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I. Introduction 

Much of the research on semantic theories 

has concentrated on qualitative properties such as 

definability (of such programming concepts as re- 

cursive procedures), equivalence (of different 
language constructs), and verifiability (of the 

correctness, or consistency, of one expression 

relative to another). Current qualitative theo- 

ries are in a tentative state and much remains to 
be done. However, there is also a quantitative 

side to semantics. Indeed, many of the questions 
which any semantic theory must answer are at once 

qualitative and quantitative. We would like to 

draw upon complexity-theoretic techniques to an- 

swer such questions. However, first it is neces- 

sary to establish a mathematical framework within 
which the analysis of semantic complexity can be 

carried out. This framework should accommodate 

the software concepts which underlie existing so- 
phisticated languages like ALGOL 68 and simpler 
languages like BASIC. Recent research [1-9] sug- 
gests a primarily algebraic framework. Algebra 

lends itself to a precise formulation of cer- 

tain "static"(or non-effective) programming con- 
cepts such as "values," "data structures" in an 

extensible language [2,9], and"operators[ whereas 

"dynamic" (or effective) concepts such as "con- 

trol" must be based on the theory of computation, 
although even here algebraic notions may prove 

useful [i]. However, it appears that classical 
abstract algebraic notions such as the homomor- 

phism concept, arising out of studies of the prop- 
erties of similar algebraic structures, are in- 

adequate to the task of computer science. 
We are currently working on the development 

of new algebraic constructs to provide a mathe- 

matical framework for both qualitative and quanti- 
tative analysis of semantic problems. Some 

preliminary ideas in this direction appear in [15] 
and in Appendix A. The emphasis in the present 
paper is on obta~]ing some insight into the kinds 

of results that can be obtained. Specifically, we 
restrict attention to questions involving relative 

complexity of flowchart programming systems. We 
expect that isolation of the relevant algebraic 
properties sufficient to imply our results and 
their natural generalizations will be possible. We 

also hope that the present results have intrinsic 
interest in suggesting a more "relative" or 

"modular" approach to complexity analysis: 

*This work was s~ported by the National Science 
Foundation through grant DCR75-02373. 

Analysis of complexity of algorithms has gen- 

erally been done in an "absolute" way, by counting 

the total "time" required by the algorithm when 
performed on a RAM with a specified operation set, 

or perhaps on a Turing machine. One difficulty 
with this approach is that it tends to de-empha- 

size similarities between computational problems. 

It has been noticed [i0] that the underlying alge- 
bra is not really absolute; for different problems 

or at different times for the same problem, we 
might wish to measure complexity of an arithmetic 

function in terms of basic arithmetic operations 

on N, in terms of bit vector operations, or in 
terms of basic bit operations. Thus, in a sense, 

time complexity is most naturally thought of as a 
relative concept rather than as an absolute one. 

Relative complexity is, of course, not a new 

idea; one form in which it has been studied is 
represented by [11,12,13], for example. This work 

uses Turing machines with oracles as a model for 

computation. But for very low-level complexity 

theory, the peculiarities of Turing machines some- 

times becomes intermingled with the properties of 

the oracle set in determining relative complexity. 
We take the viewpoint that both are important; the 

basic operations of the Turing machine itself are 

considered to be no different from oracle func- 
tions and predicates, and both are here thought of 

as primitives of an algebra. 
There are really two kinds of modularity to 

be treated. The first is the definition of a new 
operation from previously defined operations on a 

previously defined data type. (This is a very 
general description of the subject matter of 

"algebraic complexity" [14].) The second is the 

"implementation" of an entirely new data type, 
together with some new operations, relative to a 
previously defined data type. (For example, given 

bit vectors and some standard set of operations, 
how should we "implement" the rational numbers 
with an appropriate set of operations?) We con- 

sider both cases. 
One motivation for considering implementation 

of an entire algebra rather than of one function 

at a time arises from the previously mentioned 
work on data structures. A second and very im- 

portant motivation arises from coding considera- 
tions. Consider the situation in which we have a 

programming system based on bit vectors, with some 

natural set of operations, and wish to determine 

the "complexity of primeness for members of N." 

There is no a priori reason we could not assume a 
coding of N into bit vectors which includes 
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primeness in a quickly accessible way. Difficul- 
ties of this kind are generally resolved by speci- 
fying a particular coding. But meaningful results 
should be obtainable without resorting to such a 
drastic, specific solution. We regard "primeness" 
as existing not in a vacuum but along with other 
operations we want to perform on N (such as + or 
<). Restrictions on the complexity upper bound 
for the other operations on N serve to restrict 
the coding in such a way that coding-independent 
results can be obtained for the new operation. 

In the remaining sections, we give our defi- 
nitions and technical results. Results deal with 
relative complexity of certain basic operations on 
particular algebras, with the comparative express- 
ive power of different program structures, and 
with the comparative efficiency of different rela- 
tive codings of the same pair of algebras. We 
also try to capture what comprises an adequate 
(i.e. able to compute as efficiently as possible) 
set of basic operations over different algebras, 
and prove adequacy and inadequacy of some particu- 
lar sets of operations. The main technical re- 
sults of interest are those in Section V, Theorem 
3, and possibly Theorem I. 

There are many open questions remaining to 
be considered; also, extensions of our definitions 
will be needed to express more complicated data 
structure and algorithm implementations. We have 
chosen here to examine the simplest possible defi- 
nitions and explore their power. 

II. Notation and Definitions 

An algebra S= ~;f I ..... fk;Pl ..... p~is a 

set together with a collection of partial func- 
tions and partial predicates. Constants are O-ary 
functions. 

Definition: Let S = ~A;f I ..... fk;Pl ..... p~,~ and 

i 
f' " ' ... '>be S' :<A' ; f{ ..... k,,Pl, ,p~ 

two algebras. Let T: A'÷A be a possibly partial, 
onto, function. A partial function F. on A' is a 

i 
simulator of f'l if for all a l,...,a n , if 

fi(T(a I) ..... T(a )) is defined, then 
n 

fi(T(al)''''T(an )) = T(Fi(al ..... an))" A partial 

predicate P'l on A' is a simulator of Pi if 

for all a I ..... an, if Pi(T(al) ..... T(an )) is 

defined, then Pi(T(al) .... ,T(an) ) = Pi(al ..... an). 

Note that several representations in A' are 
permitted for each element of A. Predicates and 
functions are treated differently because of their 
different uses in programs. T is required to be 
onto in order that every element of A have a 
representation, but is permitted to be partial 
since not every element of A' need represent an 
element of A. 

Of course, F. and P. so far have no rela- 
tionship to the ba~e i . S'. operatlons of In 
Appendix A, some purely algebraic relationships 
are suggested, but here we will restrict to flow- 
chart prograrmming systems. 

Our flowcharts are composed of boxes of the 
following kinds: 

yes 

I xi := INPUT] 

I xi := f(x]l ...... x' ) 13n 

& 
I OUTPUT := TRUE I 

IOUTPUT := FALSE I 

Here, f and p represent function and predi- 
cate symbols of S respectively. We assume that 
each flowchart is consistent in its output type; 
it either outputs only values in A, or only values 
in {TRUE,FALSE}. Flowcharts are regarded as com- 
puting partial functions or predicates on A in the 
natural way, and we will take the notational 
liberty of identifying flowcharts with their func- 

tions or predicates. 
Definition: Let FI,...,F k be flowcharts over S' 

which compute partial functions. Let Pl ..... P~ 

be flowcharts over S' which compute partial predi- 
cates. Then we say 

S ~ S' (S is flowchart 
T (F 1 ..... Fk;P 1 ..... P£) 

reducible to S' via T,FI,...,Fk,P 1 .... ,P£) provided 

each F. is a simulator of the corresponding f., 
.i 

and each P. is a simulator of the correspond±rig Pi" 
1 

We write S ~ S' if S ~ S' for 
T T(FI,...,Fk;P 1 .... ,Pz) 

some F I, .... Fk,P 1 ..... P~. 

Of course, the same kind of definition could 
be made using other restrictions on the simulators. 
(See Appendix A.) For flowcharts (and many other 
natural classes), proper handling of the partial- 
hess will give the expected results regarding sub- 
stitution, transitivity, congruence relations and 

quotient algebras. 
Sometimes, (e.g. in Section V), we will wish 

to imagine a coding mapping as going from left to 
right instead of from right to left. For any 
algebra S, let F(S) (the free version of S) have as 
its domain all well-formed terms over the function 
symbols of S, (including constants) and its func- 
tions defined in the usual way for free algebras. 
Let e(x), for x £ domain F(S), be the "value" of x 
when evaluated in S. (e(x) may be undefined.) 
Let each predicate p on ~(S) be defined by 

p(x I, .... Xn ) = p(e(xl) ..... e(Xn )) (so that 

P(Xl,...,x n) may be undefined). Now, if the 
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situation is as in the preceding definitions, a 
natural (partial) mapping O: domain (F(S))÷A ' may 

be constructed so that e(x) = T(o(x)) for all x. 
o is constructed inductively on the structure of 

terms in F(S), using FI, .... F k. What this means 

is that our original definition, although it 
allows arbitrarily many representations in S' for 
each element of S, still distinguishes certain 
representations, the choice depending on the comp- 

utation path used to generate the element. 
To every element x of domain F(S) we associ- 

ate a size s(x), ~ich is the minimum number of 
gates (each gate labelled by a function of F(S)) 
in a no-input arbitrary fan-out circuit computing 
x. (This definition is used in Section V only.) 
For any flowchart F, L F will denote the natural 

path length function and will be the complexity 
measure we will consider; i.e. LF(X) is the number 
of operations involved in the computation of F(x). 

III. Expressiveness of Systems 
The definitions in Section II provide a 

general framework for studying relative comput- 
ability and relative complexity of systems. Our 
primary interest here is in complexity issues, and 
Sections IV-VI are devoted to consideration of 
different kinds of[ questions about relative com- 
plexity. Before moving to these questions, 
however, it is worthwhile to mention that there 
are some expressiveness issues to consider. For 
flowcharts alone, we have found no surprises. 

There are, however, several general questions that 
arise when we compare different program structures. 
For example, how dependent are our definitions on 
our use of flowcharts? 

These questions are related to the compara- 
tive expressiveness questions studied in schema- 

tology (16,17,18,]9). Paterson and Hewitt, for 
example, show that there is a recursion scheme not 
strongly equivalent to any flowchart scheme. The 
current framework suggests considering a similar 
question for interpreted schemes. (After all, 
when recursive programs are compiled, the under- 

lying algebra is known.) Of course, if the alge- 
bra has exactly the power to compute the partial 
recursive functions (~N;O,succ; => or 

<{0,1}*;~,0succ;isucc; =>, for instance), then 
there is no difference in expressiveness between 
flowcharts and general r.e. tree schemes. In 
fact, the same is true for any algebra S with 
O-ary and l-ary functions only (but arbitrary 

< 
predicates) and with<N;O,succ; => ~ S for some 
T. We ask whether there are algebras~over which 
these classes differ: 

Theorem i: There exists an algebra S = 

~i0,1)*,l,0succ;lsucc;p> (where p is a unary 
total recursive predicate) and a partial unary 
predicate q such that q is computed by a recur- 
sive program over S but q is not computed by any 
finite flowchart over S. 

Proof: The techniques originate in [16] but 

become more complicated because we are no longer 
permitted to modify interpretations as they do. 
We must patch together a single diagonalizing in- 
terpretation. An outline of the proof appears as 
Appendix B. [] 

The moral is that our restriction to flow- 
charts is of some significance, even for expres- 
siveness. 

IV. Adequate Algebras With Domain N or {0,i}* 
There are many algebras with domain N or 

{0,i}* with (flowchart) expressive power exactly 
the partial recursive functions. Intuitively, how- 
ever, not all of them are equally efficient. We 

give definitions for adequacy (in the sense of 
having efficiency comparable to Turing machines) of 
a set of operations over either of these domains 
and classify several commonly-used sets of opera- 
tions as to their adequacy. In proofs of the 
classification results, we emphasize hierarchical 
techniques which fit" our reducibility definitions. 

For x e N, define 2adic (x) to be the usual 
2adic coding of x into O's and l's; 2adic is a 
bijection of N onto {0,i}*. If x E {0,i}*, I~I 
refers to the length of x. If x E N, [~I refers 

to 12adic (x) I. 
Definition: An algebra S with domain N(or {0,i}*) 
is adequate if for every polynomial computable 

function or predicate f on N(or {0,i}*), there 
exist a polynomial p and flowchart F with: 

< 
(1)<N;f> ~[x](~) s 

< 
(or ~0,1}*;~[x ] (F)S), 

(2) LF(X 1 ..... Xn) ~ p(max Ixjl) for all inputs 

and 

(3) the length of any value produced during the 

computation of F on inputs Xl,...,x is 
n 

at most p(max Ixjl). 

That is, tractable functions have tractable 
programs over S. The definition includes restric- 
tions both on time and space; both will be needed 
to make the Lemma of this Section true. Although 
the definition only refers to tractable functions, 

it will follow that functions of any complexity on 
a Turing machine can be done over S with similar 
complexity. 

Consider, for example, B =~{0,1}*;~,0succ, 
isucc,car,cdr,reverse; = I,=0,=~ , where 

0succ (x) = x0,1succ(x) = xl, 

car (x) = lfif x = 
k~-he first symbol of x, otherwise, and 

cdr (x) = l~f x = I, 

~ii but the first symbol of x, other- 
wise. (B consists of a reasonable set of "unit- 
cost" string operations.) It is straightforward to 
show, by machine simulation, that ~ is adequate. 
In fact, ~ is able to simulate multihead multitape 
Turing machines in linear time. To show that other 
algebras are adequate, we would like to use the 
adequacy of ~ and our reducibility; to do so, we 

must introduce a complexity bound into the reduci- 
bility definition: 

Definition: Let S = <A;f I ..... fk;Pl ..... PF~andv 

S' be algebras with domain N or {0,i}*. Assume 

S <- S' 
T(F 1 ..... Fk;P 1 ..... P/) 

Assume there is some polynomial p for which: 

(i) each Fi satisfies LF.(Xl,...,Xn)<_ 
l 

p(max Ixjl + nfi(Y(x I) ..... T(Xn))n) 

for all inputs, 

(2) the length of any value produced during the 

computation of F i on Xl,...,x n is at most 
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p (max Ixjl + Ifi(T(x @ ..... T(Xn)) I ), 

< 
(3) each P'l satisfies Lp. (x I, .... x n) -- ~ 

1 
p (max I xjl) for all inputs, and 

(4) the length of any value produced during the 
computation of Pi on x I ..... x n is at most 

p (max I xjl). 

< poly s' . we write Then 
S T(FI ..... Fk;P 1 .... ,Pz) 

we say 

! poly s, < 
ifS 

T(FI ..... Fk;Pl ..... p~)S' 
S T for 

some FI,...,Fk,PI,...,P~. 

The "honesty" condition in (i) and (2) is 
used rather than a strict polynomial condition as 
in (3) and (4) primarily because even with this 
generalized definition, the following lemma is 
still true: 

Lemma: Let S and S' be algebras over N or {0,I}*, 

the identity 2adlc -I as appropriate. If 

S TJ < poly S' and S is adequate, then S' is adequate. 

Proof: By substitution of flowcharts. [] 

It can now be shown that other common alge- 
braic systems over N and {0,i}* are adequate: 
Theorem 2: The following are adequate: 

(a) <{ 0,1 } * ; ~, 0, i, cdr, concatenation ; => 

(b) <{0, i}* ; ~, 0succ, Isucc;prefix> , 

(where prefix (x,y) =~rue if x is a prefix 

false otherwise. 

(c) <N;0,1,+;<> 

(d) <N;0,1,+,= ;:> 

(e) <N;0,1,+,Ix[Ixl ];: > , 

Proof: Using the Lemma and the adequacy of B. It 

< p°Iy <{0, i},; ~, 0, i, car, cdr, is easy to show ~3~Fx l 
concatenation;=> , and car may be trivially re- 
programmed in terms of the other primitives. The 
adequacy of (b) is then deduced from that of ia), 
of (c) from (b), and of (d) and (e) from (c). 

Obtaining (e) from (b) involves successive doubling 
and comparison to compute "prefix"; the other con- 
structions are straightforward. 

[] 
It is also possible to prove that certain 

other systems, each with the same computing power 
as those in Theorem 2, are not adequate. Of par- 
ticular interest are (a) and (b) below; together 
they combine to give an adequate system, but each 
separately is not adequate. In a sense which can 
be made precise, < and + comprise a very low-level 
example of primitives that do not "help" each other 
(in the presence of <N;0,succ;=>). 
Theorem 3: The following are not adequate: 

(a) <N; 0, i,+;=> , 

(b) <N;0,s~cc;_<> , 

(c) <{0,i}*; ~, 0succ,lsuec;=> 

(d) <{0,1 }* ; ~, 0,1, car, concatenation ; => 

Proof: (a) We show that < cannot be computed over 

N;0,1,+;= with polynomial path length. Assume 
that it can, and F is a flowchart computing <, 
with path length on inputs x,y at most p(Ixl?lyl), 
p a monotone polynomial. Choose n £ N With 
p(12nl,12nl) < n, and consider 

A = { (x,y)In+l < x < 2n and 0 < y < n} and 

B = {(x,y) I (y,x) e A}. We show that some member 
of A and some member of B must follow the same path 

in F. 
Unwind F into an (infinite) tree T. Every 

input pair (x,y) causes a path in T. to be follow- 

ed, of length ~ p(Ixl,lyl) and ending with either 

IOUTPUT := TRUEI or IOUTPUT := FALSEI according 

to whether x < y or x > y. Each branch'point in T 
results from an equals test which may be expressed 

in the form 

ax+by+c = a'x+b'y+c', a,b,c,a',b',c' e N. 

(The expression for each branch point may be con- 
structed by ignoring the information obtained from 
tests along the path, and simply looking at uses 
of assignment and +.) Prune T by omitting all 
tests (and subsequent "no" subtrees) having a=a', 
b=b' and c=c' Remaining is a tree T' for which, 
at every branch point, all inputs (x,y) causing 
the "yes" branch to be taken lie on one straight 
line. A counting argument now shows that some 
point in A (rasp. B) must follow the "no" branch 
at every choice point, and this path must terminate. 

(b) Consider F, a flowchart over N;0,succ;~ 
which computes unary function f, and which has 
path length at most p(Ixl) on input x, for some 
polynomial p. Choose n s N with p(In[) < n. Con- 
sider the behavior of F on input n and on input 
x > n. F must follow the same path in both cases, 
because succ cannot span from 0 to n in p(Inl) 
steps, and < is unable to distinguish n from x. 
But then consider how the output of F on input n 
was-constructed. The output arose from a variable 
initialized either at 0 or n and increased by 1 a 
fixed number of times. Thus, for some c e N we 
have f(x) = c for x > n, or else f(x) = x+c for 
x > n. 

-- -- < poly 
(e) <{0,1}*;l,succ0,succl;=/~2a~i c 

<N;0,1,+;=> . Use the Lemma. 

(d) We show that cdr cannot be computed over 
<{0,1}*;l,0,11car,concatenation;=> with polyno- 
mial path length. Assume that it can, and F. is 
such a flowchart, with path length on input x at 
most p(Ixl) , p a polynomial. Choose n 6 N -- {0} 
with p(n) + 1 < 2 n-l, and consider A= {x E {0,i}* 

l IX| = n and car(x) = 0}. We will first show 
that two distinct members of A must follow the 
same path in F: 

Unwind F into a tree T. Each branch point 
results from an equals test on two expressions, 
each built up from l's, O's, l's and x's using car 
and concatenation. Restrict consideration to in- 
puts x e A; then we may simplify the expressions 
using simple reduction rules so that each expres- 

sion is a (possibly empty) concatenation of O's, 
l's, and x's. But since all x E A are of the same 
length, each equation is satisfied by either n_0_o 
x C A, all x £ A or exactly one x E A. Prune T by 
omitting all tests (and subsequent "no" subtrees) 
for which all x ~ A satisfy the reduced equation. 
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Remaining is a tree T' for which, at each branch 
point, at most one x ~ A causes the "YES" branch 
to be taken. A counting argument shows there are 

two values Xl,X 2 £ A following the "no" branch at 

each point. 
Consider the output from T' on inputs x 1 

and x 2. Reductions as above show that the output 
on input x. is the value of a (possibly empty) con- 
catenation of 0 s, 1 s and x s, while the output 

• 1 . 
on x 2 zs the value of the same expresslon with x 
replacing x . But since [cdr (x)I < I x I ,x ca~ 

1 . 1 1 
cannot occur in the expresslon. Thus, t~e output 
is identical for both inputs. 

[] 
We remark tlhat Theorem 3 may be strengthened, 

with similar proofs, to be coding-independent. 
One very interesting question we have not 

been able to resolve is: 
Question: Is <N;0,1,+,x;=> adequate? 
This seems to be a funda~ental one about the ex- 
pressiveness of polynomials. 

V. Optimal Codings of Arithmetic Systems into 
We compare different possible codings of 

basic algebras into ~ of the preceding sections. 
We show that certain natural codings are nearly 
optimal, in the sense that nothing above a certain 
minimal level of complexity can be computed faster 
in any other coding. Thus, we have limits on the 
improvement possible through changes in coding. 
Ideas for proofs are fairly simple and much more 
general than presented here. 

Consider coding <N;0,1,+;<_~ into B. In 
the 2adic coding, + and < can be done by'flowcharts 
with path length linear in the log of the inputs 
in N. In comparing another coding to this one, it 
is reasonable to impose similar complexity restric- 
tions on + and < in the new coding. We obtain: 

< 

T heore____~m 4: Assume <N;+;p> ~(F -P)~' where p is 
+, 

a partial predicate. Assume there exists C such 
that T(y)=x and T(y')=x' imply (y,y') < LF+ 

C(IxI+Ixll). Further assume that Y(y)=x implies 
Lp(y) _< t(x), where t is a partial function. 

Then there is a flowchart G and a constant C 
< 

such that <N; ;~,~ 2~dic-i (G) ~' and 2adic -I (y) =x 

implies LG(Y) ~ C(Ixl2+t(x)). 

Proof: The 2adic representation of x £ N allows 
us to quickly determine an efficient way to build 
up x using +. This allows for fast translation 
from the 2adic to a Y representation. More pre- 
cisely, we show: 

Lemma: Assume <N;+;~(F+)~, and F+ is as in 

Theorem 4. Then there is a flowchart G and a 
constant C such that G(y)=y ' implies 2adic-l(y) = 

T(y'), and 2adic(x)=y implies LG(Y) ~ Clxl 2 

Proof of Lemma: G first uses the bits of y to ob- 
tain a "parse" of 2adic-l(y), i.e. a sequence of + 
operations, starting with 0 and i, that generates 
2adic-l(y). The natural parse consists of a se- 
quence of about IYI operations, each involving 
either doubling, or doubling and adding i. A fixed 
element of T-l(0) and one of T-l(1) are built into 
G. G then applies F in the way described by the 
parse, using the fixed elements where needed. By 
the consistency of T with F , an element of 
y-l(2adic-l(y)) is eventual~y obtained. 

Each of the IYl operations involves a bounded 
number of applications of F to inputs which are Y- + . 
representations of integers with length at most lYl- 
Since I 2adic-l(Y) l=lYl , the bound follows. 

The Theorem is now an immediate consequence 
of the Lemma and the additional hypothesis. [] 

Stronger hypotheses are needed to obtain a 
similar result for functions as well as predicates: 

< 
Theorem 5: Assume <N;+,f;~ (F+,F;p<)B, where f 

is a partial function. Assume F is as in Theorem + 
4. Assume that Y(y)=x implies LF(Y) ~ t(x), where 

t is a partial function. Further assume there ex- 
ists C such that T(y)=x and T(y')=x' implies 
Lp<Cy,y')~ c (Ixl+Ix'L) 

Then for any g, there exist a flowchart G and 
% 

a constant C such that <N;f> 2~dic-l(G) B, and 

2adic-l(y)=x implies LG(Y) ! C([xi2+t(x)+If(x) 12+e~ 

Proof: 2adic (f(x)) is constructed bit-by-bit from 
a T-representation of f(x). More precisely, we 

show: < 
Lemma: Assume <N;+;~(F+;p<)~, with F+ as in 

Theorem 4 and P< as in Theorem--5. 

Then for any £,--there exist a flowchart G and a 
constant C with G(y)=2adic(T(y)) and LG(Y) 

CIT(y 12+£for all y. 

Proof of Lemma: Let CIe Y -I(1);CI has a flowchart 
over B. We first design a flowchart G 1 over ~I = 
<{0,l}*;~,0suce,lsucc,car,cdr,reverse,Cl,F+;=~ , 

=0,=I;P~ which computes (the function computed 
by) G, and then obtain the needed flowchart G by 
replacement of the symbols CI,F + and P< by their 
flowcharts. 

The best G~ we know arises from a compilation 
1 

using techniques of Chandra [20], of a ,,loop-free 
linear recursive program" over B I. The relevant 
theorem appears at the beginning of Section VI. 
The recursive program we use is: (Notation is as 
in [20].) 

Translate (x0) : data Xl,X 2 

I* Given x 0 ~ {0,i}*, Translate (x^) outputs 
2adic(T(x^)) if x 0 g domain T. ItsUbehavior is 

otherwiseUunsp ecified- * 1 
S TART; 

<Xl, x2> Approx (F+ (x0, C1), ~) ; 

RETURN (Xl) ; 

Approx (x0, Xl) : data x2,x 3 

I* Given x 0 with Y(x 0) defined and >__ i, 

x I with T(x I) a power of 2, and 

T(Xl) < Y(x0), Approx(x0,xl) returns two values: 

(i) the string obtained by deleting the leading i. 
from the binary representation of L(x0 ) T(Xlj 

and (2) some value in Y-l(~(x 0) -T(Xl)JX T(Xl))-*I 

S TART ; 

if P< (F+ (Xl,X I) ,x 0) 
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then begin 

~2,x~ ~- approx(x0,F+(Xl,X 1)) 

if P< (F+(x3,xl),X0) 

then RETURN (succl(x2),F+(x3,xl)); 

else RETURN (succ0(x2) , x3) ; 

end; 

else RETURN (l,Xl) ; 

The given assertions suffice to verify cor- 
rectness of the program. On input y, the recur- 
sion depth is approximately IT(y) I. Also, if an 
argument z is generated during computation on in- 
put y, then IT(z) I is at most approximately 
IT(y) I. 

Using Chandra's theorem, we obtain G] compu- 
ting G, with y s domain (T) implying L_ (yl < 

~i 
CIT(y) I l+e," for some constant C. Moreover, each 
argument z (with possibly finitely many excep- 
tions) to which F+ and P< are applied when G 1 is 

run on input y have IT(z~l at most approximately 

l (y) I 
Now obtain flowchart G by replacing in GI, 

F+,P< and C 1 by their flowcharts. The complexity 

bound follows from the hypotheses on F+and P<. 

The Theorem follows immediately. [] 

Theorems 4 and 5 limit the improved effi- 
ciency that could be obtained over the standard 
coding, at least for computation of "small" func- 
tions. The only possible improvement is a very 
local one arising from possible concise represen- 
tations of large numbers (such an improvement is 
possible, for example, in floating-point codings.) 
In particular, polynomial size-bounded "polyno- 
mial-computable" functions and predicates in any 
coding satisfying the hypotheses of Theorems 4 
and 5 are also "polynomial-computable" in the 
standard coding. 

The reader may object to the complexity 
restrictions used in Theorem 4 and 5 - namely, 
all the codings have a uniform bound on the 
running time of flowcharts on all representations 
of an element. It is plausible that some'effi- 
cient mappings might use infinitely many repre- 
sentations of some elements; in that case, a 
uniform bound is not the appropriate requirement. 
To prove optimality results for the standard 
coding when compared to codings allowing infinite- 
ly many representations for elements, we require 
a different way to compare complexity of codings. 
We will allow complexity to be calculated not 
only in terms of the natural number itself (as 
before) but also in terms of the way that number 
is generated in <N;0,1,+;<~: Intuitively} the 
size of an expression evaluating to a number is a 
measure of the "size" of the number, and so it is 
probably reasonable to use that size as a para- 
meter upon which to base measures of running time. 
Here we use F S), o and s as defined in Section II. 

Let S=<N;0,1,+;~> and let s be the size 
measure on [(S). In the standard coding, we may 
obtain flowcharts for + and <, O': domain 
(F(S))+{0,1}* as in Section ~I and a constant C 
such that L F (O' (x),o' (x')) ~ C((s(x)+s(x')) and 

+ 

Lp<(O'(x),O'(x')) ~ C(s(x)+s(x')) for all x and x'. 

So we impose similar restrictions on other codings 
in order to compare them. Allowing polynomial 
fudge-factors for simplicity, we obtain: 

Theorem 6: Assume <N;0,1,+;~T (F0,FI,F+;p)B , and 

is as in Section II. Assume for some polynomial 

q, L F (O(x),O(x')) ~ q(s(x)+s(x')) and 
+ 

Lp(a(x)) ~ q(s(x)) for all x, x'. 

Then there exist a flowchart G and a polyno- 

mial q such that<N; < ;P~2adic -I (G) B, and 

LG(O'(x)) ~ q(s(x)) for all x. 

Proof: By techniques similar to those used for 
Theorem 4. [] 

That is, even allowing codings with infinite- 
ly many representations for each element, the stan- 
dard coding cannot be significantly improved upon 
for the computation of predicates. As before, a 
result for functions is obtainable under an addi- 
tional hypothesis on P<: 

Theorem 7: Assume <N;0,1,+,f;<_~ 

< 
B, 

~(F0,FI,F+,F;P <) 

O is as in Section II and F is as in Theorem 6. 
Assume for some polynomial ~, that 

LF(O(x)) ~ q(s(x)) for all x, that 

Lp<(O(x),O(x')) ~ q(s(x) + s(x')) for all x,x', and 

that (Vx)(~y)E(U(x)~ = U(y) and s(y)<q(s(x)~ . 

(This latter assumption represents a size restric- 
tion on the function computed by F.) 

Then there exist flowchart G and polynomial 

q with <N;f;~ < 2adic -I (G) B, and 

LG(~'(x)) _< q(s(x)) for all x. 

Similar optimality results are obtained for 
certain standard codings of Z and the positive 
rationals in B. These results lead to some prelim- 
inary definitions for "adequacy " of operation sets 
over Z and Q+ and to classification of some common 
operation sets as to their adequacy. Further de- 
tails will have to be deferred to a longer paper. 

VI. Low-Level Relative Complexity of Basic 
Operations on N and {0,i}* 

Adequacy, as studied in Section IV, allows 
polynomial variation and is certainly not as fine 
a concept as we would like to consider. In this 
section, we reconsider commonly-used basic opera- 
tions on N and {0,i}* to obtain a finer complexity 
classification. Results in this sections, since 
each deals with only a single algebra, use little 
of the expressive power of the present framework. 
The new framework simply provides a unification and 
an encouragement for hierarchical constructions. 
These results are only some of a virtually unlimit- 
ed class of similar results which presumably could 
be obtained. 
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The primary aim here is to obtain upper and 
lower bounds on flowchart complexity; however, the 
best flowchart upper bounds we have obtained for 
the operations studied in this section have arisen 
through loop-free linear recursive programs com- 
piled into flowcharts by Chandra's construction 
[20]. We use Chandra's formalism for linear re- 
cursive programs, except that we do not specify 
that inputs be distinguished constants of the al- 
gebra; our (interpreted) programs compute functions 
and predicates rather than single values. As he 
does, we use D F (the recursion depth of program F) 

as the function giving a measure of complexity. 
We use as a lemma: 

Theorem (Chandra) : Assume F is a linear recursive 
< 

over S, and <{0,1};0,1;:~T S. Assume 6 program 

is a positive real. Then there exists F', a flow- 
chart over S co~uting the same function or predi- 
cate as F, and C 6 N such that 

1+6 
LF,(X 1 ..... x n) ~L C(DF(X 1 ..... Xn)) for all in- 

puts. Moreover, except for a fixed finite set of 
possible exceptions, if a base operation of S is 
applied to an element of S during the execution 
of F' on a given input, then the same base opera- 
tion was applied to the same element during the 
execution of F on the same input. 

Theorem 8: For every positive real 6, there exist 
exists C 6 N and a flowchart F, such that (for 
all inputs): 

(a) F computes parity over<N;0,1,+;<~ and 
1+6, 

L F(x) < C (log x) 

(b) F computes - over <N;0,1,+;<~ and 

i+6 
LF(Xl,X 2) < C(log(xl-x2)) 

(c) F computes x over <N;0,1,+;<> and 

1+6 
LE(Xl,X2)< C(min(log Xl, log x2)) , 

(d) F computes ~Xl,X 2 [XlX2 ]over<N;0,1,+,x; b 

i+6 
and LF(Xl,X2) < C(log x2) , 

(e) F computes parity over<N;0,1,+,x;<_~, and 

LF(X) .<C(log x) (log log x) I+6, 

(f) F computes "- over <N;0,1,+,x;<~, and 

~(Xl,×2)_< c (log(x~x2)) (log log(xl-x 2 }~6 

(g) F computes < over <N;0,1,+, II; => , and 

l+g 
LF(Xl,X2 )<C (log x I) 

(h) F computes reverse, over 

<{O,l}*;~,Osucc,lsucc;prefix> and 

~F (x) fi el xl 1+6 

Proof: We use Chandra's theorem; sometimes 
linear recursive programs are used to compute the 
needed function, and other times they are used to 

compute"modules" of the function. For instance, 
we show: 

(c) Mult (x0,xl) : data x 2 

I* Given x0,x I 6 N, Mult(x0,x I) returns their 

product.* I 

START; 

if x 0 ~ x 1 

then x 2 ÷ Multl(x0,xl); 

else x 2 ÷ Multl(Xl,X0); 

RETURN (x 2) ; 

Multl(x0,x l) : data x2,x 3 

< x I, Multl(x0,x I) I* Given x 0,x I 6 N with x 0 _ 

returns their product. * I 

S TART ; 

if x 0 < 0 

then RETURN (0) ; 

else begin 

<x2,x~÷ Approx (x0,Xl,l,x I) ; 

RETURN (x 3) ; 

end ; 

Approx (x0,xl,x2,x3) : data x4,x 5 

I* Given x 0 < x I with x0~ 0,x 2 > 1 and x3=x2-x I, 

Approx (x0, ~ ,x2,x 3) returns two values: 

~ (1) the largest y < x 0 such that y is a multiple 

of x 2, and 

(2) for y as in (i), Y'Xl.* 1 

S TART; 

if x 2 < x 0 

then begin 

<x4,x ~ ÷ Approx (x0,xl,x2+x2,x3+x 3) ; 

x 6 + x4+x 2 ; 

if x 6 < x 0 

then RETURN (x6,x5+x3) ; 

else RETURN (x4,x 5) ; 

end; 

else RETURN (0,0) ; 

(e) Power (x0,xl): data: x 2 

I* If x 0 > Power returns the largest x I , (x0,x I) 

y _< x0-x I such that y is a power of 2. 0 is re- 

turned otherwise. * 1 

S TART ; 

if x 0 < x I 

then RETURN (0) ; 
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else if x 0~ Xl+l 
then RETURN(I); 
else begin 

XR~ + Approx (x0 ,x l ,2 )  ; 
TURN (x2); 

end; 

Approx (x0,xl,x2): data x 3 

I* Given x 0 ~ Xl+2 , x 2 = 22a for some a ~ 0, 

Approx (x0,xl,x2) returns the largest y ~ x0-x 1 

such that y = 2 b'2a for some b E N. *I 

START; 

if x2+x I ~ x 0 

then begin 

+ Approx x 3 ( x0 ,x l , x2 -x2 ) ;  
if X3.X 2 + x I ~ x 0 

then RETURN (x3.x2) ; 

else RETURN (x3) ; 

end; 

else RETURN (i); 

For any e, we may obtain a flowchart F' for 

Power over <N;0,1,+,x;~with LF,(X0,Xl) 

C(log log(x 0 -Xl))l+£ , for some constant C. 

Now a simple flowchart F" may be construc- 

ted computing parity over <N;0,1,+,power;~, 

with LF,,(x) ~ C log x for some C. Moreover, for 

all values y produced during the computation of 

F" on input x, we have y < x. Substitution of 

F' in F" yields the desired bound. 

The other constructions are similar; a few 
programming tricks are needed, for example for 

(g)" [] 

It is not difficult to obtain corresponding 
lower bounds, by techniques such as those used to 
prove Theorem 3 and by counting techniques of 

Stockmeyer [21]. In no case, however, is the 
obtained lower bound sensitive to the "£". We 
have as yet been unable to prove an interesting 
distinction in complexity between linear recur- 

sive programs and flowcharts. We conjecture, for 
example: 

Conjecture:, There does not exist a flowchart F 
and a constant such that F computes reverse 
over <{O,l}*;~,Osucc,lsuce;prefix> and 
L(x) !clxl- 

Appendix A: Algebraic Concepts 

The complexity characterizations in this 
paper, while stated for flowchart simulators, do 
not require the full power of flowcharts for their 
proofs. We are working on the isolation of the 

relevant algebraic properties sufficient to derive 
lower bounds and realistic upper bounds for rela- 
tive complexity of interesting problems. Some 
definitions which appear fruitful are: 

Definition: Let S and S' be algebras, with nota- 
tion as before. A mapping ~: A÷A' is a genomor- 
phism if ~ has a partial left-inverse T such that 

for all f'l and all bl,...,bn, 

fi(bl ..... b n) e T(J(b I) ..... ~(bn) ] )- 

(The brackets refer to the algebraic closure.) 
We note that the notation in the above defi- 

nition differs from that in [15]. 

Definition: Let S be an algebra. A function F on 

A is closed if F(a I ..... an) ~ E1 ..... an~__ for all 

al'''''an in its domain. 

Definition: Let S,S' be algebras, T:A'÷A a possi- 
bly partial, onto, function. T is closed 
simulative if every basic function of S has a 
closed simulator over S'. 

We note elementary implications between the 
two definitions: 

Lemma: If T is closed simulative, then every right 
inverse of T is a genomorphism. If ~ is a geno- 
morphism whose image is a subalgebra, then there 
exists a left inverse of ~ which is closed 
simulative. 

Note that closed simulative maps may be used 
in the natural way to define a transitive reduci" 
bility between algebras. These weak definitions 
deal with basis functions only, and capture the 
concept of accessibility of values within algebras. 
Although expressiveness considerations may or may 
not be interesting for these definitions, natural 
definitions of complexity can be made, and some 
nontrivial low-level complexity results can be made 
to follow from them. 

In order to introduce meaningful restrictions 
on predicate simulators, we define "tree predicates" 
(and "tree functions") over an algebra. Intuitive- 
ly, these are predicates and functions computable 
by general tree schemes (possibly infinite, loop- 
free flowcharts) over the algebra. A precise alge- 
braic characterization of such predicates and 
functions is not difficult. 

Definition: Let S,S' be algebras, T:A'+A a possi- 
bly partial, onto function. T is tree simulative 
if every basic function and predicate of S has a 
tree simulator over S'. 

Again, a transitive reducibility between 
algebras results. Also again, complexity consid- 
erations seem more interesting than expressiveness 
considerations, and several nontrivial complexity 
results (of the "decision tree" variety) can be 
made to follow from these definitions. 

Since the "flowchart simulative" reducibility 
used earlier in this paper is (properly) stronger 
than the closed simulative and tree simulative 
reducibilities presented here, it is sensible to 
discuss the attribution of parts of inherent flow- 
chart complexity of problems to closure and to 
tree considerations. 

Appendix B: Proof Outline for Theorem 1 

We diagonalize over unary predicate flow- 

charts FI...,Fn,... , each of which uses only opera- 

tion symbols from S. We assume without loss of 
generality that F has at most n boxes (and n 

n . 
registers). Borrowzng from Paterson and Hewitt, 
we define: 
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qp(X) = if p(x) 

then TRLrE 

else qp(X0) A qp(Xl). 

Note ~ is always either TRUE or undefined. We 
construct p so the ~ satisfies the needed condi- 
tions on q in the statement of the theorem; at 
stage n, we insure that F does not correctly com- 

n 
pute q . We also construct three auxiliary func- 
tionsP s: N ÷ {0,i}*, f: N+N and g: N÷N such that 

s(0) = 1 

for all n, s(n) is a prefix of s(n+l), 

length (s(n)) = f(n), 

all strings put into p before stage n have 
lengths less than f(n), 

(i) only extensions of s(n) get put into p at 
stage n, 

and g(n) is "very large" relative to n and f(n). 

Stage I,: Let Pn be the set of values put into p 

before stage n, and assume s(n), f(n) and g(n) 
are known. 

1 {xw I lw[ = g(n)}. Let x = s(n)0 g(n) Let p = Pn U 

There are two possibilities: 

Case i: F on input x with predicate symbol in- 
n 

terpreted as pl halts with either TRUE or FALSE 

as output. 

In this case, we claim that at most 

(2f(n)+2g(n)+l)n.n steps were executed. 

(For any predicate p, define equivalence relation 

R by wR w I iff (Vv) p(wv) iff p(wlv) Then 
P P 

there are at most (2f(n)+2g(n)+l) equivalence 

classes in R i- If there are two points in the 
P 

computation where all registers have RDI- 

equivalent contents and control is at the same 
flowchart box, the computation is in a loop.) 
Therefore, since g(n) is large, we can find w,v 
with 

IWl :Ivl:g(n) , 

(2) xw was not generated in any register during 
1 

the computation of F on x with p , 
n 

(3) no extension of s(n)v was generated in any 
1 

register during the computation of F on x with p . 
n 

Let Pn+l=pl U{s(n)vy I lyl=g(n ) and y ~ w} 

Then we claim: 

Fn on x and Pn+l behaves exactly like Fn on 
1 

x and p , as far as register contents, predi- 

cate answers and eventual output are concerned 

(by (3)). Also, Fn on s(n)v and Pn+l behaves 

exactly like F on x and pl, as far as predicate 
n 

answers and eventual output are concerned (by (2) 
and (3)) . 

Let f(n+l) > f(n)+2g(n), and also be greater than 
the lengths of all strings generated during the 

computation of F on s(n)v, with Pn+l" Let s(n+l) 
n 

be any string of length f(n+l) which is not an ex- 
tension of s(n) vw. 

(By (i), F n on s(n)v and p behaves exactly like F n 

on x and pl, as far as predicate answers and output 
are concerned. Thus, F on s(n)v and p halts with 

n 
either ouptut TRUE or FALSE. But ~ (s(n)v) is 

undefined, diagonalizing over F .) 
n 

Case 2: F on x with pl does not halt. 
n 

Let Pn+l=p I. Let f(n+l)=l+f(n)+2g(n). 

We claim there exists s(n+l) such that 

s(n) is a prefix of s(n+l), 

Is(n+l) I = f(n+l), 

and no extension of s(n+l) is generated during the 
non-halting computation of Fn on x with pl. 

(Since there are at most (2 f(n) + 2g(n) + i) 

equivalence classes in RpI, two of the first 

(2 f(n) + 2g(n) + l)n.n+l steps must take us to the 

same box in F with all corresponding register con- 
n 

tents R 1 - equivalent. Thereafter, the computa- 
P 

tion is in a loop, repeating a sequence of flow- 
chart boxes and Rpl - equivalence classes with 

period ~ ~ (2 f(n) + 2g(n) + l)n.n. 

We require some notation for register con- 
tents. Assume exactly n registers, for simplicity, 
and consider the following trace: 

(o) 
CI,~-I 

(0) 
CI,~ 

(0) 
C2,g-1 

(o) 
C2,~ 

(1) (1) 
CI, 1 C2, 1 

(1) (1) 

CI, 2 C2, 2 

(i) (i) 
CI,~ C2,~ 

(2) (2) 
CI, i C2, 1 

(0) 
C 
n,~-i 

(0) 
C 
n,~ 

(i) 
C 
n, 1 

(i) 
C 
n, 2 

(i) 
C 
n,~ 

(2) 
Cn,.1 

* and ** indicate the lines which give the register 
contents at the two configurations which first put 
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us into Rpl- equivalence classes, as above. 

(k) 
Ci, j denotes the contents of register i after 

k entrances into the loop and j steps into that 
interation. The (0)- superscript values are ob- 
tained from the values preceding the first en- 
trance into the loop. Note the following 
dependency: 

For every i,j, there exists W. • E {0,i}* 
1,3 

and h(i,j) E i,...,n with either 

(4) (~k > i) C (k) = w 
-- l,j l,j 

or (5) (wk _> i) Ci, j (k) = Ch(i,~ )~ ,~(k-1) W. . l,j 

Now for a given (i,j), there are three 
possibilities: 

Case a: (4) holds. Then there are at most 2 

(k) 
strings C. . 

1,3 
Case b: (5) holds, and there exists m > 1 with 
the pair 

~ (i,j),~),~),7...),7 

m 

satisfying (4). In this case, we can choose 
m < n, since there are only n registers. Then 

(k) 
there are at most n + 2 values C. 

1,3 

Case c: (5) holds, and 

~ ( i , j ) , ~ )  ,~) ,7...) 

a 

=~..h(h(~(i,j),7) ,~,z...) 

b 

for some 1 < a < b < n+l. Then there are at most 

n strings Ul,...,Un, and strings v and y with all 

(k),k > n in {u~ y*v I 1 < ~ < n}. Ci, j 

In summary, when F runs on x and pl, the 
n 

following values are produced: at most 

n(2 f(n) + 2g(n) + l)n.n (2 + (n+2) + n) 

"sporadic" values exist plus at most 

n(2 f(n) + 2g(n) + l)n.n.n choices of u, 

y,v having the remaining values in uy*v. 

But (~ u,y,v,~) uy*v includes extensions of at most 
~+i distinct strings of length ~. Then since g(n) 
is so large relative to n and f(n), it follows 
that some extension s(n+l) of s(n), Is(n+l) l~f(n+l) 
= 1 + f(n) + 2g(n) has none of its extensions in 
the set of values produced. 

Choosing s(n+l) in this way insures that F 
n 

on x and p will diverge, thus diagonalizing over 
F .) 
n [] 
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