
Efficient Reducibility Between Programming Systems:

Preliminary Report*

Nancy A. Lynch
Florida International University

Miami, Florida 33199

Edward K. Blum

University of Southern California

Los Angeles, California 90007

I. Introduction

Much of the research on semantic theories

has concentrated on qualitative properties such as

definability (of such programming concepts as re-

cursive procedures), equivalence (of different
language constructs), and verifiability (of the

correctness, or consistency, of one expression

relative to another). Current qualitative theo-

ries are in a tentative state and much remains to
be done. However, there is also a quantitative

side to semantics. Indeed, many of the questions
which any semantic theory must answer are at once

qualitative and quantitative. We would like to

draw upon complexity-theoretic techniques to an-

swer such questions. However, first it is neces-

sary to establish a mathematical framework within
which the analysis of semantic complexity can be

carried out. This framework should accommodate

the software concepts which underlie existing so-
phisticated languages like ALGOL 68 and simpler
languages like BASIC. Recent research [1-9] sug-
gests a primarily algebraic framework. Algebra

lends itself to a precise formulation of cer-

tain "static"(or non-effective) programming con-
cepts such as "values," "data structures" in an

extensible language [2,9], and"operators[whereas

"dynamic" (or effective) concepts such as "con-

trol" must be based on the theory of computation,
although even here algebraic notions may prove

useful [i]. However, it appears that classical
abstract algebraic notions such as the homomor-

phism concept, arising out of studies of the prop-
erties of similar algebraic structures, are in-

adequate to the task of computer science.
We are currently working on the development

of new algebraic constructs to provide a mathe-

matical framework for both qualitative and quanti-
tative analysis of semantic problems. Some

preliminary ideas in this direction appear in [15]
and in Appendix A. The emphasis in the present
paper is on obta~]ing some insight into the kinds

of results that can be obtained. Specifically, we
restrict attention to questions involving relative

complexity of flowchart programming systems. We
expect that isolation of the relevant algebraic
properties sufficient to imply our results and
their natural generalizations will be possible. We

also hope that the present results have intrinsic
interest in suggesting a more "relative" or

"modular" approach to complexity analysis:

*This work was s~ported by the National Science
Foundation through grant DCR75-02373.

Analysis of complexity of algorithms has gen-

erally been done in an "absolute" way, by counting

the total "time" required by the algorithm when
performed on a RAM with a specified operation set,

or perhaps on a Turing machine. One difficulty
with this approach is that it tends to de-empha-

size similarities between computational problems.

It has been noticed [i0] that the underlying alge-
bra is not really absolute; for different problems

or at different times for the same problem, we
might wish to measure complexity of an arithmetic

function in terms of basic arithmetic operations

on N, in terms of bit vector operations, or in
terms of basic bit operations. Thus, in a sense,

time complexity is most naturally thought of as a
relative concept rather than as an absolute one.

Relative complexity is, of course, not a new

idea; one form in which it has been studied is
represented by [11,12,13], for example. This work

uses Turing machines with oracles as a model for

computation. But for very low-level complexity

theory, the peculiarities of Turing machines some-

times becomes intermingled with the properties of

the oracle set in determining relative complexity.
We take the viewpoint that both are important; the

basic operations of the Turing machine itself are

considered to be no different from oracle func-
tions and predicates, and both are here thought of

as primitives of an algebra.
There are really two kinds of modularity to

be treated. The first is the definition of a new
operation from previously defined operations on a

previously defined data type. (This is a very
general description of the subject matter of

"algebraic complexity" [14].) The second is the

"implementation" of an entirely new data type,
together with some new operations, relative to a
previously defined data type. (For example, given

bit vectors and some standard set of operations,
how should we "implement" the rational numbers
with an appropriate set of operations?) We con-

sider both cases.
One motivation for considering implementation

of an entire algebra rather than of one function

at a time arises from the previously mentioned
work on data structures. A second and very im-

portant motivation arises from coding considera-
tions. Consider the situation in which we have a

programming system based on bit vectors, with some

natural set of operations, and wish to determine

the "complexity of primeness for members of N."

There is no a priori reason we could not assume a
coding of N into bit vectors which includes

228

primeness in a quickly accessible way. Difficul-
ties of this kind are generally resolved by speci-
fying a particular coding. But meaningful results
should be obtainable without resorting to such a
drastic, specific solution. We regard "primeness"
as existing not in a vacuum but along with other
operations we want to perform on N (such as + or
<). Restrictions on the complexity upper bound
for the other operations on N serve to restrict
the coding in such a way that coding-independent
results can be obtained for the new operation.

In the remaining sections, we give our defi-
nitions and technical results. Results deal with
relative complexity of certain basic operations on
particular algebras, with the comparative express-
ive power of different program structures, and
with the comparative efficiency of different rela-
tive codings of the same pair of algebras. We
also try to capture what comprises an adequate
(i.e. able to compute as efficiently as possible)
set of basic operations over different algebras,
and prove adequacy and inadequacy of some particu-
lar sets of operations. The main technical re-
sults of interest are those in Section V, Theorem
3, and possibly Theorem I.

There are many open questions remaining to
be considered; also, extensions of our definitions
will be needed to express more complicated data
structure and algorithm implementations. We have
chosen here to examine the simplest possible defi-
nitions and explore their power.

II. Notation and Definitions

An algebra S= ~;f I fk;Pl p~is a

set together with a collection of partial func-
tions and partial predicates. Constants are O-ary
functions.

Definition: Let S = ~A;f I fk;Pl p~,~ and

i
f' " ' ... '>be S' :<A' ; f{ k,,Pl, ,p~

two algebras. Let T: A'÷A be a possibly partial,
onto, function. A partial function F. on A' is a

i
simulator of f'l if for all a l,...,a n , if

fi(T(a I) T(a)) is defined, then
n

fi(T(al)''''T(an)) = T(Fi(al an))" A partial

predicate P'l on A' is a simulator of Pi if

for all a I an, if Pi(T(al) T(an)) is

defined, then Pi(T(al) ,T(an)) = Pi(al an).

Note that several representations in A' are
permitted for each element of A. Predicates and
functions are treated differently because of their
different uses in programs. T is required to be
onto in order that every element of A have a
representation, but is permitted to be partial
since not every element of A' need represent an
element of A.

Of course, F. and P. so far have no rela-
tionship to the ba~e i . S'. operatlons of In
Appendix A, some purely algebraic relationships
are suggested, but here we will restrict to flow-
chart prograrmming systems.

Our flowcharts are composed of boxes of the
following kinds:

yes

I xi := INPUT]

I xi := f(x]l x') 13n

&
I OUTPUT := TRUE I

IOUTPUT := FALSE I

Here, f and p represent function and predi-
cate symbols of S respectively. We assume that
each flowchart is consistent in its output type;
it either outputs only values in A, or only values
in {TRUE,FALSE}. Flowcharts are regarded as com-
puting partial functions or predicates on A in the
natural way, and we will take the notational
liberty of identifying flowcharts with their func-

tions or predicates.
Definition: Let FI,...,F k be flowcharts over S'

which compute partial functions. Let Pl P~

be flowcharts over S' which compute partial predi-
cates. Then we say

S ~ S' (S is flowchart
T (F 1 Fk;P 1 P£)

reducible to S' via T,FI,...,Fk,P 1 ,P£) provided

each F. is a simulator of the corresponding f.,
.i

and each P. is a simulator of the correspond±rig Pi"
1

We write S ~ S' if S ~ S' for
T T(FI,...,Fk;P 1 ,Pz)

some F I, Fk,P 1 P~.

Of course, the same kind of definition could
be made using other restrictions on the simulators.
(See Appendix A.) For flowcharts (and many other
natural classes), proper handling of the partial-
hess will give the expected results regarding sub-
stitution, transitivity, congruence relations and

quotient algebras.
Sometimes, (e.g. in Section V), we will wish

to imagine a coding mapping as going from left to
right instead of from right to left. For any
algebra S, let F(S) (the free version of S) have as
its domain all well-formed terms over the function
symbols of S, (including constants) and its func-
tions defined in the usual way for free algebras.
Let e(x), for x £ domain F(S), be the "value" of x
when evaluated in S. (e(x) may be undefined.)
Let each predicate p on ~(S) be defined by

p(x I, Xn) = p(e(xl) e(Xn)) (so that

P(Xl,...,x n) may be undefined). Now, if the

229

situation is as in the preceding definitions, a
natural (partial) mapping O: domain (F(S))÷A ' may

be constructed so that e(x) = T(o(x)) for all x.
o is constructed inductively on the structure of

terms in F(S), using FI, F k. What this means

is that our original definition, although it
allows arbitrarily many representations in S' for
each element of S, still distinguishes certain
representations, the choice depending on the comp-

utation path used to generate the element.
To every element x of domain F(S) we associ-

ate a size s(x), ~ich is the minimum number of
gates (each gate labelled by a function of F(S))
in a no-input arbitrary fan-out circuit computing
x. (This definition is used in Section V only.)
For any flowchart F, L F will denote the natural

path length function and will be the complexity
measure we will consider; i.e. LF(X) is the number
of operations involved in the computation of F(x).

III. Expressiveness of Systems
The definitions in Section II provide a

general framework for studying relative comput-
ability and relative complexity of systems. Our
primary interest here is in complexity issues, and
Sections IV-VI are devoted to consideration of
different kinds of[questions about relative com-
plexity. Before moving to these questions,
however, it is worthwhile to mention that there
are some expressiveness issues to consider. For
flowcharts alone, we have found no surprises.

There are, however, several general questions that
arise when we compare different program structures.
For example, how dependent are our definitions on
our use of flowcharts?

These questions are related to the compara-
tive expressiveness questions studied in schema-

tology (16,17,18,]9). Paterson and Hewitt, for
example, show that there is a recursion scheme not
strongly equivalent to any flowchart scheme. The
current framework suggests considering a similar
question for interpreted schemes. (After all,
when recursive programs are compiled, the under-

lying algebra is known.) Of course, if the alge-
bra has exactly the power to compute the partial
recursive functions (~N;O,succ; => or

<{0,1}*;~,0succ;isucc; =>, for instance), then
there is no difference in expressiveness between
flowcharts and general r.e. tree schemes. In
fact, the same is true for any algebra S with
O-ary and l-ary functions only (but arbitrary

<
predicates) and with<N;O,succ; => ~ S for some
T. We ask whether there are algebras~over which
these classes differ:

Theorem i: There exists an algebra S =

~i0,1)*,l,0succ;lsucc;p> (where p is a unary
total recursive predicate) and a partial unary
predicate q such that q is computed by a recur-
sive program over S but q is not computed by any
finite flowchart over S.

Proof: The techniques originate in [16] but

become more complicated because we are no longer
permitted to modify interpretations as they do.
We must patch together a single diagonalizing in-
terpretation. An outline of the proof appears as
Appendix B. []

The moral is that our restriction to flow-
charts is of some significance, even for expres-
siveness.

IV. Adequate Algebras With Domain N or {0,i}*
There are many algebras with domain N or

{0,i}* with (flowchart) expressive power exactly
the partial recursive functions. Intuitively, how-
ever, not all of them are equally efficient. We

give definitions for adequacy (in the sense of
having efficiency comparable to Turing machines) of
a set of operations over either of these domains
and classify several commonly-used sets of opera-
tions as to their adequacy. In proofs of the
classification results, we emphasize hierarchical
techniques which fit" our reducibility definitions.

For x e N, define 2adic (x) to be the usual
2adic coding of x into O's and l's; 2adic is a
bijection of N onto {0,i}*. If x E {0,i}*, I~I
refers to the length of x. If x E N, [~I refers

to 12adic (x) I.
Definition: An algebra S with domain N(or {0,i}*)
is adequate if for every polynomial computable

function or predicate f on N(or {0,i}*), there
exist a polynomial p and flowchart F with:

<
(1)<N;f> ~[x](~) s

<
(or ~0,1}*;~[x] (F)S),

(2) LF(X 1 Xn) ~ p(max Ixjl) for all inputs

and

(3) the length of any value produced during the

computation of F on inputs Xl,...,x is
n

at most p(max Ixjl).

That is, tractable functions have tractable
programs over S. The definition includes restric-
tions both on time and space; both will be needed
to make the Lemma of this Section true. Although
the definition only refers to tractable functions,

it will follow that functions of any complexity on
a Turing machine can be done over S with similar
complexity.

Consider, for example, B =~{0,1}*;~,0succ,
isucc,car,cdr,reverse; = I,=0,=~ , where

0succ (x) = x0,1succ(x) = xl,

car (x) = lfif x =
k~-he first symbol of x, otherwise, and

cdr (x) = l~f x = I,

~ii but the first symbol of x, other-
wise. (B consists of a reasonable set of "unit-
cost" string operations.) It is straightforward to
show, by machine simulation, that ~ is adequate.
In fact, ~ is able to simulate multihead multitape
Turing machines in linear time. To show that other
algebras are adequate, we would like to use the
adequacy of ~ and our reducibility; to do so, we

must introduce a complexity bound into the reduci-
bility definition:

Definition: Let S = <A;f I fk;Pl PF~andv

S' be algebras with domain N or {0,i}*. Assume

S <- S'
T(F 1 Fk;P 1 P/)

Assume there is some polynomial p for which:

(i) each Fi satisfies LF.(Xl,...,Xn)<_
l

p(max Ixjl + nfi(Y(x I) T(Xn))n)

for all inputs,

(2) the length of any value produced during the

computation of F i on Xl,...,x n is at most

230

p (max Ixjl + Ifi(T(x @ T(Xn)) I),

<
(3) each P'l satisfies Lp. (x I, x n) -- ~

1
p (max I xjl) for all inputs, and

(4) the length of any value produced during the
computation of Pi on x I x n is at most

p (max I xjl).

< poly s' . we write Then
S T(FI Fk;P 1 ,Pz)

we say

! poly s, <
ifS

T(FI Fk;Pl p~)S'
S T for

some FI,...,Fk,PI,...,P~.

The "honesty" condition in (i) and (2) is
used rather than a strict polynomial condition as
in (3) and (4) primarily because even with this
generalized definition, the following lemma is
still true:

Lemma: Let S and S' be algebras over N or {0,I}*,

the identity 2adlc -I as appropriate. If

S TJ < poly S' and S is adequate, then S' is adequate.

Proof: By substitution of flowcharts. []

It can now be shown that other common alge-
braic systems over N and {0,i}* are adequate:
Theorem 2: The following are adequate:

(a) <{ 0,1 } * ; ~, 0, i, cdr, concatenation ; =>

(b) <{0, i}* ; ~, 0succ, Isucc;prefix> ,

(where prefix (x,y) =~rue if x is a prefix

false otherwise.

(c) <N;0,1,+;<>

(d) <N;0,1,+,= ;:>

(e) <N;0,1,+,Ix[Ixl];: > ,

Proof: Using the Lemma and the adequacy of B. It

< p°Iy <{0, i},; ~, 0, i, car, cdr, is easy to show ~3~Fx l
concatenation;=> , and car may be trivially re-
programmed in terms of the other primitives. The
adequacy of (b) is then deduced from that of ia),
of (c) from (b), and of (d) and (e) from (c).

Obtaining (e) from (b) involves successive doubling
and comparison to compute "prefix"; the other con-
structions are straightforward.

[]
It is also possible to prove that certain

other systems, each with the same computing power
as those in Theorem 2, are not adequate. Of par-
ticular interest are (a) and (b) below; together
they combine to give an adequate system, but each
separately is not adequate. In a sense which can
be made precise, < and + comprise a very low-level
example of primitives that do not "help" each other
(in the presence of <N;0,succ;=>).
Theorem 3: The following are not adequate:

(a) <N; 0, i,+;=> ,

(b) <N;0,s~cc;_<> ,

(c) <{0,i}*; ~, 0succ,lsuec;=>

(d) <{0,1 }* ; ~, 0,1, car, concatenation ; =>

Proof: (a) We show that < cannot be computed over

N;0,1,+;= with polynomial path length. Assume
that it can, and F is a flowchart computing <,
with path length on inputs x,y at most p(Ixl?lyl),
p a monotone polynomial. Choose n £ N With
p(12nl,12nl) < n, and consider

A = { (x,y)In+l < x < 2n and 0 < y < n} and

B = {(x,y) I (y,x) e A}. We show that some member
of A and some member of B must follow the same path

in F.
Unwind F into an (infinite) tree T. Every

input pair (x,y) causes a path in T. to be follow-

ed, of length ~ p(Ixl,lyl) and ending with either

IOUTPUT := TRUEI or IOUTPUT := FALSEI according

to whether x < y or x > y. Each branch'point in T
results from an equals test which may be expressed

in the form

ax+by+c = a'x+b'y+c', a,b,c,a',b',c' e N.

(The expression for each branch point may be con-
structed by ignoring the information obtained from
tests along the path, and simply looking at uses
of assignment and +.) Prune T by omitting all
tests (and subsequent "no" subtrees) having a=a',
b=b' and c=c' Remaining is a tree T' for which,
at every branch point, all inputs (x,y) causing
the "yes" branch to be taken lie on one straight
line. A counting argument now shows that some
point in A (rasp. B) must follow the "no" branch
at every choice point, and this path must terminate.

(b) Consider F, a flowchart over N;0,succ;~
which computes unary function f, and which has
path length at most p(Ixl) on input x, for some
polynomial p. Choose n s N with p(In[) < n. Con-
sider the behavior of F on input n and on input
x > n. F must follow the same path in both cases,
because succ cannot span from 0 to n in p(Inl)
steps, and < is unable to distinguish n from x.
But then consider how the output of F on input n
was-constructed. The output arose from a variable
initialized either at 0 or n and increased by 1 a
fixed number of times. Thus, for some c e N we
have f(x) = c for x > n, or else f(x) = x+c for
x > n.

-- -- < poly
(e) <{0,1}*;l,succ0,succl;=/~2a~i c

<N;0,1,+;=> . Use the Lemma.

(d) We show that cdr cannot be computed over
<{0,1}*;l,0,11car,concatenation;=> with polyno-
mial path length. Assume that it can, and F. is
such a flowchart, with path length on input x at
most p(Ixl) , p a polynomial. Choose n 6 N -- {0}
with p(n) + 1 < 2 n-l, and consider A= {x E {0,i}*

l IX| = n and car(x) = 0}. We will first show
that two distinct members of A must follow the
same path in F:

Unwind F into a tree T. Each branch point
results from an equals test on two expressions,
each built up from l's, O's, l's and x's using car
and concatenation. Restrict consideration to in-
puts x e A; then we may simplify the expressions
using simple reduction rules so that each expres-

sion is a (possibly empty) concatenation of O's,
l's, and x's. But since all x E A are of the same
length, each equation is satisfied by either n_0_o
x C A, all x £ A or exactly one x E A. Prune T by
omitting all tests (and subsequent "no" subtrees)
for which all x ~ A satisfy the reduced equation.

231

Remaining is a tree T' for which, at each branch
point, at most one x ~ A causes the "YES" branch
to be taken. A counting argument shows there are

two values Xl,X 2 £ A following the "no" branch at

each point.
Consider the output from T' on inputs x 1

and x 2. Reductions as above show that the output
on input x. is the value of a (possibly empty) con-
catenation of 0 s, 1 s and x s, while the output

• 1 .
on x 2 zs the value of the same expresslon with x
replacing x . But since [cdr (x)I < I x I ,x ca~

1 . 1 1
cannot occur in the expresslon. Thus, t~e output
is identical for both inputs.

[]
We remark tlhat Theorem 3 may be strengthened,

with similar proofs, to be coding-independent.
One very interesting question we have not

been able to resolve is:
Question: Is <N;0,1,+,x;=> adequate?
This seems to be a funda~ental one about the ex-
pressiveness of polynomials.

V. Optimal Codings of Arithmetic Systems into
We compare different possible codings of

basic algebras into ~ of the preceding sections.
We show that certain natural codings are nearly
optimal, in the sense that nothing above a certain
minimal level of complexity can be computed faster
in any other coding. Thus, we have limits on the
improvement possible through changes in coding.
Ideas for proofs are fairly simple and much more
general than presented here.

Consider coding <N;0,1,+;<_~ into B. In
the 2adic coding, + and < can be done by'flowcharts
with path length linear in the log of the inputs
in N. In comparing another coding to this one, it
is reasonable to impose similar complexity restric-
tions on + and < in the new coding. We obtain:

<

T heore____~m 4: Assume <N;+;p> ~(F -P)~' where p is
+,

a partial predicate. Assume there exists C such
that T(y)=x and T(y')=x' imply (y,y') < LF+

C(IxI+Ixll). Further assume that Y(y)=x implies
Lp(y) _< t(x), where t is a partial function.

Then there is a flowchart G and a constant C
<

such that <N; ;~,~ 2~dic-i (G) ~' and 2adic -I (y) =x

implies LG(Y) ~ C(Ixl2+t(x)).

Proof: The 2adic representation of x £ N allows
us to quickly determine an efficient way to build
up x using +. This allows for fast translation
from the 2adic to a Y representation. More pre-
cisely, we show:

Lemma: Assume <N;+;~(F+)~, and F+ is as in

Theorem 4. Then there is a flowchart G and a
constant C such that G(y)=y ' implies 2adic-l(y) =

T(y'), and 2adic(x)=y implies LG(Y) ~ Clxl 2

Proof of Lemma: G first uses the bits of y to ob-
tain a "parse" of 2adic-l(y), i.e. a sequence of +
operations, starting with 0 and i, that generates
2adic-l(y). The natural parse consists of a se-
quence of about IYI operations, each involving
either doubling, or doubling and adding i. A fixed
element of T-l(0) and one of T-l(1) are built into
G. G then applies F in the way described by the
parse, using the fixed elements where needed. By
the consistency of T with F , an element of
y-l(2adic-l(y)) is eventual~y obtained.

Each of the IYl operations involves a bounded
number of applications of F to inputs which are Y- + .
representations of integers with length at most lYl-
Since I 2adic-l(Y) l=lYl , the bound follows.

The Theorem is now an immediate consequence
of the Lemma and the additional hypothesis. []

Stronger hypotheses are needed to obtain a
similar result for functions as well as predicates:

<
Theorem 5: Assume <N;+,f;~ (F+,F;p<)B, where f

is a partial function. Assume F is as in Theorem +
4. Assume that Y(y)=x implies LF(Y) ~ t(x), where

t is a partial function. Further assume there ex-
ists C such that T(y)=x and T(y')=x' implies
Lp<Cy,y')~ c (Ixl+Ix'L)

Then for any g, there exist a flowchart G and
%

a constant C such that <N;f> 2~dic-l(G) B, and

2adic-l(y)=x implies LG(Y) ! C([xi2+t(x)+If(x) 12+e~

Proof: 2adic (f(x)) is constructed bit-by-bit from
a T-representation of f(x). More precisely, we

show: <
Lemma: Assume <N;+;~(F+;p<)~, with F+ as in

Theorem 4 and P< as in Theorem--5.

Then for any £,--there exist a flowchart G and a
constant C with G(y)=2adic(T(y)) and LG(Y)

CIT(y 12+£for all y.

Proof of Lemma: Let CIe Y -I(1);CI has a flowchart
over B. We first design a flowchart G 1 over ~I =
<{0,l}*;~,0suce,lsucc,car,cdr,reverse,Cl,F+;=~ ,

=0,=I;P~ which computes (the function computed
by) G, and then obtain the needed flowchart G by
replacement of the symbols CI,F + and P< by their
flowcharts.

The best G~ we know arises from a compilation
1

using techniques of Chandra [20], of a ,,loop-free
linear recursive program" over B I. The relevant
theorem appears at the beginning of Section VI.
The recursive program we use is: (Notation is as
in [20].)

Translate (x0) : data Xl,X 2

I* Given x 0 ~ {0,i}*, Translate (x^) outputs
2adic(T(x^)) if x 0 g domain T. ItsUbehavior is

otherwiseUunsp ecified- * 1
S TART;

<Xl, x2> Approx (F+ (x0, C1), ~) ;

RETURN (Xl) ;

Approx (x0, Xl) : data x2,x 3

I* Given x 0 with Y(x 0) defined and >__ i,

x I with T(x I) a power of 2, and

T(Xl) < Y(x0), Approx(x0,xl) returns two values:

(i) the string obtained by deleting the leading i.
from the binary representation of L(x0) T(Xlj

and (2) some value in Y-l(~(x 0) -T(Xl)JX T(Xl))-*I

S TART ;

if P< (F+ (Xl,X I) ,x 0)

232

then begin

~2,x~ ~- approx(x0,F+(Xl,X 1))

if P< (F+(x3,xl),X0)

then RETURN (succl(x2),F+(x3,xl));

else RETURN (succ0(x2) , x3) ;

end;

else RETURN (l,Xl) ;

The given assertions suffice to verify cor-
rectness of the program. On input y, the recur-
sion depth is approximately IT(y) I. Also, if an
argument z is generated during computation on in-
put y, then IT(z) I is at most approximately
IT(y) I.

Using Chandra's theorem, we obtain G] compu-
ting G, with y s domain (T) implying L_ (yl <

~i
CIT(y) I l+e," for some constant C. Moreover, each
argument z (with possibly finitely many excep-
tions) to which F+ and P< are applied when G 1 is

run on input y have IT(z~l at most approximately

l (y) I
Now obtain flowchart G by replacing in GI,

F+,P< and C 1 by their flowcharts. The complexity

bound follows from the hypotheses on F+and P<.

The Theorem follows immediately. []

Theorems 4 and 5 limit the improved effi-
ciency that could be obtained over the standard
coding, at least for computation of "small" func-
tions. The only possible improvement is a very
local one arising from possible concise represen-
tations of large numbers (such an improvement is
possible, for example, in floating-point codings.)
In particular, polynomial size-bounded "polyno-
mial-computable" functions and predicates in any
coding satisfying the hypotheses of Theorems 4
and 5 are also "polynomial-computable" in the
standard coding.

The reader may object to the complexity
restrictions used in Theorem 4 and 5 - namely,
all the codings have a uniform bound on the
running time of flowcharts on all representations
of an element. It is plausible that some'effi-
cient mappings might use infinitely many repre-
sentations of some elements; in that case, a
uniform bound is not the appropriate requirement.
To prove optimality results for the standard
coding when compared to codings allowing infinite-
ly many representations for elements, we require
a different way to compare complexity of codings.
We will allow complexity to be calculated not
only in terms of the natural number itself (as
before) but also in terms of the way that number
is generated in <N;0,1,+;<~: Intuitively} the
size of an expression evaluating to a number is a
measure of the "size" of the number, and so it is
probably reasonable to use that size as a para-
meter upon which to base measures of running time.
Here we use F S), o and s as defined in Section II.

Let S=<N;0,1,+;~> and let s be the size
measure on [(S). In the standard coding, we may
obtain flowcharts for + and <, O': domain
(F(S))+{0,1}* as in Section ~I and a constant C
such that L F (O' (x),o' (x')) ~ C((s(x)+s(x')) and

+

Lp<(O'(x),O'(x')) ~ C(s(x)+s(x')) for all x and x'.

So we impose similar restrictions on other codings
in order to compare them. Allowing polynomial
fudge-factors for simplicity, we obtain:

Theorem 6: Assume <N;0,1,+;~T (F0,FI,F+;p)B , and

is as in Section II. Assume for some polynomial

q, L F (O(x),O(x')) ~ q(s(x)+s(x')) and
+

Lp(a(x)) ~ q(s(x)) for all x, x'.

Then there exist a flowchart G and a polyno-

mial q such that<N; < ;P~2adic -I (G) B, and

LG(O'(x)) ~ q(s(x)) for all x.

Proof: By techniques similar to those used for
Theorem 4. []

That is, even allowing codings with infinite-
ly many representations for each element, the stan-
dard coding cannot be significantly improved upon
for the computation of predicates. As before, a
result for functions is obtainable under an addi-
tional hypothesis on P<:

Theorem 7: Assume <N;0,1,+,f;<_~

<
B,

~(F0,FI,F+,F;P <)

O is as in Section II and F is as in Theorem 6.
Assume for some polynomial ~, that

LF(O(x)) ~ q(s(x)) for all x, that

Lp<(O(x),O(x')) ~ q(s(x) + s(x')) for all x,x', and

that (Vx)(~y)E(U(x)~ = U(y) and s(y)<q(s(x)~ .

(This latter assumption represents a size restric-
tion on the function computed by F.)

Then there exist flowchart G and polynomial

q with <N;f;~ < 2adic -I (G) B, and

LG(~'(x)) _< q(s(x)) for all x.

Similar optimality results are obtained for
certain standard codings of Z and the positive
rationals in B. These results lead to some prelim-
inary definitions for "adequacy " of operation sets
over Z and Q+ and to classification of some common
operation sets as to their adequacy. Further de-
tails will have to be deferred to a longer paper.

VI. Low-Level Relative Complexity of Basic
Operations on N and {0,i}*

Adequacy, as studied in Section IV, allows
polynomial variation and is certainly not as fine
a concept as we would like to consider. In this
section, we reconsider commonly-used basic opera-
tions on N and {0,i}* to obtain a finer complexity
classification. Results in this sections, since
each deals with only a single algebra, use little
of the expressive power of the present framework.
The new framework simply provides a unification and
an encouragement for hierarchical constructions.
These results are only some of a virtually unlimit-
ed class of similar results which presumably could
be obtained.

233

The primary aim here is to obtain upper and
lower bounds on flowchart complexity; however, the
best flowchart upper bounds we have obtained for
the operations studied in this section have arisen
through loop-free linear recursive programs com-
piled into flowcharts by Chandra's construction
[20]. We use Chandra's formalism for linear re-
cursive programs, except that we do not specify
that inputs be distinguished constants of the al-
gebra; our (interpreted) programs compute functions
and predicates rather than single values. As he
does, we use D F (the recursion depth of program F)

as the function giving a measure of complexity.
We use as a lemma:

Theorem (Chandra) : Assume F is a linear recursive
<

over S, and <{0,1};0,1;:~T S. Assume 6 program

is a positive real. Then there exists F', a flow-
chart over S co~uting the same function or predi-
cate as F, and C 6 N such that

1+6
LF,(X 1 x n) ~L C(DF(X 1 Xn)) for all in-

puts. Moreover, except for a fixed finite set of
possible exceptions, if a base operation of S is
applied to an element of S during the execution
of F' on a given input, then the same base opera-
tion was applied to the same element during the
execution of F on the same input.

Theorem 8: For every positive real 6, there exist
exists C 6 N and a flowchart F, such that (for
all inputs):

(a) F computes parity over<N;0,1,+;<~ and
1+6,

L F(x) < C (log x)

(b) F computes - over <N;0,1,+;<~ and

i+6
LF(Xl,X 2) < C(log(xl-x2))

(c) F computes x over <N;0,1,+;<> and

1+6
LE(Xl,X2)< C(min(log Xl, log x2)) ,

(d) F computes ~Xl,X 2 [XlX2]over<N;0,1,+,x; b

i+6
and LF(Xl,X2) < C(log x2) ,

(e) F computes parity over<N;0,1,+,x;<_~, and

LF(X) .<C(log x) (log log x) I+6,

(f) F computes "- over <N;0,1,+,x;<~, and

~(Xl,×2)_< c (log(x~x2)) (log log(xl-x 2 }~6

(g) F computes < over <N;0,1,+, II; => , and

l+g
LF(Xl,X2)<C (log x I)

(h) F computes reverse, over

<{O,l}*;~,Osucc,lsucc;prefix> and

~F (x) fi el xl 1+6

Proof: We use Chandra's theorem; sometimes
linear recursive programs are used to compute the
needed function, and other times they are used to

compute"modules" of the function. For instance,
we show:

(c) Mult (x0,xl) : data x 2

I* Given x0,x I 6 N, Mult(x0,x I) returns their

product.* I

START;

if x 0 ~ x 1

then x 2 ÷ Multl(x0,xl);

else x 2 ÷ Multl(Xl,X0);

RETURN (x 2) ;

Multl(x0,x l) : data x2,x 3

< x I, Multl(x0,x I) I* Given x 0,x I 6 N with x 0 _

returns their product. * I

S TART ;

if x 0 < 0

then RETURN (0) ;

else begin

<x2,x~÷ Approx (x0,Xl,l,x I) ;

RETURN (x 3) ;

end ;

Approx (x0,xl,x2,x3) : data x4,x 5

I* Given x 0 < x I with x0~ 0,x 2 > 1 and x3=x2-x I,

Approx (x0, ~ ,x2,x 3) returns two values:

~ (1) the largest y < x 0 such that y is a multiple

of x 2, and

(2) for y as in (i), Y'Xl.* 1

S TART;

if x 2 < x 0

then begin

<x4,x ~ ÷ Approx (x0,xl,x2+x2,x3+x 3) ;

x 6 + x4+x 2 ;

if x 6 < x 0

then RETURN (x6,x5+x3) ;

else RETURN (x4,x 5) ;

end;

else RETURN (0,0) ;

(e) Power (x0,xl): data: x 2

I* If x 0 > Power returns the largest x I , (x0,x I)

y _< x0-x I such that y is a power of 2. 0 is re-

turned otherwise. * 1

S TART ;

if x 0 < x I

then RETURN (0) ;

234

else if x 0~ Xl+l
then RETURN(I);
else begin

XR~ + Approx (x0 ,x l ,2) ;
TURN (x2);

end;

Approx (x0,xl,x2): data x 3

I* Given x 0 ~ Xl+2 , x 2 = 22a for some a ~ 0,

Approx (x0,xl,x2) returns the largest y ~ x0-x 1

such that y = 2 b'2a for some b E N. *I

START;

if x2+x I ~ x 0

then begin

+ Approx x 3 (x0 ,x l , x2 -x2) ;
if X3.X 2 + x I ~ x 0

then RETURN (x3.x2) ;

else RETURN (x3) ;

end;

else RETURN (i);

For any e, we may obtain a flowchart F' for

Power over <N;0,1,+,x;~with LF,(X0,Xl)

C(log log(x 0 -Xl))l+£ , for some constant C.

Now a simple flowchart F" may be construc-

ted computing parity over <N;0,1,+,power;~,

with LF,,(x) ~ C log x for some C. Moreover, for

all values y produced during the computation of

F" on input x, we have y < x. Substitution of

F' in F" yields the desired bound.

The other constructions are similar; a few
programming tricks are needed, for example for

(g)" []

It is not difficult to obtain corresponding
lower bounds, by techniques such as those used to
prove Theorem 3 and by counting techniques of

Stockmeyer [21]. In no case, however, is the
obtained lower bound sensitive to the "£". We
have as yet been unable to prove an interesting
distinction in complexity between linear recur-

sive programs and flowcharts. We conjecture, for
example:

Conjecture:, There does not exist a flowchart F
and a constant such that F computes reverse
over <{O,l}*;~,Osucc,lsuce;prefix> and
L(x) !clxl-

Appendix A: Algebraic Concepts

The complexity characterizations in this
paper, while stated for flowchart simulators, do
not require the full power of flowcharts for their
proofs. We are working on the isolation of the

relevant algebraic properties sufficient to derive
lower bounds and realistic upper bounds for rela-
tive complexity of interesting problems. Some
definitions which appear fruitful are:

Definition: Let S and S' be algebras, with nota-
tion as before. A mapping ~: A÷A' is a genomor-
phism if ~ has a partial left-inverse T such that

for all f'l and all bl,...,bn,

fi(bl b n) e T(J(b I) ~(bn)])-

(The brackets refer to the algebraic closure.)
We note that the notation in the above defi-

nition differs from that in [15].

Definition: Let S be an algebra. A function F on

A is closed if F(a I an) ~ E1 an~__ for all

al'''''an in its domain.

Definition: Let S,S' be algebras, T:A'÷A a possi-
bly partial, onto, function. T is closed
simulative if every basic function of S has a
closed simulator over S'.

We note elementary implications between the
two definitions:

Lemma: If T is closed simulative, then every right
inverse of T is a genomorphism. If ~ is a geno-
morphism whose image is a subalgebra, then there
exists a left inverse of ~ which is closed
simulative.

Note that closed simulative maps may be used
in the natural way to define a transitive reduci"
bility between algebras. These weak definitions
deal with basis functions only, and capture the
concept of accessibility of values within algebras.
Although expressiveness considerations may or may
not be interesting for these definitions, natural
definitions of complexity can be made, and some
nontrivial low-level complexity results can be made
to follow from them.

In order to introduce meaningful restrictions
on predicate simulators, we define "tree predicates"
(and "tree functions") over an algebra. Intuitive-
ly, these are predicates and functions computable
by general tree schemes (possibly infinite, loop-
free flowcharts) over the algebra. A precise alge-
braic characterization of such predicates and
functions is not difficult.

Definition: Let S,S' be algebras, T:A'+A a possi-
bly partial, onto function. T is tree simulative
if every basic function and predicate of S has a
tree simulator over S'.

Again, a transitive reducibility between
algebras results. Also again, complexity consid-
erations seem more interesting than expressiveness
considerations, and several nontrivial complexity
results (of the "decision tree" variety) can be
made to follow from these definitions.

Since the "flowchart simulative" reducibility
used earlier in this paper is (properly) stronger
than the closed simulative and tree simulative
reducibilities presented here, it is sensible to
discuss the attribution of parts of inherent flow-
chart complexity of problems to closure and to
tree considerations.

Appendix B: Proof Outline for Theorem 1

We diagonalize over unary predicate flow-

charts FI...,Fn,... , each of which uses only opera-

tion symbols from S. We assume without loss of
generality that F has at most n boxes (and n

n .
registers). Borrowzng from Paterson and Hewitt,
we define:

235

qp(X) = if p(x)

then TRLrE

else qp(X0) A qp(Xl).

Note ~ is always either TRUE or undefined. We
construct p so the ~ satisfies the needed condi-
tions on q in the statement of the theorem; at
stage n, we insure that F does not correctly com-

n
pute q . We also construct three auxiliary func-
tionsP s: N ÷ {0,i}*, f: N+N and g: N÷N such that

s(0) = 1

for all n, s(n) is a prefix of s(n+l),

length (s(n)) = f(n),

all strings put into p before stage n have
lengths less than f(n),

(i) only extensions of s(n) get put into p at
stage n,

and g(n) is "very large" relative to n and f(n).

Stage I,: Let Pn be the set of values put into p

before stage n, and assume s(n), f(n) and g(n)
are known.

1 {xw I lw[= g(n)}. Let x = s(n)0 g(n) Let p = Pn U

There are two possibilities:

Case i: F on input x with predicate symbol in-
n

terpreted as pl halts with either TRUE or FALSE

as output.

In this case, we claim that at most

(2f(n)+2g(n)+l)n.n steps were executed.

(For any predicate p, define equivalence relation

R by wR w I iff (Vv) p(wv) iff p(wlv) Then
P P

there are at most (2f(n)+2g(n)+l) equivalence

classes in R i- If there are two points in the
P

computation where all registers have RDI-

equivalent contents and control is at the same
flowchart box, the computation is in a loop.)
Therefore, since g(n) is large, we can find w,v
with

IWl :Ivl:g(n) ,

(2) xw was not generated in any register during
1

the computation of F on x with p ,
n

(3) no extension of s(n)v was generated in any
1

register during the computation of F on x with p .
n

Let Pn+l=pl U{s(n)vy I lyl=g(n) and y ~ w}

Then we claim:

Fn on x and Pn+l behaves exactly like Fn on
1

x and p , as far as register contents, predi-

cate answers and eventual output are concerned

(by (3)). Also, Fn on s(n)v and Pn+l behaves

exactly like F on x and pl, as far as predicate
n

answers and eventual output are concerned (by (2)
and (3)) .

Let f(n+l) > f(n)+2g(n), and also be greater than
the lengths of all strings generated during the

computation of F on s(n)v, with Pn+l" Let s(n+l)
n

be any string of length f(n+l) which is not an ex-
tension of s(n) vw.

(By (i), F n on s(n)v and p behaves exactly like F n

on x and pl, as far as predicate answers and output
are concerned. Thus, F on s(n)v and p halts with

n
either ouptut TRUE or FALSE. But ~ (s(n)v) is

undefined, diagonalizing over F .)
n

Case 2: F on x with pl does not halt.
n

Let Pn+l=p I. Let f(n+l)=l+f(n)+2g(n).

We claim there exists s(n+l) such that

s(n) is a prefix of s(n+l),

Is(n+l) I = f(n+l),

and no extension of s(n+l) is generated during the
non-halting computation of Fn on x with pl.

(Since there are at most (2 f(n) + 2g(n) + i)

equivalence classes in RpI, two of the first

(2 f(n) + 2g(n) + l)n.n+l steps must take us to the

same box in F with all corresponding register con-
n

tents R 1 - equivalent. Thereafter, the computa-
P

tion is in a loop, repeating a sequence of flow-
chart boxes and Rpl - equivalence classes with

period ~ ~ (2 f(n) + 2g(n) + l)n.n.

We require some notation for register con-
tents. Assume exactly n registers, for simplicity,
and consider the following trace:

(o)
CI,~-I

(0)
CI,~

(0)
C2,g-1

(o)
C2,~

(1) (1)
CI, 1 C2, 1

(1) (1)

CI, 2 C2, 2

(i) (i)
CI,~ C2,~

(2) (2)
CI, i C2, 1

(0)
C
n,~-i

(0)
C
n,~

(i)
C
n, 1

(i)
C
n, 2

(i)
C
n,~

(2)
Cn,.1

* and ** indicate the lines which give the register
contents at the two configurations which first put

236

us into Rpl- equivalence classes, as above.

(k)
Ci, j denotes the contents of register i after

k entrances into the loop and j steps into that
interation. The (0)- superscript values are ob-
tained from the values preceding the first en-
trance into the loop. Note the following
dependency:

For every i,j, there exists W. • E {0,i}*
1,3

and h(i,j) E i,...,n with either

(4) (~k > i) C (k) = w
-- l,j l,j

or (5) (wk _> i) Ci, j (k) = Ch(i,~)~ ,~(k-1) W. . l,j

Now for a given (i,j), there are three
possibilities:

Case a: (4) holds. Then there are at most 2

(k)
strings C. .

1,3
Case b: (5) holds, and there exists m > 1 with
the pair

~ (i,j),~),~),7...),7

m

satisfying (4). In this case, we can choose
m < n, since there are only n registers. Then

(k)
there are at most n + 2 values C.

1,3

Case c: (5) holds, and

~ (i , j) , ~) ,~) ,7...)

a

=~..h(h(~(i,j),7) ,~,z...)

b

for some 1 < a < b < n+l. Then there are at most

n strings Ul,...,Un, and strings v and y with all

(k),k > n in {u~ y*v I 1 < ~ < n}. Ci, j

In summary, when F runs on x and pl, the
n

following values are produced: at most

n(2 f(n) + 2g(n) + l)n.n (2 + (n+2) + n)

"sporadic" values exist plus at most

n(2 f(n) + 2g(n) + l)n.n.n choices of u,

y,v having the remaining values in uy*v.

But (~ u,y,v,~) uy*v includes extensions of at most
~+i distinct strings of length ~. Then since g(n)
is so large relative to n and f(n), it follows
that some extension s(n+l) of s(n), Is(n+l) l~f(n+l)
= 1 + f(n) + 2g(n) has none of its extensions in
the set of values produced.

Choosing s(n+l) in this way insures that F
n

on x and p will diverge, thus diagonalizing over
F .)
n []

REFERENCES

I. C. C. Elgot, Monadic Computation and Iterative
Algebraic Theories, IBM Report RC 4564,
October 1973.

2. B. H. Liskov and S. N. Zilles, Specification
Techniques for Data Abstractions, Software
Engineering, Vol. SE-I, No. i, March 1975,
pp. 7-19.

3. F. L. Morris, Correctness of Translations of
Programming Languages-An Algebraic Approach
Stanford U. Report CS-72-303, Aug. 72.

4. R. M. Burstall, An Algebraic Description of
Programs with Assertions, Verification and
Simulation, in Proc. ACM Conference on
Proving Assertions About Programs SIGPLAN
Notices 7,1 ACM 72.

5. G. Birkhoff, The Role of Algebra in Computing,
in Computers in Algebra and Number Theory,
Vol iv SIAM-AMS Proc. A.M.S. 1971.

6. J. A. Goguen, J. W. Thatcher, E. G. Wagner
and J. B. Wright, A Junction Between Computer

Science and Category Theory: I Basic Concepts
and Examples, Part i, IBM Report RC-4526
(Sept. 73); Part 2, IBM Report RC-5908 (March
1976).

7. R. M. Burstall and J. W. Thatcher, The Alge-
braic Theory of Recursive Program Schemes,
Symposium on Category Theory Applied to Compu-
tation and Control, Lecture Notes in Computer
Science 25(1975), 126-131.

8. J. B. Wright, J. A. Goguen, J. W. Thatcher
and E. G. Wagner, Rational Algebraic Theories
and Fixed-Point Solutions Proc. 17th Annual
Symposium on Foundations of Computer Science,
(Oct. 76) 147-158.

9. J. V. Guttag, E. Horowitz and D. R. Musser,
Abstract Data Types and Software Validation.
Research Report 76-48. Information Sciences
Institute, Aug. 1976.

i0. A. V. Aho, J. E. Hopcroft and U. D. Ullman,
The Design and Analysis of Computer Algorithms
Addison-Wesley, 1974.

ii. S. A. Cook, The Complexity of Theorem-Proving
Procedures, Third Annual ACM Symposium on
Theory of Computing, 1971, pp. 151-158.

12. R. Karp, Reducibility Among Combinatorial
Problems, in Complexity of Computer Computa-
tions, R. E. Miller and J. W. Thatcher, eds.
Plenum Press (1972) pp. 85-104.

13. R. Ladner, N. A. Lynch and A. L. Selman,
Comparison of Polynomial-Time Reducibilities,
Sixth Annual ACM Symposium on Theory of
Computing, 1974, pp. 110-121.

14. A. Borodin and I. Munro,

15. E. K. Blum and D. R. Estes, A Generalization
of the Homomorphism Concept, Algebra

237

16.

17.

18.

19.

20.

21.

Universalis, To appear.

M. S. Paterson and C. E. ~Hewitt, Comparative
Schematology. Record of Project MAC Confer-

ence on Concurrent Systems and Parallel
Computation (1970). pp. 119-128.

D. C. Luckham, D. M. R. Park and M. S.
Paterson, On Formalised Computer Programs,
J.C.S.S., Vol. 4. No. 3, June 1970, 220-249.

Stephen J. Garland and David C. Luckham,
Program Schemes, Recursion Schemes and Form
Formal Languages, J.C.S.S., Vol. 7, No. 2
April 1973, 119-160.

Takumi Kasai, Translatability of Flowcharts
into While Programs, J.C.S.S., Vol. 9, No. 2
October 19'74, 177-195.

A. K. Chandra, Efficient Compilation of
Linear Recursive Programs, Stanford Artifi-
cial Intelligence Project MEMO AIM-167,
April 1972.

L. J. Stockmeyer, Arithmetic versus Boolean
Operations in Idealized Register Machines,
IBM RC 5954, (A 25 837).

238

