2 of the receiver, and

(2) for all messages sent from B to A, from C to B, or from

C to A, the message sent at local step s of the sender is
received at local step s of the receiver.

It follows easily from these facts (formally by induction on

the local step number) that any two scenarios are p-
equivalent where p is any of the three processors. The lemma

then follows immediately from the choice of the wake-up
times. q

These lemmas easily give a contradiction. Say that A

fires at time z in Scenario I. By strong A-equivalence of

Scenarios 1 and 2, A fires at time z in Scenario 2. Since A

and C are correct in Scenario 2, C also fires at z in Scenario

2. By a similar argument, B fires at z in Scenario 3, and A

fires at z in Scenario 4, which contradicts Lemma 4.2.1.

The impossibility proof for general n and t with n < 3t is

done as usual by replacing each processor by a group of at

least one and at most t processors. The intragroup transmis-

sion times are all 1. The intergroup transmission times and

the wake-up times are chosen as in Figure 2. This completes

the proof of Theorem 4.2. 0

5. COLLUSION

In this section we examine the distributed firing squad
problem in the authenticated Byzantine model, in which
faulty processors may share signature functions but they
cannot rush messages.

Theorem 5.1. In the model with Byzantine failures and au-
thentication where faulty processors can collude but cannot

rush, there exists a t-resilient algorithm for the DFS problem
requiring n 2 2tf 1 processors, 2t+ 1 rounds, and an amount
of communication polynomial in n.

Proof sketch. As in the protocols for the models without
rushing and with more benign types of failures, correct proc-
essors attempt to build messages signed by several processors
and to use the length of these messages to synchronize. Since
faulty processors can add several signatures at a given step
we wish to obtain a sort of “notarization” for each signature

in a string of signatures guaranteeing that a specific amount

of time was spent adding the signature. In the straightfor-
ward approach, a processor p requests notarization of a

signed message En(m) by broadcasting E,,(m). Then all
processors attempt to obtain at least t+l acknowledgements
of the form Ea(Eo(m)). The list

m’ = cEq,(E,(m)), Eqt+l(Epb)b

is the notarization of En(m). if the length of a message is the
number of notarizations it has undergone, then a message of

length k requires exactly 2k steps to be constructed, even if
the k signers of the message are faulty. Although conceptual-

ly simple this approach leads to an algorithm with communi-
cation complexity exponential in t.

Our algorithm uses the idea of notarization with an imple-
mentation which is harder to prove correct but which requires

communication only polynomial in n and t. Briefly, a proc-
essor p requests support for a message E,,(m) by broadcasting
<En(m), P(m)> where P(m) is a proof that t+l processors
support m, i.e.. a list of t+l messages of the form “support

m” signed by different processors. (If m contains no signa-
tures then no proof is required.) Any processor receiving such

a message supports it by broadcasting “support En(m)“. The
key observation is that the proof P(m) can be thrown away at
this point. If some other processor q which has not yet

signed En(m) can form a proof of support for Ep(m). then q
requests support for Ea(En(m)) by broadcasting
<E,(E,(m)), P(En(m))>, and so on. A processor fires if it

receives a request message of the form <En(m), P(m)>
where En(m) contains t+l distinct signatures. Viewing the

number of signatures on a message as a clock. the two key

lemmas state that (1) the correct processors can increment
the clock by 1 within two steps, and (2) the faulty processors

cannot increment the clock faster than this. The idea of
notarization and its efficient implementation is similar to the
fault-tolerant distributed clocks described in [ADG, DLS].

Details will appear in the final version of the paper. 0

Theorem 5.2. In the fault model of Theorem 5.1. if t 2 3
there is a t-resilient DFS algorithm only if n > L St/3 J + 1.

Proof. The general outline of the proof is similar to the proof
of Theorem 4.2. Consider the impossibility proof for t = 3
and n = 5. We consider six scenarios, with three faulty and
two correct processors in each. Figure 3 shows the message
transmission times, wake-up times, and which processors are
faulty in each scenario. A link which is not drawn in these
scenarios means that the faulty processor at one end of the
link does not communicate along that link; i.e., no messages

343

Scenario 1 Scenario 2

Scenario 3 Scenario 4

Scenario 5 Scenario 6

Figure 3. The Scenarios used to prove Theorem 5.2.

are sent along that link by the faulty processor and messages

received along that link ore ignored. The link drawn as a

dotted line is used only by faulty processors. Therefore, in

each scenario the network is essentially a ring from the point

of view of a correct processor. In each scenario, two of the

faulty processors simulate a “timing fault” where messages in

one direction take time 2 and messages in the other direction

take time 0. The only nonobvious part is simulating a trans-

mission time of zero. To see how this is done focus, for

example, on Scenario I where messages from C to B take

zero time. Note that D is also faulty in Scenario 1. Whenev-

er D takes a step at some time x in which it should send the

message m to C, it sends m to B also. At time x+ 1, B has

enough information to do the processing that C would do at

time x+1 to find the message m’ that C should send to B at

time x+ I (the ability of B to sign messages with C’s signature

is necessary here). But B has m’ during the step it is execut-

ing at time x+ I, thus simulating the transmission of m’ from

C to B in zero time. Message transmission time of 0 is simu-

lated similarly in the other scenarios.

By following the proof of Theorem 4.2, it is straightfor-

ward to show that analogucs to L.emmas 4.2.1 and 4.2.2 hold.

(Formally, in defining equivalence of scenarios, only mes-

sages sent along the ring links are included in message histo-

ries; the messages sent over dotted links are not included.)

The proof for general n and t is done by replacing each

processor by a group of at most L t/:3 J or at most 1 t/3 J + 1
processors in such a way that the total number of faulty proc-

essors never exceeds t in any of the scenarios. 0

Regarding the condition t 2 3 in Theorem 5.2, by using

the assumption that the receiver of a message knows the

identity of the sender, it is not hard to find a 2-resilient DFS

algorithm for any number n 2 2 of processors. If we add the

requirement that each correct processor must broadcast one

message at each step (formally. if (m,, m2, m,) is in the

range of /Ii then m, = m2 = _.. = m,), then we can show that

there is a t-resilient DFS algorithm iff n 2 2t+l, provided

t 2 2. This is because the broadcast condition prevents the

correct processors from hiding from the faulty processors text

that these faulty processors would otherwise have to forge.

(Note that this result applies to communication systems like

the Ethernet, in which eavesdropping cannot be avoided.)

6. RELATED RESULTS

6.1. Byzantine Agreement with Nonunison Start

Suppose we want to solve authenticated Byzantine agree-

ment when the correct processors do not all awaken at the

same time, but some wake up at time 0 and some wake up at

time I, and the faulty processors can rush. The known effi-

cient algorithm of Dolev and Strong IDS] does not work in

this case. One solution would be to first run the DFS algor-

ithm of Theorem 4.1 and then run the Dolev-Strong algor-

ithm, for a total time of 2t+6. This time can be improved to

t+5 by modifying the algorithm of Theorem 4.1 to solve

agreement directly. However, the algorithm requires

n 1 3t+ 1. We have a completely different solution, not using

DFS ideas, which tolerates any number t 5 n of faults but

takes 2tt2 rounds. We do not know whether arbitrary fault

tolerance and time t+O(1) can be obtained simultaneously.

6.2. Discrete Clock Synchronization

Suppose each processor has a local integer-valued clock

which is incremented by 1 at each step. Suppose the clocks

of correct processors are initially almost synchronized in that

the clocks of two correct processors differ by at most one at

any integer global time. We want a protocol which will reset

certain clocks so that the clocks of all correct processors read

exactly the same at each global time, and the clock of a cor-

rect processor is never moved back. The DFS algorithm of

Theorem 4. I can be modified to solve this problem in ttO(1)

rounds. provided n 2 3t+ 1.

344

6.3. DFS With a Global Clock

Suppose we have a system where the correct processors

have access to a common global clock. At each integer time

s, all correct processors taking their unison step at time s

know that it is time s. In this case, DFS becomes easier but it

is not trivial. We can give a reduction similar IO that of

Theorem 3.2. As corollaries of this reduction, DFS with a

global clock still requires t+l rounds for fail-stop faults, and

n > 3t+ I is needed in the nonauthenticated Byzantine case.

In the authenticated Byzantine case, with rushing and collu-

sion, there is a t-resilient algorithm for

in t+l rounds.

any t < n which halts

REFERENCES

[ADG] Attiya, C., Dolev, D., and Gil, J., Asynchronous
Byzantine consensus, Proc. 3rd ACM Symp. on Principles of
Distributed Computing, 1984, pp. 119- 133.

[BD] Broder, A., and Dolev. D., Flipping coins in many
pockets (Byzantine agreement on uniformly random values),
Proc. 2Sth Symp. on Foundations of Computer Science, 1984.
pp. 157-170.

[BL] Burns, J. E., and Lynch, N. A., The Byzantine firing
squad problem, manuscript. submitted for publication.

[DDS] Dolev. D., Dwork, C., and Stockmcycr. L., On the
minimal synchronism needed for distributed consensus, Proc.
24th Symp. on Foundotions of Computer Science, 1983, pp.
393-402.

[DFFLS] Dolev, D., Fischer, M.J., Fowler, R., Lynch, N.A.,
and Strong, H.R.. Efficient Byzantine agreement without
authentication, Information ond Control 52 (1982). pp. 257-
274.

[DHS] Dolev, D., Halpern, J., and Strong, H. R., On the
possibility and impossibility of achieving clock synchroniza-
tion, Proc. 16th ACM Symp. on Theory of Computing, 1984,
pp. 504-5 12.

[DLS] Dwork. C., Lynch, N., and Stockmeyer, L., Consensus
in the presence of partial synchrony, Proc. 3rd ACM Symp. on
Principles of Distributed Computing, 1984, pp. 103-I 18.

[DRS] Dolev, D., Reischuk, R., and Strong, H. R.. Eventual
is earlier than immediate, Proc. 23rd Symp. on Foundations of
Computer Science, 1982, pp. I 96-203.

[DS] Dolev, D. and Strong, H. R., Authenticated algorithms
for Byzantine agreement, SIAM J. Computing 12 (1983). pp.
656-666.

[FLM] Fischer, M. J., Lynch, N. A., and Merritt, M., Shift-
ing scenarios: easy impossibility proofs for distributed con-
sensus problems, manuscript.

[FLP] Fischer, M., Lynch, N. A., and Paterson, M., Impossi-
bility of distributed consensus with one faulty process, Proc.
2nd Symp. on Principles of Dotobase Systems, 1983, pp. 1-7.

[HSSD] Halpern J., Simons, B.. Strong, H. R., and Dolev,
D., Fault-tolerant clock synchronization, Proc. 3rd ACM
Symp. on Principles of Distributed Computing, 1984, pp. 89-
102.

[L] Lamport, L., The weak Byzantine generals problem,
J.ACM 30 (1983), pp. 668-676.

[LF] Lamport, L., and Fischer, M.J.. Byzantine generals and
transaction commit protocols, manuscript.

ILL] Lundelius, J., and Lynch, N., A new fault-tolerant
algorithm for clock synchronization, Proc. 3rd ACM Symp. on
Principles of Distributed Computing, 1984, pp. 75-88.

[LM] Lamport, L., and Melliar-Smith, P.M., Byzantine clock
synchronization, Proc. 3rd ACM Symp. on Principles of Dis-
tributed Computing, 1984, pp. 68-14.

[LSP] Lamport, L., Shostak, R., and Pease, M., The Byzan-
tine generals problem, ACM Trons. on Programming Languages
and Systems 4 (1982), pp. 382-401.

[MO] Moore, E. F., The firing squad synchronization prob-
lem, in: E. F. Moore, Ed., Sequential Machines, Selected
Papers, Addison-Wesley, Reading, MA, 1964.

[Me] Merritt, M., personal communication.

345

