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Introduction

A cryptographic transformation is a mapping f
from a set of cleartext messages, M, to a of
Since for m ¢ M, f(m) should
hide the contents of m from an enemy, £ should,
in a certain technical sense, be difficult to infer
from f(m) and public knowledge about f.

A cryptosystem

set
ciphertext messages.

is a model of computation and

communication which permits the manipulation of
messages by cryptographic transformations,
Usually, one assumes that f is generated by an

algorithm E (the encryption algorithm), while f—1

is generated by an algorithm D (the decryption
algorithm) . Knowledge about f and £ is is
embodied in keys, K and K':
f(m) = E_(m),
-1 K
m=f "(f(m)) = DK,(f(m)).
In a traditionmal cryptosystem, K = K’, and the key

is kept secret from all but the sender and receiver
of messages, while in a public key cryptosystem
[Rive78] K # K', K is publically known, but K’ is
separated from K by a computationally intractable
problem,

‘This work was art by the Nationa}

supported in

Science Foundation rants MCS-8103608 and MCS
7924370, and by the US Army Research Office, Grant
No. DAAG29-79-C-0155. Some of this work was done

while the third author was at Bell Laboratories.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-067-2/82/005/0383 $00.75

383

30332

Much work in the past decade has concentrated

on insuring the security of various cryptosystems
see e,g. [Konn81). Although provably secure cryp-—

tosystems are still elusive, there are a number
e.g., the
schemes based on the complexity of factorization ——
That is, they are
easy to use and are evidently resistent to all but
the most determined attacks., The availability of
such has led investigators to ask whether
or not more complex secure communication algorithms
can be devised based on these schemes,

Public key systems proved to be one

especially fruitful area for such investigation.
It was realized quite early, for instance, that a

public key cryptosystem can be used to implement a
form of digital sigmature [Rive78].
digital is a mark attached to a message
which cannot be forged, cannot be denied and which

Data Encryption Standard and public key

that are high quality ciphers.

schemes

have

Informally, a
signature

is bound to the message in such a way that the mes—
sage cannot be altered without the
signature, To sign a message m, the sender simply
the key K': s = DK,(m). The
signature cannot be forged since K’ is secret, and
it is unlikely that for m' # m, DK,(m') = s, It is
arguable, however, that the signer can successfully
If the holder of K' makes
he can then claim that m was signed by

Such weaknesses led
hethods of implementing
signatures [Maty79]. One of these methods,
Michael Rabin [Rabi78], is
rather involved structure and
flavor.

destroying

uses private

disavow having signed m.
it public,

someone else. have to some
digital
due to
notable both for its

its probabilistic

ingenious

The digital signature scheme given above is an
example of a cryptographic protocol. A protocol is
a communications algorithm which makes essential
use of cryptographic transformations, Since the
of a protocol is usually something beyond the
simple secrecy of message transmission, it is help~
ful to separate the security properties of the
underlying cryptosystem from those of the protocol.
We illustrate attacks on protocols which result

goal



In the
protocol given above, compromise of the

from such a separation with two examples.
signature
signature is possible by a dishonest
if the public is stipulated
secure. Another example of a public
is the mental poker protocol due to Rivest, Adelman
and Shamir [Sham79]. The goal of the mental poker
protocol is to fairly and accountably deal a fixed
of messages (the cards) to players who can
over the cryp—
Adelman, Shamir
cryp-
Lipton
security

signer, even
to be

key protocol

key system

number
other
Rivest,

only communicate with each
tographic channel. The

scheme is provably secure if the
tographic transformation is. However,
[Lipt80] observed that the definition of

in [Sham79] does not take into account the pos—
sibility of marked carxds. attack mnotes
that the encryption scheme used in [Sham79) preser-

underlying

Lipton's

ves gquadratic residuoes, The dealer chooses one of
the cards to be a & perfect square mod n.
Thereafter, the dealer can track the progress of

this card through execution of the protocol,
though he cannot completely decrypt the message.

As become complex, their
security properties difficult to
establish. Even though Rabin's signature protocol
was proven secure in [Rabi78], am incorrect attack
[Leis80]. Protocols
dealing with implementing secure computer
[DeMigoO], [Need78]1, f£flipping coins
[Blum81], signing [Blum81], exchanging
secrets [Blum81)], and other complex operations have
led us to examime methods by which (1) the security

can be defined, (2) the
of protocols can be
and (3) the impossibility
can be

even
protocols more

become more

was subsequently published
systems
authorization

contracts

properties of protocols

or insecurity
established,

certain properties

security
rigorously
of a protocol meeting
proved.

Issues (1)-(3) are much like those encountered
in the of algorithms, What
distinguishes a cryptographic protocol from any
other algorithm is the underlying model of com—
In a cryptographic protocol, two or more
other over a

analysis ordinary

putation,
participants communicate with
clearly defined Each
participant may function all
other participants and has access to a basic set of
utilities. Furthermore, each
computational power, A

each
communication network.

asyncronously from

cryptographic

participant has basic
participant may apply cryptographic transformationm,
Most

inferences.

make decisions, and generate

importantly, each participant may make
That is, a participant may combine a priori

knowledge of the he
receives to determine a property of
is immediately
In a worst case analysis of a protocol,
One must assume that a participant may try to sub-
vert the protocol, so such inferemces must be taken

messages.

with properties messages

generates and
the communication system that not

apparent,
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into account in determining security.
1981 paper [Dole81l), Dolev
general setting for

In a and Yao

considered a more proving
security properties of cryptographic protocols, and
approach  borrows much from [Dole81]. A
protocol is to be a distributed
algorithm with the communication network modelling
the communication channels of the protocol. The
of the distributed system model the
participants in the protocol. We deal this
paper only with one aspect of security: properties
of the system that are hidden from an enemy who may

Informally,

our
considered

processors
in

a participant (honest
with information and
the

is

make inferences.
or dishonest) is presented
properties that he brings to protocol 8
priori information. Whatever to be excluded
from knowledge (e.g., the knowledge of secret keys
in a public key system) must be explicitly excluded
This information is model-
basic
can be drawn by a participant are
logical theory of
A participant can also apply cryp-—
The
mechanism for this is.an inference function
which is assigned to each participant, The
of function is unspecified, except
that it satisfy a losslessness conditionm,
Security is defined with to
of inference,
Specifically,
whether
true of the system, he can only test [’ against his
those messages he can derive
currently has available to
him, Suppose, then, that there is a remaming of
objects in the system which causes (from the
enemy’s point of view) the protocol to behave in an
entirely equivalent manner but which is undetec—
table to him. If in one state [’ is true while -~
is true in the remnamed state, them the ememy cannot
from his knowledge which is the true state,
independent of the enemy’s
knowledge about the system. If [’ represents a
property of the system which is to be concealed
from an then the enemy can at best guess
whether or mot [’ is actually true of the current
execution of the protocol,
The paper is orgainized as follows. The basic
synchronous communication network
cryptographic capability are
This simple model is used
of a cryptographic
General's

as 8

from this information,
led by a set theoretic structure, and so the
that
the sentences of tke

inferences
complete
this structure.
tographic operations to generate new messages.
basic
nature
an inference
respect such a

model communication and
if

not a

an enemy tries to determine

or certain set of properties [’ is

own inferences and

from the messages he

infer
i.e., ['is logically

enemy,

elements of a

equipped with a
introduced in Section 1,
to prove the mnonexistence
protocol for the so~called Byzantine
problem [Peas80]. Specifically, we prove that in
the of m faulty processors (i.e,,
enemies), even allowing digital signatures, m+l
synchronous rounds of transmission are required to

presence



solve the Byzantine General's problem, matching the
upper bound of [Fisc81]., This result carries some
interest beyond that of cryptographic protocols.
In Section 2, the details of the asyncronous model,
inference functions security are introduced,
while the inference capabilities of the
introduced in Section 3, In the remaining sec-—
tions, the model is specialized to treat a
of protocols (including stochastic protocols):
secret ballot elections, Rabin’s signature scheme,
coin—-flipping, and implementation of Rabin’s
oblivious transfer protocol [Blum81].

and

users are

number

an

Section 1.1

Byzantine Generals

The  Byzantine
consistency problem is stated for a

Generals, or interactive

system of =n

Processors, Pl""’Pn' m of which may be faulty, in
which each processor has a private value Ve A
solution to the Byzantine Generals problem is a

distriboted algorithm, or protocol, in which each
non-faulty processor i sends and receives
in order to obtain,
system, & vector I =

that Ii
other

messages
for each processor in the
(Ij,..0,1) of values
i's private value, and if j is any
processor, j the
(Thus I, = v,, for any such non—
faulty j). Moreover, this goal must be achieved in
the presence of arbitrary behavior,
intentional sabotage, by any subset of m

faulty processors.
The communication network for this problem has

such
is vy
non-faulty computes

identical vector.

including

or fewer

some powerful capabilities: messages are never
lost, and are always delivered intact, within a
specified time period. Furthermore, the sender of

any message is reliably identified to the receiver.

This problem originally appeared in [Peas80],
in which it was shown that there is no solation if
n f 2m, provided the processors have
capabilities, and with encryption
signatures), there is a solution for
faulty processors,

It is clear that any protocol successfully
solving the Byzantine Generals problem must func—
tion correctly within the added restriction that
all the processors execute the protocol in synch-
ronous ‘'roends’ in which processors first send mes-—
sages, then receive, waiting long enough to ensure
that all the messages sent by other processors have
arrived., Any protocol may be characterized by the
number of such rounds it requires.

A recent result [Fisc81] has established that
m+l rounds are required in the absence of digital
signatures, other cryptographic utilities.
Since the addition of a signature utility permits a
more general solution to the

no encryption
(specifically,

any number of

or

Byzantine Generals
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it
might permit a solution that requires fewer rounds;
we show this to be the case. The result
presented below obtains the same lower bound for 0
{m ¢ n-1, in the presence of arbitrary

problem, seems that some encryption techmnique
not

encryption

techniques. The se bounds match upper bounds
appearing in [Peas80],
Let M be the set of all messages that can be

sent in the system, and P(M) the power set of M.
Cryptographic utilities the effect of

the messages a processor can send to some

may have
limiting
subset of P(M); for instance, processer Pi may not
be able to
unless Pi received the signature
time. Furthermore,

send P.'s signature of some message,
at
received

some earlier
having
of each
able to apply cryptographic
to produce still
other messages not previously known., For each Pi'
we model the application of cryptographic operators
by an inference function Cli:P(M)-’P(M). satisfying
the following monotonicity property, where M ,M1 [
M:

some set of
messages during a round
Py
operators to the

communication,
processor may be

new messages

0

c

M Ml > CIi(MO) E.Cli(Ml). Now let
Cll(ﬂ)....,Cln(D) be the subsets of M available to
Pl,....Pn. the

The implies
processor

before
monotonicity property

respectively, protocol
that

messages

begins.

each can only have more
if he is
during a protocol execution.

During

available to send, sent extra messages

each round of oprotocol execution, a
sends some subset M' of M (possibly
to each processor in the system. Since all

sent t—-round

processor P,
empty)
messages are received,

an entire

execution can be completely described by & txnxn
matrix H, where H(k,i,j) is the subset of M sent by
i to j during round k. The
H(1:k,1:n,j) (We define this
matrix, P, if k or n are zero. Otherwise let
the first index range from 1 to k, the second from
1 to n, while the third is fixed at j) represents
the messages received by j in the first k rounds of
communjcation, We occasionally abuse this
notation, using m ¢ H(1:k,1:n,j) to indicate that m
is a member of some entry in H(1:k,1:m,j).

The matrix H is legal if, for all 1$i,j$n,
1%k&t,  H(k,i,j) € Cli({mhn e H(1:k-1,1:n,1)}),
Thus, all messages sent by i in round k must be
obtained by taking the closure of all the messages
received up to then; this condition corresponds to
an ussumption that signatures cannot be forged, or
messages decrypted without a key. We call any
legal txnxn matrix H a t—round conversation, and a
submatrix H(1:k,1:n,j) of any t-round
a k—round reception for j.

kxn submatrix
to be the vacuous

we

0 conversation
Let H, = {f} be the set

of O-round receptions for j, and
Ht _ ot-1
. = Hj
for t > O,

efine
{H|H is a t-round reception for il,



We make the simplifying assumption that each

processor’s private value is either 1 or 0; them a
t—round protocol is a vector of functions F =
(£5,...,6) such that £ :{0,1}xH = (PM)™, and
such that
fi(b,H(lzk,lzn,i))
e (P(CL,((mlm B(1:k,1:0,i)})))", for 0Sk<t. The
function fi computes the messages to be sent by P

to each processor during each round, from Pi's
private value and from the messages received up to
that round. We concerned with faulty (or
traitorous) processors which do not the
protocol properly—-thus an attack by a set LE P on
(£],e.0nt))

are
execute
a protocol F is a protocol F' = such
that P, £ L 3£, = £}, for 1{iln.

i
Any t-round protocol F, together with a vector

of oprivate values v = (vl""’vn) e {0,117,
determines a particular t-round conversation, H,
that results when F is executed synchronously by
the processors;

B(1,i,1:n) = £,(v,,0) for all 1%i%n, end

H(k,i,1:n) = £ (v,,B(1:k-1,1:n,i))

for all 1$i§n,11 <x St

We write E(v,F) = (v,H), and say that the ordered
pair (v,H) is the augmented conversation produced

by the execution of F on v. We extend the function
E() naturally to sets of vectors and protocols: if
V € {0,1)}®, and W is a set of t-round protocols,
E(V,W) = {E(v,®) lv ¢ V,6 ¢ ¥}. Thus, E(V,W) is the
of augmented conversations resulting when each
synchronously each
in V, and sc¢, above,

set

protocol in W is executed on

vector of private values
{(v,H)} = E({v},{F}).

For any t-round protocol F, and Oﬁm, let
A(F,m) be the set of all attacks on F by at most m
pProcessors, If F to the
General's problem, each mnon-faulty
the it
together with its own private value v,, to compute
the vector Ii’ So, if Pi is not faulty, receives
the same set of messages, and has the same private
value in the execution of two different attacks, F'
and F”, on a protocol F, Pi must compute the same

Thus we define 2 t—round
i, di:{O.l}x(P(M))t:“*“~>
for any H,G ¢ (P(M)) ’

is executed solve
Byzantine
receives,

processor Pi must use messages

vector Ii in both cases.
decision function for
{0,1)", that,
b ¢ {0,1},
i) if di(b,H) = u, then b = v, and
ii) if H(1:t,1:n,i) = G(1l:t,1:n,i),
then di(b.H) = di(b,G).
A t-round decision vector D = (dl,....dn)
a t-round decision function for each user.

such »axan

contains

Now we are prepared to make a formal statement
of the Byzantine Generals problem, and to state the
major result of this section:
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The Byzantine Generals Problem

F, solves the Byzantine
of m faults if
there exists a decision vector D, such that for any

A t-round protocol,
Generals problem in the presence

F' ¢ A(F,m), ue {0,1}", with (u,H) = E(u,F’), if
= £ = £ =
fi £ i and fj f i’ then di(ni,ﬂ) dj(uj,H).
Theorem
No t-round protocol solves the Byzantine

Generals problem in the presence of t faults,
if t £ n-1,

of
result, we require the following definitions.

Before proceeding with the proof this
For any t-round protocol F, we define 2 binary
relation, compatibility, on E({0,1}*,A(F,m)),
that two sugmented conversations (v,H') and (u,H")
are compatible, (v,H') ~ (u,H”), if for

lﬁiﬁn.
1) There are F', F" e A(F,m) such that

such

some i,

(v,H') = E(v,F"), (u,H") = E(u,F"),
2) £, = £! = £",

i i i
3) v, = U, and

4) H'(1:t,1:n,i) = H"(1:t,1:n,i).
Thus, (v,H') ~ (u,H"”) if there is some processor Pi
that not faulty in either execution, has the
same private value in both, and receives the
of messages in H' and H”, Now suppose that a
in F'

is
same
set
different processor, j, was also not faulty

or F"., Then if F solves the Byzantine Generals
problem, P, would have to compute the same vector
I as Piin both cases, even if it received
different messages in H' and H". We will denote

the transitive closure of ~ over E({0,1}%,A(F,m))

by =, global compatibility.

Finally, we will call any t-round protocol F
immune to m faults if for any F',F” ¢ A(F,m), with
(v,6) = E(u,F'), (v,H) = E(v,F"), if fi = f; = fg,
and (u,G) £ (v,H), then u Thus F is immune
to m faults if any non—faulty processor has the
value in any two globally compatible

=v..

i

same private
augmented conversations,

We now have a necessary and sufficient condi-

F'

Generals problem in the presence of as

tion for a protocol, to solve the Byzantine

many as m
faults, when executed synchronously:
Lemma 1.1

A t-round protocol, F, solves the Byzantine
Generals problem in the presence of m faults if and
only if F is immune to m faults.
Proof

Let F solve the Byzantine with the
decision vector, D, known Clearly, a
non—faulty processor must compute the same value on
any two compatible augmented Then
by induction on the number of ~ steps from (u,H) to

(v,6), d;(v,H) = d,(v,6) if (u,H) Z (v,6) and i is

Generals
to exist.

conversations.



not faulty, so ui = Vi and F is immune to m
faults.

If F is immuene to m faults, we must construct
the decision vector D. Note that each
of E({0,1}®,A(F,m)) under =, if F is immune

to m faults, determines a particular private

equivalence
class
value
vy for each processor i that is non—faulty in any
execution in the class. Furthermore, any t-round

reception a non—faulty j

and private value for
uniquely identifies the particular
of the entire augmented conversation.
there are mappings from private values and

receptions

equivalence
Thus
t—-round
each user to equivalence classes,
and from equivalence classes to private values

class

for
for
each processor mnon—faulty during any execution in
the equivalence class. Arbitrary values can be
added for any processors that are always faulty in
any equivalence class, and we the

required.

have mappings
Now we can prove the following lemma in place
of the theorem:
Lemma 1.2
No t—round protocol is immune to t faults,
for t < n-1.

The proof of this result is simple in outlinme,.
From any t-round protocol F, & set of augmented
conversations L(F,t) € E({0,1)",A(F,t)) is defined,
which the faulty processors 'lie’ in a
particular way. The set L(F,t) is defined so that
E({0,1}",{F}) € L(F,t): all 2" executions of F in
which no processor is faulty appear in L(F,t).
that if (v,H), (u,G) & L(F,t)
Lemma 1.2 follows immediately.

in

Finally, we prove
then (v,H) £ (u,6).

Section 1.2

Preliminaries——the definition of L(F,t).

fixed
Any sequence of processor

Let F = (fl""'fn) be a t-round
with 0<t<an-1.
indices y = (al,...,a ) where 0{m<t, determines &
set of sequenced attacks, C(y), by the processors

in y satisfying the following properties:

protocol,

F’' = (fi,...,f;) is in C(y) if for every k,
0£k<t, and Hi a k-round reception for i, either
1) £ (b,R,) = £' (b,H,), or
i i i
2 JiSta; = b,
Thus the processors not in y follow the protocol
F-—these are the truth—tellers in this attack,

Each processor i appearing in y is a liar; if e, is

the first appearance of i in y, i is inagctive for
j=1 steps: that is, i follows the protocol F for
the first j—1 steps of the execution (by property
2). Thereafter i may send any available messages
to the other users, We denote the empty sequence
by A.
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Now 1let SA(F,t) be the union over all
sequences of at most t processors of such attacks,
and let L(F,t) = E((0,1}",SA(F,t)). Observe that

the protocol F is an attack by the empty set on F,
so C(A) = {F}. and E({0,1)",{F}) €L(F,t).

We define a function, d, on pairs of a.c's
L(F,t), such that;

in

0 if u # v,

t+l if uw=v, H= G, and

min {k | 0<k&t, H(1:k,1:n,1:n)
# G(1:k,1:n,1:n)},
otherwise.

Thus, d((v,H),(u,G)) is the first round in which H

and G disagree, provided u =

a((v,H,(n,G)) =

v.
Section 1.3

Lemma 1.2 follows immediately from the follow—
ing sequence of lemmas,
Lemma 1.3
Let y and vy’ be of t fewer
processor indices, with y' = (al....,ak), k20, and
v’ a prefix of y. Then
i) E(V,C(y")) € E(V,C(y)),
for any V & {O,I]n, and
ii) for any (v,H) & E({v},C(y))
there is a (v,G) e E({v],C(y")),
with d((v,H),(v,6)) 2 k+1.

sequences or

Proof

Part i: Immediate from C(y') & C(y).

Part ii: Let F' e C(y), and (v,H) = E(v,F'),
Define

an attack F"”, where fg = fi' if i is in y',
The attack F” is in C(y');
let (v,6) = E(v,F"). Since the extra liars in F’'
are inactive for k rounds, H(1:k,1:n,1:n) =
G(1:k,1:n,1:n), and d((v,H),(v,G)) 2 k+1,

and £ = fi' otherwise.

Lemma 1.4

Let (v,H) e E({v},C(y")) and
(v,6) e E({v},C(y)), with ¢’ = (al,...,ak) for
0{k<t, and ¥’ a  proper prefix of 'H if

a((v,H),(v,6)) 2 k+1, then (v,H) £ (v,6).
Proof

Let v = (aj,....a), k<s{t. By repeated use
of Lemma 1.3,ii, there are Gk""'Gs' with H= G

K’
G = Gs’ (V'Gr) E({v].C(al....,ar)) for all k%rfs,
and d((v,6_),(v,G_ ) 2 r+l, for all k%r<{s. Thus
it suffices to assume y = (a ,....ak+1). The proof
is by imduction on k, from t-1 to 0.

Basis: k = t-1,
Ve have (v,H) e E({v},C((al....,at_l))).

(v,G) ¢ E({v},C((ul,...,at_lut))). and
d((v,D),(v,6)) 2 t, H and G differ, if at all,
only in what al....,at send in the last round, Let

i and j be distinct processors mot in {al.....at}:
such processors exist, as t{n-1. Create H' from H
by changing H(t,1:n,i) to G(t,1:m,i). Clearly,



(v,H") ¢ E({v],C(al....,at)); (v,5") ~ (v,R) (since

H'(1:t,1:n,j) = H(1:t,1:n,j)), and (v,H') ~ (v,6)
(since H'(1:t,1:n,i) = G(1:t,1:n,i)), so (v,H) =
(v,G).

Induction: Assume the result holds for all h,
0Sk<h<t, that (v,H) & E({v},C(y")) for vy’ =
(al....,ak), (v,G) & E({v},C(y)) for v =

(@),ees0p,0, 1), snd A((v,),(v,6)) 2 k+l.

We establish the existence of (v,H'),
(v.6") & E({v},C(y), with d((v,B"),(v,6")) 2 k+2,
(v,H) ¥ (v,H') and (v,6) = (v,G’). By Lemma 1.3.i,
(v,G') & B({v]},C(y 1)); the induction hypothesis
applies, with h = k+1, so (v,B') = (v,G'), and
(v,H) = (v,G) by transitivity.

Note that by Lemma 1.3.i, (v,H) & E({v},C(v)).

If d((v,G),(v,H)) > k+1, let G = G', H = H',

If d((v,G),(v,H)) = k+1, repeated use of the
following sublemma establishes the existence of
(v,G'),(v,B’) e E({v},C(y)), (v,6') £ (v,6), (v,H")
Z (v,H) and 4((v,G6"),(v,H")) > k+l.

Sublemma: Let (v,P),(v,Q) ¢ E({v}.C(y)) and
d{(v,P),(v,Q) = k+l, Then there exist
(v,P"),(v,Q") ¢ E({v},C(y)), d((v,P),(v,P")) 2 k+1,
a(v,@,(v,Q")) 2 k+1, (v,P) =
(v,Q’), such that {jlP’(k+1,1:n,j) # @’(k+1,1:n,j)}
€ {jlP(x+1,1:n,j) # Q(k+1,1:n,j)}.

Proof: P and Q differ in round k+l by the messages
the liars in [al,...,ak+1} sent. Let P{(k+1,1:n,i)
# Q(k+1,1:n,i). By Lemma
(v,P),(v,Q) ¢ E({v}.(al....,ak+1,i)). Now
construct P" from P by changing P(k+1,j,i) to
P(k+1,j,i)V Q(k+1,j,i) for every j e {al....,ak+1};
similarly construct Q" from Q by changing
Q(k+1,j,1) to P(k+1,j,i)VQ(k+,j,i). Clearly
(v,P"), (v,Q") ¢ E({v),C(al.....ak+1,i)); i simply

3.4,

ignores the extra messages received during the
k+1'st step; this is possible by the monotonicity
of i's inference function, so that receiving extra

to
send. By the comstruction, d((v,P),(v,P")) 2 k+l,
dl(v,®,(v,Q")) 2 k+1, (v,P) ~ (v,P")
(v,Q) ~ (v,Q"). By Lemma 1.3.ii there
(v,P'"), (v,Q") ¢ E({v}.C(al,...,ak+1)) with
a((v,P") ,(v,F")) 2 k42, a((v,@"),(v,Q')) 2 k+2.
(Also, d({(v,P),(v,P')) 2 k+1, since d{(v,P),(v,P"))
2 x+1, and similarly, d({(v,Q),(v,Q")) 2 k+1), The
induction hypothesis applies to P' and P"”, with b
k+1, so (v,P") = (v,P'), and similarly, (v,Q")
(v,Q’); thus (v,P) = (v,P'), and (v,Q = (v,Q").
Finally, by the construction,

{ilP' (k+1,1:n,5) # Q' (k+1,1:n,})}

€ (jIP(k+1,1:n,3) # Q(k+1,1:n,j)).

messages only increases the set available for i

and
exist

e

(v,P"), (v,Q =
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Lemma 1.5

1f (v,H) & L(F,t) then (v,H) = E(v,F).
Proof

Let (v,H") =  E(v,F). Ve know that
(v,H) e E({v},C(y)) for some processor sequence ¥;
furthermore, if y = A, then H’ = H, and we are
done. Otherwise, v = (al,...,ak), k 2 1. By Lemma
1.3.ii, there are H' = Ho....,ﬂk = H such that
(v,H,)) e E({v},C(a;,...,a)) for all 1£j¢k, and
d((vH.),(v,B,, 1)) 2 j+1, for all 0%j<k. Then by
Lemma 1.4. (v,Hj) = (v,Hj+1), for all 05j<k, and we
are done,
Lemma 1.6

If (v,H), (u,6) e L(F,t), then (v,H) = (u,G).

Proof
Let (v,H') = E(v,F), and (u,6') = E(u,F).

Lemma 1.5, (v,H) (v,H') and (u,6) £ (u,G’).

then H' = G’, and we are done,

By
If u
it
to assume that u and v differ in only one

n o

= v, Otherwise,
suffices
entry; without loss of generality, assume u, # V-
By Lemma 1.3.i, (v,H') & E({v]},C(1)).
sent by the first liar in a sequenced attack may be
independent of its private value——thus
(v,H') € E({uv},C(1)), and clearly, (v,H') = (u,H’).
Then by Lemma 1.5, (u,H') = (u,G'), and we
(v,B) = (v,B') = (u,B") = (8,6') T (u,6).

The messages

have

Section 1.4

Comments

It is worth noting that the model used in this
proof is general; for instance, it includes systems
in which processors may exchange an infinite number
It should be noted
the impossibility
to the
random solution,
the
any communication, will be correct
exponentially but positive,
The possible existence of much better

of messages in a finite time.

however, that this result shows

of a deterministic solution Byzantine

Generals problem. The simplest in

which each processor other

without

guesses private
values
with

probability.

small,

random protocols is an open question,

A final note on the bounds for this problem is
this result holds for
If n-1 proces—

in order. For n processors,
as many as n—2 faulty processors.
a non-faulty processor need
n—-2 faulty
Either n-2

in which

faulty,
only run the (n—1)-round protocol

sors may be
for
processors, which appears in [Peas81].

or fewer processors are actually faulty,
case the protocol functioms correctly, or only one
processor is nop-faulty, and the restriction

on the

only
vector it computes is that its own private
value appear correctly.



Section 2.1

Asynchronous Systems

As in the previous section, let M be arn
arbitrary set, representing all possible messages
in a system, P(M) the power set of M; then any

function f:P(M)—P(M) is an inference function for
M if for amny Mo -3 Ml ¢ M, f(Mo) c f(Ml). An
inference function models the application of cryp-
tographic operators to sets of messages to generate
the implies

extra messages can only add to the

new messages; monotonicity property
that receiving

set so generated.

gor any inference function f and MO €M, let

£ (Mo) = MO and

£ ) = £(f ) for a1 k 21,
and define f , the closure of f, by

o) = U) fany

(1] =0 0

Note that f‘ is an inference function,. We extend
this definition of c¢losure to any set, F, of
infersnce functions, so that

F (MO) = Mo!

k+1 k

Pl = {J £ mmg) for a1l x 2 1, ena

«f e F
*
F (M) = izéFk(Mo).

A vecter of n inference functions F =
(fl,....fn) is called an n-user system, and can be
used to model the cryptographic abilities of =n

*
users of a communication metwork; fi(MO) is the set

of messages user i can produce by applying cryp-

tographic operators to a set Mo of known messages.

*
If me fi(MD)’ we say that i can infer the message

s
n from the set Mo. The set fi(D) is the set of
messages known to i before any messages are
received from other users.

In the remainder of this paper the inferenge

functions we study will be closed; that is, £ =f .

The for which the
Byzantine Generals problem is stated is a powerful
one: messages are always delivered intact within a
specified time, and senders are reliably idenmtified
to In the remainder of this paper we
discuss protocols that a much more
limited communication Specifically,
we envision a network may be
delayed for arbitrary or may be lost
altogether; furthermore, any message that is
may be delivered to any network user at any future
Finally, we assume that any subset of the
may attack a protocol by completely teking
over the network, all messages
delivered to every other user, and intercepting any
that Activity network is

network enviromment

receivers.
execute in
enviromnment.
in which messages
an time,

sent

time.
users
controlling
such a

leave. over
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described by the following formalism.

Let <B> = (M;,...,M), k20, & of
(possibly empty) subsets of M; <B)> represents the
sets of messages alternately received and sent by
user with subsets of odd index being messages
and those of even index those sent, The
sequence is a behavior for i if

h-1
-4 £
Mh __fi(‘;inj), for all even h, 1<(hik,

sequence

i,

received,

Thus, i
those received.

can only send messages inferrable from

VWe will use B to denote the set of

messages contained in the steps of & behavior <B),
and <BB’)> to denote the concatenation of two
sequences B and B’

If <B> is a behavior for i, the triples
(i,j,M.), for 15j%kx are the steps of (B>. The step
(i,j,M,) is a zeceiving step if j is odd, and a
transmitting step if j is even. Similarly, an odd

length prefix of <(B> is a reception in ¢(B>, and an
even length prefix is a transmission in <B>,

In this model, sets of messages are sent and
received by the system users. In a real metwork,

messages are generally sent and received
sequentially, so that actual behaviors will be
sequences of messages sent, alternating with

sequences received. Because of our network assump-

tions, there is no reliable information contaimed
in the order in which messages are received. In
some of the protocols we discuss, it will be

important that the order in which messages are sent
during a transmitting step also convey mo informa-
tion the messages. In implementing these
protocols, therefore, the messages sent during such
a step must be By modelling

these sequences by sets, we are implicitly assuming

about

randomly ordered.

that all such sequences are randomly ordered.
In
sages received by a user must have

any actual exchange of messages, all mes—

been sent by
some user at an earlier time, Thus we say a vector
s = (<Bl>""'<Bn>) of behaviors for users 1 to n
is a conversation if there is a total ordering, ﬁ,
on the steps of the behaviors such that, for all
1%i%n, and steps (i,j,M'), (i,k,M") of <B):

j <k (i, j,M") £ (i,k,M"), and *

j odd
M < {Mol(p,q,M Y$(i,j,M’'), and q is even}.
Such a total ordering g is & sequence for S.
The following lemma will be helpful in
establishing later results.
Lemma 2.1

Let § = (<B1>....,(Bn>) be any conversation of
the system F, and S" the set of messages in S,
Then fi(S") [ fi(X)‘ where X is the set of all mes—
sages sent by users other than i in S,
Proof

Let Y be the set of all messages in transmit-
ting steps of <Bi>' received

Since all messages



must have been sent, S € YUX EBiU X, and fi(S")
Q,fi(B.LIX), as fi is an inference function. Ve
know X € f,(X), and since fi is closed, if we can
show B, € fi(X), we would have fi(X\)Bi) c
fi(fi(x)) = fi(X). s0 fi(S") E.fi(X). We show B, €
fi(X) by imduction on the prefixes <B'> of <Bi>’
from the empty sequence to (Bi> = (Ml,....Mk)
some k20.

for

Basis: <B’> = A, the empty sequence,
By the definition of inference functions,

fi(ﬂ) ‘_'—'_fi(x). for all X € M.

Induction hypothesis:
' = <
fi(B ) E.fi(x),for <B"> (Ml.....Mh). 03h<k.

We must show that Mh+1 Q.fi(X). If h is even,

(i,h+1,Mh+1) is a transmission, and Mh+1 must be
inferrable from messages received, so Mh+1 <
fi(B')‘ and by the induction hypothesis, we are

done ., If h is odd, (i,h+1.Mh+1) is a reception,
and Mh+1 € B'UX; the messages in M‘h+1 must
been sent earlier by user i, or by some other user.
By the induction hypothesis, B'U X & fi(X)' end we
are done,

have

Section 2.2
Protocols

Let Ri be the set of receptions consistent
with inference function fi' A protocol for i is a
partial function, pi:Ri~+P(M). such that pi((B>) [
fi(B).

defined. A behavior <(B) for i is an
protocol Py if P; is defined on

{B'> that is a proper prefix of <(B)>

is a prefix of <B>, and if <{B>

pi(B) is undefined. The set pi(B’) is i's response
to the reception <B'). Any set, ACCEPT, of
executions of & protocol pi is an accepting set for

Pi-

is
execution of

for any reception (B) in Ri on which p;

every reception
and (B'pi(B')>
is a reception,

A system protocol P = (Pl""'pn) is a vector
of protocols for users 1 to n,

If a subset, A, of users conspire to subvert a
cryptographic protocol, it realistic to
that they will communicate only over the
system communication channel.

is not
assume
Thus we treat such a
group of attackers as 2 single user, represented by
the set e, with the inference functiom fA =
{fi|i e Al . (Clearly, if A contains only one
user, i, then fA = fi)‘ Now let (il.....ik) be the
ordered subset of users not in A.

= (<B,>,<B, >,...,<B, >) of the
A il i
(f,.f £f.) i
» seeesf, is an
A il i

A conversation S

system FA =

attack by A on system
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is an

protocol P =

(pl.....pn) if every <Bi >

execution of protocol pi . )
J

Section 2.3

Hostage Exchange

We now illustrate some features of this model
by proving the impossibility of a two-person
protocol to exchange "hostages.” Consider a system

of two users, a and b, with inference functions fa
and fb' Let m_ 3 fa(ﬂ). o, ¢ fb(ﬁ). m e fb(ﬂ) and

e fa(ﬁ). The users a an b wish to exchange m
and o, (the hostages), with the that
neither can be cheated; that is, if a knows LI
then b is guaranteed to know B
The impossibility of any solution to this problem
was first observed informally by Even and Yacobi
[Even80] and independently, by Rabin [RabiBl1]l. We
formalize this result below.

assurance

and vice versa,

A conversation (<Ba>'<Bb)) is an exchange if
mo€ fa(Ba) and m e fb(Bb).
A system protocol P = (pa'Pb) is
for any attack ((Ba>'<Bb>) by b on P,
e fb(Bb) > m e fa(Ba)'
Safety for b is defimed similarly,

safe for a if

Lemma 2.2
If § = (<Ba>’(Bb>) is an execution of a system
protocol P = (pa.pb) safe for both a and b, S is
not an exchange.
Proof

Assume S is an exchange, amnd let S be a
sequence for S, Clearly, each user received at

least one message, soO <Ba> = (Cl,....Ci) and <Bb> =
(nl.....nj) for some i,j 2 1.

Let k = min{p|ma e fa(LJ Cq)]. and

alp
' = :
k m1n[p|mb € fb( Lg Cq)}.
q-p
Then (a.k,Ck) and (b.k'.Dk,) are the first steps in

which a and b, respectively, know m and m . The se
steps must by receiving steps, as the definition of
explicitly limits
contain subset of messages already available.

behavior transmitting steps to

Without loss of generality, assume (a,k.Ck) £
(b.k'.Dk,), and let h = max{pl(v,p,D ) & (a.k.Ck)].

If h is & transmitting step, let h' = h, Other-
wise, let h’ = h+l, Since (b,k'.Dk,) is a recep-
tion, h'’ ¢ k'. Furthermore, (<B;).(Bﬂ>) =

((Cl""’ck)'(Dl"'°‘D .)) is a conversation and
(Bé) is an execution of Py SO ((B;).(Bé)) is an
attack by a with m e fn(B'a)' but
n, # fb(Bé), and Py is not safe for b, a contradic-—
tion,

on p,.,



Section 3.1

Cryptographic Systems

Up to this point, we have used inference func-
tions as a way of summarizing the generation of new
messages by system users through the application of
cryptographic operators to sets of messages. As we

these functions allow us

saw in the last section,

to describe those messages that are available, or
not available, to particular users during the
execution of a protocol, But ’security’ for many

not simply a limitation on what mes—
to various
Often, it is not a
hidden, but
For instance,

protocols is
sages are, or are not, available
the protocol execution.

be

information about that message.

secret-ballot election, it is
between voters and votes, not the votes, that must
be kept secret, To
protocols, we must model not just the
of messages, but also the availability of informa-

users
during
specific message that must some
in a
the correspondence

establish security for such

tion about messages., The following example
illustrates how this may be accomplished; we
represent cryptographic systems by set theoretic
structures,

Suppose we have a set C = {c ....,ck} of
cleartext messages, a set M, with C & M, of all

messages, and two 1-1 functions ey 92:M~’M, satis-
fying the following properties, for all m, n & M.
1) el(m) # m, ez(m) #m,
2) ey(m) # ez(n).
3) ey(m), e,(m) £ C.
Clearly, M must be infinite.
Now let e;I be the partial functions
inverting ey and L respectively, and El' E2 be

unary predicates on M which are true whenmever eI

and e;I

and e2 , respectively, are defined. 1
- -1 - -
Now I = (M.C.El, 2612092817 28, > is a set

theoretic structure describing this cryptographic
system; the related structures

1 1
I, = <M,C,E1, > and 12 = <M'C’E2'e1’°2‘°2 >

1
represent the capabilities of two
cryptosystem——user

el,ez,e;

cryptographic
users of & public-key 1 can
apply the encryption function e,, but cannot invert
it. Similarly, uwser 2 can apply but not invert e
(Since set theoretic structures consist of a
(the domain) together with a sequence of relatioms
on th; domain, in the structure I we interpret C as
a unary predicate identifying a of M. A
substructure of I is any structure I’ with domain
M’ €M, and whose relations are the restrictionms to
M’ of the relations in I. We will use «zIM' to
denote the restriction of a relation r to some sub-
set M' of M. An isomorphism between two structures
of similar type is a ome—to—one onto mapping of the
domains that preserves the relations. An

isomorphism mapping a domain itself an

1°
set

subset

to is

automorphism.)

availability -
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Let Ml &€ M, and define II(MI) to be the sub-
structure of I, generated by closing M1 by the
functions in 11 (so that II(M) = 11). If Ml is
some set of messages initially known to wuser 1,
Il(Ml) represents his knowledge of the particulars
of the cryptographic system. In the example above,
if Ml = [cl.ez(cl),ez(cz)}. user 1 can apply e, to
¢y and compare the result with °2(°1)' identifyigg
that message (equality is a predicate implicit in

all structures). But about ez(cz) he can learn
only much more limited informationmn. For example,
*El(ez(cz)). 4C(e2(02)) and ez(cz) # ez(cl).

Indeed, so far as user 1 can tell, ez(cz) could be
the encryption wusing e, of any message m in M not
available to user 1 (not in the domain of Il(Ml)).
We can make this explicit by defining a mapping
¢:M —> M, such that:

4(c2) =m,
$(m) = y» and
¢(n) = n for all other n & M,

Let M’ be

mapping ¢ is an automorphism ¢:I —» I’

the domain of Il(Ml)’ and m ¢ M-M'. The

such that

$(riM*') = r|M’, for all relations r in I,, since
¢§(v) =u, for all ue M. The automorphism ¢
establishes that user 1’s knowledge of the cryp—

tographic system is consistent with the assumption
that egl(ez(cz)) = m,

One issue remains unresolved; is there indeed
a structure I satisfying the requirements of the
definition above? If C = {cl,...,ck} agd G =
(°1'°2} are disjoint sets of symbols, M = G C |is
the indicated sets of strings, and el(m) = e,
ez(m) = e,m for all m in M, we have a structure
satisfying the requirements of the definition,

A similar string-based structure has been used
to establish security for a class of public-key
protocols [Dole81], where security is interpreted
as the availability of particular cleartext mes—
sages to an attacker,

Following this example, each user i of a cryp-
tographic system will be described by a structure
Ii' with some common domain M, and a substructure
11(”1" these structures represent user i's cryp-
tographic capabilities and knowledge, respectively.

A user’s knowledge of the cryptographic system
is not static; new messages received permit him to
expand his view of the system., Any set Mi c M,
where the domain of Ii(Mi) is the set of messages
known to i before any messages are received, is an

m,

initial set for i, and Ii(M ) is the initial state
of i. The inference function flzP(M)—#P(M) is then

defined such that, for any M’ €M, fi(M') is the
domain of Ii(MilJM'). The function so defined is
clearly an inference function,

Having defined an inferemce function for i,
the definition of a behavior for i, from section
2.1, applies directly here. if <B) is
a k-step behavior for i, then Ii(MillB) represents

Furthermore,



i's knowledge (of the cryptographic system) at step
k.

A vector T & (P(M))®, describing initial sets
for each user, is an jnitial vector for the system.
by determining the
each user,

Finally, any initial vector,
inference functions
determines the conversations, protocols and attacks

associated with
possible in the system, just as defined in section
2. Thus we define an n—user cryptosystem to be a
triple (I,C,T), where I is a structure with domain
M, C is a vector of n capabilities (structures with
relations from I and domain M), and T is an initial
vector.

Now let S = (<Bl>""’<Bn>) be any conversa—
tion of such a cryptosystem (I,C,T), where C =
(11""'In) and T = (Ml""’Mn)' Let S” be the set
of messages in S, Any automorphism ¢:I->I' defines
a new, automorphic cryptosystem (I',C’',T’), where

= (6(11).....¢(In)) and T = (Q(Ml),...,é(Mn)).
The automorphism ¢ hidden from user i in S,
provided
D dcle (sm) = rlf, (5M),
for any relation, r, in Ii' and
2) $ is a conversation of the cryptosystem
(1, C'.(Ml....,M1 1,M .M;+1,....M;)).
Hidden automorphisms may be seem as altermative
of the phenomena observed by a system
user; such, they indicate limitations of a
user’'s knowledge of the system, The existence of
hidden avtomorphisms is precisely what is meant by
'security’ for many cryptographic protocols.

If k users im A & {1,...,n}, with k > 1,
all
resources and knowledge; thus we replace the struc-—
tures for the attackers in A to consider a system
with n+l-k users, by representing the

is

explanations

as

attack a system protocol, we assume they pool

capabilities
of the entire set of conspirators by IA' the struc—

ture containing exactly the functions and
predicates of I appearing in the structures in
{Ii|i e A}, The knowledge of the attackers is

represented by IA(MA)' where MA = iLg AMi' and the
inference function for A, as defined in the last
section, fA = {fili e A}‘. The
verify that for any M' €M, fA(M') is the domain of
IA(MA e M'),

is reader may

Section 4.1

A Public—Key Cryptosystem

For our first example, we define an n-user
cryptosystem PKEY = (I,K,T) as follows. Let V =
{vl,...,vn....} 11 and G =
[el....en.s RRRYE T T SYRREIL %} be dxsjoint sets

of symbols, and M the set of strings in G V.
For every symbol a & G, define a function
a:¥—M by a(w) = aw for all v ¢ M, Let ezl
be the partial functionms invetting e and s., for
a1l 1$in, The partial functions r, for 1%ifm,

and sTl
i

i’
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are defined such that r (rjm) = u, for all 1$jsn,

w e M,

The unary predicates El'ls and Ri,_for 14ifn,
are true for w ¢ M only if e s s," or r,”» respec-
tively, are defined on w.

The set M, together with these

predicates, defines

i
functions and
the structure I. Each struc-
ture I, in K, for lﬁiﬁn, contains the functions and
predicates:

i -
e.,r., s,
3 J

1, and Sj' for all lﬁjﬁn,

-1
e. ,

i si, Ri’ and Ei'

The initial set Mi for user i, in the initial
tor T, may be any subset of V such that v,
for 1 £ i & n. The message v, is i's vote. '
The structure I is intended to model & system
of n users employing three types of cryptographic
functions: a public-key signature functiom s that
only i can compute but any user can detect and
invert ), a public~key encryption
e, that any user can compute butionly i can invert,
and n randencryption functions r;, 1{jSn. In prac—
tice, the latter may be produced by appending ren-
dom bits to a message before applying e., user j's
public—key encryption. Thus r the
that only i and j can identify plaintext--cryptext
pairs, whereas anyone can identify such pairs

vec—
e M,
1'

(using S and s

has property
for
the public-key encryption or signature functions e
and si.

The various predicates in I, indicate that it
is possible for user i to reliably detect that a
message has been encrypted by e., some ri, or
signed by some s.,. In practice, this can be accom—
plished by appena1ng a standard bit sequence to any
message as the first step
operation,

The first lemma below details some limitations
of the knowledge of
these definitions.
presentation

in any encryption

the system users imposed by
This is followed by the
system protocol, ELECT, that
implements a, secret-ballot election facility. The
protocol is similar to an electiom protocol in
[Chau81]; in both protocols, sets of encrypted
votes are using a cryptographic tech-
nique in which only the emcrypter and decrypter can
identify cleartext-cryptext pairs, The random
ordering of of sets of messages sent then effec—
tively 'shuffles’ the votes, that attacker
trace & vote, as it is decrypted, back to
the original voter,

The lemmas following the presentatiom of ELECT
establish strong security properties ELECT:
intuitively, these assert that election results
cannot be altered undetectably, and that particular
ballots cannot be identified with particular
voters, so long as at least two voters execute the

of a

decrypted,

80 an

cannot

for



protocol,
The protocol
property with ELECT, in
insecure if executed twice, without
of the
Briefly, an attacker can
original

[Chau81]
however,

in shares another
that both are
form of

system,

some
reinitialization cryptographic
record another voter'’s
encrypted vote during the first election,
and use it as his own vote during the second, The
vote that appears in both election results can then
be identified with the correct voter.

Lemma 4.1

Let A€ {1,...,n} be any set of attackers, G’

the subset of functions in G not in the structure

*
IA' and M’ = Mi. For any % ¢ G, v ¢ M, and
MIEM, ieA
i) if v ¢ fA(M') for any v ¢ V- M',
then v is a suffix of some string in M’,
and
ii) if daw e fA(M') for any a ¢ G', then aw is
a suffix of some string in M',
Proof
Immediate from the definitions,
Ve w111 use the following abbreviations, where
<i<gs = i =
18i%k8a;: r (J.k) rj...rk, and e(j:k) eJ...ek
Section 4.2
ELECT: A Secret Ballot Election

The following algorithmic description defines
the i’th protocol p;
(Pyseeerpy).

The protocol R, for 1%itn
Step 1 Continue
(The protocol begins with a transmission).
Step 2 Send {r1(1:n)e(1:n)vi}.
Step 3 VWait for n distinct messages,
C = {cl,...,cn}.
If Rigck) for all ¢y 8 C,
and r (i:n)e(l:n)vi e C,
then continue else halt,
Step 4 Send {r (c )Ic e C}.
Step 5 Wait for ni distinct messages
- 1 i-1
D= {dl,....d ,gl.....g ]
k n-1 k
If S (g)), e(k:i~1)d, = s, (gj)
for eaci 184, 18%p, and
e(i.n)vi e D
then continue else halt,
Step 6 Send {e. (d ), si(d )l 1£54n).
Step 7 Wait for (n=i)n distinct messages,

_ i+l
= {hl,...hn,gl

n
seess8 )

. - k n

If e(i.n)hj = dj' Sk(gj),

of the system protocol ELECT =
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and e(k:n)h, = s (gj).
for all 1{j3a, 1(k(n.
then accept (hl,...,hn}

as the election results
else halt,
End
In the following discussion, let 1{i¢j%a, and
assume that M, {vi.v.} #P<>ke {i,j}, for all
1 %k £ n, so that only i and j know the votes v

and v,, before the protocol begins. We assume the

set of attackers, A, includes every user .
and j, so that we have a system of three users, 1,
j and A, Now 1let 8 = ((BA> <B;>,<B, ;>) be any
attack by A in which (B > = (ml.....m ). and (Bj>

(ag,.cn0ay ), for some k h 20, £ is a sequence for

S, and S” is the set of all messages in S.

except i

Lemma 4.2

i) {simlm e M,s,0e £,(8M) Emg if k 26,
and is empty otherwise; similarly,
{s.olo e M,s.0 e fA(S")} E.q6 if h 2 6,
and is empty otherwise.

ii) If 1 2 6 then k 2 6, (i,6,m) £ (j,5.q5),
and me 3 9.

iii) If k 2 4 then ri(iim)e(1: n)v,
r'(i-1:n)e(l:n)v, e m,, and
if h 2 4 then rj(j:n)e(lzn)vj L
rJ(j-l:n)e(lzn)v. e q,.

ema,

iv) If h 2 4 then k 2 4, £d(i:n)e(1: v, & my,
and rJ(1—1 in)e(l: n)v em,.
v) If k 2 6 then h 2 4, = (J n)e(l:n)v, e qg,

and r (J 1:n)e(1: n)v € q,.

vi) If {v ,v.} & £,(S") # § then k,h 2 6.

J
vii) If h 2 6 then e(i:n)vj e m, e(j:n)vi e q5.
Proof

i) Clearly, the attackers can
messages

only obtain signed
from users i and j during the sixth step
of their protocols.

ii) g, must contain n signatures by i,
have originated in step 6 of P

which must

iii) Users i and j each explicitly check for these
messages in step 3 of Py and Pj' respectively.

iv) By part (iii), rj(j:n)e(lzn)v
must

of Pi'

Thus i

e Q.
decrypted r‘](izn)e(lzn;vj during step 4

have



v) Similar to (iv).

vi) The attackers can only obtain vy through
the decryption of the messages rl(l:n)eil:n)vi or
tj(lzn)e(lzn)v sent in step 2 of b, Thus j
must decrypt e{j:n)vi or e(j:n)v,, and so executes
step 6 of p,. By part (ii), i executes step 6 of
pi, as well,

or v,

or p..

step 6 of p, only if he

us user i must

vii) User j executes
receives e(j:n)v, during step 5.
have decrypted e(i:n)v., received in step 5 of P,
during step 6 of py-

The following lemma establishes that any set
of votes accepted by a user contains the votes of
any other wuser executing ELECT, and any two users

accepting sets of votes will accept the same set.

Lemma 4.3
i) If user i accepts a set Hi of messages,
then v,,v, ¢ Hi'
ii) If user j accepts a set Hj of messages,
then v, ,v, ¢ H,.
iii) If users i and"j accept sets H, and H .,
1 J
then H, = H,.
i Jj
Proof
User i sccepts H  only if lHi' = n and

{s.e(j:n)hln e Hi} is received during step 7 of Py
an if lg.l = n and
{sie(i:n)hlh e H,} is received during step 5 of p,,

user j accepts H, only

for all h e H,. JBy Lemma 4.2.i, these sets of
signatures must have been sent by i and j,
originally, and the results follow by the explicit

checks of signatures by i and j in the protocols,

Lemma 4.4
If vy or v, are in fA(S"). then there is an
automorphism {:Iﬂ%i' such that
i) Q(vi) =v,, §(v,) = Vs

ii) ¢ is hidden from A, and
iii) (Bi> and <B,> are executions of Q(pi)
and d(pj). respectively,
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Proof

Define ¢:M—M as follows: for any w e M,
if o = dri(k:n)e(lin)v,
or +rj(k:n)e(1:n)v '
for some ¥ e G., and 1‘$k$i, else
#rd (k:n)e(1:m)v , if o = ¥ri(x:n)e(l:n)v,
) for some ¥ & G. and k > i, else1
+r1(k:n)e(1:n)vi. if 0 = *rj(k:n)e(lzn)v
and k > i, else

w,

$(o) =

*
for some ¥ & G

*
dv., if o = dv, for some ¥ & G , else
3 i .
+vi' if w = dv, for some ¥ ¢ G , and
w, otherwise,

so defines
of the lemma is

$ is one~to—one and onto, and an

automorphism ¢:II’, Part (i)
clearly true.
We must show that ¢ is hidden from A in §S;
that
(1) O(rlfA(S")) = rlfA(S"), for
relation, r, in IA’ and
(2) S is a conversation of the cryptosystem
PKEY’' = (I'.(I'.I'i.l_'i).(MA,é(Mi),Q(Mj)).
0f the and predicates in I, only the
functions ri, ri, for 1%k%n, and rzl. altered
by ¢, and these relations are not in I,, so (1) is
Immediate from (1), <BA) is a behavior for
the inference function defined by the structure IA
and initial set MA. Note that the inference func-
tions for wuser i and j in PKEY' are §(fi), $(£),
so to prove (2) we need to show that <Bi> and <B)>
for b(fi) and §(f.), respectively.

every

functions
are

true.

are behaviors

It is sufficient to prove part iii° of the lemma,
since executions of Q(pi) and ¢(p.) must be
behaviors for O(fi) and §(f.), respectively.

Because vV, or v, are in fA(S"). by Lemma 4.2.vi, i
and j each execu{e at least six steps of their
protocols. Ve argue that (Bi) is an execution of
O(pi) = pj. The argument that <B,)> is an execution
of $(p,) is similar, Since wuser i executed at
least six steps of - <Bi> has a prefix of length
six: (ml'mZ’m3'm4'mS'm6)’ Since me is a2 transmis-
sion, and <B,> has at most seven steps, it suffices
to show this prefix is an execution of p;, the
first six steps of which are detailed below.

The protocol pé

Step 1 Continue
(The protocol begins with a transmission).
Step 2 Send {tl(lzn)e(lzn)vi].
Step 3 Wait for n distinct messages,
C = {c ,....cn].
If Rigck) for all c, e C,
and r (i:n)e(l:n)v, & C,
then continue else halt,
Step 4 Send (4(r;'(c,))le, & CI.



Step 5 Wait for ni distinct messages
D=(d d gl i-1
14 %’ 12 eerBy
If Sk(g.). e(k:i~1)d. = s
J
for eaci lﬁkﬁi, lﬁjﬁn, and
O(e(i:n)vi) = e(i:n)v, e D
then continue else halt.

Step 6 Send {e?(dj),si(dj)l 1%j¢a}.

?teps 1, 2 and 3 of Py and pi are identical,
and r (1:n)e(1:n) e #(fi(o)), som, = pi(ml) and pi
is defined on (m ,m, ,m,).

In I', r?(i*1:n)e{1:n)v, (an element of L by
Lemma 4.3.iv) is the decryption of _rl(i:n)e(lzn)v
(in m,, by Lemma 4.3.iii), and rl(i—l:n)e(l:n)vi
(in m,, by Lemma 4,3,iii) the decryption of
@ (i:n)e(1l:n)v, (in m,, by Lemma 4.3.iv), The mes-
sages rl(i:n)e(lzn)vi and r'(i:n)e(1l:n)v, are the

is

only two messages beginning with r; or r% ever sent

no other mes—
Only
decryptions by r; of messages beginning with these

symbols are different in I’, than in I, so

by users i and j, so by Lemma 4.1,

sages in m,; can begin with these symbols,

_ -1
m, = {‘(ri (ck))lck e m3]. and p;(ml,mz,m

By Lemma 4.3.vii, e(i:n)v, e
p;(ml,mz,m3,m4.m5) me, and <Bi> is an execution
of p;.

3) = By
80

ms,

This lemma establishes that the election
implemented by ELECT is a secret—ballot election:
the votes of any two users executing ELECT cannot
be identified with the correct voters by any set of
Either the attackers do not obtain the

'honest’ voters’ votes, or the hidden

attackers,
automorphism
¢ provides a consistent explanation for the attac—
kers’ knowledge of the cryptographic system,
which the honest voters have exchanged votes, and
appear to be executing ¢ (ELECT).

in

As mentioned above, we have established this
property only for a single execution of ELECT; the
protocol is insecure (leaks the identity of the

voter of a particular vote) if executed twice.

Section 5.1
Stochastic Protocols

Rabin digital signature protocol [Rabi78], is
an example of a protocol which incorporates random
stochastic behavior The
key property of such a protocol is that ome or more

or in an essential way.
participants is forced to take a step whose outcome
is determined by a random event, The security of
the is then not strictly determined, but
by careful design of the protocol can be assigned a
probability close The
deterministic model given above can be modified to
deal with stochastic protocols.

protocol

sufficiently to unity.
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As above, let R, be the set of receptions for
a user i with inference function fi' A stochastic

protocol for i is a partial function
pi:Ridﬁ(P(M)XIO,ll)m, for some m > 0, such that

pi((B>) = ((Ml'rlx)n“ . -.(Mm,rm))

m
3 glmj €£,(B), and }rj =1,
j=1

Here each M, has weight r.; we assume that each of
the M., with nonzero weight are distinct. The set
M. will be chosen with probability r, as i's

i

response to the reception <B)>.

An execution of Py is any behavior (B> for i
such that, for every reception (B'> in <B>, there
is an (M,,r.) e pi((B'>) with rj > 0, and <B’Mj) is
a tramsmission in <B>,

If mw=1 in the definition above, Py is a
deterministic protocol. The protocols of the
previous section are deterministic,

Accepting sets, stochastic system protocols,
executions of such protocols and attacks are

defined as in the previvus section,

Let ACCEPT be a nonempty accepting set for pi
in which no behavior has more than k steps, for
some k 2 0 (ACCEPT is bounded by k), and let A =
{j11834n, i#j). We assign a weight, w(<B>) e [0,1]
to each element (B> of pref(ACCEPT), the prefizxzes
of all executions in ACCEPT, according to the fol—
lowing recursive rule:

1 if <(B> & ACCEPT, or
max{w(<Bb)) b € f,(B), (Bb> e pref (ACCEPT)}
if <B> e ACCEPT,
and (B> is a reception, and
sun{r w(<Bb>) | (b,x) e p (B>,
<{Bb> & pref(ACCEPT)]},
otherwise,

w({B>) =

We define the defensive weight of any bounded,
p; to be w(A), the
weight of the empty sequence, assigned according to
the The defensive weight of a single
execution, according to this definition, is the
product of the weights associated with the trans-—
mitting steps of the The defensive
weight of an accepting set ACCEPT can be
interpreted as the maximum probability that execut-

nonempty accepting set for

rule above.

execution,

ing a protocol Py will result in execution in
ACCEPT; if P = (pl.....pn) is a stochastic system

protocol, and S is an execution of P, there

an

are

deterministic protocols pi tor 1%{i¢n such that S is
an  execution of (pi,...,p;_l.pn). Thus the
defensive probability of B represents the

probability that Bn will result if the other users
try to force its occurance.



Section

5]
™~

Rabin's Signature

Our first example of a stochastic protocol is
a modification of a signature protocol in [Rabi78],
This protocol allows one system user to obtain from
of some message b that, with
Rabin provides

another a signature
low probability, may not be valid,
& correctness proof for his protocol (although an
incorrect attack appears in the literature
[Leis801), which corresponds to lemmas 5.1 and 5.2,
below. In Lemma 5.3, we are able to argue formally
that a
the
signatures.

This protocol requires a one—way function,
i:KxK—?K’', taking pairs of of texts in K to a set

user cannot obtain enough information from

protocol to detect imvalid (or  valid)

K’ of markings, We differ slightly from Rabin, in
that we assume that texts and markings are
identifiable as such. In [Rabi78], the functiom i

is a hashing function, and it is assumed to be com
putationally intractable to find two texts k and k'
such that i(k,t) = i(k’,t), or i(t,k') = 1i(t,k),
for any given t in K. VWe model this by a system in
which i(k,t) = i(k’,t’) 2 k=k’, t=t’, and it is
impossible to invert i.

In the following, let n be any fizxed,
integer greater than 0, and m = n/2,

Let [c] = {cl.....cn} and [k] = {k

even

1"“'kn} be

disjoint, n—element subsets of some set K, and M =
Ko KxK; we model the system described above by the
structure I = <M,K,i>, where i:EKXK—M is the
identity mapping, Thus, K is the set of texts, and
KxK the set of markings,

There are two users in the system, with
capabilities I1 = 12 = T, and initial sets M1 and
Mz such that

b s Ml’ b e Mz, for some b s K,

[C] 8 [k] EMIJ

el €N,

[k]ln M, = f, and

([k]xK)/\M2 = REGISTER,
where REGISTER = {(kj,cj)llijﬁn}. Clearly,
REGISTER & fl(b).

The texts in [k], called the keys, are known
only to user 1, and the texts im [¢] are standard
messages known to both wusers, as is the text b.

The messages in REGISTER are also known to both

users——these are used by wuser 2 to authenticate
keys provided by wuser 1. As indicated, the
elements of REGISTER are presumed to be the only

markings by keys in [k] that are knmown to user 2
before messages are sent.

The of the following protocol is to
provide user 2 with a signature of the message b.
User 2 is judged to have such & signature if he can

produce at least m+l distinct messages of the form

purpose
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i(k,b), where i(k,c) & REGISTER, for any k ¢ K and
c e [e]. During the protocol execution, user 2
expects to receive all n messages i(k,b), k & [kl;
after receiving a set G of n markings, he requires
user 1 to prove that m randomly chosen elements are
indeed of the correct form, by asking him to return
the appropriate keys. Only if user 1 does so does
accept the original set G as containing a
signature of b, The m markings in G that wuser 2
does not check may not be markings of b by keys in
[k], in which case user 2 does mnot have a valid
of b. The chance that user 2 will pick
exactly the m valjd markings in G to check,
however, is ome in m,

The system protocol RSIGN = (pl.pz) is defined
as follows,

user 2

signature

The protocol Y

Step 1 Continue

(user 1 begins with a transmission).
Step 2 Send C = {i(k,b) |k & [k]],
Step 3 Wait for m distinct messages

D= {dl""'dn]’

If D & [c] then continue else halt,
Step 4 Send E= (k, | ¢, e C},

J d

End
The protocol 2,

Step 1 Wait for n distinct messages
G = (51,....gn}.
If K(g) for any g ¢ G then halt
else continue.

Step 2 Send H € [c], chosen from the set
lsetel, I3l =m
with weight (1) -1,
Step 3 Wait for m distinct messages
Q= {ql.....qm}.
If K(q), i(q,c,) e REGISTER
and i(q,b) & G for all q &8 Q,
and some ¢, ¢ H,
then accept G else halt,
End

In the following discussion, for any conversa-

tion S8 = ((Bl),(Bz>) of the system, with 8" the
messages in S, and any x e K, let sign(x,8”) =
[{i(k,x) e fz(S")Ik e [k1}]. If sign(x,8") > m,

user 2 has obtained a signature of the message x.

The following three lemmas establish, respec—
tively, that user 2: cannot forge a signature of
any message, will accept an invalid signature with
probability at most (:)— » and finally, cannot
differentiate between a valid invalid
signature,

and



Lemma 5.1

If 8= ((B1>.<B2)) is an attack by user 2 on
RSIGN, and sign(x,S”) > m, then x & {b} VU [c].

Proof

The behavior (Bl> is an execution of Py, 80
user 1 sent at most the messages c =
{i(k,b)Ix & [k])} and some melement subset E of
[k]. Thus, by Lemma 2.1, f2(S') c f2(C E). Since
fz(M') =
M’ M2 {i(r,s)|K(r) ,K(s), and r,s ¢
M' € M, and ([k)xK)Nn M2 =
([kIxK)n fz(CUE) = REGISTERVC U (EX(KU(Mlu E))).
Thus, if sign(x,S") > m, then
{(k,x) |k e [k1}N (REGISTERUC) # P, and x must be b
or an element of [c¢].

M, M'} for any
REGISTER, we have

Lemma 5.2

Let ACCEPT be the set of executions of P,y in
which user 2 accepts a set G during step 3, and
sign(b,8”) = m (so that user 2 has no signature of

b). The defensive weight of ACCEPT is ().

Proof

Let <B2> ACCEPT. From the definition of P,
it is clear that <Bz) = (G,H,Q), where
G is an n-element subset of K K,
Q is an m-element subset of [k],
G6a([k1x{(b}) = ax{b},
{only m of the markings in G are valid), and
H={c lx, e a).
Clearly w{G.&) = w(G,H,Q) =1,
in step 2 of P, with a subset, H’, of [c] other
than H, there is no set Q' he could receive next
that would cause him to accept G. Thus H alone, of
the elements of {JIT €6, IJ1 = m), is such
that (G,H) pref(ACCEPT), and w(G) = w() =(:)'1.

If user 2 responded

Lemma 5.3

If S is any attack by user 2 on RSIGN, there
is an automorphism ¢:I->I’, hidden from user 2 in

S, such that |{i*(x,b)lk e [k],i'(k,b) ¢ fz(S")}l £
m.

Proof

As in Lemms 5.1, fz(S") G,fz(CUE), for C =
{i(k,5) }x ¢ [k]} and some m-element subset E of
[k},

Choose any d in Ml. de Ml—fz(CUE); such a d
exists, since user 2 car infer only m elements of
[k] from CUE. Define $:M—>M such that
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(k,b), k ¢ [k]-E, or
(x,d), k ¢ [kl-E, or

(k,d) if m =
(k,b) if m
otherwise.

1t

$(m) =

The mapping ¢ is one—to—ome and onto: it extends
to an automorphism ¢:I—I’, where I' = <M,K,i’>.
Furthermore, ¢(j) = j, and i’(h,g) = i(h,g) for all

jsh,g & fz(C E), such that h,g & K, and (Bl) is a
behavior for Q(fl). Since b,d & M,, from the
definition of ¢ it is clear that f,(#) = ‘(fz(ﬂ).

(Bz> is a behavior for f(fz). so ¢ is hidden from
user 2 in S,

To see that [{i’(k,b)|k ¢ [k],i’(k,b) e £,(S")}]
{'m, note that lcn{i’(k,b)1x ¢ [k1}] = m;
only the
markings of b by keys.

in I',

m markings user 2 explicitly checked are

If user 2 the
automorphism ¢ describes a cryptosystem I' in which

accepts a valid signature,

the signature is invalid. Since ¢ is hidden from
user 2, he has no way of determining the validity
of the signature, and any confidence he has that
the signature is valid must arise solely from the
small probability of accepting an invalid
signature,
.Section 6.1

A Commutative Cryptosystem with Keys

Lot K = (k;,ky,...), K+ = (70,k;%,...) and
H= {hl,hz....] be disjoint sets of symbols, and

define N to be the set of strings (KUK 1) (HUK).

For any w ¢ N, with o = as for some a ip
Kuqu‘ and s in (HUK), define suff(w) =
for any ki e K, let cancel(ki.m) be the number of

s, and

occurances of the symbol ki in a, minus the number
of occurances of k;l in a,

Now define an equivalence relation, #, on N,
such that o # B if and only if suff(a) = suff(p),
and cancel(ki,a) = cancel(ki,B). for all ki in K.

We wuse [a]l to denote the equivalence class of o
under #.
Define e:(KXN/#)—3N/# and e L:(KxN/#)—3N/#

such that e(ki,[w]) = [kiw], and ehl(ki,[w])

= [ki wl), fgz all k, ¢ K, [] e y{#. Next, let I
= M,K,H,e,e "> = N/#,K/#,B/#,e,e “>. This struc-
ture models commutative cryptographic systems, such
as that of [Rive78]. The symbols in H
to cleartext messages, those
tographic keys. Encryption with a key ki

led by the concatenation of ki to the appropriite
string, and decryption by ki by concatenating ki .
The strings in N thus correspond to the successive
encryption and decryption of cleartext or keys with
various keys in K.
decryption functions commute, the

correspond
and in K to cryp—

is model-

Because the encryption and

order im which



these operations are applied does not effect the
result, and the messages in any equivalence class
of N/# are all identical.
Section 6.2

Coin Flipping

We now illustrate the role of hidden
automorphisms in this class of cryptosystems by
analyzing the coin flipping protocol due to Blum

and Rabin'’s oblivious transfer protocol [Blum81l].

Choosing a,b ¢ K, and h,t ¢ H, define
cryptosystem RSA = (I'(II'IZ)'(MI'MZ))'
where I1 = 12 = I, and M1 and M2 are any subsets of
EKEUH such that a,b,b,t e Ml, b,h,t ¢ M2' and
a ¢ M,. Thus, the key & is known only to user 1,
and the key b and cleartext messages h and t (for
heads and tails) are known to both users.

The system FLIP (pl,pz)
presented below.

we a

2-user

protocol is

Protocol 2

Step 1 Continue
(user 1 begins with a transmission).
Step 2 Send {[ah],[atl}.
Step 3 VWait for one message, {m}.
If m = [bah], then accept HEADS, else
if m = [bat], then accept TAILS, else halt.
Step 4 Send {a}.
End
Protocol p,
Step 1 Wait for two messages {r,s}.
Step 2 Send {e(b,x)}, where x is either r or s,
each with weight 0.5.
Step 3 Wait for one message, {k}.
If +K(k) or (e M(k,r),e M(k,s)) # ([n],[t])
then halt, )
else if ¢ l(k,x) = [nl,
accept HEADS, else accept TAILS.
End
Lemma 6.1

. If S is an execution of FLIP in which both
users accept, then both accept HEADS or both accept
TAILS.

Proof

From the description of FLIP and properties of
I, S = ((p,{[ab],[at]l),{[bax]]},{a}),
({[ahl,[at]},{[bax]},{a})), where x is either h or
t.
The following lemma establishes that user 1 cannot
force the coin toss to be either heads or tails.
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Lemma 6.2

Let
in which user 2
weight of ACCEPT is
result holds for TAILS.
Proof

ACCEPT be the set of all executions of P,
HEADS. The
By symmetry, the same

accepts defensive

0.5.

in
of the form ({[chl,[ct]},{[bech]},(c]),
where ¢ is any key. In any such execution, user 2
must choose x to be [ch] in step 2, which he will
do with weight 0.5. Following the definition of
defensive weight in section 5, we have
w({[chl,[ct]},([bech1},{c}) = w({lchl,lct]l},{Ibchl})
1, w(A) w({[chl,[ctl})
0.5(w{lchl,[ctl},{[bchl}) 0.5. Thus w(A), the
defensive weight of ACCEPT, is 0.5,

From the description of p,, the executions

ACCEPT are

There is no symmetric lemma establishing that
user 2 cannot force the outcome of the coim flip—
indeed, the defemsive weight of the executions
which user 1 accepts HEADS is 1, and similarly for
TAILS!

in

This is because our definition of defemsive

probability maximises over user 2's responses dur—
ing step 2 of the protocol-—-whether or not user 2
has the knowledge to maximise his behavior. The

following lemma shows that he does not; a strategy
that forces the coir toss to be heads in I,
it to be tails in the equally consistent world I’,
described by an automorphism hidden from user 2.

forces

Lemma 6.3

Let <Bz> be any behavior for user 2 such that
s ({[at].[ah]},<B2>) is a conversation in RSA,
There is an automorphism $:I-»I’, hidden from user
2 in S, such that ¢([at]) = [ah]l, and ¢([ak]) =
[at].

Proof

1) ,

Define #:N—N so that, for any o e (KUK
n ¢ (RUH),

on if n & {h,t} or cancel(a,s) = 0, else

#(on) = ch if n = t, and
ot, otherwise.
The mapping # is one~to-one and onto; furthermore,

o # B & ¥a) # ¥(B), so ¥/# is a one-to-ome map-
ping from M onto M., Now let ¢ = #/#; clearly
¢(latl) = [ah] and ¢([ahl) = [at].

It remains to show that ¢ is hidden from user
2 in S. Let S" be the set of messages in S, If
6(e|f2(S")) # e|f2(S"). then there exist

x,[yl ¢ fz(s"), with x a key, such that $(e(x,[y])
# e(d(x),4([y])); thus $([xy]) # e(x,4([y])), Dy
the definition of e and the observation that ¢(z) =
for all keys z. The reader may verify that this
inequality holds omnly if x Rut & is mnot in
M,, and is clearly not inferrable from {[at],[ah]},
so we have a contradiction, and ‘(elfz(S"))

z

a.



elf (S"). A similar argument establishes that
é(e 1|f2(S")) = e—1|f2(S"). The predicates K and H
are unchanged by ¢, so ﬁ(rlfz(s")) = r|f2(S") for
every relation r in I, .

Since [at] and [ahk] are in fl(ﬂ). $(lat]) =
[ah] and $([ahl) = [at] are in é(fl(O)), and S is a
conversation for (I"(Ii'Ié)’(Mi'M2)); thus ¢ is
hidden from user 2 in S,

Section 6.3

An Oblivious Transfer

An transfer [Rabi81] is a 2-user

protocol in which user 2 acquires some

oblivious

secret mes—
sage, s, not previously known to user 2, from user
1 with probability 1/2.
increase his chances of obtaining s above 1/2,
if he succeeds
executing the protocol, this must not be
to (who oblivious to
acquisition of s).

User 2 must not be able to
and
furthermore, in obtaining s by
apparant
user 1 remains user 2's
Oblivious transfers can be used
to implement coin flipping,
modified forms of hostage
[Rabi8l].

A protocol implementing the oblivious
to [Even81],

As we shall see, if user 2

certified mail and
exchange [Blum81],
trans—

fer, due Simon Even is presented
below. by
executing this protocol, user 1’s ignorance of this
fact is to the presence of a hidden
automorphism, which postulates a consistent view of
the world in which user 2 has not obtained s.

We will call the protocol OTRANS; it is
defined for the same cryptosystem as the previous
protocol, except that we assume that a and b
keys known only to user 1, ¢ is a key known only to

user 2, and s is any key or cleartext message known

obtains s

due

are

only to user 1, Thus a,b,s e Ml' c £ M. and
c e M2, a,b,s ¢ Mz.
The system protocol OTRANS = (§1,£2)
Protocol 51
Step 1 Continue
(user 1 begins with a transmission),
Step 2 Send {[as],[bsl}.
Step 3 Wait for one message, {x}.
If x is [as] or [bs], halt, else continue.
Step 4 Send (e_l(a,x)} or {e_l(b.x)].
each with weight 1/2,
End
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Protocol t

2
Step 1 Wait for two messages {m,n}.
Step 2 Send {e(c,y)} where y is either m or n,
each with weight 1/2,
Step 3 Wait for one message, {k}.
If C(e—l(c,k)), or K(e_l(c.k)),
and e_l(c.k) ¢ {m,n},
then accept, else halt.
End

The following lemma establishes that user 2 cannot
increase his chances of obtaining s above 1/2.

Lemma 6.4

Let ACCEPT be the set of all executions <B1)

of ty such that s ¢ fz(Bl)' The defensive weight
of ACCEPT is 0.5.
Proof

Executions in  ACCEPT are of the form

(0.{[&5],[bs]}.{x].{e-l(y,x)}). where y is either a
or b, The reader may confirm thet x must be
and/or decryption (by keys other than a
or b) of [ys] if s ¢ f2(B1). Since user 1 chooses
the key y after receiving x, the defemsive weight
of such executions is 1/2,

some
encryption

&

mma 6.5

Let S = ((B1>.(Bz>) be any execution of OTRANS
such that s ¢ fz(Bz). There is
¢:II', hidden from user 1 in

s ¢ é(fz(Bz)).

an

s'

automorphism

such that

Proof

There are only two executions of OTRANS satis—
fying the conditions of the lemma:
((p,{[as]),[bs]},{[cys1},{[cs1}),
(p,{l[as],[bs]),{lcysl},{[cs]1})), where y is either
b. We assume y = a; the proof is symmetric
fory = b, Define ¢:M—M such that for
o (KUK_I)‘, n ¢ (EUH),

[on] if n # s, or cancel(c,o0) = 0, and

a or
any

¢(lon]) =
[b_lacs]. otherwise.

Clearly one-to—one and onto, ¢ is the auvtomorphism
we require. In the structure I', decrypting [cs]
with the key ¢ produces [aﬂlbs]; decrypting [cas]
with ¢ produces [bs]. Thus s £ ‘(fz(Bz)). Only
encryption and decryption with the key c¢ is
different in I’ than in I, so ¢ is hidden from user
1.
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